Sample records for variance component model

  1. Mixed model approaches for diallel analysis based on a bio-model.

    PubMed

    Zhu, J; Weir, B S

    1996-12-01

    A MINQUE(1) procedure, which is minimum norm quadratic unbiased estimation (MINQUE) method with 1 for all the prior values, is suggested for estimating variance and covariance components in a bio-model for diallel crosses. Unbiasedness and efficiency of estimation were compared for MINQUE(1), restricted maximum likelihood (REML) and MINQUE theta which has parameter values for the prior values. MINQUE(1) is almost as efficient as MINQUE theta for unbiased estimation of genetic variance and covariance components. The bio-model is efficient and robust for estimating variance and covariance components for maternal and paternal effects as well as for nuclear effects. A procedure of adjusted unbiased prediction (AUP) is proposed for predicting random genetic effects in the bio-model. The jack-knife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects. Worked examples are given for estimation of variance and covariance components and for prediction of genetic merits.

  2. Variance component and breeding value estimation for genetic heterogeneity of residual variance in Swedish Holstein dairy cattle.

    PubMed

    Rönnegård, L; Felleki, M; Fikse, W F; Mulder, H A; Strandberg, E

    2013-04-01

    Trait uniformity, or micro-environmental sensitivity, may be studied through individual differences in residual variance. These differences appear to be heritable, and the need exists, therefore, to fit models to predict breeding values explaining differences in residual variance. The aim of this paper is to estimate breeding values for micro-environmental sensitivity (vEBV) in milk yield and somatic cell score, and their associated variance components, on a large dairy cattle data set having more than 1.6 million records. Estimation of variance components, ordinary breeding values, and vEBV was performed using standard variance component estimation software (ASReml), applying the methodology for double hierarchical generalized linear models. Estimation using ASReml took less than 7 d on a Linux server. The genetic standard deviations for residual variance were 0.21 and 0.22 for somatic cell score and milk yield, respectively, which indicate moderate genetic variance for residual variance and imply that a standard deviation change in vEBV for one of these traits would alter the residual variance by 20%. This study shows that estimation of variance components, estimated breeding values and vEBV, is feasible for large dairy cattle data sets using standard variance component estimation software. The possibility to select for uniformity in Holstein dairy cattle based on these estimates is discussed. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Removing an intersubject variance component in a general linear model improves multiway factoring of event-related spectral perturbations in group EEG studies.

    PubMed

    Spence, Jeffrey S; Brier, Matthew R; Hart, John; Ferree, Thomas C

    2013-03-01

    Linear statistical models are used very effectively to assess task-related differences in EEG power spectral analyses. Mixed models, in particular, accommodate more than one variance component in a multisubject study, where many trials of each condition of interest are measured on each subject. Generally, intra- and intersubject variances are both important to determine correct standard errors for inference on functions of model parameters, but it is often assumed that intersubject variance is the most important consideration in a group study. In this article, we show that, under common assumptions, estimates of some functions of model parameters, including estimates of task-related differences, are properly tested relative to the intrasubject variance component only. A substantial gain in statistical power can arise from the proper separation of variance components when there is more than one source of variability. We first develop this result analytically, then show how it benefits a multiway factoring of spectral, spatial, and temporal components from EEG data acquired in a group of healthy subjects performing a well-studied response inhibition task. Copyright © 2011 Wiley Periodicals, Inc.

  4. Modeling Heterogeneous Variance-Covariance Components in Two-Level Models

    ERIC Educational Resources Information Center

    Leckie, George; French, Robert; Charlton, Chris; Browne, William

    2014-01-01

    Applications of multilevel models to continuous outcomes nearly always assume constant residual variance and constant random effects variances and covariances. However, modeling heterogeneity of variance can prove a useful indicator of model misspecification, and in some educational and behavioral studies, it may even be of direct substantive…

  5. On testing an unspecified function through a linear mixed effects model with multiple variance components

    PubMed Central

    Wang, Yuanjia; Chen, Huaihou

    2012-01-01

    Summary We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 108 simulations) and asymptotic approximation may be unreliable and conservative. PMID:23020801

  6. On testing an unspecified function through a linear mixed effects model with multiple variance components.

    PubMed

    Wang, Yuanjia; Chen, Huaihou

    2012-12-01

    We examine a generalized F-test of a nonparametric function through penalized splines and a linear mixed effects model representation. With a mixed effects model representation of penalized splines, we imbed the test of an unspecified function into a test of some fixed effects and a variance component in a linear mixed effects model with nuisance variance components under the null. The procedure can be used to test a nonparametric function or varying-coefficient with clustered data, compare two spline functions, test the significance of an unspecified function in an additive model with multiple components, and test a row or a column effect in a two-way analysis of variance model. Through a spectral decomposition of the residual sum of squares, we provide a fast algorithm for computing the null distribution of the test, which significantly improves the computational efficiency over bootstrap. The spectral representation reveals a connection between the likelihood ratio test (LRT) in a multiple variance components model and a single component model. We examine our methods through simulations, where we show that the power of the generalized F-test may be higher than the LRT, depending on the hypothesis of interest and the true model under the alternative. We apply these methods to compute the genome-wide critical value and p-value of a genetic association test in a genome-wide association study (GWAS), where the usual bootstrap is computationally intensive (up to 10(8) simulations) and asymptotic approximation may be unreliable and conservative. © 2012, The International Biometric Society.

  7. Thermospheric mass density model error variance as a function of time scale

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Sutton, E. K.

    2017-12-01

    In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).

  8. Measuring self-rated productivity: factor structure and variance component analysis of the Health and Work Questionnaire.

    PubMed

    von Thiele Schwarz, Ulrica; Sjöberg, Anders; Hasson, Henna; Tafvelin, Susanne

    2014-12-01

    To test the factor structure and variance components of the productivity subscales of the Health and Work Questionnaire (HWQ). A total of 272 individuals from one company answered the HWQ scale, including three dimensions (efficiency, quality, and quantity) that the respondent rated from three perspectives: their own, their supervisor's, and their coworkers'. A confirmatory factor analysis was performed, and common and unique variance components evaluated. A common factor explained 81% of the variance (reliability 0.95). All dimensions and rater perspectives contributed with unique variance. The final model provided a perfect fit to the data. Efficiency, quality, and quantity and three rater perspectives are valid parts of the self-rated productivity measurement model, but with a large common factor. Thus, the HWQ can be analyzed either as one factor or by extracting the unique variance for each subdimension.

  9. Comparing estimates of genetic variance across different relationship models.

    PubMed

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Mapping carcass and meat quality QTL on Sus Scrofa chromosome 2 in commercial finishing pigs

    PubMed Central

    Heuven, Henri CM; van Wijk, Rik HJ; Dibbits, Bert; van Kampen, Tony A; Knol, Egbert F; Bovenhuis, Henk

    2009-01-01

    Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only. PMID:19284675

  11. A Bayesian Network Based Global Sensitivity Analysis Method for Identifying Dominant Processes in a Multi-physics Model

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2016-12-01

    Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.

  12. Detection of mastitis in dairy cattle by use of mixture models for repeated somatic cell scores: a Bayesian approach via Gibbs sampling.

    PubMed

    Odegård, J; Jensen, J; Madsen, P; Gianola, D; Klemetsdal, G; Heringstad, B

    2003-11-01

    The distribution of somatic cell scores could be regarded as a mixture of at least two components depending on a cow's udder health status. A heteroscedastic two-component Bayesian normal mixture model with random effects was developed and implemented via Gibbs sampling. The model was evaluated using datasets consisting of simulated somatic cell score records. Somatic cell score was simulated as a mixture representing two alternative udder health statuses ("healthy" or "diseased"). Animals were assigned randomly to the two components according to the probability of group membership (Pm). Random effects (additive genetic and permanent environment), when included, had identical distributions across mixture components. Posterior probabilities of putative mastitis were estimated for all observations, and model adequacy was evaluated using measures of sensitivity, specificity, and posterior probability of misclassification. Fitting different residual variances in the two mixture components caused some bias in estimation of parameters. When the components were difficult to disentangle, so were their residual variances, causing bias in estimation of Pm and of location parameters of the two underlying distributions. When all variance components were identical across mixture components, the mixture model analyses returned parameter estimates essentially without bias and with a high degree of precision. Including random effects in the model increased the probability of correct classification substantially. No sizable differences in probability of correct classification were found between models in which a single cow effect (ignoring relationships) was fitted and models where this effect was split into genetic and permanent environmental components, utilizing relationship information. When genetic and permanent environmental effects were fitted, the between-replicate variance of estimates of posterior means was smaller because the model accounted for random genetic drift.

  13. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  14. Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method

    NASA Astrophysics Data System (ADS)

    Tsai, F. T. C.; Elshall, A. S.

    2014-12-01

    Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.

  15. Cross-frequency and band-averaged response variance prediction in the hybrid deterministic-statistical energy analysis method

    NASA Astrophysics Data System (ADS)

    Reynders, Edwin P. B.; Langley, Robin S.

    2018-08-01

    The hybrid deterministic-statistical energy analysis method has proven to be a versatile framework for modeling built-up vibro-acoustic systems. The stiff system components are modeled deterministically, e.g., using the finite element method, while the wave fields in the flexible components are modeled as diffuse. In the present paper, the hybrid method is extended such that not only the ensemble mean and variance of the harmonic system response can be computed, but also of the band-averaged system response. This variance represents the uncertainty that is due to the assumption of a diffuse field in the flexible components of the hybrid system. The developments start with a cross-frequency generalization of the reciprocity relationship between the total energy in a diffuse field and the cross spectrum of the blocked reverberant loading at the boundaries of that field. By making extensive use of this generalization in a first-order perturbation analysis, explicit expressions are derived for the cross-frequency and band-averaged variance of the vibrational energies in the diffuse components and for the cross-frequency and band-averaged variance of the cross spectrum of the vibro-acoustic field response of the deterministic components. These expressions are extensively validated against detailed Monte Carlo analyses of coupled plate systems in which diffuse fields are simulated by randomly distributing small point masses across the flexible components, and good agreement is found.

  16. Using Structural Equation Modeling To Fit Models Incorporating Principal Components.

    ERIC Educational Resources Information Center

    Dolan, Conor; Bechger, Timo; Molenaar, Peter

    1999-01-01

    Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…

  17. Use of a threshold animal model to estimate calving ease and stillbirth (co)variance components for US Holsteins

    USDA-ARS?s Scientific Manuscript database

    (Co)variance components for calving ease and stillbirth in US Holsteins were estimated using a single-trait threshold animal model and two different sets of data edits. Six sets of approximately 250,000 records each were created by randomly selecting herd codes without replacement from the data used...

  18. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  19. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  20. On the additive and dominant variance and covariance of individuals within the genomic selection scope.

    PubMed

    Vitezica, Zulma G; Varona, Luis; Legarra, Andres

    2013-12-01

    Genomic evaluation models can fit additive and dominant SNP effects. Under quantitative genetics theory, additive or "breeding" values of individuals are generated by substitution effects, which involve both "biological" additive and dominant effects of the markers. Dominance deviations include only a portion of the biological dominant effects of the markers. Additive variance includes variation due to the additive and dominant effects of the markers. We describe a matrix of dominant genomic relationships across individuals, D, which is similar to the G matrix used in genomic best linear unbiased prediction. This matrix can be used in a mixed-model context for genomic evaluations or to estimate dominant and additive variances in the population. From the "genotypic" value of individuals, an alternative parameterization defines additive and dominance as the parts attributable to the additive and dominant effect of the markers. This approach underestimates the additive genetic variance and overestimates the dominance variance. Transforming the variances from one model into the other is trivial if the distribution of allelic frequencies is known. We illustrate these results with mouse data (four traits, 1884 mice, and 10,946 markers) and simulated data (2100 individuals and 10,000 markers). Variance components were estimated correctly in the model, considering breeding values and dominance deviations. For the model considering genotypic values, the inclusion of dominant effects biased the estimate of additive variance. Genomic models were more accurate for the estimation of variance components than their pedigree-based counterparts.

  1. Management Accounting in School Food Service.

    ERIC Educational Resources Information Center

    Bryan, E. Lewis; Friedlob, G. Thomas

    1982-01-01

    Describes a model for establishing control of school food services through analysis of the aggregate variances of quantity, collection, and price, and of their separate components. The separable component variances are identified, measured, and compared monthly to help supervisors identify exactly where plans and operations vary. (Author/MLF)

  2. Unbiased Estimates of Variance Components with Bootstrap Procedures

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2007-01-01

    This article provides general procedures for obtaining unbiased estimates of variance components for any random-model balanced design under any bootstrap sampling plan, with the focus on designs of the type typically used in generalizability theory. The results reported here are particularly helpful when the bootstrap is used to estimate standard…

  3. Assessing factorial invariance of two-way rating designs using three-way methods

    PubMed Central

    Kroonenberg, Pieter M.

    2015-01-01

    Assessing the factorial invariance of two-way rating designs such as ratings of concepts on several scales by different groups can be carried out with three-way models such as the Parafac and Tucker models. By their definitions these models are double-metric factorially invariant. The differences between these models lie in their handling of the links between the concept and scale spaces. These links may consist of unrestricted linking (Tucker2 model), invariant component covariances but variable variances per group and per component (Parafac model), zero covariances and variances different per group but not per component (Replicated Tucker3 model) and strict invariance (Component analysis on the average matrix). This hierarchy of invariant models, and the procedures by which to evaluate the models against each other, is illustrated in some detail with an international data set from attachment theory. PMID:25620936

  4. Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications

    PubMed Central

    Bouvet, J-M; Makouanzi, G; Cros, D; Vigneron, Ph

    2016-01-01

    Hybrids are broadly used in plant breeding and accurate estimation of variance components is crucial for optimizing genetic gain. Genome-wide information may be used to explore models designed to assess the extent of additive and non-additive variance and test their prediction accuracy for the genomic selection. Ten linear mixed models, involving pedigree- and marker-based relationship matrices among parents, were developed to estimate additive (A), dominance (D) and epistatic (AA, AD and DD) effects. Five complementary models, involving the gametic phase to estimate marker-based relationships among hybrid progenies, were developed to assess the same effects. The models were compared using tree height and 3303 single-nucleotide polymorphism markers from 1130 cloned individuals obtained via controlled crosses of 13 Eucalyptus urophylla females with 9 Eucalyptus grandis males. Akaike information criterion (AIC), variance ratios, asymptotic correlation matrices of estimates, goodness-of-fit, prediction accuracy and mean square error (MSE) were used for the comparisons. The variance components and variance ratios differed according to the model. Models with a parent marker-based relationship matrix performed better than those that were pedigree-based, that is, an absence of singularities, lower AIC, higher goodness-of-fit and accuracy and smaller MSE. However, AD and DD variances were estimated with high s.es. Using the same criteria, progeny gametic phase-based models performed better in fitting the observations and predicting genetic values. However, DD variance could not be separated from the dominance variance and null estimates were obtained for AA and AD effects. This study highlighted the advantages of progeny models using genome-wide information. PMID:26328760

  5. Portfolio optimization with mean-variance model

    NASA Astrophysics Data System (ADS)

    Hoe, Lam Weng; Siew, Lam Weng

    2016-06-01

    Investors wish to achieve the target rate of return at the minimum level of risk in their investment. Portfolio optimization is an investment strategy that can be used to minimize the portfolio risk and can achieve the target rate of return. The mean-variance model has been proposed in portfolio optimization. The mean-variance model is an optimization model that aims to minimize the portfolio risk which is the portfolio variance. The objective of this study is to construct the optimal portfolio using the mean-variance model. The data of this study consists of weekly returns of 20 component stocks of FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI). The results of this study show that the portfolio composition of the stocks is different. Moreover, investors can get the return at minimum level of risk with the constructed optimal mean-variance portfolio.

  6. Self-esteem Is Mostly Stable Across Young Adulthood: Evidence from Latent STARTS Models.

    PubMed

    Wagner, Jenny; Lüdtke, Oliver; Trautwein, Ulrich

    2016-08-01

    How stable is self-esteem? This long-standing debate has led to different conclusions across different areas of psychology. Longitudinal data and up-to-date statistical models have recently indicated that self-esteem has stable and autoregressive trait-like components and state-like components. We applied latent STARTS models with the goal of replicating previous findings in a longitudinal sample of young adults (N = 4,532; Mage  = 19.60, SD = 0.85; 55% female). In addition, we applied multigroup models to extend previous findings on different patterns of stability for men versus women and for people with high versus low levels of depressive symptoms. We found evidence for the general pattern of a major proportion of stable and autoregressive trait variance and a smaller yet substantial amount of state variance in self-esteem across 10 years. Furthermore, multigroup models suggested substantial differences in the variance components: Females showed more state variability than males. Individuals with higher levels of depressive symptoms showed more state and less autoregressive trait variance in self-esteem. Results are discussed with respect to the ongoing trait-state debate and possible implications of the group differences that we found in the stability of self-esteem. © 2015 Wiley Periodicals, Inc.

  7. Effect of multiple perfusion components on pseudo-diffusion coefficient in intravoxel incoherent motion imaging

    NASA Astrophysics Data System (ADS)

    Kuai, Zi-Xiang; Liu, Wan-Yu; Zhu, Yue-Min

    2017-11-01

    The aim of this work was to investigate the effect of multiple perfusion components on the pseudo-diffusion coefficient D * in the bi-exponential intravoxel incoherent motion (IVIM) model. Simulations were first performed to examine how the presence of multiple perfusion components influences D *. The real data of livers (n  =  31), spleens (n  =  31) and kidneys (n  =  31) of 31 volunteers was then acquired using DWI for in vivo study and the number of perfusion components in these tissues was determined together with their perfusion fraction and D *, using an adaptive multi-exponential IVIM model. Finally, the bi-exponential model was applied to the real data and the mean, standard variance and coefficient of variation of D * as well as the fitting residual were calculated over the 31 volunteers for each of the three tissues and compared between them. The results of both the simulations and the in vivo study showed that, for the bi-exponential IVIM model, both the variance of D * and the fitting residual tended to increase when the number of perfusion components was increased or when the difference between perfusion components became large. In addition, it was found that the kidney presented the fewest perfusion components among the three tissues. The present study demonstrated that multi-component perfusion is a main factor that causes high variance of D * and the bi-exponential model should be used only when the tissues under investigation have few perfusion components, for example the kidney.

  8. Unraveling additive from nonadditive effects using genomic relationship matrices.

    PubMed

    Muñoz, Patricio R; Resende, Marcio F R; Gezan, Salvador A; Resende, Marcos Deon Vilela; de Los Campos, Gustavo; Kirst, Matias; Huber, Dudley; Peter, Gary F

    2014-12-01

    The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of a quantitative trait and should be considered when developing breeding strategies. Copyright © 2014 by the Genetics Society of America.

  9. Enhancing target variance in personality impressions: highlighting the person in person perception.

    PubMed

    Paulhus, D L; Reynolds, S

    1995-12-01

    D. A. Kenny (1994) estimated the components of personality rating variance to be 15, 20, and 20% for target, rater, and relationship, respectively. To enhance trait variance and minimize rater variance, we designed a series of studies of personality perception in discussion groups (N = 79, 58, and 59). After completing a Big Five questionnaire, participants met 7 times in small groups. After Meetings 1 and 7, group members rated each other. By applying the Social Relations Model (D. A. Kenny and L. La Voie, 1984) to each Big Five dimension at each point in time, we were able to evaluate 6 rating effects as well as rating validity. Among the findings were that (a) target variance was the largest component (almost 30%), whereas rater variance was small (less than 11%); (b) rating validity improved significantly with acquaintance, although target variance did not; and (c) no reciprocity was found, but projection was significant for Agreeableness.

  10. Assessing variance components in multilevel linear models using approximate Bayes factors: A case study of ethnic disparities in birthweight

    PubMed Central

    Saville, Benjamin R.; Herring, Amy H.; Kaufman, Jay S.

    2013-01-01

    Racial/ethnic disparities in birthweight are a large source of differential morbidity and mortality worldwide and have remained largely unexplained in epidemiologic models. We assess the impact of maternal ancestry and census tract residence on infant birth weights in New York City and the modifying effects of race and nativity by incorporating random effects in a multilevel linear model. Evaluating the significance of these predictors involves the test of whether the variances of the random effects are equal to zero. This is problematic because the null hypothesis lies on the boundary of the parameter space. We generalize an approach for assessing random effects in the two-level linear model to a broader class of multilevel linear models by scaling the random effects to the residual variance and introducing parameters that control the relative contribution of the random effects. After integrating over the random effects and variance components, the resulting integrals needed to calculate the Bayes factor can be efficiently approximated with Laplace’s method. PMID:24082430

  11. The infinitesimal model: Definition, derivation, and implications.

    PubMed

    Barton, N H; Etheridge, A M; Véber, A

    2017-12-01

    Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence may be as fast as 1∕M. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Detection of gene-environment interaction in pedigree data using genome-wide genotypes.

    PubMed

    Nivard, Michel G; Middeldorp, Christel M; Lubke, Gitta; Hottenga, Jouke-Jan; Abdellaoui, Abdel; Boomsma, Dorret I; Dolan, Conor V

    2016-12-01

    Heritability may be estimated using phenotypic data collected in relatives or in distantly related individuals using genome-wide single nucleotide polymorphism (SNP) data. We combined these approaches by re-parameterizing the model proposed by Zaitlen et al and extended this model to include moderation of (total and SNP-based) genetic and environmental variance components by a measured moderator. By means of data simulation, we demonstrated that the type 1 error rates of the proposed test are correct and parameter estimates are accurate. As an application, we considered the moderation by age or year of birth of variance components associated with body mass index (BMI), height, attention problems (AP), and symptoms of anxiety and depression. The genetic variance of BMI was found to increase with age, but the environmental variance displayed a greater increase with age, resulting in a proportional decrease of the heritability of BMI. Environmental variance of height increased with year of birth. The environmental variance of AP increased with age. These results illustrate the assessment of moderation of environmental and genetic effects, when estimating heritability from combined SNP and family data. The assessment of moderation of genetic and environmental variance will enhance our understanding of the genetic architecture of complex traits.

  13. Genetic and environmental contributions to body mass index: comparative analysis of monozygotic twins, dizygotic twins and same-age unrelated siblings.

    PubMed

    Segal, N L; Feng, R; McGuire, S A; Allison, D B; Miller, S

    2009-01-01

    Earlier studies have established that a substantial percentage of variance in obesity-related phenotypes is explained by genetic components. However, only one study has used both virtual twins (VTs) and biological twins and was able to simultaneously estimate additive genetic, non-additive genetic, shared environmental and unshared environmental components in body mass index (BMI). Our current goal was to re-estimate four components of variance in BMI, applying a more rigorous model to biological and virtual multiples with additional data. Virtual multiples share the same family environment, offering unique opportunities to estimate common environmental influence on phenotypes that cannot be separated from the non-additive genetic component using only biological multiples. Data included 929 individuals from 164 monozygotic twin pairs, 156 dizygotic twin pairs, five triplet sets, one quadruplet set, 128 VT pairs, two virtual triplet sets and two virtual quadruplet sets. Virtual multiples consist of one biological child (or twins or triplets) plus one same-aged adoptee who are all raised together since infancy. We estimated the additive genetic, non-additive genetic, shared environmental and unshared random components in BMI using a linear mixed model. The analysis was adjusted for age, age(2), age(3), height, height(2), height(3), gender and race. Both non-additive genetic and common environmental contributions were significant in our model (P-values<0.0001). No significant additive genetic contribution was found. In all, 63.6% (95% confidence interval (CI) 51.8-75.3%) of the total variance of BMI was explained by a non-additive genetic component, 25.7% (95% CI 13.8-37.5%) by a common environmental component and the remaining 10.7% by an unshared component. Our results suggest that genetic components play an essential role in BMI and that common environmental factors such as diet or exercise also affect BMI. This conclusion is consistent with our earlier study using a smaller sample and shows the utility of virtual multiples for separating non-additive genetic variance from common environmental variance.

  14. Using variance structure to quantify responses to perturbation in fish catches

    USGS Publications Warehouse

    Vidal, Tiffany E.; Irwin, Brian J.; Wagner, Tyler; Rudstam, Lars G.; Jackson, James R.; Bence, James R.

    2017-01-01

    We present a case study evaluation of gill-net catches of Walleye Sander vitreus to assess potential effects of large-scale changes in Oneida Lake, New York, including the disruption of trophic interactions by double-crested cormorants Phalacrocorax auritus and invasive dreissenid mussels. We used the empirical long-term gill-net time series and a negative binomial linear mixed model to partition the variability in catches into spatial and coherent temporal variance components, hypothesizing that variance partitioning can help quantify spatiotemporal variability and determine whether variance structure differs before and after large-scale perturbations. We found that the mean catch and the total variability of catches decreased following perturbation but that not all sampling locations responded in a consistent manner. There was also evidence of some spatial homogenization concurrent with a restructuring of the relative productivity of individual sites. Specifically, offshore sites generally became more productive following the estimated break point in the gill-net time series. These results provide support for the idea that variance structure is responsive to large-scale perturbations; therefore, variance components have potential utility as statistical indicators of response to a changing environment more broadly. The modeling approach described herein is flexible and would be transferable to other systems and metrics. For example, variance partitioning could be used to examine responses to alternative management regimes, to compare variability across physiographic regions, and to describe differences among climate zones. Understanding how individual variance components respond to perturbation may yield finer-scale insights into ecological shifts than focusing on patterns in the mean responses or total variability alone.

  15. It Depends on the Partner: Person-Related Sources of Efficacy Beliefs and Performance for Athlete Pairs.

    PubMed

    Habeeb, Christine M; Eklund, Robert C; Coffee, Pete

    2017-06-01

    This study explored person-related sources of variance in athletes' efficacy beliefs and performances when performing in pairs with distinguishable roles differing in partner dependence. College cheerleaders (n = 102) performed their role in repeated performance trials of two low- and two high-difficulty paired-stunt tasks with three different partners. Data were obtained on self-, other-, and collective efficacy beliefs and subjective performances, and objective performance assessments were obtained from digital recordings. Using the social relations model framework, total variance in each belief/assessment was partitioned, for each role, into numerical components of person-related variance relative to the self, the other, and the collective. Variance component by performance role by task-difficulty repeated-measures analysis of variances revealed that the largest person-related variance component differed by athlete role and increased in size in high-difficulty tasks. Results suggest that the extent the athlete's performance depends on a partner relates to the extent the partner is a source of self-, other-, and collective efficacy beliefs.

  16. Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation.

    PubMed

    Yang, Ye; Christensen, Ole F; Sorensen, Daniel

    2011-02-01

    Over recent years, statistical support for the presence of genetic factors operating at the level of the environmental variance has come from fitting a genetically structured heterogeneous variance model to field or experimental data in various species. Misleading results may arise due to skewness of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box-Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box-Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected by the presence of asymmetry in the distribution of data. We recommend that to avoid one important source of spurious inferences, future work seeking support for a genetic component acting on environmental variation using a parametric approach based on normality assumptions confirms that these are met.

  17. [Analytic methods for seed models with genotype x environment interactions].

    PubMed

    Zhu, J

    1996-01-01

    Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by Monte Carlo simulations.

  18. Distribution of lod scores in oligogenic linkage analysis.

    PubMed

    Williams, J T; North, K E; Martin, L J; Comuzzie, A G; Göring, H H; Blangero, J

    2001-01-01

    In variance component oligogenic linkage analysis it can happen that the residual additive genetic variance bounds to zero when estimating the effect of the ith quantitative trait locus. Using quantitative trait Q1 from the Genetic Analysis Workshop 12 simulated general population data, we compare the observed lod scores from oligogenic linkage analysis with the empirical lod score distribution under a null model of no linkage. We find that zero residual additive genetic variance in the null model alters the usual distribution of the likelihood-ratio statistic.

  19. Asymptotic Effect of Misspecification in the Random Part of the Multilevel Model

    ERIC Educational Resources Information Center

    Berkhof, Johannes; Kampen, Jarl Kennard

    2004-01-01

    The authors examine the asymptotic effect of omitting a random coefficient in the multilevel model and derive expressions for the change in (a) the variance components estimator and (b) the estimated variance of the fixed effects estimator. They apply the method of moments, which yields a closed form expression for the omission effect. In…

  20. Detection of gene–environment interaction in pedigree data using genome-wide genotypes

    PubMed Central

    Nivard, Michel G; Middeldorp, Christel M; Lubke, Gitta; Hottenga, Jouke-Jan; Abdellaoui, Abdel; Boomsma, Dorret I; Dolan, Conor V

    2016-01-01

    Heritability may be estimated using phenotypic data collected in relatives or in distantly related individuals using genome-wide single nucleotide polymorphism (SNP) data. We combined these approaches by re-parameterizing the model proposed by Zaitlen et al and extended this model to include moderation of (total and SNP-based) genetic and environmental variance components by a measured moderator. By means of data simulation, we demonstrated that the type 1 error rates of the proposed test are correct and parameter estimates are accurate. As an application, we considered the moderation by age or year of birth of variance components associated with body mass index (BMI), height, attention problems (AP), and symptoms of anxiety and depression. The genetic variance of BMI was found to increase with age, but the environmental variance displayed a greater increase with age, resulting in a proportional decrease of the heritability of BMI. Environmental variance of height increased with year of birth. The environmental variance of AP increased with age. These results illustrate the assessment of moderation of environmental and genetic effects, when estimating heritability from combined SNP and family data. The assessment of moderation of genetic and environmental variance will enhance our understanding of the genetic architecture of complex traits. PMID:27436263

  1. Genetic variance in micro-environmental sensitivity for milk and milk quality in Walloon Holstein cattle.

    PubMed

    Vandenplas, J; Bastin, C; Gengler, N; Mulder, H A

    2013-09-01

    Animals that are robust to environmental changes are desirable in the current dairy industry. Genetic differences in micro-environmental sensitivity can be studied through heterogeneity of residual variance between animals. However, residual variance between animals is usually assumed to be homogeneous in traditional genetic evaluations. The aim of this study was to investigate genetic heterogeneity of residual variance by estimating variance components in residual variance for milk yield, somatic cell score, contents in milk (g/dL) of 2 groups of milk fatty acids (i.e., saturated and unsaturated fatty acids), and the content in milk of one individual fatty acid (i.e., oleic acid, C18:1 cis-9), for first-parity Holstein cows in the Walloon Region of Belgium. A total of 146,027 test-day records from 26,887 cows in 747 herds were available. All cows had at least 3 records and a known sire. These sires had at least 10 cows with records and each herd × test-day had at least 5 cows. The 5 traits were analyzed separately based on fixed lactation curve and random regression test-day models for the mean. Estimation of variance components was performed by running iteratively expectation maximization-REML algorithm by the implementation of double hierarchical generalized linear models. Based on fixed lactation curve test-day mean models, heritability for residual variances ranged between 1.01×10(-3) and 4.17×10(-3) for all traits. The genetic standard deviation in residual variance (i.e., approximately the genetic coefficient of variation of residual variance) ranged between 0.12 and 0.17. Therefore, some genetic variance in micro-environmental sensitivity existed in the Walloon Holstein dairy cattle for the 5 studied traits. The standard deviations due to herd × test-day and permanent environment in residual variance ranged between 0.36 and 0.45 for herd × test-day effect and between 0.55 and 0.97 for permanent environmental effect. Therefore, nongenetic effects also contributed substantially to micro-environmental sensitivity. Addition of random regressions to the mean model did not reduce heterogeneity in residual variance and that genetic heterogeneity of residual variance was not simply an effect of an incomplete mean model. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Age-specific survival of male golden-cheeked warblers on the Fort Hood Military Reservation, Texas

    USGS Publications Warehouse

    Duarte, Adam; Hines, James E.; Nichols, James D.; Hatfield, Jeffrey S.; Weckerly, Floyd W.

    2014-01-01

    Population models are essential components of large-scale conservation and management plans for the federally endangered Golden-cheeked Warbler (Setophaga chrysoparia; hereafter GCWA). However, existing models are based on vital rate estimates calculated using relatively small data sets that are now more than a decade old. We estimated more current, precise adult and juvenile apparent survival (Φ) probabilities and their associated variances for male GCWAs. In addition to providing estimates for use in population modeling, we tested hypotheses about spatial and temporal variation in Φ. We assessed whether a linear trend in Φ or a change in the overall mean Φ corresponded to an observed increase in GCWA abundance during 1992-2000 and if Φ varied among study plots. To accomplish these objectives, we analyzed long-term GCWA capture-resight data from 1992 through 2011, collected across seven study plots on the Fort Hood Military Reservation using a Cormack-Jolly-Seber model structure within program MARK. We also estimated Φ process and sampling variances using a variance-components approach. Our results did not provide evidence of site-specific variation in adult Φ on the installation. Because of a lack of data, we could not assess whether juvenile Φ varied spatially. We did not detect a strong temporal association between GCWA abundance and Φ. Mean estimates of Φ for adult and juvenile male GCWAs for all years analyzed were 0.47 with a process variance of 0.0120 and a sampling variance of 0.0113 and 0.28 with a process variance of 0.0076 and a sampling variance of 0.0149, respectively. Although juvenile Φ did not differ greatly from previous estimates, our adult Φ estimate suggests previous GCWA population models were overly optimistic with respect to adult survival. These updated Φ probabilities and their associated variances will be incorporated into new population models to assist with GCWA conservation decision making.

  3. Genomic estimation of additive and dominance effects and impact of accounting for dominance on accuracy of genomic evaluation in sheep populations.

    PubMed

    Moghaddar, N; van der Werf, J H J

    2017-12-01

    The objectives of this study were to estimate the additive and dominance variance component of several weight and ultrasound scanned body composition traits in purebred and combined cross-bred sheep populations based on single nucleotide polymorphism (SNP) marker genotypes and then to investigate the effect of fitting additive and dominance effects on accuracy of genomic evaluation. Additive and dominance variance components were estimated in a mixed model equation based on "average information restricted maximum likelihood" using additive and dominance (co)variances between animals calculated from 48,599 SNP marker genotypes. Genomic prediction was based on genomic best linear unbiased prediction (GBLUP), and the accuracy of prediction was assessed based on a random 10-fold cross-validation. Across different weight and scanned body composition traits, dominance variance ranged from 0.0% to 7.3% of the phenotypic variance in the purebred population and from 7.1% to 19.2% in the combined cross-bred population. In the combined cross-bred population, the range of dominance variance decreased to 3.1% and 9.9% after accounting for heterosis effects. Accounting for dominance effects significantly improved the likelihood of the fitting model in the combined cross-bred population. This study showed a substantial dominance genetic variance for weight and ultrasound scanned body composition traits particularly in cross-bred population; however, improvement in the accuracy of genomic breeding values was small and statistically not significant. Dominance variance estimates in combined cross-bred population could be overestimated if heterosis is not fitted in the model. © 2017 Blackwell Verlag GmbH.

  4. A consistent transported PDF model for treating differential molecular diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Zhang, Pei

    2016-11-01

    Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.

  5. Robust LOD scores for variance component-based linkage analysis.

    PubMed

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  6. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle.

    PubMed

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-12-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.

  7. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle

    PubMed Central

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-01-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran. PMID:26954192

  8. Deletion Diagnostics for the Generalised Linear Mixed Model with independent random effects

    PubMed Central

    Ganguli, B.; Roy, S. Sen; Naskar, M.; Malloy, E. J.; Eisen, E. A.

    2015-01-01

    The Generalised Linear Mixed Model (GLMM) is widely used for modelling environmental data. However, such data are prone to influential observations which can distort the estimated exposure-response curve particularly in regions of high exposure. Deletion diagnostics for iterative estimation schemes commonly derive the deleted estimates based on a single iteration of the full system holding certain pivotal quantities such as the information matrix to be constant. In this paper, we present an approximate formula for the deleted estimates and Cook’s distance for the GLMM which does not assume that the estimates of variance parameters are unaffected by deletion. The procedure allows the user to calculate standardised DFBETAs for mean as well as variance parameters. In certain cases, such as when using the GLMM as a device for smoothing, such residuals for the variance parameters are interesting in their own right. In general, the procedure leads to deleted estimates of mean parameters which are corrected for the effect of deletion on variance components as estimation of the two sets of parameters is interdependent. The probabilistic behaviour of these residuals is investigated and a simulation based procedure suggested for their standardisation. The method is used to identify influential individuals in an occupational cohort exposed to silica. The results show that failure to conduct post model fitting diagnostics for variance components can lead to erroneous conclusions about the fitted curve and unstable confidence intervals. PMID:26626135

  9. Analysis of components of variance in multiple-reader studies of computer-aided diagnosis with different tasks

    NASA Astrophysics Data System (ADS)

    Beiden, Sergey V.; Wagner, Robert F.; Campbell, Gregory; Metz, Charles E.; Chan, Heang-Ping; Nishikawa, Robert M.; Schnall, Mitchell D.; Jiang, Yulei

    2001-06-01

    In recent years, the multiple-reader, multiple-case (MRMC) study paradigm has become widespread for receiver operating characteristic (ROC) assessment of systems for diagnostic imaging and computer-aided diagnosis. We review how MRMC data can be analyzed in terms of the multiple components of the variance (case, reader, interactions) observed in those studies. Such information is useful for the design of pivotal studies from results of a pilot study and also for studying the effects of reader training. Recently, several of the present authors have demonstrated methods to generalize the analysis of multiple variance components to the case where unaided readers of diagnostic images are compared with readers who receive the benefit of a computer assist (CAD). For this case it is necessary to model the possibility that several of the components of variance might be reduced when readers incorporate the computer assist, compared to the unaided reading condition. We review results of this kind of analysis on three previously published MRMC studies, two of which were applications of CAD to diagnostic mammography and one was an application of CAD to screening mammography. The results for the three cases are seen to differ, depending on the reader population sampled and the task of interest. Thus, it is not possible to generalize a particular analysis of variance components beyond the tasks and populations actually investigated.

  10. Optimizing occupational exposure measurement strategies when estimating the log-scale arithmetic mean value--an example from the reinforced plastics industry.

    PubMed

    Lampa, Erik G; Nilsson, Leif; Liljelind, Ingrid E; Bergdahl, Ingvar A

    2006-06-01

    When assessing occupational exposures, repeated measurements are in most cases required. Repeated measurements are more resource intensive than a single measurement, so careful planning of the measurement strategy is necessary to assure that resources are spent wisely. The optimal strategy depends on the objectives of the measurements. Here, two different models of random effects analysis of variance (ANOVA) are proposed for the optimization of measurement strategies by the minimization of the variance of the estimated log-transformed arithmetic mean value of a worker group, i.e. the strategies are optimized for precise estimation of that value. The first model is a one-way random effects ANOVA model. For that model it is shown that the best precision in the estimated mean value is always obtained by including as many workers as possible in the sample while restricting the number of replicates to two or at most three regardless of the size of the variance components. The second model introduces the 'shared temporal variation' which accounts for those random temporal fluctuations of the exposure that the workers have in common. It is shown for that model that the optimal sample allocation depends on the relative sizes of the between-worker component and the shared temporal component, so that if the between-worker component is larger than the shared temporal component more workers should be included in the sample and vice versa. The results are illustrated graphically with an example from the reinforced plastics industry. If there exists a shared temporal variation at a workplace, that variability needs to be accounted for in the sampling design and the more complex model is recommended.

  11. Genetic parameters of legendre polynomials for first parity lactation curves.

    PubMed

    Pool, M H; Janss, L L; Meuwissen, T H

    2000-11-01

    Variance components of the covariance function coefficients in a random regression test-day model were estimated by Legendre polynomials up to a fifth order for first-parity records of Dutch dairy cows using Gibbs sampling. Two Legendre polynomials of equal order were used to model the random part of the lactation curve, one for the genetic component and one for permanent environment. Test-day records from cows registered between 1990 to 1996 and collected by regular milk recording were available. For the data set, 23,700 complete lactations were selected from 475 herds sired by 262 sires. Because the application of a random regression model is limited by computing capacity, we investigated the minimum order needed to fit the variance structure in the data sufficiently. Predictions of genetic and permanent environmental variance structures were compared with bivariate estimates on 30-d intervals. A third-order or higher polynomial modeled the shape of variance curves over DIM with sufficient accuracy for the genetic and permanent environment part. Also, the genetic correlation structure was fitted with sufficient accuracy by a third-order polynomial, but, for the permanent environmental component, a fourth order was needed. Because equal orders are suggested in the literature, a fourth-order Legendre polynomial is recommended in this study. However, a rank of three for the genetic covariance matrix and of four for permanent environment allows a simpler covariance function with a reduced number of parameters based on the eigenvalues and eigenvectors.

  12. Some New Results on Grubbs’ Estimators.

    DTIC Science & Technology

    1983-06-01

    8217 ESTIMATORS DENNIS A. BRINDLEY AND RALPH A. BRADLEY* Consider a two-way classification with n rows and r columns and the usual model of analysis of variance...except that the error components of the model may have heterogeneous variances, by columns. -Grubbs provided unbiased estimators Q. of a . that depend...of observations yij, i = 1, ... , n, j 1, ... , r, and the model , Yij = Ili + ij + Ej, (1) when Vi represents the mean response of row i, . represents

  13. Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures.

    PubMed

    Austin, Peter C

    2010-04-22

    Multilevel logistic regression models are increasingly being used to analyze clustered data in medical, public health, epidemiological, and educational research. Procedures for estimating the parameters of such models are available in many statistical software packages. There is currently little evidence on the minimum number of clusters necessary to reliably fit multilevel regression models. We conducted a Monte Carlo study to compare the performance of different statistical software procedures for estimating multilevel logistic regression models when the number of clusters was low. We examined procedures available in BUGS, HLM, R, SAS, and Stata. We found that there were qualitative differences in the performance of different software procedures for estimating multilevel logistic models when the number of clusters was low. Among the likelihood-based procedures, estimation methods based on adaptive Gauss-Hermite approximations to the likelihood (glmer in R and xtlogit in Stata) or adaptive Gaussian quadrature (Proc NLMIXED in SAS) tended to have superior performance for estimating variance components when the number of clusters was small, compared to software procedures based on penalized quasi-likelihood. However, only Bayesian estimation with BUGS allowed for accurate estimation of variance components when there were fewer than 10 clusters. For all statistical software procedures, estimation of variance components tended to be poor when there were only five subjects per cluster, regardless of the number of clusters.

  14. Genome-Assisted Prediction of Quantitative Traits Using the R Package sommer.

    PubMed

    Covarrubias-Pazaran, Giovanny

    2016-01-01

    Most traits of agronomic importance are quantitative in nature, and genetic markers have been used for decades to dissect such traits. Recently, genomic selection has earned attention as next generation sequencing technologies became feasible for major and minor crops. Mixed models have become a key tool for fitting genomic selection models, but most current genomic selection software can only include a single variance component other than the error, making hybrid prediction using additive, dominance and epistatic effects unfeasible for species displaying heterotic effects. Moreover, Likelihood-based software for fitting mixed models with multiple random effects that allows the user to specify the variance-covariance structure of random effects has not been fully exploited. A new open-source R package called sommer is presented to facilitate the use of mixed models for genomic selection and hybrid prediction purposes using more than one variance component and allowing specification of covariance structures. The use of sommer for genomic prediction is demonstrated through several examples using maize and wheat genotypic and phenotypic data. At its core, the program contains three algorithms for estimating variance components: Average information (AI), Expectation-Maximization (EM) and Efficient Mixed Model Association (EMMA). Kernels for calculating the additive, dominance and epistatic relationship matrices are included, along with other useful functions for genomic analysis. Results from sommer were comparable to other software, but the analysis was faster than Bayesian counterparts in the magnitude of hours to days. In addition, ability to deal with missing data, combined with greater flexibility and speed than other REML-based software was achieved by putting together some of the most efficient algorithms to fit models in a gentle environment such as R.

  15. Modelling temporal variance of component temperatures and directional anisotropy over vegetated canopy

    NASA Astrophysics Data System (ADS)

    Bian, Zunjian; du, yongming; li, hua

    2016-04-01

    Land surface temperature (LST) as a key variable plays an important role on hydrological, meteorology and climatological study. Thermal infrared directional anisotropy is one of essential factors to LST retrieval and application on longwave radiance estimation. Many approaches have been proposed to estimate directional brightness temperatures (DBT) over natural and urban surfaces. While less efforts focus on 3-D scene and the surface component temperatures used in DBT models are quiet difficult to acquire. Therefor a combined 3-D model of TRGM (Thermal-region Radiosity-Graphics combined Model) and energy balance method is proposed in the paper for the attempt of synchronously simulation of component temperatures and DBT in the row planted canopy. The surface thermodynamic equilibrium can be final determined by the iteration strategy of TRGM and energy balance method. The combined model was validated by the top-of-canopy DBTs using airborne observations. The results indicated that the proposed model performs well on the simulation of directional anisotropy, especially the hotspot effect. Though we find that the model overestimate the DBT with Bias of 1.2K, it can be an option as a data reference to study temporal variance of component temperatures and DBTs when field measurement is inaccessible

  16. Multilevel modelling of somatotype components: the Portuguese sibling study on growth, fitness, lifestyle and health.

    PubMed

    Pereira, Sara; Katzmarzyk, Peter T; Gomes, Thayse Natacha; Souza, Michele; Chaves, Raquel N; Santos, Fernanda K Dos; Santos, Daniel; Hedeker, Donald; Maia, José A R

    2017-06-01

    Somatotype is a complex trait influenced by different genetic and environmental factors as well as by other covariates whose effects are still unclear. To (1) estimate siblings' resemblance in their general somatotype; (2) identify sib-pair (brother-brother (BB), sister-sister (SS), brother-sister (BS)) similarities in individual somatotype components; (3) examine the degree to which between and within variances differ among sib-ships; and (4) investigate the effects of physical activity (PA) and family socioeconomic status (SES) on these relationships. The sample comprises 1058 Portuguese siblings (538 females) aged 9-20 years. Somatotype was calculated using the Health-Carter method, while PA and SES information was obtained by questionnaire. Multi-level modelling was done in SuperMix software. Older subjects showed the lowest values for endomorphy and mesomorphy, but the highest values for ectomorphy; and more physically active subjects showed the highest values for mesomorphy. In general, the familiality of somatotype was moderate (ρ = 0.35). Same-sex siblings had the strongest resemblance (endomorphy: ρ SS > ρ BB > ρ BS ; mesomorphy: ρ BB = ρ SS > ρ BS ; ectomorphy: ρ BB > ρ SS > ρ BS ). For the ectomorphy and mesomorphy components, BS pairs showed the highest between sib-ship variance, but the lowest within sib-ship variance; while for endomorphy BS showed the lowest between and within sib-ship variances. These results highlight the significant familial effects on somatotype and the complexity of the role of familial resemblance in explaining variance in somatotypes.

  17. A Hybrid Model for Research on Subjective Well-Being: Examining Common- and Component-Specific Sources of Variance in Life Satisfaction, Positive Affect, and Negative Affect

    ERIC Educational Resources Information Center

    Busseri, Michael; Sadava, Stanley; DeCourville, Nancy

    2007-01-01

    The primary components of subjective well-being (SWB) include life satisfaction (LS), positive affect (PA), and negative affect (NA). There is little consensus, however, concerning how these components form a model of SWB. In this paper, six longitudinal studies varying in demographic characteristics, length of time between assessment periods,…

  18. How Reliable Are Students' Evaluations of Teaching Quality? A Variance Components Approach

    ERIC Educational Resources Information Center

    Feistauer, Daniela; Richter, Tobias

    2017-01-01

    The inter-rater reliability of university students' evaluations of teaching quality was examined with cross-classified multilevel models. Students (N = 480) evaluated lectures and seminars over three years with a standardised evaluation questionnaire, yielding 4224 data points. The total variance of these student evaluations was separated into the…

  19. The influence of SO4 and NO3 to the acidity (pH) of rainwater using minimum variance quadratic unbiased estimation (MIVQUE) and maximum likelihood methods

    NASA Astrophysics Data System (ADS)

    Dilla, Shintia Ulfa; Andriyana, Yudhie; Sudartianto

    2017-03-01

    Acid rain causes many bad effects in life. It is formed by two strong acids, sulfuric acid (H2SO4) and nitric acid (HNO3), where sulfuric acid is derived from SO2 and nitric acid from NOx {x=1,2}. The purpose of the research is to find out the influence of So4 and NO3 levels contained in the rain to the acidity (pH) of rainwater. The data are incomplete panel data with two-way error component model. The panel data is a collection of some of the observations that observed from time to time. It is said incomplete if each individual has a different amount of observation. The model used in this research is in the form of random effects model (REM). Minimum variance quadratic unbiased estimation (MIVQUE) is used to estimate the variance error components, while maximum likelihood estimation is used to estimate the parameters. As a result, we obtain the following model: Ŷ* = 0.41276446 - 0.00107302X1 + 0.00215470X2.

  20. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors.

    PubMed

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus.

  1. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors

    PubMed Central

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus. PMID:18466597

  2. Automatic image equalization and contrast enhancement using Gaussian mixture modeling.

    PubMed

    Celik, Turgay; Tjahjadi, Tardi

    2012-01-01

    In this paper, we propose an adaptive image equalization algorithm that automatically enhances the contrast in an input image. The algorithm uses the Gaussian mixture model to model the image gray-level distribution, and the intersection points of the Gaussian components in the model are used to partition the dynamic range of the image into input gray-level intervals. The contrast equalized image is generated by transforming the pixels' gray levels in each input interval to the appropriate output gray-level interval according to the dominant Gaussian component and the cumulative distribution function of the input interval. To take account of the hypothesis that homogeneous regions in the image represent homogeneous silences (or set of Gaussian components) in the image histogram, the Gaussian components with small variances are weighted with smaller values than the Gaussian components with larger variances, and the gray-level distribution is also used to weight the components in the mapping of the input interval to the output interval. Experimental results show that the proposed algorithm produces better or comparable enhanced images than several state-of-the-art algorithms. Unlike the other algorithms, the proposed algorithm is free of parameter setting for a given dynamic range of the enhanced image and can be applied to a wide range of image types.

  3. Variance components of short-term biomarkers of manganese exposure in an inception cohort of welding trainees.

    PubMed

    Baker, Marissa G; Simpson, Christopher D; Sheppard, Lianne; Stover, Bert; Morton, Jackie; Cocker, John; Seixas, Noah

    2015-01-01

    Various biomarkers of exposure have been explored as a way to quantitatively estimate an internal dose of manganese (Mn) exposure, but given the tight regulation of Mn in the body, inter-individual variability in baseline Mn levels, and variability in timing between exposure and uptake into various biological tissues, identification of a valuable and useful biomarker for Mn exposure has been elusive. Thus, a mixed model estimating variance components using restricted maximum likelihood was used to assess the within- and between-subject variance components in whole blood, plasma, and urine (MnB, MnP, and MnU, respectively) in a group of nine newly-exposed apprentice welders, on whom baseline and subsequent longitudinal samples were taken over a three month period. In MnB, the majority of variance was found to be between subjects (94%), while in MnP and MnU the majority of variance was found to be within subjects (79% and 99%, respectively), even when controlling for timing of sample. While blood seemed to exhibit a homeostatic control of Mn, plasma and urine, with the majority of the variance within subjects, did not. Results presented here demonstrate the importance of repeat measure or longitudinal study designs when assessing biomarkers of Mn, and the spurious associations that could result from cross-sectional analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Principal components analysis in clinical studies.

    PubMed

    Zhang, Zhongheng; Castelló, Adela

    2017-09-01

    In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.

  5. A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.

    2017-01-01

    We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.

  6. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application

    PubMed Central

    Zhang, Yongsheng; Wei, Heng; Zheng, Kangning

    2017-01-01

    Considering that metro network expansion brings us with more alternative routes, it is attractive to integrate the impacts of routes set and the interdependency among alternative routes on route choice probability into route choice modeling. Therefore, the formulation, estimation and application of a constrained multinomial probit (CMNP) route choice model in the metro network are carried out in this paper. The utility function is formulated as three components: the compensatory component is a function of influencing factors; the non-compensatory component measures the impacts of routes set on utility; following a multivariate normal distribution, the covariance of error component is structured into three parts, representing the correlation among routes, the transfer variance of route, and the unobserved variance respectively. Considering multidimensional integrals of the multivariate normal probability density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sampling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Furthermore, the proposed CMNP model also shows a good forecasting performance for the route choice probabilities calculation and a good application performance for transfer flow volume prediction. PMID:28591188

  7. Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models

    USGS Publications Warehouse

    Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.

    2011-01-01

    In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.

  8. Genetic influences on the difference in variability of height, weight and body mass index between Caucasian and East Asian adolescent twins.

    PubMed

    Hur, Y-M; Kaprio, J; Iacono, W G; Boomsma, D I; McGue, M; Silventoinen, K; Martin, N G; Luciano, M; Visscher, P M; Rose, R J; He, M; Ando, J; Ooki, S; Nonaka, K; Lin, C C H; Lajunen, H R; Cornes, B K; Bartels, M; van Beijsterveldt, C E M; Cherny, S S; Mitchell, K

    2008-10-01

    Twin studies are useful for investigating the causes of trait variation between as well as within a population. The goals of the present study were two-fold: First, we aimed to compare the total phenotypic, genetic and environmental variances of height, weight and BMI between Caucasians and East Asians using twins. Secondly, we intended to estimate the extent to which genetic and environmental factors contribute to differences in variability of height, weight and BMI between Caucasians and East Asians. Height and weight data from 3735 Caucasian and 1584 East Asian twin pairs (age: 13-15 years) from Australia, China, Finland, Japan, the Netherlands, South Korea, Taiwan and the United States were used for analyses. Maximum likelihood twin correlations and variance components model-fitting analyses were conducted to fulfill the goals of the present study. The absolute genetic variances for height, weight and BMI were consistently greater in Caucasians than in East Asians with corresponding differences in total variances for all three body measures. In all 80 to 100% of the differences in total variances of height, weight and BMI between the two population groups were associated with genetic differences. Height, weight and BMI were more variable in Caucasian than in East Asian adolescents. Genetic variances for these three body measures were also larger in Caucasians than in East Asians. Variance components model-fitting analyses indicated that genetic factors contributed to the difference in variability of height, weight and BMI between the two population groups. Association studies for these body measures should take account of our findings of differences in genetic variances between the two population groups.

  9. Genetic influences on the difference in variability of height, weight and body mass index between Caucasian and East Asian adolescent twins

    PubMed Central

    Hur, Y-M; Kaprio, J; Iacono, WG; Boomsma, DI; McGue, M; Silventoinen, K; Martin, NG; Luciano, M; Visscher, PM; Rose, RJ; He, M; Ando, J; Ooki, S; Nonaka, K; Lin, CCH; Lajunen, HR; Cornes, BK; Bartels, M; van Beijsterveldt, CEM; Cherny, SS; Mitchell, K

    2008-01-01

    Objective Twin studies are useful for investigating the causes of trait variation between as well as within a population. The goals of the present study were two-fold: First, we aimed to compare the total phenotypic, genetic and environmental variances of height, weight and BMI between Caucasians and East Asians using twins. Secondly, we intended to estimate the extent to which genetic and environmental factors contribute to differences in variability of height, weight and BMI between Caucasians and East Asians. Design Height and weight data from 3735 Caucasian and 1584 East Asian twin pairs (age: 13–15 years) from Australia, China, Finland, Japan, the Netherlands, South Korea, Taiwan and the United States were used for analyses. Maximum likelihood twin correlations and variance components model-fitting analyses were conducted to fulfill the goals of the present study. Results The absolute genetic variances for height, weight and BMI were consistently greater in Caucasians than in East Asians with corresponding differences in total variances for all three body measures. In all 80 to 100% of the differences in total variances of height, weight and BMI between the two population groups were associated with genetic differences. Conclusion Height, weight and BMI were more variable in Caucasian than in East Asian adolescents. Genetic variances for these three body measures were also larger in Caucasians than in East Asians. Variance components model-fitting analyses indicated that genetic factors contributed to the difference in variability of height, weight and BMI between the two population groups. Association studies for these body measures should take account of our findings of differences in genetic variances between the two population groups. PMID:18779828

  10. A componential model of human interaction with graphs: 1. Linear regression modeling

    NASA Technical Reports Server (NTRS)

    Gillan, Douglas J.; Lewis, Robert

    1994-01-01

    Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.

  11. Linear score tests for variance components in linear mixed models and applications to genetic association studies.

    PubMed

    Qu, Long; Guennel, Tobias; Marshall, Scott L

    2013-12-01

    Following the rapid development of genome-scale genotyping technologies, genetic association mapping has become a popular tool to detect genomic regions responsible for certain (disease) phenotypes, especially in early-phase pharmacogenomic studies with limited sample size. In response to such applications, a good association test needs to be (1) applicable to a wide range of possible genetic models, including, but not limited to, the presence of gene-by-environment or gene-by-gene interactions and non-linearity of a group of marker effects, (2) accurate in small samples, fast to compute on the genomic scale, and amenable to large scale multiple testing corrections, and (3) reasonably powerful to locate causal genomic regions. The kernel machine method represented in linear mixed models provides a viable solution by transforming the problem into testing the nullity of variance components. In this study, we consider score-based tests by choosing a statistic linear in the score function. When the model under the null hypothesis has only one error variance parameter, our test is exact in finite samples. When the null model has more than one variance parameter, we develop a new moment-based approximation that performs well in simulations. Through simulations and analysis of real data, we demonstrate that the new test possesses most of the aforementioned characteristics, especially when compared to existing quadratic score tests or restricted likelihood ratio tests. © 2013, The International Biometric Society.

  12. The Simple View of Reading as a Framework for National Literacy Initiatives: A Hierarchical Model of Pupil-Level and Classroom-Level Factors

    ERIC Educational Resources Information Center

    Savage, Robert; Burgos, Giovani; Wood, Eileen; Piquette, Noella

    2015-01-01

    The Simple View of Reading (SVR) describes Reading Comprehension as the product of distinct child-level variance in decoding (D) and linguistic comprehension (LC) component abilities. When used as a model for educational policy, distinct classroom-level influences of each of the components of the SVR model have been assumed, but have not yet been…

  13. A variation reduction allocation model for quality improvement to minimize investment and quality costs by considering suppliers’ learning curve

    NASA Astrophysics Data System (ADS)

    Rosyidi, C. N.; Jauhari, WA; Suhardi, B.; Hamada, K.

    2016-02-01

    Quality improvement must be performed in a company to maintain its product competitiveness in the market. The goal of such improvement is to increase the customer satisfaction and the profitability of the company. In current practice, a company needs several suppliers to provide the components in assembly process of a final product. Hence quality improvement of the final product must involve the suppliers. In this paper, an optimization model to allocate the variance reduction is developed. Variation reduction is an important term in quality improvement for both manufacturer and suppliers. To improve suppliers’ components quality, the manufacturer must invest an amount of their financial resources in learning process of the suppliers. The objective function of the model is to minimize the total cost consists of investment cost, and quality costs for both internal and external quality costs. The Learning curve will determine how the employee of the suppliers will respond to the learning processes in reducing the variance of the component.

  14. A General Definition of the Heritable Variation That Determines the Potential of a Population to Respond to Selection

    PubMed Central

    Bijma, Piter

    2011-01-01

    Genetic selection is a major force shaping life on earth. In classical genetic theory, response to selection is the product of the strength of selection and the additive genetic variance in a trait. The additive genetic variance reflects a population’s intrinsic potential to respond to selection. The ordinary additive genetic variance, however, ignores the social organization of life. With social interactions among individuals, individual trait values may depend on genes in others, a phenomenon known as indirect genetic effects. Models accounting for indirect genetic effects, however, lack a general definition of heritable variation. Here I propose a general definition of the heritable variation that determines the potential of a population to respond to selection. This generalizes the concept of heritable variance to any inheritance model and level of organization. The result shows that heritable variance determining potential response to selection is the variance among individuals in the heritable quantity that determines the population mean trait value, rather than the usual additive genetic component of phenotypic variance. It follows, therefore, that heritable variance may exceed phenotypic variance among individuals, which is impossible in classical theory. This work also provides a measure of the utilization of heritable variation for response to selection and integrates two well-known models of maternal genetic effects. The result shows that relatedness between the focal individual and the individuals affecting its fitness is a key determinant of the utilization of heritable variance for response to selection. PMID:21926298

  15. A general definition of the heritable variation that determines the potential of a population to respond to selection.

