Sample records for variance-based global sensitivity

  1. A Bayesian Network Based Global Sensitivity Analysis Method for Identifying Dominant Processes in a Multi-physics Model

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2016-12-01

    Sensitivity analysis has been an important tool in groundwater modeling to identify the influential parameters. Among various sensitivity analysis methods, the variance-based global sensitivity analysis has gained popularity for its model independence characteristic and capability of providing accurate sensitivity measurements. However, the conventional variance-based method only considers uncertainty contribution of single model parameters. In this research, we extended the variance-based method to consider more uncertainty sources and developed a new framework to allow flexible combinations of different uncertainty components. We decompose the uncertainty sources into a hierarchical three-layer structure: scenario, model and parametric. Furthermore, each layer of uncertainty source is capable of containing multiple components. An uncertainty and sensitivity analysis framework was then constructed following this three-layer structure using Bayesian network. Different uncertainty components are represented as uncertain nodes in this network. Through the framework, variance-based sensitivity analysis can be implemented with great flexibility of using different grouping strategies for uncertainty components. The variance-based sensitivity analysis thus is improved to be able to investigate the importance of an extended range of uncertainty sources: scenario, model, and other different combinations of uncertainty components which can represent certain key model system processes (e.g., groundwater recharge process, flow reactive transport process). For test and demonstration purposes, the developed methodology was implemented into a test case of real-world groundwater reactive transport modeling with various uncertainty sources. The results demonstrate that the new sensitivity analysis method is able to estimate accurate importance measurements for any uncertainty sources which were formed by different combinations of uncertainty components. The new methodology can provide useful information for environmental management and decision-makers to formulate policies and strategies.

  2. Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty

    DOE PAGES

    Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.

    2016-09-12

    Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less

  3. Variance-Based Sensitivity Analysis to Support Simulation-Based Design Under Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opgenoord, Max M. J.; Allaire, Douglas L.; Willcox, Karen E.

    Sensitivity analysis plays a critical role in quantifying uncertainty in the design of engineering systems. A variance-based global sensitivity analysis is often used to rank the importance of input factors, based on their contribution to the variance of the output quantity of interest. However, this analysis assumes that all input variability can be reduced to zero, which is typically not the case in a design setting. Distributional sensitivity analysis (DSA) instead treats the uncertainty reduction in the inputs as a random variable, and defines a variance-based sensitivity index function that characterizes the relative contribution to the output variance as amore » function of the amount of uncertainty reduction. This paper develops a computationally efficient implementation for the DSA formulation and extends it to include distributions commonly used in engineering design under uncertainty. Application of the DSA method to the conceptual design of a commercial jetliner demonstrates how the sensitivity analysis provides valuable information to designers and decision-makers on where and how to target uncertainty reduction efforts.« less

  4. Dynamic Modeling of the Human Coagulation Cascade Using Reduced Order Effective Kinetic Models (Open Access)

    DTIC Science & Technology

    2015-03-16

    shaded region around each total sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity...Performance We conducted a global sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the...Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear

  5. Estimating Sobol Sensitivity Indices Using Correlations

    EPA Science Inventory

    Sensitivity analysis is a crucial tool in the development and evaluation of complex mathematical models. Sobol's method is a variance-based global sensitivity analysis technique that has been applied to computational models to assess the relative importance of input parameters on...

  6. Global Sensitivity Analysis and Parameter Calibration for an Ecosystem Carbon Model

    NASA Astrophysics Data System (ADS)

    Safta, C.; Ricciuto, D. M.; Sargsyan, K.; Najm, H. N.; Debusschere, B.; Thornton, P. E.

    2013-12-01

    We present uncertainty quantification results for a process-based ecosystem carbon model. The model employs 18 parameters and is driven by meteorological data corresponding to years 1992-2006 at the Harvard Forest site. Daily Net Ecosystem Exchange (NEE) observations were available to calibrate the model parameters and test the performance of the model. Posterior distributions show good predictive capabilities for the calibrated model. A global sensitivity analysis was first performed to determine the important model parameters based on their contribution to the variance of NEE. We then proceed to calibrate the model parameters in a Bayesian framework. The daily discrepancies between measured and predicted NEE values were modeled as independent and identically distributed Gaussians with prescribed daily variance according to the recorded instrument error. All model parameters were assumed to have uninformative priors with bounds set according to expert opinion. The global sensitivity results show that the rate of leaf fall (LEAFALL) is responsible for approximately 25% of the total variance in the average NEE for 1992-2005. A set of 4 other parameters, Nitrogen use efficiency (NUE), base rate for maintenance respiration (BR_MR), growth respiration fraction (RG_FRAC), and allocation to plant stem pool (ASTEM) contribute between 5% and 12% to the variance in average NEE, while the rest of the parameters have smaller contributions. The posterior distributions, sampled with a Markov Chain Monte Carlo algorithm, exhibit significant correlations between model parameters. However LEAFALL, the most important parameter for the average NEE, is not informed by the observational data, while less important parameters show significant updates between their prior and posterior densities. The Fisher information matrix values, indicating which parameters are most informed by the experimental observations, are examined to augment the comparison between the calibration and global sensitivity analysis results.

  7. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    DTIC Science & Technology

    2015-03-16

    sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity Analysis of the Reduced Order Coagulation...sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the performance of the reduced order model [69]. We...Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates

  8. An efficient sampling approach for variance-based sensitivity analysis based on the law of total variance in the successive intervals without overlapping

    NASA Astrophysics Data System (ADS)

    Yun, Wanying; Lu, Zhenzhou; Jiang, Xian

    2018-06-01

    To efficiently execute the variance-based global sensitivity analysis, the law of total variance in the successive intervals without overlapping is proved at first, on which an efficient space-partition sampling-based approach is subsequently proposed in this paper. Through partitioning the sample points of output into different subsets according to different inputs, the proposed approach can efficiently evaluate all the main effects concurrently by one group of sample points. In addition, there is no need for optimizing the partition scheme in the proposed approach. The maximum length of subintervals is decreased by increasing the number of sample points of model input variables in the proposed approach, which guarantees the convergence condition of the space-partition approach well. Furthermore, a new interpretation on the thought of partition is illuminated from the perspective of the variance ratio function. Finally, three test examples and one engineering application are employed to demonstrate the accuracy, efficiency and robustness of the proposed approach.

  9. Global sensitivity analysis in stochastic simulators of uncertain reaction networks.

    PubMed

    Navarro Jimenez, M; Le Maître, O P; Knio, O M

    2016-12-28

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  10. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    DOE PAGES

    Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.

    2016-12-23

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes thatmore » the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. Here, a sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.« less

  11. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    NASA Astrophysics Data System (ADS)

    Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.

    2016-12-01

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  12. Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition.

    PubMed

    Xu, Li; Jiang, Yong; Qiu, Rong

    2018-01-01

    In present study, co-pyrolysis behavior of rape straw, waste tire and their various blends were investigated. TG-FTIR indicated that co-pyrolysis was characterized by a four-step reaction, and H 2 O, CH, OH, CO 2 and CO groups were the main products evolved during the process. Additionally, using BBD-based experimental results, best-fit multiple regression models with high R 2 -pred values (94.10% for mass loss and 95.37% for reaction heat), which correlated explanatory variables with the responses, were presented. The derived models were analyzed by ANOVA at 95% confidence interval, F-test, lack-of-fit test and residues normal probability plots implied the models described well the experimental data. Finally, the model uncertainties as well as the interactive effect of these parameters were studied, the total-, first- and second-order sensitivity indices of operating factors were proposed using Sobol' variance decomposition. To the authors' knowledge, this is the first time global parameter sensitivity analysis has been performed in (co-)pyrolysis literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE PAGES

    Dai, Heng; Ye, Ming; Walker, Anthony P.; ...

    2017-03-28

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  14. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  15. A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin V.

    2016-01-01

    Based on the theoretical framework for sensitivity analysis called "Variogram Analysis of Response Surfaces" (VARS), developed in the companion paper, we develop and implement a practical "star-based" sampling strategy (called STAR-VARS), for the application of VARS to real-world problems. We also develop a bootstrap approach to provide confidence level estimates for the VARS sensitivity metrics and to evaluate the reliability of inferred factor rankings. The effectiveness, efficiency, and robustness of STAR-VARS are demonstrated via two real-data hydrological case studies (a 5-parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrology model), and a comparison with the "derivative-based" Morris and "variance-based" Sobol approaches are provided. Our results show that STAR-VARS provides reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being 1-2 orders of magnitude more efficient than the Morris or Sobol approaches.

  16. Global Sensitivity Analysis for Process Identification under Model Uncertainty

    NASA Astrophysics Data System (ADS)

    Ye, M.; Dai, H.; Walker, A. P.; Shi, L.; Yang, J.

    2015-12-01

    The environmental system consists of various physical, chemical, and biological processes, and environmental models are always built to simulate these processes and their interactions. For model building, improvement, and validation, it is necessary to identify important processes so that limited resources can be used to better characterize the processes. While global sensitivity analysis has been widely used to identify important processes, the process identification is always based on deterministic process conceptualization that uses a single model for representing a process. However, environmental systems are complex, and it happens often that a single process may be simulated by multiple alternative models. Ignoring the model uncertainty in process identification may lead to biased identification in that identified important processes may not be so in the real world. This study addresses this problem by developing a new method of global sensitivity analysis for process identification. The new method is based on the concept of Sobol sensitivity analysis and model averaging. Similar to the Sobol sensitivity analysis to identify important parameters, our new method evaluates variance change when a process is fixed at its different conceptualizations. The variance considers both parametric and model uncertainty using the method of model averaging. The method is demonstrated using a synthetic study of groundwater modeling that considers recharge process and parameterization process. Each process has two alternative models. Important processes of groundwater flow and transport are evaluated using our new method. The method is mathematically general, and can be applied to a wide range of environmental problems.

  17. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE PAGES

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra; ...

    2017-11-20

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  18. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  19. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling

    NASA Astrophysics Data System (ADS)

    Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Zachara, John M.

    2017-05-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study, we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multilayer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially distributed input variables.

  20. A Geostatistics-Informed Hierarchical Sensitivity Analysis Method for Complex Groundwater Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, H.; Chen, X.; Ye, M.; Song, X.; Zachara, J. M.

    2017-12-01

    Sensitivity analysis is an important tool for development and improvement of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a new sensitivity analysis method that integrates the concept of variance-based method with a hierarchical uncertainty quantification framework. Different uncertain inputs are grouped and organized into a multi-layer framework based on their characteristics and dependency relationships to reduce the dimensionality of the sensitivity analysis. A set of new sensitivity indices are defined for the grouped inputs using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed input variables.

  1. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; ...

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  2. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  3. Variance-based Sensitivity Analysis of Large-scale Hydrological Model to Prepare an Ensemble-based SWOT-like Data Assimilation Experiments

    NASA Astrophysics Data System (ADS)

    Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Garambois, P. A.; Decharme, B.; Rochoux, M. C.

    2015-12-01

    Land Surface Models (LSM) coupled with River Routing schemes (RRM), are used in Global Climate Models (GCM) to simulate the continental part of the water cycle. They are key component of GCM as they provide boundary conditions to atmospheric and oceanic models. However, at global scale, errors arise mainly from simplified physics, atmospheric forcing, and input parameters. More particularly, those used in RRM, such as river width, depth and friction coefficients, are difficult to calibrate and are mostly derived from geomorphologic relationships, which may not always be realistic. In situ measurements are then used to calibrate these relationships and validate the model, but global in situ data are very sparse. Additionally, due to the lack of existing global river geomorphology database and accurate forcing, models are run at coarse resolution. This is typically the case of the ISBA-TRIP model used in this study.A complementary alternative to in-situ data are satellite observations. In this regard, the Surface Water and Ocean Topography (SWOT) satellite mission, jointly developed by NASA/CNES/CSA/UKSA and scheduled for launch around 2020, should be very valuable to calibrate RRM parameters. It will provide maps of water surface elevation for rivers wider than 100 meters over continental surfaces in between 78°S and 78°N and also direct observation of river geomorphological parameters such as width ans slope.Yet, before assimilating such kind of data, it is needed to analyze RRM temporal sensitivity to time-constant parameters. This study presents such analysis over large river basins for the TRIP RRM. Model output uncertainty, represented by unconditional variance, is decomposed into ordered contribution from each parameter. Doing a time-dependent analysis allows then to identify to which parameters modeled water level and discharge are the most sensitive along a hydrological year. The results show that local parameters directly impact water levels, while discharge is more affected by parameters from the whole upstream drainage area. Understanding model output variance behavior will have a direct impact on the design and performance of the ensemble-based data assimilation platform, for which uncertainties are also modeled by variances. It will help to select more objectively RRM parameters to correct.

  4. A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China

    NASA Astrophysics Data System (ADS)

    Pan, S.; Fu, G.; Chiang, Y. M.; Xu, Y. P.

    2016-12-01

    Owing to model complexity and large number of parameters, calibration and sensitivity analysis are difficult processes for distributed hydrological models. In this study, a two-step sensitivity analysis approach is proposed for analyzing the hydrological signatures in Jinhua River Basin, East China, using the Distributed Hydrology-Soil-Vegetation Model (DHSVM). A rough sensitivity analysis is firstly conducted to obtain preliminary influential parameters via Analysis of Variance. The number of parameters was greatly reduced from eighteen-three to sixteen. Afterwards, the sixteen parameters are further analyzed based on a variance-based global sensitivity analysis, i.e., Sobol's sensitivity analysis method, to achieve robust sensitivity rankings and parameter contributions. Parallel-Computing is applied to reduce computational burden in variance-based sensitivity analysis. The results reveal that only a few number of model parameters are significantly sensitive, including rain LAI multiplier, lateral conductivity, porosity, field capacity, wilting point of clay loam, understory monthly LAI, understory minimum resistance and root zone depths of croplands. Finally several hydrological signatures are used for investigating the performance of DHSVM. Results show that high value of efficiency criteria didn't indicate excellent performance of hydrological signatures. For most samples from Sobol's sensitivity analysis, water yield was simulated very well. However, lowest and maximum annual daily runoffs were underestimated. Most of seven-day minimum runoffs were overestimated. Nevertheless, good performances of the three signatures above still exist in a number of samples. Analysis of peak flow shows that small and medium floods are simulated perfectly while slight underestimations happen to large floods. The work in this study helps to further multi-objective calibration of DHSVM model and indicates where to improve the reliability and credibility of model simulation.

  5. Modified GMDH-NN algorithm and its application for global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Song, Shufang; Wang, Lu

    2017-11-01

    Global sensitivity analysis (GSA) is a very useful tool to evaluate the influence of input variables in the whole distribution range. Sobol' method is the most commonly used among variance-based methods, which are efficient and popular GSA techniques. High dimensional model representation (HDMR) is a popular way to compute Sobol' indices, however, its drawbacks cannot be ignored. We show that modified GMDH-NN algorithm can calculate coefficients of metamodel efficiently, so this paper aims at combining it with HDMR and proposes GMDH-HDMR method. The new method shows higher precision and faster convergent rate. Several numerical and engineering examples are used to confirm its advantages.

  6. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  7. Parameter screening: the use of a dummy parameter to identify non-influential parameters in a global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2017-04-01

    Parameter estimation is a major concern in hydrological modeling, which may limit the use of complex simulators with a large number of parameters. To support the selection of parameters to include in or exclude from the calibration process, Global Sensitivity Analysis (GSA) is widely applied in modeling practices. Based on the results of GSA, the influential and the non-influential parameters are identified (i.e. parameters screening). Nevertheless, the choice of the screening threshold below which parameters are considered non-influential is a critical issue, which has recently received more attention in GSA literature. In theory, the sensitivity index of a non-influential parameter has a value of zero. However, since numerical approximations, rather than analytical solutions, are utilized in GSA methods to calculate the sensitivity indices, small but non-zero indices may be obtained for the indices of non-influential parameters. In order to assess the threshold that identifies non-influential parameters in GSA methods, we propose to calculate the sensitivity index of a "dummy parameter". This dummy parameter has no influence on the model output, but will have a non-zero sensitivity index, representing the error due to the numerical approximation. Hence, the parameters whose indices are above the sensitivity index of the dummy parameter can be classified as influential, whereas the parameters whose indices are below this index are within the range of the numerical error and should be considered as non-influential. To demonstrated the effectiveness of the proposed "dummy parameter approach", 26 parameters of a Soil and Water Assessment Tool (SWAT) model are selected to be analyzed and screened, using the variance-based Sobol' and moment-independent PAWN methods. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. Moreover, the calculation does not even require additional model evaluations for the Sobol' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method

  8. Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten

    2015-04-01

    Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.

  9. Supercritical Quasi-Conduction States in Stochastic Rayleigh-Benard Convection

    DTIC Science & Technology

    2011-09-15

    is 10 (see table 1). The sensitivity (in the sense of Sobol [39]) of the integrated Nusselt number with respect to the amplitude of the boundary...using a multi-element quadrature formula [32]. Following Sobol [39], we shall define global sensitivity indices as the ratio between the variance of...39] I. M. Sobol , Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates, Math. Comput. Simul. 55 (2001) 271

  10. Ignoring correlation in uncertainty and sensitivity analysis in life cycle assessment: what is the risk?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groen, E.A., E-mail: Evelyne.Groen@gmail.com; Heijungs, R.; Leiden University, Einsteinweg 2, Leiden 2333 CC

    Life cycle assessment (LCA) is an established tool to quantify the environmental impact of a product. A good assessment of uncertainty is important for making well-informed decisions in comparative LCA, as well as for correctly prioritising data collection efforts. Under- or overestimation of output uncertainty (e.g. output variance) will lead to incorrect decisions in such matters. The presence of correlations between input parameters during uncertainty propagation, can increase or decrease the the output variance. However, most LCA studies that include uncertainty analysis, ignore correlations between input parameters during uncertainty propagation, which may lead to incorrect conclusions. Two approaches to include correlationsmore » between input parameters during uncertainty propagation and global sensitivity analysis were studied: an analytical approach and a sampling approach. The use of both approaches is illustrated for an artificial case study of electricity production. Results demonstrate that both approaches yield approximately the same output variance and sensitivity indices for this specific case study. Furthermore, we demonstrate that the analytical approach can be used to quantify the risk of ignoring correlations between input parameters during uncertainty propagation in LCA. We demonstrate that: (1) we can predict if including correlations among input parameters in uncertainty propagation will increase or decrease output variance; (2) we can quantify the risk of ignoring correlations on the output variance and the global sensitivity indices. Moreover, this procedure requires only little data. - Highlights: • Ignoring correlation leads to under- or overestimation of the output variance. • We demonstrated that the risk of ignoring correlation can be quantified. • The procedure proposed is generally applicable in life cycle assessment. • In some cases, ignoring correlation has a minimal effect on decision-making tools.« less

  11. What Constitutes a "Good" Sensitivity Analysis? Elements and Tools for a Robust Sensitivity Analysis with Reduced Computational Cost

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin; Haghnegahdar, Amin

    2016-04-01

    Global sensitivity analysis (GSA) is a systems theoretic approach to characterizing the overall (average) sensitivity of one or more model responses across the factor space, by attributing the variability of those responses to different controlling (but uncertain) factors (e.g., model parameters, forcings, and boundary and initial conditions). GSA can be very helpful to improve the credibility and utility of Earth and Environmental System Models (EESMs), as these models are continually growing in complexity and dimensionality with continuous advances in understanding and computing power. However, conventional approaches to GSA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we identify several important sensitivity-related characteristics of response surfaces that must be considered when investigating and interpreting the ''global sensitivity'' of a model response (e.g., a metric of model performance) to its parameters/factors. Accordingly, we present a new and general sensitivity and uncertainty analysis framework, Variogram Analysis of Response Surfaces (VARS), based on an analogy to 'variogram analysis', that characterizes a comprehensive spectrum of information on sensitivity. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are special cases of VARS, and that their SA indices are contained within the VARS framework. We also present a practical strategy for the application of VARS to real-world problems, called STAR-VARS, including a new sampling strategy, called "star-based sampling". Our results across several case studies show the STAR-VARS approach to provide reliable and stable assessments of "global" sensitivity, while being at least 1-2 orders of magnitude more efficient than the benchmark Morris and Sobol approaches.