    PubMed

    Bijma, Piter

    2011-12-01

    Genetic selection is a major force shaping life on earth. In classical genetic theory, response to selection is the product of the strength of selection and the additive genetic variance in a trait. The additive genetic variance reflects a population's intrinsic potential to respond to selection. The ordinary additive genetic variance, however, ignores the social organization of life. With social interactions among individuals, individual trait values may depend on genes in others, a phenomenon known as indirect genetic effects. Models accounting for indirect genetic effects, however, lack a general definition of heritable variation. Here I propose a general definition of the heritable variation that determines the potential of a population to respond to selection. This generalizes the concept of heritable variance to any inheritance model and level of organization. The result shows that heritable variance determining potential response to selection is the variance among individuals in the heritable quantity that determines the population mean trait value, rather than the usual additive genetic component of phenotypic variance. It follows, therefore, that heritable variance may exceed phenotypic variance among individuals, which is impossible in classical theory. This work also provides a measure of the utilization of heritable variation for response to selection and integrates two well-known models of maternal genetic effects. The result shows that relatedness between the focal individual and the individuals affecting its fitness is a key determinant of the utilization of heritable variance for response to selection.

  16. Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs.

    PubMed

    Vitezica, Zulma G; Varona, Luis; Elsen, Jean-Michel; Misztal, Ignacy; Herring, William; Legarra, Andrès

    2016-01-29

    Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred populations. We propose methods to construct genomic covariances with additive and non-additive (dominance) inheritance in the case of pure lines and crossbred populations. We describe substitution effects and dominant deviations across two pure parental populations and the crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can differ between parental populations. Based on these assumptions, the theoretical variance components (additive and dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Dominance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population. We present a coherent marker-based model that includes purebred and crossbred data and additive and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and variance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals in terms of performance.

  17. Investigation into the performance of different models for predicting stutter.

    PubMed

    Bright, Jo-Anne; Curran, James M; Buckleton, John S

    2013-07-01

    In this paper we have examined five possible models for the behaviour of the stutter ratio, SR. These were two log-normal models, two gamma models, and a two-component normal mixture model. A two-component normal mixture model was chosen with different behaviours of variance; at each locus SR was described with two distributions, both with the same mean. The distributions have difference variances: one for the majority of the observations and a second for the less well-behaved ones. We apply each model to a set of known single source Identifiler™, NGM SElect™ and PowerPlex(®) 21 DNA profiles to show the applicability of our findings to different data sets. SR determined from the single source profiles were compared to the calculated SR after application of the models. The model performance was tested by calculating the log-likelihoods and comparing the difference in Akaike information criterion (AIC). The two-component normal mixture model systematically outperformed all others, despite the increase in the number of parameters. This model, as well as performing well statistically, has intuitive appeal for forensic biologists and could be implemented in an expert system with a continuous method for DNA interpretation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Roberts, D. Aaron

    2010-01-01

    We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.

  19. Bias and robustness of uncertainty components estimates in transient climate projections

    NASA Astrophysics Data System (ADS)

    Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal

    2016-04-01

    A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate

  20. An Application of Semi-parametric Estimator with Weighted Matrix of Data Depth in Variance Component Estimation

    NASA Astrophysics Data System (ADS)

    Pan, X. G.; Wang, J. Q.; Zhou, H. Y.

    2013-05-01

    The variance component estimation (VCE) based on semi-parametric estimator with weighted matrix of data depth has been proposed, because the coupling system model error and gross error exist in the multi-source heterogeneous measurement data of space and ground combined TT&C (Telemetry, Tracking and Command) technology. The uncertain model error has been estimated with the semi-parametric estimator model, and the outlier has been restrained with the weighted matrix of data depth. On the basis of the restriction of the model error and outlier, the VCE can be improved and used to estimate weighted matrix for the observation data with uncertain model error or outlier. Simulation experiment has been carried out under the circumstance of space and ground combined TT&C. The results show that the new VCE based on the model error compensation can determine the rational weight of the multi-source heterogeneous data, and restrain the outlier data.

  1. Two dynamic regimes in the human gut microbiome

    PubMed Central

    Smillie, Chris S.; Alm, Eric J.

    2017-01-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)—a multivariate method developed for econometrics—to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes. PMID:28222117

  2. Two dynamic regimes in the human gut microbiome.

    PubMed

    Gibbons, Sean M; Kearney, Sean M; Smillie, Chris S; Alm, Eric J

    2017-02-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)-a multivariate method developed for econometrics-to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes.

  3. Variance Component Selection With Applications to Microbiome Taxonomic Data.

    PubMed

    Zhai, Jing; Kim, Juhyun; Knox, Kenneth S; Twigg, Homer L; Zhou, Hua; Zhou, Jin J

    2018-01-01

    High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator) penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV) infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.

  4. Doping Among Professional Athletes in Iran: A Test of Akers's Social Learning Theory.

    PubMed

    Kabiri, Saeed; Cochran, John K; Stewart, Bernadette J; Sharepour, Mahmoud; Rahmati, Mohammad Mahdi; Shadmanfaat, Syede Massomeh

    2018-04-01

    The use of performance-enhancing drugs (PED) is common among Iranian professional athletes. As this phenomenon is a social problem, the main purpose of this research is to explain why athletes engage in "doping" activity, using social learning theory. For this purpose, a sample of 589 professional athletes from Rasht, Iran, was used to test assumptions related to social learning theory. The results showed that there are positive and significant relationships between the components of social learning theory (differential association, differential reinforcement, imitation, and definitions) and doping behavior (past, present, and future use of PED). The structural modeling analysis indicated that the components of social learning theory accounts for 36% of the variance in past doping behavior, 35% of the variance in current doping behavior, and 32% of the variance in future use of PED.

  5. ENSO-related Interannual Variability of Southern Hemisphere Atmospheric Circulation: Assessment and Projected Changes in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Frederiksen, Carsten; Grainger, Simon; Zheng, Xiaogu; Sisson, Janice

    2013-04-01

    ENSO variability is an important driver of the Southern Hemisphere (SH) atmospheric circulation. Understanding the observed and projected changes in ENSO variability is therefore important to understanding changes in Australian surface climate. Using a recently developed methodology (Zheng et al., 2009), the coherent patterns, or modes, of ENSO-related variability in the SH atmospheric circulation can be separated from modes that are related to intraseasonal variability or to changes in radiative forcings. Under this methodology, the seasonal mean SH 500 hPa geopotential height is considered to consist of three components. These are: (1) an intraseasonal component related to internal dynamics on intraseasonal time scales; (2) a slow-internal component related to internal dynamics on slowly varying (interannual or longer) time scales, including ENSO; and (3) a slow-external component related to external (i.e. radiative) forcings. Empirical Orthogonal Functions (EOFs) are used to represent the modes of variability of the interannual covariance of the three components. An assessment is first made of the modes in models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset for the SH summer and winter seasons in the 20th century. In reanalysis data, two EOFs of the slow component (which includes the slow-internal and slow-external components) have been found to be related to ENSO variability (Frederiksen and Zheng, 2007). In SH summer, the CMIP5 models reproduce the leading ENSO mode very well when the structures of the EOF and the associated SST, and associated variance are considered. There is substantial improvement in this mode when compared with the CMIP3 models shown in Grainger et al. (2012). However, the second ENSO mode in SH summer has a poorly reproduced EOF structure in the CMIP5 models, and the associated variance is generally underestimated. In SH winter, the performance of the CMIP5 models in reproducing the structure and variance is similar for both ENSO modes, with the associated variance being generally underestimated. Projected changes in the modes in the 21st century are then investigated using ensembles of CMIP5 models that reproduce well the 20th century slow modes. The slow-internal and slow-external components are examined separately, allowing the projected changes in the response to ENSO variability to be separated from the response to changes in greenhouse gas concentrations. By using several ensembles, the model-dependency of the projected changes in the ENSO-related slow-internal modes is examined. Frederiksen, C. S., and X. Zheng, 2007: Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: Application to SH winter and summer circulations. Climate Dyn., 28, 849-866. Grainger, S., C. S. Frederiksen, and X. Zheng, 2012: Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: Assessment and Projections. Climate Dyn., in press. Zheng, X., D. M. Straus, C. S. Frederiksen, and S. Grainger, 2009: Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Quart. J. Roy. Meteor. Soc., 135, 1816-1829.

  6. A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting.

    PubMed

    Ben Taieb, Souhaib; Atiya, Amir F

    2016-01-01

    Multistep-ahead forecasts can either be produced recursively by iterating a one-step-ahead time series model or directly by estimating a separate model for each forecast horizon. In addition, there are other strategies; some of them combine aspects of both aforementioned concepts. In this paper, we present a comprehensive investigation into the bias and variance behavior of multistep-ahead forecasting strategies. We provide a detailed review of the different multistep-ahead strategies. Subsequently, we perform a theoretical study that derives the bias and variance for a number of forecasting strategies. Finally, we conduct a Monte Carlo experimental study that compares and evaluates the bias and variance performance of the different strategies. From the theoretical and the simulation studies, we analyze the effect of different factors, such as the forecast horizon and the time series length, on the bias and variance components, and on the different multistep-ahead strategies. Several lessons are learned, and recommendations are given concerning the advantages, disadvantages, and best conditions of use of each strategy.

  7. An Empirical Temperature Variance Source Model in Heated Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  8. The variance modulation associated with the vestibular evoked myogenic potential.

    PubMed

    Lütkenhöner, Bernd; Rudack, Claudia; Basel, Türker

    2011-07-01

    Model considerations suggest that the sound-induced inhibition underlying the vestibular evoked myogenic potential (VEMP) briefly reduces the variance of the electromyogram (EMG) from which the VEMP is derived. Although more difficult to investigate, this inhibitory modulation of the variance promises to be a specific measure of the inhibition, in that respect being superior to the VEMP itself. This study aimed to verify the theoretical predictions. Archived data from 672 clinical VEMP investigations, comprising about 300,000 EMG records altogether, were pooled. Both the complete data pool and subsets of data representing VEMPs of varying degrees of distinctness were analyzed. The data were generally normalized so that the EMG had variance one. Regarding VEMP deflection p13, the data confirm the theoretical predictions. At the latency of deflection n23, however, an additional excitatory component, showing a maximal effect around 30 ms, appears to contribute. Studying the variance modulation may help to identify and characterize different components of the VEMP. In particular, it appears to be possible to distinguish between inhibition and excitation. The variance modulation provides information not being available in the VEMP itself. Thus, studying this measure may significantly contribute to our understanding of the VEMP phenomenon. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Sampling hazelnuts for aflatoxin: uncertainty associated with sampling, sample preparation, and analysis.

    PubMed

    Ozay, Guner; Seyhan, Ferda; Yilmaz, Aysun; Whitaker, Thomas B; Slate, Andrew B; Giesbrecht, Francis

    2006-01-01

    The variability associated with the aflatoxin test procedure used to estimate aflatoxin levels in bulk shipments of hazelnuts was investigated. Sixteen 10 kg samples of shelled hazelnuts were taken from each of 20 lots that were suspected of aflatoxin contamination. The total variance associated with testing shelled hazelnuts was estimated and partitioned into sampling, sample preparation, and analytical variance components. Each variance component increased as aflatoxin concentration (either B1 or total) increased. With the use of regression analysis, mathematical expressions were developed to model the relationship between aflatoxin concentration and the total, sampling, sample preparation, and analytical variances. The expressions for these relationships were used to estimate the variance for any sample size, subsample size, and number of analyses for a specific aflatoxin concentration. The sampling, sample preparation, and analytical variances associated with estimating aflatoxin in a hazelnut lot at a total aflatoxin level of 10 ng/g and using a 10 kg sample, a 50 g subsample, dry comminution with a Robot Coupe mill, and a high-performance liquid chromatographic analytical method are 174.40, 0.74, and 0.27, respectively. The sampling, sample preparation, and analytical steps of the aflatoxin test procedure accounted for 99.4, 0.4, and 0.2% of the total variability, respectively.

  10. Systems Engineering Programmatic Estimation Using Technology Variance

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2000-01-01

    Unique and innovative system programmatic estimation is conducted using the variance of the packaged technologies. Covariance analysis is performed on the subsystems and components comprising the system of interest. Technological "return" and "variation" parameters are estimated. These parameters are combined with the model error to arrive at a measure of system development stability. The resulting estimates provide valuable information concerning the potential cost growth of the system under development.

  11. Applying Rasch model analysis in the development of the cantonese tone identification test (CANTIT).

    PubMed

    Lee, Kathy Y S; Lam, Joffee H S; Chan, Kit T Y; van Hasselt, Charles Andrew; Tong, Michael C F

    2017-01-01

    Applying Rasch analysis to evaluate the internal structure of a lexical tone perception test known as the Cantonese Tone Identification Test (CANTIT). A 75-item pool (CANTIT-75) with pictures and sound tracks was developed. Respondents were required to make a four-alternative forced choice on each item. A short version of 30 items (CANTIT-30) was developed based on fit statistics, difficulty estimates, and content evaluation. Internal structure was evaluated by fit statistics and Rasch Factor Analysis (RFA). 200 children with normal hearing and 141 children with hearing impairment were recruited. For CANTIT-75, all infit and 97% of outfit values were < 2.0. RFA revealed 40.1% of total variance was explained by the Rasch measure. The first residual component explained 2.5% of total variance in an eigenvalue of 3.1. For CANTIT-30, all infit and outfit values were < 2.0. The Rasch measure explained 38.8% of total variance, the first residual component explained 3.9% of total variance in an eigenvalue of 1.9. The Rasch model provides excellent guidance for the development of short forms. Both CANTIT-75 and CANTIT-30 possess satisfactory internal structure as a construct validity evidence in measuring the lexical tone identification ability of the Cantonese speakers.

  12. The evolution and consequences of sex-specific reproductive variance.

    PubMed

    Mullon, Charles; Reuter, Max; Lehmann, Laurent

    2014-01-01

    Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.

  13. The Evolution and Consequences of Sex-Specific Reproductive Variance

    PubMed Central

    Mullon, Charles; Reuter, Max; Lehmann, Laurent

    2014-01-01

    Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction. PMID:24172130

  14. Procedures for estimating confidence intervals for selected method performance parameters.

    PubMed

    McClure, F D; Lee, J K

    2001-01-01

    Procedures for estimating confidence intervals (CIs) for the repeatability variance (sigmar2), reproducibility variance (sigmaR2 = sigmaL2 + sigmar2), laboratory component (sigmaL2), and their corresponding standard deviations sigmar, sigmaR, and sigmaL, respectively, are presented. In addition, CIs for the ratio of the repeatability component to the reproducibility variance (sigmar2/sigmaR2) and the ratio of the laboratory component to the reproducibility variance (sigmaL2/sigmaR2) are also presented.

  15. Variance and covariance estimates for weaning weight of Senepol cattle.

    PubMed

    Wright, D W; Johnson, Z B; Brown, C J; Wildeus, S

    1991-10-01

    Variance and covariance components were estimated for weaning weight from Senepol field data for use in the reduced animal model for a maternally influenced trait. The 4,634 weaning records were used to evaluate 113 sires and 1,406 dams on the island of St. Croix. Estimates of direct additive genetic variance (sigma 2A), maternal additive genetic variance (sigma 2M), covariance between direct and maternal additive genetic effects (sigma AM), permanent maternal environmental variance (sigma 2PE), and residual variance (sigma 2 epsilon) were calculated by equating variances estimated from a sire-dam model and a sire-maternal grandsire model, with and without the inverse of the numerator relationship matrix (A-1), to their expectations. Estimates were sigma 2A, 139.05 and 138.14 kg2; sigma 2M, 307.04 and 288.90 kg2; sigma AM, -117.57 and -103.76 kg2; sigma 2PE, -258.35 and -243.40 kg2; and sigma 2 epsilon, 588.18 and 577.72 kg2 with and without A-1, respectively. Heritability estimates for direct additive (h2A) were .211 and .210 with and without A-1, respectively. Heritability estimates for maternal additive (h2M) were .47 and .44 with and without A-1, respectively. Correlations between direct and maternal (IAM) effects were -.57 and -.52 with and without A-1, respectively.

  16. Corrected confidence bands for functional data using principal components.

    PubMed

    Goldsmith, J; Greven, S; Crainiceanu, C

    2013-03-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. Copyright © 2013, The International Biometric Society.

  17. Corrected Confidence Bands for Functional Data Using Principal Components

    PubMed Central

    Goldsmith, J.; Greven, S.; Crainiceanu, C.

    2014-01-01

    Functional principal components (FPC) analysis is widely used to decompose and express functional observations. Curve estimates implicitly condition on basis functions and other quantities derived from FPC decompositions; however these objects are unknown in practice. In this article, we propose a method for obtaining correct curve estimates by accounting for uncertainty in FPC decompositions. Additionally, pointwise and simultaneous confidence intervals that account for both model- and decomposition-based variability are constructed. Standard mixed model representations of functional expansions are used to construct curve estimates and variances conditional on a specific decomposition. Iterated expectation and variance formulas combine model-based conditional estimates across the distribution of decompositions. A bootstrap procedure is implemented to understand the uncertainty in principal component decomposition quantities. Our method compares favorably to competing approaches in simulation studies that include both densely and sparsely observed functions. We apply our method to sparse observations of CD4 cell counts and to dense white-matter tract profiles. Code for the analyses and simulations is publicly available, and our method is implemented in the R package refund on CRAN. PMID:23003003

  18. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests

    NASA Astrophysics Data System (ADS)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi

    2016-04-01

    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  19. Job Tasks as Determinants of Thoracic Aerosol Exposure in the Cement Production Industry.

    PubMed

    Notø, Hilde; Nordby, Karl-Christian; Skare, Øivind; Eduard, Wijnand

    2017-12-15

    The aims of this study were to identify important determinants and investigate the variance components of thoracic aerosol exposure for the workers in the production departments of European cement plants. Personal thoracic aerosol measurements and questionnaire information (Notø et al., 2015) were the basis for this study. Determinants categorized in three levels were selected to describe the exposure relationships separately for the job types production, cleaning, maintenance, foreman, administration, laboratory, and other jobs by linear mixed models. The influence of plant and job determinants on variance components were explored separately and also combined in full models (plant&job) against models with no determinants (null). The best mixed models (best) describing the exposure for each job type were selected by the lowest Akaike information criterion (AIC; Akaike, 1974) after running all possible combination of the determinants. Tasks that significantly increased the thoracic aerosol exposure above the mean level for production workers were: packing and shipping, raw meal, cement and filter cleaning, and de-clogging of the cyclones. For maintenance workers, time spent with welding and dismantling before repair work increased the exposure while time with electrical maintenance and oiling decreased the exposure. Administration work decreased the exposure among foremen. A subjective tidiness factor scored by the research team explained up to a 3-fold (cleaners) variation in thoracic aerosol levels. Within-worker (WW) variance contained a major part of the total variance (35-58%) for all job types. Job determinants had little influence on the WW variance (0-4% reduction), some influence on the between-plant (BP) variance (from 5% to 39% reduction for production, maintenance, and other jobs respectively but an 79% increase for foremen) and a substantial influence on the between-worker within-plant variance (30-96% for production, foremen, and other workers). Plant determinants had little influence on the WW variance (0-2% reduction), some influence on the between-worker variance (0-1% reduction and 8% increase), and considerable influence on the BP variance (36-58% reduction) compared to the null models. Some job tasks contribute to low levels of thoracic aerosol exposure and others to higher exposure among cement plant workers. Thus, job task may predict exposure in this industry. Dust control measures in the packing and shipping departments and in the areas of raw meal and cement handling could contribute substantially to reduce the exposure levels. Rotation between low and higher exposed tasks may contribute to equalize the exposure levels between high and low exposed workers as a temporary solution before more permanent dust reduction measures is implemented. A tidy plant may reduce the overall exposure for almost all workers no matter of job type. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  20. Finite Element Model Calibration Approach for Area I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  1. Finite Element Model Calibration Approach for Ares I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  2. [Theory, method and application of method R on estimation of (co)variance components].

    PubMed

    Liu, Wen-Zhong

    2004-07-01

    Theory, method and application of Method R on estimation of (co)variance components were reviewed in order to make the method be reasonably used. Estimation requires R values,which are regressions of predicted random effects that are calculated using complete dataset on predicted random effects that are calculated using random subsets of the same data. By using multivariate iteration algorithm based on a transformation matrix,and combining with the preconditioned conjugate gradient to solve the mixed model equations, the computation efficiency of Method R is much improved. Method R is computationally inexpensive,and the sampling errors and approximate credible intervals of estimates can be obtained. Disadvantages of Method R include a larger sampling variance than other methods for the same data,and biased estimates in small datasets. As an alternative method, Method R can be used in larger datasets. It is necessary to study its theoretical properties and broaden its application range further.

  3. Application of principal component analysis (PCA) as a sensory assessment tool for fermented food products.

    PubMed

    Ghosh, Debasree; Chattopadhyay, Parimal

    2012-06-01

    The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.

  4. Stable “Trait” Variance of Temperament as a Predictor of the Temporal Course of Depression and Social Phobia

    PubMed Central

    Naragon-Gainey, Kristin; Gallagher, Matthew W.; Brown, Timothy A.

    2013-01-01

    A large body of research has found robust associations between dimensions of temperament (e.g., neuroticism, extraversion) and the mood and anxiety disorders. However, mood-state distortion (i.e., the tendency for current mood state to bias ratings of temperament) likely confounds these associations, rendering their interpretation and validity unclear. This issue is of particular relevance to clinical populations who experience elevated levels of general distress. The current study used the “trait-state-occasion” latent variable model (Cole, Martin, & Steiger, 2005) to separate the stable components of temperament from transient, situational influences such as current mood state. We examined the predictive power of the time-invariant components of temperament on the course of depression and social phobia in a large, treatment-seeking sample with mood and/or anxiety disorders (N = 826). Participants were assessed three times over the course of one year, using interview and self-report measures; most participants received treatment during this time. Results indicated that both neuroticism/behavioral inhibition (N/BI) and behavioral activation/positive affect (BA/P) consisted largely of stable, time-invariant variance (57% to 78% of total variance). Furthermore, the time-invariant components of N/BI and BA/P were uniquely and incrementally predictive of change in depression and social phobia, adjusting for initial symptom levels. These results suggest that the removal of state variance bolsters the effect of temperament on psychopathology among clinically distressed individuals. Implications for temperament-psychopathology models, psychopathology assessment, and the stability of traits are discussed. PMID:24016004

  5. Stable "trait" variance of temperament as a predictor of the temporal course of depression and social phobia.

    PubMed

    Naragon-Gainey, Kristin; Gallagher, Matthew W; Brown, Timothy A

    2013-08-01

    A large body of research has found robust associations between dimensions of temperament (e.g., neuroticism, extraversion) and the mood and anxiety disorders. However, mood-state distortion (i.e., the tendency for current mood state to bias ratings of temperament) likely confounds these associations, rendering their interpretation and validity unclear. This issue is of particular relevance to clinical populations who experience elevated levels of general distress. The current study used the "trait-state-occasion" latent variable model (D. A. Cole, N. C. Martin, & J. H. Steiger, 2005) to separate the stable components of temperament from transient, situational influences such as current mood state. We examined the predictive power of the time-invariant components of temperament on the course of depression and social phobia in a large, treatment-seeking sample with mood and/or anxiety disorders (N = 826). Participants were assessed 3 times over the course of 1 year, using interview and self-report measures; most participants received treatment during this time. Results indicated that both neuroticism/behavioral inhibition (N/BI) and behavioral activation/positive affect (BA/P) consisted largely of stable, time-invariant variance (57% to 78% of total variance). Furthermore, the time-invariant components of N/BI and BA/P were uniquely and incrementally predictive of change in depression and social phobia, adjusting for initial symptom levels. These results suggest that the removal of state variance bolsters the effect of temperament on psychopathology among clinically distressed individuals. Implications for temperament-psychopathology models, psychopathology assessment, and the stability of traits are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  6. The Genetic and Environmental Etiologies of the Relations between Cognitive Skills and Components of Reading Ability

    PubMed Central

    Christopher, Micaela E.; Keenan, Janice M.; Hulslander, Jacqueline; DeFries, John C.; Miyake, Akira; Wadsworth, Sally J.; Willcutt, Erik; Pennington, Bruce; Olson, Richard K.

    2016-01-01

    While previous research has shown cognitive skills to be important predictors of reading ability in children, the respective roles for genetic and environmental influences on these relations is an open question. The present study explored the genetic and environmental etiologies underlying the relations between selected executive functions and cognitive abilities (working memory, inhibition, processing speed, and naming speed) with three components of reading ability (word reading, reading comprehension, and listening comprehension). Twin pairs drawn from the Colorado Front Range (n = 676; 224 monozygotic pairs; 452 dizygotic pairs) between the ages of eight and 16 (M = 11.11) were assessed on multiple measures of each cognitive and reading-related skill. Each cognitive and reading-related skill was modeled as a latent variable, and behavioral genetic analyses estimated the portions of phenotypic variance on each latent variable due to genetic, shared environmental, and nonshared environmental influences. The covariance between the cognitive skills and reading-related skills was driven primarily by genetic influences. The cognitive skills also shared large amounts of genetic variance, as did the reading-related skills. The common cognitive genetic variance was highly correlated with the common reading genetic variance, suggesting that genetic influences involved in general cognitive processing are also important for reading ability. Skill-specific genetic variance in working memory and processing speed also predicted components of reading ability. Taken together, the present study supports a genetic association between children’s cognitive ability and reading ability. PMID:26974208

  7. Variance partitioning of stream diatom, fish, and invertebrate indicators of biological condition

    USGS Publications Warehouse

    Zuellig, Robert E.; Carlisle, Daren M.; Meador, Michael R.; Potapova, Marina

    2012-01-01

    Stream indicators used to make assessments of biological condition are influenced by many possible sources of variability. To examine this issue, we used multiple-year and multiple-reach diatom, fish, and invertebrate data collected from 20 least-disturbed and 46 developed stream segments between 1993 and 2004 as part of the US Geological Survey National Water Quality Assessment Program. We used a variance-component model to summarize the relative and absolute magnitude of 4 variance components (among-site, among-year, site × year interaction, and residual) in indicator values (observed/expected ratio [O/E] and regional multimetric indices [MMI]) among assemblages and between basin types (least-disturbed and developed). We used multiple-reach samples to evaluate discordance in site assessments of biological condition caused by sampling variability. Overall, patterns in variance partitioning were similar among assemblages and basin types with one exception. Among-site variance dominated the relative contribution to the total variance (64–80% of total variance), residual variance (sampling variance) accounted for more variability (8–26%) than interaction variance (5–12%), and among-year variance was always negligible (0–0.2%). The exception to this general pattern was for invertebrates at least-disturbed sites where variability in O/E indicators was partitioned between among-site and residual (sampling) variance (among-site  =  36%, residual  =  64%). This pattern was not observed for fish and diatom indicators (O/E and regional MMI). We suspect that unexplained sampling variability is what largely remained after the invertebrate indicators (O/E predictive models) had accounted for environmental differences among least-disturbed sites. The influence of sampling variability on discordance of within-site assessments was assemblage or basin-type specific. Discordance among assessments was nearly 2× greater in developed basins (29–31%) than in least-disturbed sites (15–16%) for invertebrates and diatoms, whereas discordance among assessments based on fish did not differ between basin types (least-disturbed  =  16%, developed  =  17%). Assessments made using invertebrate and diatom indicators from a single reach disagreed with other samples collected within the same stream segment nearly ⅓ of the time in developed basins, compared to ⅙ for all other cases.

  8. Resolving Isotropic Components from Regional Waves using Grid Search and Moment Tensor Inversion Methods

    NASA Astrophysics Data System (ADS)

    Ichinose, G. A.; Saikia, C. K.

    2007-12-01

    We applied the moment tensor (MT) analysis scheme to identify seismic sources using regional seismograms based on the representation theorem for the elastic wave displacement field. This method is applied to estimate the isotropic (ISO) and deviatoric MT components of earthquake, volcanic, and isotropic sources within the Basin and Range Province (BRP) and western US. The ISO components from Hoya, Bexar, Montello and Junction were compared to recently well recorded recent earthquakes near Little Skull Mountain, Scotty's Junction, Eureka Valley, and Fish Lake Valley within southern Nevada. We also examined "dilatational" sources near Mammoth Lakes Caldera and two mine collapses including the August 2007 event in Utah recorded by US Array. Using our formulation we have first implemented the full MT inversion method on long period filtered regional data. We also applied a grid-search technique to solve for the percent deviatoric and %ISO moments. By using the grid-search technique, high-frequency waveforms are used with calibrated velocity models. We modeled the ISO and deviatoric components (spall and tectonic release) as separate events delayed in time or offset in space. Calibrated velocity models helped the resolution of the ISO components and decrease the variance over the average, initial or background velocity models. The centroid location and time shifts are velocity model dependent. Models can be improved as was done in previously published work in which we used an iterative waveform inversion method with regional seismograms from four well recorded and constrained earthquakes. The resulting velocity models reduced the variance between predicted synthetics by about 50 to 80% for frequencies up to 0.5 Hz. Tests indicate that the individual path-specific models perform better at recovering the earthquake MT solutions even after using a sparser distribution of stations than the average or initial models.

  9. Analysis of Wind Tunnel Polar Replicates Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Micol, John R.

    2010-01-01

    The role of variance in a Modern Design of Experiments analysis of wind tunnel data is reviewed, with distinctions made between explained and unexplained variance. The partitioning of unexplained variance into systematic and random components is illustrated, with examples of the elusive systematic component provided for various types of real-world tests. The importance of detecting and defending against systematic unexplained variance in wind tunnel testing is discussed, and the random and systematic components of unexplained variance are examined for a representative wind tunnel data set acquired in a test in which a missile is used as a test article. The adverse impact of correlated (non-independent) experimental errors is described, and recommendations are offered for replication strategies that facilitate the quantification of random and systematic unexplained variance.

  10. Parameter estimation in 3D affine and similarity transformation: implementation of variance component estimation

    NASA Astrophysics Data System (ADS)

    Amiri-Simkooei, A. R.

    2018-01-01

    Three-dimensional (3D) coordinate transformations, generally consisting of origin shifts, axes rotations, scale changes, and skew parameters, are widely used in many geomatics applications. Although in some geodetic applications simplified transformation models are used based on the assumption of small transformation parameters, in other fields of applications such parameters are indeed large. The algorithms of two recent papers on the weighted total least-squares (WTLS) problem are used for the 3D coordinate transformation. The methodology can be applied to the case when the transformation parameters are generally large of which no approximate values of the parameters are required. Direct linearization of the rotation and scale parameters is thus not required. The WTLS formulation is employed to take into consideration errors in both the start and target systems on the estimation of the transformation parameters. Two of the well-known 3D transformation methods, namely affine (12, 9, and 8 parameters) and similarity (7 and 6 parameters) transformations, can be handled using the WTLS theory subject to hard constraints. Because the method can be formulated by the standard least-squares theory with constraints, the covariance matrix of the transformation parameters can directly be provided. The above characteristics of the 3D coordinate transformation are implemented in the presence of different variance components, which are estimated using the least squares variance component estimation. In particular, the estimability of the variance components is investigated. The efficacy of the proposed formulation is verified on two real data sets.

  11. The Impact of Sample Size and Other Factors When Estimating Multilevel Logistic Models

    ERIC Educational Resources Information Center

    Schoeneberger, Jason A.

    2016-01-01

    The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…

  12. A General Approach to Defining Latent Growth Components

    ERIC Educational Resources Information Center

    Mayer, Axel; Steyer, Rolf; Mueller, Horst

    2012-01-01

    We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…

  13. Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference.

    PubMed

    Breda, F C; Albuquerque, L G; Euclydes, R F; Bignardi, A B; Baldi, F; Torres, R A; Barbosa, L; Tonhati, H

    2010-02-01

    Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Theory-Based Parameterization of Semiotics for Measuring Pre-literacy Development

    NASA Astrophysics Data System (ADS)

    Bezruczko, N.

    2013-09-01

    A probabilistic model was applied to problem of measuring pre-literacy in young children. First, semiotic philosophy and contemporary cognition research were conceptually integrated to establish theoretical foundations for rating 14 characteristics of children's drawings and narratives (N = 120). Then ratings were transformed with a Rasch model, which estimated linear item parameter values that accounted for 79 percent of rater variance. Principle Components Analysis of item residual matrix confirmed variance remaining after item calibration was largely unsystematic. Validation analyses found positive correlations between semiotic measures and preschool literacy outcomes. Practical implications of a semiotics dimension for preschool practice were discussed.

  15. On the validity of within-nuclear-family genetic association analysis in samples of extended families.

    PubMed

    Bureau, Alexandre; Duchesne, Thierry

    2015-12-01

    Splitting extended families into their component nuclear families to apply a genetic association method designed for nuclear families is a widespread practice in familial genetic studies. Dependence among genotypes and phenotypes of nuclear families from the same extended family arises because of genetic linkage of the tested marker with a risk variant or because of familial specificity of genetic effects due to gene-environment interaction. This raises concerns about the validity of inference conducted under the assumption of independence of the nuclear families. We indeed prove theoretically that, in a conditional logistic regression analysis applicable to disease cases and their genotyped parents, the naive model-based estimator of the variance of the coefficient estimates underestimates the true variance. However, simulations with realistic effect sizes of risk variants and variation of this effect from family to family reveal that the underestimation is negligible. The simulations also show the greater efficiency of the model-based variance estimator compared to a robust empirical estimator. Our recommendation is therefore, to use the model-based estimator of variance for inference on effects of genetic variants.

  16. Isolating the cow-specific part of residual energy intake in lactating dairy cows using random regressions.

    PubMed

    Fischer, A; Friggens, N C; Berry, D P; Faverdin, P

    2018-07-01

    The ability to properly assess and accurately phenotype true differences in feed efficiency among dairy cows is key to the development of breeding programs for improving feed efficiency. The variability among individuals in feed efficiency is commonly characterised by the residual intake approach. Residual feed intake is represented by the residuals of a linear regression of intake on the corresponding quantities of the biological functions that consume (or release) energy. However, the residuals include both, model fitting and measurement errors as well as any variability in cow efficiency. The objective of this study was to isolate the individual animal variability in feed efficiency from the residual component. Two separate models were fitted, in one the standard residual energy intake (REI) was calculated as the residual of a multiple linear regression of lactation average net energy intake (NEI) on lactation average milk energy output, average metabolic BW, as well as lactation loss and gain of body condition score. In the other, a linear mixed model was used to simultaneously fit fixed linear regressions and random cow levels on the biological traits and intercept using fortnight repeated measures for the variables. This method split the predicted NEI in two parts: one quantifying the population mean intercept and coefficients, and one quantifying cow-specific deviations in the intercept and coefficients. The cow-specific part of predicted NEI was assumed to isolate true differences in feed efficiency among cows. NEI and associated energy expenditure phenotypes were available for the first 17 fortnights of lactation from 119 Holstein cows; all fed a constant energy-rich diet. Mixed models fitting cow-specific intercept and coefficients to different combinations of the aforementioned energy expenditure traits, calculated on a fortnightly basis, were compared. The variance of REI estimated with the lactation average model represented only 8% of the variance of measured NEI. Among all compared mixed models, the variance of the cow-specific part of predicted NEI represented between 53% and 59% of the variance of REI estimated from the lactation average model or between 4% and 5% of the variance of measured NEI. The remaining 41% to 47% of the variance of REI estimated with the lactation average model may therefore reflect model fitting errors or measurement errors. In conclusion, the use of a mixed model framework with cow-specific random regressions seems to be a promising method to isolate the cow-specific component of REI in dairy cows.

  17. Genetic basis of between-individual and within-individual variance of docility.

    PubMed

    Martin, J G A; Pirotta, E; Petelle, M B; Blumstein, D T

    2017-04-01

    Between-individual variation in phenotypes within a population is the basis of evolution. However, evolutionary and behavioural ecologists have mainly focused on estimating between-individual variance in mean trait and neglected variation in within-individual variance, or predictability of a trait. In fact, an important assumption of mixed-effects models used to estimate between-individual variance in mean traits is that within-individual residual variance (predictability) is identical across individuals. Individual heterogeneity in the predictability of behaviours is a potentially important effect but rarely estimated and accounted for. We used 11 389 measures of docility behaviour from 1576 yellow-bellied marmots (Marmota flaviventris) to estimate between-individual variation in both mean docility and its predictability. We then implemented a double hierarchical animal model to decompose the variances of both mean trait and predictability into their environmental and genetic components. We found that individuals differed both in their docility and in their predictability of docility with a negative phenotypic covariance. We also found significant genetic variance for both mean docility and its predictability but no genetic covariance between the two. This analysis is one of the first to estimate the genetic basis of both mean trait and within-individual variance in a wild population. Our results indicate that equal within-individual variance should not be assumed. We demonstrate the evolutionary importance of the variation in the predictability of docility and illustrate potential bias in models ignoring variation in predictability. We conclude that the variability in the predictability of a trait should not be ignored, and present a coherent approach for its quantification. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  18. An analysis of indirect genetic effects on adult body weight of the Pacific white shrimp Litopenaeus vannamei at low rearing density.

    PubMed

    Luan, Sheng; Luo, Kun; Chai, Zhan; Cao, Baoxiang; Meng, Xianhong; Lu, Xia; Liu, Ning; Xu, Shengyu; Kong, Jie

    2015-12-14

    Our aim was to estimate the genetic parameters for the direct genetic effect (DGE) and indirect genetic effects (IGE) on adult body weight in the Pacific white shrimp. IGE is the heritable effect of an individual on the trait values of its group mates. To examine IGE on body weight, 4725 shrimp from 105 tagged families were tested in multiple small test groups (MSTG). Each family was separated into three groups (15 shrimp per group) that were randomly assigned to 105 concrete tanks with shrimp from two other families. To estimate breeding values, one large test group (OLTG) in a 300 m(2) circular concrete tank was used for the communal rearing of 8398 individuals from 105 families. Body weight was measured after a growth-test period of more than 200 days. Variance components for body weight in the MSTG programs were estimated using an animal model excluding or including IGE whereas variance components in the OLTG programs were estimated using a conventional animal model that included only DGE. The correlation of DGE between MSTG and OLTG programs was estimated by a two-trait animal model that included or excluded IGE. Heritability estimates for body weight from the conventional animal model in MSTG and OLTG programs were 0.26 ± 0.13 and 0.40 ± 0.06, respectively. The log likelihood ratio test revealed significant IGE on body weight. Total heritable variance was the sum of direct genetic variance (43.5%), direct-indirect genetic covariance (2.1%), and indirect genetic variance (54.4%). It represented 73% of the phenotypic variance and was more than two-fold greater than that (32%) obtained by using a classical heritability model for body weight. Correlations of DGE on body weight between MSTG and OLTG programs were intermediate regardless of whether IGE were included or not in the model. Our results suggest that social interactions contributed to a large part of the heritable variation in body weight. Small and non-significant direct-indirect genetic correlations implied that neutral or slightly cooperative heritable interactions, rather than competition, were dominant in this population but this may be due to the low rearing density.

  19. Precision, Reliability, and Effect Size of Slope Variance in Latent Growth Curve Models: Implications for Statistical Power Analysis

    PubMed Central

    Brandmaier, Andreas M.; von Oertzen, Timo; Ghisletta, Paolo; Lindenberger, Ulman; Hertzog, Christopher

    2018-01-01

    Latent Growth Curve Models (LGCM) have become a standard technique to model change over time. Prediction and explanation of inter-individual differences in change are major goals in lifespan research. The major determinants of statistical power to detect individual differences in change are the magnitude of true inter-individual differences in linear change (LGCM slope variance), design precision, alpha level, and sample size. Here, we show that design precision can be expressed as the inverse of effective error. Effective error is determined by instrument reliability and the temporal arrangement of measurement occasions. However, it also depends on another central LGCM component, the variance of the latent intercept and its covariance with the latent slope. We derive a new reliability index for LGCM slope variance—effective curve reliability (ECR)—by scaling slope variance against effective error. ECR is interpretable as a standardized effect size index. We demonstrate how effective error, ECR, and statistical power for a likelihood ratio test of zero slope variance formally relate to each other and how they function as indices of statistical power. We also provide a computational approach to derive ECR for arbitrary intercept-slope covariance. With practical use cases, we argue for the complementary utility of the proposed indices of a study's sensitivity to detect slope variance when making a priori longitudinal design decisions or communicating study designs. PMID:29755377

  20. Approaches to Capture Variance Differences in Rest fMRI Networks in the Spatial Geometric Features: Application to Schizophrenia.

    PubMed

    Gopal, Shruti; Miller, Robyn L; Baum, Stefi A; Calhoun, Vince D

    2016-01-01

    Identification of functionally connected regions while at rest has been at the forefront of research focusing on understanding interactions between different brain regions. Studies have utilized a variety of approaches including seed based as well as data-driven approaches to identifying such networks. Most such techniques involve differentiating groups based on group mean measures. There has been little work focused on differences in spatial characteristics of resting fMRI data. We present a method to identify between group differences in the variability in the cluster characteristics of network regions within components estimated via independent vector analysis (IVA). IVA is a blind source separation approach shown to perform well in capturing individual subject variability within a group model. We evaluate performance of the approach using simulations and then apply to a relatively large schizophrenia data set (82 schizophrenia patients and 89 healthy controls). We postulate, that group differences in the intra-network distributional characteristics of resting state network voxel intensities might indirectly capture important distinctions between the brain function of healthy and clinical populations. Results demonstrate that specific areas of the brain, superior, and middle temporal gyrus that are involved in language and recognition of emotions, show greater component level variance in amplitude weights for schizophrenia patients than healthy controls. Statistically significant correlation between component level spatial variance and component volume was observed in 19 of the 27 non-artifactual components implying an evident relationship between the two parameters. Additionally, the greater spread in the distance of the cluster peak of a component from the centroid in schizophrenia patients compared to healthy controls was observed for seven components. These results indicate that there is hidden potential in exploring variance and possibly higher-order measures in resting state networks to better understand diseases such as schizophrenia. It furthers comprehension of how spatial characteristics can highlight previously unexplored differences between populations such as schizophrenia patients and healthy controls.

  1. Estimation of test-day model (co)variance components across breeds using New Zealand dairy cattle data.

    PubMed

    Vanderick, S; Harris, B L; Pryce, J E; Gengler, N

    2009-03-01

    In New Zealand, a large proportion of cows are currently crossbreds, mostly Holstein-Friesians (HF) x Jersey (JE). The genetic evaluation system for milk yields is considering the same additive genetic effects for all breeds. The objective was to model different additive effects according to parental breeds to obtain first estimates of correlations among breed-specific effects and to study the usefulness of this type of random regression test-day model. Estimates of (co)variance components for purebred HF and JE cattle in purebred herds were computed by using a single-breed model. This analysis showed differences between the 2 breeds, with a greater variability in the HF breed. (Co)variance components for purebred HF and JE and crossbred HF x JE cattle were then estimated by using a complete multibreed model in which computations of complete across-breed (co)variances were simplified by correlating only eigenvectors for HF and JE random regressions of the same order as obtained from the single-breed analysis. Parameter estimates differed more strongly than expected between the single-breed and multibreed analyses, especially for JE. This could be due to differences between animals and management in purebred and non-purebred herds. In addition, the model used only partially accounted for heterosis. The multibreed analysis showed additive genetic differences between the HF and JE breeds, expressed as genetic correlations of additive effects in both breeds, especially in linear and quadratic Legendre polynomials (respectively, 0.807 and 0.604). The differences were small for overall milk production (0.926). Results showed that permanent environmental lactation curves were highly correlated across breeds; however, intraherd lactation curves were also affected by the breed-environment interaction. This result may indicate the existence of breed-specific competition effects that vary through the different lactation stages. In conclusion, a multibreed model similar to the one presented could optimally use the environmental and genetic parameters and provide breed-dependent additive breeding values. This model could also be a useful tool to evaluate crossbred dairy cattle populations like those in New Zealand. However, a routine evaluation would still require the development of an improved methodology. It would also be computationally very challenging because of the simultaneous presence of a large number of breeds.

  2. Interpreting Variance Components as Evidence for Reliability and Validity.

    ERIC Educational Resources Information Center

    Kane, Michael T.

    The reliability and validity of measurement is analyzed by a sampling model based on generalizability theory. A model for the relationship between a measurement procedure and an attribute is developed from an analysis of how measurements are used and interpreted in science. The model provides a basis for analyzing the concept of an error of…

  3. Genetic Model Fitting in IQ, Assortative Mating & Components of IQ Variance.

    ERIC Educational Resources Information Center

    Capron, Christiane; Vetta, Adrian R.; Vetta, Atam

    1998-01-01

    The biometrical school of scientists who fit models to IQ data traces their intellectual ancestry to R. Fisher (1918), but their genetic models have no predictive value. Fisher himself was critical of the concept of heritability, because assortative mating, such as for IQ, introduces complexities into the study of a genetic trait. (SLD)

  4. Missing Data Treatments at the Second Level of Hierarchical Linear Models

    ERIC Educational Resources Information Center

    St. Clair, Suzanne W.

    2011-01-01

    The current study evaluated the performance of traditional versus modern MDTs in the estimation of fixed-effects and variance components for data missing at the second level of an hierarchical linear model (HLM) model across 24 different study conditions. Variables manipulated in the analysis included, (a) number of Level-2 variables with missing…

  5. Principal component analysis of Mn(salen) catalysts.

    PubMed

    Teixeira, Filipe; Mosquera, Ricardo A; Melo, André; Freire, Cristina; Cordeiro, M Natália D S

    2014-12-14

    The theoretical study of Mn(salen) catalysts has been traditionally performed under the assumption that Mn(acacen') (acacen' = 3,3'-(ethane-1,2-diylbis(azanylylidene))bis(prop-1-en-olate)) is an appropriate surrogate for the larger Mn(salen) complexes. In this work, the geometry and the electronic structure of several Mn(salen) and Mn(acacen') model complexes were studied using Density Functional Theory (DFT) at diverse levels of approximation, with the aim of understanding the effects of truncation, metal oxidation, axial coordination, substitution on the aromatic rings of the salen ligand and chirality of the diimine bridge, as well as the choice of the density functional and basis set. To achieve this goal, geometric and structural data, obtained from these calculations, were subjected to Principal Component Analysis (PCA) and PCA with orthogonal rotation of the components (rPCA). The results show the choice of basis set to be of paramount importance, accounting for up to 30% of the variance in the data, while the differences between salen and acacen' complexes account for about 9% of the variance in the data, and are mostly related to the conformation of the salen/acacen' ligand around the metal centre. Variations in the spin state and oxidation state of the metal centre also account for large fractions of the total variance (up to 10% and 9%, respectively). Other effects, such as the nature of the diimine bridge or the presence of an alkyl substituent in the 3,3 and 5,5 positions of the aldehyde moiety, were found to be less important in terms of explaining the variance within the data set. A matrix of discriminants was compiled using the loadings of the principal and rotated components that best performed in the classification of the entries in the data. The scores obtained from its application to the data set were used as independent variables for devising linear models of different properties, with satisfactory prediction capabilities.

  6. Applications of GARCH models to energy commodities

    NASA Astrophysics Data System (ADS)

    Humphreys, H. Brett

    This thesis uses GARCH methods to examine different aspects of the energy markets. The first part of the thesis examines seasonality in the variance. This study modifies the standard univariate GARCH models to test for seasonal components in both the constant and the persistence in natural gas, heating oil and soybeans. These commodities exhibit seasonal price movements and, therefore, may exhibit seasonal variances. In addition, the heating oil model is tested for a structural change in variance during the Gulf War. The results indicate the presence of an annual seasonal component in the persistence for all commodities. Out-of-sample volatility forecasting for natural gas outperforms standard forecasts. The second part of this thesis uses a multivariate GARCH model to examine volatility spillovers within the crude oil forward curve and between the London and New York crude oil futures markets. Using these results the effect of spillovers on dynamic hedging is examined. In addition, this research examines cointegration within the oil markets using investable returns rather than fixed prices. The results indicate the presence of strong volatility spillovers between both markets, weak spillovers from the front of the forward curve to the rest of the curve, and cointegration between the long term oil price on the two markets. The spillover dynamic hedge models lead to a marginal benefit in terms of variance reduction, but a substantial decrease in the variability of the dynamic hedge; thereby decreasing the transactions costs associated with the hedge. The final portion of the thesis uses portfolio theory to demonstrate how the energy mix consumed in the United States could be chosen given a national goal to reduce the risks to the domestic macroeconomy of unanticipated energy price shocks. An efficient portfolio frontier of U.S. energy consumption is constructed using a covariance matrix estimated with GARCH models. The results indicate that while the electric utility industry is operating close to the minimum variance position, a shift towards coal consumption would reduce price volatility for overall U.S. energy consumption. With the inclusion of potential externality costs, the shift remains away from oil but towards natural gas instead of coal.

  7. Validation of anthropometry and foot-to-foot bioelectrical resistance against a three-component model to assess total body fat in children: the IDEFICS study.

    PubMed

    Bammann, K; Huybrechts, I; Vicente-Rodriguez, G; Easton, C; De Vriendt, T; Marild, S; Mesana, M I; Peeters, M W; Reilly, J J; Sioen, I; Tubic, B; Wawro, N; Wells, J C; Westerterp, K; Pitsiladis, Y; Moreno, L A

    2013-04-01

    To compare different field methods for estimating body fat mass with a reference value derived by a three-component (3C) model in pre-school and school children across Europe. Multicentre validation study. Seventy-eight preschool/school children aged 4-10 years from four different European countries. A standard measurement protocol was carried out in all children by trained field workers. A 3C model was used as the reference method. The field methods included height and weight measurement, circumferences measured at four sites, skinfold measured at two-six sites and foot-to-foot bioelectrical resistance (BIA) via TANITA scales. With the exception of height and neck circumference, all single measurements were able to explain at least 74% of the fat-mass variance in the sample. In combination, circumference models were superior to skinfold models and height-weight models. The best predictions were given by trunk models (combining skinfold and circumference measurements) that explained 91% of the observed fat-mass variance. The optimal data-driven model for our sample includes hip circumference, triceps skinfold and total body mass minus resistance index, and explains 94% of the fat-mass variance with 2.44 kg fat mass limits of agreement. In all investigated models, prediction errors were associated with fat mass, although to a lesser degree in the investigated skinfold models, arm models and the data-driven models. When studying total body fat in childhood populations, anthropometric measurements will give biased estimations as compared to gold standard measurements. Nevertheless, our study shows that when combining circumference and skinfold measurements, estimations of fat mass can be obtained with a limit of agreement of 1.91 kg in normal weight children and of 2.94 kg in overweight or obese children.

  8. Estimates of direct and maternal (co)variance components as well as genetic parameters of growth traits in Nellore sheep.

    PubMed

    I, Satish Kumar; C, Vijaya Kumar; G, Gangaraju; Nath, Sapna; A K, Thiruvenkadan

    2017-10-01

    In the present study, (co)variance components and genetic parameters in Nellore sheep were obtained by restricted maximum likelihood (REML) method using six different animal models with various combinations of direct and maternal genetic effects for birth weight (BW), weaning weight (WW), 6-month weight (6MW), 9-month weight (9MW) and 12-month weight (YW). Evaluated records of 2075 lambs descended from 69 sires and 478 dams over a period of 8 years (2007-2014) were collected from the Livestock Research Station, Palamaner, India. Lambing year, sex of lamb, season of lambing and parity of dam were the fixed effects in the model, and ewe weight was used as a covariate. Best model for each trait was determined by log-likelihood ratio test. Direct heritability for BW, WW, 6MW, 9MW and YW were 0.08, 0.03, 0.12, 0.16 and 0.10, respectively, and their corresponding maternal heritabilities were 0.07, 0.10, 0.09, 0.08 and 0.11. The proportions of maternal permanent environment variance to phenotypic variance (Pe 2 ) were 0.07, 0.10, 0.07, 0.06 and 0.10 for BW, WW, 6MW, 9MW and YW, respectively. The estimates of direct genetic correlations among the growth traits were positive and ranged from 0.44(BW-WW) to 0.96(YW-9MW), and the estimates of phenotypic and environmental correlations were found to be lower than those of genetic correlations. Exclusion of maternal effects in the model resulted in biased estimates of genetic parameters in Nellore sheep. Hence, to implement optimum breeding strategies for improvement of traits in Nellore sheep, maternal effects should be considered.

  9. Exploring Oral Cancer Patients' Preference in Medical Decision Making and Quality of Life.

    PubMed

    Cheng, Sun-Long; Liao, Hsien-Hua; Shueng, Pei-Wei; Lee, Hsi-Chieh; Cheewakriangkrai, Chalong; Chang, Chi-Chang

    2017-01-01

    Little is known about the clinical effects of shared medical decision making (SMDM) associated with quality of life about oral cancer? To understand patients who occurred potential cause of SMDM and extended to explore the interrelated components of quality of life for providing patients with potential adaptation of early assessment. All consenting patients completed the SMDM questionnaire and 36-Item Short Form (SF-36). Regression analyses were conducted to find predictors of quality of life among oral cancer patients. The proposed model predicted 57.4% of the variance in patients' SF-36 Mental Component scores. Patient mental component summary scores were associated with smoking habit (β=-0.3449, p=0.022), autonomy (β=-0.226, p=0.018) and Control preference (β=-0.388, p=0.007). The proposed model predicted 42.6% of the variance in patients' SF-36 Physical component scores. Patient physical component summary scores were associated with higher education (β=0.288, p=0.007), employment status (β=-0.225, p=0.033), involvement perceived (β=-0.606, p=0.011) and Risk communication (β=-0.558, p=0.019). Future research is necessary to determine whether oral cancer patients would benefit from early screening and intervention to address shared medical decision making.

  10. Cosmic Bulk Flow and the Local Motion from Cosmicflows-2

    NASA Astrophysics Data System (ADS)

    Courtois, Helene M.; Hoffman, Yehuda; Tully, R. Brent

    2015-08-01

    Full sky surveys of peculiar velocity are arguably the best way to map the large scale structure out to distances of a few times 100 Mpc/h.Using the largest and most accurate ever catalog of galaxy peculiar velocities Cosmicflows-2, the large scale structure has been reconstructed by means of the Wiener filter and constrained realizations assuming as a Bayesian prior model the LCDM standard model of cosmology. The present paper focuses on studying the bulk flow of the local flow field, defined as the mean velocity of top-hat spheres with radii ranging out to R=500 Mpc/h. Our main results is that the estimated bulk flow is consistent with the LCDM model with the WMAP inferred cosmological parameters. At R=50 (150)Mpc/h the estimated bulk velocity is 250 +/- 21 (239 +/- 38) km/s. The corresponding cosmic variance at these radii is 126 (60) km/s, which implies that these estimated bulk flows are dominated by the data and not by the assumed prior model. The estimated bulk velocity is dominated by the data out to R ˜200 Mpc/h, where the cosmic variance on the individual Supergalactic Cartesian components (of the r.m.s. values) exceeds the variance of the constrined realizations by at least a factor of 2. The SGX and SGY components of the CMB dipole velocity are recovered by the Wiener Filter velocity field down to a very few km/s. The SGZ component of the estimated velocity, the one that is most affected by the Zone of Avoidance, is off by 126km/s (an almost 2 sigma discrepancy).The bulk velocity analysis reported here is virtually unaffected by the Malmquist bias and very similar results are obtained for the data with and without the bias correction.

  11. Statistical study of EBR-II fuel elements manufactured by the cold line at Argonne-West and by Atomics International

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkness, A. L.

    1977-09-01

    Nine elements from each batch of fuel elements manufactured for the EBR-II reactor have been analyzed for /sup 235/U content by NDA methods. These values, together with those of the manufacturer, are used to estimate the product variance and the variances of the two measuring methods. These variances are compared with the variances computed from the stipulations of the contract. A method is derived for resolving the several variances into their within-batch and between-batch components. Some of these variance components have also been estimated by independent and more familiar conventional methods for comparison.

  12. Turbulence Variance Characteristics in the Unstable Atmospheric Boundary Layer above Flat Pine Forest

    NASA Astrophysics Data System (ADS)

    Asanuma, Jun

    Variances of the velocity components and scalars are important as indicators of the turbulence intensity. They also can be utilized to estimate surface fluxes in several types of "variance methods", and the estimated fluxes can be regional values if the variances from which they are calculated are regionally representative measurements. On these motivations, variances measured by an aircraft in the unstable ABL over a flat pine forest during HAPEX-Mobilhy were analyzed within the context of the similarity scaling arguments. The variances of temperature and vertical velocity within the atmospheric surface layer were found to follow closely the Monin-Obukhov similarity theory, and to yield reasonable estimates of the surface sensible heat fluxes when they are used in variance methods. This gives a validation to the variance methods with aircraft measurements. On the other hand, the specific humidity variances were influenced by the surface heterogeneity and clearly fail to obey MOS. A simple analysis based on the similarity law for free convection produced a comprehensible and quantitative picture regarding the effect of the surface flux heterogeneity on the statistical moments, and revealed that variances of the active and passive scalars become dissimilar because of their different roles in turbulence. The analysis also indicated that the mean quantities are also affected by the heterogeneity but to a less extent than the variances. The temperature variances in the mixed layer (ML) were examined by using a generalized top-down bottom-up diffusion model with some combinations of velocity scales and inversion flux models. The results showed that the surface shear stress exerts considerable influence on the lower ML. Also with the temperature and vertical velocity variances ML variance methods were tested, and their feasibility was investigated. Finally, the variances in the ML were analyzed in terms of the local similarity concept; the results confirmed the original hypothesis by Panofsky and McCormick that the local scaling in terms of the local buoyancy flux defines the lower bound of the moments.

  13. Impact of multicollinearity on small sample hydrologic regression models

    NASA Astrophysics Data System (ADS)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  14. Trait and State Variance in Oppositional Defiant Disorder Symptoms: A Multi-Source Investigation with Spanish Children

    PubMed Central

    Preszler, Jonathan; Burns, G. Leonard; Litson, Kaylee; Geiser, Christian; Servera, Mateu

    2016-01-01

    The objective was to determine and compare the trait and state components of oppositional defiant disorder (ODD) symptom reports across multiple informants. Mothers, fathers, primary teachers, and secondary teachers rated the occurrence of the ODD symptoms in 810 Spanish children (55% boys) on two occasions (end first and second grades). Single source latent state-trait (LST) analyses revealed that ODD symptom ratings from all four sources showed more trait (M = 63%) than state residual (M = 37%) variance. A multiple source LST analysis revealed substantial convergent validity of mothers’ and fathers’ trait variance components (M = 68%) and modest convergent validity of state residual variance components (M = 35%). In contrast, primary and secondary teachers showed low convergent validity relative to mothers for trait variance (Ms = 31%, 32%, respectively) and essentially zero convergent validity relative to mothers for state residual variance (Ms = 1%, 3%, respectively). Although ODD symptom ratings reflected slightly more trait- than state-like constructs within each of the four sources separately across occasions, strong convergent validity for the trait variance only occurred within settings (i.e., mothers with fathers; primary with secondary teachers) with the convergent validity of the trait and state residual variance components being low to non-existent across settings. These results suggest that ODD symptom reports are trait-like across time for individual sources with this trait variance, however, only having convergent validity within settings. Implications for assessment of ODD are discussed. PMID:27148784

  15. Characterization of nonGaussian atmospheric turbulence for prediction of aircraft response statistics

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1977-01-01

    Mathematical expressions were derived for the exceedance rates and probability density functions of aircraft response variables using a turbulence model that consists of a low frequency component plus a variance modulated Gaussian turbulence component. The functional form of experimentally observed concave exceedance curves was predicted theoretically, the strength of the concave contribution being governed by the coefficient of variation of the time fluctuating variance of the turbulence. Differences in the functional forms of response exceedance curves and probability densities also were shown to depend primarily on this same coefficient of variation. Criteria were established for the validity of the local stationary assumption that is required in the derivations of the exceedance curves and probability density functions. These criteria are shown to depend on the relative time scale of the fluctuations in the variance, the fluctuations in the turbulence itself, and on the nominal duration of the relevant aircraft impulse response function. Metrics that can be generated from turbulence recordings for testing the validity of the local stationary assumption were developed.