  12. VARS-TOOL: A Comprehensive, Efficient, and Robust Sensitivity Analysis Toolbox

    NASA Astrophysics Data System (ADS)

    Razavi, S.; Sheikholeslami, R.; Haghnegahdar, A.; Esfahbod, B.

    2016-12-01

    VARS-TOOL is an advanced sensitivity and uncertainty analysis toolbox, applicable to the full range of computer simulation models, including Earth and Environmental Systems Models (EESMs). The toolbox was developed originally around VARS (Variogram Analysis of Response Surfaces), which is a general framework for Global Sensitivity Analysis (GSA) that utilizes the variogram/covariogram concept to characterize the full spectrum of sensitivity-related information, thereby providing a comprehensive set of "global" sensitivity metrics with minimal computational cost. VARS-TOOL is unique in that, with a single sample set (set of simulation model runs), it generates simultaneously three philosophically different families of global sensitivity metrics, including (1) variogram-based metrics called IVARS (Integrated Variogram Across a Range of Scales - VARS approach), (2) variance-based total-order effects (Sobol approach), and (3) derivative-based elementary effects (Morris approach). VARS-TOOL is also enabled with two novel features; the first one being a sequential sampling algorithm, called Progressive Latin Hypercube Sampling (PLHS), which allows progressively increasing the sample size for GSA while maintaining the required sample distributional properties. The second feature is a "grouping strategy" that adaptively groups the model parameters based on their sensitivity or functioning to maximize the reliability of GSA results. These features in conjunction with bootstrapping enable the user to monitor the stability, robustness, and convergence of GSA with the increase in sample size for any given case study. VARS-TOOL has been shown to achieve robust and stable results within 1-2 orders of magnitude smaller sample sizes (fewer model runs) than alternative tools. VARS-TOOL, available in MATLAB and Python, is under continuous development and new capabilities and features are forthcoming.

  13. Ocean Salinity Variance and the Global Water Cycle.

    NASA Astrophysics Data System (ADS)

    Schmitt, R. W.

    2012-12-01

    Ocean salinity variance is increasing and appears to be an indicator of rapid change in the global water cycle. While the small terrestrial water cycle does not reveal distinct trends, in part due to strong manipulation by civilization, the much larger oceanic water cycle seems to have an excellent proxy for its intensity in the contrasts in sea surface salinity (SSS). Change in the water cycle is arguably the most important challenge facing mankind. But how well do we understand the oceanic response? Does the ocean amplify SSS change to make it a hyper-sensitive indicator of change in the global water cycle? An overview of the research challenges to the oceanographic community for understanding the dominant component of the global water cycle is provided.

  14. Regression-based adaptive sparse polynomial dimensional decomposition for sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Congedo, Pietro; Abgrall, Remi

    2014-11-01

    Polynomial dimensional decomposition (PDD) is employed in this work for global sensitivity analysis and uncertainty quantification of stochastic systems subject to a large number of random input variables. Due to the intimate structure between PDD and Analysis-of-Variance, PDD is able to provide simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to polynomial chaos (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of the standard method unaffordable for real engineering applications. In order to address this problem of curse of dimensionality, this work proposes a variance-based adaptive strategy aiming to build a cheap meta-model by sparse-PDD with PDD coefficients computed by regression. During this adaptive procedure, the model representation by PDD only contains few terms, so that the cost to resolve repeatedly the linear system of the least-square regression problem is negligible. The size of the final sparse-PDD representation is much smaller than the full PDD, since only significant terms are eventually retained. Consequently, a much less number of calls to the deterministic model is required to compute the final PDD coefficients.

  15. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  16. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    DOE PAGES

    Urrego-Blanco, Jorge Rolando; Urban, Nathan Mark; Hunke, Elizabeth Clare; ...

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual modelmore » parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. Lastly, it is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.« less

  17. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, Jorge R.; Urban, Nathan M.; Hunke, Elizabeth C.; Turner, Adrian K.; Jeffery, Nicole

    2016-04-01

    Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. It is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model.

  18. Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5

    DOE PAGES

    Qian, Yun; Yan, Huiping; Hou, Zhangshuan; ...

    2015-04-10

    We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less

  19. Global Sensitivity Analysis for Identifying Important Parameters of Nitrogen Nitrification and Denitrification under Model and Scenario Uncertainties

    NASA Astrophysics Data System (ADS)

    Ye, M.; Chen, Z.; Shi, L.; Zhu, Y.; Yang, J.

    2017-12-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. While global sensitivity analysis is a vital tool for identifying the parameters important to nitrogen reactive transport, conventional global sensitivity analysis only considers parametric uncertainty. This may result in inaccurate selection of important parameters, because parameter importance may vary under different models and modeling scenarios. By using a recently developed variance-based global sensitivity analysis method, this paper identifies important parameters with simultaneous consideration of parametric uncertainty, model uncertainty, and scenario uncertainty. In a numerical example of nitrogen reactive transport modeling, a combination of three scenarios of soil temperature and two scenarios of soil moisture leads to a total of six scenarios. Four alternative models are used to evaluate reduction functions used for calculating actual rates of nitrification and denitrification. The model uncertainty is tangled with scenario uncertainty, as the reduction functions depend on soil temperature and moisture content. The results of sensitivity analysis show that parameter importance varies substantially between different models and modeling scenarios, which may lead to inaccurate selection of important parameters if model and scenario uncertainties are not considered. This problem is avoided by using the new method of sensitivity analysis in the context of model averaging and scenario averaging. The new method of sensitivity analysis can be applied to other problems of contaminant transport modeling when model uncertainty and/or scenario uncertainty are present.

  20. An adaptive least-squares global sensitivity method and application to a plasma-coupled combustion prediction with parametric correlation

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Massa, Luca; Wang, Jonathan; Freund, Jonathan B.

    2018-05-01

    We introduce an efficient non-intrusive surrogate-based methodology for global sensitivity analysis and uncertainty quantification. Modified covariance-based sensitivity indices (mCov-SI) are defined for outputs that reflect correlated effects. The overall approach is applied to simulations of a complex plasma-coupled combustion system with disparate uncertain parameters in sub-models for chemical kinetics and a laser-induced breakdown ignition seed. The surrogate is based on an Analysis of Variance (ANOVA) expansion, such as widely used in statistics, with orthogonal polynomials representing the ANOVA subspaces and a polynomial dimensional decomposition (PDD) representing its multi-dimensional components. The coefficients of the PDD expansion are obtained using a least-squares regression, which both avoids the direct computation of high-dimensional integrals and affords an attractive flexibility in choosing sampling points. This facilitates importance sampling using a Bayesian calibrated posterior distribution, which is fast and thus particularly advantageous in common practical cases, such as our large-scale demonstration, for which the asymptotic convergence properties of polynomial expansions cannot be realized due to computation expense. Effort, instead, is focused on efficient finite-resolution sampling. Standard covariance-based sensitivity indices (Cov-SI) are employed to account for correlation of the uncertain parameters. Magnitude of Cov-SI is unfortunately unbounded, which can produce extremely large indices that limit their utility. Alternatively, mCov-SI are then proposed in order to bound this magnitude ∈ [ 0 , 1 ]. The polynomial expansion is coupled with an adaptive ANOVA strategy to provide an accurate surrogate as the union of several low-dimensional spaces, avoiding the typical computational cost of a high-dimensional expansion. It is also adaptively simplified according to the relative contribution of the different polynomials to the total variance. The approach is demonstrated for a laser-induced turbulent combustion simulation model, which includes parameters with correlated effects.

  1. Transgenerational epigenetics: Inheritance of global cytosine methylation and methylation-related epigenetic markers in the shrub Lavandula latifolia.

    PubMed

    Herrera, Carlos M; Alonso, Conchita; Medrano, Mónica; Pérez, Ricardo; Bazaga, Pilar

    2018-04-01

    The ecological and evolutionary significance of natural epigenetic variation (i.e., not based on DNA sequence variants) variation will depend critically on whether epigenetic states are transmitted from parents to offspring, but little is known on epigenetic inheritance in nonmodel plants. We present a quantitative analysis of transgenerational transmission of global DNA cytosine methylation (= proportion of all genomic cytosines that are methylated) and individual epigenetic markers (= methylation status of anonymous MSAP markers) in the shrub Lavandula latifolia. Methods based on parent-offspring correlations and parental variance component estimation were applied to epigenetic features of field-growing plants ('maternal parents') and greenhouse-grown progenies. Transmission of genetic markers (AFLP) was also assessed for reference. Maternal parents differed significantly in global DNA cytosine methylation (range = 21.7-36.7%). Greenhouse-grown maternal families differed significantly in global methylation, and their differences were significantly related to maternal origin. Methylation-sensitive amplified polymorphism (MSAP) markers exhibited significant transgenerational transmission, as denoted by significant maternal variance component of marker scores in greenhouse families and significant mother-offspring correlations of marker scores. Although transmission-related measurements for global methylation and MSAP markers were quantitatively lower than those for AFLP markers taken as reference, this study has revealed extensive transgenerational transmission of genome-wide global cytosine methylation and anonymous epigenetic markers in L. latifolia. Similarity of results for global cytosine methylation and epigenetic markers lends robustness to this conclusion, and stresses the value of considering both types of information in epigenetic studies of nonmodel plants. © 2018 Botanical Society of America.

  2. Variogram Analysis of Response surfaces (VARS): A New Framework for Global Sensitivity Analysis of Earth and Environmental Systems Models

    NASA Astrophysics Data System (ADS)

    Razavi, S.; Gupta, H. V.

    2015-12-01

    Earth and environmental systems models (EESMs) are continually growing in complexity and dimensionality with continuous advances in understanding and computing power. Complexity and dimensionality are manifested by introducing many different factors in EESMs (i.e., model parameters, forcings, boundary conditions, etc.) to be identified. Sensitivity Analysis (SA) provides an essential means for characterizing the role and importance of such factors in producing the model responses. However, conventional approaches to SA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we present a new and general sensitivity analysis framework (called VARS), based on an analogy to 'variogram analysis', that provides an intuitive and comprehensive characterization of sensitivity across the full spectrum of scales in the factor space. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are limiting cases of VARS, and that their SA indices can be computed as by-products of the VARS framework. We also present a practical strategy for the application of VARS to real-world problems, called STAR-VARS, including a new sampling strategy, called "star-based sampling". Our results across several case studies show the STAR-VARS approach to provide reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being at least 1-2 orders of magnitude more efficient than the benchmark Morris and Sobol approaches.

  3. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Urrego Blanco, Jorge R.; Jonko, Alexandra; Bohn, Theodore J.; Atchley, Adam L.; Urban, Nathan M.; Middleton, Richard S.

    2018-01-01

    The Colorado River Basin is a fundamentally important river for society, ecology, and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent, and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model. We combine global sensitivity analysis with a space-filling Latin Hypercube Sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach. We find that snow-dominated regions are much more sensitive to uncertainties in VIC parameters. Although baseflow and runoff changes respond to parameters used in previous sensitivity studies, we discover new key parameter sensitivities. For instance, changes in runoff and evapotranspiration are sensitive to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI) in the VIC model. It is critical for improved modeling to narrow uncertainty in these parameters through improved observations and field studies. This is important because LAI and albedo are anticipated to change under future climate and narrowing uncertainty is paramount to advance our application of models such as VIC for water resource management.

  4. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.

    NASA Astrophysics Data System (ADS)

    Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.

    2017-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF demonstrated that CF is improved if SHOC is provided with correct variances of total water and MSE. Consequently, SHOC was modified to include two new prognostic equations for variances of total water and MSE, and coupled with the Chikira-Sugiyama parameterization of deep convection to include effects of detrainment on the prognostic variances.

  5. Global sensitivity analysis for the geostatistical characterization of a regional-scale sedimentary aquifer

    NASA Astrophysics Data System (ADS)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We perform a variance-based global sensitivity analysis to assess the impact of the uncertainty associated with (a) the spatial distribution of hydraulic parameters, e.g., hydraulic conductivity, and (b) the conceptual model adopted to describe the system on the characterization of a regional-scale aquifer. We do so in the context of inverse modeling of the groundwater flow system. The study aquifer lies within the provinces of Bergamo and Cremona (Italy) and covers a planar extent of approximately 785 km2. Analysis of available sedimentological information allows identifying a set of main geo-materials (facies/phases) which constitute the geological makeup of the subsurface system. We parameterize the conductivity field following two diverse conceptual schemes. The first one is based on the representation of the aquifer as a Composite Medium. In this conceptualization the system is composed by distinct (five, in our case) lithological units. Hydraulic properties (such as conductivity) in each unit are assumed to be uniform. The second approach assumes that the system can be modeled as a collection of media coexisting in space to form an Overlapping Continuum. A key point in this model is that each point in the domain represents a finite volume within which each of the (five) identified lithofacies can be found with a certain volumetric percentage. Groundwater flow is simulated with the numerical code MODFLOW-2005 for each of the adopted conceptual models. We then quantify the relative contribution of the considered uncertain parameters, including boundary conditions, to the total variability of the piezometric level recorded in a set of 40 monitoring wells by relying on the variance-based Sobol indices. The latter are derived numerically for the investigated settings through the use of a model-order reduction technique based on the polynomial chaos expansion approach.

  6. Hilbert-Schmidt and Sobol sensitivity indices for static and time series Wnt signaling measurements in colorectal cancer - part A.

    PubMed

    Sinha, Shriprakash

    2017-12-04

    Ever since the accidental discovery of Wingless [Sharma R.P., Drosophila information service, 1973, 50, p 134], research in the field of Wnt signaling pathway has taken significant strides in wet lab experiments and various cancer clinical trials, augmented by recent developments in advanced computational modeling of the pathway. Information rich gene expression profiles reveal various aspects of the signaling pathway and help in studying different issues simultaneously. Hitherto, not many computational studies exist which incorporate the simultaneous study of these issues. This manuscript ∙ explores the strength of contributing factors in the signaling pathway, ∙ analyzes the existing causal relations among the inter/extracellular factors effecting the pathway based on prior biological knowledge and ∙ investigates the deviations in fold changes in the recently found prevalence of psychophysical laws working in the pathway. To achieve this goal, local and global sensitivity analysis is conducted on the (non)linear responses between the factors obtained from static and time series expression profiles using the density (Hilbert-Schmidt Information Criterion) and variance (Sobol) based sensitivity indices. The results show the advantage of using density based indices over variance based indices mainly due to the former's employment of distance measures & the kernel trick via Reproducing kernel Hilbert space (RKHS) that capture nonlinear relations among various intra/extracellular factors of the pathway in a higher dimensional space. In time series data, using these indices it is now possible to observe where in time, which factors get influenced & contribute to the pathway, as changes in concentration of the other factors are made. This synergy of prior biological knowledge, sensitivity analysis & representations in higher dimensional spaces can facilitate in time based administration of target therapeutic drugs & reveal hidden biological information within colorectal cancer samples.

  7. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST)

    PubMed Central

    Xu, Chonggang; Gertner, George

    2013-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements. PMID:24143037

  8. Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST).

    PubMed

    Xu, Chonggang; Gertner, George

    2011-01-01

    Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity analysis techniques. It uses a periodic sampling approach and a Fourier transformation to decompose the variance of a model output into partial variances contributed by different model parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances contributed by the main effects of model parameters, but does not allow for those contributed by specific interactions among parameters. In this paper, we theoretically show that FAST analysis can be used to estimate partial variances contributed by both main effects and interaction effects of model parameters using different sampling approaches (i.e., traditional search-curve based sampling, simple random sampling and random balance design sampling). We also analytically calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are constructed to reduce the effect of sampling errors on the estimation of partial variances. Our results show that compared to simple random sampling and random balance design sampling, sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by search-curve based sampling generally have higher precision but larger underestimations. Compared to simple random sampling, random balance design sampling generally provides higher estimation precision for partial variances contributed by the main effects of parameters. The theoretical derivation of partial variances contributed by higher-order interactions and the calculation of their corresponding estimation errors in different sampling schemes can help us better understand the FAST method and provide a fundamental basis for FAST applications and further improvements.

  9. Global Distributions of Temperature Variances At Different Stratospheric Altitudes From Gps/met Data

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. M.; Karpova, N. V.; Jacobi, Ch.

    The GPS/MET measurements at altitudes 5 - 35 km are used to obtain global distribu- tions of small-scale temperature variances at different stratospheric altitudes. Individ- ual temperature profiles are smoothed using second order polynomial approximations in 5 - 7 km thick layers centered at 10, 20 and 30 km. Temperature inclinations from the averaged values and their variances obtained for each profile are averaged for each month of year during the GPS/MET experiment. Global distributions of temperature variances have inhomogeneous structure. Locations and latitude distributions of the maxima and minima of the variances depend on altitudes and season. One of the rea- sons for the small-scale temperature perturbations in the stratosphere could be internal gravity waves (IGWs). Some assumptions are made about peculiarities of IGW gener- ation and propagation in the tropo-stratosphere based on the results of GPS/MET data analysis.

  10. Mars approach for global sensitivity analysis of differential equation models with applications to dynamics of influenza infection.

    PubMed

    Lee, Yeonok; Wu, Hulin

    2012-01-01

    Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.

  11. Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model

    NASA Astrophysics Data System (ADS)

    Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan

    2015-06-01

    An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.

  12. Impact of interpatient variability on organ dose estimates according to MIRD schema: Uncertainty and variance-based sensitivity analysis.

    PubMed

    Zvereva, Alexandra; Kamp, Florian; Schlattl, Helmut; Zankl, Maria; Parodi, Katia

    2018-05-17

    Variance-based sensitivity analysis (SA) is described and applied to the radiation dosimetry model proposed by the Committee on Medical Internal Radiation Dose (MIRD) for the organ-level absorbed dose calculations in nuclear medicine. The uncertainties in the dose coefficients thus calculated are also evaluated. A Monte Carlo approach was used to compute first-order and total-effect SA indices, which rank the input factors according to their influence on the uncertainty in the output organ doses. These methods were applied to the radiopharmaceutical (S)-4-(3- 18 F-fluoropropyl)-L-glutamic acid ( 18 F-FSPG) as an example. Since 18 F-FSPG has 11 notable source regions, a 22-dimensional model was considered here, where 11 input factors are the time-integrated activity coefficients (TIACs) in the source regions and 11 input factors correspond to the sets of the specific absorbed fractions (SAFs) employed in the dose calculation. The SA was restricted to the foregoing 22 input factors. The distributions of the input factors were built based on TIACs of five individuals to whom the radiopharmaceutical 18 F-FSPG was administered and six anatomical models, representing two reference, two overweight, and two slim individuals. The self-absorption SAFs were mass-scaled to correspond to the reference organ masses. The estimated relative uncertainties were in the range 10%-30%, with a minimum and a maximum for absorbed dose coefficients for urinary bladder wall and heart wall, respectively. The applied global variance-based SA enabled us to identify the input factors that have the highest influence on the uncertainty in the organ doses. With the applied mass-scaling of the self-absorption SAFs, these factors included the TIACs for absorbed dose coefficients in the source regions and the SAFs from blood as source region for absorbed dose coefficients in highly vascularized target regions. For some combinations of proximal target and source regions, the corresponding cross-fire SAFs were found to have an impact. Global variance-based SA has been for the first time applied to the MIRD schema for internal dose calculation. Our findings suggest that uncertainties in computed organ doses can be substantially reduced by performing an accurate determination of TIACs in the source regions, accompanied by the estimation of individual source region masses along with the usage of an appropriate blood distribution in a patient's body and, in a few cases, the cross-fire SAFs from proximal source regions. © 2018 American Association of Physicists in Medicine.