  16. Analysis of the torsional storage modulus of human hair and its relation to hair morphology and cosmetic processing.

    PubMed

    Wortmann, Franz J; Wortmann, Gabriele; Haake, Hans-Martin; Eisfeld, Wolf

    2014-01-01

    Through measurements of three different hair samples (virgin and treated) by the torsional pendulum method (22°C, 22% RH) a systematic decrease of the torsional storage modulus G' with increasing fiber diameter, i.e., polar moment of inertia, is observed. G' is therefore not a material constant for hair. This change of G' implies a systematic component of data variance, which significantly contributes to the limitations of the torsional method for cosmetic claim support. Fitting the data on the basis of a core/shell model for cortex and cuticle enables to separate this systematic component of variance and to greatly enhance the discriminative power of the test. The fitting procedure also provides values for the torsional storage moduli of the morphological components, confirming that the cuticle modulus is substantially higher than that of the cortex. The results give consistent insight into the changes imparted to the morphological components by the cosmetic treatments.

  17. Decomposing genomic variance using information from GWA, GWE and eQTL analysis.

    PubMed

    Ehsani, A; Janss, L; Pomp, D; Sørensen, P

    2016-04-01

    A commonly used procedure in genome-wide association (GWA), genome-wide expression (GWE) and expression quantitative trait locus (eQTL) analyses is based on a bottom-up experimental approach that attempts to individually associate molecular variants with complex traits. Top-down modeling of the entire set of genomic data and partitioning of the overall variance into subcomponents may provide further insight into the genetic basis of complex traits. To test this approach, we performed a whole-genome variance components analysis and partitioned the genomic variance using information from GWA, GWE and eQTL analyses of growth-related traits in a mouse F2 population. We characterized the mouse trait genetic architecture by ordering single nucleotide polymorphisms (SNPs) based on their P-values and studying the areas under the curve (AUCs). The observed traits were found to have a genomic variance profile that differed significantly from that expected of a trait under an infinitesimal model. This situation was particularly true for both body weight and body fat, for which the AUCs were much higher compared with that of glucose. In addition, SNPs with a high degree of trait-specific regulatory potential (SNPs associated with subset of transcripts that significantly associated with a specific trait) explained a larger proportion of the genomic variance than did SNPs with high overall regulatory potential (SNPs associated with transcripts using traditional eQTL analysis). We introduced AUC measures of genomic variance profiles that can be used to quantify relative importance of SNPs as well as degree of deviation of a trait's inheritance from an infinitesimal model. The shape of the curve aids global understanding of traits: The steeper the left-hand side of the curve, the fewer the number of SNPs controlling most of the phenotypic variance. © 2015 Stichting International Foundation for Animal Genetics.

  18. Hierarchical Bayesian modeling of heterogeneous variances in average daily weight gain of commercial feedlot cattle.

    PubMed

    Cernicchiaro, N; Renter, D G; Xiang, S; White, B J; Bello, N M

    2013-06-01

    Variability in ADG of feedlot cattle can affect profits, thus making overall returns more unstable. Hence, knowledge of the factors that contribute to heterogeneity of variances in animal performance can help feedlot managers evaluate risks and minimize profit volatility when making managerial and economic decisions in commercial feedlots. The objectives of the present study were to evaluate heteroskedasticity, defined as heterogeneity of variances, in ADG of cohorts of commercial feedlot cattle, and to identify cattle demographic factors at feedlot arrival as potential sources of variance heterogeneity, accounting for cohort- and feedlot-level information in the data structure. An operational dataset compiled from 24,050 cohorts from 25 U. S. commercial feedlots in 2005 and 2006 was used for this study. Inference was based on a hierarchical Bayesian model implemented with Markov chain Monte Carlo, whereby cohorts were modeled at the residual level and feedlot-year clusters were modeled as random effects. Forward model selection based on deviance information criteria was used to screen potentially important explanatory variables for heteroskedasticity at cohort- and feedlot-year levels. The Bayesian modeling framework was preferred as it naturally accommodates the inherently hierarchical structure of feedlot data whereby cohorts are nested within feedlot-year clusters. Evidence for heterogeneity of variance components of ADG was substantial and primarily concentrated at the cohort level. Feedlot-year specific effects were, by far, the greatest contributors to ADG heteroskedasticity among cohorts, with an estimated ∼12-fold change in dispersion between most and least extreme feedlot-year clusters. In addition, identifiable demographic factors associated with greater heterogeneity of cohort-level variance included smaller cohort sizes, fewer days on feed, and greater arrival BW, as well as feedlot arrival during summer months. These results support that heterogeneity of variances in ADG is prevalent in feedlot performance and indicate potential sources of heteroskedasticity. Further investigation of factors associated with heteroskedasticity in feedlot performance is warranted to increase consistency and uniformity in commercial beef cattle production and subsequent profitability.

  19. Specification, testing, and interpretation of gene-by-measured-environment interaction models in the presence of gene-environment correlation

    PubMed Central

    Rathouz, Paul J.; Van Hulle, Carol A.; Lee Rodgers, Joseph; Waldman, Irwin D.; Lahey, Benjamin B.

    2009-01-01

    Purcell (2002) proposed a bivariate biometric model for testing and quantifying the interaction between latent genetic influences and measured environments in the presence of gene-environment correlation. Purcell’s model extends the Cholesky model to include gene-environment interaction. We examine a number of closely-related alternative models that do not involve gene-environment interaction but which may fit the data as well Purcell’s model. Because failure to consider these alternatives could lead to spurious detection of gene-environment interaction, we propose alternative models for testing gene-environment interaction in the presence of gene-environment correlation, including one based on the correlated factors model. In addition, we note mathematical errors in the calculation of effect size via variance components in Purcell’s model. We propose a statistical method for deriving and interpreting variance decompositions that are true to the fitted model. PMID:18293078

  20. Variance adaptation in navigational decision making

    NASA Astrophysics Data System (ADS)

    Gershow, Marc; Gepner, Ruben; Wolk, Jason; Wadekar, Digvijay

    Drosophila larvae navigate their environments using a biased random walk strategy. A key component of this strategy is the decision to initiate a turn (change direction) in response to declining conditions. We modeled this decision as the output of a Linear-Nonlinear-Poisson cascade and used reverse correlation with visual and fictive olfactory stimuli to find the parameters of this model. Because the larva responds to changes in stimulus intensity, we used stimuli with uncorrelated normally distributed intensity derivatives, i.e. Brownian processes, and took the stimulus derivative as the input to our LNP cascade. In this way, we were able to present stimuli with 0 mean and controlled variance. We found that the nonlinear rate function depended on the variance in the stimulus input, allowing larvae to respond more strongly to small changes in low-noise compared to high-noise environments. We measured the rate at which the larva adapted its behavior following changes in stimulus variance, and found that larvae adapted more quickly to increases in variance than to decreases, consistent with the behavior of an optimal Bayes estimator. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  1. The impact of case specificity and generalisable skills on clinical performance: a correlated traits-correlated methods approach.

    PubMed

    Wimmers, Paul F; Fung, Cha-Chi

    2008-06-01

    The finding of case or content specificity in medical problem solving moved the focus of research away from generalisable skills towards the importance of content knowledge. However, controversy about the content dependency of clinical performance and the generalisability of skills remains. This study aimed to explore the relative impact of both perspectives (case specificity and generalisable skills) on different components (history taking, physical examination, communication) of clinical performance within and across cases. Data from a clinical performance examination (CPX) taken by 350 Year 3 students were used in a correlated traits-correlated methods (CTCM) approach using confirmatory factor analysis, whereby 'traits' refers to generalisable skills and 'methods' to individual cases. The baseline CTCM model was analysed and compared with four nested models using structural equation modelling techniques. The CPX consisted of three skills components and five cases. Comparison of the four different models with the least-restricted baseline CTCM model revealed that a model with uncorrelated generalisable skills factors and correlated case-specific knowledge factors represented the data best. The generalisable processes found in history taking, physical examination and communication were responsible for half the explained variance, in comparison with the variance related to case specificity. Conclusions Pure knowledge-based and pure skill-based perspectives on clinical performance both seem too one-dimensional and new evidence supports the idea that a substantial amount of variance contributes to both aspects of performance. It could be concluded that generalisable skills and specialised knowledge go hand in hand: both are essential aspects of clinical performance.

  2. Variance components estimation for continuous and discrete data, with emphasis on cross-classified sampling designs

    USGS Publications Warehouse

    Gray, Brian R.; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    Variance components may play multiple roles (cf. Cox and Solomon 2003). First, magnitudes and relative magnitudes of the variances of random factors may have important scientific and management value in their own right. For example, variation in levels of invasive vegetation among and within lakes may suggest causal agents that operate at both spatial scales – a finding that may be important for scientific and management reasons. Second, variance components may also be of interest when they affect precision of means and covariate coefficients. For example, variation in the effect of water depth on the probability of aquatic plant presence in a study of multiple lakes may vary by lake. This variation will affect the precision of the average depth-presence association. Third, variance component estimates may be used when designing studies, including monitoring programs. For example, to estimate the numbers of years and of samples per year required to meet long-term monitoring goals, investigators need estimates of within and among-year variances. Other chapters in this volume (Chapters 7, 8, and 10) as well as extensive external literature outline a framework for applying estimates of variance components to the design of monitoring efforts. For example, a series of papers with an ecological monitoring theme examined the relative importance of multiple sources of variation, including variation in means among sites, years, and site-years, for the purposes of temporal trend detection and estimation (Larsen et al. 2004, and references therein).

  3. A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Gruszczynski, Maciej; Klos, Anna; Bogusz, Janusz

    2018-04-01

    For the first time, we introduced the probabilistic principal component analysis (pPCA) regarding the spatio-temporal filtering of Global Navigation Satellite System (GNSS) position time series to estimate and remove Common Mode Error (CME) without the interpolation of missing values. We used data from the International GNSS Service (IGS) stations which contributed to the latest International Terrestrial Reference Frame (ITRF2014). The efficiency of the proposed algorithm was tested on the simulated incomplete time series, then CME was estimated for a set of 25 stations located in Central Europe. The newly applied pPCA was compared with previously used algorithms, which showed that this method is capable of resolving the problem of proper spatio-temporal filtering of GNSS time series characterized by different observation time span. We showed, that filtering can be carried out with pPCA method when there exist two time series in the dataset having less than 100 common epoch of observations. The 1st Principal Component (PC) explained more than 36% of the total variance represented by time series residuals' (series with deterministic model removed), what compared to the other PCs variances (less than 8%) means that common signals are significant in GNSS residuals. A clear improvement in the spectral indices of the power-law noise was noticed for the Up component, which is reflected by an average shift towards white noise from - 0.98 to - 0.67 (30%). We observed a significant average reduction in the accuracy of stations' velocity estimated for filtered residuals by 35, 28 and 69% for the North, East, and Up components, respectively. CME series were also subjected to analysis in the context of environmental mass loading influences of the filtering results. Subtraction of the environmental loading models from GNSS residuals provides to reduction of the estimated CME variance by 20 and 65% for horizontal and vertical components, respectively.

  4. Mental health stigmatisation in deployed UK Armed Forces: a principal components analysis.

    PubMed

    Fertout, Mohammed; Jones, N; Keeling, M; Greenberg, N

    2015-12-01

    UK military research suggests that there is a significant link between current psychological symptoms, mental health stigmatisation and perceived barriers to care (stigma/BTC). Few studies have explored the construct of stigma/BTC in depth amongst deployed UK military personnel. Three survey datasets containing a stigma/BTC scale obtained during UK deployments to Iraq and Afghanistan were combined (n=3405 personnel). Principal component analysis was used to identify the key components of stigma/BTC. The relationship between psychological symptoms, the stigma/BTC components and help seeking were examined. Two components were identified: 'potential loss of personal military credibility and trust' (stigma Component 1, five items, 49.4% total model variance) and 'negative perceptions of mental health services and barriers to help seeking' (Component 2, six items, 11.2% total model variance). Component 1 was endorsed by 37.8% and Component 2 by 9.4% of personnel. Component 1 was associated with both assessed and subjective mental health, medical appointments and admission to hospital. Stigma Component 2 was associated with subjective and assessed mental health but not with medical appointments. Neither component was associated with help-seeking for subjective psycho-social problems. Potential loss of credibility and trust appeared to be associated with help-seeking for medical reasons but not for help-seeking for subjective psychosocial problems. Those experiencing psychological symptoms appeared to minimise the effects of stigma by seeking out a socially acceptable route into care, such as the medical consultation, whereas those who experienced a subjective mental health problem appeared willing to seek help from any source. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Geomagnetic field model for the last 5 My: time-averaged field and secular variation

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Tadahiro; Kono, Masaru

    2002-11-01

    Structure of the geomagnetic field has bee studied by using the paleomagetic direction data of the last 5 million years obtained from lava flows. The method we used is the nonlinear version, similar to the works of Gubbins and Kelly [Nature 365 (1993) 829], Johnson and Constable [Geophys. J. Int. 122 (1995) 488; Geophys. J. Int. 131 (1997) 643], and Kelly and Gubbins [Geophys. J. Int. 128 (1997) 315], but we determined the time-averaged field (TAF) and the paleosecular variation (PSV) simultaneously. As pointed out in our previous work [Earth Planet. Space 53 (2001) 31], the observed mean field directions are affected by the fluctuation of the field, as described by the PSV model. This effect is not excessively large, but cannot be neglected while considering the mean field. We propose that the new TAF+PSV model is a better representation of the ancient magnetic field, since both the average and fluctuation of the field are consistently explained. In the inversion procedure, we used direction cosines instead of inclinations and declinations, as the latter quantities show singularity or unstable behavior at the high latitudes. The obtained model gives reasonably good fit to the observed means and variances of direction cosines. In the TAF model, the geocentric axial dipole term ( g10) is the dominant component; it is much more pronounced than that in the present magnetic field. The equatorial dipole component is quite small, after averaging over time. The model shows a very smooth spatial variation; the nondipole components also seem to be averaged out quite effectively over time. Among the other coefficients, the geocentric axial quadrupole term ( g20) is significantly larger than the other components. On the other hand, the axial octupole term ( g30) is much smaller than that in a TAF model excluding the PSV effect. It is likely that the effect of PSV is most clearly seen in this term, which is consistent with the conclusion reached in our previous work. The PSV model shows large variance of the (2,1) component, which is in good agreement with the previous PSV models obtained by forward approaches. It is also indicated that the variance of the axial dipole term is very small. This is in conflict with the studies based on paleointensity data, but we show that this conclusion is not inconsistent with the paleointensity data because a substantial part of the apparent scatter in paleointensities may be attributable to effects other than the fluctuations in g10 itself.

  6. The response of the SSM/I to the marine environment. Part 2: A parameterization of the effect of the sea surface slope distribution on emission and reflection

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.; Katsaros, Kristina B.

    1994-01-01

    Based on a geometric optics model and the assumption of an isotropic Gaussian surface slope distribution, the component of ocean surface microwave emissivity variation due to large-scale surface roughness is parameterized for the frequencies and approximate viewing angle of the Special Sensor Microwave/Imager. Independent geophysical variables in the parameterization are the effective (microwave frequency dependent) slope variance and the sea surface temperature. Using the same physical model, the change in the effective zenith angle of reflected sky radiation arising from large-scale roughness is also parameterized. Independent geophysical variables in this parameterization are the effective slope variance and the atmospheric optical depth at the frequency in question. Both of the above model-based parameterizations are intended for use in conjunction with empirical parameterizations relating effective slope variance and foam coverage to near-surface wind speed. These empirical parameterizations are the subject of a separate paper.

  7. Joint variability of global runoff and global sea surface temperatures

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, Kathryn, E-mail: kfarrell@ices.utexas.edu; Oden, J. Tinsley, E-mail: oden@ices.utexas.edu; Faghihi, Danial, E-mail: danial@ices.utexas.edu

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.

  9. Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model.

    PubMed

    Fernández, E N; Legarra, A; Martínez, R; Sánchez, J P; Baselga, M

    2017-06-01

    Inbreeding generates covariances between additive and dominance effects (breeding values and dominance deviations). In this work, we developed and applied models for estimation of dominance and additive genetic variances and their covariance, a model that we call "full dominance," from pedigree and phenotypic data. Estimates with this model such as presented here are very scarce both in livestock and in wild genetics. First, we estimated pedigree-based condensed probabilities of identity using recursion. Second, we developed an equivalent linear model in which variance components can be estimated using closed-form algorithms such as REML or Gibbs sampling and existing software. Third, we present a new method to refer the estimated variance components to meaningful parameters in a particular population, i.e., final partially inbred generations as opposed to outbred base populations. We applied these developments to three closed rabbit lines (A, V and H) selected for number of weaned at the Polytechnic University of Valencia. Pedigree and phenotypes are complete and span 43, 39 and 14 generations, respectively. Estimates of broad-sense heritability are 0.07, 0.07 and 0.05 at the base versus 0.07, 0.07 and 0.09 in the final generations. Narrow-sense heritability estimates are 0.06, 0.06 and 0.02 at the base versus 0.04, 0.04 and 0.01 at the final generations. There is also a reduction in the genotypic variance due to the negative additive-dominance correlation. Thus, the contribution of dominance variation is fairly large and increases with inbreeding and (over)compensates for the loss in additive variation. In addition, estimates of the additive-dominance correlation are -0.37, -0.31 and 0.00, in agreement with the few published estimates and theoretical considerations. © 2017 Blackwell Verlag GmbH.

  10. High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis

    PubMed Central

    Daye, Z. John; Chen, Jinbo; Li, Hongzhe

    2011-01-01

    Summary We consider the problem of high-dimensional regression under non-constant error variances. Despite being a common phenomenon in biological applications, heteroscedasticity has, so far, been largely ignored in high-dimensional analysis of genomic data sets. We propose a new methodology that allows non-constant error variances for high-dimensional estimation and model selection. Our method incorporates heteroscedasticity by simultaneously modeling both the mean and variance components via a novel doubly regularized approach. Extensive Monte Carlo simulations indicate that our proposed procedure can result in better estimation and variable selection than existing methods when heteroscedasticity arises from the presence of predictors explaining error variances and outliers. Further, we demonstrate the presence of heteroscedasticity in and apply our method to an expression quantitative trait loci (eQTLs) study of 112 yeast segregants. The new procedure can automatically account for heteroscedasticity in identifying the eQTLs that are associated with gene expression variations and lead to smaller prediction errors. These results demonstrate the importance of considering heteroscedasticity in eQTL data analysis. PMID:22547833

  11. The probability of false positives in zero-dimensional analyses of one-dimensional kinematic, force and EMG trajectories.

    PubMed

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2016-06-14

    A false positive is the mistake of inferring an effect when none exists, and although α controls the false positive (Type I error) rate in classical hypothesis testing, a given α value is accurate only if the underlying model of randomness appropriately reflects experimentally observed variance. Hypotheses pertaining to one-dimensional (1D) (e.g. time-varying) biomechanical trajectories are most often tested using a traditional zero-dimensional (0D) Gaussian model of randomness, but variance in these datasets is clearly 1D. The purpose of this study was to determine the likelihood that analyzing smooth 1D data with a 0D model of variance will produce false positives. We first used random field theory (RFT) to predict the probability of false positives in 0D analyses. We then validated RFT predictions via numerical simulations of smooth Gaussian 1D trajectories. Results showed that, across a range of public kinematic, force/moment and EMG datasets, the median false positive rate was 0.382 and not the assumed α=0.05, even for a simple two-sample t test involving N=10 trajectories per group. The median false positive rate for experiments involving three-component vector trajectories was p=0.764. This rate increased to p=0.945 for two three-component vector trajectories, and to p=0.999 for six three-component vectors. This implies that experiments involving vector trajectories have a high probability of yielding 0D statistical significance when there is, in fact, no 1D effect. Either (a) explicit a priori identification of 0D variables or (b) adoption of 1D methods can more tightly control α. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modeling individual differences in text reading fluency: a different pattern of predictors for typically developing and dyslexic readers

    PubMed Central

    Zoccolotti, Pierluigi; De Luca, Maria; Marinelli, Chiara V.; Spinelli, Donatella

    2014-01-01

    This study was aimed at predicting individual differences in text reading fluency. The basic proposal included two factors, i.e., the ability to decode letter strings (measured by discrete pseudo-word reading) and integration of the various sub-components involved in reading (measured by Rapid Automatized Naming, RAN). Subsequently, a third factor was added to the model, i.e., naming of discrete digits. In order to use homogeneous measures, all contributing variables considered the entire processing of the item, including pronunciation time. The model, which was based on commonality analysis, was applied to data from a group of 43 typically developing readers (11- to 13-year-olds) and a group of 25 chronologically matched dyslexic children. In typically developing readers, both orthographic decoding and integration of reading sub-components contributed significantly to the overall prediction of text reading fluency. The model prediction was higher (from ca. 37 to 52% of the explained variance) when we included the naming of discrete digits variable, which had a suppressive effect on pseudo-word reading. In the dyslexic readers, the variance explained by the two-factor model was high (69%) and did not change when the third factor was added. The lack of a suppression effect was likely due to the prominent individual differences in poor orthographic decoding of the dyslexic children. Analyses on data from both groups of children were replicated by using patches of colors as stimuli (both in the RAN task and in the discrete naming task) obtaining similar results. We conclude that it is possible to predict much of the variance in text-reading fluency using basic processes, such as orthographic decoding and integration of reading sub-components, even without taking into consideration higher-order linguistic factors such as lexical, semantic and contextual abilities. The approach validity of using proximal vs. distal causes to predict reading fluency is discussed. PMID:25477856

  13. Linkage disequilibrium and association mapping.

    PubMed

    Weir, B S

    2008-01-01

    Linkage disequilibrium refers to the association between alleles at different loci. The standard definition applies to two alleles in the same gamete, and it can be regarded as the covariance of indicator variables for the states of those two alleles. The corresponding correlation coefficient rho is the parameter that arises naturally in discussions of tests of association between markers and genetic diseases. A general treatment of association tests makes use of the additive and nonadditive components of variance for the disease gene. In almost all expressions that describe the behavior of association tests, additive variance components are modified by the squared correlation coefficient rho2 and the nonadditive variance components by rho4, suggesting that nonadditive components have less influence than additive components on association tests.

  14. Antagonistic versus non-antagonistic models of balancing selection: Characterizing the relative timescales and hitchhiking effects of partial selective sweeps

    PubMed Central

    Connallon, Tim; Clark, Andrew G.

    2012-01-01

    Antagonistically selected alleles -- those with opposing fitness effects between sexes, environments, or fitness components -- represent an important component of additive genetic variance in fitness-related traits, with stably balanced polymorphisms often hypothesized to contribute to observed quantitative genetic variation. Balancing selection hypotheses imply that intermediate-frequency alleles disproportionately contribute to genetic variance of life history traits and fitness. Such alleles may also associate with population genetic footprints of recent selection, including reduced genetic diversity and inflated linkage disequilibrium at linked, neutral sites. Here, we compare the evolutionary dynamics of different balancing selection models, and characterize the evolutionary timescale and hitchhiking effects of partial selective sweeps generated under antagonistic versus non-antagonistic (e.g., overdominant and frequency-dependent selection) processes. We show that that the evolutionary timescales of partial sweeps tend to be much longer, and hitchhiking effects are drastically weaker, under scenarios of antagonistic selection. These results predict an interesting mismatch between molecular population genetic and quantitative genetic patterns of variation. Balanced, antagonistically selected alleles are expected to contribute more to additive genetic variance for fitness than alleles maintained by classic, non-antagonistic mechanisms. Nevertheless, classical mechanisms of balancing selection are much more likely to generate strong population genetic signatures of recent balancing selection. PMID:23461340

  15. Sparse principal component analysis in medical shape modeling

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus

    2006-03-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.

  16. Image informative maps for component-wise estimating parameters of signal-dependent noise

    NASA Astrophysics Data System (ADS)

    Uss, Mykhail L.; Vozel, Benoit; Lukin, Vladimir V.; Chehdi, Kacem

    2013-01-01

    We deal with the problem of blind parameter estimation of signal-dependent noise from mono-component image data. Multispectral or color images can be processed in a component-wise manner. The main results obtained rest on the assumption that the image texture and noise parameters estimation problems are interdependent. A two-dimensional fractal Brownian motion (fBm) model is used for locally describing image texture. A polynomial model is assumed for the purpose of describing the signal-dependent noise variance dependence on image intensity. Using the maximum likelihood approach, estimates of both fBm-model and noise parameters are obtained. It is demonstrated that Fisher information (FI) on noise parameters contained in an image is distributed nonuniformly over intensity coordinates (an image intensity range). It is also shown how to find the most informative intensities and the corresponding image areas for a given noisy image. The proposed estimator benefits from these detected areas to improve the estimation accuracy of signal-dependent noise parameters. Finally, the potential estimation accuracy (Cramér-Rao Lower Bound, or CRLB) of noise parameters is derived, providing confidence intervals of these estimates for a given image. In the experiment, the proposed and existing state-of-the-art noise variance estimators are compared for a large image database using CRLB-based statistical efficiency criteria.

  17. Shape variation in the human pelvis and limb skeleton: Implications for obstetric adaptation.

    PubMed

    Kurki, Helen K; Decrausaz, Sarah-Louise

    2016-04-01

    Under the obstetrical dilemma (OD) hypothesis, selection acts on the human female pelvis to ensure a sufficiently sized obstetric canal for birthing a large-brained, broad shouldered neonate, while bipedal locomotion selects for a narrower and smaller pelvis. Despite this female-specific stabilizing selection, variability of linear dimensions of the pelvic canal and overall size are not reduced in females, suggesting shape may instead be variable among females of a population. Female canal shape has been shown to vary among populations, while male canal shape does not. Within this context, we examine within-population canal shape variation in comparison with that of noncanal aspects of the pelvis and the limbs. Nine skeletal samples (total female n = 101, male n = 117) representing diverse body sizes and shapes were included. Principal components analysis was applied to size-adjusted variables of each skeletal region. A multivariate variance was calculated using the weighted PC scores for all components in each model and F-ratios used to assess differences in within-population variances between sexes and skeletal regions. Within both sexes, multivariate canal shape variance is significantly greater than noncanal pelvis and limb variances, while limb variance is greater than noncanal pelvis variance in some populations. Multivariate shape variation is not consistently different between the sexes in any of the skeletal regions. Diverse selective pressures, including obstetrics, locomotion, load carrying, and others may act on canal shape, as well as genetic drift and plasticity, thus increasing variation in morphospace while protecting obstetric sufficiency. © 2015 Wiley Periodicals, Inc.

  18. Possibility of modifying the growth trajectory in Raeini Cashmere goat.

    PubMed

    Ghiasi, Heydar; Mokhtari, M S

    2018-03-27

    The objective of this study was to investigate the possibility of modifying the growth trajectory in Raeini Cashmere goat breed. In total, 13,193 records on live body weight collected from 4788 Raeini Cashmere goats were used. According to Akanke's information criterion (AIC), the sing-trait random regression model included fourth-order Legendre polynomial for direct and maternal genetic effect; maternal and individual permanent environmental effect was the best model for estimating (co)variance components. The matrices of eigenvectors for (co)variances between random regression coefficients of direct additive genetic were used to calculate eigenfunctions, and different eigenvector indices were also constructed. The obtained results showed that the first eigenvalue explained 79.90% of total genetic variance. Therefore, changing the body weights applying the first eigenfunction will be obtained rapidly. Selection based on the first eigenvector will cause favorable positive genetic gains for all body weight considered from birth to 12 months of age. For modifying the growth trajectory in Raeini Cashmere goat, the selection should be based on the second eigenfunction. The second eigenvalue accounted for 14.41% of total genetic variance for body weights that is low in comparison with genetic variance explained by the first eigenvalue. The complex patterns of genetic change in growth trajectory observed under the third and fourth eigenfunction and low amount of genetic variance explained by the third and fourth eigenvalues.

  19. Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.

    2018-04-01

    A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine stratocumulus regions, with substantially shorter lag times compared with the long-wave counterpart. This indicates that the short-wave radiation response to diurnal cloud development and dissipation is more rapid, which is found to be robust in the regional satellite observations. These global, diurnal radiation patterns and their coupling with other geophysical variables demonstrate the process-level understanding that can be gained using this approach and highlight a need for global, diurnal observing systems for Earth outgoing radiation in the future.

  20. Spherical harmonic analysis of a model-generated climatology

    NASA Technical Reports Server (NTRS)

    Christidis, Z. D.; Spar, J.

    1981-01-01

    Monthly mean fields of 850 mb temperature (T850), 500 mb geopotential height (G500) and sea level pressure (SLP) were generated in the course of a five-year climate simulation run with a global general circulation model. Both the model-generated climatology and an observed climatology were subjected to spherical harmonic analysis, with separate analyses of the globe and the Northern Hemisphere. Comparison of the dominant harmonics of the two climatologies indicates that more than 95% of the area-weighted spatial variance of G500 and more than 90% of that of T850 are explained by fewer than three components, and that the model adequately simulates these large-scale characteristics. On the other hand, as many as 25 harmonics are needed to explain 95% of the observed variance of SLP, and the model simulation of this field is much less satisfactory. The model climatology is also evaluated in terms of the annual cycles of the dominant harmonics.

  1. Estimation des paramètres d'un modèle hydrologique mixte appliqué à la région du haut plateau Bolivien

    NASA Astrophysics Data System (ADS)

    Gárfias, Jaime; Verrette, Jean-Louis; Antigüedad, Iñaki; André, Cécile

    1996-03-01

    This paper discusses the development and application of a technique which permits the analysis and improvement of hydrological models for the management of water resources of complex systems. Considering that such models are intended for practical application, the model was applied to the conditions of the Bolivian highlands. The model consisted of a deterministic part (HEC-1 model) linked to a stochastic component. The experience acquired indicated the possibility of adapting a more general procedure to compensate for the lack of rigour in the homoscedastic and independence hypothesis of the residuals. Use of this concept improved the estimation accuracy of the parameters and provided independent residuals with constant variance. A Box-Cox transformation was used to stabilize error variance and an autoregressive model was used to remove autocorrelation in the residuals.

  2. Multi-allelic haplotype model based on genetic partition for genomic prediction and variance component estimation using SNP markers.

    PubMed

    Da, Yang

    2015-12-18

    The amount of functional genomic information has been growing rapidly but remains largely unused in genomic selection. Genomic prediction and estimation using haplotypes in genome regions with functional elements such as all genes of the genome can be an approach to integrate functional and structural genomic information for genomic selection. Towards this goal, this article develops a new haplotype approach for genomic prediction and estimation. A multi-allelic haplotype model treating each haplotype as an 'allele' was developed for genomic prediction and estimation based on the partition of a multi-allelic genotypic value into additive and dominance values. Each additive value is expressed as a function of h - 1 additive effects, where h = number of alleles or haplotypes, and each dominance value is expressed as a function of h(h - 1)/2 dominance effects. For a sample of q individuals, the limit number of effects is 2q - 1 for additive effects and is the number of heterozygous genotypes for dominance effects. Additive values are factorized as a product between the additive model matrix and the h - 1 additive effects, and dominance values are factorized as a product between the dominance model matrix and the h(h - 1)/2 dominance effects. Genomic additive relationship matrix is defined as a function of the haplotype model matrix for additive effects, and genomic dominance relationship matrix is defined as a function of the haplotype model matrix for dominance effects. Based on these results, a mixed model implementation for genomic prediction and variance component estimation that jointly use haplotypes and single markers is established, including two computing strategies for genomic prediction and variance component estimation with identical results. The multi-allelic genetic partition fills a theoretical gap in genetic partition by providing general formulations for partitioning multi-allelic genotypic values and provides a haplotype method based on the quantitative genetics model towards the utilization of functional and structural genomic information for genomic prediction and estimation.

  3. Genotype by environment (climate) interaction improves genomic prediction for production traits in US Holstein cattle.

    PubMed

    Tiezzi, F; de Los Campos, G; Parker Gaddis, K L; Maltecca, C

    2017-03-01

    Genotype by environment interaction (G × E) in dairy cattle productive traits has been shown to exist, but current genetic evaluation methods do not take this component into account. As several environmental descriptors (e.g., climate, farming system) are known to vary within the United States, not accounting for the G × E could lead to reranking of bulls and loss in genetic gain. Using test-day records on milk yield, somatic cell score, fat, and protein percentage from all over the United States, we computed within herd-year-season daughter yield deviations for 1,087 Holstein bulls and regressed them on genetic and environmental information to estimate variance components and to assess prediction accuracy. Genomic information was obtained from a 50k SNP marker panel. Environmental effect inputs included herd (160 levels), geographical region (7 levels), geographical location (2 variables), climate information (7 variables), and management conditions of the herds (16 total variables divided in 4 subgroups). For each set of environmental descriptors, environmental, genomic, and G × E components were sequentially fitted. Variance components estimates confirmed the presence of G × E on milk yield, with its effect being larger than main genetic effect and the environmental effect for some models. Conversely, G × E was moderate for somatic cell score and small for milk composition. Genotype by environment interaction, when included, partially eroded the genomic effect (as compared with the models where G × E was not included), suggesting that the genomic variance could at least in part be attributed to G × E not appropriately accounted for. Model predictive ability was assessed using 3 cross-validation schemes (new bulls, incomplete progeny test, and new environmental conditions), and performance was compared with a reference model including only the main genomic effect. In each scenario, at least 1 of the models including G × E was able to perform better than the reference model, although it was not possible to find the overall best-performing model that included the same set of environmental descriptors. In general, the methodology used is promising in accounting for G × E in genomic predictions, but challenges exist in identifying a unique set of covariates capable of describing the entire variety of environments. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example

    USGS Publications Warehouse

    Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.

    2016-02-10

    The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource managers to inform their decision-making processes; however, as with all population models, caution is needed, and a full understanding of the limitations of a model and the veracity of user-supplied parameters should always be considered when using such model output in the management of any species.

  5. [Core factors of schizophrenia structure based on PANSS and SAPS/SANS results. Discerning and head-to-head comparisson of PANSS and SASPS/SANS validity].

    PubMed

    Masiak, Marek; Loza, Bartosz

    2004-01-01

    A lot of inconsistencies across dimensional studies of schizophrenia(s) are being unveiled. These problems are strongly related to the methodological aspects of collecting data and specific statistical analyses. Psychiatrists have developed lots of psychopathological models derived from analytic studies based on SAPS/SANS (the Scale for the Assessment of Positive Symptoms/the Scale for the Assessment of Negative Symptoms) and PANSS (The Positive and Negative Syndrome Scale). The unique validation of parallel two independent factor models was performed--ascribed to the same illness and based on different diagnostic scales--to investigate indirect methodological causes of clinical discrepancies. 100 newly admitted patients (mean age--33.5, 18-45, males--64, females--36, hospitalised on average 5.15 times) with paranoid schizophrenia (according to ICD-10) were scored and analysed using PANSS and SAPS/SANS during psychotic exacerbation. All patients were treated with neuroleptics of various kinds with 410mg equivalents of chlorpromazine (atypicals:typicals --> 41:59). Factor analyses were applied to basic results (with principal component analysis, normalised varimax rotation). Investing the cross-model validity, canonical analysis was applied. Models of schizophrenia varied from 3 to 5 factors. PANSS model included: positive, negative, disorganisation, cognitive and depressive components and SAPS/SANS model was dominated by positive, negative and disorganisation factors. The SAPS/SANS accounted for merely 48% of the PANSS common variances. The SAPS/SANS combined measurement preferentially (67% of canonical variance) targeted positive-negative dichotomy. Respectively, PANSS shared positive-negative phenomenology in 35% of its own variance. The general concept of five-dimensionality in paranoid schizophrenia looks clinically more heuristic and statistically more stabilised.

  6. GIS-based niche modeling for mapping species' habitats

    USGS Publications Warehouse

    Rotenberry, J.T.; Preston, K.L.; Knick, S.

    2006-01-01

    Ecological a??niche modelinga?? using presence-only locality data and large-scale environmental variables provides a powerful tool for identifying and mapping suitable habitat for species over large spatial extents. We describe a niche modeling approach that identifies a minimum (rather than an optimum) set of basic habitat requirements for a species, based on the assumption that constant environmental relationships in a species' distribution (i.e., variables that maintain a consistent value where the species occurs) are most likely to be associated with limiting factors. Environmental variables that take on a wide range of values where a species occurs are less informative because they do not limit a species' distribution, at least over the range of variation sampled. This approach is operationalized by partitioning Mahalanobis D2 (standardized difference between values of a set of environmental variables for any point and mean values for those same variables calculated from all points at which a species was detected) into independent components. The smallest of these components represents the linear combination of variables with minimum variance; increasingly larger components represent larger variances and are increasingly less limiting. We illustrate this approach using the California Gnatcatcher (Polioptila californica Brewster) and provide SAS code to implement it.

  7. Multifactorial inheritance with cultural transmission and assortative mating. II. a general model of combined polygenic and cultural inheritance.

    PubMed Central

    Cloninger, C R; Rice, J; Reich, T

    1979-01-01

    A general linear model of combined polygenic-cultural inheritance is described. The model allows for phenotypic assortative mating, common environment, maternal and paternal effects, and genic-cultural correlation. General formulae for phenotypic correlation between family members in extended pedigrees are given for both primary and secondary assortative mating. A FORTRAN program BETA, available upon request, is used to provide maximum likelihood estimates of the parameters from reported correlations. American data about IQ and Burks' culture index are analyzed. Both cultural and genetic components of phenotypic variance are observed to make significant and substantial contributions to familial resemblance in IQ. The correlation between the environments of DZ twins is found to equal that of singleton sibs, not that of MZ twins. Burks' culture index is found to be an imperfect measure of midparent IQ rather than an index of home environment as previously assumed. Conditions under which the parameters of the model may be uniquely and precisely estimated are discussed. Interpretation of variance components in the presence of assortative mating and genic-cultural covariance is reviewed. A conservative, but robust, approach to the use of environmental indices is described. PMID:453202

  8. Disease Mapping of Zero-excessive Mesothelioma Data in Flanders

    PubMed Central

    Neyens, Thomas; Lawson, Andrew B.; Kirby, Russell S.; Nuyts, Valerie; Watjou, Kevin; Aregay, Mehreteab; Carroll, Rachel; Nawrot, Tim S.; Faes, Christel

    2016-01-01

    Purpose To investigate the distribution of mesothelioma in Flanders using Bayesian disease mapping models that account for both an excess of zeros and overdispersion. Methods The numbers of newly diagnosed mesothelioma cases within all Flemish municipalities between 1999 and 2008 were obtained from the Belgian Cancer Registry. To deal with overdispersion, zero-inflation and geographical association, the hurdle combined model was proposed, which has three components: a Bernoulli zero-inflation mixture component to account for excess zeros, a gamma random effect to adjust for overdispersion and a normal conditional autoregressive random effect to attribute spatial association. This model was compared with other existing methods in literature. Results The results indicate that hurdle models with a random effects term accounting for extra-variance in the Bernoulli zero-inflation component fit the data better than hurdle models that do not take overdispersion in the occurrence of zeros into account. Furthermore, traditional models that do not take into account excessive zeros but contain at least one random effects term that models extra-variance in the counts have better fits compared to their hurdle counterparts. In other words, the extra-variability, due to an excess of zeros, can be accommodated by spatially structured and/or unstructured random effects in a Poisson model such that the hurdle mixture model is not necessary. Conclusions Models taking into account zero-inflation do not always provide better fits to data with excessive zeros than less complex models. In this study, a simple conditional autoregressive model identified a cluster in mesothelioma cases near a former asbestos processing plant (Kapelle-op-den-Bos). This observation is likely linked with historical local asbestos exposures. Future research will clarify this. PMID:27908590

  9. Disease mapping of zero-excessive mesothelioma data in Flanders.

    PubMed

    Neyens, Thomas; Lawson, Andrew B; Kirby, Russell S; Nuyts, Valerie; Watjou, Kevin; Aregay, Mehreteab; Carroll, Rachel; Nawrot, Tim S; Faes, Christel

    2017-01-01

    To investigate the distribution of mesothelioma in Flanders using Bayesian disease mapping models that account for both an excess of zeros and overdispersion. The numbers of newly diagnosed mesothelioma cases within all Flemish municipalities between 1999 and 2008 were obtained from the Belgian Cancer Registry. To deal with overdispersion, zero inflation, and geographical association, the hurdle combined model was proposed, which has three components: a Bernoulli zero-inflation mixture component to account for excess zeros, a gamma random effect to adjust for overdispersion, and a normal conditional autoregressive random effect to attribute spatial association. This model was compared with other existing methods in literature. The results indicate that hurdle models with a random effects term accounting for extra variance in the Bernoulli zero-inflation component fit the data better than hurdle models that do not take overdispersion in the occurrence of zeros into account. Furthermore, traditional models that do not take into account excessive zeros but contain at least one random effects term that models extra variance in the counts have better fits compared to their hurdle counterparts. In other words, the extra variability, due to an excess of zeros, can be accommodated by spatially structured and/or unstructured random effects in a Poisson model such that the hurdle mixture model is not necessary. Models taking into account zero inflation do not always provide better fits to data with excessive zeros than less complex models. In this study, a simple conditional autoregressive model identified a cluster in mesothelioma cases near a former asbestos processing plant (Kapelle-op-den-Bos). This observation is likely linked with historical local asbestos exposures. Future research will clarify this. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Proportion of general factor variance in a hierarchical multiple-component measuring instrument: a note on a confidence interval estimation procedure.

    PubMed

    Raykov, Tenko; Zinbarg, Richard E

    2011-05-01

    A confidence interval construction procedure for the proportion of explained variance by a hierarchical, general factor in a multi-component measuring instrument is outlined. The method provides point and interval estimates for the proportion of total scale score variance that is accounted for by the general factor, which could be viewed as common to all components. The approach may also be used for testing composite (one-tailed) or simple hypotheses about this proportion, and is illustrated with a pair of examples. ©2010 The British Psychological Society.

  11. Comparison of random regression models with Legendre polynomials and linear splines for production traits and somatic cell score of Canadian Holstein cows.

    PubMed

    Bohmanova, J; Miglior, F; Jamrozik, J; Misztal, I; Sullivan, P G

    2008-09-01

    A random regression model with both random and fixed regressions fitted by Legendre polynomials of order 4 was compared with 3 alternative models fitting linear splines with 4, 5, or 6 knots. The effects common for all models were a herd-test-date effect, fixed regressions on days in milk (DIM) nested within region-age-season of calving class, and random regressions for additive genetic and permanent environmental effects. Data were test-day milk, fat and protein yields, and SCS recorded from 5 to 365 DIM during the first 3 lactations of Canadian Holstein cows. A random sample of 50 herds consisting of 96,756 test-day records was generated to estimate variance components within a Bayesian framework via Gibbs sampling. Two sets of genetic evaluations were subsequently carried out to investigate performance of the 4 models. Models were compared by graphical inspection of variance functions, goodness of fit, error of prediction of breeding values, and stability of estimated breeding values. Models with splines gave lower estimates of variances at extremes of lactations than the model with Legendre polynomials. Differences among models in goodness of fit measured by percentages of squared bias, correlations between predicted and observed records, and residual variances were small. The deviance information criterion favored the spline model with 6 knots. Smaller error of prediction and higher stability of estimated breeding values were achieved by using spline models with 5 and 6 knots compared with the model with Legendre polynomials. In general, the spline model with 6 knots had the best overall performance based upon the considered model comparison criteria.

  12. Reaction norm of fertility traits adjusted for protein and fat production level across lactations in Holstein cattle.

    PubMed

    Menendez-Buxadera, A; Carabaño, M J; Gonzalez-Recio, O; Cue, R I; Ugarte, E; Alenda, R

    2013-07-01

    A total of 304,001 artificial insemination outcomes in up to 7 lactations from 142,389 Holstein cows, daughters of 5,349 sires and 101,433 dams, calving between January 1995 and December 2007 in 1,347 herds were studied by a reaction norm model. The (co)variance components for days to first service (DFS), days open, nonreturn rate in the first service (NRFS), and number of services per conception were estimated by 6 models: 3 Legendre polynomial degrees for the genetic effects and adjustment or not for the level of fat plus protein (FP) production recorded at day closest to DFS. For all traits and type of FP adjustment, a second degree polynomial showed the best fit. The use of the adjusted FP model did not increase the level of genetic (co)variance components except for DFS. The heritability for each of the traits was low in general (0.03-0.10) and increased from the first to fourth calving; nevertheless, very important variability was found for the estimated breeding value (EBV) of the sires. The genetic correlations (rg) were close to unity between adjacent calvings, but decreased for most distant parities, ranging from rg=0.36 (for DFS) to rg=0.63 (for NRFS), confirming the existence of heterogeneous genetic (co)variance components and EBV across lactations. The results of the eigen decomposition of rg shows that the first eigenvalue explained between 82 to 92% and the second between 8 to 14% of the genetic variance for all traits; therefore, a deformation of the overall mean trajectory for reproductive performance across the trajectory of the different calving could be expected if selection favored these eigenfunctions. The results of EBV for the 50 best sires showed a substantial reranking and variation in the shape of response across lactations. The more important aspect to highlight, however, is the difference between the EBV of the same sires in different calvings, a characteristic known as plasticity, which is particularly important for DFS and NRFS. This component of fertility adds another dimension to selection for fertility that can be used to change the negative genetic progress of reproductive performance presented in this population of Holstein cows. The use of a reaction norm model should allow producers to obtain more robust cows for maintenance of fertility levels along the whole productive life of the cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. A variance-decomposition approach to investigating multiscale habitat associations

    USGS Publications Warehouse

    Lawler, J.J.; Edwards, T.C.

    2006-01-01

    The recognition of the importance of spatial scale in ecology has led many researchers to take multiscale approaches to studying habitat associations. However, few of the studies that investigate habitat associations at multiple spatial scales have considered the potential effects of cross-scale correlations in measured habitat variables. When cross-scale correlations in such studies are strong, conclusions drawn about the relative strength of habitat associations at different spatial scales may be inaccurate. Here we adapt and demonstrate an analytical technique based on variance decomposition for quantifying the influence of cross-scale correlations on multiscale habitat associations. We used the technique to quantify the variation in nest-site locations of Red-naped Sapsuckers (Sphyrapicus nuchalis) and Northern Flickers (Colaptes auratus) associated with habitat descriptors at three spatial scales. We demonstrate how the method can be used to identify components of variation that are associated only with factors at a single spatial scale as well as shared components of variation that represent cross-scale correlations. Despite the fact that no explanatory variables in our models were highly correlated (r < 0.60), we found that shared components of variation reflecting cross-scale correlations accounted for roughly half of the deviance explained by the models. These results highlight the importance of both conducting habitat analyses at multiple spatial scales and of quantifying the effects of cross-scale correlations in such analyses. Given the limits of conventional analytical techniques, we recommend alternative methods, such as the variance-decomposition technique demonstrated here, for analyzing habitat associations at multiple spatial scales. ?? The Cooper Ornithological Society 2006.

  14. Specific Trauma Subtypes Improve the Predictive Validity of the Harvard Trauma Questionnaire in Iraqi Refugees

    PubMed Central

    Arnetz, Bengt B.; Broadbridge, Carissa L.; Jamil, Hikmet; Lumley, Mark A.; Pole, Nnamdi; Barkho, Evone; Fakhouri, Monty; Talia, Yousif Rofa; Arnetz, Judith E.

    2014-01-01

    Background Trauma exposure contributes to poor mental health among refugees, and exposure often is measured using a cumulative index of items from the Harvard Trauma Questionnaire (HTQ). Few studies, however, have asked whether trauma subtypes derived from the HTQ could be superior to this cumulative index in predicting mental health outcomes. Methods A community sample of recently arrived Iraqi refugees (N = 298) completed the HTQ and measures of posttraumatic stress disorder (PTSD) and depression symptoms. Results Principal components analysis of HTQ items revealed a 5-component subtype model of trauma that accounted for more item variance than a 1-component solution. These trauma subtypes also accounted for more variance in PTSD and depression symptoms (12% and 10%, respectively) than did the cumulative trauma index (7% and 3%, respectively). Discussion Trauma subtypes provided more information than cumulative trauma in the prediction of negative mental health outcomes. Therefore, use of these subtypes may enhance the utility of the HTQ when assessing at-risk populations. PMID:24549491

  15. Specific trauma subtypes improve the predictive validity of the Harvard Trauma Questionnaire in Iraqi refugees.

    PubMed

    Arnetz, Bengt B; Broadbridge, Carissa L; Jamil, Hikmet; Lumley, Mark A; Pole, Nnamdi; Barkho, Evone; Fakhouri, Monty; Talia, Yousif Rofa; Arnetz, Judith E

    2014-12-01

    Trauma exposure contributes to poor mental health among refugees, and exposure often is measured using a cumulative index of items from the Harvard Trauma Questionnaire (HTQ). Few studies, however, have asked whether trauma subtypes derived from the HTQ could be superior to this cumulative index in predicting mental health outcomes. A community sample of recently arrived Iraqi refugees (N = 298) completed the HTQ and measures of posttraumatic stress disorder (PTSD) and depression symptoms. Principal components analysis of HTQ items revealed a 5-component subtype model of trauma that accounted for more item variance than a 1-component solution. These trauma subtypes also accounted for more variance in PTSD and depression symptoms (12 and 10%, respectively) than did the cumulative trauma index (7 and 3%, respectively). Trauma subtypes provided more information than cumulative trauma in the prediction of negative mental health outcomes. Therefore, use of these subtypes may enhance the utility of the HTQ when assessing at-risk populations.

  16. Climate-driven seasonal geocenter motion during the GRACE period

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyue; Sun, Yu

    2018-03-01

    Annual cycles in the geocenter motion time series are primarily driven by mass changes in the Earth's hydrologic system, which includes land hydrology, atmosphere, and oceans. Seasonal variations of the geocenter motion have been reliably determined according to Sun et al. (J Geophys Res Solid Earth 121(11):8352-8370, 2016) by combining the Gravity Recovery And Climate Experiment (GRACE) data with an ocean model output. In this study, we reconstructed the observed seasonal geocenter motion with geophysical model predictions of mass variations in the polar ice sheets, continental glaciers, terrestrial water storage (TWS), and atmosphere and dynamic ocean (AO). The reconstructed geocenter motion time series is shown to be in close agreement with the solution based on GRACE data supporting with an ocean bottom pressure model. Over 85% of the observed geocenter motion time series, variance can be explained by the reconstructed solution, which allows a further investigation of the driving mechanisms. We then demonstrated that AO component accounts for 54, 62, and 25% of the observed geocenter motion variances in the X, Y, and Z directions, respectively. The TWS component alone explains 42, 32, and 39% of the observed variances. The net mass changes over oceans together with self-attraction and loading effects also contribute significantly (about 30%) to the seasonal geocenter motion in the X and Z directions. Other contributing sources, on the other hand, have marginal (less than 10%) impact on the seasonal variations but introduce a linear trend in the time series.

  17. Gross regional domestic product estimation: Application of two-way unbalanced panel data models to economic growth in East Nusa Tenggara province

    NASA Astrophysics Data System (ADS)

    Wibowo, Wahyu; Sinu, Elisabeth B.; Setiawan

    2017-03-01

    The condition of East Nusa Tenggara Province which recently developed new districts can affect the number of information or data collected become unbalanced. One of the consequences of ignoring the data incompleteness is the estimator become not valid. Therefore, the analysis of unbalanced panel data is very crucial.The aim of this paper is to find the estimation of Gross Regional Domestic Product in East Nusa Tenggara Province using unbalanced panel data regression model for two-way error component which assume random effect model (REM). In this research, we employ Feasible Generalized Least Squares (FGLS) as regression coefficients estimation method. Since variance of the model is unknown, ANOVA method is considered to obtain the variance components in order to construct the variance-covariance matrix. The data used in this research is secondary data taken from Central Bureau of Statistics of East Nusa Tenggara Province in 21 districts period 2004-2013. The predictors are the number of labor over 15 years old (X1), electrification ratios (X2), and local revenues (X3) while Gross Regional Domestic Product based on constant price 2000 is the response (Y). The FGLS estimation result shows that the value of R2 is 80,539% and all the predictors chosen are significantly affect (α = 5%) the Gross Regional Domestic Product in all district of East Nusa Tenggara Province. Those variables are the number of labor over 15 years old (X1), electrification ratios (X2), and local revenues (X3) with 0,22986, 0,090476, and 0,14749 of elasticities, respectively.

  18. Genomic scan as a tool for assessing the genetic component of phenotypic variance in wild populations.

    PubMed

    Herrera, Carlos M

    2012-01-01

    Methods for estimating quantitative trait heritability in wild populations have been developed in recent years which take advantage of the increased availability of genetic markers to reconstruct pedigrees or estimate relatedness between individuals, but their application to real-world data is not exempt from difficulties. This chapter describes a recent marker-based technique which, by adopting a genomic scan approach and focusing on the relationship between phenotypes and genotypes at the individual level, avoids the problems inherent to marker-based estimators of relatedness. This method allows the quantification of the genetic component of phenotypic variance ("degree of genetic determination" or "heritability in the broad sense") in wild populations and is applicable whenever phenotypic trait values and multilocus data for a large number of genetic markers (e.g., amplified fragment length polymorphisms, AFLPs) are simultaneously available for a sample of individuals from the same population. The method proceeds by first identifying those markers whose variation across individuals is significantly correlated with individual phenotypic differences ("adaptive loci"). The proportion of phenotypic variance in the sample that is statistically accounted for by individual differences in adaptive loci is then estimated by fitting a linear model to the data, with trait value as the dependent variable and scores of adaptive loci as independent ones. The method can be easily extended to accommodate quantitative or qualitative information on biologically relevant features of the environment experienced by each sampled individual, in which case estimates of the environmental and genotype × environment components of phenotypic variance can also be obtained.

  19. Heritability of physical activity traits in Brazilian families: the Baependi Heart Study

    PubMed Central

    2011-01-01

    Background It is commonly recognized that physical activity has familial aggregation; however, the genetic influences on physical activity phenotypes are not well characterized. This study aimed to (1) estimate the heritability of physical activity traits in Brazilian families; and (2) investigate whether genetic and environmental variance components contribute differently to the expression of these phenotypes in males and females. Methods The sample that constitutes the Baependi Heart Study is comprised of 1,693 individuals in 95 Brazilian families. The phenotypes were self-reported in a questionnaire based on the WHO-MONICA instrument. Variance component approaches, implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package, were applied to estimate the heritability and to evaluate the heterogeneity of variance components by gender on the studied phenotypes. Results The heritability estimates were intermediate (35%) for weekly physical activity among non-sedentary subjects (weekly PA_NS), and low (9-14%) for sedentarism, weekly physical activity (weekly PA), and level of daily physical activity (daily PA). Significant evidence for heterogeneity in variance components by gender was observed for the sedentarism and weekly PA phenotypes. No significant gender differences in genetic or environmental variance components were observed for the weekly PA_NS trait. The daily PA phenotype was predominantly influenced by environmental factors, with larger effects in males than in females. Conclusions Heritability estimates for physical activity phenotypes in this sample of the Brazilian population were significant in both males and females, and varied from low to intermediate magnitude. Significant evidence for heterogeneity in variance components by gender was observed. These data add to the knowledge of the physical activity traits in the Brazilian study population, and are concordant with the notion of significant biological determination in active behavior. PMID:22126647

  20. Heritability of physical activity traits in Brazilian families: the Baependi Heart Study.

    PubMed

    Horimoto, Andréa R V R; Giolo, Suely R; Oliveira, Camila M; Alvim, Rafael O; Soler, Júlia P; de Andrade, Mariza; Krieger, José E; Pereira, Alexandre C

    2011-11-29

    It is commonly recognized that physical activity has familial aggregation; however, the genetic influences on physical activity phenotypes are not well characterized. This study aimed to (1) estimate the heritability of physical activity traits in Brazilian families; and (2) investigate whether genetic and environmental variance components contribute differently to the expression of these phenotypes in males and females. The sample that constitutes the Baependi Heart Study is comprised of 1,693 individuals in 95 Brazilian families. The phenotypes were self-reported in a questionnaire based on the WHO-MONICA instrument. Variance component approaches, implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package, were applied to estimate the heritability and to evaluate the heterogeneity of variance components by gender on the studied phenotypes. The heritability estimates were intermediate (35%) for weekly physical activity among non-sedentary subjects (weekly PA_NS), and low (9-14%) for sedentarism, weekly physical activity (weekly PA), and level of daily physical activity (daily PA). Significant evidence for heterogeneity in variance components by gender was observed for the sedentarism and weekly PA phenotypes. No significant gender differences in genetic or environmental variance components were observed for the weekly PA_NS trait. The daily PA phenotype was predominantly influenced by environmental factors, with larger effects in males than in females. Heritability estimates for physical activity phenotypes in this sample of the Brazilian population were significant in both males and females, and varied from low to intermediate magnitude. Significant evidence for heterogeneity in variance components by gender was observed. These data add to the knowledge of the physical activity traits in the Brazilian study population, and are concordant with the notion of significant biological determination in active behavior.

  1. Covariate analysis of bivariate survival data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, L.E.

    1992-01-01

    The methods developed are used to analyze the effects of covariates on bivariate survival data when censoring and ties are present. The proposed method provides models for bivariate survival data that include differential covariate effects and censored observations. The proposed models are based on an extension of the univariate Buckley-James estimators which replace censored data points by their expected values, conditional on the censoring time and the covariates. For the bivariate situation, it is necessary to determine the expectation of the failure times for one component conditional on the failure or censoring time of the other component. Two different methodsmore » have been developed to estimate these expectations. In the semiparametric approach these expectations are determined from a modification of Burke's estimate of the bivariate empirical survival function. In the parametric approach censored data points are also replaced by their conditional expected values where the expected values are determined from a specified parametric distribution. The model estimation will be based on the revised data set, comprised of uncensored components and expected values for the censored components. The variance-covariance matrix for the estimated covariate parameters has also been derived for both the semiparametric and parametric methods. Data from the Demographic and Health Survey was analyzed by these methods. The two outcome variables are post-partum amenorrhea and breastfeeding; education and parity were used as the covariates. Both the covariate parameter estimates and the variance-covariance estimates for the semiparametric and parametric models will be compared. In addition, a multivariate test statistic was used in the semiparametric model to examine contrasts. The significance of the statistic was determined from a bootstrap distribution of the test statistic.« less

  2. Usual Dietary Intakes: SAS Macros for Fitting Multivariate Measurement Error Models & Estimating Multivariate Usual Intake Distributions

    Cancer.gov

    The following SAS macros can be used to create a multivariate usual intake distribution for multiple dietary components that are consumed nearly every day or episodically. A SAS macro for performing balanced repeated replication (BRR) variance estimation is also included.

  3. Impact of water use efficiency parameterization on partitioning evapotranspiration with the eddy covariance flux variance method

    USDA-ARS?s Scientific Manuscript database

    Partitioned observations of evapotranspiration (ET) into its constituent components of soil and canopy evaporation (E) and plant transpiration (T) are needed to validate many agricultural water use models. E and T observations are also useful for assessing management practices to reduce crop water ...

  4. Factors associated with feed intake of Angus steers

    USDA-ARS?s Scientific Manuscript database

    Estimates of variance components were obtained from 475 records of average (AFI) and residual feed intake (RFI). Covariates in various (8) models included average daily gain (G), age (A) and weight (W) on test, and slaughter (S) and ultrasound (U) carcass measures (fat thickness, ribeye area and ma...

  5. A new interpretation and validation of variance based importance measures for models with correlated inputs

    NASA Astrophysics Data System (ADS)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  6. How good is crude MDL for solving the bias-variance dilemma? An empirical investigation based on Bayesian networks.