  13. A geostatistics-informed hierarchical sensitivity analysis method for complex groundwater flow and transport modeling: GEOSTATISTICAL SENSITIVITY ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Chen, Xingyuan; Ye, Ming

    Sensitivity analysis is an important tool for quantifying uncertainty in the outputs of mathematical models, especially for complex systems with a high dimension of spatially correlated parameters. Variance-based global sensitivity analysis has gained popularity because it can quantify the relative contribution of uncertainty from different sources. However, its computational cost increases dramatically with the complexity of the considered model and the dimension of model parameters. In this study we developed a hierarchical sensitivity analysis method that (1) constructs an uncertainty hierarchy by analyzing the input uncertainty sources, and (2) accounts for the spatial correlation among parameters at each level ofmore » the hierarchy using geostatistical tools. The contribution of uncertainty source at each hierarchy level is measured by sensitivity indices calculated using the variance decomposition method. Using this methodology, we identified the most important uncertainty source for a dynamic groundwater flow and solute transport in model at the Department of Energy (DOE) Hanford site. The results indicate that boundary conditions and permeability field contribute the most uncertainty to the simulated head field and tracer plume, respectively. The relative contribution from each source varied spatially and temporally as driven by the dynamic interaction between groundwater and river water at the site. By using a geostatistical approach to reduce the number of realizations needed for the sensitivity analysis, the computational cost of implementing the developed method was reduced to a practically manageable level. The developed sensitivity analysis method is generally applicable to a wide range of hydrologic and environmental problems that deal with high-dimensional spatially-distributed parameters.« less

  14. A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin V.

    2016-01-01

    Computer simulation models are continually growing in complexity with increasingly more factors to be identified. Sensitivity Analysis (SA) provides an essential means for understanding the role and importance of these factors in producing model responses. However, conventional approaches to SA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we present a new and general sensitivity analysis framework (called VARS), based on an analogy to "variogram analysis," that provides an intuitive and comprehensive characterization of sensitivity across the full spectrum of scales in the factor space. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are special cases of VARS, and that their SA indices can be computed as by-products of the VARS framework. Synthetic functions that resemble actual model response surfaces are used to illustrate the concepts, and show VARS to be as much as two orders of magnitude more computationally efficient than the state-of-the-art Sobol approach. In a companion paper, we propose a practical implementation strategy, and demonstrate the effectiveness, efficiency, and reliability (robustness) of the VARS framework on real-data case studies.

  15. Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition

    PubMed Central

    Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas

    2013-01-01

    Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA – a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits. PMID:24367574

  16. Switch of sensitivity dynamics revealed with DyGloSA toolbox for dynamical global sensitivity analysis as an early warning for system's critical transition.

    PubMed

    Baumuratova, Tatiana; Dobre, Simona; Bastogne, Thierry; Sauter, Thomas

    2013-01-01

    Systems with bifurcations may experience abrupt irreversible and often unwanted shifts in their performance, called critical transitions. For many systems like climate, economy, ecosystems it is highly desirable to identify indicators serving as early warnings of such regime shifts. Several statistical measures were recently proposed as early warnings of critical transitions including increased variance, autocorrelation and skewness of experimental or model-generated data. The lack of automatized tool for model-based prediction of critical transitions led to designing DyGloSA - a MATLAB toolbox for dynamical global parameter sensitivity analysis (GPSA) of ordinary differential equations models. We suggest that the switch in dynamics of parameter sensitivities revealed by our toolbox is an early warning that a system is approaching a critical transition. We illustrate the efficiency of our toolbox by analyzing several models with bifurcations and predicting the time periods when systems can still avoid going to a critical transition by manipulating certain parameter values, which is not detectable with the existing SA techniques. DyGloSA is based on the SBToolbox2 and contains functions, which compute dynamically the global sensitivity indices of the system by applying four main GPSA methods: eFAST, Sobol's ANOVA, PRCC and WALS. It includes parallelized versions of the functions enabling significant reduction of the computational time (up to 12 times). DyGloSA is freely available as a set of MATLAB scripts at http://bio.uni.lu/systems_biology/software/dyglosa. It requires installation of MATLAB (versions R2008b or later) and the Systems Biology Toolbox2 available at www.sbtoolbox2.org. DyGloSA can be run on Windows and Linux systems, -32 and -64 bits.

  17. Identifying key sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2013-09-01

    This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Assimilation of seasonal chlorophyll and nutrient data into an adjoint three-dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization

    NASA Astrophysics Data System (ADS)

    Tjiputra, Jerry F.; Polzin, Dierk; Winguth, Arne M. E.

    2007-03-01

    An adjoint method is applied to a three-dimensional global ocean biogeochemical cycle model to optimize the ecosystem parameters on the basis of SeaWiFS surface chlorophyll observation. We showed with identical twin experiments that the model simulated chlorophyll concentration is sensitive to perturbation of phytoplankton and zooplankton exudation, herbivore egestion as fecal pellets, zooplankton grazing, and the assimilation efficiency parameters. The assimilation of SeaWiFS chlorophyll data significantly improved the prediction of chlorophyll concentration, especially in the high-latitude regions. Experiments that considered regional variations of parameters yielded a high seasonal variance of ecosystem parameters in the high latitudes, but a low variance in the tropical regions. These experiments indicate that the adjoint model is, despite the many uncertainties, generally capable to optimize sensitive parameters and carbon fluxes in the euphotic zone. The best fit regional parameters predict a global net primary production of 36 Pg C yr-1, which lies within the range suggested by Antoine et al. (1996). Additional constraints of nutrient data from the World Ocean Atlas showed further reduction in the model-data misfit and that assimilation with extensive data sets is necessary.

  19. The influence of local spring temperature variance on temperature sensitivity of spring phenology.

    PubMed

    Wang, Tao; Ottlé, Catherine; Peng, Shushi; Janssens, Ivan A; Lin, Xin; Poulter, Benjamin; Yue, Chao; Ciais, Philippe

    2014-05-01

    The impact of climate warming on the advancement of plant spring phenology has been heavily investigated over the last decade and there exists great variability among plants in their phenological sensitivity to temperature. However, few studies have explicitly linked phenological sensitivity to local climate variance. Here, we set out to test the hypothesis that the strength of phenological sensitivity declines with increased local spring temperature variance, by synthesizing results across ground observations. We assemble ground-based long-term (20-50 years) spring phenology database (PEP725 database) and the corresponding climate dataset. We find a prevalent decline in the strength of phenological sensitivity with increasing local spring temperature variance at the species level from ground observations. It suggests that plants might be less likely to track climatic warming at locations with larger local spring temperature variance. This might be related to the possibility that the frost risk could be higher in a larger local spring temperature variance and plants adapt to avoid this risk by relying more on other cues (e.g., high chill requirements, photoperiod) for spring phenology, thus suppressing phenological responses to spring warming. This study illuminates that local spring temperature variance is an understudied source in the study of phenological sensitivity and highlight the necessity of incorporating this factor to improve the predictability of plant responses to anthropogenic climate change in future studies. © 2013 John Wiley & Sons Ltd.

  20. Summer Temperature Extremes in the Northern Rockies: A Tree-Ring-Based Reconstruction (1670-2014) from the Bighorn Mountains, WY

    NASA Astrophysics Data System (ADS)

    Hudson, A.; Alfaro-Sanchez, R.; Belmecheri, S.; Moore, D. J.; Trouet, V.

    2017-12-01

    Anthropogenic climate change has caused global temperatures to rise in recent decades. Temperatures at the regional scale are influenced by various factors including topography, atmospheric circulation, and seasonality that superimpose year-to-year variability on this global warming trend. Here, we develop a tree-ring based summer temperature reconstruction for the northern Rockies in order to investigate the drivers of the year-to-year temperature variability in this region. For this purpose, we sampled 10 sites in the semi-arid Bighorn Mountains, WY and developed two tree-ring width chronologies for differing elevations. The high elevation Picea engelmannii chronology (>2,630m) is positively correlated with July temperature variability, whereas the low elevation (<2,580m) chronology - consisting of Pinus contorta, Pseudotsuga menziesii, and Pinus albicaulis - is sensitive to summer precipitation and negatively correlated with June and July temperatures. A reconstruction based on a combination of the two chronologies explains 30% of the variance in regional June and July temperatures over the instrumental period, covers the period 1670-2014, and is representative for the central United States and southern Canada region. Our reconstruction shows significantly lower summer temperatures in the year following the 16 largest tropical eruptions from 1670 to the present. The reconstruction further captures the high summer temperatures during the 1930s dust bowl era and shows a steep increase in variance in the late 20th century. Enhanced late 20th century variance has also been detected in climate and ecosystem dynamics in the Northeast Pacific, which suggests an impact of an amplified meridional flow on northern Rockies summer temperatures.

  1. Uncertainty Quantification and Sensitivity Analysis in the CICE v5.1 Sea Ice Model

    NASA Astrophysics Data System (ADS)

    Urrego-Blanco, J. R.; Urban, N. M.

    2015-12-01

    Changes in the high latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with mid latitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. In this work we characterize parametric uncertainty in Los Alamos Sea Ice model (CICE) and quantify the sensitivity of sea ice area, extent and volume with respect to uncertainty in about 40 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one-at-a-time, this study uses a global variance-based approach in which Sobol sequences are used to efficiently sample the full 40-dimensional parameter space. This approach requires a very large number of model evaluations, which are expensive to run. A more computationally efficient approach is implemented by training and cross-validating a surrogate (emulator) of the sea ice model with model output from 400 model runs. The emulator is used to make predictions of sea ice extent, area, and volume at several model configurations, which are then used to compute the Sobol sensitivity indices of the 40 parameters. A ranking based on the sensitivity indices indicates that model output is most sensitive to snow parameters such as conductivity and grain size, and the drainage of melt ponds. The main effects and interactions among the most influential parameters are also estimated by a non-parametric regression technique based on generalized additive models. It is recommended research to be prioritized towards more accurately determining these most influential parameters values by observational studies or by improving existing parameterizations in the sea ice model.

  2. Saltelli Global Sensitivity Analysis and Simulation Modelling to Identify Intervention Strategies to Reduce the Prevalence of Escherichia coli O157 Contaminated Beef Carcasses

    PubMed Central

    Brookes, Victoria J.; Jordan, David; Davis, Stephen; Ward, Michael P.; Heller, Jane

    2015-01-01

    Introduction Strains of Shiga-toxin producing Escherichia coli O157 (STEC O157) are important foodborne pathogens in humans, and outbreaks of illness have been associated with consumption of undercooked beef. Here, we determine the most effective intervention strategies to reduce the prevalence of STEC O157 contaminated beef carcasses using a modelling approach. Method A computational model simulated events and processes in the beef harvest chain. Information from empirical studies was used to parameterise the model. Variance-based global sensitivity analysis (GSA) using the Saltelli method identified variables with the greatest influence on the prevalence of STEC O157 contaminated carcasses. Following a baseline scenario (no interventions), a series of simulations systematically introduced and tested interventions based on influential variables identified by repeated Saltelli GSA, to determine the most effective intervention strategy. Results Transfer of STEC O157 from hide or gastro-intestinal tract to carcass (improved abattoir hygiene) had the greatest influence on the prevalence of contaminated carcases. Due to interactions between inputs (identified by Saltelli GSA), combinations of interventions based on improved abattoir hygiene achieved a greater reduction in maximum prevalence than would be expected from an additive effect of single interventions. The most effective combination was improved abattoir hygiene with vaccination, which achieved a greater than ten-fold decrease in maximum prevalence compared to the baseline scenario. Conclusion Study results suggest that effective interventions to reduce the prevalence of STEC O157 contaminated carcasses should initially be based on improved abattoir hygiene. However, the effect of improved abattoir hygiene on the distribution of STEC O157 concentration on carcasses is an important information gap—further empirical research is required to determine whether reduced prevalence of contaminated carcasses is likely to result in reduced incidence of STEC O157 associated illness in humans. This is the first use of variance-based GSA to assess the drivers of STEC O157 contamination of beef carcasses. PMID:26713610

  3. Determination of DNA methylation associated with Acer rubrum (red maple) adaptation to metals: analysis of global DNA modifications and methylation-sensitive amplified polymorphism.

    PubMed

    Kim, Nam-Soo; Im, Min-Ji; Nkongolo, Kabwe

    2016-08-01

    Red maple (Acer rubum), a common deciduous tree species in Northern Ontario, has shown resistance to soil metal contamination. Previous reports have indicated that this plant does not accumulate metals in its tissue. However, low level of nickel and copper corresponding to the bioavailable levels in contaminated soils in Northern Ontario causes severe physiological damages. No differentiation between metal-contaminated and uncontaminated populations has been reported based on genetic analyses. The main objective of this study was to assess whether DNA methylation is involved in A. rubrum adaptation to soil metal contamination. Global cytosine and methylation-sensitive amplified polymorphism (MSAP) analyses were carried out in A. rubrum populations from metal-contaminated and uncontaminated sites. The global modified cytosine ratios in genomic DNA revealed a significant decrease in cytosine methylation in genotypes from a metal-contaminated site compared to uncontaminated populations. Other genotypes from a different metal-contaminated site within the same region appear to be recalcitrant to metal-induced DNA alterations even ≥30 years of tree life exposure to nickel and copper. MSAP analysis showed a high level of polymorphisms in both uncontaminated (77%) and metal-contaminated (72%) populations. Overall, 205 CCGG loci were identified in which 127 were methylated in either outer or inner cytosine. No differentiation among populations was established based on several genetic parameters tested. The variations for nonmethylated and methylated loci were compared by analysis of molecular variance (AMOVA). For methylated loci, molecular variance among and within populations was 1.5% and 13.2%, respectively. These values were low (0.6% for among populations and 5.8% for within populations) for unmethylated loci. Metal contamination is seen to affect methylation of cytosine residues in CCGG motifs in the A. rubrum populations that were analyzed.

  4. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi

    2016-06-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  5. A sensitivity analysis for a thermomechanical model of the Antarctic ice sheet and ice shelves

    NASA Astrophysics Data System (ADS)

    Baratelli, F.; Castellani, G.; Vassena, C.; Giudici, M.

    2012-04-01

    The outcomes of an ice sheet model depend on a number of parameters and physical quantities which are often estimated with large uncertainty, because of lack of sufficient experimental measurements in such remote environments. Therefore, the efforts to improve the accuracy of the predictions of ice sheet models by including more physical processes and interactions with atmosphere, hydrosphere and lithosphere can be affected by the inaccuracy of the fundamental input data. A sensitivity analysis can help to understand which are the input data that most affect the different predictions of the model. In this context, a finite difference thermomechanical ice sheet model based on the Shallow-Ice Approximation (SIA) and on the Shallow-Shelf Approximation (SSA) has been developed and applied for the simulation of the evolution of the Antarctic ice sheet and ice shelves for the last 200 000 years. The sensitivity analysis of the model outcomes (e.g., the volume of the ice sheet and of the ice shelves, the basal melt rate of the ice sheet, the mean velocity of the Ross and Ronne-Filchner ice shelves, the wet area at the base of the ice sheet) with respect to the model parameters (e.g., the basal sliding coefficient, the geothermal heat flux, the present-day surface accumulation and temperature, the mean ice shelves viscosity, the melt rate at the base of the ice shelves) has been performed by computing three synthetic numerical indices: two local sensitivity indices and a global sensitivity index. Local sensitivity indices imply a linearization of the model and neglect both non-linear and joint effects of the parameters. The global variance-based sensitivity index, instead, takes into account the complete variability of the input parameters but is usually conducted with a Monte Carlo approach which is computationally very demanding for non-linear complex models. Therefore, the global sensitivity index has been computed using a development of the model outputs in a neighborhood of the reference parameter values with a second-order approximation. The comparison of the three sensitivity indices proved that the approximation of the non-linear model with a second-order expansion is sufficient to show some differences between the local and the global indices. As a general result, the sensitivity analysis showed that most of the model outcomes are mainly sensitive to the present-day surface temperature and accumulation, which, in principle, can be measured more easily (e.g., with remote sensing techniques) than the other input parameters considered. On the other hand, the parameters to which the model resulted less sensitive are the basal sliding coefficient and the mean ice shelves viscosity.

  6. Sensitivity analysis of simulated SOA loadings using a variance-based statistical approach: SENSITIVITY ANALYSIS OF SOA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Manish; Zhao, Chun; Easter, Richard C.

    We investigate the sensitivity of secondary organic aerosol (SOA) loadings simulated by a regional chemical transport model to 7 selected tunable model parameters: 4 involving emissions of anthropogenic and biogenic volatile organic compounds, anthropogenic semi-volatile and intermediate volatility organics (SIVOCs), and NOx, 2 involving dry deposition of SOA precursor gases, and one involving particle-phase transformation of SOA to low volatility. We adopt a quasi-Monte Carlo sampling approach to effectively sample the high-dimensional parameter space, and perform a 250 member ensemble of simulations using a regional model, accounting for some of the latest advances in SOA treatments based on our recentmore » work. We then conduct a variance-based sensitivity analysis using the generalized linear model method to study the responses of simulated SOA loadings to the tunable parameters. Analysis of SOA variance from all 250 simulations shows that the volatility transformation parameter, which controls whether particle-phase transformation of SOA from semi-volatile SOA to non-volatile is on or off, is the dominant contributor to variance of simulated surface-level daytime SOA (65% domain average contribution). We also split the simulations into 2 subsets of 125 each, depending on whether the volatility transformation is turned on/off. For each subset, the SOA variances are dominated by the parameters involving biogenic VOC and anthropogenic SIVOC emissions. Furthermore, biogenic VOC emissions have a larger contribution to SOA variance when the SOA transformation to non-volatile is on, while anthropogenic SIVOC emissions have a larger contribution when the transformation is off. NOx contributes less than 4.3% to SOA variance, and this low contribution is mainly attributed to dominance of intermediate to high NOx conditions throughout the simulated domain. The two parameters related to dry deposition of SOA precursor gases also have very low contributions to SOA variance. This study highlights the large sensitivity of SOA loadings to the particle-phase transformation of SOA volatility, which is neglected in most previous models.« less

  7. Two-step sensitivity testing of parametrized and regionalized life cycle assessments: methodology and case study.

    PubMed

    Mutel, Christopher L; de Baan, Laura; Hellweg, Stefanie

    2013-06-04

    Comprehensive sensitivity analysis is a significant tool to interpret and improve life cycle assessment (LCA) models, but is rarely performed. Sensitivity analysis will increase in importance as inventory databases become regionalized, increasing the number of system parameters, and parametrized, adding complexity through variables and nonlinear formulas. We propose and implement a new two-step approach to sensitivity analysis. First, we identify parameters with high global sensitivities for further examination and analysis with a screening step, the method of elementary effects. Second, the more computationally intensive contribution to variance test is used to quantify the relative importance of these parameters. The two-step sensitivity test is illustrated on a regionalized, nonlinear case study of the biodiversity impacts from land use of cocoa production, including a worldwide cocoa products trade model. Our simplified trade model can be used for transformable commodities where one is assessing market shares that vary over time. In the case study, the highly uncertain characterization factors for the Ivory Coast and Ghana contributed more than 50% of variance for almost all countries and years examined. The two-step sensitivity test allows for the interpretation, understanding, and improvement of large, complex, and nonlinear LCA systems.

  8. Optimizing human activity patterns using global sensitivity analysis.

    PubMed

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  9. Optimizing human activity patterns using global sensitivity analysis

    PubMed Central

    Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2014-01-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080

  10. Optimizing human activity patterns using global sensitivity analysis

    DOE PAGES

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less

  11. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    PubMed

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  12. Contribution of precipitation and reference evapotranspiration to drought indices under different climates

    NASA Astrophysics Data System (ADS)

    Vicente-Serrano, Sergio M.; Van der Schrier, Gerard; Beguería, Santiago; Azorin-Molina, Cesar; Lopez-Moreno, Juan-I.

    2015-07-01

    In this study we analyzed the sensitivity of four drought indices to precipitation (P) and reference evapotranspiration (ETo) inputs. The four drought indices are the Palmer Drought Severity Index (PDSI), the Reconnaissance Drought Index (RDI), the Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Palmer Drought Index (SPDI). The analysis uses long-term simulated series with varying averages and variances, as well as global observational data to assess the sensitivity to real climatic conditions in different regions of the World. The results show differences in the sensitivity to ETo and P among the four drought indices. The PDSI shows the lowest sensitivity to variation in their climate inputs, probably as a consequence of the standardization procedure of soil water budget anomalies. The RDI is only sensitive to the variance but not to the average of P and ETo. The SPEI shows the largest sensitivity to ETo variation, with clear geographic patterns mainly controlled by aridity. The low sensitivity of the PDSI to ETo makes the PDSI perhaps less apt as the suitable drought index in applications in which the changes in ETo are most relevant. On the contrary, the SPEI shows equal sensitivity to P and ETo. It works as a perfect supply and demand system modulated by the average and standard deviation of each series and combines the sensitivity of the series to changes in magnitude and variance. Our results are a robust assessment of the sensitivity of drought indices to P and ETo variation, and provide advice on the use of drought indices to detect climate change impacts on drought severity under a wide variety of climatic conditions.

  13. Sensitivity analysis of periodic errors in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  14. Global Sensitivity Analysis for Large-scale Socio-hydrological Models using the Cloud

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Garcia-Cabrejo, O.; Cai, X.; Valocchi, A. J.; Dupont, B.

    2014-12-01

    In the context of coupled human and natural system (CHNS), incorporating human factors into water resource management provides us with the opportunity to understand the interactions between human and environmental systems. A multi-agent system (MAS) model is designed to couple with the physically-based Republican River Compact Administration (RRCA) groundwater model, in an attempt to understand the declining water table and base flow in the heavily irrigated Republican River basin. For MAS modelling, we defined five behavioral parameters (κ_pr, ν_pr, κ_prep, ν_prep and λ) to characterize the agent's pumping behavior given the uncertainties of the future crop prices and precipitation. κ and ν describe agent's beliefs in their prior knowledge of the mean and variance of crop prices (κ_pr, ν_pr) and precipitation (κ_prep, ν_prep), and λ is used to describe the agent's attitude towards the fluctuation of crop profits. Notice that these human behavioral parameters as inputs to the MAS model are highly uncertain and even not measurable. Thus, we estimate the influences of these behavioral parameters on the coupled models using Global Sensitivity Analysis (GSA). In this paper, we address two main challenges arising from GSA with such a large-scale socio-hydrological model by using Hadoop-based Cloud Computing techniques and Polynomial Chaos Expansion (PCE) based variance decomposition approach. As a result, 1,000 scenarios of the coupled models are completed within two hours with the Hadoop framework, rather than about 28days if we run those scenarios sequentially. Based on the model results, GSA using PCE is able to measure the impacts of the spatial and temporal variations of these behavioral parameters on crop profits and water table, and thus identifies two influential parameters, κ_pr and λ. The major contribution of this work is a methodological framework for the application of GSA in large-scale socio-hydrological models. This framework attempts to find a balance between the heavy computational burden regarding model execution and the number of model evaluations required in the GSA analysis, particularly through an organic combination of Hadoop-based Cloud Computing to efficiently evaluate the socio-hydrological model and PCE where the sensitivity indices are efficiently estimated from its coefficients.

  15. Genetic variance in micro-environmental sensitivity for milk and milk quality in Walloon Holstein cattle.

    PubMed

    Vandenplas, J; Bastin, C; Gengler, N; Mulder, H A

    2013-09-01

    Animals that are robust to environmental changes are desirable in the current dairy industry. Genetic differences in micro-environmental sensitivity can be studied through heterogeneity of residual variance between animals. However, residual variance between animals is usually assumed to be homogeneous in traditional genetic evaluations. The aim of this study was to investigate genetic heterogeneity of residual variance by estimating variance components in residual variance for milk yield, somatic cell score, contents in milk (g/dL) of 2 groups of milk fatty acids (i.e., saturated and unsaturated fatty acids), and the content in milk of one individual fatty acid (i.e., oleic acid, C18:1 cis-9), for first-parity Holstein cows in the Walloon Region of Belgium. A total of 146,027 test-day records from 26,887 cows in 747 herds were available. All cows had at least 3 records and a known sire. These sires had at least 10 cows with records and each herd × test-day had at least 5 cows. The 5 traits were analyzed separately based on fixed lactation curve and random regression test-day models for the mean. Estimation of variance components was performed by running iteratively expectation maximization-REML algorithm by the implementation of double hierarchical generalized linear models. Based on fixed lactation curve test-day mean models, heritability for residual variances ranged between 1.01×10(-3) and 4.17×10(-3) for all traits. The genetic standard deviation in residual variance (i.e., approximately the genetic coefficient of variation of residual variance) ranged between 0.12 and 0.17. Therefore, some genetic variance in micro-environmental sensitivity existed in the Walloon Holstein dairy cattle for the 5 studied traits. The standard deviations due to herd × test-day and permanent environment in residual variance ranged between 0.36 and 0.45 for herd × test-day effect and between 0.55 and 0.97 for permanent environmental effect. Therefore, nongenetic effects also contributed substantially to micro-environmental sensitivity. Addition of random regressions to the mean model did not reduce heterogeneity in residual variance and that genetic heterogeneity of residual variance was not simply an effect of an incomplete mean model. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. A Study of Impact Point Detecting Method Based on Seismic Signal

    NASA Astrophysics Data System (ADS)

    Huo, Pengju; Zhang, Yu; Xu, Lina; Huang, Yong

    The projectile landing position has to be determined for its recovery and range in the targeting test. In this paper, a global search method based on the velocity variance is proposed. In order to verify the applicability of this method, simulation analysis within the scope of four million square meters has been conducted in the same array structure of the commonly used linear positioning method, and MATLAB was used to compare and analyze the two methods. The compared simulation results show that the global search method based on the speed of variance has high positioning accuracy and stability, which can meet the needs of impact point location.

  17. Evaluation and recommendation of sensitivity analysis methods for application to Stochastic Human Exposure and Dose Simulation models.

    PubMed

    Mokhtari, Amirhossein; Christopher Frey, H; Zheng, Junyu

    2006-11-01

    Sensitivity analyses of exposure or risk models can help identify the most significant factors to aid in risk management or to prioritize additional research to reduce uncertainty in the estimates. However, sensitivity analysis is challenged by non-linearity, interactions between inputs, and multiple days or time scales. Selected sensitivity analysis methods are evaluated with respect to their applicability to human exposure models with such features using a testbed. The testbed is a simplified version of a US Environmental Protection Agency's Stochastic Human Exposure and Dose Simulation (SHEDS) model. The methods evaluated include the Pearson and Spearman correlation, sample and rank regression, analysis of variance, Fourier amplitude sensitivity test (FAST), and Sobol's method. The first five methods are known as "sampling-based" techniques, wheras the latter two methods are known as "variance-based" techniques. The main objective of the test cases was to identify the main and total contributions of individual inputs to the output variance. Sobol's method and FAST directly quantified these measures of sensitivity. Results show that sensitivity of an input typically changed when evaluated under different time scales (e.g., daily versus monthly). All methods provided similar insights regarding less important inputs; however, Sobol's method and FAST provided more robust insights with respect to sensitivity of important inputs compared to the sampling-based techniques. Thus, the sampling-based methods can be used in a screening step to identify unimportant inputs, followed by application of more computationally intensive refined methods to a smaller set of inputs. The implications of time variation in sensitivity results for risk management are briefly discussed.

  18. Integrating mean and variance heterogeneities to identify differentially expressed genes.

    PubMed

    Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen

    2016-12-06

    In functional genomics studies, tests on mean heterogeneity have been widely employed to identify differentially expressed genes with distinct mean expression levels under different experimental conditions. Variance heterogeneity (aka, the difference between condition-specific variances) of gene expression levels is simply neglected or calibrated for as an impediment. The mean heterogeneity in the expression level of a gene reflects one aspect of its distribution alteration; and variance heterogeneity induced by condition change may reflect another aspect. Change in condition may alter both mean and some higher-order characteristics of the distributions of expression levels of susceptible genes. In this report, we put forth a conception of mean-variance differentially expressed (MVDE) genes, whose expression means and variances are sensitive to the change in experimental condition. We mathematically proved the null independence of existent mean heterogeneity tests and variance heterogeneity tests. Based on the independence, we proposed an integrative mean-variance test (IMVT) to combine gene-wise mean heterogeneity and variance heterogeneity induced by condition change. The IMVT outperformed its competitors under comprehensive simulations of normality and Laplace settings. For moderate samples, the IMVT well controlled type I error rates, and so did existent mean heterogeneity test (i.e., the Welch t test (WT), the moderated Welch t test (MWT)) and the procedure of separate tests on mean and variance heterogeneities (SMVT), but the likelihood ratio test (LRT) severely inflated type I error rates. In presence of variance heterogeneity, the IMVT appeared noticeably more powerful than all the valid mean heterogeneity tests. Application to the gene profiles of peripheral circulating B raised solid evidence of informative variance heterogeneity. After adjusting for background data structure, the IMVT replicated previous discoveries and identified novel experiment-wide significant MVDE genes. Our results indicate tremendous potential gain of integrating informative variance heterogeneity after adjusting for global confounders and background data structure. The proposed informative integration test better summarizes the impacts of condition change on expression distributions of susceptible genes than do the existent competitors. Therefore, particular attention should be paid to explicitly exploit the variance heterogeneity induced by condition change in functional genomics analysis.

  19. A new interpretation and validation of variance based importance measures for models with correlated inputs

    NASA Astrophysics Data System (ADS)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  20. Global Sensitivity Analysis of Environmental Systems via Multiple Indices based on Statistical Moments of Model Outputs

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Riva, M.; Dell'Oca, A.

    2017-12-01

    We propose to ground sensitivity of uncertain parameters of environmental models on a set of indices based on the main (statistical) moments, i.e., mean, variance, skewness and kurtosis, of the probability density function (pdf) of a target model output. This enables us to perform Global Sensitivity Analysis (GSA) of a model in terms of multiple statistical moments and yields a quantification of the impact of model parameters on features driving the shape of the pdf of model output. Our GSA approach includes the possibility of being coupled with the construction of a reduced complexity model that allows approximating the full model response at a reduced computational cost. We demonstrate our approach through a variety of test cases. These include a commonly used analytical benchmark, a simplified model representing pumping in a coastal aquifer, a laboratory-scale tracer experiment, and the migration of fracturing fluid through a naturally fractured reservoir (source) to reach an overlying formation (target). Our strategy allows discriminating the relative importance of model parameters to the four statistical moments considered. We also provide an appraisal of the error associated with the evaluation of our sensitivity metrics by replacing the original system model through the selected surrogate model. Our results suggest that one might need to construct a surrogate model with increasing level of accuracy depending on the statistical moment considered in the GSA. The methodological framework we propose can assist the development of analysis techniques targeted to model calibration, design of experiment, uncertainty quantification and risk assessment.

  1. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models

    USGS Publications Warehouse

    Rakovec, O.; Hill, Mary C.; Clark, M.P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.

    2014-01-01

    This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based “local” methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative “bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.

  2. Stochastic variation in avian survival rates: Life-history predictions, population consequences, and the potential responses to human perturbations and climate change

    USGS Publications Warehouse

    Schmutz, Joel A.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    Stochastic variation in survival rates is expected to decrease long-term population growth rates. This expectation influences both life-history theory and the conservation of species. From this expectation, Pfister (1998) developed the important life-history prediction that natural selection will have minimized variability in those elements of the annual life cycle (such as adult survival rate) with high sensitivity. This prediction has not been rigorously evaluated for bird populations, in part due to statistical difficulties related to variance estimation. I here overcome these difficulties, and in an analysis of 62 populations, I confirm her prediction by showing a negative relationship between the proportional sensitivity (elasticity) of adult survival and the proportional variance (CV) of adult survival. However, several species deviated significantly from this expectation, with more process variance in survival than predicted. For instance, projecting the magnitude of process variance in annual survival for American redstarts (Setophaga ruticilla) for 25 years resulted in a 44% decline in abundance without assuming any change in mean survival rate. For most of these species with high process variance, recent changes in harvest, habitats, or changes in climate patterns are the likely sources of environmental variability causing this variability in survival. Because of climate change, environmental variability is increasing on regional and global scales, which is expected to increase stochasticity in vital rates of species. Increased stochasticity in survival will depress population growth rates, and this result will magnify the conservation challenges we face.

  3. Variance component and breeding value estimation for genetic heterogeneity of residual variance in Swedish Holstein dairy cattle.

    PubMed

    Rönnegård, L; Felleki, M; Fikse, W F; Mulder, H A; Strandberg, E

    2013-04-01

    Trait uniformity, or micro-environmental sensitivity, may be studied through individual differences in residual variance. These differences appear to be heritable, and the need exists, therefore, to fit models to predict breeding values explaining differences in residual variance. The aim of this paper is to estimate breeding values for micro-environmental sensitivity (vEBV) in milk yield and somatic cell score, and their associated variance components, on a large dairy cattle data set having more than 1.6 million records. Estimation of variance components, ordinary breeding values, and vEBV was performed using standard variance component estimation software (ASReml), applying the methodology for double hierarchical generalized linear models. Estimation using ASReml took less than 7 d on a Linux server. The genetic standard deviations for residual variance were 0.21 and 0.22 for somatic cell score and milk yield, respectively, which indicate moderate genetic variance for residual variance and imply that a standard deviation change in vEBV for one of these traits would alter the residual variance by 20%. This study shows that estimation of variance components, estimated breeding values and vEBV, is feasible for large dairy cattle data sets using standard variance component estimation software. The possibility to select for uniformity in Holstein dairy cattle based on these estimates is discussed. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    NASA Astrophysics Data System (ADS)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model validation studies to identify inherent deficiencies in model physics.

  5. Performance on naturalistic virtual reality tasks depends on global cognitive functioning as assessed via traditional neurocognitive tests.

    PubMed

    Oliveira, Jorge; Gamito, Pedro; Alghazzawi, Daniyal M; Fardoun, Habib M; Rosa, Pedro J; Sousa, Tatiana; Picareli, Luís Felipe; Morais, Diogo; Lopes, Paulo

    2017-08-14

    This investigation sought to understand whether performance in naturalistic virtual reality tasks for cognitive assessment relates to the cognitive domains that are supposed to be measured. The Shoe Closet Test (SCT) was developed based on a simple visual search task involving attention skills, in which participants have to match each pair of shoes with the colors of the compartments in a virtual shoe closet. The interaction within the virtual environment was made using the Microsoft Kinect. The measures consisted of concurrent paper-and-pencil neurocognitive tests for global cognitive functioning, executive functions, attention, psychomotor ability, and the outcomes of the SCT. The results showed that the SCT correlated with global cognitive performance as measured with the Montreal Cognitive Assessment (MoCA). The SCT explained one third of the total variance of this test and revealed good sensitivity and specificity in discriminating scores below one standard deviation in this screening tool. These findings suggest that performance of such functional tasks involves a broad range of cognitive processes that are associated with global cognitive functioning and that may be difficult to isolate through paper-and-pencil neurocognitive tests.

  6. Trajectories of Global Self-Esteem Development during Adolescence

    ERIC Educational Resources Information Center

    Birkeland, Marianne Skogbrott; Melkevik, Ole; Holsen, Ingrid; Wold, Bente

    2012-01-01

    Based on data from a 17-year longitudinal study of 1083 adolescents, from the ages of 13 to 30 years, the average development of self-reported global self-esteem was found to be high and stable during adolescence. However, there is considerable inter-individual variance in baseline and development of global self-esteem. This study used latent…

  7. FLUXNET to MODIS: Connecting the dots to capture heterogenious biosphere metabolism

    NASA Astrophysics Data System (ADS)

    Woods, K. D.; Schwalm, C.; Huntzinger, D. N.; Massey, R.; Poulter, B.; Kolb, T.

    2015-12-01

    Eddy co-variance flux towers provide our most widely distributed network of direct observations for land-atmosphere carbon exchange. Carbon flux sensitivity analysis is a method that uses in situ networks to understand how ecosystems respond to changes in climatic variables. Flux towers concurrently observe key ecosystem metabolic processes (e..g. gross primary productivity) and micrometeorological variation, but only over small footprints. Remotely sensed vegetation indices from MODIS offer continuous observations of the vegetated land surface, but are less direct, as they are based on light use efficiency algorithms, and not on the ground observations. The marriage of these two data products offers an opportunity to validate remotely sensed indices with in situ observations and translate information derived from tower sites to globally gridded products. Here we provide correlations between Enhanced Vegetation Index (EVI), Leaf Area Index (LAI) and MODIS gross primary production with FLUXNET derived estimates of gross primary production, respiration and net ecosystem exchange. We demonstrate remotely sensed vegetation products which have been transformed to gridded estimates of terrestrial biosphere metabolism on a regional-to-global scale. We demonstrate anomalies in gross primary production, respiration, and net ecosystem exchange as predicted by both MODIS-carbon flux sensitivities and meteorological driver-carbon flux sensitivities. We apply these sensitivities to recent extreme climatic events and demonstrate both our ability to capture changes in biosphere metabolism, and differences in the calculation of carbon flux anomalies based on method. The quantification of co-variation in these two methods of observation is important as it informs both how remotely sensed vegetation indices are correlated with on the ground tower observations, and with what certainty we can expand these observations and relationships.

  8. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter

    PubMed Central

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Gu, Chengfan

    2018-01-01

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation. PMID:29415509

  9. Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter.

    PubMed

    Gao, Bingbing; Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan

    2018-02-06

    This paper presents a new optimal data fusion methodology based on the adaptive fading unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and robustness of local state estimations against process-modeling error; at the top level, an unscented transformation-based multi-sensor optimal data fusion for the case of N local filters is established according to the principle of linear minimum variance to calculate globally optimal state estimation by fusion of local estimations. The proposed methodology effectively refrains from the influence of process-modeling error on the fusion solution, leading to improved adaptability and robustness of data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion results based on the principle of linear minimum variance. Simulation and experimental results demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite system/celestial navigation system) integrated navigation.

  10. Working covariance model selection for generalized estimating equations.

    PubMed

    Carey, Vincent J; Wang, You-Gan

    2011-11-20

    We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Variance decomposition in stochastic simulators.

    PubMed

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  12. Variance decomposition in stochastic simulators

    NASA Astrophysics Data System (ADS)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  13. What is the Nondominated Formulation? A Demonstration of de Novo Water Supply Portfolio Planning Under Deep Uncertainty

    NASA Astrophysics Data System (ADS)

    Kasprzyk, J. R.; Reed, P. M.; Characklis, G. W.; Kirsch, B. R.