    PubMed

    Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli

    2014-01-01

    The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size.

  7. How Good Is Crude MDL for Solving the Bias-Variance Dilemma? An Empirical Investigation Based on Bayesian Networks

    PubMed Central

    Cruz-Ramírez, Nicandro; Acosta-Mesa, Héctor Gabriel; Mezura-Montes, Efrén; Guerra-Hernández, Alejandro; Hoyos-Rivera, Guillermo de Jesús; Barrientos-Martínez, Rocío Erandi; Gutiérrez-Fragoso, Karina; Nava-Fernández, Luis Alonso; González-Gaspar, Patricia; Novoa-del-Toro, Elva María; Aguilera-Rueda, Vicente Josué; Ameca-Alducin, María Yaneli

    2014-01-01

    The bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly). Unfortunately, there are many situations where we simply do not have this required amount of data. Thus, we need to find methods capable of efficiently exploiting the available data while avoiding overfitting. Different metrics have been proposed to achieve this goal: the Minimum Description Length principle (MDL), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC), among others. In this paper, we focus on crude MDL and empirically evaluate its performance in selecting models with a good balance between goodness of fit and complexity: the so-called bias-variance dilemma, decomposition or tradeoff. Although the graphical interaction between these dimensions (bias and variance) is ubiquitous in the Machine Learning literature, few works present experimental evidence to recover such interaction. In our experiments, we argue that the resulting graphs allow us to gain insights that are difficult to unveil otherwise: that crude MDL naturally selects balanced models in terms of bias-variance, which not necessarily need be the gold-standard ones. We carry out these experiments using a specific model: a Bayesian network. In spite of these motivating results, we also should not overlook three other components that may significantly affect the final model selection: the search procedure, the noise rate and the sample size. PMID:24671204

  8. Measurement properties and usability of non-contact scanners for measuring transtibial residual limb volume.

    PubMed

    Kofman, Rianne; Beekman, Anna M; Emmelot, Cornelis H; Geertzen, Jan H B; Dijkstra, Pieter U

    2018-06-01

    Non-contact scanners may have potential for measurement of residual limb volume. Different non-contact scanners have been introduced during the last decades. Reliability and usability (practicality and user friendliness) should be assessed before introducing these systems in clinical practice. The aim of this study was to analyze the measurement properties and usability of four non-contact scanners (TT Design, Omega Scanner, BioSculptor Bioscanner, and Rodin4D Scanner). Quasi experimental. Nine (geometric and residual limb) models were measured on two occasions, each consisting of two sessions, thus in total 4 sessions. In each session, four observers used the four systems for volume measurement. Mean for each model, repeatability coefficients for each system, variance components, and their two-way interactions of measurement conditions were calculated. User satisfaction was evaluated with the Post-Study System Usability Questionnaire. Systematic differences between the systems were found in volume measurements. Most of the variances were explained by the model (97%), while error variance was 3%. Measurement system and the interaction between system and model explained 44% of the error variance. Repeatability coefficient of the systems ranged from 0.101 (Omega Scanner) to 0.131 L (Rodin4D). Differences in Post-Study System Usability Questionnaire scores between the systems were small and not significant. The systems were reliable in determining residual limb volume. Measurement systems and the interaction between system and residual limb model explained most of the error variances. The differences in repeatability coefficient and usability between the four CAD/CAM systems were small. Clinical relevance If accurate measurements of residual limb volume are required (in case of research), modern non-contact scanners should be taken in consideration nowadays.

  9. Genetic and environmental transmission of body mass index fluctuation.

    PubMed

    Bergin, Jocilyn E; Neale, Michael C; Eaves, Lindon J; Martin, Nicholas G; Heath, Andrew C; Maes, Hermine H

    2012-11-01

    This study sought to determine the relationship between body mass index (BMI) fluctuation and cardiovascular disease phenotypes, diabetes, and depression and the role of genetic and environmental factors in individual differences in BMI fluctuation using the extended twin-family model (ETFM). This study included 14,763 twins and their relatives. Health and Lifestyle Questionnaires were obtained from 28,492 individuals from the Virginia 30,000 dataset including twins, parents, siblings, spouses, and children of twins. Self-report cardiovascular disease, diabetes, and depression data were available. From self-reported height and weight, BMI fluctuation was calculated as the difference between highest and lowest BMI after age 18, for individuals 18-80 years. Logistic regression analyses were used to determine the relationship between BMI fluctuation and disease status. The ETFM was used to estimate the significance and contribution of genetic and environmental factors, cultural transmission, and assortative mating components to BMI fluctuation, while controlling for age. We tested sex differences in additive and dominant genetic effects, parental, non-parental, twin, and unique environmental effects. BMI fluctuation was highly associated with disease status, independent of BMI. Genetic effects accounted for ~34 % of variance in BMI fluctuation in males and ~43 % of variance in females. The majority of the variance was accounted for by environmental factors, about a third of which were shared among twins. Assortative mating, and cultural transmission accounted for only a small proportion of variance in this phenotype. Since there are substantial health risks associated with BMI fluctuation and environmental components of BMI fluctuation account for over 60 % of variance in males and over 50 % of variance in females, environmental risk factors may be appropriate targets to reduce BMI fluctuation.

  10. Biochemical phenotypes to discriminate microbial subpopulations and improve outbreak detection.

    PubMed

    Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F; Stelling, John

    2013-01-01

    Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as "nuisance" biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. The statistical approaches explored can improve the robust recognition of microbial subpopulations with routinely available biochemical test results, of value in the timely detection of outbreak clones and evolutionarily important genetic events.

  11. Multilevel Models for Intensive Longitudinal Data with Heterogeneous Autoregressive Errors: The Effect of Misspecification and Correction with Cholesky Transformation

    PubMed Central

    Jahng, Seungmin; Wood, Phillip K.

    2017-01-01

    Intensive longitudinal studies, such as ecological momentary assessment studies using electronic diaries, are gaining popularity across many areas of psychology. Multilevel models (MLMs) are most widely used analytical tools for intensive longitudinal data (ILD). Although ILD often have individually distinct patterns of serial correlation of measures over time, inferences of the fixed effects, and random components in MLMs are made under the assumption that all variance and autocovariance components are homogenous across individuals. In the present study, we introduced a multilevel model with Cholesky transformation to model ILD with individually heterogeneous covariance structure. In addition, the performance of the transformation method and the effects of misspecification of heterogeneous covariance structure were investigated through a Monte Carlo simulation. We found that, if individually heterogeneous covariances are incorrectly assumed as homogenous independent or homogenous autoregressive, MLMs produce highly biased estimates of the variance of random intercepts and the standard errors of the fixed intercept and the fixed effect of a level 2 covariate when the average autocorrelation is high. For intensive longitudinal data with individual specific residual covariance, the suggested transformation method showed lower bias in those estimates than the misspecified models when the number of repeated observations within individuals is 50 or more. PMID:28286490

  12. Improved Horvitz-Thompson Estimation of Model Parameters from Two-phase Stratified Samples: Applications in Epidemiology

    PubMed Central

    Breslow, Norman E.; Lumley, Thomas; Ballantyne, Christie M; Chambless, Lloyd E.; Kulich, Michal

    2009-01-01

    The case-cohort study involves two-phase sampling: simple random sampling from an infinite super-population at phase one and stratified random sampling from a finite cohort at phase two. Standard analyses of case-cohort data involve solution of inverse probability weighted (IPW) estimating equations, with weights determined by the known phase two sampling fractions. The variance of parameter estimates in (semi)parametric models, including the Cox model, is the sum of two terms: (i) the model based variance of the usual estimates that would be calculated if full data were available for the entire cohort; and (ii) the design based variance from IPW estimation of the unknown cohort total of the efficient influence function (IF) contributions. This second variance component may be reduced by adjusting the sampling weights, either by calibration to known cohort totals of auxiliary variables correlated with the IF contributions or by their estimation using these same auxiliary variables. Both adjustment methods are implemented in the R survey package. We derive the limit laws of coefficients estimated using adjusted weights. The asymptotic results suggest practical methods for construction of auxiliary variables that are evaluated by simulation of case-cohort samples from the National Wilms Tumor Study and by log-linear modeling of case-cohort data from the Atherosclerosis Risk in Communities Study. Although not semiparametric efficient, estimators based on adjusted weights may come close to achieving full efficiency within the class of augmented IPW estimators. PMID:20174455

  13. Estimating spatial and temporal components of variation in count data using negative binomial mixed models

    USGS Publications Warehouse

    Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.

    2013-01-01

    Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.

  14. Random regression models using Legendre orthogonal polynomials to evaluate the milk production of Alpine goats.

    PubMed

    Silva, F G; Torres, R A; Brito, L F; Euclydes, R F; Melo, A L P; Souza, N O; Ribeiro, J I; Rodrigues, M T

    2013-12-11

    The objective of this study was to identify the best random regression model using Legendre orthogonal polynomials to evaluate Alpine goats genetically and to estimate the parameters for test day milk yield. On the test day, we analyzed 20,710 records of milk yield of 667 goats from the Goat Sector of the Universidade Federal de Viçosa. The evaluated models had combinations of distinct fitting orders for polynomials (2-5), random genetic (1-7), and permanent environmental (1-7) fixed curves and a number of classes for residual variance (2, 4, 5, and 6). WOMBAT software was used for all genetic analyses. A random regression model using the best Legendre orthogonal polynomial for genetic evaluation of milk yield on the test day of Alpine goats considered a fixed curve of order 4, curve of genetic additive effects of order 2, curve of permanent environmental effects of order 7, and a minimum of 5 classes of residual variance because it was the most economical model among those that were equivalent to the complete model by the likelihood ratio test. Phenotypic variance and heritability were higher at the end of the lactation period, indicating that the length of lactation has more genetic components in relation to the production peak and persistence. It is very important that the evaluation utilizes the best combination of fixed, genetic additive and permanent environmental regressions, and number of classes of heterogeneous residual variance for genetic evaluation using random regression models, thereby enhancing the precision and accuracy of the estimates of parameters and prediction of genetic values.

  15. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

    PubMed

    Saunders, Christina T; Blume, Jeffrey D

    2017-10-26

    Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

  16. Structure analysis of simulated molecular clouds with the Δ-variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.

    Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less

  17. Structure analysis of simulated molecular clouds with the Δ-variance

    DOE PAGES

    Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.

    2015-05-27

    Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less

  18. Deconvolution of the vestibular evoked myogenic potential.

    PubMed

    Lütkenhöner, Bernd; Basel, Türker

    2012-02-07

    The vestibular evoked myogenic potential (VEMP) and the associated variance modulation can be understood by a convolution model. Two functions of time are incorporated into the model: the motor unit action potential (MUAP) of an average motor unit, and the temporal modulation of the MUAP rate of all contributing motor units, briefly called rate modulation. The latter is the function of interest, whereas the MUAP acts as a filter that distorts the information contained in the measured data. Here, it is shown how to recover the rate modulation by undoing the filtering using a deconvolution approach. The key aspects of our deconvolution algorithm are as follows: (1) the rate modulation is described in terms of just a few parameters; (2) the MUAP is calculated by Wiener deconvolution of the VEMP with the rate modulation; (3) the model parameters are optimized using a figure-of-merit function where the most important term quantifies the difference between measured and model-predicted variance modulation. The effectiveness of the algorithm is demonstrated with simulated data. An analysis of real data confirms the view that there are basically two components, which roughly correspond to the waves p13-n23 and n34-p44 of the VEMP. The rate modulation corresponding to the first, inhibitory component is much stronger than that corresponding to the second, excitatory component. But the latter is more extended so that the two modulations have almost the same equivalent rectangular duration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy.

    PubMed

    Jesse, Stephen; Kalinin, Sergei V

    2009-02-25

    An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.

  20. The effects of r- and K-selection on components of variance for two quantitative traits.

    PubMed

    Long, T; Long, G

    1974-03-01

    The genetic and environmental components of variance for two quantitative characters were measured in the descendants of Drosophila melanogaster populations which had been grown for several generations at densities of 100, 200, 300, and 400 eggs per vial. Populations subject to intermediate densities had a greater proportion of phenotypic variance available for selection than populations from either extreme. Selection on either character would be least effective under pure r-selection, a frequent attribute of selection programs.

  1. Simultaneous estimation of cross-validation errors in least squares collocation applied for statistical testing and evaluation of the noise variance components

    NASA Astrophysics Data System (ADS)

    Behnabian, Behzad; Mashhadi Hossainali, Masoud; Malekzadeh, Ahad

    2018-02-01

    The cross-validation technique is a popular method to assess and improve the quality of prediction by least squares collocation (LSC). We present a formula for direct estimation of the vector of cross-validation errors (CVEs) in LSC which is much faster than element-wise CVE computation. We show that a quadratic form of CVEs follows Chi-squared distribution. Furthermore, a posteriori noise variance factor is derived by the quadratic form of CVEs. In order to detect blunders in the observations, estimated standardized CVE is proposed as the test statistic which can be applied when noise variances are known or unknown. We use LSC together with the methods proposed in this research for interpolation of crustal subsidence in the northern coast of the Gulf of Mexico. The results show that after detection and removing outliers, the root mean square (RMS) of CVEs and estimated noise standard deviation are reduced about 51 and 59%, respectively. In addition, RMS of LSC prediction error at data points and RMS of estimated noise of observations are decreased by 39 and 67%, respectively. However, RMS of LSC prediction error on a regular grid of interpolation points covering the area is only reduced about 4% which is a consequence of sparse distribution of data points for this case study. The influence of gross errors on LSC prediction results is also investigated by lower cutoff CVEs. It is indicated that after elimination of outliers, RMS of this type of errors is also reduced by 19.5% for a 5 km radius of vicinity. We propose a method using standardized CVEs for classification of dataset into three groups with presumed different noise variances. The noise variance components for each of the groups are estimated using restricted maximum-likelihood method via Fisher scoring technique. Finally, LSC assessment measures were computed for the estimated heterogeneous noise variance model and compared with those of the homogeneous model. The advantage of the proposed method is the reduction in estimated noise levels for those groups with the fewer number of noisy data points.

  2. Projections of Southern Hemisphere atmospheric circulation interannual variability

    NASA Astrophysics Data System (ADS)

    Grainger, Simon; Frederiksen, Carsten S.; Zheng, Xiaogu

    2017-02-01

    An analysis is made of the coherent patterns, or modes, of interannual variability of Southern Hemisphere 500 hPa geopotential height field under current and projected climate change scenarios. Using three separate multi-model ensembles (MMEs) of coupled model intercomparison project phase 5 (CMIP5) models, the interannual variability of the seasonal mean is separated into components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. In the CMIP5 RCP8.5 and RCP4.5 experiments, there is very little change in the twenty-first century in the intraseasonal component modes, related to the Southern annular mode (SAM) and mid-latitude wave processes. The leading three slowly-varying internal component modes are related to SAM, the El Niño-Southern oscillation (ENSO), and the South Pacific wave (SPW). Structural changes in the slow-internal SAM and ENSO modes do not exceed a qualitative estimate of the spatial sampling error, but there is a consistent increase in the ENSO-related variance. Changes in the SPW mode exceed the sampling error threshold, but cannot be further attributed. Changes in the dominant slowly-varying external mode are related to projected changes in radiative forcing. They reflect thermal expansion of the tropical troposphere and associated changes in the Hadley Cell circulation. Changes in the externally-forced associated variance in the RCP8.5 experiment are an order of magnitude greater than for the internal components, indicating that the SH seasonal mean circulation will be even more dominated by a SAM-like annular structure. Across the three MMEs, there is convergence in the projected response in the slow-external component.

  3. Estimation of genetic parameters for heat stress, including dominance gene effects, on milk yield in Thai Holstein dairy cattle.

    PubMed

    Boonkum, Wuttigrai; Duangjinda, Monchai

    2015-03-01

    Heat stress in tropical regions is a major cause that strongly negatively affects to milk production in dairy cattle. Genetic selection for dairy heat tolerance is powerful technique to improve genetic performance. Therefore, the current study aimed to estimate genetic parameters and investigate the threshold point of heat stress for milk yield. Data included 52 701 test-day milk yield records for the first parity from 6247 Thai Holstein dairy cattle, covering the period 1990 to 2007. The random regression test day model with EM-REML was used to estimate variance components, genetic parameters and milk production loss. A decline in milk production was found when temperature and humidity index (THI) exceeded a threshold of 74, also it was associated with the high percentage of Holstein genetics. All variance component estimates increased with THI. The estimate of heritability of test-day milk yield was 0.231. Dominance variance as a proportion to additive variance (0.035) indicated that non-additive effects might not be of concern for milk genetics studies in Thai Holstein cattle. Correlations between genetic and permanent environmental effects, for regular conditions and due to heat stress, were - 0.223 and - 0.521, respectively. The heritability and genetic correlations from this study show that simultaneous selection for milk production and heat tolerance is possible. © 2014 Japanese Society of Animal Science.

  4. Testing the Technology Acceptance Model: HIV case managers' intention to use a continuity of care record with context-specific links.

    PubMed

    Schnall, Rebecca; Bakken, Suzanne

    2011-09-01

    To assess the applicability of the Technology Acceptance Model (TAM) constructs in explaining HIV case managers' behavioural intention to use a continuity of care record (CCR) with context-specific links designed to meet their information needs. Data were collected from 94 case managers who provide care to persons living with HIV (PLWH) using an online survey comprising three components: (1) demographic information: age, gender, ethnicity, race, Internet usage and computer experience; (2) mock-up of CCR with context-specific links; and items related to TAM constructs. Data analysis included: principal components factor analysis (PCA), assessment of internal consistency reliability and univariate and multivariate analysis. PCA extracted three factors (Perceived Ease of Use, Perceived Usefulness and Perceived Barriers to Use), explained variance = 84.9%, Cronbach's ά = 0.69-0.91. In a linear regression model, Perceived Ease of Use, Perceived Usefulness and Perceived Barriers to Use explained 43.6% (p < 0.001) of the variance in Behavioural Intention to use a CCR with context-specific links. Our study contributes to the evidence base regarding TAM in health care through expanding the type of professional surveyed, study setting and Health Information Technology assessed.

  5. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  6. A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems

    NASA Astrophysics Data System (ADS)

    Farrell, Kathryn; Oden, J. Tinsley; Faghihi, Danial

    2015-08-01

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications.

  7. Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI: a feasibility study

    NASA Astrophysics Data System (ADS)

    Chan, H. M.; van der Velden, B. H. M.; E Loo, C.; Gilhuijs, K. G. A.

    2017-08-01

    We present a radiomics model to discriminate between patients at low risk and those at high risk of treatment failure at long-term follow-up based on eigentumors: principal components computed from volumes encompassing tumors in washin and washout images of pre-treatment dynamic contrast-enhanced (DCE-) MR images. Eigentumors were computed from the images of 563 patients from the MARGINS study. Subsequently, a least absolute shrinkage selection operator (LASSO) selected candidates from the components that contained 90% of the variance of the data. The model for prediction of survival after treatment (median follow-up time 86 months) was based on logistic regression. Receiver operating characteristic (ROC) analysis was applied and area-under-the-curve (AUC) values were computed as measures of training and cross-validated performances. The discriminating potential of the model was confirmed using Kaplan-Meier survival curves and log-rank tests. From the 322 principal components that explained 90% of the variance of the data, the LASSO selected 28 components. The ROC curves of the model yielded AUC values of 0.88, 0.77 and 0.73, for the training, leave-one-out cross-validated and bootstrapped performances, respectively. The bootstrapped Kaplan-Meier survival curves confirmed significant separation for all tumors (P  <  0.0001). Survival analysis on immunohistochemical subgroups shows significant separation for the estrogen-receptor subtype tumors (P  <  0.0001) and the triple-negative subtype tumors (P  =  0.0039), but not for tumors of the HER2 subtype (P  =  0.41). The results of this retrospective study show the potential of early-stage pre-treatment eigentumors for use in prediction of treatment failure of breast cancer.

  8. College Influence on Student Intentions toward International Competence. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    English, Susan Lewis

    This study attempted to test the concept of international competence as a construct and to estimate the extent to which college experience predicts variance on student intentions toward international competence. Relying on Lambert's model of global competence, the study tested five components of international competence for validity and…

  9. Power analysis to detect treatment effect in longitudinal studies with heterogeneous errors and incomplete data.

    PubMed

    Vallejo, Guillermo; Ato, Manuel; Fernández García, Paula; Livacic Rojas, Pablo E; Tuero Herrero, Ellián

    2016-08-01

     S. Usami (2014) describes a method to realistically determine sample size in longitudinal research using a multilevel model. The present research extends the aforementioned work to situations where it is likely that the assumption of homogeneity of the errors across groups is not met and the error term does not follow a scaled identity covariance structure.   For this purpose, we followed a procedure based on transforming the variance components of the linear growth model and the parameter related to the treatment effect into specific and easily understandable indices. At the same time, we provide the appropriate statistical machinery for researchers to use when data loss is unavoidable, and changes in the expected value of the observed responses are not linear.   The empirical powers based on unknown variance components were virtually the same as the theoretical powers derived from the use of statistically processed indexes.   The main conclusion of the study is the accuracy of the proposed method to calculate sample size in the described situations with the stipulated power criteria.

  10. GPR image analysis to locate water leaks from buried pipes by applying variance filters

    NASA Astrophysics Data System (ADS)

    Ocaña-Levario, Silvia J.; Carreño-Alvarado, Elizabeth P.; Ayala-Cabrera, David; Izquierdo, Joaquín

    2018-05-01

    Nowadays, there is growing interest in controlling and reducing the amount of water lost through leakage in water supply systems (WSSs). Leakage is, in fact, one of the biggest problems faced by the managers of these utilities. This work addresses the problem of leakage in WSSs by using GPR (Ground Penetrating Radar) as a non-destructive method. The main objective is to identify and extract features from GPR images such as leaks and components in a controlled laboratory condition by a methodology based on second order statistical parameters and, using the obtained features, to create 3D models that allows quick visualization of components and leaks in WSSs from GPR image analysis and subsequent interpretation. This methodology has been used before in other fields and provided promising results. The results obtained with the proposed methodology are presented, analyzed, interpreted and compared with the results obtained by using a well-established multi-agent based methodology. These results show that the variance filter is capable of highlighting the characteristics of components and anomalies, in an intuitive manner, which can be identified by non-highly qualified personnel, using the 3D models we develop. This research intends to pave the way towards future intelligent detection systems that enable the automatic detection of leaks in WSSs.

  11. Probability density and exceedance rate functions of locally Gaussian turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1989-01-01

    A locally Gaussian model of turbulence velocities is postulated which consists of the superposition of a slowly varying strictly Gaussian component representing slow temporal changes in the mean wind speed and a more rapidly varying locally Gaussian turbulence component possessing a temporally fluctuating local variance. Series expansions of the probability density and exceedance rate functions of the turbulence velocity model, based on Taylor's series, are derived. Comparisons of the resulting two-term approximations with measured probability density and exceedance rate functions of atmospheric turbulence velocity records show encouraging agreement, thereby confirming the consistency of the measured records with the locally Gaussian model. Explicit formulas are derived for computing all required expansion coefficients from measured turbulence records.

  12. Bayesian approach to non-Gaussian field statistics for diffusive broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2005-11-01

    We develop a closed-form expression for the probability distribution function for the field components of a diffusive broadband wave propagating through a random medium. We consider each spectral component to provide an individual observation of a random variable, the configurationally averaged spectral intensity. Since the intensity determines the variance of the field distribution at each frequency, this random variable serves as the Bayesian prior that determines the form of the non-Gaussian field statistics. This model agrees well with experimental results.

  13. A managerial accounting analysis of hospital costs.

    PubMed Central

    Frank, W G

    1976-01-01

    Variance analysis, an accounting technique, is applied to an eight-component model of hospital costs to determine the contribution each component makes to cost increases. The method is illustrated by application to data on total costs from 1950 to 1973 for all U.S. nongovernmental not-for-profit short-term general hospitals. The costs of a single hospital are analyzed and compared to the group costs. The potential uses and limitations of the method as a planning and research tool are discussed. PMID:965233

  14. A managerial accounting analysis of hospital costs.

    PubMed

    Frank, W G

    1976-01-01

    Variance analysis, an accounting technique, is applied to an eight-component model of hospital costs to determine the contribution each component makes to cost increases. The method is illustrated by application to data on total costs from 1950 to 1973 for all U.S. nongovernmental not-for-profit short-term general hospitals. The costs of a single hospital are analyzed and compared to the group costs. The potential uses and limitations of the method as a planning and research tool are discussed.

  15. Seasonal Predictability in a Model Atmosphere.

    NASA Astrophysics Data System (ADS)

    Lin, Hai

    2001-07-01

    The predictability of atmospheric mean-seasonal conditions in the absence of externally varying forcing is examined. A perfect-model approach is adopted, in which a global T21 three-level quasigeostrophic atmospheric model is integrated over 21 000 days to obtain a reference atmospheric orbit. The model is driven by a time-independent forcing, so that the only source of time variability is the internal dynamics. The forcing is set to perpetual winter conditions in the Northern Hemisphere (NH) and perpetual summer in the Southern Hemisphere.A significant temporal variability in the NH 90-day mean states is observed. The component of that variability associated with the higher-frequency motions, or climate noise, is estimated using a method developed by Madden. In the polar region, and to a lesser extent in the midlatitudes, the temporal variance of the winter means is significantly greater than the climate noise, suggesting some potential predictability in those regions.Forecast experiments are performed to see whether the presence of variance in the 90-day mean states that is in excess of the climate noise leads to some skill in the prediction of these states. Ensemble forecast experiments with nine members starting from slightly different initial conditions are performed for 200 different 90-day means along the reference atmospheric orbit. The serial correlation between the ensemble means and the reference orbit shows that there is skill in the 90-day mean predictions. The skill is concentrated in those regions of the NH that have the largest variance in excess of the climate noise. An EOF analysis shows that nearly all the predictive skill in the seasonal means is associated with one mode of variability with a strong axisymmetric component.

  16. Cosmic bulk flow and the local motion from Cosmicflows-2

    NASA Astrophysics Data System (ADS)

    Hoffman, Yehuda; Courtois, Hélène M.; Tully, R. Brent

    2015-06-01

    Full sky surveys of peculiar velocity are arguably the best way to map the large-scale structure (LSS) out to distances of a few × 100 h-1 Mpc. Using the largest and most accurate ever catalogue of galaxy peculiar velocities Cosmicflows-2, the LSS has been reconstructed by means of the Wiener filter (WF) and constrained realizations (CRs) assuming as a Bayesian prior model the Λ cold dark matter model with the WMAP inferred cosmological parameters. This paper focuses on studying the bulk flow of the local flow field, defined as the mean velocity of top-hat spheres with radii ranging out to R = 500 h-1 Mpc. The estimated LSS, in general, and the bulk flow, in particular, are determined by the tension between the observational data and the assumed prior model. A pre-requisite for such an analysis is the requirement that the estimated bulk flow is consistent with the prior model. Such a consistency is found here. At R = 50 (150) h-1 Mpc, the estimated bulk velocity is 250 ± 21 (239 ± 38) km s-1. The corresponding cosmic variance at these radii is 126 (60) km s-1, which implies that these estimated bulk flows are dominated by the data and not by the assumed prior model. The estimated bulk velocity is dominated by the data out to R ≈ 200 h-1 Mpc, where the cosmic variance on the individual supergalactic Cartesian components (of the rms values) exceeds the variance of the CRs by at least a factor of 2. The SGX and SGY components of the cosmic microwave background dipole velocity are recovered by the WF velocity field down to a very few km s-1. The SGZ component of the estimated velocity, the one that is most affected by the zone of avoidance, is off by 126 km s-1 (an almost 2σ discrepancy). The bulk velocity analysis reported here is virtually unaffected by the Malmquist bias and very similar results are obtained for the data with and without the bias correction.

  17. The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models

    NASA Astrophysics Data System (ADS)

    Ault, T. R.; Cole, J. E.; St. George, S.

    2012-11-01

    We assess the magnitude of decadal to multidecadal (D2M) variability in Climate Model Intercomparison Project 5 (CMIP5) simulations that will be used to understand, and plan for, climate change as part of the Intergovernmental Panel on Climate Change's 5th Assessment Report. Model performance on D2M timescales is evaluated using metrics designed to characterize the relative and absolute magnitude of variability at these frequencies. In observational data, we find that between 10% and 35% of the total variance occurs on D2M timescales. Regions characterized by the high end of this range include Africa, Australia, western North America, and the Amazon region of South America. In these areas D2M fluctuations are especially prominent and linked to prolonged drought. D2M fluctuations account for considerably less of the total variance (between 5% and 15%) in the CMIP5 archive of historical (1850-2005) simulations. The discrepancy between observation and model based estimates of D2M prominence reflects two features of the CMIP5 archive. First, interannual components of variability are generally too energetic. Second, decadal components are too weak in several key regions. Our findings imply that projections of the future lack sufficient decadal variability, presenting a limited view of prolonged drought and pluvial risk.

  18. Recovering Wood and McCarthy's ERP-prototypes by means of ERP-specific procrustes-rotation.

    PubMed

    Beauducel, André

    2018-02-01

    The misallocation of treatment-variance on the wrong component has been discussed in the context of temporal principal component analysis of event-related potentials. There is, until now, no rotation-method that can perfectly recover Wood and McCarthy's prototypes without making use of additional information on treatment-effects. In order to close this gap, two new methods: for component rotation were proposed. After Varimax-prerotation, the first method identifies very small slopes of successive loadings. The corresponding loadings are set to zero in a target-matrix for event-related orthogonal partial Procrustes- (EPP-) rotation. The second method generates Gaussian normal distributions around the peaks of the Varimax-loadings and performs orthogonal Procrustes-rotation towards these Gaussian distributions. Oblique versions of this Gaussian event-related Procrustes- (GEP) rotation and of EPP-rotation are based on Promax-rotation. A simulation study revealed that the new orthogonal rotations recover Wood and McCarthy's prototypes and eliminate misallocation of treatment-variance. In an additional simulation study with a more pronounced overlap of the prototypes GEP Promax-rotation reduced the variance misallocation slightly more than EPP Promax-rotation. Comparison with Existing Method(s): Varimax- and conventional Promax-rotations resulted in substantial misallocations of variance in simulation studies when components had temporal overlap. A substantially reduced misallocation of variance occurred with the EPP-, EPP Promax-, GEP-, and GEP Promax-rotations. Misallocation of variance can be minimized by means of the new rotation methods: Making use of information on the temporal order of the loadings may allow for improvements of the rotation of temporal PCA components. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Decomposing the relation between Rapid Automatized Naming (RAN) and reading ability.

    PubMed

    Arnell, Karen M; Joanisse, Marc F; Klein, Raymond M; Busseri, Michael A; Tannock, Rosemary

    2009-09-01

    The Rapid Automatized Naming (RAN) test involves rapidly naming sequences of items presented in a visual array. RAN has generated considerable interest because RAN performance predicts reading achievement. This study sought to determine what elements of RAN are responsible for the shared variance between RAN and reading performance using a series of cognitive tasks and a latent variable modelling approach. Participants performed RAN measures, a test of reading speed and comprehension, and six tasks, which tapped various hypothesised components of the RAN. RAN shared 10% of the variance with reading comprehension and 17% with reading rate. Together, the decomposition tasks explained 52% and 39% of the variance shared between RAN and reading comprehension and between RAN and reading rate, respectively. Significant predictors suggested that working memory encoding underlies part of the relationship between RAN and reading ability.

  20. Dimensionality and noise in energy selective x-ray imaging

    PubMed Central

    Alvarez, Robert E.

    2013-01-01

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging. Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator. Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB. Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems. PMID:24320442

  1. Heritability construction for provenance and family selection

    Treesearch

    Fan H. Kung; Calvin F. Bey

    1977-01-01

    Concepts and procedures for heritability estimations through the variance components and the unified F-statistics approach are described. The variance components approach is illustrated by five possible family selection schemes within a diallel mating test, while the unified F-statistics approach is demonstrated by a geographic variation study. In a balance design, the...

  2. Modeling Menstrual Cycle Length and Variability at the Approach of Menopause Using Hierarchical Change Point Models

    PubMed Central

    Huang, Xiaobi; Elliott, Michael R.; Harlow, Siobán D.

    2013-01-01

    SUMMARY As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women’s menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes. PMID:24729638

  3. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    PubMed Central

    Eggert, Thomas; Straube, Andreas

    2016-01-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN’s direct connections to the saccade-related premotor centers in the brainstem. PMID:27351741

  4. Additive-dominance genetic model analyses for late-maturity alpha-amylase activity in a bread wheat factorial crossing population.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Ibrahim, Amir M H

    2015-12-01

    Elevated level of late maturity α-amylase activity (LMAA) can result in low falling number scores, reduced grain quality, and downgrade of wheat (Triticum aestivum L.) class. A mating population was developed by crossing parents with different levels of LMAA. The F2 and F3 hybrids and their parents were evaluated for LMAA, and data were analyzed using the R software package 'qgtools' integrated with an additive-dominance genetic model and a mixed linear model approach. Simulated results showed high testing powers for additive and additive × environment variances, and comparatively low powers for dominance and dominance × environment variances. All variance components and their proportions to the phenotypic variance for the parents and hybrids were significant except for the dominance × environment variance. The estimated narrow-sense heritability and broad-sense heritability for LMAA were 14 and 54%, respectively. High significant negative additive effects for parents suggest that spring wheat cultivars 'Lancer' and 'Chester' can serve as good general combiners, and that 'Kinsman' and 'Seri-82' had negative specific combining ability in some hybrids despite of their own significant positive additive effects, suggesting they can be used as parents to reduce LMAA levels. Seri-82 showed very good general combining ability effect when used as a male parent, indicating the importance of reciprocal effects. High significant negative dominance effects and high-parent heterosis for hybrids demonstrated that the specific hybrid combinations; Chester × Kinsman, 'Lerma52' × Lancer, Lerma52 × 'LoSprout' and 'Janz' × Seri-82 could be generated to produce cultivars with significantly reduced LMAA level.

  5. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction.

    PubMed

    Huang, Ling; Zhang, Hongping; Xu, Peiliang; Geng, Jianghui; Wang, Cheng; Liu, Jingnan

    2017-02-27

    Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS) positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC) semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC) and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 10 16 electrons/m²) with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the new proposed method is better than the ordinary Kriging and polynomial interpolation by about 1.2 TECU and 0.7 TECU, respectively. The root mean squared error of the proposed new Kriging with variance components is within 1.5 TECU and is smaller than those from other methods under comparison by about 1 TECU. When compared with ionospheric grid points, the mean squared error of the proposed method is within 6 TECU and smaller than Kriging, indicating that the proposed method can produce more accurate ionospheric delays and better estimation accuracy over China regional area.

  6. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction

    PubMed Central

    Huang, Ling; Zhang, Hongping; Xu, Peiliang; Geng, Jianghui; Wang, Cheng; Liu, Jingnan

    2017-01-01

    Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS) positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC) semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC) and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 1016 electrons/m2) with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the new proposed method is better than the ordinary Kriging and polynomial interpolation by about 1.2 TECU and 0.7 TECU, respectively. The root mean squared error of the proposed new Kriging with variance components is within 1.5 TECU and is smaller than those from other methods under comparison by about 1 TECU. When compared with ionospheric grid points, the mean squared error of the proposed method is within 6 TECU and smaller than Kriging, indicating that the proposed method can produce more accurate ionospheric delays and better estimation accuracy over China regional area. PMID:28264424

  7. Toward Joint Hypothesis-Tests Seismic Event Screening Analysis: Ms|mb and Event Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Dale; Selby, Neil

    2012-08-14

    Well established theory can be used to combine single-phenomenology hypothesis tests into a multi-phenomenology event screening hypothesis test (Fisher's and Tippett's tests). Commonly used standard error in Ms:mb event screening hypothesis test is not fully consistent with physical basis. Improved standard error - Better agreement with physical basis, and correctly partitions error to include Model Error as a component of variance, correctly reduces station noise variance through network averaging. For 2009 DPRK test - Commonly used standard error 'rejects' H0 even with better scaling slope ({beta} = 1, Selby et al.), improved standard error 'fails to rejects' H0.

  8. Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling.

    PubMed

    Christophides, Damianos; Appelt, Ane L; Gusnanto, Arief; Lilley, John; Sebag-Montefiore, David

    2018-07-01

    To present a fully automatic method to generate multiparameter normal tissue complication probability (NTCP) models and compare its results with those of a published model, using the same patient cohort. Data were analyzed from 345 rectal cancer patients treated with external radiation therapy to predict the risk of patients developing grade 1 or ≥2 cystitis. In total, 23 clinical factors were included in the analysis as candidate predictors of cystitis. Principal component analysis was used to decompose the bladder dose-volume histogram into 8 principal components, explaining more than 95% of the variance. The data set of clinical factors and principal components was divided into training (70%) and test (30%) data sets, with the training data set used by the algorithm to compute an NTCP model. The first step of the algorithm was to obtain a bootstrap sample, followed by multicollinearity reduction using the variance inflation factor and genetic algorithm optimization to determine an ordinal logistic regression model that minimizes the Bayesian information criterion. The process was repeated 100 times, and the model with the minimum Bayesian information criterion was recorded on each iteration. The most frequent model was selected as the final "automatically generated model" (AGM). The published model and AGM were fitted on the training data sets, and the risk of cystitis was calculated. The 2 models had no significant differences in predictive performance, both for the training and test data sets (P value > .05) and found similar clinical and dosimetric factors as predictors. Both models exhibited good explanatory performance on the training data set (P values > .44), which was reduced on the test data sets (P values < .05). The predictive value of the AGM is equivalent to that of the expert-derived published model. It demonstrates potential in saving time, tackling problems with a large number of parameters, and standardizing variable selection in NTCP modeling. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  9. Aircrew coordination and decisionmaking: Peer ratings of video tapes made during a full mission simulation

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Awe, C. A.

    1986-01-01

    Six professionally active, retired captains rated the coordination and decisionmaking performances of sixteen aircrews while viewing videotapes of a simulated commercial air transport operation. The scenario featured a required diversion and a probable minimum fuel situation. Seven point Likert-type scales were used in rating variables on the basis of a model of crew coordination and decisionmaking. The variables were based on concepts of, for example, decision difficulty, efficiency, and outcome quality; and leader-subordin ate concepts such as person and task-oriented leader behavior, and competency motivation of subordinate crewmembers. Five-front-end variables of the model were in turn dependent variables for a hierarchical regression procedure. The variance in safety performance was explained 46%, by decision efficiency, command reversal, and decision quality. The variance of decision quality, an alternative substantive dependent variable to safety performance, was explained 60% by decision efficiency and the captain's quality of within-crew communications. The variance of decision efficiency, crew coordination, and command reversal were in turn explained 78%, 80%, and 60% by small numbers of preceding independent variables. A principle component, varimax factor analysis supported the model structure suggested by regression analyses.

  10. Refining the quantitative pathway of the Pathways to Mathematics model.

    PubMed

    Sowinski, Carla; LeFevre, Jo-Anne; Skwarchuk, Sheri-Lynn; Kamawar, Deepthi; Bisanz, Jeffrey; Smith-Chant, Brenda

    2015-03-01

    In the current study, we adopted the Pathways to Mathematics model of LeFevre et al. (2010). In this model, there are three cognitive domains--labeled as the quantitative, linguistic, and working memory pathways--that make unique contributions to children's mathematical development. We attempted to refine the quantitative pathway by combining children's (N=141 in Grades 2 and 3) subitizing, counting, and symbolic magnitude comparison skills using principal components analysis. The quantitative pathway was examined in relation to dependent numerical measures (backward counting, arithmetic fluency, calculation, and number system knowledge) and a dependent reading measure, while simultaneously accounting for linguistic and working memory skills. Analyses controlled for processing speed, parental education, and gender. We hypothesized that the quantitative, linguistic, and working memory pathways would account for unique variance in the numerical outcomes; this was the case for backward counting and arithmetic fluency. However, only the quantitative and linguistic pathways (not working memory) accounted for unique variance in calculation and number system knowledge. Not surprisingly, only the linguistic pathway accounted for unique variance in the reading measure. These findings suggest that the relative contributions of quantitative, linguistic, and working memory skills vary depending on the specific cognitive task. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Matrix approach to uncertainty assessment and reduction for modeling terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Xia, J.; Ahlström, A.; Zhou, S.; Huang, Y.; Shi, Z.; Wang, Y.; Du, Z.; Lu, X.

    2017-12-01

    Terrestrial ecosystems absorb approximately 30% of the anthropogenic carbon dioxide emissions. This estimate has been deduced indirectly: combining analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net terrestrial carbon flux. In contrast, when knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models they make widely different predictions. To improve the terrestrial carbon models, we have recently developed a matrix approach to uncertainty assessment and reduction. Specifically, the terrestrial carbon cycle has been commonly represented by a series of carbon balance equations to track carbon influxes into and effluxes out of individual pools in earth system models. This representation matches our understanding of carbon cycle processes well and can be reorganized into one matrix equation without changing any modeled carbon cycle processes and mechanisms. We have developed matrix equations of several global land C cycle models, including CLM3.5, 4.0 and 4.5, CABLE, LPJ-GUESS, and ORCHIDEE. Indeed, the matrix equation is generic and can be applied to other land carbon models. This matrix approach offers a suite of new diagnostic tools, such as the 3-dimensional (3-D) parameter space, traceability analysis, and variance decomposition, for uncertainty analysis. For example, predictions of carbon dynamics with complex land models can be placed in a 3-D parameter space (carbon input, residence time, and storage potential) as a common metric to measure how much model predictions are different. The latter can be traced to its source components by decomposing model predictions to a hierarchy of traceable components. Then, variance decomposition can help attribute the spread in predictions among multiple models to precisely identify sources of uncertainty. The highly uncertain components can be constrained by data as the matrix equation makes data assimilation computationally possible. We will illustrate various applications of this matrix approach to uncertainty assessment and reduction for terrestrial carbon cycle models.

  12. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition

    PubMed Central

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17–88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  13. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model.

    PubMed

    Tufto, Jarle

    2015-08-01

    Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  14. Verbal Working Memory in Children With Cochlear Implants

    PubMed Central

    Caldwell-Tarr, Amanda; Low, Keri E.; Lowenstein, Joanna H.

    2017-01-01

    Purpose Verbal working memory in children with cochlear implants and children with normal hearing was examined. Participants Ninety-three fourth graders (47 with normal hearing, 46 with cochlear implants) participated, all of whom were in a longitudinal study and had working memory assessed 2 years earlier. Method A dual-component model of working memory was adopted, and a serial recall task measured storage and processing. Potential predictor variables were phonological awareness, vocabulary knowledge, nonverbal IQ, and several treatment variables. Potential dependent functions were literacy, expressive language, and speech-in-noise recognition. Results Children with cochlear implants showed deficits in storage and processing, similar in size to those at second grade. Predictors of verbal working memory differed across groups: Phonological awareness explained the most variance in children with normal hearing; vocabulary explained the most variance in children with cochlear implants. Treatment variables explained little of the variance. Where potentially dependent functions were concerned, verbal working memory accounted for little variance once the variance explained by other predictors was removed. Conclusions The verbal working memory deficits of children with cochlear implants arise due to signal degradation, which limits their abilities to acquire phonological awareness. That hinders their abilities to store items using a phonological code. PMID:29075747

  15. Correlational structure of ‘frontal’ tests and intelligence tests indicates two components with asymmetrical neurostructural correlates in old age

    PubMed Central

    Cox, Simon R.; MacPherson, Sarah E.; Ferguson, Karen J.; Nissan, Jack; Royle, Natalie A.; MacLullich, Alasdair M.J.; Wardlaw, Joanna M.; Deary, Ian J.

    2014-01-01

    Both general fluid intelligence (gf) and performance on some ‘frontal tests’ of cognition decline with age. Both types of ability are at least partially dependent on the integrity of the frontal lobes, which also deteriorate with age. Overlap between these two methods of assessing complex cognition in older age remains unclear. Such overlap could be investigated using inter-test correlations alone, as in previous studies, but this would be enhanced by ascertaining whether frontal test performance and gf share neurobiological variance. To this end, we examined relationships between gf and 6 frontal tests (Tower, Self-Ordered Pointing, Simon, Moral Dilemmas, Reversal Learning and Faux Pas tests) in 90 healthy males, aged ~ 73 years. We interpreted their correlational structure using principal component analysis, and in relation to MRI-derived regional frontal lobe volumes (relative to maximal healthy brain size). gf correlated significantly and positively (.24 ≤ r ≤ .53) with the majority of frontal test scores. Some frontal test scores also exhibited shared variance after controlling for gf. Principal component analysis of test scores identified units of gf-common and gf-independent variance. The former was associated with variance in the left dorsolateral (DL) and anterior cingulate (AC) regions, and the latter with variance in the right DL and AC regions. Thus, we identify two biologically-meaningful components of variance in complex cognitive performance in older age and suggest that age-related changes to DL and AC have the greatest cognitive impact. PMID:25278641

  16. Correlational structure of 'frontal' tests and intelligence tests indicates two components with asymmetrical neurostructural correlates in old age.

    PubMed

    Cox, Simon R; MacPherson, Sarah E; Ferguson, Karen J; Nissan, Jack; Royle, Natalie A; MacLullich, Alasdair M J; Wardlaw, Joanna M; Deary, Ian J

    2014-09-01

    Both general fluid intelligence ( g f ) and performance on some 'frontal tests' of cognition decline with age. Both types of ability are at least partially dependent on the integrity of the frontal lobes, which also deteriorate with age. Overlap between these two methods of assessing complex cognition in older age remains unclear. Such overlap could be investigated using inter-test correlations alone, as in previous studies, but this would be enhanced by ascertaining whether frontal test performance and g f share neurobiological variance. To this end, we examined relationships between g f and 6 frontal tests (Tower, Self-Ordered Pointing, Simon, Moral Dilemmas, Reversal Learning and Faux Pas tests) in 90 healthy males, aged ~ 73 years. We interpreted their correlational structure using principal component analysis, and in relation to MRI-derived regional frontal lobe volumes (relative to maximal healthy brain size). g f correlated significantly and positively (.24 ≤  r  ≤ .53) with the majority of frontal test scores. Some frontal test scores also exhibited shared variance after controlling for g f . Principal component analysis of test scores identified units of g f -common and g f -independent variance. The former was associated with variance in the left dorsolateral (DL) and anterior cingulate (AC) regions, and the latter with variance in the right DL and AC regions. Thus, we identify two biologically-meaningful components of variance in complex cognitive performance in older age and suggest that age-related changes to DL and AC have the greatest cognitive impact.

  17. Predictors of burnout among correctional mental health professionals.

    PubMed

    Gallavan, Deanna B; Newman, Jody L

    2013-02-01

    This study focused on the experience of burnout among a sample of correctional mental health professionals. We examined the relationship of a linear combination of optimism, work family conflict, and attitudes toward prisoners with two dimensions derived from the Maslach Burnout Inventory and the Professional Quality of Life Scale. Initially, three subscales from the Maslach Burnout Inventory and two subscales from the Professional Quality of Life Scale were subjected to principal components analysis with oblimin rotation in order to identify underlying dimensions among the subscales. This procedure resulted in two components accounting for approximately 75% of the variance (r = -.27). The first component was labeled Negative Experience of Work because it seemed to tap the experience of being emotionally spent, detached, and socially avoidant. The second component was labeled Positive Experience of Work and seemed to tap a sense of competence, success, and satisfaction in one's work. Two multiple regression analyses were subsequently conducted, in which Negative Experience of Work and Positive Experience of Work, respectively, were predicted from a linear combination of optimism, work family conflict, and attitudes toward prisoners. In the first analysis, 44% of the variance in Negative Experience of Work was accounted for, with work family conflict and optimism accounting for the most variance. In the second analysis, 24% of the variance in Positive Experience of Work was accounted for, with optimism and attitudes toward prisoners accounting for the most variance.

  18. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  19. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  20. A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets

    PubMed Central

    Sanjak, Jaleal S.; Long, Anthony D.; Thornton, Kevin R.

    2017-01-01

    The genetic component of complex disease risk in humans remains largely unexplained. A corollary is that the allelic spectrum of genetic variants contributing to complex disease risk is unknown. Theoretical models that relate population genetic processes to the maintenance of genetic variation for quantitative traits may suggest profitable avenues for future experimental design. Here we use forward simulation to model a genomic region evolving under a balance between recurrent deleterious mutation and Gaussian stabilizing selection. We consider multiple genetic and demographic models, and several different methods for identifying genomic regions harboring variants associated with complex disease risk. We demonstrate that the model of gene action, relating genotype to phenotype, has a qualitative effect on several relevant aspects of the population genetic architecture of a complex trait. In particular, the genetic model impacts genetic variance component partitioning across the allele frequency spectrum and the power of statistical tests. Models with partial recessivity closely match the minor allele frequency distribution of significant hits from empirical genome-wide association studies without requiring homozygous effect sizes to be small. We highlight a particular gene-based model of incomplete recessivity that is appealing from first principles. Under that model, deleterious mutations in a genomic region partially fail to complement one another. This model of gene-based recessivity predicts the empirically observed inconsistency between twin and SNP based estimated of dominance heritability. Furthermore, this model predicts considerable levels of unexplained variance associated with intralocus epistasis. Our results suggest a need for improved statistical tools for region based genetic association and heritability estimation. PMID:28103232

  1. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-01

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  2. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  3. Dimensionality and noise in energy selective x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Robert E.

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurementmore » noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB.Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems.« less

  4. Rank estimation and the multivariate analysis of in vivo fast-scan cyclic voltammetric data

    PubMed Central

    Keithley, Richard B.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Principal component regression has been used in the past to separate current contributions from different neuromodulators measured with in vivo fast-scan cyclic voltammetry. Traditionally, a percent cumulative variance approach has been used to determine the rank of the training set voltammetric matrix during model development, however this approach suffers from several disadvantages including the use of arbitrary percentages and the requirement of extreme precision of training sets. Here we propose that Malinowski’s F-test, a method based on a statistical analysis of the variance contained within the training set, can be used to improve factor selection for the analysis of in vivo fast-scan cyclic voltammetric data. These two methods of rank estimation were compared at all steps in the calibration protocol including the number of principal components retained, overall noise levels, model validation as determined using a residual analysis procedure, and predicted concentration information. By analyzing 119 training sets from two different laboratories amassed over several years, we were able to gain insight into the heterogeneity of in vivo fast-scan cyclic voltammetric data and study how differences in factor selection propagate throughout the entire principal component regression analysis procedure. Visualizing cyclic voltammetric representations of the data contained in the retained and discarded principal components showed that using Malinowski’s F-test for rank estimation of in vivo training sets allowed for noise to be more accurately removed. Malinowski’s F-test also improved the robustness of our criterion for judging multivariate model validity, even though signal-to-noise ratios of the data varied. In addition, pH change was the majority noise carrier of in vivo training sets while dopamine prediction was more sensitive to noise. PMID:20527815

  5. Biochemical Phenotypes to Discriminate Microbial Subpopulations and Improve Outbreak Detection

    PubMed Central

    Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F.; Stelling, John

    2013-01-01

    Background Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Methodology/Principal Findings Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. Results: 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as “nuisance” biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. Conclusions The statistical approaches explored can improve the robust recognition of microbial subpopulations with routinely available biochemical test results, of value in the timely detection of outbreak clones and evolutionarily important genetic events. PMID:24391936

  6. Predictors of successful heart failure self-care maintenance in the first three months after hospitalization.

    PubMed

    Chriss, Patricia M; Sheposh, John; Carlson, Beverly; Riegel, Barbara

    2004-01-01

    The objective of this study was to replicate a prior study of predictors of self-care in heart failure (HF). A non-experimental, correlational replication study retested a model of 7 variables: social support, symptom severity, comorbidity, education, age, gender, and income; the last variable, income, was tested in the prior study but was excluded in this study because of missing data. The model was tested at baseline and 3 months after hospitalization. Participants were enrolled from 2 hospitals in southern California. A convenience sample of 66 patients with chronic HF were studied. The sample was elderly, primarily female, and educated at the high school level or above. Approximately half of the patients had systolic HF, and most were functionally compromised. Outcome measure Self-care maintenance, a component of self-care, was measured with the maintenance subscale of the Self-Care of Heart Failure Index. At baseline, the model was significant (F = 2.61, df = 7.58, P = .02) and explained 14.8% of the variance in HF self-care. Significant predictors of self-care were higher age and male gender. Three months later, when baseline self-care maintenance scores were controlled in the analysis, the model explained 45.3% of the variance in HF self-care. Most of the variance was explained by the baseline self-care score, but male gender and low comorbidity added an additional 6% of the variance (F = 6.9, df = 9.56, P < .0001). Elderly men and those with fewer comorbid illnesses were most successful at HF self-care.

  7. Genetic and environmental influences on Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) maladaptive personality traits and their connections with normative personality traits.

    PubMed

    Wright, Zara E; Pahlen, Shandell; Krueger, Robert F

    2017-05-01

    The Diagnostic and Statistical Manual for Mental Disorders-Fifth Edition (DSM-5) proposes an alternative model for personality disorders, which includes maladaptive-level personality traits. These traits can be operationalized by the Personality Inventory for the DSM-5 (PID-5). Although there has been extensive research on genetic and environmental influences on normative level personality, the heritability of the DSM-5 traits remains understudied. The present study addresses this gap in the literature by assessing traits indexed by the PID-5 and the International Personality Item Pool NEO (IPIP-NEO) in adult twins (N = 1,812 individuals). Research aims include (a) replicating past findings of the heritability of normative level personality as measured by the IPIP-NEO as a benchmark for studying maladaptive level traits, (b) ascertaining univariate heritability estimates of maladaptive level traits as measured by the PID-5, (c) establishing how much variation in personality pathology can be attributed to the same genetic components affecting variation in normative level personality, and (d) determining residual variance in personality pathology domains after variance attributable to genetic and environmental components of general personality has been removed. Results revealed that PID-5 traits reflect similar levels of heritability to that of IPIP-NEO traits. Further, maladaptive and normative level traits that correlate at the phenotypic level also correlate at the genotypic level, indicating overlapping genetic components contribute to variance in both. Nevertheless, we also found evidence for genetic and environmental components unique to maladaptive level personality traits, not shared with normative level traits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Personality assessment and model comparison with behavioral data: A statistical framework and empirical demonstration with bonobos (Pan paniscus).

    PubMed

    Martin, Jordan S; Suarez, Scott A

    2017-08-01

    Interest in quantifying consistent among-individual variation in primate behavior, also known as personality, has grown rapidly in recent decades. Although behavioral coding is the most frequently utilized method for assessing primate personality, limitations in current statistical practice prevent researchers' from utilizing the full potential of their coding datasets. These limitations include the use of extensive data aggregation, not modeling biologically relevant sources of individual variance during repeatability estimation, not partitioning between-individual (co)variance prior to modeling personality structure, the misuse of principal component analysis, and an over-reliance upon exploratory statistical techniques to compare personality models across populations, species, and data collection methods. In this paper, we propose a statistical framework for primate personality research designed to address these limitations. Our framework synthesizes recently developed mixed-effects modeling approaches for quantifying behavioral variation with an information-theoretic model selection paradigm for confirmatory personality research. After detailing a multi-step analytic procedure for personality assessment and model comparison, we employ this framework to evaluate seven models of personality structure in zoo-housed bonobos (Pan paniscus). We find that differences between sexes, ages, zoos, time of observation, and social group composition contributed to significant behavioral variance. Independently of these factors, however, personality nonetheless accounted for a moderate to high proportion of variance in average behavior across observational periods. A personality structure derived from past rating research receives the strongest support relative to our model set. This model suggests that personality variation across the measured behavioral traits is best described by two correlated but distinct dimensions reflecting individual differences in affiliation and sociability (Agreeableness) as well as activity level, social play, and neophilia toward non-threatening stimuli (Openness). These results underscore the utility of our framework for quantifying personality in primates and facilitating greater integration between the behavioral ecological and comparative psychological approaches to personality research. © 2017 Wiley Periodicals, Inc.

  9. Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target.

    PubMed

    Budiarto, E; Keijzer, M; Storchi, P R M; Heemink, A W; Breedveld, S; Heijmen, B J M

    2014-01-20

    Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements.

  10. Solar-cycle dependence of a model turbulence spectrum using IMP and ACE observations over 38 years

    NASA Astrophysics Data System (ADS)

    Burger, R. A.; Nel, A. E.; Engelbrecht, N. E.

    2014-12-01

    Ab initio modulation models require a number of turbulence quantities as input for any reasonable diffusion tensor. While turbulence transport models describe the radial evolution of such quantities, they in turn require observations in the inner heliosphere as input values. So far we have concentrated on solar minimum conditions (e.g. Engelbrecht and Burger 2013, ApJ), but are now looking at long-term modulation which requires turbulence data over at a least a solar magnetic cycle. As a start we analyzed 1-minute resolution data for the N-component of the magnetic field, from 1974 to 2012, covering about two solar magnetic cycles (initially using IMP and then ACE data). We assume a very simple three-stage power-law frequency spectrum, calculate the integral from the highest to the lowest frequency, and fit it to variances calculated with lags from 5 minutes to 80 hours. From the fit we then obtain not only the asymptotic variance at large lags, but also the spectral index of the inertial and the energy, as well as the breakpoint between the inertial and energy range (bendover scale) and between the energy and cutoff range (cutoff scale). All values given here are preliminary. The cutoff range is a constraint imposed in order to ensure a finite energy density; the spectrum is forced to be either flat or to decrease with decreasing frequency in this range. Given that cosmic rays sample magnetic fluctuations over long periods in their transport through the heliosphere, we average the spectra over at least 27 days. We find that the variance of the N-component has a clear solar cycle dependence, with smaller values (~6 nT2) during solar minimum and larger during solar maximum periods (~17 nT2), well correlated with the magnetic field magnitude (e.g. Smith et al. 2006, ApJ). Whereas the inertial range spectral index (-1.65 ± 0.06) does not show a significant solar cycle variation, the energy range index (-1.1 ± 0.3) seems to be anti-correlated with the variance (Bieber et al. 1993, JGR); both indices show close to normal distributions. In contrast, the variance (e.g. Burlaga and Ness, 1998, JGR), and both the bendover scale (see Ruiz et al. 2014, Solar Physics) and cutoff scale appear to be log-normal distributed.

  11. Modelling heterogeneity variances in multiple treatment comparison meta-analysis--are informative priors the better solution?

    PubMed

    Thorlund, Kristian; Thabane, Lehana; Mills, Edward J

    2013-01-11

    Multiple treatment comparison (MTC) meta-analyses are commonly modeled in a Bayesian framework, and weakly informative priors are typically preferred to mirror familiar data driven frequentist approaches. Random-effects MTCs have commonly modeled heterogeneity under the assumption that the between-trial variance for all involved treatment comparisons are equal (i.e., the 'common variance' assumption). This approach 'borrows strength' for heterogeneity estimation across treatment comparisons, and thus, ads valuable precision when data is sparse. The homogeneous variance assumption, however, is unrealistic and can severely bias variance estimates. Consequently 95% credible intervals may not retain nominal coverage, and treatment rank probabilities may become distorted. Relaxing the homogeneous variance assumption may be equally problematic due to reduced precision. To regain good precision, moderately informative variance priors or additional mathematical assumptions may be necessary. In this paper we describe four novel approaches to modeling heterogeneity variance - two novel model structures, and two approaches for use of moderately informative variance priors. We examine the relative performance of all approaches in two illustrative MTC data sets. We particularly compare between-study heterogeneity estimates and model fits, treatment effect estimates and 95% credible intervals, and treatment rank probabilities. In both data sets, use of moderately informative variance priors constructed from the pair wise meta-analysis data yielded the best model fit and narrower credible intervals. Imposing consistency equations on variance estimates, assuming variances to be exchangeable, or using empirically informed variance priors also yielded good model fits and narrow credible intervals. The homogeneous variance model yielded high precision at all times, but overall inadequate estimates of between-trial variances. Lastly, treatment rankings were similar among the novel approaches, but considerably different when compared with the homogenous variance approach. MTC models using a homogenous variance structure appear to perform sub-optimally when between-trial variances vary between comparisons. Using informative variance priors, assuming exchangeability or imposing consistency between heterogeneity variances can all ensure sufficiently reliable and realistic heterogeneity estimation, and thus more reliable MTC inferences. All four approaches should be viable candidates for replacing or supplementing the conventional homogeneous variance MTC model, which is currently the most widely used in practice.