    2010-12-01

    This paper proposes and demonstrates a new interactive framework for sensitivity-informed de Novo programming, in which a learning approach to formulating decision problems can confront the deep uncertainty within water management problems. The framework couples global sensitivity analysis using Sobol’ variance decomposition with multiobjective evolutionary algorithms (MOEAs) to generate planning alternatives and test their robustness to new modeling assumptions and scenarios. We explore these issues within the context of a risk-based water supply management problem, where a city seeks the most efficient use of a water market. The case study examines a single city’s water supply in the Lower Rio Grande Valley (LRGV) in Texas, using both a 10-year planning horizon and an extreme single-year drought scenario. The city’s water supply portfolio comprises a volume of permanent rights to reservoir inflows and use of a water market through anticipatory thresholds for acquiring transfers of water through optioning and spot leases. Diagnostic information from the Sobol’ variance decomposition is used to create a sensitivity-informed problem formulation testing different decision variable configurations, with tradeoffs for the formulation solved using a MOEA. Subsequent analysis uses the drought scenario to expose tradeoffs between long-term and short-term planning and illustrate the impact of deeply uncertain assumptions on water availability in droughts. The results demonstrate water supply portfolios’ efficiency, reliability, and utilization of transfers in the water supply market and show how to adaptively improve the value and robustness of our problem formulations by evolving our definition of optimality to discover key tradeoffs.

  14. Large contribution of natural aerosols to uncertainty in indirect forcing

    NASA Astrophysics Data System (ADS)

    Carslaw, K. S.; Lee, L. A.; Reddington, C. L.; Pringle, K. J.; Rap, A.; Forster, P. M.; Mann, G. W.; Spracklen, D. V.; Woodhouse, M. T.; Regayre, L. A.; Pierce, J. R.

    2013-11-01

    The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainties in the radiative forcing of climate over the industrial period. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Here we perform a sensitivity analysis on a global model to quantify the uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Our results show that 45 per cent of the variance of aerosol forcing since about 1750 arises from uncertainties in natural emissions of volcanic sulphur dioxide, marine dimethylsulphide, biogenic volatile organic carbon, biomass burning and sea spray. Only 34 per cent of the variance is associated with anthropogenic emissions. The results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest that improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate reductions in the uncertainty of forcing estimates.

  15. Monthly hydroclimatology of the continental United States

    NASA Astrophysics Data System (ADS)

    Petersen, Thomas; Devineni, Naresh; Sankarasubramanian, A.

    2018-04-01

    Physical/semi-empirical models that do not require any calibration are of paramount need for estimating hydrological fluxes for ungauged sites. We develop semi-empirical models for estimating the mean and variance of the monthly streamflow based on Taylor Series approximation of a lumped physically based water balance model. The proposed models require mean and variance of monthly precipitation and potential evapotranspiration, co-variability of precipitation and potential evapotranspiration and regionally calibrated catchment retention sensitivity, atmospheric moisture uptake sensitivity, groundwater-partitioning factor, and the maximum soil moisture holding capacity parameters. Estimates of mean and variance of monthly streamflow using the semi-empirical equations are compared with the observed estimates for 1373 catchments in the continental United States. Analyses show that the proposed models explain the spatial variability in monthly moments for basins in lower elevations. A regionalization of parameters for each water resources region show good agreement between observed moments and model estimated moments during January, February, March and April for mean and all months except May and June for variance. Thus, the proposed relationships could be employed for understanding and estimating the monthly hydroclimatology of ungauged basins using regional parameters.

  16. What Do We Mean By Sensitivity Analysis? The Need For A Comprehensive Characterization Of Sensitivity In Earth System Models

    NASA Astrophysics Data System (ADS)

    Razavi, S.; Gupta, H. V.

    2014-12-01

    Sensitivity analysis (SA) is an important paradigm in the context of Earth System model development and application, and provides a powerful tool that serves several essential functions in modelling practice, including 1) Uncertainty Apportionment - attribution of total uncertainty to different uncertainty sources, 2) Assessment of Similarity - diagnostic testing and evaluation of similarities between the functioning of the model and the real system, 3) Factor and Model Reduction - identification of non-influential factors and/or insensitive components of model structure, and 4) Factor Interdependence - investigation of the nature and strength of interactions between the factors, and the degree to which factors intensify, cancel, or compensate for the effects of each other. A variety of sensitivity analysis approaches have been proposed, each of which formally characterizes a different "intuitive" understanding of what is meant by the "sensitivity" of one or more model responses to its dependent factors (such as model parameters or forcings). These approaches are based on different philosophies and theoretical definitions of sensitivity, and range from simple local derivatives and one-factor-at-a-time procedures to rigorous variance-based (Sobol-type) approaches. In general, each approach focuses on, and identifies, different features and properties of the model response and may therefore lead to different (even conflicting) conclusions about the underlying sensitivity. This presentation revisits the theoretical basis for sensitivity analysis, and critically evaluates existing approaches so as to demonstrate their flaws and shortcomings. With this background, we discuss several important properties of response surfaces that are associated with the understanding and interpretation of sensitivity. Finally, a new approach towards global sensitivity assessment is developed that is consistent with important properties of Earth System model response surfaces.

  17. Global self-esteem and method effects: competing factor structures, longitudinal invariance, and response styles in adolescents.

    PubMed

    Urbán, Róbert; Szigeti, Réka; Kökönyei, Gyöngyi; Demetrovics, Zsolt

    2014-06-01

    The Rosenberg Self-Esteem Scale (RSES) is a widely used measure for assessing self-esteem, but its factor structure is debated. Our goals were to compare 10 alternative models for the RSES and to quantify and predict the method effects. This sample involves two waves (N =2,513 9th-grade and 2,370 10th-grade students) from five waves of a school-based longitudinal study. The RSES was administered in each wave. The global self-esteem factor with two latent method factors yielded the best fit to the data. The global factor explained a large amount of the common variance (61% and 46%); however, a relatively large proportion of the common variance was attributed to the negative method factor (34 % and 41%), and a small proportion of the common variance was explained by the positive method factor (5% and 13%). We conceptualized the method effect as a response style and found that being a girl and having a higher number of depressive symptoms were associated with both low self-esteem and negative response style, as measured by the negative method factor. Our study supported the one global self-esteem construct and quantified the method effects in adolescents.

  18. Global self-esteem and method effects: competing factor structures, longitudinal invariance and response styles in adolescents

    PubMed Central

    Urbán, Róbert; Szigeti, Réka; Kökönyei, Gyöngyi; Demetrovics, Zsolt

    2013-01-01

    The Rosenberg Self-Esteem Scale (RSES) is a widely used measure for assessing self-esteem, but its factor structure is debated. Our goals were to compare 10 alternative models for RSES; and to quantify and predict the method effects. This sample involves two waves (N=2513 ninth-grade and 2370 tenth-grade students) from five waves of a school-based longitudinal study. RSES was administered in each wave. The global self-esteem factor with two latent method factors yielded the best fit to the data. The global factor explained large amount of the common variance (61% and 46%); however, a relatively large proportion of the common variance was attributed to the negative method factor (34 % and 41%), and a small proportion of the common variance was explained by the positive method factor (5% and 13%). We conceptualized the method effect as a response style, and found that being a girl and having higher number of depressive symptoms were associated with both low self-esteem and negative response style measured by the negative method factor. Our study supported the one global self-esteem construct and quantified the method effects in adolescents. PMID:24061931

  19. Sensitivity of the Hydrogen Epoch of Reionization Array and its build-out stages to one-point statistics from redshifted 21 cm observations

    NASA Astrophysics Data System (ADS)

    Kittiwisit, Piyanat; Bowman, Judd D.; Jacobs, Daniel C.; Beardsley, Adam P.; Thyagarajan, Nithyanandan

    2018-03-01

    We present a baseline sensitivity analysis of the Hydrogen Epoch of Reionization Array (HERA) and its build-out stages to one-point statistics (variance, skewness, and kurtosis) of redshifted 21 cm intensity fluctuation from the Epoch of Reionization (EoR) based on realistic mock observations. By developing a full-sky 21 cm light-cone model, taking into account the proper field of view and frequency bandwidth, utilizing a realistic measurement scheme, and assuming perfect foreground removal, we show that HERA will be able to recover statistics of the sky model with high sensitivity by averaging over measurements from multiple fields. All build-out stages will be able to detect variance, while skewness and kurtosis should be detectable for HERA128 and larger. We identify sample variance as the limiting constraint of the measurements at the end of reionization. The sensitivity can also be further improved by performing frequency windowing. In addition, we find that strong sample variance fluctuation in the kurtosis measured from an individual field of observation indicates the presence of outlying cold or hot regions in the underlying fluctuations, a feature that can potentially be used as an EoR bubble indicator.

  20. Reduction and Uncertainty Analysis of Chemical Mechanisms Based on Local and Global Sensitivities

    NASA Astrophysics Data System (ADS)

    Esposito, Gaetano

    Numerical simulations of critical reacting flow phenomena in hypersonic propulsion devices require accurate representation of finite-rate chemical kinetics. The chemical kinetic models available for hydrocarbon fuel combustion are rather large, involving hundreds of species and thousands of reactions. As a consequence, they cannot be used in multi-dimensional computational fluid dynamic calculations in the foreseeable future due to the prohibitive computational cost. In addition to the computational difficulties, it is also known that some fundamental chemical kinetic parameters of detailed models have significant level of uncertainty due to limited experimental data available and to poor understanding of interactions among kinetic parameters. In the present investigation, local and global sensitivity analysis techniques are employed to develop a systematic approach of reducing and analyzing detailed chemical kinetic models. Unlike previous studies in which skeletal model reduction was based on the separate analysis of simple cases, in this work a novel strategy based on Principal Component Analysis of local sensitivity values is presented. This new approach is capable of simultaneously taking into account all the relevant canonical combustion configurations over different composition, temperature and pressure conditions. Moreover, the procedure developed in this work represents the first documented inclusion of non-premixed extinction phenomena, which is of great relevance in hypersonic combustors, in an automated reduction algorithm. The application of the skeletal reduction to a detailed kinetic model consisting of 111 species in 784 reactions is demonstrated. The resulting reduced skeletal model of 37--38 species showed that the global ignition/propagation/extinction phenomena of ethylene-air mixtures can be predicted within an accuracy of 2% of the full detailed model. The problems of both understanding non-linear interactions between kinetic parameters and identifying sources of uncertainty affecting relevant reaction pathways are usually addressed by resorting to Global Sensitivity Analysis (GSA) techniques. In particular, the most sensitive reactions controlling combustion phenomena are first identified using the Morris Method and then analyzed under the Random Sampling -- High Dimensional Model Representation (RS-HDMR) framework. The HDMR decomposition shows that 10% of the variance seen in the extinction strain rate of non-premixed flames is due to second-order effects between parameters, whereas the maximum concentration of acetylene, a key soot precursor, is affected by mostly only first-order contributions. Moreover, the analysis of the global sensitivity indices demonstrates that improving the accuracy of the reaction rates including the vinyl radical, C2H3, can drastically reduce the uncertainty of predicting targeted flame properties. Finally, the back-propagation of the experimental uncertainty of the extinction strain rate to the parameter space is also performed. This exercise, achieved by recycling the numerical solutions of the RS-HDMR, shows that some regions of the parameter space have a high probability of reproducing the experimental value of the extinction strain rate between its own uncertainty bounds. Therefore this study demonstrates that the uncertainty analysis of bulk flame properties can effectively provide information on relevant chemical reactions.

  1. Uncertainty Reduction using Bayesian Inference and Sensitivity Analysis: A Sequential Approach to the NASA Langley Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar

    2016-01-01

    This paper presents a computational framework for uncertainty characterization and propagation, and sensitivity analysis under the presence of aleatory and epistemic un- certainty, and develops a rigorous methodology for efficient refinement of epistemic un- certainty by identifying important epistemic variables that significantly affect the overall performance of an engineering system. The proposed methodology is illustrated using the NASA Langley Uncertainty Quantification Challenge (NASA-LUQC) problem that deals with uncertainty analysis of a generic transport model (GTM). First, Bayesian inference is used to infer subsystem-level epistemic quantities using the subsystem-level model and corresponding data. Second, tools of variance-based global sensitivity analysis are used to identify four important epistemic variables (this limitation specified in the NASA-LUQC is reflective of practical engineering situations where not all epistemic variables can be refined due to time/budget constraints) that significantly affect system-level performance. The most significant contribution of this paper is the development of the sequential refine- ment methodology, where epistemic variables for refinement are not identified all-at-once. Instead, only one variable is first identified, and then, Bayesian inference and global sensi- tivity calculations are repeated to identify the next important variable. This procedure is continued until all 4 variables are identified and the refinement in the system-level perfor- mance is computed. The advantages of the proposed sequential refinement methodology over the all-at-once uncertainty refinement approach are explained, and then applied to the NASA Langley Uncertainty Quantification Challenge problem.

  2. Genetic and environmental factors affecting birth size variation: a pooled individual-based analysis of secular trends and global geographical differences using 26 twin cohorts.

    PubMed

    Yokoyama, Yoshie; Jelenkovic, Aline; Hur, Yoon-Mi; Sund, Reijo; Fagnani, Corrado; Stazi, Maria A; Brescianini, Sonia; Ji, Fuling; Ning, Feng; Pang, Zengchang; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Rebato, Esther; Hopper, John L; Cutler, Tessa L; Saudino, Kimberly J; Nelson, Tracy L; Whitfield, Keith E; Corley, Robin P; Huibregtse, Brooke M; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth J F; Llewellyn, Clare H; Fisher, Abigail; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Bartels, Meike; van Beijsterveldt, Catharina E M; Willemsen, Gonneke; Harris, Jennifer R; Brandt, Ingunn; Nilsen, Thomas S; Craig, Jeffrey M; Saffery, Richard; Dubois, Lise; Boivin, Michel; Brendgen, Mara; Dionne, Ginette; Vitaro, Frank; Haworth, Claire M A; Plomin, Robert; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Rasmussen, Finn; Tynelius, Per; Tarnoki, Adam D; Tarnoki, David L; Ooki, Syuichi; Rose, Richard J; Pietiläinen, Kirsi H; Sørensen, Thorkild I A; Boomsma, Dorret I; Kaprio, Jaakko; Silventoinen, Karri

    2018-05-19

    The genetic architecture of birth size may differ geographically and over time. We examined differences in the genetic and environmental contributions to birthweight, length and ponderal index (PI) across geographical-cultural regions (Europe, North America and Australia, and East Asia) and across birth cohorts, and how gestational age modifies these effects. Data from 26 twin cohorts in 16 countries including 57 613 monozygotic and dizygotic twin pairs were pooled. Genetic and environmental variations of birth size were estimated using genetic structural equation modelling. The variance of birthweight and length was predominantly explained by shared environmental factors, whereas the variance of PI was explained both by shared and unique environmental factors. Genetic variance contributing to birth size was small. Adjusting for gestational age decreased the proportions of shared environmental variance and increased the propositions of unique environmental variance. Genetic variance was similar in the geographical-cultural regions, but shared environmental variance was smaller in East Asia than in Europe and North America and Australia. The total variance and shared environmental variance of birth length and PI were greater from the birth cohort 1990-99 onwards compared with the birth cohorts from 1970-79 to 1980-89. The contribution of genetic factors to birth size is smaller than that of shared environmental factors, which is partly explained by gestational age. Shared environmental variances of birth length and PI were greater in the latest birth cohorts and differed also across geographical-cultural regions. Shared environmental factors are important when explaining differences in the variation of birth size globally and over time.

  3. Global Sensitivity Analysis as Good Modelling Practices tool for the identification of the most influential process parameters of the primary drying step during freeze-drying.

    PubMed

    Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas

    2018-02-01

    Pharmaceutical batch freeze-drying is commonly used to improve the stability of biological therapeutics. The primary drying step is regulated by the dynamic settings of the adaptable process variables, shelf temperature T s and chamber pressure P c . Mechanistic modelling of the primary drying step leads to the optimal dynamic combination of these adaptable process variables in function of time. According to Good Modelling Practices, a Global Sensitivity Analysis (GSA) is essential for appropriate model building. In this study, both a regression-based and variance-based GSA were conducted on a validated mechanistic primary drying model to estimate the impact of several model input parameters on two output variables, the product temperature at the sublimation front T i and the sublimation rate ṁ sub . T s was identified as most influential parameter on both T i and ṁ sub , followed by P c and the dried product mass transfer resistance α Rp for T i and ṁ sub , respectively. The GSA findings were experimentally validated for ṁ sub via a Design of Experiments (DoE) approach. The results indicated that GSA is a very useful tool for the evaluation of the impact of different process variables on the model outcome, leading to essential process knowledge, without the need for time-consuming experiments (e.g., DoE). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A note on the stability and discriminability of graph-based features for classification problems in digital pathology

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Xu, Jun; Madabhushi, Anant

    2015-01-01

    Nuclear architecture or the spatial arrangement of individual cancer nuclei on histopathology images has been shown to be associated with different grades and differential risk for a number of solid tumors such as breast, prostate, and oropharyngeal. Graph-based representations of individual nuclei (nuclei representing the graph nodes) allows for mining of quantitative metrics to describe tumor morphology. These graph features can be broadly categorized into global and local depending on the type of graph construction method. While a number of local graph (e.g. Cell Cluster Graphs) and global graph (e.g. Voronoi, Delaunay Triangulation, Minimum Spanning Tree) features have been shown to associated with cancer grade, risk, and outcome for different cancer types, the sensitivity of the preceding segmentation algorithms in identifying individual nuclei can have a significant bearing on the discriminability of the resultant features. This therefore begs the question as to which features while being discriminative of cancer grade and aggressiveness are also the most resilient to the segmentation errors. These properties are particularly desirable in the context of digital pathology images, where the method of slide preparation, staining, and type of nuclear segmentation algorithm employed can all dramatically affect the quality of the nuclear graphs and corresponding features. In this paper we evaluated the trade off between discriminability and stability of both global and local graph-based features in conjunction with a few different segmentation algorithms and in the context of two different histopathology image datasets of breast cancer from whole-slide images (WSI) and tissue microarrays (TMA). Specifically in this paper we investigate a few different performance measures including stability, discriminability and stability vs discriminability trade off, all of which are based on p-values from the Kruskal-Wallis one-way analysis of variance for local and global graph features. Apart from identifying the set of local and global features that satisfied the trade off between stability and discriminability, our most interesting finding was that a simple segmentation method was sufficient to identify the most discriminant features for invasive tumour detection in TMAs, whereas for tumour grading in WSI, the graph based features were more sensitive to the accuracy of the segmentation algorithm employed.

  5. Variance decomposition in stochastic simulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Maître, O. P., E-mail: olm@limsi.fr; Knio, O. M., E-mail: knio@duke.edu; Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance.more » Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.« less

  6. Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1987-01-01

    The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.

  7. Sensitivity analysis of urban flood flows to hydraulic controls

    NASA Astrophysics Data System (ADS)

    Chen, Shangzhi; Garambois, Pierre-André; Finaud-Guyot, Pascal; Dellinger, Guilhem; Terfous, Abdelali; Ghenaim, Abdallah

    2017-04-01

    Flooding represents one of the most significant natural hazards on each continent and particularly in highly populated areas. Improving the accuracy and robustness of prediction systems has become a priority. However, in situ measurements of floods remain difficult while a better understanding of flood flow spatiotemporal dynamics along with dataset for model validations appear essential. The present contribution is based on a unique experimental device at the scale 1/200, able to produce urban flooding with flood flows corresponding to frequent to rare return periods. The influence of 1D Saint Venant and 2D Shallow water model input parameters on simulated flows is assessed using global sensitivity analysis (GSA). The tested parameters are: global and local boundary conditions (water heights and discharge), spatially uniform or distributed friction coefficient and or porosity respectively tested in various ranges centered around their nominal values - calibrated thanks to accurate experimental data and related uncertainties. For various experimental configurations a variance decomposition method (ANOVA) is used to calculate spatially distributed Sobol' sensitivity indices (Si's). The sensitivity of water depth to input parameters on two main streets of the experimental device is presented here. Results show that the closer from the downstream boundary condition on water height, the higher the Sobol' index as predicted by hydraulic theory for subcritical flow, while interestingly the sensitivity to friction decreases. The sensitivity indices of all lateral inflows, representing crossroads in 1D, are also quantified in this study along with their asymptotic trends along flow distance. The relationship between lateral discharge magnitude and resulting sensitivity index of water depth is investigated. Concerning simulations with distributed friction coefficients, crossroad friction is shown to have much higher influence on upstream water depth profile than street friction coefficients. This methodology could be applied to any urban flood configuration in order to better understand flow dynamics and repartition but also guide model calibration in the light of flow controls.

  8. Emulation and Sensitivity Analysis of the Community Multiscale Air Quality Model for a UK Ozone Pollution Episode.

    PubMed

    Beddows, Andrew V; Kitwiroon, Nutthida; Williams, Martin L; Beevers, Sean D

    2017-06-06

    Gaussian process emulation techniques have been used with the Community Multiscale Air Quality model, simulating the effects of input uncertainties on ozone and NO 2 output, to allow robust global sensitivity analysis (SA). A screening process ranked the effect of perturbations in 223 inputs, isolating the 30 most influential from emissions, boundary conditions (BCs), and reaction rates. Community Multiscale Air Quality (CMAQ) simulations of a July 2006 ozone pollution episode in the UK were made with input values for these variables plus ozone dry deposition velocity chosen according to a 576 point Latin hypercube design. Emulators trained on the output of these runs were used in variance-based SA of the model output to input uncertainties. Performing these analyses for every hour of a 21 day period spanning the episode and several days on either side allowed the results to be presented as a time series of sensitivity coefficients, showing how the influence of different input uncertainties changed during the episode. This is one of the most complex models to which these methods have been applied, and here, they reveal detailed spatiotemporal patterns of model sensitivities, with NO and isoprene emissions, NO 2 photolysis, ozone BCs, and deposition velocity being among the most influential input uncertainties.

  9. Hydrologic sensitivity of headwater catchments to climate and landscape variability

    NASA Astrophysics Data System (ADS)

    Kelleher, Christa; Wagener, Thorsten; McGlynn, Brian; Nippgen, Fabian; Jencso, Kelsey

    2013-04-01

    Headwater streams cumulatively represent an extensive portion of the United States stream network, yet remain largely unmonitored and unmapped. As such, we have limited understanding of how these systems will respond to change, knowledge that is important for preserving these unique ecosystems, the services they provide, and the biodiversity they support. We compare responses across five adjacent headwater catchments located in Tenderfoot Creek Experimental Forest in Montana, USA, to understand how local differences may affect the sensitivity of headwaters to change. We utilize global, variance-based sensitivity analysis to understand which aspects of the physical system (e.g., vegetation, topography, geology) control the variability in hydrologic behavior across these basins, and how this varies as a function of time (and therefore climate). Basin fluxes and storages, including evapotranspiration, snow water equivalent and melt, soil moisture and streamflow, are simulated using the Distributed Hydrology-Vegetation-Soil Model (DHSVM). Sensitivity analysis is applied to quantify the importance of different physical parameters to the spatial and temporal variability of different water balance components, allowing us to map similarities and differences in these controls through space and time. Our results show how catchment influences on fluxes vary across seasons (thus providing insight into transferability of knowledge in time), and how they vary across catchments with different physical characteristics (providing insight into transferability in space).

  10. Variance-based interaction index measuring heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom

    2016-06-01

    This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.

  11. Quantifying uncertainty and sensitivity in sea ice models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrego Blanco, Jorge Rolando; Hunke, Elizabeth Clare; Urban, Nathan Mark

    The Los Alamos Sea Ice model has a number of input parameters for which accurate values are not always well established. We conduct a variance-based sensitivity analysis of hemispheric sea ice properties to 39 input parameters. The method accounts for non-linear and non-additive effects in the model.

  12. Adaptive Prior Variance Calibration in the Bayesian Continual Reassessment Method

    PubMed Central

    Zhang, Jin; Braun, Thomas M.; Taylor, Jeremy M.G.

    2012-01-01

    Use of the Continual Reassessment Method (CRM) and other model-based approaches to design in Phase I clinical trials has increased due to the ability of the CRM to identify the maximum tolerated dose (MTD) better than the 3+3 method. However, the CRM can be sensitive to the variance selected for the prior distribution of the model parameter, especially when a small number of patients are enrolled. While methods have emerged to adaptively select skeletons and to calibrate the prior variance only at the beginning of a trial, there has not been any approach developed to adaptively calibrate the prior variance throughout a trial. We propose three systematic approaches to adaptively calibrate the prior variance during a trial and compare them via simulation to methods proposed to calibrate the variance at the beginning of a trial. PMID:22987660

  13. Sources and implications of whole-brain fMRI signals in humans

    PubMed Central

    Power, Jonathan D; Plitt, Mark; Laumann, Timothy O; Martin, Alex

    2016-01-01

    Whole-brain fMRI signals are a subject of intense interest: variance in the global fMRI signal (the spatial mean of all signals in the brain) indexes subject arousal, and psychiatric conditions such as schizophrenia and autism have been characterized by differences in the global fMRI signal. Further, vigorous debates exist on whether global signals ought to be removed from fMRI data. However, surprisingly little research has focused on the empirical properties of whole-brain fMRI signals. Here we map the spatial and temporal properties of the global signal, individually, in 1000+ fMRI scans. Variance in the global fMRI signal is strongly linked to head motion, to hardware artifacts, and to respiratory patterns and their attendant physiologic changes. Many techniques used to prepare fMRI data for analysis fail to remove these uninteresting kinds of global signal fluctuations. Thus, many studies include, at the time of analysis, prominent global effects of yawns, breathing changes, and head motion, among other signals. Such artifacts will mimic dynamic neural activity and will spuriously alter signal covariance throughout the brain. Methods capable of isolating and removing global artifactual variance while preserving putative “neural” variance are needed; this paper adopts no position on the topic of global signal regression. PMID:27751941

  14. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models.

    PubMed

    Mulder, Han A; Rönnegård, Lars; Fikse, W Freddy; Veerkamp, Roel F; Strandberg, Erling

    2013-07-04

    Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike's information criterion using h-likelihood to select the best fitting model. We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike's information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike's information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.

  15. WE-D-BRE-07: Variance-Based Sensitivity Analysis to Quantify the Impact of Biological Uncertainties in Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamp, F.; Brueningk, S.C.; Wilkens, J.J.

    Purpose: In particle therapy, treatment planning and evaluation are frequently based on biological models to estimate the relative biological effectiveness (RBE) or the equivalent dose in 2 Gy fractions (EQD2). In the context of the linear-quadratic model, these quantities depend on biological parameters (α, β) for ions as well as for the reference radiation and on the dose per fraction. The needed biological parameters as well as their dependency on ion species and ion energy typically are subject to large (relative) uncertainties of up to 20–40% or even more. Therefore it is necessary to estimate the resulting uncertainties in e.g.more » RBE or EQD2 caused by the uncertainties of the relevant input parameters. Methods: We use a variance-based sensitivity analysis (SA) approach, in which uncertainties in input parameters are modeled by random number distributions. The evaluated function is executed 10{sup 4} to 10{sup 6} times, each run with a different set of input parameters, randomly varied according to their assigned distribution. The sensitivity S is a variance-based ranking (from S = 0, no impact, to S = 1, only influential part) of the impact of input uncertainties. The SA approach is implemented for carbon ion treatment plans on 3D patient data, providing information about variations (and their origin) in RBE and EQD2. Results: The quantification enables 3D sensitivity maps, showing dependencies of RBE and EQD2 on different input uncertainties. The high number of runs allows displaying the interplay between different input uncertainties. The SA identifies input parameter combinations which result in extreme deviations of the result and the input parameter for which an uncertainty reduction is the most rewarding. Conclusion: The presented variance-based SA provides advantageous properties in terms of visualization and quantification of (biological) uncertainties and their impact. The method is very flexible, model independent, and enables a broad assessment of uncertainties. Supported by DFG grant WI 3745/1-1 and DFG cluster of excellence: Munich-Centre for Advanced Photonics.« less

  16. Material and morphology parameter sensitivity analysis in particulate composite materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; Oskay, Caglar

    2017-12-01

    This manuscript presents a novel parameter sensitivity analysis framework for damage and failure modeling of particulate composite materials subjected to dynamic loading. The proposed framework employs global sensitivity analysis to study the variance in the failure response as a function of model parameters. In view of the computational complexity of performing thousands of detailed microstructural simulations to characterize sensitivities, Gaussian process (GP) surrogate modeling is incorporated into the framework. In order to capture the discontinuity in response surfaces, the GP models are integrated with a support vector machine classification algorithm that identifies the discontinuities within response surfaces. The proposed framework is employed to quantify variability and sensitivities in the failure response of polymer bonded particulate energetic materials under dynamic loads to material properties and morphological parameters that define the material microstructure. Particular emphasis is placed on the identification of sensitivity to interfaces between the polymer binder and the energetic particles. The proposed framework has been demonstrated to identify the most consequential material and morphological parameters under vibrational and impact loads.

  17. Characterizing nonconstant instrumental variance in emerging miniaturized analytical techniques.

    PubMed

    Noblitt, Scott D; Berg, Kathleen E; Cate, David M; Henry, Charles S

    2016-04-07

    Measurement variance is a crucial aspect of quantitative chemical analysis. Variance directly affects important analytical figures of merit, including detection limit, quantitation limit, and confidence intervals. Most reported analyses for emerging analytical techniques implicitly assume constant variance (homoskedasticity) by using unweighted regression calibrations. Despite the assumption of constant variance, it is known that most instruments exhibit heteroskedasticity, where variance changes with signal intensity. Ignoring nonconstant variance results in suboptimal calibrations, invalid uncertainty estimates, and incorrect detection limits. Three techniques where homoskedasticity is often assumed were covered in this work to evaluate if heteroskedasticity had a significant quantitative impact-naked-eye, distance-based detection using paper-based analytical devices (PADs), cathodic stripping voltammetry (CSV) with disposable carbon-ink electrode devices, and microchip electrophoresis (MCE) with conductivity detection. Despite these techniques representing a wide range of chemistries and precision, heteroskedastic behavior was confirmed for each. The general variance forms were analyzed, and recommendations for accounting for nonconstant variance discussed. Monte Carlo simulations of instrument responses were performed to quantify the benefits of weighted regression, and the sensitivity to uncertainty in the variance function was tested. Results show that heteroskedasticity should be considered during development of new techniques; even moderate uncertainty (30%) in the variance function still results in weighted regression outperforming unweighted regressions. We recommend utilizing the power model of variance because it is easy to apply, requires little additional experimentation, and produces higher-precision results and more reliable uncertainty estimates than assuming homoskedasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Climate Drivers of Blue Intensity from Two Eastern North American Conifers

    NASA Astrophysics Data System (ADS)

    Rayback, S. A.; Kilbride, J.; Pontius, J.; Tait, E.; Little, J.

    2016-12-01

    Gaining a comprehensive understanding of the climatic factors that drive tree radial growth over time is important in the context of global climate change. Herein, we explore minimum blue intensity (BI), a measure of lignin context in the latewood of tree rings, with the objective of developing BI chronologies for two eastern North American conifers to identify and explore climatic drivers and to compare BI-climate relationships to those of tree-ring widths (TRW). Using dendrochronological techniques, Tsuga canadensis and Picea rubens TRW and BI chronologies were developed at Abbey Pond (ABP) and The Cape National Research Area (CAPE), Vermont, USA, respectively. Climate drivers (1901-2010) were investigated using correlation and response function analyses and generalized linear mixed models. The ABP T. canadensis BI model explained the highest amount of variance (R2 = 0.350, adjR2=0.324) with September Tmin and June total percent cloudiness as predictors. The ABP T. canadensis TRW model explained 34% of the variance (R2 = 0.340, adjR2=0.328) with summer total precipitation and June PDSI as predictors. The CAPE P. rubens TRW and BI models explained 31% of the variance (R2 = 0.33, adjR2=0.310), based on p July Tmax, p August Tmean and fall Tmin as predictors, and 7% (R2 = 0.068, adjR2=0.060) based on Spring Tmin as the predictor, respectively. Moving window analyses confirm the moisture sensitivity of T. canadensis TRW and now BI and suggest an extension of the growing season. Similarly, P. rubens TRW responded consistently negative to high growing season temperatures, but TRW and BI benefited from a longer growing season. This study introduces two new BI chronologies, the first from northeastern North America, and highlights shifts underway in tree response to changing climate.

  19. Changes in yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Childers, Katelin

    2015-04-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the political discussion about mitigation targets as well as for the inclusion of climate change impacts in Integrated Assessment Models (IAMs) that generally only provide global mean temperature change as an indicator of climate change. While there is a well-established framework for the scalability of regional temperature and precipitation changes with global mean temperature change we provide an assessment of the extent to which impacts such as crop yield changes can also be described in terms of global mean temperature changes without accounting for the specific underlying emissions scenario. Based on multi-crop-model simulations of the four major cereal crops (maize, rice, soy, and wheat) on a 0.5 x 0.5 degree global grid generated within ISI-MIP, we show the average spatial patterns of projected crop yield changes at one half degree warming steps. We find that emissions scenario dependence is a minor component of the overall variance of projected yield changes at different levels of global warming. Furthermore, scenario dependence can be reduced by accounting for the direct effects of CO2 fertilization in each global climate model (GCM)/impact model combination through an inclusion of the global atmospheric CO2 concentration as a second predictor. The choice of GCM output used to force the crop model simulations accounts for a slightly larger portion of the total yield variance, but the greatest contributor to variance in both global and regional crop yields and at all levels of warming, is the inter-crop-model spread. The unique multi impact model ensemble available with ISI-MIP data also indicates that the overall variability of crop yields is projected to increase in conjunction with increasing global mean temperature. This result is consistent throughout the ensemble of impact models and across many world regions. Such a hike in yield volatility could have significant policy implications by affecting food prices and supplies.

  20. Constraints on vertical transport near the polar summer mesopause from PMC observations and modelling

    NASA Astrophysics Data System (ADS)

    Wilms, H.; Rapp, M.; Kirsch, A.

    2016-12-01

    The comparison of microphysical simulations of polar mesospheric cloud properties with ground based and satellite borne observations suggests that vertical wind variance imposed by gravity waves is an important prerequisite to realistically model PMC properties. This paper reviews the available observational evidence of vertical wind measurements at the polar summer mesopause (including their frequency content). Corresponding results are compared to vertical wind variance from several global models and implications for the transport of trace constituents in this altitude region are discussed.

  1. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models

    PubMed Central

    2013-01-01

    Background Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring. PMID:23827014

  2. Uncertainty quantification-based robust aerodynamic optimization of laminar flow nacelle

    NASA Astrophysics Data System (ADS)

    Xiong, Neng; Tao, Yang; Liu, Zhiyong; Lin, Jun

    2018-05-01

    The aerodynamic performance of laminar flow nacelle is highly sensitive to uncertain working conditions, especially the surface roughness. An efficient robust aerodynamic optimization method on the basis of non-deterministic computational fluid dynamic (CFD) simulation and Efficient Global Optimization (EGO)algorithm was employed. A non-intrusive polynomial chaos method is used in conjunction with an existing well-verified CFD module to quantify the uncertainty propagation in the flow field. This paper investigates the roughness modeling behavior with the γ-Ret shear stress transport model including modeling flow transition and surface roughness effects. The roughness effects are modeled to simulate sand grain roughness. A Class-Shape Transformation-based parametrical description of the nacelle contour as part of an automatic design evaluation process is presented. A Design-of-Experiments (DoE) was performed and surrogate model by Kriging method was built. The new design nacelle process demonstrates that significant improvements of both mean and variance of the efficiency are achieved and the proposed method can be applied to laminar flow nacelle design successfully.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Kunkun, E-mail: ktg@illinois.edu; Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence; Congedo, Pietro M.

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable formore » real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.« less

  4. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  5. Classification of Global Urban Centers Using ASTER Data: Preliminary Results From the Urban Environmental Monitoring Program

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.

    2001-05-01

    Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.

  6. Numerical analysis and design optimization of supersonic after-burning with strut fuel injectors for scramjet engines

    NASA Astrophysics Data System (ADS)

    Candon, M. J.; Ogawa, H.

    2018-06-01

    Scramjets are a class of hypersonic airbreathing engine that offer promise for economical, reliable and high-speed access-to-space and atmospheric transport. The expanding flow in the scramjet nozzle comprises of unburned hydrogen. An after-burning scheme can be used to effectively utilize the remaining hydrogen by supplying additional oxygen into the nozzle, aiming to augment the thrust. This paper presents the results of a single-objective design optimization for a strut fuel injection scheme considering four design variables with the objective of maximizing thrust augmentation. Thrust is found to be augmented significantly owing to a combination of contributions from aerodynamic and combustion effects. Further understanding and physical insights have been gained by performing variance-based global sensitivity analysis, scrutinizing the nozzle flowfields, analyzing the distributions and contributions of the forces acting on the nozzle wall, and examining the combustion efficiency.

  7. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE PAGES

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  8. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Sungduk; Pritchard, Michael S.

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  9. Changes of the Oceanic Long-term and seasonal variation in a Global-warming Climate

    NASA Astrophysics Data System (ADS)

    Xia, Q.; He, Y.; Dong, C.

    2015-12-01

    Abstract: Gridded absolute dynamic topography (ADT) from AVISO and outputs of sea surface height above geoid from a series of climate models run for CMIP5 are used to analysis global sea level variation. Variance has been calculated to determine the magnitude of change in sea level variation over two decades. Increasing trend of variance of ADT suggests an enhanced fluctuation as well as geostrophic shear of global ocean. To further determine on what scale does the increasing fluctuation dominate, the global absolute dynamic topography (ADT) has been separated into two distinguished parts: the global five-year mean sea surface (MSS) and the residual absolute dynamic topography (RADT). Increased variance of MSS can be ascribed to the nonuniform rising of global sea level and an enhancement of ocean gyres in the Pacific Ocean. While trend in the variance of RADT is found to be close to zero which suggests an unchanged ocean mesoscale variability. The Gaussian-like distribution of global ADT are used to study the change in extreme sea levels. Information entropy has also been adapted in our study. Increasing trend of information entropy which measures the degree of dispersion of a probability distribution suggests more appearance of extreme sea levels. Extreme high sea levels are increasing with a higher growing rate than the mean sea level rise.

  10. Intelligent ensemble T-S fuzzy neural networks with RCDPSO_DM optimization for effective handling of complex clinical pathway variances.