  12. Physiological and anthropometric determinants of rhythmic gymnastics performance.

    PubMed

    Douda, Helen T; Toubekis, Argyris G; Avloniti, Alexandra A; Tokmakidis, Savvas P

    2008-03-01

    To identify the physiological and anthropometric predictors of rhythmic gymnastics performance, which was defined from the total ranking score of each athlete in a national competition. Thirty-four rhythmic gymnasts were divided into 2 groups, elite (n = 15) and nonelite (n = 19), and they underwent a battery of anthropometric, physical fitness, and physiological measurements. The principal-components analysis extracted 6 components: anthropometric, flexibility, explosive strength, aerobic capacity, body dimensions, and anaerobic metabolism. These were used in a simultaneous multiple-regression procedure to determine which best explain the variance in rhythmic gymnastics performance. Based on the principal-component analysis, the anthropometric component explained 45% of the total variance, flexibility 12.1%, explosive strength 9.2%, aerobic capacity 7.4%, body dimensions 6.8%, and anaerobic metabolism 4.6%. Components of anthropometric (r = .50) and aerobic capacity (r = .49) were significantly correlated with performance (P < .01). When the multiple-regression model-y = 10.708 + (0.0005121 x VO2max) + (0.157 x arm span) + (0.814 x midthigh circumference) - (0.293 x body mass)-was applied to elite gymnasts, 92.5% of the variation was explained by VO2max (58.9%), arm span (12%), midthigh circumference (13.1%), and body mass (8.5%). Selected anthropometric characteristics, aerobic power, flexibility, and explosive strength are important determinants of successful performance. These findings might have practical implications for both training and talent identification in rhythmic gymnastics.

  13. Improvement of Prediction Ability for Genomic Selection of Dairy Cattle by Including Dominance Effects

    PubMed Central

    Sun, Chuanyu; VanRaden, Paul M.; Cole, John B.; O'Connell, Jeffrey R.

    2014-01-01

    Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat yield (both breeds) as well as for Holstein milk yield. PMID:25084281

  14. Intra-class correlation estimates for assessment of vitamin A intake in children.

    PubMed

    Agarwal, Girdhar G; Awasthi, Shally; Walter, Stephen D

    2005-03-01

    In many community-based surveys, multi-level sampling is inherent in the design. In the design of these studies, especially to calculate the appropriate sample size, investigators need good estimates of intra-class correlation coefficient (ICC), along with the cluster size, to adjust for variation inflation due to clustering at each level. The present study used data on the assessment of clinical vitamin A deficiency and intake of vitamin A-rich food in children in a district in India. For the survey, 16 households were sampled from 200 villages nested within eight randomly-selected blocks of the district. ICCs and components of variances were estimated from a three-level hierarchical random effects analysis of variance model. Estimates of ICCs and variance components were obtained at village and block levels. Between-cluster variation was evident at each level of clustering. In these estimates, ICCs were inversely related to cluster size, but the design effect could be substantial for large clusters. At the block level, most ICC estimates were below 0.07. At the village level, many ICC estimates ranged from 0.014 to 0.45. These estimates may provide useful information for the design of epidemiological studies in which the sampled (or allocated) units range in size from households to large administrative zones.

  15. Genetic variation and co-variation for fitness between intra-population and inter-population backgrounds in the red flour beetle, Tribolium castaneum

    PubMed Central

    Drury, Douglas W.; Wade, Michael J.

    2010-01-01

    Hybrids from crosses between populations of the flour beetle, Tribolium castaneum, express varying degrees of inviability and morphological abnormalities. The proportion of allopatric population hybrids exhibiting these negative hybrid phenotypes varies widely, from 3% to 100%, depending upon the pair of populations crossed. We crossed three populations and measured two fitness components, fertility and adult offspring numbers from successful crosses, to determine how genes segregating within populations interact in inter-population hybrids to cause the negative phenotypes. With data from crosses of 40 sires from each of three populations to groups of 5 dams from their own and two divergent populations, we estimated the genetic variance and covariance for breeding value of fitness between the intra- and inter-population backgrounds and the sire × dam-population interaction variance. The latter component of the variance in breeding values estimates the change in genic effects between backgrounds owing to epistasis. Interacting genes with a positive effect, prior to fixation, in the sympatric background but a negative effect in the hybrid background cause reproductive incompatibility in the Dobzhansky-Muller speciation model. Thus, the sire × dam-population interaction provides a way to measure the progress toward speciation of genetically differentiating populations on a trait by trait basis using inter-population hybrids. PMID:21044199

  16. Variance components for direct and maternal effects on body weights of Katahdin lambs

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to estimate genetic parameters for BW in Katahdin lambs. Six animal models were used to study direct and maternal effects on birth (BWT), weaning (WWT) and postweaning (PWWT) weights using 41,066 BWT, 33,980 WWT, and 22,793 PWWT records collected over 17 yr in 100 flocks. F...

  17. Multilevel covariance regression with correlated random effects in the mean and variance structure.

    PubMed

    Quintero, Adrian; Lesaffre, Emmanuel

    2017-09-01

    Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  19. Modelling safety of multistate systems with ageing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kołowrocki, Krzysztof; Soszyńska-Budny, Joanna

    An innovative approach to safety analysis of multistate ageing systems is presented. Basic notions of the ageing multistate systems safety analysis are introduced. The system components and the system multistate safety functions are defined. The mean values and variances of the multistate systems lifetimes in the safety state subsets and the mean values of their lifetimes in the particular safety states are defined. The multi-state system risk function and the moment of exceeding by the system the critical safety state are introduced. Applications of the proposed multistate system safety models to the evaluation and prediction of the safty characteristics ofmore » the consecutive “m out of n: F” is presented as well.« less

  20. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.

    PubMed

    Excoffier, L; Smouse, P E; Quattro, J M

    1992-06-01

    We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as phi-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivision. The method is flexible enough to accommodate several alternative input matrices, corresponding to different types of molecular data, as well as different types of evolutionary assumptions, without modifying the basic structure of the analysis. The significance of the variance components and phi-statistics is tested using a permutational approach, eliminating the normality assumption that is conventional for analysis of variance but inappropriate for molecular data. Application of AMOVA to human mitochondrial DNA haplotype data shows that population subdivisions are better resolved when some measure of molecular differences among haplotypes is introduced into the analysis. At the intraspecific level, however, the additional information provided by knowing the exact phylogenetic relations among haplotypes or by a nonlinear translation of restriction-site change into nucleotide diversity does not significantly modify the inferred population genetic structure. Monte Carlo studies show that site sampling does not fundamentally affect the significance of the molecular variance components. The AMOVA treatment is easily extended in several different directions and it constitutes a coherent and flexible framework for the statistical analysis of molecular data.

  1. Portfolio optimization with skewness and kurtosis

    NASA Astrophysics Data System (ADS)

    Lam, Weng Hoe; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi

    2013-04-01

    Mean and variance of return distributions are two important parameters of the mean-variance model in portfolio optimization. However, the mean-variance model will become inadequate if the returns of assets are not normally distributed. Therefore, higher moments such as skewness and kurtosis cannot be ignored. Risk averse investors prefer portfolios with high skewness and low kurtosis so that the probability of getting negative rates of return will be reduced. The objective of this study is to compare the portfolio compositions as well as performances between the mean-variance model and mean-variance-skewness-kurtosis model by using the polynomial goal programming approach. The results show that the incorporation of skewness and kurtosis will change the optimal portfolio compositions. The mean-variance-skewness-kurtosis model outperforms the mean-variance model because the mean-variance-skewness-kurtosis model takes skewness and kurtosis into consideration. Therefore, the mean-variance-skewness-kurtosis model is more appropriate for the investors of Malaysia in portfolio optimization.

  2. A principal components model of soundscape perception.

    PubMed

    Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta

    2010-11-01

    There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.

  3. Impact of Measurement Uncertainties on Receptor Modeling of Speciated Atmospheric Mercury.

    PubMed

    Cheng, I; Zhang, L; Xu, X

    2016-02-09

    Gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurement uncertainties could potentially affect the analysis and modeling of atmospheric mercury. This study investigated the impact of GOM measurement uncertainties on Principal Components Analysis (PCA), Absolute Principal Component Scores (APCS), and Concentration-Weighted Trajectory (CWT) receptor modeling results. The atmospheric mercury data input into these receptor models were modified by combining GOM and PBM into a single reactive mercury (RM) parameter and excluding low GOM measurements to improve the data quality. PCA and APCS results derived from RM or excluding low GOM measurements were similar to those in previous studies, except for a non-unique component and an additional component extracted from the RM dataset. The percent variance explained by the major components from a previous study differed slightly compared to RM and excluding low GOM measurements. CWT results were more sensitive to the input of RM than GOM excluding low measurements. Larger discrepancies were found between RM and GOM source regions than those between RM and PBM. Depending on the season, CWT source regions of RM differed by 40-61% compared to GOM from a previous study. No improvement in correlations between CWT results and anthropogenic mercury emissions were found.

  4. Impact of Measurement Uncertainties on Receptor Modeling of Speciated Atmospheric Mercury

    PubMed Central

    Cheng, I.; Zhang, L.; Xu, X.

    2016-01-01

    Gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurement uncertainties could potentially affect the analysis and modeling of atmospheric mercury. This study investigated the impact of GOM measurement uncertainties on Principal Components Analysis (PCA), Absolute Principal Component Scores (APCS), and Concentration-Weighted Trajectory (CWT) receptor modeling results. The atmospheric mercury data input into these receptor models were modified by combining GOM and PBM into a single reactive mercury (RM) parameter and excluding low GOM measurements to improve the data quality. PCA and APCS results derived from RM or excluding low GOM measurements were similar to those in previous studies, except for a non-unique component and an additional component extracted from the RM dataset. The percent variance explained by the major components from a previous study differed slightly compared to RM and excluding low GOM measurements. CWT results were more sensitive to the input of RM than GOM excluding low measurements. Larger discrepancies were found between RM and GOM source regions than those between RM and PBM. Depending on the season, CWT source regions of RM differed by 40–61% compared to GOM from a previous study. No improvement in correlations between CWT results and anthropogenic mercury emissions were found. PMID:26857835

  5. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE PAGES

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; ...

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  6. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  7. An apparent contradiction: increasing variability to achieve greater precision?

    PubMed

    Rosenblatt, Noah J; Hurt, Christopher P; Latash, Mark L; Grabiner, Mark D

    2014-02-01

    To understand the relationship between variability of foot placement in the frontal plane and stability of gait patterns, we explored how constraining mediolateral foot placement during walking affects the structure of kinematic variance in the lower-limb configuration space during the swing phase of gait. Ten young subjects walked under three conditions: (1) unconstrained (normal walking), (2) constrained (walking overground with visual guides for foot placement to achieve the measured unconstrained step width) and, (3) beam (walking on elevated beams spaced to achieve the measured unconstrained step width). The uncontrolled manifold analysis of the joint configuration variance was used to quantify two variance components, one that did not affect the mediolateral trajectory of the foot in the frontal plane ("good variance") and one that affected this trajectory ("bad variance"). Based on recent studies, we hypothesized that across conditions (1) the index of the synergy stabilizing the mediolateral trajectory of the foot (the normalized difference between the "good variance" and "bad variance") would systematically increase and (2) the changes in the synergy index would be associated with a disproportionate increase in the "good variance." Both hypotheses were confirmed. We conclude that an increase in the "good variance" component of the joint configuration variance may be an effective method of ensuring high stability of gait patterns during conditions requiring increased control of foot placement, particularly if a postural threat is present. Ultimately, designing interventions that encourage a larger amount of "good variance" may be a promising method of improving stability of gait patterns in populations such as older adults and neurological patients.

  8. A new method of linkage analysis using LOD scores for quantitative traits supports linkage of monoamine oxidase activity to D17S250 in the Collaborative Study on the Genetics of Alcoholism pedigrees.

    PubMed

    Curtis, David; Knight, Jo; Sham, Pak C

    2005-09-01

    Although LOD score methods have been applied to diseases with complex modes of inheritance, linkage analysis of quantitative traits has tended to rely on non-parametric methods based on regression or variance components analysis. Here, we describe a new method for LOD score analysis of quantitative traits which does not require specification of a mode of inheritance. The technique is derived from the MFLINK method for dichotomous traits. A range of plausible transmission models is constructed, constrained to yield the correct population mean and variance for the trait but differing with respect to the contribution to the variance due to the locus under consideration. Maximized LOD scores under homogeneity and admixture are calculated, as is a model-free LOD score which compares the maximized likelihoods under admixture assuming linkage and no linkage. These LOD scores have known asymptotic distributions and hence can be used to provide a statistical test for linkage. The method has been implemented in a program called QMFLINK. It was applied to data sets simulated using a variety of transmission models and to a measure of monoamine oxidase activity in 105 pedigrees from the Collaborative Study on the Genetics of Alcoholism. With the simulated data, the results showed that the new method could detect linkage well if the true allele frequency for the trait was close to that specified. However, it performed poorly on models in which the true allele frequency was much rarer. For the Collaborative Study on the Genetics of Alcoholism data set only a modest overlap was observed between the results obtained from the new method and those obtained when the same data were analysed previously using regression and variance components analysis. Of interest is that D17S250 produced a maximized LOD score under homogeneity and admixture of 2.6 but did not indicate linkage using the previous methods. However, this region did produce evidence for linkage in a separate data set, suggesting that QMFLINK may have been able to detect a true linkage which was not picked up by the other methods. The application of model-free LOD score analysis to quantitative traits is novel and deserves further evaluation of its merits and disadvantages relative to other methods.

  9. Unique relation between surface-limited evaporation and relative humidity profiles holds in both field data and climate model simulations

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.; Gentine, P.; Lintner, B. R.

    2013-12-01

    A new method was recently proposed for estimating evapotranspiration (ET) from weather station data without requiring measurements of surface limiting factors (e.g. soil moisture, leaf area, canopy conductance) [Salvucci and Gentine, 2013, PNAS, 110(16): 6287-6291]. Required measurements include diurnal air temperature, specific humidity, wind speed, net shortwave radiation, and either measured or estimated incoming longwave radiation and ground heat flux. The approach is built around the idea that the key, rate-limiting, parameter of typical ET models, the land-surface resistance to water vapor transport, can be estimated from an emergent relationship between the diurnal cycle of the relative humidity profile and ET. The emergent relation is that the vertical variance of the relative humidity profile is less than what would occur for increased or decreased evaporation rates, suggesting that land-atmosphere feedback processes minimize this variance. This relation was found to hold over a wide range of climate conditions (arid to humid) and limiting factors (soil moisture, leaf area, energy) at a set of Ameriflux field sites. While the field tests in Salvucci and Gentine (2013) supported the minimum variance hypothesis, the analysis did not reveal the mechanisms responsible for the behavior. Instead the paper suggested, heuristically, that the results were due to an equilibration of the relative humidity between the land surface and the surface layer of the boundary layer. Here we apply this method using surface meteorological fields simulated by a global climate model (GCM), and compare the predicted ET to that simulated by the climate model. Similar to the field tests, the GCM simulated ET is in agreement with that predicted by minimizing the profile relative humidity variance. A reasonable interpretation of these results is that the feedbacks responsible for the minimization of the profile relative humidity variance in nature are represented in the climate model. The climate model components, in particular the land surface model and boundary layer representation, can thus be analyzed in controlled numerical experiments to discern the specific processes leading to the observed behavior. Results of this analysis will be presented.

  10. Statistical modelling of thermal annealing of fission tracks in apatite

    NASA Astrophysics Data System (ADS)

    Laslett, G. M.; Galbraith, R. F.

    1996-12-01

    We develop an improved methodology for modelling the relationship between mean track length, temperature, and time in fission track annealing experiments. We consider "fanning Arrhenius" models, in which contours of constant mean length on an Arrhenius plot are straight lines meeting at a common point. Features of our approach are explicit use of subject matter knowledge, treating mean length as the response variable, modelling of the mean-variance relationship with two components of variance, improved modelling of the control sample, and using information from experiments in which no tracks are seen. This approach overcomes several weaknesses in previous models and provides a robust six parameter model that is widely applicable. Estimation is via direct maximum likelihood which can be implemented using a standard numerical optimisation package. Because the model is highly nonlinear, some reparameterisations are needed to achieve stable estimation and calculation of precisions. Experience suggests that precisions are more convincingly estimated from profile log-likelihood functions than from the information matrix. We apply our method to the B-5 and Sr fluorapatite data of Crowley et al. (1991) and obtain well-fitting models in both cases. For the B-5 fluorapatite, our model exhibits less fanning than that of Crowley et al. (1991), although fitted mean values above 12 μm are fairly similar. However, predictions can be different, particularly for heavy annealing at geological time scales, where our model is less retentive. In addition, the refined error structure of our model results in tighter prediction errors, and has components of error that are easier to verify or modify. For the Sr fluorapatite, our fitted model for mean lengths does not differ greatly from that of Crowley et al. (1991), but our error structure is quite different.

  11. Visualizing Hyolaryngeal Mechanics in Swallowing Using Dynamic MRI

    PubMed Central

    Pearson, William G.; Zumwalt, Ann C.

    2013-01-01

    Introduction Coordinates of anatomical landmarks are captured using dynamic MRI to explore whether a proposed two-sling mechanism underlies hyolaryngeal elevation in pharyngeal swallowing. A principal components analysis (PCA) is applied to coordinates to determine the covariant function of the proposed mechanism. Methods Dynamic MRI (dMRI) data were acquired from eleven healthy subjects during a repeated swallows task. Coordinates mapping the proposed mechanism are collected from each dynamic (frame) of a dynamic MRI swallowing series of a randomly selected subject in order to demonstrate shape changes in a single subject. Coordinates representing minimum and maximum hyolaryngeal elevation of all 11 subjects were also mapped to demonstrate shape changes of the system among all subjects. MophoJ software was used to perform PCA and determine vectors of shape change (eigenvectors) for elements of the two-sling mechanism of hyolaryngeal elevation. Results For both single subject and group PCAs, hyolaryngeal elevation accounted for the first principal component of variation. For the single subject PCA, the first principal component accounted for 81.5% of the variance. For the between subjects PCA, the first principal component accounted for 58.5% of the variance. Eigenvectors and shape changes associated with this first principal component are reported. Discussion Eigenvectors indicate that two-muscle slings and associated skeletal elements function as components of a covariant mechanism to elevate the hyolaryngeal complex. Morphological analysis is useful to model shape changes in the two-sling mechanism of hyolaryngeal elevation. PMID:25090608

  12. Modified multiblock partial least squares path modeling algorithm with backpropagation neural networks approach

    NASA Astrophysics Data System (ADS)

    Yuniarto, Budi; Kurniawan, Robert

    2017-03-01

    PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.

  13. Comparison of factor-analytic and reduced rank models for test-day milk yield in Gyr dairy cattle (Bos indicus).

    PubMed

    Pereira, R J; Ayres, D R; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G

    2013-09-27

    We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields.

  14. Distribution of a low dose compound within pharmaceutical tablet by using multivariate curve resolution on Raman hyperspectral images.

    PubMed

    Boiret, Mathieu; de Juan, Anna; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel

    2015-01-25

    In this work, Raman hyperspectral images and multivariate curve resolution-alternating least squares (MCR-ALS) are used to study the distribution of actives and excipients within a pharmaceutical drug product. This article is mainly focused on the distribution of a low dose constituent. Different approaches are compared, using initially filtered or non-filtered data, or using a column-wise augmented dataset before starting the MCR-ALS iterative process including appended information on the low dose component. In the studied formulation, magnesium stearate is used as a lubricant to improve powder flowability. With a theoretical concentration of 0.5% (w/w) in the drug product, the spectral variance contained in the data is weak. By using a principal component analysis (PCA) filtered dataset as a first step of the MCR-ALS approach, the lubricant information is lost in the non-explained variance and its associated distribution in the tablet cannot be highlighted. A sufficient number of components to generate the PCA noise-filtered matrix has to be used in order to keep the lubricant variability within the data set analyzed or, otherwise, work with the raw non-filtered data. Different models are built using an increasing number of components to perform the PCA reduction. It is shown that the magnesium stearate information can be extracted from a PCA model using a minimum of 20 components. In the last part, a column-wise augmented matrix, including a reference spectrum of the lubricant, is used before starting MCR-ALS process. PCA reduction is performed on the augmented matrix, so the magnesium stearate contribution is included within the MCR-ALS calculations. By using an appropriate PCA reduction, with a sufficient number of components, or by using an augmented dataset including appended information on the low dose component, the distribution of the two actives, the two main excipients and the low dose lubricant are correctly recovered. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Advances in Parameter and Uncertainty Quantification Using Bayesian Hierarchical Techniques with a Spatially Referenced Watershed Model (Invited)

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.

    2013-12-01

    Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.

  16. A DATA-DRIVEN MODEL FOR SPECTRA: FINDING DOUBLE REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsalmantza, P.; Hogg, David W., E-mail: vivitsal@mpia.de

    2012-07-10

    We present a data-driven method-heteroscedastic matrix factorization, a kind of probabilistic factor analysis-for modeling or performing dimensionality reduction on observed spectra or other high-dimensional data with known but non-uniform observational uncertainties. The method uses an iterative inverse-variance-weighted least-squares minimization procedure to generate a best set of basis functions. The method is similar to principal components analysis (PCA), but with the substantial advantage that it uses measurement uncertainties in a responsible way and accounts naturally for poorly measured and missing data; it models the variance in the noise-deconvolved data space. A regularization can be applied, in the form of a smoothnessmore » prior (inspired by Gaussian processes) or a non-negative constraint, without making the method prohibitively slow. Because the method optimizes a justified scalar (related to the likelihood), the basis provides a better fit to the data in a probabilistic sense than any PCA basis. We test the method on Sloan Digital Sky Survey (SDSS) spectra, concentrating on spectra known to contain two redshift components: these are spectra of gravitational lens candidates and massive black hole binaries. We apply a hypothesis test to compare one-redshift and two-redshift models for these spectra, utilizing the data-driven model trained on a random subset of all SDSS spectra. This test confirms 129 of the 131 lens candidates in our sample and all of the known binary candidates, and turns up very few false positives.« less

  17. Viscoelastic deformation near active plate boundaries

    NASA Technical Reports Server (NTRS)

    Ward, S. N.

    1986-01-01

    Model deformations near the active plate boundaries of Western North America using space-based geodetic measurements as constraints are discussed. The first six months of this project were spent gaining familarity with space-based measurements, accessing the Crustal Dynamics Data Information Computer, and building time independent deformation models. The initial goal was to see how well the simplest elastic models can reproduce very long base interferometry (VLBI) baseline data. From the Crustal Dynamics Data Information Service, a total of 18 VLBI baselines are available which have been surveyed on four or more occasions. These data were fed into weighted and unweighted inversions to obtain baseline closure rates. Four of the better quality lines are illustrated. The deformation model assumes that the observed baseline rates result from a combination of rigid plate tectonic motions plus a component resulting from elastic strain build up due to a failure of the plate boundary to slip at the full plate tectonic rate. The elastic deformation resulting from the locked plate boundary is meant to portray interseismic strain accumulation. During and shortly after a large interplate earthquake, these strains are largely released, and points near the fault which were previously retarded suddenly catch up to the positions predicted by rigid plate models. Researchers judge the quality of fit by the sum squares of weighted residuals, termed total variance. The observed baseline closures have a total variance of 99 (cm/y)squared. When the RM2 velocities are assumed to model the data, the total variance increases to 154 (cm/y)squared.

  18. Improved uncertainty quantification in nondestructive assay for nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Croft, Stephen; Jarman, Ken

    2016-12-01

    This paper illustrates methods to improve uncertainty quantification (UQ) for non-destructive assay (NDA) measurements used in nuclear nonproliferation. First, it is shown that current bottom-up UQ applied to calibration data is not always adequate, for three main reasons: (1) Because there are errors in both the predictors and the response, calibration involves a ratio of random quantities, and calibration data sets in NDA usually consist of only a modest number of samples (3–10); therefore, asymptotic approximations involving quantities needed for UQ such as means and variances are often not sufficiently accurate; (2) Common practice overlooks that calibration implies a partitioningmore » of total error into random and systematic error, and (3) In many NDA applications, test items exhibit non-negligible departures in physical properties from calibration items, so model-based adjustments are used, but item-specific bias remains in some data. Therefore, improved bottom-up UQ using calibration data should predict the typical magnitude of item-specific bias, and the suggestion is to do so by including sources of item-specific bias in synthetic calibration data that is generated using a combination of modeling and real calibration data. Second, for measurements of the same nuclear material item by both the facility operator and international inspectors, current empirical (top-down) UQ is described for estimating operator and inspector systematic and random error variance components. A Bayesian alternative is introduced that easily accommodates constraints on variance components, and is more robust than current top-down methods to the underlying measurement error distributions.« less

  19. Save money by understanding variance and tolerancing.

    PubMed

    Stuart, K

    2007-01-01

    Manufacturing processes are inherently variable, which results in component and assembly variance. Unless process capability, variance and tolerancing are fully understood, incorrect design tolerances may be applied, which will lead to more expensive tooling, inflated production costs, high reject rates, product recalls and excessive warranty costs. A methodology is described for correctly allocating tolerances and performing appropriate analyses.

  20. Environmental Influences on Well-Being: A Dyadic Latent Panel Analysis of Spousal Similarity

    ERIC Educational Resources Information Center

    Schimmack, Ulrich; Lucas, Richard E.

    2010-01-01

    This article uses dyadic latent panel analysis (DLPA) to examine environmental influences on well-being. DLPA requires longitudinal dyadic data. It decomposes the observed variance of both members of a dyad into a trait, state, and an error component. Furthermore, state variance is decomposed into initial and new state variance. Total observed…

  1. An Analysis of Variance Approach for the Estimation of Response Time Distributions in Tests

    ERIC Educational Resources Information Center

    Attali, Yigal

    2010-01-01

    Generalizability theory and analysis of variance methods are employed, together with the concept of objective time pressure, to estimate response time distributions and the degree of time pressure in timed tests. By estimating response time variance components due to person, item, and their interaction, and fixed effects due to item types and…

  2. Multiple Damage Progression Paths in Model-Based Prognostics

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Goebel, Kai Frank

    2011-01-01

    Model-based prognostics approaches employ domain knowledge about a system, its components, and how they fail through the use of physics-based models. Component wear is driven by several different degradation phenomena, each resulting in their own damage progression path, overlapping to contribute to the overall degradation of the component. We develop a model-based prognostics methodology using particle filters, in which the problem of characterizing multiple damage progression paths is cast as a joint state-parameter estimation problem. The estimate is represented as a probability distribution, allowing the prediction of end of life and remaining useful life within a probabilistic framework that supports uncertainty management. We also develop a novel variance control mechanism that maintains an uncertainty bound around the hidden parameters to limit the amount of estimation uncertainty and, consequently, reduce prediction uncertainty. We construct a detailed physics-based model of a centrifugal pump, to which we apply our model-based prognostics algorithms. We illustrate the operation of the prognostic solution with a number of simulation-based experiments and demonstrate the performance of the chosen approach when multiple damage mechanisms are active

  3. A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada.

    PubMed

    Ménard, Richard; Deshaies-Jacques, Martin; Gasset, Nicolas

    2016-09-01

    An objective analysis is one of the main components of data assimilation. By combining observations with the output of a predictive model we combine the best features of each source of information: the complete spatial and temporal coverage provided by models, with a close representation of the truth provided by observations. The process of combining observations with a model output is called an analysis. To produce an analysis requires the knowledge of observation and model errors, as well as its spatial correlation. This paper is devoted to the development of methods of estimation of these error variances and the characteristic length-scale of the model error correlation for its operational use in the Canadian objective analysis system. We first argue in favor of using compact support correlation functions, and then introduce three estimation methods: the Hollingsworth-Lönnberg (HL) method in local and global form, the maximum likelihood method (ML), and the [Formula: see text] diagnostic method. We perform one-dimensional (1D) simulation studies where the error variance and true correlation length are known, and perform an estimation of both error variances and correlation length where both are non-uniform. We show that a local version of the HL method can capture accurately the error variances and correlation length at each observation site, provided that spatial variability is not too strong. However, the operational objective analysis requires only a single and globally valid correlation length. We examine whether any statistics of the local HL correlation lengths could be a useful estimate, or whether other global estimation methods such as by the global HL, ML, or [Formula: see text] should be used. We found in both 1D simulation and using real data that the ML method is able to capture physically significant aspects of the correlation length, while most other estimates give unphysical and larger length-scale values. This paper describes a proposed improvement of the objective analysis of surface pollutants at Environment and Climate Change Canada (formerly known as Environment Canada). Objective analyses are essentially surface maps of air pollutants that are obtained by combining observations with an air quality model output, and are thought to provide a complete and more accurate representation of the air quality. The highlight of this study is an analysis of methods to estimate the model (or background) error correlation length-scale. The error statistics are an important and critical component to the analysis scheme.

  4. Effects of stage of pregnancy on variance components, daily milk yields and 305-day milk yield in Holstein cows, as estimated by using a test-day model.

    PubMed

    Yamazaki, T; Hagiya, K; Takeda, H; Osawa, T; Yamaguchi, S; Nagamine, Y

    2016-08-01

    Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open to maximize lifetime productivity in dairy cows.

  5. 77 FR 3121 - Program Integrity: Gainful Employment-Debt Measures; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...On June 13, 2011, the Secretary of Education (Secretary) published a notice of final regulations in the Federal Register for Program Integrity: Gainful Employment--Debt Measures (Gainful Employment--Debt Measures) (76 FR 34386). In the preamble of the final regulations, we used the wrong data to calculate the percent of total variance in institutions' repayment rates that may be explained by race/ethnicity. Our intent was to use the data that included all minority students per institution. However, we mistakenly used the data for a subset of minority students per institution. We have now recalculated the total variance using the data that includes all minority students. Through this document, we correct, in the preamble of the Gainful Employment--Debt Measures final regulations, the errors resulting from this misapplication. We do not change the regression analysis model itself; we are using the same model with the appropriate data. Through this notice we also correct, in the preamble of the Gainful Employment--Debt Measures final regulations, our description of one component of the regression analysis. The preamble referred to use of an institutional variable measuring acceptance rates. This description was incorrect; in fact we used an institutional variable measuring retention rates. Correcting this language does not change the regression analysis model itself or the variance explained by the model. The text of the final regulations remains unchanged.

  6. Modelling heterogeneity variances in multiple treatment comparison meta-analysis – Are informative priors the better solution?

    PubMed Central

    2013-01-01

    Background Multiple treatment comparison (MTC) meta-analyses are commonly modeled in a Bayesian framework, and weakly informative priors are typically preferred to mirror familiar data driven frequentist approaches. Random-effects MTCs have commonly modeled heterogeneity under the assumption that the between-trial variance for all involved treatment comparisons are equal (i.e., the ‘common variance’ assumption). This approach ‘borrows strength’ for heterogeneity estimation across treatment comparisons, and thus, ads valuable precision when data is sparse. The homogeneous variance assumption, however, is unrealistic and can severely bias variance estimates. Consequently 95% credible intervals may not retain nominal coverage, and treatment rank probabilities may become distorted. Relaxing the homogeneous variance assumption may be equally problematic due to reduced precision. To regain good precision, moderately informative variance priors or additional mathematical assumptions may be necessary. Methods In this paper we describe four novel approaches to modeling heterogeneity variance - two novel model structures, and two approaches for use of moderately informative variance priors. We examine the relative performance of all approaches in two illustrative MTC data sets. We particularly compare between-study heterogeneity estimates and model fits, treatment effect estimates and 95% credible intervals, and treatment rank probabilities. Results In both data sets, use of moderately informative variance priors constructed from the pair wise meta-analysis data yielded the best model fit and narrower credible intervals. Imposing consistency equations on variance estimates, assuming variances to be exchangeable, or using empirically informed variance priors also yielded good model fits and narrow credible intervals. The homogeneous variance model yielded high precision at all times, but overall inadequate estimates of between-trial variances. Lastly, treatment rankings were similar among the novel approaches, but considerably different when compared with the homogenous variance approach. Conclusions MTC models using a homogenous variance structure appear to perform sub-optimally when between-trial variances vary between comparisons. Using informative variance priors, assuming exchangeability or imposing consistency between heterogeneity variances can all ensure sufficiently reliable and realistic heterogeneity estimation, and thus more reliable MTC inferences. All four approaches should be viable candidates for replacing or supplementing the conventional homogeneous variance MTC model, which is currently the most widely used in practice. PMID:23311298

  7. Estimates of genetic and environmental (co)variances for first lactation on milk yield, survival, and calving interval.

    PubMed

    Dong, M C; van Vleck, L D

    1989-03-01

    Variance and covariance components for milk yield, survival to second freshening, calving interval in first lactation were estimated by REML with the expectation and maximization algorithm for an animal model which included herd-year-season effects. Cows without calving interval but with milk yield were included. Each of the four data sets of 15 herds included about 3000 Holstein cows. Relationships across herds were ignored to enable inversion of the coefficient matrix of mixed model equations. Quadratics and their expectations were accumulated herd by herd. Heritability of milk yield (.32) agrees with reports by same methods. Heritabilities of survival (.11) and calving interval(.15) are slightly larger and genetic correlations smaller than results from different methods of estimation. Genetic correlation between milk yield and calving interval (.09) indicates genetic ability to produce more milk is lightly associated with decreased fertility.

  8. Objective determination of image end-members in spectral mixture analysis of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Tompkins, Stefanie; Mustard, John F.; Pieters, Carle M.; Forsyth, Donald W.

    1993-01-01

    Spectral mixture analysis has been shown to be a powerful, multifaceted tool for analysis of multi- and hyper-spectral data. Applications of AVIRIS data have ranged from mapping soils and bedrock to ecosystem studies. During the first phase of the approach, a set of end-members are selected from an image cube (image end-members) that best account for its spectral variance within a constrained, linear least squares mixing model. These image end-members are usually selected using a priori knowledge and successive trial and error solutions to refine the total number and physical location of the end-members. However, in many situations a more objective method of determining these essential components is desired. We approach the problem of image end-member determination objectively by using the inherent variance of the data. Unlike purely statistical methods such as factor analysis, this approach derives solutions that conform to a physically realistic model.

  9. Statistical power for detecting trends with applications to seabird monitoring

    USGS Publications Warehouse

    Hatch, Shyla A.

    2003-01-01

    Power analysis is helpful in defining goals for ecological monitoring and evaluating the performance of ongoing efforts. I examined detection standards proposed for population monitoring of seabirds using two programs (MONITOR and TRENDS) specially designed for power analysis of trend data. Neither program models within- and among-years components of variance explicitly and independently, thus an error term that incorporates both components is an essential input. Residual variation in seabird counts consisted of day-to-day variation within years and unexplained variation among years in approximately equal parts. The appropriate measure of error for power analysis is the standard error of estimation (S.E.est) from a regression of annual means against year. Replicate counts within years are helpful in minimizing S.E.est but should not be treated as independent samples for estimating power to detect trends. Other issues include a choice of assumptions about variance structure and selection of an exponential or linear model of population change. Seabird count data are characterized by strong correlations between S.D. and mean, thus a constant CV model is appropriate for power calculations. Time series were fit about equally well with exponential or linear models, but log transformation ensures equal variances over time, a basic assumption of regression analysis. Using sample data from seabird monitoring in Alaska, I computed the number of years required (with annual censusing) to detect trends of -1.4% per year (50% decline in 50 years) and -2.7% per year (50% decline in 25 years). At ??=0.05 and a desired power of 0.9, estimated study intervals ranged from 11 to 69 years depending on species, trend, software, and study design. Power to detect a negative trend of 6.7% per year (50% decline in 10 years) is suggested as an alternative standard for seabird monitoring that achieves a reasonable match between statistical and biological significance.

  10. Variance decomposition shows the importance of human-climate feedbacks in the Earth system

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.

    2017-12-01

    The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.

  11. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    NASA Astrophysics Data System (ADS)

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in the tropics, north western Canada, eastern U.S. and northern Europe up to few years in the Sahara, the Arabian Peninsula, continental Eurasia and central U.S. Some models simulate very long memory all over the globe. This behavior is associated with differences between the models in the maximum root and soil depth. Models with shallow roots and deep soils exhibit longer memories than models with similar soil and root depths. Further analysis will be conducted to clearly divide models into groups based on their inter-model spatial correlation of simulated soil moisture characteristics.

  12. Mixedness determination of rare earth-doped ceramics

    NASA Astrophysics Data System (ADS)

    Czerepinski, Jennifer H.

    The lack of chemical uniformity in a powder mixture, such as clustering of a minor component, can lead to deterioration of materials properties. A method to determine powder mixture quality is to correlate the chemical homogeneity of a multi-component mixture with its particle size distribution and mixing method. This is applicable to rare earth-doped ceramics, which require at least 1-2 nm dopant ion spacing to optimize optical properties. Mixedness simulations were conducted for random heterogeneous mixtures of Nd-doped LaF3 mixtures using the Concentric Shell Model of Mixedness (CSMM). Results indicate that when the host to dopant particle size ratio is 100, multi-scale concentration variance is optimized. In order to verify results from the model, experimental methods that probe a mixture at the micro, meso, and macro scales are needed. To directly compare CSMM results experimentally, an image processing method was developed to calculate variance profiles from electron images. An in-lens (IL) secondary electron image is subtracted from the corresponding Everhart-Thornley (ET) secondary electron image in a Field-Emission Scanning Electron Microscope (FESEM) to produce two phases and pores that can be quantified with 50 nm spatial resolution. A macro was developed to quickly analyze multi-scale compositional variance from these images. Results for a 50:50 mixture of NdF3 and LaF3 agree with the computational model. The method has proven to be applicable only for mixtures with major components and specific particle morphologies, but the macro is useful for any type of imaging that produces excellent phase contrast, such as confocal microscopy. Fluorescence spectroscopy was used as an indirect method to confirm computational results for Nd-doped LaF3 mixtures. Fluorescence lifetime can be used as a quantitative method to indirectly measure chemical homogeneity when the limits of electron microscopy have been reached. Fluorescence lifetime represents the compositional fluctuations of a dopant on the nanoscale while accounting for billions of particles in a fast, non-destructive manner. The significance of this study will show how small-scale fluctuations in homogeneity limit the optimization of optical properties, which can be improved by the proper selection of particle size and mixing method.

  13. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  14. Increasing selection response by Bayesian modeling of heterogeneous environmental variances

    USDA-ARS?s Scientific Manuscript database

    Heterogeneity of environmental variance among genotypes reduces selection response because genotypes with higher variance are more likely to be selected than low-variance genotypes. Modeling heterogeneous variances to obtain weighted means corrected for heterogeneous variances is difficult in likel...

  15. Selective impact of disease on short-term and long-term components of self-reported memory: a population-based HUNT study

    PubMed Central

    Almkvist, Ove; Bosnes, Ole; Bosnes, Ingunn; Stordal, Eystein

    2017-01-01

    Background Subjective memory is commonly considered to be a unidimensional measure. However, theories of performance-based memory suggest that subjective memory could be divided into more than one dimension. Objective To divide subjective memory into theoretically related components of memory and explore the relationship to disease. Methods In this study, various aspects of self-reported memory were studied with respect to demographics and diseases in the third wave of the HUNT epidemiological study in middle Norway. The study included all individuals 55 years of age or older, who responded to a nine-item questionnaire on subjective memory and questionnaires on health (n=18 633). Results A principle component analysis of the memory items resulted in two memory components; the criterion used was an eigenvalue above 1, which accounted for 54% of the total variance. The components were interpreted as long-term memory (LTM; the first component; 43% of the total variance) and short-term memory (STM; the second component; 11% of the total variance). Memory impairment was significantly related to all diseases (except Bechterew’s disease), most strongly to brain infarction, heart failure, diabetes, cancer, chronic obstructive pulmonary disease and whiplash. For most diseases, the STM component was more affected than the LTM component; however, in cancer, the opposite pattern was seen. Conclusions Subjective memory impairment as measured in HUNT contained two components, which were differentially associated with diseases. PMID:28490551

  16. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  17. Waveform-based spaceborne GNSS-R wind speed observation: Demonstration and analysis using UK TechDemoSat-1 data

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yang, Dongkai; Zhang, Bo; Li, Weiqiang

    2018-03-01

    This paper explores two types of mathematical functions to fit single- and full-frequency waveform of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R), respectively. The metrics of the waveforms, such as the noise floor, peak magnitude, mid-point position of the leading edge, leading edge slope and trailing edge slope, can be derived from the parameters of the proposed models. Because the quality of the UK TDS-1 data is not at the level required by remote sensing mission, the waveforms buried in noise or from ice/land are removed by defining peak-to-mean ratio, cosine similarity of the waveform before wind speed are retrieved. The single-parameter retrieval models are developed by comparing the peak magnitude, leading edge slope and trailing edge slope derived from the parameters of the proposed models with in situ wind speed from the ASCAT scatterometer. To improve the retrieval accuracy, three types of multi-parameter observations based on the principle component analysis (PCA), minimum variance (MV) estimator and Back Propagation (BP) network are implemented. The results indicate that compared to the best results of the single-parameter observation, the approaches based on the principle component analysis and minimum variance could not significantly improve retrieval accuracy, however, the BP networks obtain improvement with the RMSE of 2.55 m/s and 2.53 m/s for single- and full-frequency waveform, respectively.

  18. Prediction of lethal/effective concentration/dose in the presence of multiple auxiliary covariates and components of variance

    USGS Publications Warehouse

    Gutreuter, S.; Boogaard, M.A.

    2007-01-01

    Predictors of the percentile lethal/effective concentration/dose are commonly used measures of efficacy and toxicity. Typically such quantal-response predictors (e.g., the exposure required to kill 50% of some population) are estimated from simple bioassays wherein organisms are exposed to a gradient of several concentrations of a single agent. The toxicity of an agent may be influenced by auxiliary covariates, however, and more complicated experimental designs may introduce multiple variance components. Prediction methods lag examples of those cases. A conventional two-stage approach consists of multiple bivariate predictions of, say, medial lethal concentration followed by regression of those predictions on the auxiliary covariates. We propose a more effective and parsimonious class of generalized nonlinear mixed-effects models for prediction of lethal/effective dose/concentration from auxiliary covariates. We demonstrate examples using data from a study regarding the effects of pH and additions of variable quantities 2???,5???-dichloro-4???- nitrosalicylanilide (niclosamide) on the toxicity of 3-trifluoromethyl-4- nitrophenol to larval sea lamprey (Petromyzon marinus). The new models yielded unbiased predictions and root-mean-squared errors (RMSEs) of prediction for the exposure required to kill 50 and 99.9% of some population that were 29 to 82% smaller, respectively, than those from the conventional two-stage procedure. The model class is flexible and easily implemented using commonly available software. ?? 2007 SETAC.

  19. Neuroticism explains unwanted variance in Implicit Association Tests of personality: possible evidence for an affective valence confound.

    PubMed

    Fleischhauer, Monika; Enge, Sören; Miller, Robert; Strobel, Alexander; Strobel, Anja

    2013-01-01

    Meta-analytic data highlight the value of the Implicit Association Test (IAT) as an indirect measure of personality. Based on evidence suggesting that confounding factors such as cognitive abilities contribute to the IAT effect, this study provides a first investigation of whether basic personality traits explain unwanted variance in the IAT. In a gender-balanced sample of 204 volunteers, the Big-Five dimensions were assessed via self-report, peer-report, and IAT. By means of structural equation modeling (SEM), latent Big-Five personality factors (based on self- and peer-report) were estimated and their predictive value for unwanted variance in the IAT was examined. In a first analysis, unwanted variance was defined in the sense of method-specific variance which may result from differences in task demands between the two IAT block conditions and which can be mirrored by the absolute size of the IAT effects. In a second analysis, unwanted variance was examined in a broader sense defined as those systematic variance components in the raw IAT scores that are not explained by the latent implicit personality factors. In contrast to the absolute IAT scores, this also considers biases associated with the direction of IAT effects (i.e., whether they are positive or negative in sign), biases that might result, for example, from the IAT's stimulus or category features. None of the explicit Big-Five factors was predictive for method-specific variance in the IATs (first analysis). However, when considering unwanted variance that goes beyond pure method-specific variance (second analysis), a substantial effect of neuroticism occurred that may have been driven by the affective valence of IAT attribute categories and the facilitated processing of negative stimuli, typically associated with neuroticism. The findings thus point to the necessity of using attribute category labels and stimuli of similar affective valence in personality IATs to avoid confounding due to recoding.

  20. Estimating the periodic components of a biomedical signal through inverse problem modelling and Bayesian inference with sparsity enforcing prior

    NASA Astrophysics Data System (ADS)

    Dumitru, Mircea; Djafari, Ali-Mohammad

    2015-01-01

    The recent developments in chronobiology need a periodic components variation analysis for the signals expressing the biological rhythms. A precise estimation of the periodic components vector is required. The classical approaches, based on FFT methods, are inefficient considering the particularities of the data (short length). In this paper we propose a new method, using the sparsity prior information (reduced number of non-zero values components). The considered law is the Student-t distribution, viewed as a marginal distribution of a Infinite Gaussian Scale Mixture (IGSM) defined via a hidden variable representing the inverse variances and modelled as a Gamma Distribution. The hyperparameters are modelled using the conjugate priors, i.e. using Inverse Gamma Distributions. The expression of the joint posterior law of the unknown periodic components vector, hidden variables and hyperparameters is obtained and then the unknowns are estimated via Joint Maximum A Posteriori (JMAP) and Posterior Mean (PM). For the PM estimator, the expression of the posterior law is approximated by a separable one, via the Bayesian Variational Approximation (BVA), using the Kullback-Leibler (KL) divergence. Finally we show the results on synthetic data in cancer treatment applications.

  1. [Studies on the brand traceability of milk powder based on NIR spectroscopy technology].

    PubMed

    Guan, Xiao; Gu, Fang-Qing; Liu, Jing; Yang, Yong-Jian

    2013-10-01

    Brand traceability of several different kinds of milk powder was studied by combining near infrared spectroscopy diffuse reflectance mode with soft independent modeling of class analogy (SIMCA) in the present paper. The near infrared spectrum of 138 samples, including 54 Guangming milk powder samples, 43 Netherlands samples, and 33 Nestle samples and 8 Yili samples, were collected. After pretreatment of full spectrum data variables in training set, principal component analysis was performed, and the contribution rate of the cumulative variance of the first three principal components was about 99.07%. Milk powder principal component regression model based on SIMCA was established, and used to classify the milk powder samples in prediction sets. The results showed that the recognition rate of Guangming milk powder, Netherlands milk powder and Nestle milk powder was 78%, 75% and 100%, the rejection rate was 100%, 87%, and 88%, respectively. Therefore, the near infrared spectroscopy combined with SIMCA model can classify milk powder with high accuracy, and is a promising identification method of milk powder variety.

  2. Study on nondestructive discrimination of genuine and counterfeit wild ginsengs using NIRS

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Fan, Y.; Peng, Z.; Ding, H.; Gao, H.

    2012-07-01

    A new approach for the nondestructive discrimination between genuine wild ginsengs and the counterfeit ones by near infrared spectroscopy (NIRS) was developed. Both discriminant analysis and back propagation artificial neural network (BP-ANN) were applied to the model establishment for discrimination. Optimal modeling wavelengths were determined based on the anomalous spectral information of counterfeit samples. Through principal component analysis (PCA) of various wild ginseng samples, genuine and counterfeit, the cumulative percentages of variance of the principal components were obtained, serving as a reference for principal component (PC) factor determination. Discriminant analysis achieved an identification ratio of 88.46%. With sample' truth values as its outputs, a three-layer BP-ANN model was built, which yielded a higher discrimination accuracy of 100%. The overall results sufficiently demonstrate that NIRS combined with BP-ANN classification algorithm performs better on ginseng discrimination than discriminant analysis, and can be used as a rapid and nondestructive method for the detection of counterfeit wild ginsengs in food and pharmaceutical industry.

  3. Direct and social genetic effects on body weight at 270 days and carcass and ham quality traits in heavy pigs.

    PubMed

    Rostellato, R; Sartori, C; Bonfatti, V; Chiarot, G; Carnier, P

    2015-01-01

    The aims of this study were to estimate covariance components for BW at 270 d (BW270) and carcass and ham quality traits in heavy pigs using models accounting for social effects and to compare the ability of such models to fit the data relative to models ignoring social interactions. Phenotypic records were from 9,871 pigs sired by 293 purebred boars mated to 456 crossbred sows. Piglets were born and reared at the same farm and randomly assigned at 60 d of age to groups (6.1 pigs per group on average) housed in finishing pens, each having an area of 6 m(2). The average additive genetic relationship among group mates was 0.11. Pigs were slaughtered at 277 ± 3 d of age and 169.7 ± 13.9 kg BW in groups of nearly 70 animals each. Four univariate animal models were compared: a basic model (M1) including only direct additive genetic effects, a model (M2) with nonheritable social group (pen) effects in addition to effects in M1, a model (M3) accounting for litter effects in addition to M2, and a model (M4) accounting for social genetic effects in addition to effects in M3. Restricted maximum likelihood estimates of covariance components were obtained for BW270; carcass backfat depth; carcass lean meat content (CLM); iodine number (IOD); and linoleic acid content (LIA) of raw ham subcutaneous fat; subcutaneous fat depth in the proximity of semimembranosus muscle (SFD1) and quadriceps femoris muscle (SFD2); and linear scores for ham round shape (RS), subcutaneous fat (SF), and marbling. Likelihood ratio tests indicated that, for all traits, M2 fit the data better than M1 and that M3 was superior to M2 except for SFD1 and SFD2. Model M4 was significantly better than M3 for BW270 (P < 0.001) and CLM, IOD, RS, and SF (P < 0.05). The contribution of social genetic effects to the total heritable variance was large for CLM and BW270, ranging from 33.2 to 35%, whereas the one for ham quality traits ranged from 6.8 (RS) to 11.2% (SF). Direct and social genetic effects on BW270 were uncorrelated, whereas there was a negative genetic covariance between direct and social effects on CLM, IOD, RS, and SF, which reduced the total heritable variance. This variance, measured relative to phenotypic variance, ranged from 21 (CLM) to 54% (BW270). Results indicate that social genetic effects affect variation in traits relevant for heavy pigs used in dry-cured hams manufacturing. Such effects should be exploited and taken into account in design of breeding programs for heavy pigs.

  4. Regional climates in the GISS global circulation model - Synoptic-scale circulation

    NASA Technical Reports Server (NTRS)

    Hewitson, B.; Crane, R. G.

    1992-01-01

    A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.

  5. The PX-EM algorithm for fast stable fitting of Henderson's mixed model

    PubMed Central

    Foulley, Jean-Louis; Van Dyk, David A

    2000-01-01

    This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399

  6. Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE

    PubMed Central

    Fiorini, T.; Bellani, G.; Talamelli, A.

    2017-01-01

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×104 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend–Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend–Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167586

  7. Genetic and environmental influences on blood pressure variability: a study in twins.

    PubMed

    Xu, Xiaojing; Ding, Xiuhua; Zhang, Xinyan; Su, Shaoyong; Treiber, Frank A; Vlietinck, Robert; Fagard, Robert; Derom, Catherine; Gielen, Marij; Loos, Ruth J F; Snieder, Harold; Wang, Xiaoling

    2013-04-01

    Blood pressure variability (BPV) and its reduction in response to antihypertensive treatment are predictors of clinical outcomes; however, little is known about its heritability. In this study, we examined the relative influence of genetic and environmental sources of variance of BPV and the extent to which it may depend on race or sex in young twins. Twins were enrolled from two studies. One study included 703 white twins (308 pairs and 87 singletons) aged 18-34 years, whereas another study included 242 white twins (108 pairs and 26 singletons) and 188 black twins (79 pairs and 30 singletons) aged 12-30 years. BPV was calculated from 24-h ambulatory blood pressure recording. Twin modeling showed similar results in the separate analysis in both twin studies and in the meta-analysis. Familial aggregation was identified for SBP variability (SBPV) and DBP variability (DBPV) with genetic factors and common environmental factors together accounting for 18-40% and 23-31% of the total variance of SBPV and DBPV, respectively. Unique environmental factors were the largest contributor explaining up to 82-77% of the total variance of SBPV and DBPV. No sex or race difference in BPV variance components was observed. The results remained the same after adjustment for 24-h blood pressure levels. The variance in BPV is predominantly determined by unique environment in youth and young adults, although familial aggregation due to additive genetic and/or common environment influences was also identified explaining about 25% of the variance in BPV.

  8. Linear degrees of freedom in speech production: analysis of cineradio- and labio-film data and articulatory-acoustic modeling.

    PubMed

    Beautemps, D; Badin, P; Bailly, G

    2001-05-01

    The following contribution addresses several issues concerning speech degrees of freedom in French oral vowels, stop, and fricative consonants based on an analysis of tongue and lip shapes extracted from cineradio- and labio-films. The midsagittal tongue shapes have been submitted to a linear decomposition where some of the loading factors were selected such as jaw and larynx position while four other components were derived from principal component analysis (PCA). For the lips, in addition to the more traditional protrusion and opening components, a supplementary component was extracted to explain the upward movement of both the upper and lower lips in [v] production. A linear articulatory model was developed; the six tongue degrees of freedom were used as the articulatory control parameters of the midsagittal tongue contours and explained 96% of the tongue data variance. These control parameters were also used to specify the frontal lip width dimension derived from the labio-film front views. Finally, this model was complemented by a conversion model going from the midsagittal to the area function, based on a fitting of the midsagittal distances and the formant frequencies for both vowels and consonants.

  9. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS.

    PubMed

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2011-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied.

  10. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    PubMed

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.

  11. Self-esteem, social participation, and quality of life in patients with multiple sclerosis.

    PubMed

    Mikula, Pavol; Nagyova, Iveta; Krokavcova, Martina; Vitkova, Marianna; Rosenberger, Jaroslav; Szilasiova, Jarmila; Gdovinova, Zuzana; Stewart, Roy E; Groothoff, Johan W; van Dijk, Jitse P

    2017-07-01

    The aim of this study is to explore whether self-esteem and social participation are associated with the physical and mental quality of life (Physical Component Summary, Mental Component Summary) and whether self-esteem can mediate the association between these variables. We collected information from 118 consecutive multiple sclerosis patients. Age, gender, disease duration, disability status, and participation were significant predictors of Physical Component Summary, explaining 55.4 percent of the total variance. Self-esteem fully mediated the association between social participation and Mental Component Summary (estimate/standard error = -4.872; p < 0.001) and along with disability status explained 48.3 percent of the variance in Mental Component Summary. These results can be used in intervention and educational programs.

  12. Genetic effects and genotype × environment interactions govern seed oil content in Brassica napus L.

    PubMed

    Guo, Yanli; Si, Ping; Wang, Nan; Wen, Jing; Yi, Bin; Ma, Chaozhi; Tu, Jinxing; Zou, Jitao; Fu, Tingdong; Shen, Jinxiong

    2017-01-05

    As seed oil content (OC) is a key measure of rapeseed quality, better understanding the genetic basis of OC would greatly facilitate the breeding of high-oil cultivars. Here, we investigated the components of genetic effects and genotype × environment interactions (GE) that govern OC using a full diallel set of nine parents, which represented a wide range of the Chinese rapeseed cultivars and pure lines with various OCs. Our results from an embryo-cytoplasm-maternal (GoCGm) model for diploid seeds showed that OC was primarily determined by genetic effects (V G ) and GE (V GE ), which together accounted for 86.19% of the phenotypic variance (V P ). GE (V GE ) alone accounted for 51.68% of the total genetic variance, indicating the importance of GE interaction for OC. Furthermore, maternal variance explained 75.03% of the total genetic variance, embryo and cytoplasmic effects accounted for 21.02% and 3.95%, respectively. We also found that the OC of F 1 seeds was mainly determined by maternal effect and slightly affected by xenia. Thus, the OC of rapeseed was simultaneously affected by various genetic components, including maternal, embryo, cytoplasm, xenia and GE effects. In addition, general combining ability (GCA), specific combining ability (SCA), and maternal variance had significant influence on OC. The lines H2 and H1 were good general combiners, suggesting that they would be the best parental candidates for OC improvement. Crosses H3 × M2 and H1 × M3 exhibited significant SCA, suggesting their potentials in hybrid development. Our study thoroughly investigated and reliably quantified various genetic factors associated with OC of rapeseed by using a full diallel and backcross and reciprocal backcross. This findings lay a foundation for future genetic studies of OC and provide guidance for breeding of high-oil rapeseed cultivars.

  13. Subacute casemix classification for stroke rehabilitation in Australia. How well does AN-SNAP v2 explain variance in outcomes?

    PubMed

    Kohler, Friedbert; Renton, Roger; Dickson, Hugh G; Estell, John; Connolly, Carol E

    2011-02-01

    We sought the best predictors for length of stay, discharge destination and functional improvement for inpatients undergoing rehabilitation following a stroke and compared these predictors against AN-SNAP v2. The Oxfordshire classification subgroup, sociodemographic data and functional data were collected for patients admitted between 1997 and 2007, with a diagnosis of recent stroke. The data were factor analysed using Principal Components Analysis for categorical data (CATPCA). Categorical regression analyses was performed to determine the best predictors of length of stay, discharge destination, and functional improvement. A total of 1154 patients were included in the study. Principal components analysis indicated that the data were effectively unidimensional, with length of stay being the most important component. Regression analysis demonstrated that the best predictor was the admission motor FIM score, explaining 38.9% of variance for length of stay, 37.4%.of variance for functional improvement and 16% of variance for discharge destination. The best explanatory variable in our inpatient rehabilitation service is the admission motor FIM. AN- SNAP v2 classification is a less effective explanatory variable. This needs to be taken into account when using AN-SNAP v2 classification for clinical or funding purposes.

  14. Ozone data and mission sampling analysis

    NASA Technical Reports Server (NTRS)

    Robbins, J. L.

    1980-01-01

    A methodology was developed to analyze discrete data obtained from the global distribution of ozone. Statistical analysis techniques were applied to describe the distribution of data variance in terms of empirical orthogonal functions and components of spherical harmonic models. The effects of uneven data distribution and missing data were considered. Data fill based on the autocorrelation structure of the data is described. Computer coding of the analysis techniques is included.

  15. Differential contribution of genomic regions to marked genetic variation and prediction of quantitative traits in broiler chickens.

    PubMed

    Abdollahi-Arpanahi, Rostam; Morota, Gota; Valente, Bruno D; Kranis, Andreas; Rosa, Guilherme J M; Gianola, Daniel

    2016-02-03

    Genome-wide association studies in humans have found enrichment of trait-associated single nucleotide polymorphisms (SNPs) in coding regions of the genome and depletion of these in intergenic regions. However, a recent release of the ENCyclopedia of DNA elements showed that ~80 % of the human genome has a biochemical function. Similar studies on the chicken genome are lacking, thus assessing the relative contribution of its genic and non-genic regions to variation is relevant for biological studies and genetic improvement of chicken populations. A dataset including 1351 birds that were genotyped with the 600K Affymetrix platform was used. We partitioned SNPs according to genome annotation data into six classes to characterize the relative contribution of genic and non-genic regions to genetic variation as well as their predictive power using all available quality-filtered SNPs. Target traits were body weight, ultrasound measurement of breast muscle and hen house egg production in broiler chickens. Six genomic regions were considered: intergenic regions, introns, missense, synonymous, 5' and 3' untranslated regions, and regions that are located 5 kb upstream and downstream of coding genes. Genomic relationship matrices were constructed for each genomic region and fitted in the models, separately or simultaneously. Kernel-based ridge regression was used to estimate variance components and assess predictive ability. Contribution of each class of genomic regions to dominance variance was also considered. Variance component estimates indicated that all genomic regions contributed to marked additive genetic variation and that the class of synonymous regions tended to have the greatest contribution. The marked dominance genetic variation explained by each class of genomic regions was similar and negligible (~0.05). In terms of prediction mean-square error, the whole-genome approach showed the best predictive ability. All genic and non-genic regions contributed to phenotypic variation for the three traits studied. Overall, the contribution of additive genetic variance to the total genetic variance was much greater than that of dominance variance. Our results show that all genomic regions are important for the prediction of the targeted traits, and the whole-genome approach was reaffirmed as the best tool for genome-enabled prediction of quantitative traits.

  16. A New Look at Some Solar Wind Turbulence Puzzles

    NASA Technical Reports Server (NTRS)

    Roberts, Aaron

    2006-01-01

    Some aspects of solar wind turbulence have defied explanation. While it seems likely that the evolution of Alfvenicity and power spectra are largely explained by the shearing of an initial population of solar-generated Alfvenic fluctuations, the evolution of the anisotropies of the turbulence does not fit into the model so far. A two-component model, consisting of slab waves and quasi-two-dimensional fluctuations, offers some ideas, but does not account for the turning of both wave-vector-space power anisotropies and minimum variance directions in the fluctuating vectors as the Parker spiral turns. We will show observations that indicate that the minimum variance evolution is likely not due to traditional turbulence mechanisms, and offer arguments that the idea of two-component turbulence is at best a local approximation that is of little help in explaining the evolution of the fluctuations. Finally, time-permitting, we will discuss some observations that suggest that the low Alfvenicity of many regions of the solar wind in the inner heliosphere is not due to turbulent evolution, but rather to the existence of convected structures, including mini-clouds and other twisted flux tubes, that were formed with low Alfvenicity. There is still a role for turbulence in the above picture, but it is highly modified from the traditional views.

  17. Using variance components to estimate power in a hierarchically nested sampling design improving monitoring of larval Devils Hole pupfish

    USGS Publications Warehouse

    Dzul, Maria C.; Dixon, Philip M.; Quist, Michael C.; Dinsomore, Stephen J.; Bower, Michael R.; Wilson, Kevin P.; Gaines, D. Bailey

    2013-01-01

    We used variance components to assess allocation of sampling effort in a hierarchically nested sampling design for ongoing monitoring of early life history stages of the federally endangered Devils Hole pupfish (DHP) (Cyprinodon diabolis). Sampling design for larval DHP included surveys (5 days each spring 2007–2009), events, and plots. Each survey was comprised of three counting events, where DHP larvae on nine plots were counted plot by plot. Statistical analysis of larval abundance included three components: (1) evaluation of power from various sample size combinations, (2) comparison of power in fixed and random plot designs, and (3) assessment of yearly differences in the power of the survey. Results indicated that increasing the sample size at the lowest level of sampling represented the most realistic option to increase the survey's power, fixed plot designs had greater power than random plot designs, and the power of the larval survey varied by year. This study provides an example of how monitoring efforts may benefit from coupling variance components estimation with power analysis to assess sampling design.

  18. [Determination and principal component analysis of mineral elements based on ICP-OES in Nitraria roborowskii fruits from different regions].

    PubMed

    Yuan, Yuan-Yuan; Zhou, Yu-Bi; Sun, Jing; Deng, Juan; Bai, Ying; Wang, Jie; Lu, Xue-Feng

    2017-06-01

    The content of elements in fifteen different regions of Nitraria roborowskii samples were determined by inductively coupled plasma-atomic emission spectrometry(ICP-OES), and its elemental characteristics were analyzed by principal component analysis. The results indicated that 18 mineral elements were detected in N. roborowskii of which V cannot be detected. In addition, contents of Na, K and Ca showed high concentration. Ti showed maximum content variance, while K is minimum. Four principal components were gained from the original data. The cumulative variance contribution rate is 81.542% and the variance contribution of the first principal component was 44.997%, indicating that Cr, Fe, P and Ca were the characteristic elements of N. roborowskii.Thus, the established method was simple, precise and can be used for determination of mineral elements in N.roborowskii Kom. fruits. The elemental distribution characteristics among N.roborowskii fruits are related to geographical origins which were clearly revealed by PCA. All the results will provide good basis for comprehensive utilization of N.roborowskii. Copyright© by the Chinese Pharmaceutical Association.

  19. Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2016-01-01

    A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.

  20. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.

    PubMed

    Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C

    2014-08-01

    The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Selective impact of disease on short-term and long-term components of self-reported memory: a population-based HUNT study.

    PubMed

    Almkvist, Ove; Bosnes, Ole; Bosnes, Ingunn; Stordal, Eystein

    2017-05-09

    Subjective memory is commonly considered to be a unidimensional measure. However, theories of performance-based memory suggest that subjective memory could be divided into more than one dimension. To divide subjective memory into theoretically related components of memory and explore the relationship to disease. In this study, various aspects of self-reported memory were studied with respect to demographics and diseases in the third wave of the HUNT epidemiological study in middle Norway. The study included all individuals 55 years of age or older, who responded to a nine-item questionnaire on subjective memory and questionnaires on health (n=18 633). A principle component analysis of the memory items resulted in two memory components; the criterion used was an eigenvalue above 1, which accounted for 54% of the total variance. The components were interpreted as long-term memory (LTM; the first component; 43% of the total variance) and short-term memory (STM; the second component; 11% of the total variance). Memory impairment was significantly related to all diseases (except Bechterew's disease), most strongly to brain infarction, heart failure, diabetes, cancer, chronic obstructive pulmonary disease and whiplash. For most diseases, the STM component was more affected than the LTM component; however, in cancer, the opposite pattern was seen. Subjective memory impairment as measured in HUNT contained two components, which were differentially associated with diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Genetic Variance Partitioning and Genome-Wide Prediction with Allele Dosage Information in Autotetraploid Potato.

    PubMed

    Endelman, Jeffrey B; Carley, Cari A Schmitz; Bethke, Paul C; Coombs, Joseph J; Clough, Mark E; da Silva, Washington L; De Jong, Walter S; Douches, David S; Frederick, Curtis M; Haynes, Kathleen G; Holm, David G; Miller, J Creighton; Muñoz, Patricio R; Navarro, Felix M; Novy, Richard G; Palta, Jiwan P; Porter, Gregory A; Rak, Kyle T; Sathuvalli, Vidyasagar R; Thompson, Asunta L; Yencho, G Craig

    2018-05-01

    As one of the world's most important food crops, the potato ( Solanum tuberosum L.) has spurred innovation in autotetraploid genetics, including in the use of SNP arrays to determine allele dosage at thousands of markers. By combining genotype and pedigree information with phenotype data for economically important traits, the objectives of this study were to (1) partition the genetic variance into additive vs. nonadditive components, and (2) determine the accuracy of genome-wide prediction. Between 2012 and 2017, a training population of 571 clones was evaluated for total yield, specific gravity, and chip fry color. Genomic covariance matrices for additive ( G ), digenic dominant ( D ), and additive × additive epistatic ( G # G ) effects were calculated using 3895 markers, and the numerator relationship matrix ( A ) was calculated from a 13-generation pedigree. Based on model fit and prediction accuracy, mixed model analysis with G was superior to A for yield and fry color but not specific gravity. The amount of additive genetic variance captured by markers was 20% of the total genetic variance for specific gravity, compared to 45% for yield and fry color. Within the training population, including nonadditive effects improved accuracy and/or bias for all three traits when predicting total genotypic value. When six F 1 populations were used for validation, prediction accuracy ranged from 0.06 to 0.63 and was consistently lower (0.13 on average) without allele dosage information. We conclude that genome-wide prediction is feasible in potato and that it will improve selection for breeding value given the substantial amount of nonadditive genetic variance in elite germplasm. Copyright © 2018 by the Genetics Society of America.

  3. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study.

    PubMed

    Bjørnerem, Åshild; Bui, Minh; Wang, Xiaofang; Ghasem-Zadeh, Ali; Hopper, John L; Zebaze, Roger; Seeman, Ego

    2015-03-01

    All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size - void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high-resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold-based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ∼18%) for the distal tibial total, cortical, and medullary cross-sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p < 0.001). For the corresponding distal radius traits, genetic factors accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross-twin cross-trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ  = 0.49) than DZ (rDZ  = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle-aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than differences in their environment. © 2014 American Society for Bone and Mineral Research.

  4. Increasing Specificity of Correlate Research: Exploring Correlates of Children’s Lunchtime and After-School Physical Activity

    PubMed Central

    Stanley, Rebecca M.; Ridley, Kate; Olds, Timothy S.; Dollman, James

    2014-01-01

    Background The lunchtime and after-school contexts are critical windows in a school day for children to be physically active. While numerous studies have investigated correlates of children’s habitual physical activity, few have explored correlates of physical activity occurring at lunchtime and after-school from a social-ecological perspective. Exploring correlates that influence physical activity occurring in specific contexts can potentially improve the prediction and understanding of physical activity. Using a context-specific approach, this study investigated correlates of children’s lunchtime and after-school physical activity. Methods Cross-sectional data were collected from 423 South Australian children aged 10.0–13.9 years (200 boys; 223 girls) attending 10 different schools. Lunchtime and after-school physical activity was assessed using accelerometers. Correlates were assessed using purposely developed context-specific questionnaires. Correlated Component Regression analysis was conducted to derive correlates of context-specific physical activity and determine the variance explained by prediction equations. Results The model of boys’ lunchtime physical activity contained 6 correlates and explained 25% of the variance. For girls, the model explained 17% variance from 9 correlates. Enjoyment of walking during lunchtime was the strongest correlate for both boys and girls. Boys’ and girls’ after-school physical activity models explained 20% variance from 14 correlates and 7% variance from the single item correlate, “I do an organised sport or activity after-school because it gets you fit”, respectively. Conclusions Increasing specificity of correlate research has enabled the identification of unique features of, and a more in-depth interpretation of, lunchtime and after-school physical activity behaviour and is a potential strategy for advancing the physical activity correlate research field. The findings of this study could be used to inform and tailor gender-specific public health messages and interventions for promoting lunchtime and after-school physical activity in children. PMID:24809440

  5. Right-sizing statistical models for longitudinal data.

    PubMed

    Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M

    2015-12-01

    Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).

  6. An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks.

    PubMed

    Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong

    2015-08-07

    Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.

  7. Instrument Psychometrics: Parental Satisfaction and Quality Indicators of Perinatal Palliative Care.

    PubMed

    Wool, Charlotte

    2015-10-01

    Despite a life-limiting fetal diagnosis, prenatal attachment often occurs in varying degrees resulting in role identification by an individual as a parent. Parents recognize quality care and report their satisfaction when interfacing with health care providers. The aim was to test an instrument measuring parental satisfaction and quality indicators with parents electing to continue a pregnancy after learning of a life-limiting fetal diagnosis. A cross sectional survey design gathered data using a computer-mediated platform. Subjects were parents (n=405) who opted to continue a pregnancy affected by a life-limiting diagnosis. Factor analysis using principal component analysis with Varimax rotation was used to validate the instrument, evaluate components, and summarize the explained variance achieved among quality indicator items. The Prenatal Scale was reduced to 37 items with a three-component solution explaining 66.19% of the variance and internal consistency reliability of 0.98. The Intrapartum Scale included 37 items with a four-component solution explaining 66.93% of the variance and a Cronbach α of 0.977. The Postnatal Scale was reduced to 44 items with a six-component solution explaining 67.48% of the variance. Internal consistency reliability was 0.975. The Parental Satisfaction and Quality Indicators of Perinatal Palliative Care Instrument is a valid and reliable measure for parent-reported quality care and satisfaction. Use of this instrument will enable clinicians and researchers to measure quality indicators and parental satisfaction. The instrument is useful for assessing, analyzing, and reporting data on quality for care delivered during the prenatal, intrapartum, and postnatal periods.

  8. Regional income inequality model based on theil index decomposition and weighted variance coeficient

    NASA Astrophysics Data System (ADS)

    Sitepu, H. R.; Darnius, O.; Tambunan, W. N.

    2018-03-01

    Regional income inequality is an important issue in the study on economic development of a certain region. Rapid economic development may not in accordance with people’s per capita income. The method of measuring the regional income inequality has been suggested by many experts. This research used Theil index and weighted variance coefficient in order to measure the regional income inequality. Regional income decomposition which becomes the productivity of work force and their participation in regional income inequality, based on Theil index, can be presented in linear relation. When the economic assumption in j sector, sectoral income value, and the rate of work force are used, the work force productivity imbalance can be decomposed to become the component in sectors and in intra-sectors. Next, weighted variation coefficient is defined in the revenue and productivity of the work force. From the quadrate of the weighted variation coefficient result, it was found that decomposition of regional revenue imbalance could be analyzed by finding out how far each component contribute to regional imbalance which, in this research, was analyzed in nine sectors of economic business.

  9. Pixel-level multisensor image fusion based on matrix completion and robust principal component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.

    2016-01-01

    Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.

  10. R2 effect-size measures for mediation analysis

    PubMed Central

    Fairchild, Amanda J.; MacKinnon, David P.; Taborga, Marcia P.; Taylor, Aaron B.

    2010-01-01

    R2 effect-size measures are presented to assess variance accounted for in mediation models. The measures offer a means to evaluate both component paths and the overall mediated effect in mediation models. Statistical simulation results indicate acceptable bias across varying parameter and sample-size combinations. The measures are applied to a real-world example using data from a team-based health promotion program to improve the nutrition and exercise habits of firefighters. SAS and SPSS computer code are also provided for researchers to compute the measures in their own data. PMID:19363189

  11. R2 effect-size measures for mediation analysis.

    PubMed

    Fairchild, Amanda J; Mackinnon, David P; Taborga, Marcia P; Taylor, Aaron B

    2009-05-01

    R(2) effect-size measures are presented to assess variance accounted for in mediation models. The measures offer a means to evaluate both component paths and the overall mediated effect in mediation models. Statistical simulation results indicate acceptable bias across varying parameter and sample-size combinations. The measures are applied to a real-world example using data from a team-based health promotion program to improve the nutrition and exercise habits of firefighters. SAS and SPSS computer code are also provided for researchers to compute the measures in their own data.

  12. Upper and lower bounds for semi-Markov reliability models of reconfigurable systems

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1984-01-01

    This paper determines the information required about system recovery to compute the reliability of a class of reconfigurable systems. Upper and lower bounds are derived for these systems. The class consists of those systems that satisfy five assumptions: the components fail independently at a low constant rate, fault occurrence and system reconfiguration are independent processes, the reliability model is semi-Markov, the recovery functions which describe system configuration have small means and variances, and the system is well designed. The bounds are easy to compute, and examples are included.

  13. Study on individual stochastic model of GNSS observations for precise kinematic applications

    NASA Astrophysics Data System (ADS)

    Próchniewicz, Dominik; Szpunar, Ryszard

    2015-04-01

    The proper definition of mathematical positioning model, which is defined by functional and stochastic models, is a prerequisite to obtain the optimal estimation of unknown parameters. Especially important in this definition is realistic modelling of stochastic properties of observations, which are more receiver-dependent and time-varying than deterministic relationships. This is particularly true with respect to precise kinematic applications which are characterized by weakening model strength. In this case, incorrect or simplified definition of stochastic model causes that the performance of ambiguity resolution and accuracy of position estimation can be limited. In this study we investigate the methods of describing the measurement noise of GNSS observations and its impact to derive precise kinematic positioning model. In particular stochastic modelling of individual components of the variance-covariance matrix of observation noise performed using observations from a very short baseline and laboratory GNSS signal generator, is analyzed. Experimental test results indicate that the utilizing the individual stochastic model of observations including elevation dependency and cross-correlation instead of assumption that raw measurements are independent with the same variance improves the performance of ambiguity resolution as well as rover positioning accuracy. This shows that the proposed stochastic assessment method could be a important part in complex calibration procedure of GNSS equipment.

  14. Quantifying the Influence of Dynamics Across Scales on Regional Climate Uncertainty in Western North America

    NASA Astrophysics Data System (ADS)

    Goldenson, Naomi L.

    Uncertainties in climate projections at the regional scale are inevitably larger than those for global mean quantities. Here, focusing on western North American regional climate, several approaches are taken to quantifying uncertainties starting with the output of global climate model projections. Internal variance is found to be an important component of the projection uncertainty up and down the west coast. To quantify internal variance and other projection uncertainties in existing climate models, we evaluate different ensemble configurations. Using a statistical framework to simultaneously account for multiple sources of uncertainty, we find internal variability can be quantified consistently using a large ensemble or an ensemble of opportunity that includes small ensembles from multiple models and climate scenarios. The latter offers the advantage of also producing estimates of uncertainty due to model differences. We conclude that climate projection uncertainties are best assessed using small single-model ensembles from as many model-scenario pairings as computationally feasible. We then conduct a small single-model ensemble of simulations using the Model for Prediction Across Scales with physics from the Community Atmosphere Model Version 5 (MPAS-CAM5) and prescribed historical sea surface temperatures. In the global variable resolution domain, the finest resolution (at 30 km) is in our region of interest over western North America and upwind over the northeast Pacific. In the finer-scale region, extreme precipitation from atmospheric rivers (ARs) is connected to tendencies in seasonal snowpack in mountains of the Northwest United States and California. In most of the Cascade Mountains, winters with more AR days are associated with less snowpack, in contrast to the northern Rockies and California's Sierra Nevadas. In snowpack observations and reanalysis of the atmospheric circulation, we find similar relationships between frequency of AR events and winter season snowpack in the western United States. In spring, however, there is not a clear relationship between number of AR days and seasonal mean snowpack across the model ensemble, so caution is urged in interpreting the historical record in the spring season. Finally, the representation of the El Nino Southern Oscillation (ENSO)--an important source of interannual climate predictability in some regions--is explored in a large single-model ensemble using ensemble Empirical Orthogonal Functions (EOFs) to find modes of variance across the entire ensemble at once. The leading EOF is ENSO. The principal components (PCs) of the next three EOFs exhibit a lead-lag relationship with the ENSO signal captured in the first PC. The second PC, with most of its variance in the summer season, is the most strongly cross-correlated with the first. This approach offers insight into how the model considered represents this important atmosphere-ocean interaction. Taken together these varied approaches quantify the implications of climate projections regionally, identify processes that make snowpack water resources vulnerable, and seek insight into how to better simulate the large-scale climate modes controlling regional variability.

  15. Structural encoding processes contribute to individual differences in face and object cognition: Inferences from psychometric test performance and event-related brain potentials.

    PubMed

    Nowparast Rostami, Hadiseh; Sommer, Werner; Zhou, Changsong; Wilhelm, Oliver; Hildebrandt, Andrea

    2017-10-01

    The enhanced N1 component in event-related potentials (ERP) to face stimuli, termed N170, is considered to indicate the structural encoding of faces. Previously, individual differences in the latency of the N170 have been related to face and object cognition abilities. By orthogonally manipulating content domain (faces vs objects) and task demands (easy/speed vs difficult/accuracy) in both psychometric and EEG tasks, we investigated the uniqueness of the processes underlying face cognition as compared with object cognition and the extent to which the N1/N170 component can explain individual differences in face and object cognition abilities. Data were recorded from N = 198 healthy young adults. Structural equation modeling (SEM) confirmed that the accuracies of face perception (FP) and memory are specific abilities above general object cognition; in contrast, the speed of face processing was not differentiable from the speed of object cognition. Although there was considerable domain-general variance in the N170 shared with the N1, there was significant face-specific variance in the N170. The brain-behavior relationship showed that faster face-specific processes for structural encoding of faces are associated with higher accuracy in both perceiving and memorizing faces. Moreover, in difficult task conditions, qualitatively different processes are additionally needed for recognizing face and object stimuli as compared with easy tasks. The difficulty-dependent variance components in the N170 amplitude were related with both face and object memory (OM) performance. We discuss implications for understanding individual differences in face cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Discerning some Tylenol brands using attenuated total reflection Fourier transform infrared data and multivariate analysis techniques.

    PubMed

    Msimanga, Huggins Z; Ollis, Robert J

    2010-06-01

    Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to classify acetaminophen-containing medicines using their attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectra. Four formulations of Tylenol (Arthritis Pain Relief, Extra Strength Pain Relief, 8 Hour Pain Relief, and Extra Strength Pain Relief Rapid Release) along with 98% pure acetaminophen were selected for this study because of the similarity of their spectral features, with correlation coefficients ranging from 0.9857 to 0.9988. Before acquiring spectra for the predictor matrix, the effects on spectral precision with respect to sample particle size (determined by sieve size opening), force gauge of the ATR accessory, sample reloading, and between-tablet variation were examined. Spectra were baseline corrected and normalized to unity before multivariate analysis. Analysis of variance (ANOVA) was used to study spectral precision. The large particles (35 mesh) showed large variance between spectra, while fine particles (120 mesh) indicated good spectral precision based on the F-test. Force gauge setting did not significantly affect precision. Sample reloading using the fine particle size and a constant force gauge setting of 50 units also did not compromise precision. Based on these observations, data acquisition for the predictor matrix was carried out with the fine particles (sieve size opening of 120 mesh) at a constant force gauge setting of 50 units. After removing outliers, PCA successfully classified the five samples in the first and second components, accounting for 45.0% and 24.5% of the variances, respectively. The four-component PLS-DA model (R(2)=0.925 and Q(2)=0.906) gave good test spectra predictions with an overall average of 0.961 +/- 7.1% RSD versus the expected 1.0 prediction for the 20 test spectra used.

  17. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, R. M.; Lisiecki, L. E.

    2015-08-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the δ18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  18. Use of multispectral Ikonos imagery for discriminating between conventional and conservation agricultural tillage practices

    USGS Publications Warehouse

    Vina, Andres; Peters, Albert J.; Ji, Lei

    2003-01-01

    There is a global concern about the increase in atmospheric concentrations of greenhouse gases. One method being discussed to encourage greenhouse gas mitigation efforts is based on a trading system whereby carbon emitters can buy effective mitigation efforts from farmers implementing conservation tillage practices. These practices sequester carbon from the atmosphere, and such a trading system would require a low-cost and accurate method of verification. Remote sensing technology can offer such a verification technique. This paper is focused on the use of standard image processing procedures applied to a multispectral Ikonos image, to determine whether it is possible to validate that farmers have complied with agreements to implement conservation tillage practices. A principal component analysis (PCA) was performed in order to isolate image variance in cropped fields. Analyses of variance (ANOVA) statistical procedures were used to evaluate the capability of each Ikonos band and each principal component to discriminate between conventional and conservation tillage practices. A logistic regression model was implemented on the principal component most effective in discriminating between conventional and conservation tillage, in order to produce a map of the probability of conventional tillage. The Ikonos imagery, in combination with ground-reference information, proved to be a useful tool for verification of conservation tillage practices.

  19. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  20. Risk modelling in portfolio optimization

    NASA Astrophysics Data System (ADS)

    Lam, W. H.; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi

    2013-09-01

    Risk management is very important in portfolio optimization. The mean-variance model has been used in portfolio optimization to minimize the investment risk. The objective of the mean-variance model is to minimize the portfolio risk and achieve the target rate of return. Variance is used as risk measure in the mean-variance model. The purpose of this study is to compare the portfolio composition as well as performance between the optimal portfolio of mean-variance model and equally weighted portfolio. Equally weighted portfolio means the proportions that are invested in each asset are equal. The results show that the portfolio composition of the mean-variance optimal portfolio and equally weighted portfolio are different. Besides that, the mean-variance optimal portfolio gives better performance because it gives higher performance ratio than the equally weighted portfolio.

  1. Pattern classification using an olfactory model with PCA feature selection in electronic noses: study and application.

    PubMed

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  2. Is isotropic turbulent diffusion symmetry restoring?

    NASA Astrophysics Data System (ADS)

    Effinger, H.; Grossmann, S.

    1984-07-01

    The broadening of a cloud of marked particle pairs in longitudinal and transverse directions relative to the initial separation in fully developed isotropic turbulent flow is evaluated on the basis of the unified theory of turbulent relative diffusion of Grossmann and Procaccia (1984). The closure assumption of the theory is refined; its validity is confirmed by comparing experimental data; approximate analytical expressions for the traces of variance and asymmetry in the inertial subrange are obtained; and intermittency is treated using a log-normal model. The difference between the longitudinal and transverse components of the variance tensor is shown to tend to a finite nonzero limit dependent on the radial distribution of the cloud. The need for further measurements and the implications for studies of particle waste in air or water are indicated.

  3. Ethnic and socioeconomic differences in variability in nutritional biomarkers.

    PubMed

    Kant, Ashima K; Graubard, Barry I

    2008-05-01

    Several studies have reported ethnic, education, and income differentials in concentrations of selected nutritional biomarkers in the US population. Although biomarker measurements are not subject to biased self-reports, biologic variability due to individual characteristics and behaviors related to dietary exposures contributes to within-subject variability and measurement error. We aimed to establish whether the magnitude of components of variance for nutritional biomarkers also differs in these high-risk groups. We used data from 2 replicate measurements of serum concentrations of vitamins A, C, D, and E; folate; carotenoids; ferritin; and selenium in the third National Health and Nutrition Examination Survey second examination subsample (n = 948) to examine the within-subject and between-subject components of variance. We used multivariate regression methods with log-transformed analyte concentrations as outcomes to estimate the ratios of the within-subject to between-subject components of variance by categories of ethnicity, income, and education. In non-Hispanic blacks, the within-subject to between-subject variance ratio for beta-cryptoxanthin concentration was higher (0.23; 95% CI: 0.17, 0.29) relative to non-Hispanic whites (0.13; 0.11, 0.16) and Mexican Americans (0.11; 0.07, 0.14), and the lutein + zeaxanthin ratio was higher (0.29; 0.21, 0.38) relative to Mexican Americans (0.15; 0.10, 0.19). Higher income was associated with larger within-subject to between-subject variance ratios for serum vitamin C and red blood cell folate concentrations but smaller ratios for serum vitamin A. Overall, there were few consistent up- or down-trends in the direction of covariate-adjusted variability by ethnicity, income, or education. Population groups at high risk of adverse nutritional profiles did not have larger variance ratios for most of the examined biomarkers.

  4. Coevolution of Glauber-like Ising dynamics and topology

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Fortunato, Santo; Castellano, Claudio

    2009-11-01

    We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.

  5. REML/BLUP and sequential path analysis in estimating genotypic values and interrelationships among simple maize grain yield-related traits.

    PubMed

    Olivoto, T; Nardino, M; Carvalho, I R; Follmann, D N; Ferrari, M; Szareski, V J; de Pelegrin, A J; de Souza, V Q

    2017-03-22

    Methodologies using restricted maximum likelihood/best linear unbiased prediction (REML/BLUP) in combination with sequential path analysis in maize are still limited in the literature. Therefore, the aims of this study were: i) to use REML/BLUP-based procedures in order to estimate variance components, genetic parameters, and genotypic values of simple maize hybrids, and ii) to fit stepwise regressions considering genotypic values to form a path diagram with multi-order predictors and minimum multicollinearity that explains the relationships of cause and effect among grain yield-related traits. Fifteen commercial simple maize hybrids were evaluated in multi-environment trials in a randomized complete block design with four replications. The environmental variance (78.80%) and genotype-vs-environment variance (20.83%) accounted for more than 99% of the phenotypic variance of grain yield, which difficult the direct selection of breeders for this trait. The sequential path analysis model allowed the selection of traits with high explanatory power and minimum multicollinearity, resulting in models with elevated fit (R 2 > 0.9 and ε < 0.3). The number of kernels per ear (NKE) and thousand-kernel weight (TKW) are the traits with the largest direct effects on grain yield (r = 0.66 and 0.73, respectively). The high accuracy of selection (0.86 and 0.89) associated with the high heritability of the average (0.732 and 0.794) for NKE and TKW, respectively, indicated good reliability and prospects of success in the indirect selection of hybrids with high-yield potential through these traits. The negative direct effect of NKE on TKW (r = -0.856), however, must be considered. The joint use of mixed models and sequential path analysis is effective in the evaluation of maize-breeding trials.

  6. Individual and Institutional Components of the Medical School Educational Environment.

    PubMed

    Gruppen, Larry D; Stansfield, R Brent

    2016-11-01

    To examine, using a systems framework, the relative influence of individual-level and institution-level factors on student perceptions of the medical school educational environment. A series of hierarchical linear models were fit to a large, 18-school longitudinal dataset of student perceptions of the educational environment, various demographics, and student empathy, tolerance of ambiguity, coping, and patient-provider orientation. Separate models were evaluated for individual-level factors alone, institution-level factors alone, and the combination of individual- and institution-level factors. The individual-level model accounted for 56.7% of the variance in student perceptions of the educational environment. However, few specific variables at the individual level had noteworthy direct effects on these perceptions. Similarly, the institution-level model accounted for 10.3% of the variance in student perceptions, but the specific characteristics of the institution explained little of this impact. The combined individual- and institution-level model attributed 45.5% of the variance in student perceptions to individual-level factors and 10.8% to institution-level factors. Again, specific variables explained little of this impact. These findings indicate that the impact of individual-level factors on perceptions of the educational environment is about four times greater than institution-level factors. This contrast reflects the fact that the educational environment is defined through a learner, not institutional lens. Nonetheless, institutions vary in learner perceptions of their environments, and these differences may provide some support for institutional initiatives to improve the educational environment. More broadly, these results evidence the complexity of the educational environment, both in defining it and in understanding its dynamics.

  7. Cusping, transport and variance of solutions to generalized Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Carnaffan, Sean; Kawai, Reiichiro

    2017-06-01

    We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.

  8. Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.

    PubMed

    Santure, Anna W; Spencer, Hamish G

    2006-08-01

    The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components.

  9. HIGH DIMENSIONAL COVARIANCE MATRIX ESTIMATION IN APPROXIMATE FACTOR MODELS

    PubMed Central

    Fan, Jianqing; Liao, Yuan; Mincheva, Martina

    2012-01-01

    The variance covariance matrix plays a central role in the inferential theories of high dimensional factor models in finance and economics. Popular regularization methods of directly exploiting sparsity are not directly applicable to many financial problems. Classical methods of estimating the covariance matrices are based on the strict factor models, assuming independent idiosyncratic components. This assumption, however, is restrictive in practical applications. By assuming sparse error covariance matrix, we allow the presence of the cross-sectional correlation even after taking out common factors, and it enables us to combine the merits of both methods. We estimate the sparse covariance using the adaptive thresholding technique as in Cai and Liu (2011), taking into account the fact that direct observations of the idiosyncratic components are unavailable. The impact of high dimensionality on the covariance matrix estimation based on the factor structure is then studied. PMID:22661790

  10. PHYCAA+: an optimized, adaptive procedure for measuring and controlling physiological noise in BOLD fMRI.

    PubMed

    Churchill, Nathan W; Strother, Stephen C

    2013-11-15

    The presence of physiological noise in functional MRI can greatly limit the sensitivity and accuracy of BOLD signal measurements, and produce significant false positives. There are two main types of physiological confounds: (1) high-variance signal in non-neuronal tissues of the brain including vascular tracts, sinuses and ventricles, and (2) physiological noise components which extend into gray matter tissue. These physiological effects may also be partially coupled with stimuli (and thus the BOLD response). To address these issues, we have developed PHYCAA+, a significantly improved version of the PHYCAA algorithm (Churchill et al., 2011) that (1) down-weights the variance of voxels in probable non-neuronal tissue, and (2) identifies the multivariate physiological noise subspace in gray matter that is linked to non-neuronal tissue. This model estimates physiological noise directly from EPI data, without requiring external measures of heartbeat and respiration, or manual selection of physiological components. The PHYCAA+ model significantly improves the prediction accuracy and reproducibility of single-subject analyses, compared to PHYCAA and a number of commonly-used physiological correction algorithms. Individual subject denoising with PHYCAA+ is independently validated by showing that it consistently increased between-subject activation overlap, and minimized false-positive signal in non gray-matter loci. The results are demonstrated for both block and fast single-event task designs, applied to standard univariate and adaptive multivariate analysis models. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach

    PubMed Central

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447–2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8–30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics. PMID:26452043

  12. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach.

    PubMed

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447-2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8-30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics.

  13. Architectural measures of the cancellous bone of the mandibular condyle identified by principal components analysis.

    PubMed

    Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J

    2003-09-01

    As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.

  14. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits

    PubMed Central

    Zeng, Ping; Mukherjee, Sayan; Zhou, Xiang

    2017-01-01

    Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component underlying phenotypic variation. Many statistical methods have been developed to model and identify epistatic interactions between genetic variants. However, because of the large combinatorial search space of interactions, most epistasis mapping methods face enormous computational challenges and often suffer from low statistical power due to multiple test correction. Here, we present a novel, alternative strategy for mapping epistasis: instead of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that have non-zero marginal epistatic effects—the combined pairwise interaction effects between a given variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants that are involved in epistasis without the need to identify the exact partners with which the variants interact, thus potentially alleviating much of the statistical and computational burden associated with standard epistatic mapping procedures. Our method is based on a variance component model, and relies on a recently developed variance component estimation method for efficient parameter inference and p-value computation. We refer to our method as the “MArginal ePIstasis Test”, or MAPIT. With simulations, we show how MAPIT can be used to estimate and test marginal epistatic effects, produce calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions. We further illustrate the benefits of MAPIT in a QTL mapping study by analyzing the gene expression data of over 400 individuals from the GEUVADIS consortium. PMID:28746338

  15. Markowitz portfolio optimization model employing fuzzy measure

    NASA Astrophysics Data System (ADS)

    Ramli, Suhailywati; Jaaman, Saiful Hafizah

    2017-04-01

    Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.

  16. QSAR modeling of flotation collectors using principal components extracted from topological indices.

    PubMed

    Natarajan, R; Nirdosh, Inderjit; Basak, Subhash C; Mills, Denise R

    2002-01-01

    Several topological indices were calculated for substituted-cupferrons that were tested as collectors for the froth flotation of uranium. The principal component analysis (PCA) was used for data reduction. Seven principal components (PC) were found to account for 98.6% of the variance among the computed indices. The principal components thus extracted were used in stepwise regression analyses to construct regression models for the prediction of separation efficiencies (Es) of the collectors. A two-parameter model with a correlation coefficient of 0.889 and a three-parameter model with a correlation coefficient of 0.913 were formed. PCs were found to be better than partition coefficient to form regression equations, and inclusion of an electronic parameter such as Hammett sigma or quantum mechanically derived electronic charges on the chelating atoms did not improve the correlation coefficient significantly. The method was extended to model the separation efficiencies of mercaptobenzothiazoles (MBT) and aminothiophenols (ATP) used in the flotation of lead and zinc ores, respectively. Five principal components were found to explain 99% of the data variability in each series. A three-parameter equation with correlation coefficient of 0.985 and a two-parameter equation with correlation coefficient of 0.926 were obtained for MBT and ATP, respectively. The amenability of separation efficiencies of chelating collectors to QSAR modeling using PCs based on topological indices might lead to the selection of collectors for synthesis and testing from a virtual database.

  17. Investigating the cognitive precursors of emotional response to cancer stress: re-testing Lazarus's transactional model.

    PubMed

    Hulbert-Williams, N J; Morrison, V; Wilkinson, C; Neal, R D

    2013-02-01

    Lazarus's Transactional Model of stress and coping underwent significant theoretical development through the 1990s to better incorporate emotional reactions to stress with their appraisal components. Few studies have robustly explored the full model. This study aimed to do so within the context of a major life event: cancer diagnosis. A repeated measures design was used whereby data were collected using self-report questionnaire at baseline (soon after diagnosis), and 3- and 6-month follow-up. A total of 160 recently diagnosed cancer patients were recruited (mean time since diagnosis = 46 days). Their mean age was 64.2 years. Data on appraisals, core-relational themes, and emotions were collected. Data were analysed using both Spearman's correlation tests and multivariate regression modelling. Longitudinal analysis demonstrated weak correlation between change scores of theoretically associated components and some emotions correlated more strongly with cognitions contradicting theoretical expectations. Cross-sectional multivariate testing of the ability of cognitions to explain variance in emotion was largely theory inconsistent. Although data support the generic structure of the Transactional Model, they question the model specifics. Larger scale research is needed encompassing a wider range of emotions and using more complex statistical testing. WHAT IS ALREADY KNOWN ON THIS SUBJECT?: • Stress processes are transactional and coping outcome is informed by both cognitive appraisal of the stressor and the individual's emotional response (Lazarus & Folkman, 1984). • Lazarus (1999) made specific hypotheses about which particular stress appraisals would determine which emotional response, but only a small number of these relationships have been robustly investigated. • Previous empirical testing of this theory has been limited by design and statistical limitations. WHAT DOES THIS STUDY ADD?: • This study empirically investigates the cognitive precedents of a much larger range of emotional outcomes than has previously been attempted in the literature. • Support for the model at a general level is established: this study demonstrates that both primary and secondary appraisals, and core-relational themes are important variables in explaining variance in emotional outcome. • The specific hypotheses proposed by Lazarus (1999) are not, however, supported: using data-driven approaches we demonstrate that equally high levels of variance can be explained using entirely different cognitive appraisals than those hypothesized. © 2012 The British Psychological Society.

  18. Modeling genetic and environmental factors to increase heritability and ease the identification of candidate genes for birth weight: a twin study.

    PubMed

    Gielen, M; Lindsey, P J; Derom, C; Smeets, H J M; Souren, N Y; Paulussen, A D C; Derom, R; Nijhuis, J G

    2008-01-01

    Heritability estimates of birth weight have been inconsistent. Possible explanations are heritability changes during gestational age or the influence of covariates (e.g. chorionicity). The aim of this study was to model birth weights of twins across gestational age and to quantify the genetic and environmental components. We intended to reduce the common environmental variance to increase heritability and thereby the chance of identifying candidate genes influencing the genetic variance of birth weight. Perinatal data were obtained from 4232 live-born twin pairs from the East Flanders Prospective Twin Survey, Belgium. Heritability of birth weights across gestational ages was estimated using a non-linear multivariate Gaussian regression with covariates in the means model and in covariance structure. Maternal, twin-specific, and placental factors were considered as covariates. Heritability of birth weight decreased during gestation from 25 to 42 weeks. However, adjusting for covariates increased the heritability over this time period, with the highest heritability for first-born twins of multipara with separate placentas, who were staying alive (from 52% at 25 weeks to 30% at 42 weeks). Twin-specific factors revealed latent genetic components, whereas placental factors explained common and unique environmental factors. The number of placentas and site of the insertion of the umbilical cord masked the effect of chorionicity. Modeling genetic and environmental factors leads to a better estimate of their role in growth during gestation. For birth weight, mainly environmental factors were explained, resulting in an increase of the heritability and thereby the chance of finding genes influencing birth weight in linkage and association studies.

  19. Abrupt strategy change underlies gradual performance change: Bayesian hierarchical models of component and aggregate strategy use.

    PubMed

    Wynton, Sarah K A; Anglim, Jeromy

    2017-10-01

    While researchers have often sought to understand the learning curve in terms of multiple component processes, few studies have measured and mathematically modeled these processes on a complex task. In particular, there remains a need to reconcile how abrupt changes in strategy use can co-occur with gradual changes in task completion time. Thus, the current study aimed to assess the degree to which strategy change was abrupt or gradual, and whether strategy aggregation could partially explain gradual performance change. It also aimed to show how Bayesian methods could be used to model the effect of practice on strategy use. To achieve these aims, 162 participants completed 15 blocks of practice on a complex computer-based task-the Wynton-Anglim booking (WAB) task. The task allowed for multiple component strategies (i.e., memory retrieval, information reduction, and insight) that could also be aggregated to a global measure of strategy use. Bayesian hierarchical models were used to compare abrupt and gradual functions of component and aggregate strategy use. Task completion time was well-modeled by a power function, and global strategy use explained substantial variance in performance. Change in component strategy use tended to be abrupt, whereas change in global strategy use was gradual and well-modeled by a power function. Thus, differential timing of component strategy shifts leads to gradual changes in overall strategy efficiency, and this provides one reason for why smooth learning curves can co-occur with abrupt changes in strategy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. The effects of heat stress in Italian Holstein dairy cattle.

    PubMed

    Bernabucci, U; Biffani, S; Buggiotti, L; Vitali, A; Lacetera, N; Nardone, A

    2014-01-01

    The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were calculated for each cow and bull (traditional EBV, traditional EBV estimated with the inclusion of THI covariate effect, and heat tolerance EBV) and the rankings of EBV for 283 bulls born after 1985 with at least 50 daughters were compared. When THI was included in the model, the ranking for 17 and 32 bulls changed for milk yield and protein percentage, respectively. The heat tolerance genetic component is not negligible, suggesting that heat tolerance selection should be included in the selection objectives. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.

    PubMed

    Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H

    2017-03-13

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10 4 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A 2 ≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A 2,w ≈A 2 /2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  2. RP-HPLC method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate incorporated with normalization technique in principal component analysis to differentiate the bovine, porcine and fish gelatins.

    PubMed

    Azilawati, M I; Hashim, D M; Jamilah, B; Amin, I

    2015-04-01

    The amino acid compositions of bovine, porcine and fish gelatin were determined by amino acid analysis using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as derivatization reagent. Sixteen amino acids were identified with similar spectral chromatograms. Data pre-treatment via centering and transformation of data by normalization were performed to provide data that are more suitable for analysis and easier to be interpreted. Principal component analysis (PCA) transformed the original data matrix into a number of principal components (PCs). Three principal components (PCs) described 96.5% of the total variance, and 2 PCs (91%) explained the highest variances. The PCA model demonstrated the relationships among amino acids in the correlation loadings plot to the group of gelatins in the scores plot. Fish gelatin was correlated to threonine, serine and methionine on the positive side of PC1; bovine gelatin was correlated to the non-polar side chains amino acids that were proline, hydroxyproline, leucine, isoleucine and valine on the negative side of PC1 and porcine gelatin was correlated to the polar side chains amino acids that were aspartate, glutamic acid, lysine and tyrosine on the negative side of PC2. Verification on the database using 12 samples from commercial products gelatin-based had confirmed the grouping patterns and the variables correlations. Therefore, this quantitative method is very useful as a screening method to determine gelatin from various sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis

    NASA Astrophysics Data System (ADS)

    Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried

    2018-03-01

    This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.

  4. Contrast model for three-dimensional vehicles in natural lighting and search performance analysis

    NASA Astrophysics Data System (ADS)

    Witus, Gary; Gerhart, Grant R.; Ellis, R. Darin

    2001-09-01

    Ground vehicles in natural lighting tend to have significant and systematic variation in luminance through the presented area. This arises, in large part, from the vehicle surfaces having different orientations and shadowing relative to the source of illumination and the position of the observer. These systematic differences create the appearance of a structured 3D object. The 3D appearance is an important factor in search, figure-ground segregation, and object recognition. We present a contrast metric to predict search and detection performance that accounts for the 3D structure. The approach first computes the contrast of the front (or rear), side, and top surfaces. The vehicle contrast metric is the area-weighted sum of the absolute values of the contrasts of the component surfaces. The 3D structure contrast metric, together with target height, account for more than 80% of the variance in probability of detection and 75% of the variance in search time. When false alarm effects are discounted, they account for 89% of the variance in probability of detection and 95% of the variance in search time. The predictive power of the signature metric, when calibrated to half the data and evaluated against the other half, is 90% of the explanatory power.

  5. The Tripartite Model of Risk Perception (TRIRISK): Distinguishing Deliberative, Affective, and Experiential Components of Perceived Risk.

    PubMed

    Ferrer, Rebecca A; Klein, William M P; Persoskie, Alexander; Avishai-Yitshak, Aya; Sheeran, Paschal

    2016-10-01

    Although risk perception is a key predictor in health behavior theories, current conceptions of risk comprise only one (deliberative) or two (deliberative vs. affective/experiential) dimensions. This research tested a tripartite model that distinguishes among deliberative, affective, and experiential components of risk perception. In two studies, and in relation to three common diseases (cancer, heart disease, diabetes), we used confirmatory factor analyses to examine the factor structure of the tripartite risk perception (TRIRISK) model and compared the fit of the TRIRISK model to dual-factor and single-factor models. In a third study, we assessed concurrent validity by examining the impact of cancer diagnosis on (a) levels of deliberative, affective, and experiential risk perception, and (b) the strength of relations among risk components, and tested predictive validity by assessing relations with behavioral intentions to prevent cancer. The tripartite factor structure was supported, producing better model fit across diseases (studies 1 and 2). Inter-correlations among the components were significantly smaller among participants who had been diagnosed with cancer, suggesting that affected populations make finer-grained distinctions among risk perceptions (study 3). Moreover, all three risk perception components predicted unique variance in intentions to engage in preventive behavior (study 3). The TRIRISK model offers both a novel conceptualization of health-related risk perceptions, and new measures that enhance predictive validity beyond that engendered by unidimensional and bidimensional models. The present findings have implications for the ways in which risk perceptions are targeted in health behavior change interventions, health communications, and decision aids.

  6. Daily water and sediment discharges from selected rivers of the eastern United States; a time-series modeling approach

    USGS Publications Warehouse

    Fitzgerald, Michael G.; Karlinger, Michael R.

    1983-01-01

    Time-series models were constructed for analysis of daily runoff and sediment discharge data from selected rivers of the Eastern United States. Logarithmic transformation and first-order differencing of the data sets were necessary to produce second-order, stationary time series and remove seasonal trends. Cyclic models accounted for less than 42 percent of the variance in the water series and 31 percent in the sediment series. Analysis of the apparent oscillations of given frequencies occurring in the data indicates that frequently occurring storms can account for as much as 50 percent of the variation in sediment discharge. Components of the frequency analysis indicate that a linear representation is reasonable for the water-sediment system. Models that incorporate lagged water discharge as input prove superior to univariate techniques in modeling and prediction of sediment discharges. The random component of the models includes errors in measurement and model hypothesis and indicates no serial correlation. An index of sediment production within or between drain-gage basins can be calculated from model parameters.

  7. EGSIEM combination service: combination of GRACE monthly K-band solutions on normal equation level

    NASA Astrophysics Data System (ADS)

    Meyer, Ulrich; Jean, Yoomin; Arnold, Daniel; Jäggi, Adrian

    2017-04-01

    The European Gravity Service for Improved Emergency Management (EGSIEM) project offers a scientific combination service, combining for the first time monthly GRACE gravity fields of different analysis centers (ACs) on normal equation (NEQ) level and thus taking all correlations between the gravity field coefficients and pre-eliminated orbit and instrument parameters correctly into account. Optimal weights for the individual NEQs are commonly derived by variance component estimation (VCE), as is the case for the products of the International VLBI Service (IVS) or the DTRF2008 reference frame realisation that are also derived by combination on NEQ-level. But variance factors are based on post-fit residuals and strongly depend on observation sampling and noise modeling, which both are very diverse in case of the individual EGSIEM ACs. These variance factors do not necessarily represent the true error levels of the estimated gravity field parameters that are still governed by analysis noise. We present a combination approach where weights are derived on solution level, thereby taking the analysis noise into account.

  8. Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty

    USGS Publications Warehouse

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.

    2014-01-01

    Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.

  9. Positive influences of home food environment on primary-school children's diet and weight status: a structural equation model approach.

    PubMed

    Ong, Jia Xin; Ullah, Shahid; Magarey, Anthea; Leslie, Eva

    2016-10-01

    The mechanism by which the home food environment (HFE) influences childhood obesity is unclear. The present study aimed to investigate the relationship between HFE and childhood obesity as mediated by diet in primary-school children. Cross-sectional data collected from parents and primary-school children participating in the Obesity Prevention and Lifestyle Evaluation Project. Only children aged 9-11 years participated in the study. Matched parent/child data (n 3323) were analysed. Exploratory factor analysis underlined components of twenty-one HFE items; these were linked to child diet (meeting guidelines for fruit, vegetable and non-core food intakes) and measured child BMI, in structural equation modelling, adjusting for confounders. Twenty geographically bounded metropolitan and regional South Australian communities. School children and their parents from primary schools in selected communities. In the initial exploratory factor analysis, nineteen items remaining extracted eight factors with eigenvalues >1·0 (72·4 % of total variance). A five-factor structure incorporating ten items described HFE. After adjusting for age, gender, socio-economic status and physical activity all associations in the model were significant (P<0·05), explaining 9·3 % and 4·5 % of the variance in child diet and BMI, respectively. A more positive HFE was directly and indirectly associated with a lower BMI in children through child diet. The robust statistical methodology used in the present study provides support for a model of direct and indirect dynamics between the HFE and childhood obesity. The model can be tested in future longitudinal and intervention studies to identify the most effective components of the HFE to target in childhood obesity prevention efforts.

  10. Gene set analysis using variance component tests.

    PubMed

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  11. Genetic analyses using GGE model and a mixed linear model approach, and stability analyses using AMMI bi-plot for late-maturity alpha-amylase activity in bread wheat genotypes.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Fofana, Bourlaye

    2017-06-01

    Low falling number and discounting grain when it is downgraded in class are the consequences of excessive late-maturity α-amylase activity (LMAA) in bread wheat (Triticum aestivum L.). Grain expressing high LMAA produces poorer quality bread products. To effectively breed for low LMAA, it is necessary to understand what genes control it and how they are expressed, particularly when genotypes are grown in different environments. In this study, an International Collection (IC) of 18 spring wheat genotypes and another set of 15 spring wheat cultivars adapted to South Dakota (SD), USA were assessed to characterize the genetic component of LMAA over 5 and 13 environments, respectively. The data were analysed using a GGE model with a mixed linear model approach and stability analysis was presented using an AMMI bi-plot on R software. All estimated variance components and their proportions to the total phenotypic variance were highly significant for both sets of genotypes, which were validated by the AMMI model analysis. Broad-sense heritability for LMAA was higher in SD adapted cultivars (53%) compared to that in IC (49%). Significant genetic effects and stability analyses showed some genotypes, e.g. 'Lancer', 'Chester' and 'LoSprout' from IC, and 'Alsen', 'Traverse' and 'Forefront' from SD cultivars could be used as parents to develop new cultivars expressing low levels of LMAA. Stability analysis using an AMMI bi-plot revealed that 'Chester', 'Lancer' and 'Advance' were the most stable across environments, while in contrast, 'Kinsman', 'Lerma52' and 'Traverse' exhibited the lowest stability for LMAA across environments.

  12. Smooth empirical Bayes estimation of observation error variances in linear systems

    NASA Technical Reports Server (NTRS)

    Martz, H. F., Jr.; Lian, M. W.

    1972-01-01

    A smooth empirical Bayes estimator was developed for estimating the unknown random scale component of each of a set of observation error variances. It is shown that the estimator possesses a smaller average squared error loss than other estimators for a discrete time linear system.

  13. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    DOE PAGES

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui; ...

    2016-02-11

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less

  14. Using landscape typologies to model socioecological systems: Application to agriculture of the United States Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Benjamin L.; King, Anthony Wayne; Mei, Rui

    Agricultural enterprises are vulnerable to the effects of climate variability and change. Improved understanding of the determinants of vulnerability and adaptive capacity in agricultural systems is important for projecting and managing future climate risk. At present, three analytical tools dominate methodological approaches to understanding agroecological vulnerability to climate: process-based crop models, empirical crop models, and integrated assessment models. A common weakness of these approaches is their limited treatment of socio-economic conditions and human agency in modeling agroecological processes and outcomes. This study proposes a framework that uses spatial cluster analysis to generate regional socioecological typologies that capture geographic variance inmore » regional agricultural production and enable attribution of that variance to climatic, topographic, edaphic, and socioeconomic components. This framework was applied to historical corn production (1986-2010) in the U.S. Gulf of Mexico region as a testbed. The results demonstrate that regional socioeconomic heterogeneity is an important driving force in human dominated ecosystems, which we hypothesize, is a function of the link between socioeconomic conditions and the adaptive capacity of agricultural systems. Meaningful representation of future agricultural responses to climate variability and change is contingent upon understanding interactions among biophysical conditions, socioeconomic conditions, and human agency their incorporation in predictive models.« less

  15. Signal, noise, and variation in neural and sensory-motor latency

    PubMed Central

    Lee, Joonyeol; Joshua, Mati; Medina, Javier F.; Lisberger, Stephen G.

    2016-01-01

    Analysis of the neural code for sensory-motor latency in smooth pursuit eye movements reveals general principles of neural variation and the specific origin of motor latency. The trial-by-trial variation in neural latency in MT comprises: a shared component expressed as neuron-neuron latency correlations; and an independent component that is local to each neuron. The independent component arises heavily from fluctuations in the underlying probability of spiking with an unexpectedly small contribution from the stochastic nature of spiking itself. The shared component causes the latency of single neuron responses in MT to be weakly predictive of the behavioral latency of pursuit. Neural latency deeper in the motor system is more strongly predictive of behavioral latency. A model reproduces both the variance of behavioral latency and the neuron-behavior latency correlations in MT if it includes realistic neural latency variation, neuron-neuron latency correlations in MT, and noisy gain control downstream from MT. PMID:26971946

  16. Self-other rating agreement and leader-member exchange (LMX): a quasi-replication.

    PubMed

    Barbuto, John E; Wilmot, Michael P; Singh, Matthew; Story, Joana S P

    2012-04-01

    Data from a sample of 83 elected community leaders and 391 direct-report staff (resulting in 333 useable leader-member dyads) were reanalyzed to test relations between self-other rating agreement of servant leadership and member-reported leader-member exchange (LMX). Polynomial regression analysis indicated that the self-other rating agreement model was not statistically significant. Instead, all of the variance in member-reported LMX was accounted for by the others' ratings component alone.

  17. Integrating Nonadditive Genomic Relationship Matrices into the Study of Genetic Architecture of Complex Traits.

    PubMed

    Nazarian, Alireza; Gezan, Salvador A

    2016-03-01

    The study of genetic architecture of complex traits has been dramatically influenced by implementing genome-wide analytical approaches during recent years. Of particular interest are genomic prediction strategies which make use of genomic information for predicting phenotypic responses instead of detecting trait-associated loci. In this work, we present the results of a simulation study to improve our understanding of the statistical properties of estimation of genetic variance components of complex traits, and of additive, dominance, and genetic effects through best linear unbiased prediction methodology. Simulated dense marker information was used to construct genomic additive and dominance matrices, and multiple alternative pedigree- and marker-based models were compared to determine if including a dominance term into the analysis may improve the genetic analysis of complex traits. Our results showed that a model containing a pedigree- or marker-based additive relationship matrix along with a pedigree-based dominance matrix provided the best partitioning of genetic variance into its components, especially when some degree of true dominance effects was expected to exist. Also, we noted that the use of a marker-based additive relationship matrix along with a pedigree-based dominance matrix had the best performance in terms of accuracy of correlations between true and estimated additive, dominance, and genetic effects. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Extended Twin Study of Alcohol Use in Virginia and Australia.

    PubMed

    Verhulst, Brad; Neale, Michael C; Eaves, Lindon J; Medland, Sarah E; Heath, Andrew C; Martin, Nicholas G; Maes, Hermine H

    2018-06-01

    Drinking alcohol is a normal behavior in many societies, and prior studies have demonstrated it has both genetic and environmental sources of variation. Using two very large samples of twins and their first-degree relatives (Australia ≈ 20,000 individuals from 8,019 families; Virginia ≈ 23,000 from 6,042 families), we examine whether there are differences: (1) in the genetic and environmental factors that influence four interrelated drinking behaviors (quantity, frequency, age of initiation, and number of drinks in the last week), (2) between the twin-only design and the extended twin design, and (3) the Australian and Virginia samples. We find that while drinking behaviors are interrelated, there are substantial differences in the genetic and environmental architectures across phenotypes. Specifically, drinking quantity, frequency, and number of drinks in the past week have large broad genetic variance components, and smaller but significant environmental variance components, while age of onset is driven exclusively by environmental factors. Further, the twin-only design and the extended twin design come to similar conclusions regarding broad-sense heritability and environmental transmission, but the extended twin models provide a more nuanced perspective. Finally, we find a high level of similarity between the Australian and Virginian samples, especially for the genetic factors. The observed differences, when present, tend to be at the environmental level. Implications for the extended twin model and future directions are discussed.

  19. RELATIONS BETWEEN PSYCHOPATHY FACETS AND EXTERNALIZING IN A CRIMINAL OFFENDER SAMPLE

    PubMed Central

    Patrick, Christopher J.; Hicks, Brian M.; Krueger, Robert F.; Lang, Alan R.

    2008-01-01

    The construct of psychopathy is viewed as comprising distinctive but correlated affective-interpersonal and social deviance facets. Here, we examined these facets of Hare's Psychopathy Checklist-Revised (PCL-R) in terms of their associations with the externalizing dimension of adult psychopathology, defined as the common factor underlying symptoms of conduct disorder, adult antisocial behavior, alcohol use/abuse, and drug abuse, along with disinhibitory personality traits. Correlational analyses revealed a strong relationship between this externalizing dimension and the social deviance facet of psychopathy (r = .84), and a lesser relationship with the emotional-interpersonal component (r = .44). Structural models controlling for the moderate overlap between the PCL-R factors revealed that externalizing was substantially related to the unique variance in the social deviance features of psychopathy, but unrelated to the unique variance of the emotional and interpersonal features whether modeled together or as separate factors. These results indicate that the social deviance factor of the PCL-R reflects the externalizing dimension of psychopathology, whereas the emotional-interpersonal component taps something distinct aside from externalizing. In addition, based on our finding of an association between PCL-R social deviance and externalizing, we were able to predict new relations between this facet of psychopathy and criterion variables, including nicotine use and gambling, that have previously been linked to externalizing. Implications for future research on the causes and correlates of psychopathy are discussed. PMID:16178678

  20. Estimation of hyper-parameters for a hierarchical model of combined cortical and extra-brain current sources in the MEG inverse problem.

    PubMed

    Morishige, Ken-ichi; Yoshioka, Taku; Kawawaki, Dai; Hiroe, Nobuo; Sato, Masa-aki; Kawato, Mitsuo

    2014-11-01

    One of the major obstacles in estimating cortical currents from MEG signals is the disturbance caused by magnetic artifacts derived from extra-cortical current sources such as heartbeats and eye movements. To remove the effect of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) proposed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneously estimates cortical and extra-brain source currents by placing dipoles on cortical surfaces as well as extra-brain sources. This method requires EOG data for an EOG forward model that describes the relationship between eye dipoles and electric potentials. In contrast, our improved approach requires no EOG and less a priori knowledge about the current variance of extra-brain sources. We propose a new method, "extra-dipole," that optimally selects hyper-parameter values regarding current variances of the cortical surface and extra-brain source dipoles. With the selected parameter values, the cortical and extra-brain dipole currents were accurately estimated from the simulated MEG data. The performance of this method was demonstrated to be better than conventional approaches, such as principal component analysis and independent component analysis, which use only statistical properties of MEG signals. Furthermore, we applied our proposed method to measured MEG data during covert pursuit of a smoothly moving target and confirmed its effectiveness. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Correlations between interpersonal and cognitive difficulties: relationship to suicidal ideation in military suicide attempters.

    PubMed

    Shelef, L; Fruchter, E; Mann, J J; Yacobi, A

    2014-10-01

    Understanding suicidal ideation may help develop more effective suicide screening and intervention programs. The interpersonal and the cognitive-deficit theories seek to describe the factors leading to suicidal behavior. In the military setting it is common to find over- and under-reporting of suicidal ideation. This study sought to determine the relationship between these two models and determine to what degree their components can indirectly predict suicidal ideation. Suicide attempters (n=32) were compared with non-suicidal psychologically treated peers (n=38) and controls (n=33), matched for sex and age (mean 19.7years). Pearson's analysis was used to quantify the relationship between the variables from the two models and hierarchal regression analysis was used to determine the explanation of suicidal ideation variance by these variables. Suicide attempters have more difficulties in problem-solving, negative emotion regulation and burdensomeness compared with their peers (P<.001). These variables are all closely correlated with each other and to suicide ideation (r>±0.5; P<.001). Prior suicide attempt, loneliness and burdensomeness together explain 65% (P<.001) of the variance in suicidal ideation. Suicidal ideation is strongly correlated with components of interpersonal and cognitive difficulties. In addition to assessing current suicidal ideation, clinicians should assess past suicide attempt, loneliness and burdensomeness. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Variance-based Sensitivity Analysis of Large-scale Hydrological Model to Prepare an Ensemble-based SWOT-like Data Assimilation Experiments

    NASA Astrophysics Data System (ADS)

    Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Garambois, P. A.; Decharme, B.; Rochoux, M. C.