    PubMed

    Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang

    2013-07-01

    Takagi-Sugeno (T-S) fuzzy neural networks (FNNs) can be used to handle complex, fuzzy, uncertain clinical pathway (CP) variances. However, there are many drawbacks, such as slow training rate, propensity to become trapped in a local minimum and poor ability to perform a global search. In order to improve overall performance of variance handling by T-S FNNs, a new CP variance handling method is proposed in this study. It is based on random cooperative decomposing particle swarm optimization with double mutation mechanism (RCDPSO_DM) for T-S FNNs. Moreover, the proposed integrated learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, is applied to optimize antecedent and consequent parameters of constructed T-S FNNs. Then, a multi-swarm cooperative immigrating particle swarm algorithm ensemble method is used for intelligent ensemble T-S FNNs with RCDPSO_DM optimization to further improve stability and accuracy of CP variance handling. Finally, two case studies on liver and kidney poisoning variances in osteosarcoma preoperative chemotherapy are used to validate the proposed method. The result demonstrates that intelligent ensemble T-S FNNs based on the RCDPSO_DM achieves superior performances, in terms of stability, efficiency, precision and generalizability, over PSO ensemble of all T-S FNNs with RCDPSO_DM optimization, single T-S FNNs with RCDPSO_DM optimization, standard T-S FNNs, standard Mamdani FNNs and T-S FNNs based on other algorithms (cooperative particle swarm optimization and particle swarm optimization) for CP variance handling. Therefore, it makes CP variance handling more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Examination of Variables That May Affect the Relationship Between Cognition and Functional Status in Individuals with Mild Cognitive Impairment: A Meta-Analysis

    PubMed Central

    Mcalister, Courtney; Schmitter-Edgecombe, Maureen; Lamb, Richard

    2016-01-01

    The objective of this meta-analysis was to improve understanding of the heterogeneity in the relationship between cognition and functional status in individuals with mild cognitive impairment (MCI). Demographic, clinical, and methodological moderators were examined. Cognition explained an average of 23% of the variance in functional outcomes. Executive function measures explained the largest amount of variance (37%), whereas global cognitive status and processing speed measures explained the least (20%). Short- and long-delayed memory measures accounted for more variance (35% and 31%) than immediate memory measures (18%), and the relationship between cognition and functional outcomes was stronger when assessed with informant-report (28%) compared with self-report (21%). Demographics, sample characteristics, and type of everyday functioning measures (i.e., questionnaire, performance-based) explained relatively little variance compared with cognition. Executive functioning, particularly measured by Trails B, was a strong predictor of everyday functioning in individuals with MCI. A large proportion of variance remained unexplained by cognition. PMID:26743326

  12. Global sensitivity analysis for identifying important parameters of nitrogen nitrification and denitrification under model uncertainty and scenario uncertainty

    NASA Astrophysics Data System (ADS)

    Chen, Zhuowei; Shi, Liangsheng; Ye, Ming; Zhu, Yan; Yang, Jinzhong

    2018-06-01

    Nitrogen reactive transport modeling is subject to uncertainty in model parameters, structures, and scenarios. By using a new variance-based global sensitivity analysis method, this paper identifies important parameters for nitrogen reactive transport with simultaneous consideration of these three uncertainties. A combination of three scenarios of soil temperature and two scenarios of soil moisture creates a total of six scenarios. Four alternative models describing the effect of soil temperature and moisture content are used to evaluate the reduction functions used for calculating actual reaction rates. The results show that for nitrogen reactive transport problem, parameter importance varies substantially among different models and scenarios. Denitrification and nitrification process is sensitive to soil moisture content status rather than to the moisture function parameter. Nitrification process becomes more important at low moisture content and low temperature. However, the changing importance of nitrification activity with respect to temperature change highly relies on the selected model. Model-averaging is suggested to assess the nitrification (or denitrification) contribution by reducing the possible model error. Despite the introduction of biochemical heterogeneity or not, fairly consistent parameter importance rank is obtained in this study: optimal denitrification rate (Kden) is the most important parameter; reference temperature (Tr) is more important than temperature coefficient (Q10); empirical constant in moisture response function (m) is the least important one. Vertical distribution of soil moisture but not temperature plays predominant role controlling nitrogen reaction. This study provides insight into the nitrogen reactive transport modeling and demonstrates an effective strategy of selecting the important parameters when future temperature and soil moisture carry uncertainties or when modelers face with multiple ways of establishing nitrogen models.

  13. Application of global sensitivity analysis methods to Takagi-Sugeno-Kang rainfall-runoff fuzzy models

    NASA Astrophysics Data System (ADS)

    Jacquin, A. P.; Shamseldin, A. Y.

    2009-04-01

    This study analyses the sensitivity of the parameters of Takagi-Sugeno-Kang rainfall-runoff fuzzy models previously developed by the authors. These models can be classified in two types, where the first type is intended to account for the effect of changes in catchment wetness and the second type incorporates seasonality as a source of non-linearity in the rainfall-runoff relationship. The sensitivity analysis is performed using two global sensitivity analysis methods, namely Regional Sensitivity Analysis (RSA) and Sobol's Variance Decomposition (SVD). In general, the RSA method has the disadvantage of not being able to detect sensitivities arising from parameter interactions. By contrast, the SVD method is suitable for analysing models where the model response surface is expected to be affected by interactions at a local scale and/or local optima, such as the case of the rainfall-runoff fuzzy models analysed in this study. The data of six catchments from different geographical locations and sizes are used in the sensitivity analysis. The sensitivity of the model parameters is analysed in terms of two measures of goodness of fit, assessing the model performance from different points of view. These measures are the Nash-Sutcliffe criterion and the index of volumetric fit. The results of the study show that the sensitivity of the model parameters depends on both the type of non-linear effects (i.e. changes in catchment wetness or seasonality) that dominates the catchment's rainfall-runoff relationship and the measure used to assess the model performance. Acknowledgements: This research was supported by FONDECYT, Research Grant 11070130. We would also like to express our gratitude to Prof. Kieran M. O'Connor from the National University of Ireland, Galway, for providing the data used in this study.

  14. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  15. Weighted Iterative Bayesian Compressive Sensing (WIBCS) for High Dimensional Polynomial Surrogate Construction

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Ricciuto, D. M.; Safta, C.; Debusschere, B.; Najm, H. N.; Thornton, P. E.

    2016-12-01

    Surrogate construction has become a routine procedure when facing computationally intensive studies requiring multiple evaluations of complex models. In particular, surrogate models, otherwise called emulators or response surfaces, replace complex models in uncertainty quantification (UQ) studies, including uncertainty propagation (forward UQ) and parameter estimation (inverse UQ). Further, surrogates based on Polynomial Chaos (PC) expansions are especially convenient for forward UQ and global sensitivity analysis, also known as variance-based decomposition. However, the PC surrogate construction strongly suffers from the curse of dimensionality. With a large number of input parameters, the number of model simulations required for accurate surrogate construction is prohibitively large. Relatedly, non-adaptive PC expansions typically include infeasibly large number of basis terms far exceeding the number of available model evaluations. We develop Weighted Iterative Bayesian Compressive Sensing (WIBCS) algorithm for adaptive basis growth and PC surrogate construction leading to a sparse, high-dimensional PC surrogate with a very few model evaluations. The surrogate is then readily employed for global sensitivity analysis leading to further dimensionality reduction. Besides numerical tests, we demonstrate the construction on the example of Accelerated Climate Model for Energy (ACME) Land Model for several output QoIs at nearly 100 FLUXNET sites covering multiple plant functional types and climates, varying 65 input parameters over broad ranges of possible values. This work is supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Accelerated Climate Modeling for Energy (ACME) project. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. On the multiple imputation variance estimator for control-based and delta-adjusted pattern mixture models.

    PubMed

    Tang, Yongqiang

    2017-12-01

    Control-based pattern mixture models (PMM) and delta-adjusted PMMs are commonly used as sensitivity analyses in clinical trials with non-ignorable dropout. These PMMs assume that the statistical behavior of outcomes varies by pattern in the experimental arm in the imputation procedure, but the imputed data are typically analyzed by a standard method such as the primary analysis model. In the multiple imputation (MI) inference, Rubin's variance estimator is generally biased when the imputation and analysis models are uncongenial. One objective of the article is to quantify the bias of Rubin's variance estimator in the control-based and delta-adjusted PMMs for longitudinal continuous outcomes. These PMMs assume the same observed data distribution as the mixed effects model for repeated measures (MMRM). We derive analytic expressions for the MI treatment effect estimator and the associated Rubin's variance in these PMMs and MMRM as functions of the maximum likelihood estimator from the MMRM analysis and the observed proportion of subjects in each dropout pattern when the number of imputations is infinite. The asymptotic bias is generally small or negligible in the delta-adjusted PMM, but can be sizable in the control-based PMM. This indicates that the inference based on Rubin's rule is approximately valid in the delta-adjusted PMM. A simple variance estimator is proposed to ensure asymptotically valid MI inferences in these PMMs, and compared with the bootstrap variance. The proposed method is illustrated by the analysis of an antidepressant trial, and its performance is further evaluated via a simulation study. © 2017, The International Biometric Society.

  17. Spectral decomposition of internal gravity wave sea surface height in global models

    NASA Astrophysics Data System (ADS)

    Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis

    2017-10-01

    Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.

  18. High Resolution Ecosystem Structure, Biomass and Blue Carbon stocks in Mangrove Ecosystems- Methods and Applications of Lidar, radar Interferometry and High Resolution imagery

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Lee, S. K.; Feliciano, E. A.; Simard, M.; Trettin, C.

    2016-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.

  19. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.

  20. Discrete filtering techniques applied to sequential GPS range measurements

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1987-01-01

    The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.

  1. Uncertainty Quantification and Global Sensitivity Analysis of Subsurface Flow Parameters to Gravimetric Variations During Pumping Tests in Unconfined Aquifers

    NASA Astrophysics Data System (ADS)

    Maina, Fadji Zaouna; Guadagnini, Alberto

    2018-01-01

    We study the contribution of typically uncertain subsurface flow parameters to gravity changes that can be recorded during pumping tests in unconfined aquifers. We do so in the framework of a Global Sensitivity Analysis and quantify the effects of uncertainty of such parameters on the first four statistical moments of the probability distribution of gravimetric variations induced by the operation of the well. System parameters are grouped into two main categories, respectively, governing groundwater flow in the unsaturated and saturated portions of the domain. We ground our work on the three-dimensional analytical model proposed by Mishra and Neuman (2011), which fully takes into account the richness of the physical process taking place across the unsaturated and saturated zones and storage effects in a finite radius pumping well. The relative influence of model parameter uncertainties on drawdown, moisture content, and gravity changes are quantified through (a) the Sobol' indices, derived from a classical decomposition of variance and (b) recently developed indices quantifying the relative contribution of each uncertain model parameter to the (ensemble) mean, skewness, and kurtosis of the model output. Our results document (i) the importance of the effects of the parameters governing the unsaturated flow dynamics on the mean and variance of local drawdown and gravity changes; (ii) the marked sensitivity (as expressed in terms of the statistical moments analyzed) of gravity changes to the employed water retention curve model parameter, specific yield, and storage, and (iii) the influential role of hydraulic conductivity of the unsaturated and saturated zones to the skewness and kurtosis of gravimetric variation distributions. The observed temporal dynamics of the strength of the relative contribution of system parameters to gravimetric variations suggest that gravity data have a clear potential to provide useful information for estimating the key hydraulic parameters of the system.

  2. Long-Term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.

    1998-01-01

    Progress in research into the global morphology of gravity wave activity using UARS data is described for the period March-June, 1998. Highlights this quarter include further progress in the analysis and interpretation of CRISTA temperature variances; model-generated climatologies of mesospheric gravity wave activity using the HWM-93 wind and temperature model; and modeling of gravity wave detection from space-based platforms. Preliminary interpretations and recommended avenues for further analysis are also described.

  3. Accurate evaluation of sensitivity for calibration between a LiDAR and a panoramic camera used for remote sensing

    NASA Astrophysics Data System (ADS)

    García-Moreno, Angel-Iván; González-Barbosa, José-Joel; Ramírez-Pedraza, Alfonso; Hurtado-Ramos, Juan B.; Ornelas-Rodriguez, Francisco-Javier

    2016-04-01

    Computer-based reconstruction models can be used to approximate urban environments. These models are usually based on several mathematical approximations and the usage of different sensors, which implies dependency on many variables. The sensitivity analysis presented in this paper is used to weigh the relative importance of each uncertainty contributor into the calibration of a panoramic camera-LiDAR system. Both sensors are used for three-dimensional urban reconstruction. Simulated and experimental tests were conducted. For the simulated tests we analyze and compare the calibration parameters using the Monte Carlo and Latin hypercube sampling techniques. Sensitivity analysis for each variable involved into the calibration was computed by the Sobol method, which is based on the analysis of the variance breakdown, and the Fourier amplitude sensitivity test method, which is based on Fourier's analysis. Sensitivity analysis is an essential tool in simulation modeling and for performing error propagation assessments.

  4. Using global sensitivity analysis to evaluate the uncertainties of future shoreline changes under the Bruun rule assumption

    NASA Astrophysics Data System (ADS)

    Le Cozannet, Gonéri; Oliveros, Carlos; Castelle, Bruno; Garcin, Manuel; Idier, Déborah; Pedreros, Rodrigo; Rohmer, Jeremy

    2016-04-01

    Future sandy shoreline changes are often assed by summing the contributions of longshore and cross-shore effects. In such approaches, a contribution of sea-level rise can be incorporated by adding a supplementary term based on the Bruun rule. Here, our objective is to identify where and when the use of the Bruun rule can be (in)validated, in the case of wave-exposed beaches with gentle slopes. We first provide shoreline change scenarios that account for all uncertain hydrosedimentary processes affecting the idealized low- and high-energy coasts described by Stive (2004)[Stive, M. J. F. 2004, How important is global warming for coastal erosion? an editorial comment, Climatic Change, vol. 64, n 12, doi:10.1023/B:CLIM.0000024785.91858. ISSN 0165-0009]. Then, we generate shoreline change scenarios based on probabilistic sea-level rise projections based on IPCC. For scenario RCP 6.0 and 8.5 and in the absence of coastal defenses, the model predicts an observable shift toward generalized beach erosion by the middle of the 21st century. On the contrary, the model predictions are unlikely to differ from the current situation in case of scenario RCP 2.6. To get insight into the relative importance of each source of uncertainties, we quantify each contributions to the variance of the model outcome using a global sensitivity analysis. This analysis shows that by the end of the 21st century, a large part of shoreline change uncertainties are due to the climate change scenario if all anthropogenic greenhousegas emission scenarios are considered equiprobable. To conclude, the analysis shows that under the assumptions above, (in)validating the Bruun rule should be straightforward during the second half of the 21st century and for the RCP 8.5 scenario. Conversely, for RCP 2.6, the noise in shoreline change evolution should continue dominating the signal due to the Bruun effect. This last conclusion can be interpreted as an important potential benefit of climate change mitigation.

  5. Global Genetic Variations Predict Brain Response to Faces

    PubMed Central

    Dickie, Erin W.; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N.; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-01-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40–50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R2 = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R2 = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network. PMID:25122193

  6. General object recognition is specific: Evidence from novel and familiar objects.

    PubMed

    Richler, Jennifer J; Wilmer, Jeremy B; Gauthier, Isabel

    2017-09-01

    In tests of object recognition, individual differences typically correlate modestly but nontrivially across familiar categories (e.g. cars, faces, shoes, birds, mushrooms). In theory, these correlations could reflect either global, non-specific mechanisms, such as general intelligence (IQ), or more specific mechanisms. Here, we introduce two separate methods for effectively capturing category-general performance variation, one that uses novel objects and one that uses familiar objects. In each case, we show that category-general performance variance is unrelated to IQ, thereby implicating more specific mechanisms. The first approach examines three newly developed novel object memory tests (NOMTs). We predicted that NOMTs would exhibit more shared, category-general variance than familiar object memory tests (FOMTs) because novel objects, unlike familiar objects, lack category-specific environmental influences (e.g. exposure to car magazines or botany classes). This prediction held, and remarkably, virtually none of the substantial shared variance among NOMTs was explained by IQ. Also, while NOMTs correlated nontrivially with two FOMTs (faces, cars), these correlations were smaller than among NOMTs and no larger than between the face and car tests themselves, suggesting that the category-general variance captured by NOMTs is specific not only relative to IQ, but also, to some degree, relative to both face and car recognition. The second approach averaged performance across multiple FOMTs, which we predicted would increase category-general variance by averaging out category-specific factors. This prediction held, and as with NOMTs, virtually none of the shared variance among FOMTs was explained by IQ. Overall, these results support the existence of object recognition mechanisms that, though category-general, are specific relative to IQ and substantially separable from face and car recognition. They also add sensitive, well-normed NOMTs to the tools available to study object recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Consequences of Base Time for Redundant Signals Experiments

    PubMed Central

    Townsend, James T.; Honey, Christopher

    2007-01-01

    We report analytical and computational investigations into the effects of base time on the diagnosticity of two popular theoretical tools in the redundant signals literature: (1) the race model inequality and (2) the capacity coefficient. We show analytically and without distributional assumptions that the presence of base time decreases the sensitivity of both of these measures to model violations. We further use simulations to investigate the statistical power model selection tools based on the race model inequality, both with and without base time. Base time decreases statistical power, and biases the race model test toward conservatism. The magnitude of this biasing effect increases as we increase the proportion of total reaction time variance contributed by base time. We marshal empirical evidence to suggest that the proportion of reaction time variance contributed by base time is relatively small, and that the effects of base time on the diagnosticity of our model-selection tools are therefore likely to be minor. However, uncertainty remains concerning the magnitude and even the definition of base time. Experimentalists should continue to be alert to situations in which base time may contribute a large proportion of the total reaction time variance. PMID:18670591

  8. Psychological Impact of Negotiating Two Cultures: Latino Coping and Self-Esteem

    ERIC Educational Resources Information Center

    Torres, Lucas; Rollock, David

    2009-01-01

    Among 96 Latino adults, active coping accounted for variance in global self-esteem beyond that of biculturalism and sociodemographic indicators. The findings highlight the importance of accounting for the way Latino adults approach negotiating multiple cultural contexts. Extending acculturation research to integrate competence-based formulations…

  9. Multiple Domains of Parental Secure Base Support During Childhood and Adolescence Contribute to Adolescents’ Representations of Attachment as a Secure Base Script

    PubMed Central

    Vaughn, Brian E.; Waters, Theodore E. A.; Steele, Ryan D.; Roisman, Glenn I.; Bost, Kelly K.; Truitt, Warren; Waters, Harriet S.; Booth-LaForce, Cathryn

    2016-01-01

    Although attachment theory claims that early attachment representations reflecting the quality of the child’s “lived experiences” are maintained across developmental transitions, evidence that has emerged over the last decade suggests that the association between early relationship quality and adolescents’ attachment representations is fairly modest in magnitude. We used aspects of parenting beyond sensitivity over childhood and adolescence and early security to predict adolescents’ scripted attachment representations. At age 18 years, 673 participants from the NICHD Study of Early Child Care and Youth Development (SECCYD) completed the Attachment Script Assessment (ASA) from which we derived an assessment of secure base script knowledge. Measures of secure base support from childhood through age 15 years (e.g., parental monitoring of child activity, father presence in the home) were selected as predictors and accounted for an additional 8% of the variance in secure base script knowledge scores above and beyond direct observations of sensitivity and early attachment status alone, suggesting that adolescents’ scripted attachment representations reflect multiple domains of parenting. Cognitive and demographic variables also significantly increased predicted variance in secure base script knowledge by 2% each. PMID:27032953

  10. Quantifying Hydro-biogeochemical Model Sensitivity in Assessment of Climate Change Effect on Hyporheic Zone Processes

    NASA Astrophysics Data System (ADS)

    Song, X.; Chen, X.; Dai, H.; Hammond, G. E.; Song, H. S.; Stegen, J.