    2015-12-01

    Land Surface Models (LSM) coupled with River Routing schemes (RRM), are used in Global Climate Models (GCM) to simulate the continental part of the water cycle. They are key component of GCM as they provide boundary conditions to atmospheric and oceanic models. However, at global scale, errors arise mainly from simplified physics, atmospheric forcing, and input parameters. More particularly, those used in RRM, such as river width, depth and friction coefficients, are difficult to calibrate and are mostly derived from geomorphologic relationships, which may not always be realistic. In situ measurements are then used to calibrate these relationships and validate the model, but global in situ data are very sparse. Additionally, due to the lack of existing global river geomorphology database and accurate forcing, models are run at coarse resolution. This is typically the case of the ISBA-TRIP model used in this study.A complementary alternative to in-situ data are satellite observations. In this regard, the Surface Water and Ocean Topography (SWOT) satellite mission, jointly developed by NASA/CNES/CSA/UKSA and scheduled for launch around 2020, should be very valuable to calibrate RRM parameters. It will provide maps of water surface elevation for rivers wider than 100 meters over continental surfaces in between 78°S and 78°N and also direct observation of river geomorphological parameters such as width ans slope.Yet, before assimilating such kind of data, it is needed to analyze RRM temporal sensitivity to time-constant parameters. This study presents such analysis over large river basins for the TRIP RRM. Model output uncertainty, represented by unconditional variance, is decomposed into ordered contribution from each parameter. Doing a time-dependent analysis allows then to identify to which parameters modeled water level and discharge are the most sensitive along a hydrological year. The results show that local parameters directly impact water levels, while discharge is more affected by parameters from the whole upstream drainage area. Understanding model output variance behavior will have a direct impact on the design and performance of the ensemble-based data assimilation platform, for which uncertainties are also modeled by variances. It will help to select more objectively RRM parameters to correct.

  3. A class of multi-period semi-variance portfolio for petroleum exploration and development

    NASA Astrophysics Data System (ADS)

    Guo, Qiulin; Li, Jianzhong; Zou, Caineng; Guo, Yujuan; Yan, Wei

    2012-10-01

    Variance is substituted by semi-variance in Markowitz's portfolio selection model. For dynamic valuation on exploration and development projects, one period portfolio selection is extended to multi-period. In this article, a class of multi-period semi-variance exploration and development portfolio model is formulated originally. Besides, a hybrid genetic algorithm, which makes use of the position displacement strategy of the particle swarm optimiser as a mutation operation, is applied to solve the multi-period semi-variance model. For this class of portfolio model, numerical results show that the mode is effective and feasible.

  4. An augmented classical least squares method for quantitative Raman spectral analysis against component information loss.

    PubMed

    Zhou, Yan; Cao, Hui

    2013-01-01

    We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.

  5. Sex-specific genetic effects in physical activity: results from a quantitative genetic analysis.

    PubMed

    Diego, Vincent P; de Chaves, Raquel Nichele; Blangero, John; de Souza, Michele Caroline; Santos, Daniel; Gomes, Thayse Natacha; dos Santos, Fernanda Karina; Garganta, Rui; Katzmarzyk, Peter T; Maia, José A R

    2015-08-01

    The objective of this study is to present a model to estimate sex-specific genetic effects on physical activity (PA) levels and sedentary behaviour (SB) using three generation families. The sample consisted of 100 families covering three generations from Portugal. PA and SB were assessed via the International Physical Activity Questionnaire short form (IPAQ-SF). Sex-specific effects were assessed by genotype-by-sex interaction (GSI) models and sex-specific heritabilities. GSI effects and heterogeneity were tested in the residual environmental variance. SPSS 17 and SOLAR v. 4.1 were used in all computations. The genetic component for PA and SB domains varied from low to moderate (11% to 46%), when analyzing both genders combined. We found GSI effects for vigorous PA (p = 0.02) and time spent watching television (WT) (p < 0.001) that showed significantly higher additive genetic variance estimates in males. The heterogeneity in the residual environmental variance was significant for moderate PA (p = 0.02), vigorous PA (p = 0.006) and total PA (p = 0.001). Sex-specific heritability estimates were significantly higher in males only for WT, with a male-to-female difference in heritability of 42.5 (95% confidence interval: 6.4, 70.4). Low to moderate genetic effects on PA and SB traits were found. Results from the GSI model show that there are sex-specific effects in two phenotypes, VPA and WT with a stronger genetic influence in males.

  6. Strategy and model building in the fourth dimension: a null model for genotype x age interaction as a Gaussian stationary stochastic process.

    PubMed

    Diego, Vincent P; Almasy, Laura; Dyer, Thomas D; Soler, Júlia M P; Blangero, John

    2003-12-31

    Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype x age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. We found evidence for genotype x age interaction for fasting glucose and systolic blood pressure. There is polygenic genotype x age interaction for fasting glucose and systolic blood pressure and quantitative trait locus x age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM.

  7. Principal variance component analysis of crop composition data: a case study on herbicide-tolerant cotton.

    PubMed

    Harrison, Jay M; Howard, Delia; Malven, Marianne; Halls, Steven C; Culler, Angela H; Harrigan, George G; Wolfinger, Russell D

    2013-07-03

    Compositional studies on genetically modified (GM) and non-GM crops have consistently demonstrated that their respective levels of key nutrients and antinutrients are remarkably similar and that other factors such as germplasm and environment contribute more to compositional variability than transgenic breeding. We propose that graphical and statistical approaches that can provide meaningful evaluations of the relative impact of different factors to compositional variability may offer advantages over traditional frequentist testing. A case study on the novel application of principal variance component analysis (PVCA) in a compositional assessment of herbicide-tolerant GM cotton is presented. Results of the traditional analysis of variance approach confirmed the compositional equivalence of the GM and non-GM cotton. The multivariate approach of PVCA provided further information on the impact of location and germplasm on compositional variability relative to GM.

  8. Variance analysis of forecasted streamflow maxima in a wet temperate climate

    NASA Astrophysics Data System (ADS)

    Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.

    2018-05-01

    Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.

  9. Genetic analysis of Holstein cattle populations in Brazil and the United States.

    PubMed

    Costa, C N; Blake, R W; Pollak, E J; Oltenacu, P A; Quaas, R L; Searle, S R

    2000-12-01

    Genetic relationships between Brazilian and US Holstein cattle populations were studied using first-lactation records of 305-d mature equivalent (ME) yields of milk and fat of daughters of 705 sires in Brazil and 701 sires in the United States, 358 of which had progeny in both countries. Components of(co)variance and genetic parameters were estimated from all data and from within herd-year standard deviation for milk (HYSD) data files using bivariate and multivariate sire models and DFREML procedures distinguishing the two countries. Sire (residual) variances from all data for milk yield were 51 to 59% (58 to 101%) as large in Brazil as those obtained from half-sisters in the average US herd. Corresponding proportions of the US variance in fat yield that were found in Brazil were 30 to 41% for the sire component of variance and 48 to 80% for the residual. Heritabilities for milk and fat yields from multivariate analysis of all the data were 0.25 and 0.22 in Brazil, and 0.34 and 0.35 in the United States. Genetic correlations between milk and fat were 0.79 in Brazil and 0.62 in the United States. Genetic correlations between countries were 0.85 for milk, 0.88 for fat, 0.55 for milk in Brazil and fat in the US, and 0.67 for fat in Brazil and milk in the United States. Correlated responses in Brazil from sire selection based on the US information increased with average HYSD in Brazil. Largest daughter yield response was predicted from information from half-sisters in low HYSD US herds (0.75 kg/kg for milk; 0.63 kg/kg for fat), which was 14% to 17% greater than estimates from all US herds because the scaling effects were less severe from heterogeneous variances. Unequal daughter response from unequal genetic (co)variances under restrictive Brazilian conditions is evidence for the interaction of genotype and environment. The smaller and variable yield expectations of daughters of US sires in Brazilian environments suggest the need for specific genetic improvement strategies in Brazilian Holstein herds. A US data file restricting daughter information to low HYSD US environments would be a wise choice for across-country evaluation. Procedures to incorporate such foreign evaluations should be explored to improve the accuracy of genetic evaluations for the Brazilian Holstein population.

  10. Short communication: Principal components and factor analytic models for test-day milk yield in Brazilian Holstein cattle.

    PubMed

    Bignardi, A B; El Faro, L; Rosa, G J M; Cardoso, V L; Machado, P F; Albuquerque, L G

    2012-04-01

    A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Stochastic Analysis and Probabilistic Downscaling of Soil Moisture

    NASA Astrophysics Data System (ADS)

    Deshon, J. P.; Niemann, J. D.; Green, T. R.; Jones, A. S.

    2017-12-01

    Soil moisture is a key variable for rainfall-runoff response estimation, ecological and biogeochemical flux estimation, and biodiversity characterization, each of which is useful for watershed condition assessment. These applications require not only accurate, fine-resolution soil-moisture estimates but also confidence limits on those estimates and soil-moisture patterns that exhibit realistic statistical properties (e.g., variance and spatial correlation structure). The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution (9-40 km) soil moisture from satellite remote sensing or land-surface models to produce fine-resolution (10-30 m) estimates. The model was designed to produce accurate deterministic soil-moisture estimates at multiple points, but the resulting patterns do not reproduce the variance or spatial correlation of observed soil-moisture patterns. The primary objective of this research is to generalize the EMT+VS model to produce a probability density function (pdf) for soil moisture at each fine-resolution location and time. Each pdf has a mean that is equal to the deterministic soil-moisture estimate, and the pdf can be used to quantify the uncertainty in the soil-moisture estimates and to simulate soil-moisture patterns. Different versions of the generalized model are hypothesized based on how uncertainty enters the model, whether the uncertainty is additive or multiplicative, and which distributions describe the uncertainty. These versions are then tested by application to four catchments with detailed soil-moisture observations (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah). The performance of the generalized models is evaluated by comparing the statistical properties of the simulated soil-moisture patterns to those of the observations and the deterministic EMT+VS model. The versions of the generalized EMT+VS model with normally distributed stochastic components produce soil-moisture patterns with more realistic statistical properties than the deterministic model. Additionally, the results suggest that the variance and spatial correlation of the stochastic soil-moisture variations do not vary consistently with the spatial-average soil moisture.

  12. Sequential Prediction of Literacy Achievement for Specific Learning Disabilities Contrasting in Impaired Levels of Language in Grades 4 to 9

    PubMed Central

    Sanders, Elizabeth A.; Berninger, Virginia W.; Abbott, Robert D.

    2017-01-01

    Sequential regression was used to evaluate whether language-related working memory components uniquely predict reading and writing achievement beyond cognitive-linguistic translation for students in grades 4–9 (N=103) with specific learning disabilities (SLDs) in subword handwriting (dysgraphia, n=25), word reading and spelling (dyslexia, n=60), or oral and written language (OWL LD, n=18). That is, SLDs are defined on basis of cascading level of language impairment (subword, word, and syntax/text). A 5-block regression model sequentially predicted literacy achievement from cognitive-linguistic translation (Block 1); working memory components for word form coding (Block 2), phonological and orthographic loops (Block 3), and supervisory focused or switching attention (Block4); and SLD groups (Block 5). Results showed that cognitive-linguistic translation explained an average of 27% and 15% of the variance in reading and writing achievement, respectively, but working memory components explained an additional 39% and 27% variance. Orthographic word form coding uniquely predicted nearly every measure, whereas attention switching only uniquely predicted reading. Finally, differences in reading and writing persisted between dyslexia and dysgraphia, with dysgraphia higher, even after controlling for Block 1 to 4 predictors. Differences in literacy achievement between students with dyslexia and OWL LD were largely explained by the Block 1 predictors. Applications to identifying and teaching students with these SLDs are discussed. PMID:28199175

  13. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, Rachel M.; Lisiecki, Lorraine E.

    2016-04-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  14. Pattern Classification Using an Olfactory Model with PCA Feature Selection in Electronic Noses: Study and Application

    PubMed Central

    Fu, Jun; Huang, Canqin; Xing, Jianguo; Zheng, Junbao

    2012-01-01

    Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor) as well as its parallel channels (inner factor). The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6∼8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3∼5 pattern classes considering the trade-off between time consumption and classification rate. PMID:22736979

  15. Dominance Genetic Variance for Traits Under Directional Selection in Drosophila serrata

    PubMed Central

    Sztepanacz, Jacqueline L.; Blows, Mark W.

    2015-01-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait–fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. PMID:25783700

  16. Extension of four-dimensional atmospheric models. [and cloud cover data bank

    NASA Technical Reports Server (NTRS)

    Fowler, M. G.; Lisa, A. S.; Tung, S. L.

    1975-01-01

    The cloud data bank, the 4-D atmospheric model, and a set of computer programs designed to simulate meteorological conditions for any location above the earth are described in turns of space vehicle design and simulation of vehicle reentry trajectories. Topics discussed include: the relationship between satellite and surface observed cloud cover using LANDSAT 1 photographs and including the effects of cloud shadows; extension of the 4-D model to the altitude of 52 km; and addition of the u and v wind components to the 4-D model of means and variances at 1 km levels from the surface to 25 km. Results of the cloud cover analysis are presented along with the stratospheric model and the tropospheric wind profiles.

  17. Undesired variance due to examiner stringency/leniency effect in communication skill scores assessed in OSCEs.

    PubMed

    Harasym, Peter H; Woloschuk, Wayne; Cunning, Leslie

    2008-12-01

    Physician-patient communication is a clinical skill that can be learned and has a positive impact on patient satisfaction and health outcomes. A concerted effort at all medical schools is now directed at teaching and evaluating this core skill. Student communication skills are often assessed by an Objective Structure Clinical Examination (OSCE). However, it is unknown what sources of error variance are introduced into examinee communication scores by various OSCE components. This study primarily examined the effect different examiners had on the evaluation of students' communication skills assessed at the end of a family medicine clerkship rotation. The communication performance of clinical clerks from Classes 2005 and 2006 were assessed using six OSCE stations. Performance was rated at each station using the 28-item Calgary-Cambridge guide. Item Response Theory analysis using a Multifaceted Rasch model was used to partition the various sources of error variance and generate a "true" communication score where the effects of examiner, case, and items are removed. Variance and reliability of scores were as follows: communication scores (.20 and .87), examiner stringency/leniency (.86 and .91), case (.03 and .96), and item (.86 and .99), respectively. All facet scores were reliable (.87-.99). Examiner variance (.86) was more than four times the examinee variance (.20). About 11% of the clerks' outcome status shifted using "true" rather than observed/raw scores. There was large variability in examinee scores due to variation in examiner stringency/leniency behaviors that may impact pass-fail decisions. Exploring the benefits of examiner training and employing "true" scores generated using Item Response Theory analyses prior to making pass/fail decisions are recommended.

  18. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  19. A Practical Methodology for Quantifying Random and Systematic Components of Unexplained Variance in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Obara, Clifford J.; Goodman, Wesley L.

    2012-01-01

    This paper documents a check standard wind tunnel test conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3M TCT) that was designed and analyzed using the Modern Design of Experiments (MDOE). The test designed to partition the unexplained variance of typical wind tunnel data samples into two constituent components, one attributable to ordinary random error, and one attributable to systematic error induced by covariate effects. Covariate effects in wind tunnel testing are discussed, with examples. The impact of systematic (non-random) unexplained variance on the statistical independence of sequential measurements is reviewed. The corresponding correlation among experimental errors is discussed, as is the impact of such correlation on experimental results generally. The specific experiment documented herein was organized as a formal test for the presence of unexplained variance in representative samples of wind tunnel data, in order to quantify the frequency with which such systematic error was detected, and its magnitude relative to ordinary random error. Levels of systematic and random error reported here are representative of those quantified in other facilities, as cited in the references.

  20. Perceived sources of work stress and satisfaction among hospital and community mental health staff, and their relation to mental health, burnout and job satisfaction.

    PubMed

    Prosser, D; Johnson, S; Kuipers, E; Szmukler, G; Bebbington, P; Thornicroft, G

    1997-07-01

    This questionnaire study examined perceived sources of stress and satisfaction at work among 121 mental health staff members. Five factors were derived from principal component analysis of sources of work stress items (stress from: role, poor support, clients, future, and overload), and accounted for 70% of the total variance. Four factors were derived from the items related to sources of job satisfaction (satisfaction from: career, working with people, management, and money), accounting for 68% of the variance. The associations of these factors with sociodemographic and job characteristics were examined, and they were entered as explanatory variables into regression models predicting mental health, burnout, and job satisfaction. Stress from "overload" was associated with being based outside an in-patient ward, and with emotional exhaustion and worse mental health. Stress related to the "future" was associated with not being white. Stress from "clients" was associated with the "depersonalization" component of burnout. Higher job satisfaction was associated with "management" and "working with people" as sources of satisfaction, whereas emotional exhaustion and poorer mental health were associated with less "career" satisfaction.

  1. Evidence of orbital forcing in 510 to 530 million year old shallow marine cycles, Utah and western Canada

    NASA Technical Reports Server (NTRS)

    Bond, Gerard C.; Beavan, John; Kominz, Michelle A.; Devlin, William

    1992-01-01

    Spectral analyses of two sequences of shallow marine sedimentary cycles that were deposited between 510 and 530 million years ago were completed. One sequence is from Middle Cambrian rocks in southern Utah and the other is from Upper Cambrian rocks in the southern Canadian Rockies. In spite of the antiquity of these strata, and even though there are differences in the age, location, and cycle facies between the two sequences, both records have distinct spectral peaks with surprisingly similar periodicities. A null model constructed to test for significance of the spectral peaks and circulatory in the methodology indicates that all but one of the spectral peaks are significant at the 90 percent confidence level. When the ratios between the statistically significant peaks are measured, we find a consistent relation to orbital forcing; specifically, the spectral peak ratios in both the Utah and Canadian examples imply that a significant amount of the variance in the cyclic records is driven by the short eccentricity (approximately 109 ky) and by the precessional (approximately 21 ky) components of the Earth's orbital variations. Neither section contains a significant component of variance at the period of the obliquity cycle, however.

  2. Environmental rather than genetic factors determine the variation in the age of the infancy to childhood transition: a twins study.

    PubMed

    German, Alina; Livshits, Gregory; Peter, Inga; Malkin, Ida; Dubnov, Jonathan; Akons, Hannah; Shmoish, Michael; Hochberg, Ze'ev

    2015-03-01

    Using a twins study, we sought to assess the contribution of genetic against environmental factor as they affect the age at transition from infancy to childhood (ICT). The subjects were 56 pairs of monozygotic twins, 106 pairs of dizygotic twins, and 106 pairs of regular siblings (SBs), for a total of 536 children. Their ICT was determined, and a variance component analysis was implemented to estimate components of the familial variance, with simultaneous adjustment for potential covariates. We found substantial contribution of the common environment shared by all types of SBs that explained 27.7% of the total variance in ICT, whereas the common twin environment explained 9.2% of the variance, gestational age 3.5%, and birth weight 1.8%. In addition, 8.7% was attributable to sex difference, but we found no detectable contribution of genetic factors to inter-individual variation in ICT age. Developmental plasticity impacts much of human growth. Here we show that of the ∼50% of the variance provided to adult height by the ICT, 42.2% is attributable to adaptive cues represented by shared twin and SB environment, with no detectable genetic involvement. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Analysis of stimulus-related activity in rat auditory cortex using complex spectral coefficients

    PubMed Central

    Krause, Bryan M.

    2013-01-01

    The neural mechanisms of sensory responses recorded from the scalp or cortical surface remain controversial. Evoked vs. induced response components (i.e., changes in mean vs. variance) are associated with bottom-up vs. top-down processing, but trial-by-trial response variability can confound this interpretation. Phase reset of ongoing oscillations has also been postulated to contribute to sensory responses. In this article, we present evidence that responses under passive listening conditions are dominated by variable evoked response components. We measured the mean, variance, and phase of complex time-frequency coefficients of epidurally recorded responses to acoustic stimuli in rats. During the stimulus, changes in mean, variance, and phase tended to co-occur. After the stimulus, there was a small, low-frequency offset response in the mean and modest, prolonged desynchronization in the alpha band. Simulations showed that trial-by-trial variability in the mean can account for most of the variance and phase changes observed during the stimulus. This variability was state dependent, with smallest variability during periods of greatest arousal. Our data suggest that cortical responses to auditory stimuli reflect variable inputs to the cortical network. These analyses suggest that caution should be exercised when interpreting variance and phase changes in terms of top-down cortical processing. PMID:23657279

  4. Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models

    NASA Astrophysics Data System (ADS)

    Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas

    2017-02-01

    A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally, locally and un-identifiable model classes, and then to model updating of a two degree-of-freedom nonlinear structure with Duffing nonlinearities in its interstory force-deflection relationship.

  5. On the Fallibility of Principal Components in Research

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Li, Tenglong

    2017-01-01

    The measurement error in principal components extracted from a set of fallible measures is discussed and evaluated. It is shown that as long as one or more measures in a given set of observed variables contains error of measurement, so also does any principal component obtained from the set. The error variance in any principal component is shown…

  6. Prediction-error variance in Bayesian model updating: a comparative study

    NASA Astrophysics Data System (ADS)

    Asadollahi, Parisa; Li, Jian; Huang, Yong

    2017-04-01

    In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model class level produces more robust results especially when the number of measurement is small.

  7. Dense Velocity Field of Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.

    2017-12-01

    While the GNSS-based crustal deformation studies in Turkey date back to early 1990s, a homogenous velocity field utilizing all the available data is still missing. Regional studies employing different site distributions, observation plans, processing software and methodology not only create reference frame variations but also heterogeneous stochastic models. While the reference frame effect between different velocity fields could easily be removed by estimating a set of rotations, the homogenization of the stochastic models of the individual velocity fields requires a more detailed analysis. Using a rigorous Variance Component Estimation (VCE) methodology, we estimated the variance factors for each of the contributing velocity fields and combined them into a single homogenous velocity field covering whole Turkey. Results show that variance factors between velocity fields including the survey mode and continuous observations can vary a few orders of magnitude. In this study, we present the most complete velocity field in Turkey rigorously combined from 20 individual velocity fields including the 146 station CORS network and totally 1072 stations. In addition, three GPS campaigns were performed along the North Anatolian Fault and Aegean Region to fill the gap between existing velocity fields. The homogenously combined new velocity field is nearly complete in terms of geographic coverage, and will serve as the basis for further analyses such as the estimation of the deformation rates and the determination of the slip rates across main fault zones.

  8. Decadal climate prediction in the large ensemble limit

    NASA Astrophysics Data System (ADS)

    Yeager, S. G.; Rosenbloom, N. A.; Strand, G.; Lindsay, K. T.; Danabasoglu, G.; Karspeck, A. R.; Bates, S. C.; Meehl, G. A.

    2017-12-01

    In order to quantify the benefits of initialization for climate prediction on decadal timescales, two parallel sets of historical simulations are required: one "initialized" ensemble that incorporates observations of past climate states and one "uninitialized" ensemble whose internal climate variations evolve freely and without synchronicity. In the large ensemble limit, ensemble averaging isolates potentially predictable forced and internal variance components in the "initialized" set, but only the forced variance remains after averaging the "uninitialized" set. The ensemble size needed to achieve this variance decomposition, and to robustly distinguish initialized from uninitialized decadal predictions, remains poorly constrained. We examine a large ensemble (LE) of initialized decadal prediction (DP) experiments carried out using the Community Earth System Model (CESM). This 40-member CESM-DP-LE set of experiments represents the "initialized" complement to the CESM large ensemble of 20th century runs (CESM-LE) documented in Kay et al. (2015). Both simulation sets share the same model configuration, historical radiative forcings, and large ensemble sizes. The twin experiments afford an unprecedented opportunity to explore the sensitivity of DP skill assessment, and in particular the skill enhancement associated with initialization, to ensemble size. This talk will highlight the benefits of a large ensemble size for initialized predictions of seasonal climate over land in the Atlantic sector as well as predictions of shifts in the likelihood of climate extremes that have large societal impact.

  9. Analysis of longitudinal data of beef cattle raised on pasture from northern Brazil using nonlinear models.

    PubMed

    Lopes, Fernando B; da Silva, Marcelo C; Marques, Ednira G; McManus, Concepta M

    2012-12-01

    This study was undertaken to aim of estimating the genetic parameters and trends for asymptotic weight (A) and maturity rate (k) of Nellore cattle from northern Brazil. The data set was made available by the Brazilian Association of Zebu Breeders and collected between the years of 1997 and 2007. The Von Bertalanffy, Brody, Gompertz, and logistic nonlinear models were fitted by the Gauss-Newton method to weight-age data of 45,895 animals collected quarterly of the birth to 750 days old. The curve parameters were analyzed using the procedures GLM and CORR. The estimation of (co)variance components and genetic parameters was obtained using the MTDFREML software. The estimated heritability coefficients were 0.21 ± 0.013 and 0.25 ± 0.014 for asymptotic weight and maturity rate, respectively. This indicates that selection for any trait shall results in genetic progress in the herd. The genetic correlation between A and k was negative (-0.57 ± 0.03) and indicated that animals selected for high maturity rate shall result in low asymptotic weight. The Von Bertalanffy function is adequate to establish the mean growth patterns and to predict the adult weight of Nellore cattle. This model is more accurate in predicting the birth weight of these animals and has better overall fit. The prediction of adult weight using nonlinear functions can be accurate when growth curve parameters and their (co)variance components are estimated jointly. The model used in this study can be applied to the prediction of mature weight in herds where a portion of the animals are culled before they reach the adult age.

  10. [Prevention of HIV transmission: application of the theory of reasoned action to the prediction of condom use].

    PubMed

    Diaz-loving, R; Rivera Aragon, S

    1995-01-01

    1203 sexually active workers in six government agencies in Mexico City participated in a study of the applicability of the theory of reasoned action to prediction of condom use for AIDS prevention. The theory of reasoned action is one of a series of models of attitudes that have had consistent success in predicting various types of intentions and behaviors, especially in the area of sexual and contraceptive behavior. The theory specifies that the intention of executing a particular behavior is determined as the function of attitude toward the behavior and a social factor termed "subjective norm", referring to the perception of social pressure supporting or opposing a particular behavior. The 1203 subjects, who ranged from low to high educational and socioeconomic status, completed self-administered questionnaires concerning their beliefs, attitudes, and intentions regarding condom use, motivation to comply with the subjective norm, and actual condom use. Various scales were constructed to measure the different components of the theory. Hierarchical regression analysis was carried out separately for men and women and for condom use with regular or occasional partners. The model explained over 20% of condom use behavior. The total explained variance was similar in all groups, but the components of the model determining the variance were different. Personal beliefs and attitudes were more important in reference to occasional sexual partners, but the subjective norm and motivation to comply with the reference group were more important with regular sexual partners. The results demonstrate the need for interventions to be adapted to gender groups and in reference to regular or occasional partners.

  11. Structural changes and out-of-sample prediction of realized range-based variance in the stock market

    NASA Astrophysics Data System (ADS)

    Gong, Xu; Lin, Boqiang

    2018-03-01

    This paper aims to examine the effects of structural changes on forecasting the realized range-based variance in the stock market. Considering structural changes in variance in the stock market, we develop the HAR-RRV-SC model on the basis of the HAR-RRV model. Subsequently, the HAR-RRV and HAR-RRV-SC models are used to forecast the realized range-based variance of S&P 500 Index. We find that there are many structural changes in variance in the U.S. stock market, and the period after the financial crisis contains more structural change points than the period before the financial crisis. The out-of-sample results show that the HAR-RRV-SC model significantly outperforms the HAR-BV model when they are employed to forecast the 1-day, 1-week, and 1-month realized range-based variances, which means that structural changes can improve out-of-sample prediction of realized range-based variance. The out-of-sample results remain robust across the alternative rolling fixed-window, the alternative threshold value in ICSS algorithm, and the alternative benchmark models. More importantly, we believe that considering structural changes can help improve the out-of-sample performances of most of other existing HAR-RRV-type models in addition to the models used in this paper.

  12. Quantifying the Contribution of Wind-Driven Linear Response to the Seasonal and Interannual Variability of Amoc Volume Transports Across 26.5ºN

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; von Storch, J. S.; Haak, H.; Nakayama, K.; Marotzke, J.

    2014-12-01

    Surface wind stress is considered to be an important forcing of the seasonal and interannual variability of Atlantic Meridional Overturning Circulation (AMOC) volume transports. A recent study showed that even linear response to wind forcing captures observed features of the mean seasonal cycle. However, the study did not assess the contribution of wind-driven linear response in realistic conditions against the RAPID/MOCHA array observation or Ocean General Circulation Model (OGCM) simulations, because it applied a linear two-layer model to the Atlantic assuming constant upper layer thickness and density difference across the interface. Here, we quantify the contribution of wind-driven linear response to the seasonal and interannual variability of AMOC transports by comparing wind-driven linear simulations under realistic continuous stratification against the RAPID observation and OCGM (MPI-OM) simulations with 0.4º resolution (TP04) and 0.1º resolution (STORM). All the linear and MPI-OM simulations capture more than 60% of the variance in the observed mean seasonal cycle of the Upper Mid-Ocean (UMO) and Florida Strait (FS) transports, two components of the upper branch of the AMOC. The linear and TP04 simulations also capture 25-40% of the variance in the observed transport time series between Apr 2004 and Oct 2012; the STORM simulation does not capture the observed variance because of the stochastic signal in both datasets. Comparison of half-overlapping 12-month-long segments reveals some periods when the linear and TP04 simulations capture 40-60% of the observed variance, as well as other periods when the simulations capture only 0-20% of the variance. These results show that wind-driven linear response is a major contributor to the seasonal and interannual variability of the UMO and FS transports, and that its contribution varies in an interannual timescale, probably due to the variability of stochastic processes.

  13. A revised design for microarray experiments to account for experimental noise and uncertainty of probe response.

    PubMed

    Pozhitkov, Alex E; Noble, Peter A; Bryk, Jarosław; Tautz, Diethard

    2014-01-01

    Although microarrays are analysis tools in biomedical research, they are known to yield noisy output that usually requires experimental confirmation. To tackle this problem, many studies have developed rules for optimizing probe design and devised complex statistical tools to analyze the output. However, less emphasis has been placed on systematically identifying the noise component as part of the experimental procedure. One source of noise is the variance in probe binding, which can be assessed by replicating array probes. The second source is poor probe performance, which can be assessed by calibrating the array based on a dilution series of target molecules. Using model experiments for copy number variation and gene expression measurements, we investigate here a revised design for microarray experiments that addresses both of these sources of variance. Two custom arrays were used to evaluate the revised design: one based on 25 mer probes from an Affymetrix design and the other based on 60 mer probes from an Agilent design. To assess experimental variance in probe binding, all probes were replicated ten times. To assess probe performance, the probes were calibrated using a dilution series of target molecules and the signal response was fitted to an adsorption model. We found that significant variance of the signal could be controlled by averaging across probes and removing probes that are nonresponsive or poorly responsive in the calibration experiment. Taking this into account, one can obtain a more reliable signal with the added option of obtaining absolute rather than relative measurements. The assessment of technical variance within the experiments, combined with the calibration of probes allows to remove poorly responding probes and yields more reliable signals for the remaining ones. Once an array is properly calibrated, absolute quantification of signals becomes straight forward, alleviating the need for normalization and reference hybridizations.

  14. Downscaling large-scale circulation to local winter climate using neural network techniques

    NASA Astrophysics Data System (ADS)

    Cavazos Perez, Maria Tereza

    1998-12-01

    The severe impacts of climate variability on society reveal the increasing need for improving regional-scale climate diagnosis. A new downscaling approach for climate diagnosis is developed here. It is based on neural network techniques that derive transfer functions from the large-scale atmospheric controls to the local winter climate in northeastern Mexico and southeastern Texas during the 1985-93 period. A first neural network (NN) model employs time-lagged component scores from a rotated principal component analysis of SLP, 500-hPa heights, and 1000-500 hPa thickness as predictors of daily precipitation. The model is able to reproduce the phase and, to some decree, the amplitude of large rainfall events, reflecting the influence of the large-scale circulation. Large errors are found over the Sierra Madre, over the Gulf of Mexico, and during El Nino events, suggesting an increase in the importance of meso-scale rainfall processes. However, errors are also due to the lack of randomization of the input data and the absence of local atmospheric predictors such as moisture. Thus, a second NN model uses time-lagged specific humidity at the Earth's surface and at the 700 hPa level, SLP tendency, and 700-500 hPa thickness as input to a self-organizing map (SOM) that pre-classifies the atmospheric fields into different patterns. The results from the SOM classification document that negative (positive) anomalies of winter precipitation over the region are associated with: (1) weaker (stronger) Aleutian low; (2) stronger (weaker) North Pacific high; (3) negative (positive) phase of the Pacific North American pattern; and (4) La Nina (El Nino) events. The SOM atmospheric patterns are then used as input to a feed-forward NN that captures over 60% of the daily rainfall variance and 94% of the daily minimum temperature variance over the region. This demonstrates the ability of artificial neural network models to simulate realistic relationships on daily time scales. The results of this research also reveal that the SOM pre-classification of days with similar atmospheric conditions succeeded in emphasizing the differences of the atmospheric variance conducive to extreme events. This resulted in a downscaling NN model that is highly sensitive to local-scale weather anomalies associated with El Nino and extreme cold events.

  15. Newfound compassion after prostate cancer: a psychometric evaluation of additional items in the Posttraumatic Growth Inventory.

    PubMed

    Morris, Bronwyn A; Wilson, Bridget; Chambers, Suzanne K

    2013-12-01

    The most widely used measure of posttraumatic growth (PTG) is the Posttraumatic Growth Inventory (PTGI). Qualitative research indicates the importance of increased compassion as a result of struggling with challenges presented by cancer and treatments. However, current PTG measures may not adequately assess compassion. A cross-sectional survey of 514 prostate cancer survivors assessed the PTGI and Dispositional Positive Emotional Scale (DPES). Five additional PTG items were derived from previous qualitative research to assess increased compassion. After removing eight items with complex loadings, a principal components analysis with oblimin rotation revealed a six-component structure. A clear delineation was seen between components relating to compassion, new possibilities, relating to others, personal strength, appreciation of life and spiritual change. Compassion accounted for 48.9 % of variance in data, with the overall model accounting for 79.9 % of variance. Strong factorability was demonstrated through Kaiser-Meyer-Olkin (0.92) and Bartlett's test of sphericity (approximate χ (2) = 5,791.85, df 153, p < 0.001). The six-component structure was validated with a confirmatory factor analysis. Strong internal consistency was evidenced through Cronbach's alpha coefficients ranging from 0.74 to 0.90 for subscales, and item-to-total correlations and inter-item correlations exceeded accepted thresholds of 0.50 and 0.30, respectively. Convergent validity was acceptable between the PTGI compassion subscale and DPES (r = 0.50). Compassion is a highly salient PTG domain after prostate cancer. Further studies can explore this construct with more heterogeneous samples of cancer types and gender.

  16. Modeling rainfall-runoff relationship using multivariate GARCH model

    NASA Astrophysics Data System (ADS)

    Modarres, R.; Ouarda, T. B. M. J.

    2013-08-01

    The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.

  17. Optical phase-locked loop (OPLL) for free-space laser communications with heterodyne detection

    NASA Technical Reports Server (NTRS)

    Win, Moe Z.; Chen, Chien-Chung; Scholtz, Robert A.

    1991-01-01

    Several advantages of coherent free-space optical communications are outlined. Theoretical analysis is formulated for an OPLL disturbed by shot noise, modulation noise, and frequency noise consisting of a white component, a 1/f component, and a 1/f-squared component. Each of the noise components is characterized by its associated power spectral density. It is shown that the effect of modulation depends only on the ratio of loop bandwidth and data rate, and is negligible for an OPLL with loop bandwidth smaller than one fourth the data rate. Total phase error variance as a function of loop bandwidth is displayed for several values of carrier signal to noise ratio. Optimal loop bandwidth is also calculated as a function of carrier signal to noise ratio. An OPLL experiment is performed, where it is shown that the measured phase error variance closely matches the theoretical predictions.

  18. Changes in yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Childers, Katelin

    2015-04-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the political discussion about mitigation targets as well as for the inclusion of climate change impacts in Integrated Assessment Models (IAMs) that generally only provide global mean temperature change as an indicator of climate change. While there is a well-established framework for the scalability of regional temperature and precipitation changes with global mean temperature change we provide an assessment of the extent to which impacts such as crop yield changes can also be described in terms of global mean temperature changes without accounting for the specific underlying emissions scenario. Based on multi-crop-model simulations of the four major cereal crops (maize, rice, soy, and wheat) on a 0.5 x 0.5 degree global grid generated within ISI-MIP, we show the average spatial patterns of projected crop yield changes at one half degree warming steps. We find that emissions scenario dependence is a minor component of the overall variance of projected yield changes at different levels of global warming. Furthermore, scenario dependence can be reduced by accounting for the direct effects of CO2 fertilization in each global climate model (GCM)/impact model combination through an inclusion of the global atmospheric CO2 concentration as a second predictor. The choice of GCM output used to force the crop model simulations accounts for a slightly larger portion of the total yield variance, but the greatest contributor to variance in both global and regional crop yields and at all levels of warming, is the inter-crop-model spread. The unique multi impact model ensemble available with ISI-MIP data also indicates that the overall variability of crop yields is projected to increase in conjunction with increasing global mean temperature. This result is consistent throughout the ensemble of impact models and across many world regions. Such a hike in yield volatility could have significant policy implications by affecting food prices and supplies.

  19. Multiscale combination of climate model simulations and proxy records over the last millennium

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xing, Pei; Luo, Yong; Nie, Suping; Zhao, Zongci; Huang, Jianbin; Tian, Qinhua

    2018-05-01

    To highlight the compatibility of climate model simulation and proxy reconstruction at different timescales, a timescale separation merging method combining proxy records and climate model simulations is presented. Annual mean surface temperature anomalies for the last millennium (851-2005 AD) at various scales over the land of the Northern Hemisphere were reconstructed with 2° × 2° spatial resolution, using an optimal interpolation (OI) algorithm. All target series were decomposed using an ensemble empirical mode decomposition method followed by power spectral analysis. Four typical components were obtained at inter-annual, decadal, multidecadal, and centennial timescales. A total of 323 temperature-sensitive proxy chronologies were incorporated after screening for each component. By scaling the proxy components using variance matching and applying a localized OI algorithm to all four components point by point, we obtained merged surface temperatures. Independent validation indicates that the most significant improvement was for components at the inter-annual scale, but this became less evident with increasing timescales. In mid-latitude land areas, 10-30% of grids were significantly corrected at the inter-annual scale. By assimilating the proxy records, the merged results reduced the gap in response to volcanic forcing between a pure reconstruction and simulation. Difficulty remained in verifying the centennial information and quantifying corresponding uncertainties, so additional effort should be devoted to this aspect in future research.

  20. An Empirical Cumulus Parameterization Scheme for a Global Spectral Model

    NASA Technical Reports Server (NTRS)

    Rajendran, K.; Krishnamurti, T. N.; Misra, V.; Tao, W.-K.

    2004-01-01

    Realistic vertical heating and drying profiles in a cumulus scheme is important for obtaining accurate weather forecasts. A new empirical cumulus parameterization scheme based on a procedure to improve the vertical distribution of heating and moistening over the tropics is developed. The empirical cumulus parameterization scheme (ECPS) utilizes profiles of Tropical Rainfall Measuring Mission (TRMM) based heating and moistening derived from the European Centre for Medium- Range Weather Forecasts (ECMWF) analysis. A dimension reduction technique through rotated principal component analysis (RPCA) is performed on the vertical profiles of heating (Q1) and drying (Q2) over the convective regions of the tropics, to obtain the dominant modes of variability. Analysis suggests that most of the variance associated with the observed profiles can be explained by retaining the first three modes. The ECPS then applies a statistical approach in which Q1 and Q2 are expressed as a linear combination of the first three dominant principal components which distinctly explain variance in the troposphere as a function of the prevalent large-scale dynamics. The principal component (PC) score which quantifies the contribution of each PC to the corresponding loading profile is estimated through a multiple screening regression method which yields the PC score as a function of the large-scale variables. The profiles of Q1 and Q2 thus obtained are found to match well with the observed profiles. The impact of the ECPS is investigated in a series of short range (1-3 day) prediction experiments using the Florida State University global spectral model (FSUGSM, T126L14). Comparisons between short range ECPS forecasts and those with the modified Kuo scheme show a very marked improvement in the skill in ECPS forecasts. This improvement in the forecast skill with ECPS emphasizes the importance of incorporating realistic vertical distributions of heating and drying in the model cumulus scheme. This also suggests that in the absence of explicit models for convection, the proposed statistical scheme improves the modeling of the vertical distribution of heating and moistening in areas of deep convection.

  1. Subjective fear, interference by threat, and fear associations independently predict fear-related behavior in children.

    PubMed

    Klein, Anke M; Kleinherenbrink, Annelies V; Simons, Carlijn; de Gier, Erwin; Klein, Steven; Allart, Esther; Bögels, Susan M; Becker, Eni S; Rinck, Mike

    2012-09-01

    Several information-processing models highlight the independent roles of controlled and automatic processes in explaining fearful behavior. Therefore, we investigated whether direct measures of controlled processes and indirect measures of automatic processes predict unique variance components of children's spider fear-related behavior. Seventy-seven children between 8 and 13 years performed an Affective Priming Task (APT) measuring associative bias, a pictorial version of the Emotional Stroop Task (EST) measuring attentional bias, filled out the Spider Anxiety and Disgust Screening for Children (SADS-C) in order to assess self-perceived fear, and took part in a Behavioral Assessment Test (BAT) to measure avoidance of spiders. The SADS-C, EST, and APT did not correlate with each other. Spider fear-related behavior was best explained by SADS-C, APT, and EST together; they explained 51% of the variance in BAT behavior. No children with clinical levels of spider phobia were tested. The direct and the different indirect measures did no correlate with each other. These results indicate that both direct and indirect measures are useful for predicting unique variance components of fear-related behavior in children. The lack of relations between direct and indirect measures may explain why some earlier studies did not find stronger color-naming interference or stronger fear associations in children with high levels of self-reported fear. It also suggests that children with high levels of spider-fearful behavior have different fear-related associations and display higher interference by spider stimuli than children with non-fearful behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Multivariate Cholesky models of human female fertility patterns in the NLSY.

    PubMed

    Rodgers, Joseph Lee; Bard, David E; Miller, Warren B

    2007-03-01

    Substantial evidence now exists that variables measuring or correlated with human fertility outcomes have a heritable component. In this study, we define a series of age-sequenced fertility variables, and fit multivariate models to account for underlying shared genetic and environmental sources of variance. We make predictions based on a theory developed by Udry [(1996) Biosocial models of low-fertility societies. In: Casterline, JB, Lee RD, Foote KA (eds) Fertility in the United States: new patterns, new theories. The Population Council, New York] suggesting that biological/genetic motivations can be more easily realized and measured in settings in which fertility choices are available. Udry's theory, along with principles from molecular genetics and certain tenets of life history theory, allow us to make specific predictions about biometrical patterns across age. Consistent with predictions, our results suggest that there are different sources of genetic influence on fertility variance at early compared to later ages, but that there is only one source of shared environmental influence that occurs at early ages. These patterns are suggestive of the types of gene-gene and gene-environment interactions for which we must account to better understand individual differences in fertility outcomes.

  3. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study.

    PubMed

    Bouchard, C; An, P; Rice, T; Skinner, J S; Wilmore, J H; Gagnon, J; Pérusse, L; Leon, A S; Rao, D C

    1999-09-01

    The aim of this study was to test the hypothesis that individual differences in the response of maximal O(2) uptake (VO(2max)) to a standardized training program are characterized by familial aggregation. A total of 481 sedentary adult Caucasians from 98 two-generation families was exercise trained for 20 wk and was tested for VO(2max) on a cycle ergometer twice before and twice after the training program. The mean increase in VO(2max) reached approximately 400 ml/min, but there was considerable heterogeneity in responsiveness, with some individuals experiencing little or no gain, whereas others gained >1.0 l/min. An ANOVA revealed that there was 2.5 times more variance between families than within families in the VO(2max) response variance. With the use of a model-fitting procedure, the most parsimonious models yielded a maximal heritability estimate of 47% for the VO(2max) response, which was adjusted for age and sex with a maternal transmission of 28% in one of the models. We conclude that the trainability of VO(2max) is highly familial and includes a significant genetic component.

  4. The Dissociation of Word Reading and Text Comprehension: Evidence from Component Skills.

    ERIC Educational Resources Information Center

    Oakhill, J. V.; Cain, K.; Bryant, P. E.

    2003-01-01

    Discusses the relative contribution of several theoretically relevant skills and abilities in accounting for variance in both word reading and text comprehension. Data is presented from two waves of a longitudinal study. Shows there is a dissociation between the skills and abilities that account for variance in word reading, and those that account…

  5. Dominance genetic variance for traits under directional selection in Drosophila serrata.

    PubMed

    Sztepanacz, Jacqueline L; Blows, Mark W

    2015-05-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait-fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. Copyright © 2015 by the Genetics Society of America.

  6. The Cost of Uncertain Life Span*

    PubMed Central

    Edwards, Ryan D.

    2012-01-01

    A considerable amount of uncertainty surrounds the length of human life. The standard deviation in adult life span is about 15 years in the U.S., and theory and evidence suggest it is costly. I calibrate a utility-theoretic model of preferences over length of life and show that one fewer year in standard deviation is worth about half a mean life year. Differences in the standard deviation exacerbate cross-sectional differences in life expectancy between the U.S. and other industrialized countries, between rich and poor countries, and among poor countries. Accounting for the cost of life-span variance also appears to amplify recently discovered patterns of convergence in world average human well-being. This is partly for methodological reasons and partly because unconditional variance in human length of life, primarily the component due to infant mortality, has exhibited even more convergence than life expectancy. PMID:22368324

  7. A Multilevel AR(1) Model: Allowing for Inter-Individual Differences in Trait-Scores, Inertia, and Innovation Variance.

    PubMed

    Jongerling, Joran; Laurenceau, Jean-Philippe; Hamaker, Ellen L

    2015-01-01

    In this article we consider a multilevel first-order autoregressive [AR(1)] model with random intercepts, random autoregression, and random innovation variance (i.e., the level 1 residual variance). Including random innovation variance is an important extension of the multilevel AR(1) model for two reasons. First, between-person differences in innovation variance are important from a substantive point of view, in that they capture differences in sensitivity and/or exposure to unmeasured internal and external factors that influence the process. Second, using simulation methods we show that modeling the innovation variance as fixed across individuals, when it should be modeled as a random effect, leads to biased parameter estimates. Additionally, we use simulation methods to compare maximum likelihood estimation to Bayesian estimation of the multilevel AR(1) model and investigate the trade-off between the number of individuals and the number of time points. We provide an empirical illustration by applying the extended multilevel AR(1) model to daily positive affect ratings from 89 married women over the course of 42 consecutive days.

  8. New molecular descriptors based on local properties at the molecular surface and a boiling-point model derived from them.

    PubMed

    Ehresmann, Bernd; de Groot, Marcel J; Alex, Alexander; Clark, Timothy

    2004-01-01

    New molecular descriptors based on statistical descriptions of the local ionization potential, local electron affinity, and the local polarizability at the surface of the molecule are proposed. The significance of these descriptors has been tested by calculating them for the Maybridge database in addition to our set of 26 descriptors reported previously. The new descriptors show little correlation with those already in use. Furthermore, the principal components of the extended set of descriptors for the Maybridge data show that especially the descriptors based on the local electron affinity extend the variance in our set of descriptors, which we have previously shown to be relevant to physical properties. The first nine principal components are shown to be most significant. As an example of the usefulness of the new descriptors, we have set up a QSPR model for boiling points using both the old and new descriptors.

  9. Development and Validation of the Work-Related Well-Being Index: Analysis of the Federal Employee Viewpoint Survey.

    PubMed

    Eaton, Jennifer L; Mohr, David C; Hodgson, Michael J; McPhaul, Kathleen M

    2018-02-01

    To describe development and validation of the work-related well-being (WRWB) index. Principal components analysis was performed using Federal Employee Viewpoint Survey (FEVS) data (N = 392,752) to extract variables representing worker well-being constructs. Confirmatory factor analysis was performed to verify factor structure. To validate the WRWB index, we used multiple regression analysis to examine relationships with burnout associated outcomes. Principal Components Analysis identified three positive psychology constructs: "Work Positivity", "Co-worker Relationships", and "Work Mastery". An 11 item index explaining 63.5% of variance was achieved. The structural equation model provided a very good fit to the data. Higher WRWB scores were positively associated with all three employee experience measures examined in regression models. The new WRWB index shows promise as a valid and widely accessible instrument to assess worker well-being.

  10. A preliminary case-mix classification system for Medicare home health clients.

    PubMed

    Branch, L G; Goldberg, H B

    1993-04-01

    In this study, a hierarchical case-mix model was developed for grouping Medicare home health beneficiaries homogeneously, based on the allowed charges for their home care. Based on information from a two-page form from 2,830 clients from ten states and using the classification and regression trees method, a four-component model was developed that yielded 11 case-mix groups and explained 22% of the variance for the test sample of 1,929 clients. The four components are rehabilitation, special care, skilled-nurse monitoring, and paralysis; each are categorized as present or absent. The range of mean-allowed charges for the 11 groups in the total sample was $473 to $2,562 with a mean of $847. Of the six groups with mean charges above $1,000, none exceeded 5.2% of clients; thus, the high-cost groups are relatively rare.

  11. Accounting for crustal magnetization in models of the core magnetic field

    NASA Technical Reports Server (NTRS)

    Jackson, Andrew

    1990-01-01

    The problem of determining the magnetic field originating in the earth's core in the presence of remanent and induced magnetization is considered. The effect of remanent magnetization in the crust on satellite measurements of the core magnetic field is investigated. The crust as a zero-mean stationary Gaussian random process is modelled using an idea proposed by Parker (1988). It is shown that the matrix of second-order statistics is proportional to the Gram matrix, which depends only on the inner-products of the appropriate Green's functions, and that at a typical satellite altitude of 400 km the data are correlated out to an angular separation of approximately 15 deg. Accurate and efficient means of calculating the matrix elements are given. It is shown that the variance of measurements of the radial component of a magnetic field due to the crust is expected to be approximately twice that in horizontal components.

  12. Genetic analysis of growth traits in Polled Nellore cattle raised on pasture in tropical region using Bayesian approaches.

    PubMed

    Lopes, Fernando Brito; Magnabosco, Cláudio Ulhôa; Paulini, Fernanda; da Silva, Marcelo Corrêa; Miyagi, Eliane Sayuri; Lôbo, Raysildo Barbosa

    2013-01-01

    Components of (co)variance and genetic parameters were estimated for adjusted weights at ages 120 (W120), 240 (W240), 365 (W365) and 450 (W450) days of Polled Nellore cattle raised on pasture and born between 1987 and 2010. Analyses were performed using an animal model, considering fixed effects: herd-year-season of birth and calf sex as contemporary groups and the age of cow as a covariate. Gibbs Samplers were used to estimate (co)variance components, genetic parameters and additive genetic effects, which accounted for great proportion of total variation in these traits. High direct heritability estimates for the growth traits were revealed and presented mean 0.43, 0.61, 0.72 and 0.67 for W120, W240, W365 and W450, respectively. Maternal heritabilities were 0.07 and 0.08 for W120 and W240, respectively. Direct additive genetic correlations between the weight at 120, 240, 365 and 450 days old were strong and positive. These estimates ranged from 0.68 to 0.98. Direct-maternal genetic correlations were negative for W120 and W240. The estimates ranged from -0.31 to -0.54. Estimates of maternal heritability ranged from 0.056 to 0.092 for W120 and from 0.064 to 0.096 for W240. This study showed that genetic progress is possible for the growth traits we studied, which is a novel and favorable indicator for an upcoming and promising Polled Zebu breed in Tropical regions. Maternal effects influenced the performance of weight at 120 and 240 days old. These effects should be taken into account in genetic analyses of growth traits by fitting them as a genetic or a permanent environmental effect, or even both. In general, due to a medium-high estimate of environmental (co)variance components, management and feeding conditions for Polled Nellore raised at pasture in tropical regions of Brazil needs improvement and growth performance can be enhanced.

  13. Principal Components Analysis Studies of Martian Clouds

    NASA Astrophysics Data System (ADS)

    Klassen, D. R.; Bell, J. F., III

    2001-11-01

    We present the principal components analysis (PCA) of absolutely calibrated multi-spectral images of Mars as a function of Martian season. The PCA technique is a mathematical rotation and translation of the data from a brightness/wavelength space to a vector space of principal ``traits'' that lie along the directions of maximal variance. The first of these traits, accounting for over 90% of the data variance, is overall brightness and represented by an average Mars spectrum. Interpretation of the remaining traits, which account for the remaining ~10% of the variance, is not always the same and depends upon what other components are in the scene and thus, varies with Martian season. For example, during seasons with large amounts of water ice in the scene, the second trait correlates with the ice and anti-corrlates with temperature. We will investigate the interpretation of the second, and successive important PCA traits. Although these PCA traits are orthogonal in their own vector space, it is unlikely that any one trait represents a singular, mineralogic, spectral end-member. It is more likely that there are many spectral endmembers that vary identically to within the noise level, that the PCA technique will not be able to distinguish them. Another possibility is that similar absorption features among spectral endmembers may be tied to one PCA trait, for example ''amount of 2 \\micron\\ absorption''. We thus attempt to extract spectral endmembers by matching linear combinations of the PCA traits to USGS, JHU, and JPL spectral libraries as aquired through the JPL Aster project. The recovered spectral endmembers are then linearly combined to model the multi-spectral image set. We present here the spectral abundance maps of the water ice/frost endmember which allow us to track Martian clouds and ground frosts. This work supported in part through NASA Planetary Astronomy Grant NAG5-6776. All data gathered at the NASA Infrared Telescope Facility in collaboration with the telescope operators and with thanks to the support staff and day crew.

  14. A UNIFIED FRAMEWORK FOR VARIANCE COMPONENT ESTIMATION WITH SUMMARY STATISTICS IN GENOME-WIDE ASSOCIATION STUDIES.

    PubMed

    Zhou, Xiang

    2017-12-01

    Linear mixed models (LMMs) are among the most commonly used tools for genetic association studies. However, the standard method for estimating variance components in LMMs-the restricted maximum likelihood estimation method (REML)-suffers from several important drawbacks: REML requires individual-level genotypes and phenotypes from all samples in the study, is computationally slow, and produces downward-biased estimates in case control studies. To remedy these drawbacks, we present an alternative framework for variance component estimation, which we refer to as MQS. MQS is based on the method of moments (MoM) and the minimal norm quadratic unbiased estimation (MINQUE) criterion, and brings two seemingly unrelated methods-the renowned Haseman-Elston (HE) regression and the recent LD score regression (LDSC)-into the same unified statistical framework. With this new framework, we provide an alternative but mathematically equivalent form of HE that allows for the use of summary statistics. We provide an exact estimation form of LDSC to yield unbiased and statistically more efficient estimates. A key feature of our method is its ability to pair marginal z -scores computed using all samples with SNP correlation information computed using a small random subset of individuals (or individuals from a proper reference panel), while capable of producing estimates that can be almost as accurate as if both quantities are computed using the full data. As a result, our method produces unbiased and statistically efficient estimates, and makes use of summary statistics, while it is computationally efficient for large data sets. Using simulations and applications to 37 phenotypes from 8 real data sets, we illustrate the benefits of our method for estimating and partitioning SNP heritability in population studies as well as for heritability estimation in family studies. Our method is implemented in the GEMMA software package, freely available at www.xzlab.org/software.html.

  15. Environmental and biological monitoring of benzene during self-service automobile refueling.

    PubMed Central

    Egeghy, P P; Tornero-Velez, R; Rappaport, S M

    2000-01-01

    Although automobile refueling represents the major source of benzene exposure among the nonsmoking public, few data are available regarding such exposures and the associated uptake of benzene. We repeatedly measured benzene exposure and uptake (via benzene in exhaled breath) among 39 self-service customers using self-administered monitoring, a technique rarely used to obtain measurements from the general public (130 sets of measurements were obtained). Benzene exposures averaged 2.9 mg/m(3) (SD = 5.8 mg/m(3); median duration = 3 min) with a range of < 0.076-36 mg/m(3), and postexposure breath levels averaged 160 microg/m(3) (SD = 260 microg/m(3)) with a range of < 3.2-1,400 microg/m(3). Log-transformed exposures and breath levels were significantly correlated (r = 0.77, p < 0.0001). We used mixed-effects statistical models to gauge the relative influences of environmental and subject-specific factors on benzene exposure and breath levels and to investigate the importance of various covariates obtained by questionnaire. Model fitting yielded three significant predictors of benzene exposure, namely, fuel octane grade (p = 0.0011), duration of exposure (p = 0.0054), and season of the year (p = 0.032). Likewise, another model yielded three significant predictors of benzene concentration in breath, specifically, benzene exposure (p = 0.0001), preexposure breath concentration (p = 0.0008), and duration of exposure (p = 0.038). Variability in benzene concentrations was remarkable, with 95% of the estimated values falling within a 274-fold range, and was comprised entirely of the within-person component of variance (representing exposures of the same subject at different times of refueling). The corresponding range for benzene concentrations in breath was 41-fold and was comprised primarily of the within-person variance component (74% of the total variance). Our results indicate that environmental rather than interindividual differences are primarily responsible for benzene exposure and uptake during automobile refueling. The study also demonstrates that self-administered monitoring can be efficiently used to measure environmental exposures and biomarkers among the general public. PMID:11133401

  16. Sleep Duration and Area-Level Deprivation in Twins.

    PubMed

    Watson, Nathaniel F; Horn, Erin; Duncan, Glen E; Buchwald, Dedra; Vitiello, Michael V; Turkheimer, Eric

    2016-01-01

    We used quantitative genetic models to assess whether area-level deprivation as indicated by the Singh Index predicts shorter sleep duration and modifies its underlying genetic and environmental contributions. Participants were 4,218 adult twin pairs (2,377 monozygotic and 1,841 dizygotic) from the University of Washington Twin Registry. Participants self-reported habitual sleep duration. The Singh Index was determined by linking geocoding addresses to 17 indicators at the census-tract level using data from Census of Washington State and Census Tract Cartographic Boundary Files from 2000 and 2010. Data were analyzed using univariate and bivariate genetic decomposition and quantitative genetic interaction models that assessed A (additive genetics), C (common environment), and E (unique environment) main effects of the Singh Index on sleep duration and allowed the magnitude of residual ACE variance components in sleep duration to vary with the Index. The sample had a mean age of 38.2 y (standard deviation [SD] = 18), and was predominantly female (62%) and Caucasian (91%). Mean sleep duration was 7.38 h (SD = 1.20) and the mean Singh Index score was 0.00 (SD = 0.89). The heritability of sleep duration was 39% and the Singh Index was 12%. The uncontrolled phenotypic regression of sleep duration on the Singh Index showed a significant negative relationship between area-level deprivation and sleep length (b = -0.080, P < 0.001). Every 1 SD in Singh Index was associated with a ∼4.5 min change in sleep duration. For the quasi-causal bivariate model, there was a significant main effect of E (b(0E) = -0.063; standard error [SE] = 0.30; P < 0.05). Residual variance components unique to sleep duration were significant for both A (b(0Au) = 0.734; SE = 0.020; P < 0.001) and E (b(0Eu) = 0.934; SE = 0.013; P < 0.001). Area-level deprivation has a quasi-causal association with sleep duration, with greater deprivation being related to shorter sleep. As area-level deprivation increases, unique genetic and nonshared environmental residual variance in sleep duration increases. © 2016 Associated Professional Sleep Societies, LLC.

  17. Spectral analysis of the Earth's topographic potential via 2D-DFT: a new data-based degree variance model to degree 90,000

    NASA Astrophysics Data System (ADS)

    Rexer, Moritz; Hirt, Christian

    2015-09-01

    Classical degree variance models (such as Kaula's rule or the Tscherning-Rapp model) often rely on low-resolution gravity data and so are subject to extrapolation when used to describe the decay of the gravity field at short spatial scales. This paper presents a new degree variance model based on the recently published GGMplus near-global land areas 220 m resolution gravity maps (Geophys Res Lett 40(16):4279-4283, 2013). We investigate and use a 2D-DFT (discrete Fourier transform) approach to transform GGMplus gravity grids into degree variances. The method is described in detail and its approximation errors are studied using closed-loop experiments. Focus is placed on tiling, azimuth averaging, and windowing effects in the 2D-DFT method and on analytical fitting of degree variances. Approximation errors of the 2D-DFT procedure on the (spherical harmonic) degree variance are found to be at the 10-20 % level. The importance of the reference surface (sphere, ellipsoid or topography) of the gravity data for correct interpretation of degree variance spectra is highlighted. The effect of the underlying mass arrangement (spherical or ellipsoidal approximation) on the degree variances is found to be crucial at short spatial scales. A rule-of-thumb for transformation of spectra between spherical and ellipsoidal approximation is derived. Application of the 2D-DFT on GGMplus gravity maps yields a new degree variance model to degree 90,000. The model is supported by GRACE, GOCE, EGM2008 and forward-modelled gravity at 3 billion land points over all land areas within the SRTM data coverage and provides gravity signal variances at the surface of the topography. The model yields omission errors of 9 mGal for gravity (1.5 cm for geoid effects) at scales of 10 km, 4 mGal (1 mm) at 2-km scales, and 2 mGal (0.2 mm) at 1-km scales.

  18. Multilevel modeling of single-case data: A comparison of maximum likelihood and Bayesian estimation.

    PubMed

    Moeyaert, Mariola; Rindskopf, David; Onghena, Patrick; Van den Noortgate, Wim

    2017-12-01

    The focus of this article is to describe Bayesian estimation, including construction of prior distributions, and to compare parameter recovery under the Bayesian framework (using weakly informative priors) and the maximum likelihood (ML) framework in the context of multilevel modeling of single-case experimental data. Bayesian estimation results were found similar to ML estimation results in terms of the treatment effect estimates, regardless of the functional form and degree of information included in the prior specification in the Bayesian framework. In terms of the variance component estimates, both the ML and Bayesian estimation procedures result in biased and less precise variance estimates when the number of participants is small (i.e., 3). By increasing the number of participants to 5 or 7, the relative bias is close to 5% and more precise estimates are obtained for all approaches, except for the inverse-Wishart prior using the identity matrix. When a more informative prior was added, more precise estimates for the fixed effects and random effects were obtained, even when only 3 participants were included. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Experimental Effects and Individual Differences in Linear Mixed Models: Estimating the Relationship between Spatial, Object, and Attraction Effects in Visual Attention

    PubMed Central

    Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin

    2011-01-01

    Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292

  20. [An ADAA model and its analysis method for agronomic traits based on the double-cross mating design].

    PubMed

    Xu, Z C; Zhu, J

    2000-01-01

    According to the double-cross mating design and using principles of Cockerham's general genetic model, a genetic model with additive, dominance and epistatic effects (ADAA model) was proposed for the analysis of agronomic traits. Components of genetic effects were derived for different generations. Monte Carlo simulation was conducted for analyzing the ADAA model and its reduced AD model by using different generations. It was indicated that genetic variance components could be estimated without bias by MINQUE(1) method and genetic effects could be predicted effectively by AUP method; at least three generations (including parent, F1 of single cross and F1 of double-cross) were necessary for analyzing the ADAA model and only two generations (including parent and F1 of double-cross) were enough for the reduced AD model. When epistatic effects were taken into account, a new approach for predicting the heterosis of agronomic traits of double-crosses was given on the basis of unbiased prediction of genotypic merits of parents and their crosses. In addition, genotype x environment interaction effects and interaction heterosis due to G x E interaction were discussed briefly.

  1. Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models.

    PubMed

    Bignardi, A B; El Faro, L; Cardoso, V L; Machado, P F; Albuquerque, L G

    2009-09-01

    The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.

  2. A rapid generalized least squares model for a genome-wide quantitative trait association analysis in families.

    PubMed

    Li, Xiang; Basu, Saonli; Miller, Michael B; Iacono, William G; McGue, Matt

    2011-01-01

    Genome-wide association studies (GWAS) using family data involve association analyses between hundreds of thousands of markers and a trait for a large number of related individuals. The correlations among relatives bring statistical and computational challenges when performing these large-scale association analyses. Recently, several rapid methods accounting for both within- and between-family variation have been proposed. However, these techniques mostly model the phenotypic similarities in terms of genetic relatedness. The familial resemblances in many family-based studies such as twin studies are not only due to the genetic relatedness, but also derive from shared environmental effects and assortative mating. In this paper, we propose 2 generalized least squares (GLS) models for rapid association analysis of family-based GWAS, which accommodate both genetic and environmental contributions to familial resemblance. In our first model, we estimated the joint genetic and environmental variations. In our second model, we estimated the genetic and environmental components separately. Through simulation studies, we demonstrated that our proposed approaches are more powerful and computationally efficient than a number of existing methods are. We show that estimating the residual variance-covariance matrix in the GLS models without SNP effects does not lead to an appreciable bias in the p values as long as the SNP effect is small (i.e. accounting for no more than 1% of trait variance). Copyright © 2011 S. Karger AG, Basel.

  3. A stochastic hybrid model for pricing forward-start variance swaps

    NASA Astrophysics Data System (ADS)

    Roslan, Teh Raihana Nazirah

    2017-11-01

    Recently, market players have been exposed to the astounding increase in the trading volume of variance swaps. In this paper, the forward-start nature of a variance swap is being inspected, where hybridizations of equity and interest rate models are used to evaluate the price of discretely-sampled forward-start variance swaps. The Heston stochastic volatility model is being extended to incorporate the dynamics of the Cox-Ingersoll-Ross (CIR) stochastic interest rate model. This is essential since previous studies on variance swaps were mainly focusing on instantaneous-start variance swaps without considering the interest rate effects. This hybrid model produces an efficient semi-closed form pricing formula through the development of forward characteristic functions. The performance of this formula is investigated via simulations to demonstrate how the formula performs for different sampling times and against the real market scenario. Comparison done with the Monte Carlo simulation which was set as our main reference point reveals that our pricing formula gains almost the same precision in a shorter execution time.

  4. Relating Structure and Function in the Human Brain: Relative Contributions of Anatomy, Stationary Dynamics, and Non-stationarities

    PubMed Central

    Messé, Arnaud; Rudrauf, David; Benali, Habib; Marrelec, Guillaume

    2014-01-01

    Investigating the relationship between brain structure and function is a central endeavor for neuroscience research. Yet, the mechanisms shaping this relationship largely remain to be elucidated and are highly debated. In particular, the existence and relative contributions of anatomical constraints and dynamical physiological mechanisms of different types remain to be established. We addressed this issue by systematically comparing functional connectivity (FC) from resting-state functional magnetic resonance imaging data with simulations from increasingly complex computational models, and by manipulating anatomical connectivity obtained from fiber tractography based on diffusion-weighted imaging. We hypothesized that FC reflects the interplay of at least three types of components: (i) a backbone of anatomical connectivity, (ii) a stationary dynamical regime directly driven by the underlying anatomy, and (iii) other stationary and non-stationary dynamics not directly related to the anatomy. We showed that anatomical connectivity alone accounts for up to 15% of FC variance; that there is a stationary regime accounting for up to an additional 20% of variance and that this regime can be associated to a stationary FC; that a simple stationary model of FC better explains FC than more complex models; and that there is a large remaining variance (around 65%), which must contain the non-stationarities of FC evidenced in the literature. We also show that homotopic connections across cerebral hemispheres, which are typically improperly estimated, play a strong role in shaping all aspects of FC, notably indirect connections and the topographic organization of brain networks. PMID:24651524

  5. A weighted least squares estimation of the polynomial regression model on paddy production in the area of Kedah and Perlis

    NASA Astrophysics Data System (ADS)

    Musa, Rosliza; Ali, Zalila; Baharum, Adam; Nor, Norlida Mohd

    2017-08-01

    The linear regression model assumes that all random error components are identically and independently distributed with constant variance. Hence, each data point provides equally precise information about the deterministic part of the total variation. In other words, the standard deviations of the error terms are constant over all values of the predictor variables. When the assumption of constant variance is violated, the ordinary least squares estimator of regression coefficient lost its property of minimum variance in the class of linear and unbiased estimators. Weighted least squares estimation are often used to maximize the efficiency of parameter estimation. A procedure that treats all of the data equally would give less precisely measured points more influence than they should have and would give highly precise points too little influence. Optimizing the weighted fitting criterion to find the parameter estimates allows the weights to determine the contribution of each observation to the final parameter estimates. This study used polynomial model with weighted least squares estimation to investigate paddy production of different paddy lots based on paddy cultivation characteristics and environmental characteristics in the area of Kedah and Perlis. The results indicated that factors affecting paddy production are mixture fertilizer application cycle, average temperature, the squared effect of average rainfall, the squared effect of pest and disease, the interaction between acreage with amount of mixture fertilizer, the interaction between paddy variety and NPK fertilizer application cycle and the interaction between pest and disease and NPK fertilizer application cycle.

  6. Global adaptation patterns of Australian and CIMMYT spring bread wheat.

    PubMed

    Mathews, Ky L; Chapman, Scott C; Trethowan, Richard; Pfeiffer, Wolfgang; van Ginkel, Maarten; Crossa, Jose; Payne, Thomas; Delacy, Ian; Fox, Paul N; Cooper, Mark

    2007-10-01

    The International Adaptation Trial (IAT) is a special purpose nursery designed to investigate the genotype-by-environment interactions and worldwide adaptation for grain yield of Australian and CIMMYT spring bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L. var. durum). The IAT contains lines representing Australian and CIMMYT wheat breeding programs and was distributed to 91 countries between 2000 and 2004. Yield data of 41 reference lines from 106 trials were analysed. A multiplicative mixed model accounted for trial variance heterogeneity and inter-trial correlations characteristic of multi-environment trials. A factor analytic model explained 48% of the genetic variance for the reference lines. Pedigree information was then incorporated to partition the genetic line effects into additive and non-additive components. This model explained 67 and 56% of the additive by environment and non-additive by environment genetic variances, respectively. Australian and CIMMYT germplasm showed good adaptation to their respective target production environments. In general, Australian lines performed well in south and west Australia, South America, southern Africa, Iran and high latitude European and Canadian locations. CIMMYT lines performed well at CIMMYT's key yield testing location in Mexico (CIANO), north-eastern Australia, the Indo-Gangetic plains, West Asia North Africa and locations in Europe and Canada. Maturity explained some of the global adaptation patterns. In general, southern Australian germplasm were later maturing than CIMMYT material. While CIANO continues to provide adapted lines to northern Australia, selecting for yield among later maturing CIMMYT material in CIANO may identify lines adapted to southern and western Australian environments.

  7. Processing of Antenna-Array Signals on the Basis of the Interference Model Including a Rank-Deficient Correlation Matrix

    NASA Astrophysics Data System (ADS)

    Rodionov, A. A.; Turchin, V. I.

    2017-06-01

    We propose a new method of signal processing in antenna arrays, which is called the Maximum-Likelihood Signal Classification. The proposed method is based on the model in which interference includes a component with a rank-deficient correlation matrix. Using numerical simulation, we show that the proposed method allows one to ensure variance of the estimated arrival angle of the plane wave, which is close to the Cramer-Rao lower boundary and more efficient than the best-known MUSIC method. It is also shown that the proposed technique can be efficiently used for estimating the time dependence of the useful signal.

  8. Modeling Multiplicative Error Variance: An Example Predicting Tree Diameter from Stump Dimensions in Baldcypress

    Treesearch

    Bernard R. Parresol

    1993-01-01

    In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...

  9. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)

    PubMed Central

    Xu, Chonggang; Gertner, George

    2013-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037

  10. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST).

    PubMed

    Xu, Chonggang; Gertner, George

    2011-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.

  11. The influence of acceleration loading curve characteristics on traumatic brain injury.

    PubMed

    Post, Andrew; Blaine Hoshizaki, T; Gilchrist, Michael D; Brien, Susan; Cusimano, Michael D; Marshall, Shawn

    2014-03-21

    To prevent brain trauma, understanding the mechanism of injury is essential. Once the mechanism of brain injury has been identified, prevention technologies could then be developed to aid in their prevention. The incidence of brain injury is linked to how the kinematics of a brain injury event affects the internal structures of the brain. As a result it is essential that an attempt be made to describe how the characteristics of the linear and rotational acceleration influence specific traumatic brain injury lesions. As a result, the purpose of this study was to examine the influence of the characteristics of linear and rotational acceleration pulses and how they account for the variance in predicting the outcome of TBI lesions, namely contusion, subdural hematoma (SDH), subarachnoid hemorrhage (SAH), and epidural hematoma (EDH) using a principal components analysis (PCA). Monorail impacts were conducted which simulated falls which caused the TBI lesions. From these reconstructions, the characteristics of the linear and rotational acceleration were determined and used for a PCA analysis. The results indicated that peak resultant acceleration variables did not account for any of the variance in predicting TBI lesions. The majority of the variance was accounted for by duration of the resultant and component linear and rotational acceleration. In addition, the components of linear and rotational acceleration characteristics on the x, y, and z axes accounted for the majority of the remainder of the variance after duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Comparing Mapped Plot Estimators

    Treesearch

    Paul C. Van Deusen

    2006-01-01

    Two alternative derivations of estimators for mean and variance from mapped plots are compared by considering the models that support the estimators and by simulation. It turns out that both models lead to the same estimator for the mean but lead to very different variance estimators. The variance estimators based on the least valid model assumptions are shown to...

  13. Changes in crop yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  14. Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.

    PubMed

    Weaver, Bruce; Black, Ryan A

    2015-06-01

    Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.

  15. Dopamine D1 Sensitivity in the Prefrontal Cortex Predicts General Cognitive Abilities and is Modulated by Working Memory Training

    ERIC Educational Resources Information Center

    Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D.

    2013-01-01

    A common source of variance (i.e., "general intelligence") underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to…

  16. Shifting patterns of variance in adolescent alcohol use: Testing consumption as a developing trait-state.

    PubMed

    Nealis, Logan J; Thompson, Kara D; Krank, Marvin D; Stewart, Sherry H

    2016-04-01

    While average rates of change in adolescent alcohol consumption are frequently studied, variability arising from situational and dispositional influences on alcohol use has been comparatively neglected. We used variance decomposition to test differences in variability resulting from year-to-year fluctuations in use (i.e., state-like) and from stable individual differences (i.e., trait-like) using data from the Project on Adolescent Trajectories and Health (PATH), a cohort-sequential study spanning grades 7 to 11 using three cohorts starting in grades seven, eight, and nine, respectively. We tested variance components for alcohol volume, frequency, and quantity in the overall sample, and changes in components over time within each cohort. Sex differences were tested. Most variability in alcohol use reflected state-like variation (47-76%), with a relatively smaller proportion of trait-like variation (19-36%). These proportions shifted across cohorts as youth got older, with increases in trait-like variance from early adolescence (14-30%) to later adolescence (30-50%). Trends were similar for males and females, although females showed higher trait-like variance in alcohol frequency than males throughout development (26-43% vs. 11-25%). For alcohol volume and frequency, males showed the greatest increase in trait-like variance earlier in development (i.e., grades 8-10) compared to females (i.e., grades 9-11). The relative strength of situational and dispositional influences on adolescent alcohol use has important implications for preventative interventions. Interventions should ideally target problematic alcohol use before it becomes more ingrained and trait-like. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Rapid Communication: Large exploitable genetic variability exists to shorten age at slaughter in cattle.

    PubMed

    Berry, D P; Cromie, A R; Judge, M M

    2017-10-01

    Apprehension among consumers is mounting on the efficiency by which cattle convert feedstuffs into human edible protein and energy as well as the consequential effects on the environment. Most (genetic) studies that attempt to address these issues have generally focused on efficiency metrics defined over a certain time period of an animal's life cycle, predominantly the period representing the linear phase of growth. The age at which an animal reaches the carcass specifications for slaughter, however, is also known to vary between breeds; less is known on the extent of the within-breed variability in age at slaughter. Therefore, the objective of the present study was to quantify the phenotypic and genetic variability in the age at which cattle reach a predefined carcass weight and subcutaneous fat cover. A novel trait, labeled here as the deviation in age at slaughter (DAGE), was represented by the unexplained variability from a statistical model, with age at slaughter as the dependent variable and with the fixed effects, among others, of carcass weight and fat score (scale 1 to 15 scored by video image analysis of the carcass at slaughter). Variance components for DAGE were estimated using either a 2-step approach (i.e., the DAGE phenotype derived first and then variance components estimated) or a 1-step approach (i.e., variance components for age at slaughter estimated directly in a mixed model that included the fixed effects of, among others, carcass weight and carcass fat score as well as a random direct additive genetic effect). The raw phenotypic SD in DAGE was 44.2 d. The genetic SD and heritability for DAGE estimated using the 1-step or 2-step models varied from 14.2 to 15.1 d and from 0.23 to 0.26 (SE 0.02), respectively. Assuming the (genetic) variability in the number of days from birth to reaching a desired carcass specifications can be exploited without any associated unfavorable repercussions, considerable potential exists to improve not only the (feed) efficiency of the animal and farm system but also the environmental footprint of the system. The beauty of the approach proposed, relative to strategies that select directly for the feed intake complex and enteric methane emissions, is that data on age at slaughter are generally readily available. Of course, faster gains may potentially be achieved if a dual objective of improving animal efficiency per day coupled with reduced days to slaughter was embarked on.

  18. Long-Period Tidal Variations in the Length of Day

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Erofeeva, Svetlana Y.

    2014-01-01

    A new model of long-period tidal variations in length of day is developed. The model comprises 80 spectral lines with periods between 18.6 years and 4.7 days, and it consistently includes effects of mantle anelasticity and dynamic ocean tides for all lines. The anelastic properties followWahr and Bergen; experimental confirmation for their results now exists at the fortnightly period, but there remains uncertainty when extrapolating to the longest periods. The ocean modeling builds on recent work with the fortnightly constituent, which suggests that oceanic tidal angular momentum can be reliably predicted at these periods without data assimilation. This is a critical property when modeling most long-period tides, for which little observational data exist. Dynamic ocean effects are quite pronounced at shortest periods as out-of-phase rotation components become nearly as large as in-phase components. The model is tested against a 20 year time series of space geodetic measurements of length of day. The current international standard model is shown to leave significant residual tidal energy, and the new model is found to mostly eliminate that energy, with especially large variance reduction for constituents Sa, Ssa, Mf, and Mt.

  19. A two step Bayesian approach for genomic prediction of breeding values.

    PubMed

    Shariati, Mohammad M; Sørensen, Peter; Janss, Luc

    2012-05-21

    In genomic models that assign an individual variance to each marker, the contribution of one marker to the posterior distribution of the marker variance is only one degree of freedom (df), which introduces many variance parameters with only little information per variance parameter. A better alternative could be to form clusters of markers with similar effects where markers in a cluster have a common variance. Therefore, the influence of each marker group of size p on the posterior distribution of the marker variances will be p df. The simulated data from the 15th QTL-MAS workshop were analyzed such that SNP markers were ranked based on their effects and markers with similar estimated effects were grouped together. In step 1, all markers with minor allele frequency more than 0.01 were included in a SNP-BLUP prediction model. In step 2, markers were ranked based on their estimated variance on the trait in step 1 and each 150 markers were assigned to one group with a common variance. In further analyses, subsets of 1500 and 450 markers with largest effects in step 2 were kept in the prediction model. Grouping markers outperformed SNP-BLUP model in terms of accuracy of predicted breeding values. However, the accuracies of predicted breeding values were lower than Bayesian methods with marker specific variances. Grouping markers is less flexible than allowing each marker to have a specific marker variance but, by grouping, the power to estimate marker variances increases. A prior knowledge of the genetic architecture of the trait is necessary for clustering markers and appropriate prior parameterization.

  20. Sequential Prediction of Literacy Achievement for Specific Learning Disabilities Contrasting in Impaired Levels of Language in Grades 4 to 9.

    PubMed

    Sanders, Elizabeth A; Berninger, Virginia W; Abbott, Robert D

    Sequential regression was used to evaluate whether language-related working memory components uniquely predict reading and writing achievement beyond cognitive-linguistic translation for students in Grades 4 through 9 ( N = 103) with specific learning disabilities (SLDs) in subword handwriting (dysgraphia, n = 25), word reading and spelling (dyslexia, n = 60), or oral and written language (oral and written language learning disabilities, n = 18). That is, SLDs are defined on the basis of cascading level of language impairment (subword, word, and syntax/text). A five-block regression model sequentially predicted literacy achievement from cognitive-linguistic translation (Block 1); working memory components for word-form coding (Block 2), phonological and orthographic loops (Block 3), and supervisory focused or switching attention (Block 4); and SLD groups (Block 5). Results showed that cognitive-linguistic translation explained an average of 27% and 15% of the variance in reading and writing achievement, respectively, but working memory components explained an additional 39% and 27% of variance. Orthographic word-form coding uniquely predicted nearly every measure, whereas attention switching uniquely predicted only reading. Finally, differences in reading and writing persisted between dyslexia and dysgraphia, with dysgraphia higher, even after controlling for Block 1 to 4 predictors. Differences in literacy achievement between students with dyslexia and oral and written language learning disabilities were largely explained by the Block 1 predictors. Applications to identifying and teaching students with these SLDs are discussed.

  1. How do different components of Effortful Control contribute to children's mathematics achievement?

    PubMed

    Sánchez-Pérez, Noelia; Fuentes, Luis J; Pina, Violeta; López-López, Jose A; González-Salinas, Carmen

    2015-01-01

    This work sought to investigate the specific contribution of two different components of Effortful Control (EC) -attentional focusing (AF) and inhibitory control- to children's mathematics achievement. The sample was composed of 142 children aged 9-12 year-old. EC components were measured through the Temperament in Middle Childhood Questionnaire (TMCQ; parent's report); math achievement was measured via teacher's report and through the standard Woodcock-Johnson test. Additionally, the contribution of other cognitive and socio-emotional processes was taken into account. Our results showed that only AF significantly contributed to the variance of children's mathematics achievement; interestingly, mediational models showed that the relationship between effortful attentional self-regulation and mathematics achievement was mediated by academic peer popularity, as well as by intelligence and study skills. Results are discussed in the light of the current theories on the role of children's self-regulation abilities in the context of school.

  2. Spectral discrimination of bleached and healthy submerged corals based on principal components analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, H.; LeDrew, E.

    1997-06-01

    Remote discrimination of substrate types in relatively shallow coastal waters has been limited by the spatial and spectral resolution of available sensors. An additional limiting factor is the strong attenuating influence of the water column over the substrate. As a result, there have been limited attempts to map submerged ecosystems such as coral reefs based on spectral characteristics. Both healthy and bleached corals were measured at depth with a hand-held spectroradiometer, and their spectra compared. Two separate principal components analyses (PCA) were performed on two sets of spectral data. The PCA revealed that there is indeed a spectral difference basedmore » on health. In the first data set, the first component (healthy coral) explains 46.82%, while the second component (bleached coral) explains 46.35% of the variance. In the second data set, the first component (bleached coral) explained 46.99%; the second component (healthy coral) explained 36.55%; and the third component (healthy coral) explained 15.44 % of the total variance in the original data. These results are encouraging with respect to using an airborne spectroradiometer to identify areas of bleached corals thus enabling accurate monitoring over time.« less

  3. Genetic covariance between components of male reproductive success: within-pair vs. extra-pair paternity in song sparrows

    PubMed Central

    Reid, J M; Arcese, P; Losdat, S

    2014-01-01

    The evolutionary trajectories of reproductive systems, including both male and female multiple mating and hence polygyny and polyandry, are expected to depend on the additive genetic variances and covariances in and among components of male reproductive success achieved through different reproductive tactics. However, genetic covariances among key components of male reproductive success have not been estimated in wild populations. We used comprehensive paternity data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) to estimate additive genetic variance and covariance in the total number of offspring a male sired per year outside his social pairings (i.e. his total extra-pair reproductive success achieved through multiple mating) and his liability to sire offspring produced by his socially paired female (i.e. his success in defending within-pair paternity). Both components of male fitness showed nonzero additive genetic variance, and the estimated genetic covariance was positive, implying that males with high additive genetic value for extra-pair reproduction also have high additive genetic propensity to sire their socially paired female's offspring. There was consequently no evidence of a genetic or phenotypic trade-off between male within-pair paternity success and extra-pair reproductive success. Such positive genetic covariance might be expected to facilitate ongoing evolution of polygyny and could also shape the ongoing evolution of polyandry through indirect selection. PMID:25186454

  4. An application of the LC-LSTM framework to the self-esteem instability case.

    PubMed

    Alessandri, Guido; Vecchione, Michele; Donnellan, Brent M; Tisak, John

    2013-10-01

    The present research evaluates the stability of self-esteem as assessed by a daily version of the Rosenberg (Society and the adolescent self-image, Princeton University Press, Princeton, 1965) general self-esteem scale (RGSE). The scale was administered to 391 undergraduates for five consecutive days. The longitudinal data were analyzed using the integrated LC-LSTM framework that allowed us to evaluate: (1) the measurement invariance of the RGSE, (2) its stability and change across the 5-day assessment period, (3) the amount of variance attributable to stable and transitory latent factors, and (4) the criterion-related validity of these factors. Results provided evidence for measurement invariance, mean-level stability, and rank-order stability of daily self-esteem. Latent state-trait analyses revealed that variances in scores of the RGSE can be decomposed into six components: stable self-esteem (40 %), ephemeral (or temporal-state) variance (36 %), stable negative method variance (9 %), stable positive method variance (4 %), specific variance (1 %) and random error variance (10 %). Moreover, latent factors associated with daily self-esteem were associated with measures of depression, implicit self-esteem, and grade point average.

  5. Case study on prediction of remaining methane potential of landfilled municipal solid waste by statistical analysis of waste composition data.

    PubMed

    Sel, İlker; Çakmakcı, Mehmet; Özkaya, Bestamin; Suphi Altan, H

    2016-10-01

    Main objective of this study was to develop a statistical model for easier and faster Biochemical Methane Potential (BMP) prediction of landfilled municipal solid waste by analyzing waste composition of excavated samples from 12 sampling points and three waste depths representing different landfilling ages of closed and active sections of a sanitary landfill site located in İstanbul, Turkey. Results of Principal Component Analysis (PCA) were used as a decision support tool to evaluation and describe the waste composition variables. Four principal component were extracted describing 76% of data set variance. The most effective components were determined as PCB, PO, T, D, W, FM, moisture and BMP for the data set. Multiple Linear Regression (MLR) models were built by original compositional data and transformed data to determine differences. It was observed that even residual plots were better for transformed data the R(2) and Adjusted R(2) values were not improved significantly. The best preliminary BMP prediction models consisted of D, W, T and FM waste fractions for both versions of regressions. Adjusted R(2) values of the raw and transformed models were determined as 0.69 and 0.57, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Genetic Variance in Homophobia: Evidence from Self- and Peer Reports.

    PubMed

    Zapko-Willmes, Alexandra; Kandler, Christian

    2018-01-01

    The present twin study combined self- and peer assessments of twins' general homophobia targeting gay men in order to replicate previous behavior genetic findings across different rater perspectives and to disentangle self-rater-specific variance from common variance in self- and peer-reported homophobia (i.e., rater-consistent variance). We hypothesized rater-consistent variance in homophobia to be attributable to genetic and nonshared environmental effects, and self-rater-specific variance to be partially accounted for by genetic influences. A sample of 869 twins and 1329 peer raters completed a seven item scale containing cognitive, affective, and discriminatory homophobic tendencies. After correction for age and sex differences, we found most of the genetic contributions (62%) and significant nonshared environmental contributions (16%) to individual differences in self-reports on homophobia to be also reflected in peer-reported homophobia. A significant genetic component, however, was self-report-specific (38%), suggesting that self-assessments alone produce inflated heritability estimates to some degree. Different explanations are discussed.

  7. Statistical modeling to determine sources of variability in exposures to welding fumes.

    PubMed

    Liu, Sa; Hammond, S Katharine; Rappaport, Stephen M

    2011-04-01

    Exposures to total particulate matter (TP) and manganese (Mn) received by workers during welding and allied hot processes were analyzed to assess the sources and magnitudes of variability. Compilation of data from several countries identified 2065 TP and 697 Mn measurements for analysis. Linear mixed models were used to determine fixed effects due to different countries, industries and trades, process characteristics, and the sampling regimen, and to estimate components of variance within workers (both intraday and interday), between workers (within worksites), and across worksites. The fixed effects explained 55 and 49% of variation in TP and Mn exposures, respectively. The country, industry/trade, type of ventilation, and type of work/welding process were the major factors affecting exposures to both agents. Measurements in the USA were generally higher than those in other countries. Exposure to TP was 67% higher in enclosed spaces and 43% lower with local exhaust ventilation (LEV), was higher among boilermakers and was higher when either a mild-steel base metal or a flux cored consumable was used. Exposure to Mn was 750% higher in enclosed spaces and 67% lower when LEV was present. Air concentrations of Mn were significantly affected by the welding consumables but not by the base metal. Resistance welding produced significantly lower TP and Mn exposures compared to other welding processes. Interestingly, exposures to TP had not changed over the 40 years of observation, while those of Mn showed (non-significant) reductions of 3.6% year(-1). After controlling for fixed effects, variance components between worksites and between-individual workers within a worksite were reduced by 89 and 57% for TP and 75 and 63% for Mn, respectively. The within-worker variation (sum of intraday and interday variance components) of Mn exposure was three times higher than that of TP exposure. The estimated probabilities of exceeding occupational exposure limits were very high (generally much >10%) for both agents. Welding exposures to TP and Mn vary considerably across the world and across occupational groups. Exposures to both contaminants have been and continue to be unacceptably high in most sectors of industry. Because exposures to the two agents have different sources and characteristics, separate control strategies should be considered to reduce welders' exposures to TP and Mn.

  8. Robust Means Modeling: An Alternative for Hypothesis Testing of Independent Means under Variance Heterogeneity and Nonnormality

    ERIC Educational Resources Information Center

    Fan, Weihua; Hancock, Gregory R.

    2012-01-01

    This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…

  9. Northern Russian chironomid-based modern summer temperature data set and inference models

    NASA Astrophysics Data System (ADS)

    Nazarova, Larisa; Self, Angela E.; Brooks, Stephen J.; van Hardenbroek, Maarten; Herzschuh, Ulrike; Diekmann, Bernhard

    2015-11-01

    West and East Siberian data sets and 55 new sites were merged based on the high taxonomic similarity, and the strong relationship between mean July air temperature and the distribution of chironomid taxa in both data sets compared with other environmental parameters. Multivariate statistical analysis of chironomid and environmental data from the combined data set consisting of 268 lakes, located in northern Russia, suggests that mean July air temperature explains the greatest amount of variance in chironomid distribution compared with other measured variables (latitude, longitude, altitude, water depth, lake surface area, pH, conductivity, mean January air temperature, mean July air temperature, and continentality). We established two robust inference models to reconstruct mean summer air temperatures from subfossil chironomids based on ecological and geographical approaches. The North Russian 2-component WA-PLS model (RMSEPJack = 1.35 °C, rJack2 = 0.87) can be recommended for application in palaeoclimatic studies in northern Russia. Based on distinctive chironomid fauna and climatic regimes of Kamchatka the Far East 2-component WAPLS model (RMSEPJack = 1.3 °C, rJack2 = 0.81) has potentially better applicability in Kamchatka.

  10. DAKOTA Design Analysis Kit for Optimization and Terascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  11. Mathematical Ability and Socio-Economic Background: IRT Modeling to Estimate Genotype by Environment Interaction.

    PubMed

    Schwabe, Inga; Boomsma, Dorret I; van den Berg, Stéphanie M

    2017-12-01

    Genotype by environment interaction in behavioral traits may be assessed by estimating the proportion of variance that is explained by genetic and environmental influences conditional on a measured moderating variable, such as a known environmental exposure. Behavioral traits of interest are often measured by questionnaires and analyzed as sum scores on the items. However, statistical results on genotype by environment interaction based on sum scores can be biased due to the properties of a scale. This article presents a method that makes it possible to analyze the actually observed (phenotypic) item data rather than a sum score by simultaneously estimating the genetic model and an item response theory (IRT) model. In the proposed model, the estimation of genotype by environment interaction is based on an alternative parametrization that is uniquely identified and therefore to be preferred over standard parametrizations. A simulation study shows good performance of our method compared to analyzing sum scores in terms of bias. Next, we analyzed data of 2,110 12-year-old Dutch twin pairs on mathematical ability. Genetic models were evaluated and genetic and environmental variance components estimated as a function of a family's socio-economic status (SES). Results suggested that common environmental influences are less important in creating individual differences in mathematical ability in families with a high SES than in creating individual differences in mathematical ability in twin pairs with a low or average SES.

  12. Impact of flavor attributes on consumer liking of Swiss cheese.

    PubMed

    Liggett, R E; Drake, M A; Delwiche, J F

    2008-02-01

    Although Swiss cheese is growing in popularity, no research has examined what flavor characteristics consumers desire in Swiss cheese, which was the main objective of this study. To this end, a large group of commercially available Swiss-type cheeses (10 domestic Swiss cheeses, 4 domestic Baby Swiss cheeses, and one imported Swiss Emmenthal) were assessed both by 12 trained panelists for flavor and feeling factors and by 101 consumers for overall liking. In addition, a separate panel of 24 consumers rated the same cheeses for dissimilarity. On the basis of liking ratings, the 101 consumers were segmented by cluster analysis into 2 groups: nondistinguishers (n = 40) and varying responders (n = 61). Partial least squares regression, a statistical modeling technique that relates 2 data sets (in this case, a set of descriptive analysis data and a set of consumer liking data), was used to determine which flavor attributes assessed by the trained panel were important variables in overall liking of the cheeses for the varying responders. The model explained 93% of the liking variance on 3 normally distributed components and had 49% predictability. Diacetyl, whey, milk fat, and umami were found to be drivers of liking, whereas cabbage, cooked, and vinegar were drivers of disliking. Nutty flavor was not particularly important to liking and it was present in only 2 of the cheeses. The dissimilarity ratings were combined with the liking ratings of both segments and analyzed by probabilistic multidimensional scaling. The ideals of each segment completely overlapped, with the variance of the varying responders being smaller than the variance of the non-distinguishers. This model indicated that the Baby Swiss cheeses were closer to the consumers' ideals than were the other cheeses. Taken together, the 2 models suggest that the partial least squares regression failed to capture one or more attributes that contribute to consumer acceptance, although the descriptive analysis of flavor and feeling factors was able to account for 93% of the variance in the liking ratings. These findings indicate the flavor characteristics Swiss cheese producers should optimize, and minimize, to create cheeses that best match consumer desires.

  13. Dual-process models of associative recognition in young and older adults: evidence from receiver operating characteristics.

    PubMed

    Healy, Michael R; Light, Leah L; Chung, Christie

    2005-07-01

    In 3 experiments, young and older adults studied lists of unrelated word pairs and were given confidence-rated item and associative recognition tests. Several different models of recognition were fit to the confidence-rating data using techniques described by S. Macho (2002, 2004). Concordant with previous findings, item recognition data were best fit by an unequal-variance signal detection theory model for both young and older adults. For both age groups, associative recognition performance was best explained by models incorporating both recollection and familiarity components. Examination of parameter estimates supported the conclusion that recollection is reduced in old age, but inferences about age differences in familiarity were highly model dependent. Implications for dual-process models of memory in old age are discussed. ((c) 2005 APA, all rights reserved).

  14. Toward a More Robust Pruning Procedure for MLP Networks

    NASA Technical Reports Server (NTRS)

    Stepniewski, Slawomir W.; Jorgensen, Charles C.

    1998-01-01

    Choosing a proper neural network architecture is a problem of great practical importance. Smaller models mean not only simpler designs but also lower variance for parameter estimation and network prediction. The widespread utilization of neural networks in modeling highlights an issue in human factors. The procedure of building neural models should find an appropriate level of model complexity in a more or less automatic fashion to make it less prone to human subjectivity. In this paper we present a Singular Value Decomposition based node elimination technique and enhanced implementation of the Optimal Brain Surgeon algorithm. Combining both methods creates a powerful pruning engine that can be used for tuning feedforward connectionist models. The performance of the proposed method is demonstrated by adjusting the structure of a multi-input multi-output model used to calibrate a six-component wind tunnel strain gage.

  15. Uncertainty importance analysis using parametric moment ratio functions.

    PubMed

    Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen

    2014-02-01

    This article presents a new importance analysis framework, called parametric moment ratio function, for measuring the reduction of model output uncertainty when the distribution parameters of inputs are changed, and the emphasis is put on the mean and variance ratio functions with respect to the variances of model inputs. The proposed concepts efficiently guide the analyst to achieve a targeted reduction on the model output mean and variance by operating on the variances of model inputs. The unbiased and progressive unbiased Monte Carlo estimators are also derived for the parametric mean and variance ratio functions, respectively. Only a set of samples is needed for implementing the proposed importance analysis by the proposed estimators, thus the computational cost is free of input dimensionality. An analytical test example with highly nonlinear behavior is introduced for illustrating the engineering significance of the proposed importance analysis technique and verifying the efficiency and convergence of the derived Monte Carlo estimators. Finally, the moment ratio function is applied to a planar 10-bar structure for achieving a targeted 50% reduction of the model output variance. © 2013 Society for Risk Analysis.

  16. Genetic variation of the weaning weight of beef cattle as a function of accumulated heat stress.

    PubMed

    Santana, M L; Bignardi, A B; Eler, J P; Ferraz, J B S

    2016-04-01

    The objective of this study was to identify the genetic variation in the weaning weight (WW) of beef cattle as a function of heat stress. The WWs were recorded at approximately 205 days of age in three Brazilian beef cattle populations: Nelore (93,616), Brangus (18,906) and Tropical Composite (62,679). In view of the cumulative nature of WW, the effect of heat stress was considered as the accumulation of temperature and humidity index units (ACTHI) from the animal's birth to weaning. A reaction norm model was used to estimate the (co)variance components of WW across the ACTHI scale. The accumulation of THI units from birth to weaning negatively affected the WW. The definition of accumulated THI units as an environmental descriptor permitted to identify important genetic variation in the WW as a function of heat stress. As evidence of genotype by environment interaction, substantial heterogeneity was observed in the (co)variance components for WW across the environmental gradient. In this respect, the best animals in less stressful environments are not necessarily the best animals in more stressful environments. Furthermore, the response to selection for WW is expected to be lower in more stressful environments. © 2015 Blackwell Verlag GmbH.

  17. Comparison of Grouping Schemes for Exposure to Total Dust in Cement Factories in Korea.

    PubMed

    Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seung Hee; Ryu, Hyang-Woo; Park, Donguk

    2015-08-01

    The purpose of this study was to evaluate grouping schemes for exposure to total dust in cement industry workers using non-repeated measurement data. In total, 2370 total dust measurements taken from nine Portland cement factories in 1995-2009 were analyzed. Various grouping schemes were generated based on work process, job, factory, or average exposure. To characterize variance components of each grouping scheme, we developed mixed-effects models with a B-spline time trend incorporated as fixed effects and a grouping variable incorporated as a random effect. Using the estimated variance components, elasticity was calculated. To compare the prediction performances of different grouping schemes, 10-fold cross-validation tests were conducted, and root mean squared errors and pooled correlation coefficients were calculated for each grouping scheme. The five exposure groups created a posteriori by ranking job and factory combinations according to average dust exposure showed the best prediction performance and highest elasticity among various grouping schemes. Our findings suggest a grouping method based on ranking of job, and factory combinations would be the optimal choice in this population. Our grouping method may aid exposure assessment efforts in similar occupational settings, minimizing the misclassification of exposures. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair of GNSS triple-frequency signals

    NASA Astrophysics Data System (ADS)

    Chang, Guobin; Xu, Tianhe; Yao, Yifei; Wang, Qianxin

    2018-01-01

    In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.

  19. Finite mixture model: A maximum likelihood estimation approach on time series data

    NASA Astrophysics Data System (ADS)

    Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-09-01

    Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.

  20. Predictors of recent HIV testing among male street laborers in urban Vietnam.

    PubMed

    Nguyen, Huy V; Dunne, Michael P; Debattista, Joseph

    2014-08-01

    This study assessed the prevalence of and factors associated with HIV testing among male street laborers. In a cross-sectional survey, social mapping was done to recruit and interview 450 men aged 18-59 years in Hanoi. Although many of these men engaged in multiple risk behaviors for HIV, only 19.8 percent had been tested for HIV. A modified theoretical model provided better fit than the conventional Information-Motivation-Behavioral Skills model, as it explained much more variance in HIV testing. This model included three Information-Motivation-Behavioral components and four additional factors, namely, the origin of residence, sexual orientation, the number of sexual partners, and the status of condom use. © The Author(s) 2013.

  1. The genetic basis of female multiple mating in a polyandrous livebearing fish

    PubMed Central

    Evans, Jonathan P; Gasparini, Clelia

    2013-01-01

    The widespread occurrence of female multiple mating (FMM) demands evolutionary explanation, particularly in the light of the costs of mating. One explanation encapsulated by “good sperm” and “sexy-sperm” (GS-SS) theoretical models is that FMM facilitates sperm competition, thus ensuring paternity by males that pass on genes for elevated sperm competitiveness to their male offspring. While support for this component of GS-SS theory is accumulating, a second but poorly tested assumption of these models is that there should be corresponding heritable genetic variation in FMM – the proposed mechanism of postcopulatory preferences underlying GS-SS models. Here, we conduct quantitative genetic analyses on paternal half-siblings to test this component of GS-SS theory in the guppy (Poecilia reticulata), a freshwater fish with some of the highest known rates of FMM in vertebrates. As with most previous quantitative genetic analyses of FMM in other species, our results reveal high levels of phenotypic variation in this trait and a correspondingly low narrow-sense heritability (h2 = 0.11). Furthermore, although our analysis of additive genetic variance in FMM was not statistically significant (probably owing to limited statistical power), the ensuing estimate of mean-standardized additive genetic variance (IA = 0.7) was nevertheless relatively low compared with estimates published for life-history traits across a broad range of taxa. Our results therefore add to a growing body of evidence that FMM is characterized by relatively low additive genetic variation, thus apparently contradicting GS-SS theory. However, we qualify this conclusion by drawing attention to potential deficiencies in most designs (including ours) that have tested for genetic variation in FMM, particularly those that fail to account for intersexual interactions that underlie FMM in many systems. PMID:23403856

  2. A longitudinal model for functional connectivity networks using resting-state fMRI.

    PubMed

    Hart, Brian; Cribben, Ivor; Fiecas, Mark

    2018-06-04

    Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Haplotype-Based Association Analysis via Variance-Components Score Test

    PubMed Central

    Tzeng, Jung-Ying ; Zhang, Daowen 

    2007-01-01

    Haplotypes provide a more informative format of polymorphisms for genetic association analysis than do individual single-nucleotide polymorphisms. However, the practical efficacy of haplotype-based association analysis is challenged by a trade-off between the benefits of modeling abundant variation and the cost of the extra degrees of freedom. To reduce the degrees of freedom, several strategies have been considered in the literature. They include (1) clustering evolutionarily close haplotypes, (2) modeling the level of haplotype sharing, and (3) smoothing haplotype effects by introducing a correlation structure for haplotype effects and studying the variance components (VC) for association. Although the first two strategies enjoy a fair extent of power gain, empirical evidence showed that VC methods may exhibit only similar or less power than the standard haplotype regression method, even in cases of many haplotypes. In this study, we report possible reasons that cause the underpowered phenomenon and show how the power of the VC strategy can be improved. We construct a score test based on the restricted maximum likelihood or the marginal likelihood function of the VC and identify its nontypical limiting distribution. Through simulation, we demonstrate the validity of the test and investigate the power performance of the VC approach and that of the standard haplotype regression approach. With suitable choices for the correlation structure, the proposed method can be directly applied to unphased genotypic data. Our method is applicable to a wide-ranging class of models and is computationally efficient and easy to implement. The broad coverage and the fast and easy implementation of this method make the VC strategy an effective tool for haplotype analysis, even in modern genomewide association studies. PMID:17924336

  4. Reconstruction of Local Sea Levels at South West Pacific Islands—A Multiple Linear Regression Approach (1988-2014)

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.

    2018-02-01

    Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.

  5. Tidal analysis of surface currents in the Porsanger fjord in northern Norway

    NASA Astrophysics Data System (ADS)

    Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata

    2016-04-01

    In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).

  6. Frequency noise measurement of diode-pumped Nd:YAG ring lasers

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Win, Moe Zaw

    1990-01-01

    The combined frequency noise spectrum of two model 120-01A nonplanar ring oscillator lasers was measured by first heterodyne detecting the IF signal and then measuring the IF frequency noise using an RF frequency discriminator. The results indicated the presence of a 1/f-squared noise component in the power-spectral density of the frequency fluctuations between 1 Hz and 1 kHz. After incorporating this 1/f-squared into the analysis of the optical phase tracking loop, the measured phase error variance closely matches the theoretical predictions.

  7. Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study

    PubMed Central

    Kim, Minjung; Lamont, Andrea E.; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M. Lee

    2015-01-01

    Regression mixture models are a novel approach for modeling heterogeneous effects of predictors on an outcome. In the model building process residual variances are often disregarded and simplifying assumptions made without thorough examination of the consequences. This simulation study investigated the impact of an equality constraint on the residual variances across latent classes. We examine the consequence of constraining the residual variances on class enumeration (finding the true number of latent classes) and parameter estimates under a number of different simulation conditions meant to reflect the type of heterogeneity likely to exist in applied analyses. Results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted estimated class sizes and showed the potential to greatly impact parameter estimates in each class. Results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions were made. PMID:26139512

  8. Long-term variation in a central California pelagic forage assemblage

    NASA Astrophysics Data System (ADS)

    Ralston, Stephen; Field, John C.; Sakuma, Keith M.

    2015-06-01

    A continuous 23 year midwater trawl survey (1990-2012) of the epipelagic forage assemblage off the coast of central California (lat. 36°30‧-38°20‧ N) is described and analyzed. Twenty taxa occurred in ≥ 10% of the 2037 trawls that were completed at 40 distinct station locations. The dominant taxa sampled by the 9.5 mm mesh net included a suite of young-of-the-year (YOY) groundfish, including rockfish (Sebastes spp.) and Pacific hake (Merluccius productus), two clupeoids (Engraulis mordax and Sardinops sagax), krill (Euphausiacea), cephalopods (Doryteuthis opalescens and Octopus sp.), and a variety of mesopelagic species, i.e., Diaphus theta, Tarltonbeania crenularis, "other" lanternfish (Myctophidae), deep-sea smelts (Bathylagidae), and sergestid shrimp. Annual abundance estimates of the 20 taxa were obtained from analysis of variance models, which included year and station as main effects. Principal components analysis of the abundance estimates revealed that 61% of assemblage variance was explained by the first three components. The first component revealed a strong contrast in the abundance of: (a) YOY groundfish, market squid (D. opalescens), and krill with (b) mesopelagics and clupeoids; the second component was associated with long-term trends in abundance. An evaluation of 10 different published oceanographic data sets and CTD data collected during the survey indicated that seawater properties encountered each year were significantly correlated with abundance patterns, as were annual sea-level anomalies obtained from an analysis of AVISO satellite information. A comparison of our findings with several other recent studies of biological communities occurring in the California Current revealed a consistent structuring of forage assemblages, which we conjecture is primarily attributable to large-scale advection patterns in the California Current ecosystem.

  9. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models.

    PubMed

    Mulder, Han A; Rönnegård, Lars; Fikse, W Freddy; Veerkamp, Roel F; Strandberg, Erling

    2013-07-04

    Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike's information criterion using h-likelihood to select the best fitting model. We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike's information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike's information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.

  10. Spectral decomposition of internal gravity wave sea surface height in global models

    NASA Astrophysics Data System (ADS)

    Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-10-01

    Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.

  11. Sexually antagonistic selection on genetic variation underlying both male and female same-sex sexual behavior.

    PubMed

    Berger, David; You, Tao; Minano, Maravillas R; Grieshop, Karl; Lind, Martin I; Arnqvist, Göran; Maklakov, Alexei A

    2016-05-13

    Intralocus sexual conflict, arising from selection for different alleles at the same locus in males and females, imposes a constraint on sex-specific adaptation. Intralocus sexual conflict can be alleviated by the evolution of sex-limited genetic architectures and phenotypic expression, but pleiotropic constraints may hinder this process. Here, we explored putative intralocus sexual conflict and genetic (co)variance in a poorly understood behavior with near male-limited expression. Same-sex sexual behaviors (SSBs) generally do not conform to classic evolutionary models of adaptation but are common in male animals and have been hypothesized to result from perception errors and selection for high male mating rates. However, perspectives incorporating sex-specific selection on genes shared by males and females to explain the expression and evolution of SSBs have largely been neglected. We performed two parallel sex-limited artificial selection experiments on SSB in male and female seed beetles, followed by sex-specific assays of locomotor activity and male sex recognition (two traits hypothesized to be functionally related to SSB) and adult reproductive success (allowing us to assess fitness consequences of genetic variance in SSB and its correlated components). Our experiments reveal both shared and sex-limited genetic variance for SSB. Strikingly, genetically correlated responses in locomotor activity and male sex-recognition were associated with sexually antagonistic fitness effects, but these effects differed qualitatively between male and female selection lines, implicating intralocus sexual conflict at both male- and female-specific genetic components underlying SSB. Our study provides experimental support for the hypothesis that widespread pleiotropy generates pervasive intralocus sexual conflict governing the expression of SSBs, suggesting that SSB in one sex can occur due to the expression of genes that carry benefits in the other sex.

  12. Source-space ICA for MEG source imaging.

    PubMed

    Jonmohamadi, Yaqub; Jones, Richard D

    2016-02-01

    One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  13. Identifying sources of emerging organic contaminants in a mixed use watershed using principal components analysis.

    PubMed

    Karpuzcu, M Ekrem; Fairbairn, David; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L

    2014-01-01

    Principal components analysis (PCA) was used to identify sources of emerging organic contaminants in the Zumbro River watershed in Southeastern Minnesota. Two main principal components (PCs) were identified, which together explained more than 50% of the variance in the data. Principal Component 1 (PC1) was attributed to urban wastewater-derived sources, including municipal wastewater and residential septic tank effluents, while Principal Component 2 (PC2) was attributed to agricultural sources. The variances of the concentrations of cotinine, DEET and the prescription drugs carbamazepine, erythromycin and sulfamethoxazole were best explained by PC1, while the variances of the concentrations of the agricultural pesticides atrazine, metolachlor and acetochlor were best explained by PC2. Mixed use compounds carbaryl, iprodione and daidzein did not specifically group with either PC1 or PC2. Furthermore, despite the fact that caffeine and acetaminophen have been historically associated with human use, they could not be attributed to a single dominant land use category (e.g., urban/residential or agricultural). Contributions from septic systems did not clarify the source for these two compounds, suggesting that additional sources, such as runoff from biosolid-amended soils, may exist. Based on these results, PCA may be a useful way to broadly categorize the sources of new and previously uncharacterized emerging contaminants or may help to clarify transport pathways in a given area. Acetaminophen and caffeine were not ideal markers for urban/residential contamination sources in the study area and may need to be reconsidered as such in other areas as well.

  14. MVL spatiotemporal analysis for model intercomparison in EPS: application to the DEMETER multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Primo, C.; Cofiño, A. S.; Gutiérrez, J. M.; Rodríguez, M. A.

    2009-08-01

    In a recent paper, Gutiérrez et al. (Nonlinear Process Geophys 15(1):109-114, 2008) introduced a new characterization of spatiotemporal error growth—the so called mean-variance logarithmic (MVL) diagram—and applied it to study ensemble prediction systems (EPS); in particular, they analyzed single-model ensembles obtained by perturbing the initial conditions. In the present work, the MVL diagram is applied to multi-model ensembles analyzing also the effect of model formulation differences. To this aim, the MVL diagram is systematically applied to the multi-model ensemble produced in the EU-funded DEMETER project. It is shown that the shared building blocks (atmospheric and ocean components) impose similar dynamics among different models and, thus, contribute to poorly sampling the model formulation uncertainty. This dynamical similarity should be taken into account, at least as a pre-screening process, before applying any objective weighting method.

  15. Influence of quality of life, self-perception, and self-esteem on orthodontic treatment need.

    PubMed

    Dos Santos, Patrícia R; Meneghim, Marcelo de C; Ambrosano, Glaucia M B; Filho, Mario Vedovello; Vedovello, Silvia A S

    2017-01-01

    In this study, we aimed to assess the relationship between normative and perceived orthodontic treatment need associated with quality of life, self-esteem, and self-perception. The sample included 248 schoolchildren aged 12 years. The normative aspect of orthodontic treatment was assessed by the Dental Health Component and the Aesthetic Component of the Index of Orthodontic Treatment Need. The subjects were further evaluated for their oral health-related quality of life, self-esteem, and self-perception of oral esthetics. The Aesthetic Component of the Index of Orthodontic Treatment Need was considered as the response variable, and generalized linear models estimated by the GENMOD procedure (release 9.3, 2010; SAS Institute, Cary, NC). Model 1 was estimated with only the intercept, providing the basis for evaluating the reduction in variance in the other models studied; then the variables were tested sequentially, considering P ≤0.05 as the criterion for remaining in the model. In the model, self-perception and self-esteem were statistically significant in relation to the perceived need for treatment. The normative need was significantly associated with the outcome variable and was not influenced by independent variables. The normative need for orthodontics treatment was not overestimated by the perceived need, and the perceived need was not influenced by sex and the impact on quality of life. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  16. Adaptive increase in force variance during fatigue in tasks with low redundancy.

    PubMed

    Singh, Tarkeshwar; S K M, Varadhan; Zatsiorsky, Vladimir M; Latash, Mark L

    2010-11-26

    We tested a hypothesis that fatigue of an element (a finger) leads to an adaptive neural strategy that involves an increase in force variability in the other finger(s) and an increase in co-variation of commands to fingers to keep total force variability relatively unchanged. We tested this hypothesis using a system with small redundancy (two fingers) and a marginally redundant system (with an additional constraint related to the total moment of force produced by the fingers, unstable condition). The subjects performed isometric accurate rhythmic force production tasks by the index (I) finger and two fingers (I and middle, M) pressing together before and after a fatiguing exercise by the I finger. Fatigue led to a large increase in force variance in the I-finger task and a smaller increase in the IM-task. We quantified two components of variance in the space of hypothetical commands to fingers, finger modes. Under both stable and unstable conditions, there was a large increase in the variance component that did not affect total force and a much smaller increase in the component that did. This resulted in an increase in an index of the force-stabilizing synergy. These results indicate that marginal redundancy is sufficient to allow the central nervous system to use adaptive increase in variability to shield important variables from effects of fatigue. We offer an interpretation of these results based on a recent development of the equilibrium-point hypothesis known as the referent configuration hypothesis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Schüler, L.; Suciu, N.; Knabner, P.; Attinger, S.

    2016-10-01

    Probability density function (PDF) methods are a promising alternative to predicting the transport of solutes in groundwater under uncertainty. They make it possible to derive the evolution equations of the mean concentration and the concentration variance, used in moment methods. The mixing model, describing the transport of the PDF in concentration space, is essential for both methods. Finding a satisfactory mixing model is still an open question and due to the rather elaborate PDF methods, a difficult undertaking. Both the PDF equation and the concentration variance equation depend on the same mixing model. This connection is used to find and test an improved mixing model for the much easier to handle concentration variance. Subsequently, this mixing model is transferred to the PDF equation and tested. The newly proposed mixing model yields significantly improved results for both variance modelling and PDF modelling.

  18. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGES

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  19. On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models

    NASA Astrophysics Data System (ADS)

    Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.

    2017-12-01

    Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.

  20. Development and Validation of a Lifecycle-based Prognostics Architecture with Test Bed Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, J. Wesley; Upadhyaya, Belle; Sharp, Michael

    On-line monitoring and tracking of nuclear plant system and component degradation is being investigated as a method for improving the safety, reliability, and maintainability of aging nuclear power plants. Accurate prediction of the current degradation state of system components and structures is important for accurate estimates of their remaining useful life (RUL). The correct quantification and propagation of both the measurement uncertainty and model uncertainty is necessary for quantifying the uncertainty of the RUL prediction. This research project developed and validated methods to perform RUL estimation throughout the lifecycle of plant components. Prognostic methods should seamlessly operate from beginning ofmore » component life (BOL) to end of component life (EOL). We term this "Lifecycle Prognostics." When a component is put into use, the only information available may be past failure times of similar components used in similar conditions, and the predicted failure distribution can be estimated with reliability methods such as Weibull Analysis (Type I Prognostics). As the component operates, it begins to degrade and consume its available life. This life consumption may be a function of system stresses, and the failure distribution should be updated to account for the system operational stress levels (Type II Prognostics). When degradation becomes apparent, this information can be used to again improve the RUL estimate (Type III Prognostics). This research focused on developing prognostics algorithms for the three types of prognostics, developing uncertainty quantification methods for each of the algorithms, and, most importantly, developing a framework using Bayesian methods to transition between prognostic model types and update failure distribution estimates as new information becomes available. The developed methods were then validated on a range of accelerated degradation test beds. The ultimate goal of prognostics is to provide an accurate assessment for RUL predictions, with as little uncertainty as possible. From a reliability and maintenance standpoint, there would be improved safety by avoiding all failures. Calculated risk would decrease, saving money by avoiding unnecessary maintenance. One major bottleneck for data-driven prognostics is the availability of run-to-failure degradation data. Without enough degradation data leading to failure, prognostic models can yield RUL distributions with large uncertainty or mathematically unsound predictions. To address these issues a "Lifecycle Prognostics" method was developed to create RUL distributions from Beginning of Life (BOL) to End of Life (EOL). This employs established Type I, II, and III prognostic methods, and Bayesian transitioning between each Type. Bayesian methods, as opposed to classical frequency statistics, show how an expected value, a priori, changes with new data to form a posterior distribution. For example, when you purchase a component you have a prior belief, or estimation, of how long it will operate before failing. As you operate it, you may collect information related to its condition that will allow you to update your estimated failure time. Bayesian methods are best used when limited data are available. The use of a prior also means that information is conserved when new data are available. The weightings of the prior belief and information contained in the sampled data are dependent on the variance (uncertainty) of the prior, the variance (uncertainty) of the data, and the amount of measured data (number of samples). If the variance of the prior is small compared to the uncertainty of the data, the prior will be weighed more heavily. However, as more data are collected, the data will be weighted more heavily and will eventually swamp out the prior in calculating the posterior distribution of model parameters. Fundamentally Bayesian analysis updates a prior belief with new data to get a posterior belief. The general approach to applying the Bayesian method to lifecycle prognostics consisted of identifying the prior, which is the RUL estimate and uncertainty from the previous prognostics type, and combining it with observational data related to the newer prognostics type. The resulting lifecycle prognostics algorithm uses all available information throughout the component lifecycle.« less

Top