    2016-12-01

    The hyporheic zone is an active region for biogeochemical processes such as carbon and nitrogen cycling, where the groundwater and surface water mix and interact with each other with distinct biogeochemical and thermal properties. The biogeochemical dynamics within the hyporheic zone are driven by both river water and groundwater hydraulic dynamics, which are directly affected by climate change scenarios. Besides that, the hydraulic and thermal properties of local sediments and microbial and chemical processes also play important roles in biogeochemical dynamics. Thus for a comprehensive understanding of the biogeochemical processes in the hyporheic zone, a coupled thermo-hydro-biogeochemical model is needed. As multiple uncertainty sources are involved in the integrated model, it is important to identify its key modules/parameters through sensitivity analysis. In this study, we develop a 2D cross-section model in the hyporheic zone at the DOE Hanford site adjacent to Columbia River and use this model to quantify module and parametric sensitivity on assessment of climate change. To achieve this purpose, We 1) develop a facies-based groundwater flow and heat transfer model that incorporates facies geometry and heterogeneity characterized from a field data set, 2) derive multiple reaction networks/pathways from batch experiments with in-situ samples and integrate temperate dependent reactive transport modules to the flow model, 3) assign multiple climate change scenarios to the coupled model by analyzing historical river stage data, 4) apply a variance-based global sensitivity analysis to quantify scenario/module/parameter uncertainty in hierarchy level. The objectives of the research include: 1) identifing the key control factors of the coupled thermo-hydro-biogeochemical model in the assessment of climate change, and 2) quantify the carbon consumption in different climate change scenarios in the hyporheic zone.

  11. Sensitivity Analysis of the Agricultural Policy/Environmental eXtender (APEX) for Phosphorus Loads in Tile-Drained Landscapes.

    PubMed

    Ford, W; King, K; Williams, M; Williams, J; Fausey, N

    2015-07-01

    Numerical modeling is an economical and feasible approach for quantifying the effects of best management practices on dissolved reactive phosphorus (DRP) loadings from agricultural fields. However, tools that simulate both surface and subsurface DRP pathways are limited and have not been robustly evaluated in tile-drained landscapes. The objectives of this study were to test the ability of the Agricultural Policy/Environmental eXtender (APEX), a widely used field-scale model, to simulate surface and tile P loadings over management, hydrologic, biologic, tile, and soil gradients and to better understand the behavior of P delivery at the edge-of-field in tile-drained midwestern landscapes. To do this, a global, variance-based sensitivity analysis was performed, and model outputs were compared with measured P loads obtained from 14 surface and subsurface edge-of-field sites across central and northwestern Ohio. Results of the sensitivity analysis showed that response variables for DRP were highly sensitive to coupled interactions between presumed important parameters, suggesting nonlinearity of DRP delivery at the edge-of-field. Comparison of model results to edge-of-field data showcased the ability of APEX to simulate surface and subsurface runoff and the associated DRP loading at monthly to annual timescales; however, some high DRP concentrations and fluxes were not reflected in the model, suggesting the presence of preferential flow. Results from this study provide new insights into baseline tile DRP loadings that exceed thresholds for algal proliferation. Further, negative feedbacks between surface and subsurface DRP delivery suggest caution is needed when implementing DRP-based best management practices designed for a specific flow pathway. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Sobol' sensitivity analysis for stressor impacts on honeybee ...

    EPA Pesticide Factsheets

    We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather, colony resources, population structure, and other important variables. This allows us to test the effects of defined pesticide exposure scenarios versus controlled simulations that lack pesticide exposure. The daily resolution of the model also allows us to conditionally identify sensitivity metrics. We use the variancebased global decomposition sensitivity analysis method, Sobol’, to assess firstand secondorder parameter sensitivities within VarroaPop, allowing us to determine how variance in the output is attributed to each of the input variables across different exposure scenarios. Simulations with VarroaPop indicate queen strength, forager life span and pesticide toxicity parameters are consistent, critical inputs for colony dynamics. Further analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs. Our preliminary results show that model variability is conditional and can be attributed to different parameters depending on different timescales. By using sensitivity analysis to assess model output and variability, calibrations of simulation models can be better informed to yield more

  13. An Effective Post-Filtering Framework for 3-D PET Image Denoising Based on Noise and Sensitivity Characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hye; Ahn, Il Jun; Nam, Woo Hyun; Ra, Jong Beom

    2015-02-01

    Positron emission tomography (PET) images usually suffer from a noticeable amount of statistical noise. In order to reduce this noise, a post-filtering process is usually adopted. However, the performance of this approach is limited because the denoising process is mostly performed on the basis of the Gaussian random noise. It has been reported that in a PET image reconstructed by the expectation-maximization (EM), the noise variance of each voxel depends on its mean value, unlike in the case of Gaussian noise. In addition, we observe that the variance also varies with the spatial sensitivity distribution in a PET system, which reflects both the solid angle determined by a given scanner geometry and the attenuation information of a scanned object. Thus, if a post-filtering process based on the Gaussian random noise is applied to PET images without consideration of the noise characteristics along with the spatial sensitivity distribution, the spatially variant non-Gaussian noise cannot be reduced effectively. In the proposed framework, to effectively reduce the noise in PET images reconstructed by the 3-D ordinary Poisson ordered subset EM (3-D OP-OSEM), we first denormalize an image according to the sensitivity of each voxel so that the voxel mean value can represent its statistical properties reliably. Based on our observation that each noisy denormalized voxel has a linear relationship between the mean and variance, we try to convert this non-Gaussian noise image to a Gaussian noise image. We then apply a block matching 4-D algorithm that is optimized for noise reduction of the Gaussian noise image, and reconvert and renormalize the result to obtain a final denoised image. Using simulated phantom data and clinical patient data, we demonstrate that the proposed framework can effectively suppress the noise over the whole region of a PET image while minimizing degradation of the image resolution.

  14. Approaches to characterise chromatographic column performance based on global parameters accounting for peak broadening and skewness.

    PubMed

    Baeza-Baeza, J J; Pous-Torres, S; Torres-Lapasió, J R; García-Alvarez-Coque, M C

    2010-04-02

    Peak broadening and skewness are fundamental parameters in chromatography, since they affect the resolution capability of a chromatographic column. A common practice to characterise chromatographic columns is to estimate the efficiency and asymmetry factor for the peaks of one or more solutes eluted at selected experimental conditions. This has the drawback that the extra-column contributions to the peak variance and skewness make the peak shape parameters depend on the retention time. We propose and discuss here the use of several approaches that allow the estimation of global parameters (non-dependent on the retention time) to describe the column performance. The global parameters arise from different linear relationships that can be established between the peak variance, standard deviation, or half-widths with the retention time. Some of them describe exclusively the column contribution to the peak broadening, whereas others consider the extra-column effects also. The estimation of peak skewness was also possible for the approaches based on the half-widths. The proposed approaches were applied to the characterisation of different columns (Spherisorb, Zorbax SB, Zorbax Eclipse, Kromasil, Chromolith, X-Terra and Inertsil), using the chromatographic data obtained for several diuretics and basic drugs (beta-blockers). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Risk analysis in cohort studies with heterogeneous strata. A global chi2-test for dose-response relationship, generalizing the Mantel-Haenszel procedure.

    PubMed

    Ahlborn, W; Tuz, H J; Uberla, K

    1990-03-01

    In cohort studies the Mantel-Haenszel estimator ORMH is computed from sample data and is used as a point estimator of relative risk. Test-based confidence intervals are estimated with the help of the asymptotic chi-squared distributed MH-statistic chi 2MHS. The Mantel-extension-chi-squared is used as a test statistic for a dose-response relationship. Both test statistics--the Mantel-Haenszel-chi as well as the Mantel-extension-chi--assume homogeneity of risk across strata, which is rarely present. Also an extended nonparametric statistic, proposed by Terpstra, which is based on the Mann-Whitney-statistics assumes homogeneity of risk across strata. We have earlier defined four risk measures RRkj (k = 1,2,...,4) in the population and considered their estimates and the corresponding asymptotic distributions. In order to overcome the homogeneity assumption we use the delta-method to get "test-based" confidence intervals. Because the four risk measures RRkj are presented as functions of four weights gik we give, consequently, the asymptotic variances of these risk estimators also as functions of the weights gik in a closed form. Approximations to these variances are given. For testing a dose-response relationship we propose a new class of chi 2(1)-distributed global measures Gk and the corresponding global chi 2-test. In contrast to the Mantel-extension-chi homogeneity of risk across strata must not be assumed. These global test statistics are of the Wald type for composite hypotheses.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. An Evaluation of Anxiety Sensitivity, Emotional Dysregulation, and Negative Affectivity among Daily Cigarette Smokers: Relation to Smoking Motives and Barriers to Quitting

    PubMed Central

    Gonzalez, Adam; Zvolensky, Michael J.; Vujanovic, Anka A.; Leyro, Teresa M.; Marshall, Erin C.

    2008-01-01

    The present investigation evaluated the relations between anxiety sensitivity and motivational bases of cigarette smoking, as well as barriers to quitting smoking, above and beyond concurrent substance use, negative affectivity, and emotional dysregulation among a community sample of 189 daily cigarette smokers (46% women; Mage = 24.97 years, SD = 9.78). Results indicated that anxiety sensitivity was significantly related to coping, addictive, and habitual smoking motives, as well as greater perceived barriers to quitting. These effects were evident above and beyond the variance accounted for by concurrent tobacco, alcohol, and marijuana use and discernable from shared variance with negative affectivity and emotional dysregulation. Emotional dysregulation was significantly related to stimulation, habitual, and sensorimotor smoking motives and greater perceived barriers to quitting, whereas negative affectivity was only significantly related to smoking for relaxation. These findings uniquely add to a growing literature suggesting anxiety sensitivity is an important and unique cognitive factor for better understanding clinically-relevant psychological processes related to cigarette smoking. PMID:18417153

  17. Examination of Variables That May Affect the Relationship Between Cognition and Functional Status in Individuals with Mild Cognitive Impairment: A Meta-Analysis.

    PubMed

    Mcalister, Courtney; Schmitter-Edgecombe, Maureen; Lamb, Richard

    2016-03-01

    The objective of this meta-analysis was to improve understanding of the heterogeneity in the relationship between cognition and functional status in individuals with mild cognitive impairment (MCI). Demographic, clinical, and methodological moderators were examined. Cognition explained an average of 23% of the variance in functional outcomes. Executive function measures explained the largest amount of variance (37%), whereas global cognitive status and processing speed measures explained the least (20%). Short- and long-delayed memory measures accounted for more variance (35% and 31%) than immediate memory measures (18%), and the relationship between cognition and functional outcomes was stronger when assessed with informant-report (28%) compared with self-report (21%). Demographics, sample characteristics, and type of everyday functioning measures (i.e., questionnaire, performance-based) explained relatively little variance compared with cognition. Executive functioning, particularly measured by Trails B, was a strong predictor of everyday functioning in individuals with MCI. A large proportion of variance remained unexplained by cognition. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Thermal infrared sounding observations of lower atmospheric variances at Mars and their implications for gravity wave activity: a preliminary examination

    NASA Astrophysics Data System (ADS)

    Heavens, N. G.

    2017-12-01

    It has been recognized for over two decades that the mesoscale statistical variance observed by Earth-observing satellites at temperature-sensitive frequencies above the instrumental noise floor is a measure of gravity wave activity. These types of observation have been made by a variety of satellite instruments have been an important validation tool for gravity wave parameterizations in global and mesoscale models. At Mars, the importance of topographic and non-topographic sources of gravity waves for the general circulation is now widely recognized and the target of recent modeling efforts. However, despite several ingenious studies, gravity wave activity near hypothetical lower atmospheric sources has been poorly and unsystematically characterized, partly because of the difficulty of separating the gravity wave activity from baroclinic wave activity and the thermal tides. Here will be presented a preliminary analysis of calibrated radiance variance at 15.4 microns (635-665 cm-1) from nadir, off-nadir, and limb observations by the Mars Climate Sounder on board Mars Reconnaissance Orbiter. The overarching methodology follows Wu and Waters (1996, 1997). Nadir, off-nadir, and lowest detector limb observations should sample variability with vertical weighting functions centered high in the lower atmosphere (20-30 km altitude) and full width half maximum (FWHM) 20 km but be sensitive to gravity waves with different horizontal wavelengths and slightly different vertical wavelengths. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G). References Wu, D.L. and J.W. Waters, 1996, Satellite observations of atmospheric variances: A possible indication of gravity waves, GRL, 23, 3631-3634. Wu D.L. and J.W. Waters, 1997, Observations of Gravity Waves with the UARS Microwave Limb Sounder. In: Hamilton K. (eds) Gravity Wave Processes. NATO ASI Series (Series I: Environmental Change), vol 50. Springer, Berlin, Heidelberg.

  19. Decomposing genomic variance using information from GWA, GWE and eQTL analysis.

    PubMed

    Ehsani, A; Janss, L; Pomp, D; Sørensen, P

    2016-04-01

    A commonly used procedure in genome-wide association (GWA), genome-wide expression (GWE) and expression quantitative trait locus (eQTL) analyses is based on a bottom-up experimental approach that attempts to individually associate molecular variants with complex traits. Top-down modeling of the entire set of genomic data and partitioning of the overall variance into subcomponents may provide further insight into the genetic basis of complex traits. To test this approach, we performed a whole-genome variance components analysis and partitioned the genomic variance using information from GWA, GWE and eQTL analyses of growth-related traits in a mouse F2 population. We characterized the mouse trait genetic architecture by ordering single nucleotide polymorphisms (SNPs) based on their P-values and studying the areas under the curve (AUCs). The observed traits were found to have a genomic variance profile that differed significantly from that expected of a trait under an infinitesimal model. This situation was particularly true for both body weight and body fat, for which the AUCs were much higher compared with that of glucose. In addition, SNPs with a high degree of trait-specific regulatory potential (SNPs associated with subset of transcripts that significantly associated with a specific trait) explained a larger proportion of the genomic variance than did SNPs with high overall regulatory potential (SNPs associated with transcripts using traditional eQTL analysis). We introduced AUC measures of genomic variance profiles that can be used to quantify relative importance of SNPs as well as degree of deviation of a trait's inheritance from an infinitesimal model. The shape of the curve aids global understanding of traits: The steeper the left-hand side of the curve, the fewer the number of SNPs controlling most of the phenotypic variance. © 2015 Stichting International Foundation for Animal Genetics.

  20. Spectral analysis of the Earth's topographic potential via 2D-DFT: a new data-based degree variance model to degree 90,000

    NASA Astrophysics Data System (ADS)

    Rexer, Moritz; Hirt, Christian

    2015-09-01

    Classical degree variance models (such as Kaula's rule or the Tscherning-Rapp model) often rely on low-resolution gravity data and so are subject to extrapolation when used to describe the decay of the gravity field at short spatial scales. This paper presents a new degree variance model based on the recently published GGMplus near-global land areas 220 m resolution gravity maps (Geophys Res Lett 40(16):4279-4283, 2013). We investigate and use a 2D-DFT (discrete Fourier transform) approach to transform GGMplus gravity grids into degree variances. The method is described in detail and its approximation errors are studied using closed-loop experiments. Focus is placed on tiling, azimuth averaging, and windowing effects in the 2D-DFT method and on analytical fitting of degree variances. Approximation errors of the 2D-DFT procedure on the (spherical harmonic) degree variance are found to be at the 10-20 % level. The importance of the reference surface (sphere, ellipsoid or topography) of the gravity data for correct interpretation of degree variance spectra is highlighted. The effect of the underlying mass arrangement (spherical or ellipsoidal approximation) on the degree variances is found to be crucial at short spatial scales. A rule-of-thumb for transformation of spectra between spherical and ellipsoidal approximation is derived. Application of the 2D-DFT on GGMplus gravity maps yields a new degree variance model to degree 90,000. The model is supported by GRACE, GOCE, EGM2008 and forward-modelled gravity at 3 billion land points over all land areas within the SRTM data coverage and provides gravity signal variances at the surface of the topography. The model yields omission errors of 9 mGal for gravity (1.5 cm for geoid effects) at scales of 10 km, 4 mGal (1 mm) at 2-km scales, and 2 mGal (0.2 mm) at 1-km scales.

  1. The relationship between the INTERMED patient complexity instrument and Level of Care Utilisation System (LOCUS).

    PubMed

    Thurber, Steven; Wilson, Ann; Realmuto, George; Specker, Sheila

    2018-03-01

    To investigate the concurrent and criterion validity of two independently developed measurement instruments, INTERMED and LOCUS, designed to improve the treatment and clinical management of patients with complex symptom manifestations. Participants (N = 66) were selected from hospital records based on the complexity of presenting symptoms, with tripartite diagnoses across biological, psychiatric and addiction domains. Biopsychosocial information from hospital records were submitted to INTERMED and LOCUS grids. In addition, Global Assessment of Functioning (GAF) ratings were gathered for statistical analyses. The product moment correlation between INTERMED and LOCUS was 0.609 (p = .01). Inverse zero-order correlations for INTERMED and LOCUS total score and GAF were obtained. However, only the beta weight for LOCUS and GAF was significant. An exploratory principal components analysis further illuminated areas of convergence between the instruments. INTERMED and LOCUS demonstrated shared variance. INTERMED appeared more sensitive to complex medical conditions and severe physiological reactions, whereas LOCUS findings are more strongly related to psychiatric symptoms. Implications are discussed.

  2. Cognitive constructs and social anxiety disorder: beyond fearing negative evaluation.

    PubMed

    Teale Sapach, Michelle J N; Carleton, R Nicholas; Mulvogue, Myriah K; Weeks, Justin W; Heimberg, Richard G

    2015-01-01

    Pioneering models of social anxiety disorder (SAD) underscored fear of negative evaluation (FNE) as central in the disorder's development. Additional cognitive predictors have since been identified, including fear of positive evaluation (FPE), anxiety sensitivity, and intolerance of uncertainty (IU), but rarely have these constructs been examined together. The present study concurrently examined the variance accounted for in SAD symptoms by these constructs. Participants meeting criteria for SAD (n = 197; 65% women) completed self-report measures online. FNE, FPE, anxiety sensitivity, and IU all accounted for unique variance in SAD symptoms. FPE accounted for variance comparable to FNE, and the cognitive dimension of anxiety sensitivity and the prospective dimension of IU accounted for comparable variance, though slightly less than that accounted for by FNE and FPE. The results support the theorized roles that these constructs play in the etiology of SAD and highlight both FNE and FPE as central foci in SAD treatment.

  3. Blinded sample size re-estimation in three-arm trials with 'gold standard' design.

    PubMed

    Mütze, Tobias; Friede, Tim

    2017-10-15

    In this article, we study blinded sample size re-estimation in the 'gold standard' design with internal pilot study for normally distributed outcomes. The 'gold standard' design is a three-arm clinical trial design that includes an active and a placebo control in addition to an experimental treatment. We focus on the absolute margin approach to hypothesis testing in three-arm trials at which the non-inferiority of the experimental treatment and the assay sensitivity are assessed by pairwise comparisons. We compare several blinded sample size re-estimation procedures in a simulation study assessing operating characteristics including power and type I error. We find that sample size re-estimation based on the popular one-sample variance estimator results in overpowered trials. Moreover, sample size re-estimation based on unbiased variance estimators such as the Xing-Ganju variance estimator results in underpowered trials, as it is expected because an overestimation of the variance and thus the sample size is in general required for the re-estimation procedure to eventually meet the target power. To overcome this problem, we propose an inflation factor for the sample size re-estimation with the Xing-Ganju variance estimator and show that this approach results in adequately powered trials. Because of favorable features of the Xing-Ganju variance estimator such as unbiasedness and a distribution independent of the group means, the inflation factor does not depend on the nuisance parameter and, therefore, can be calculated prior to a trial. Moreover, we prove that the sample size re-estimation based on the Xing-Ganju variance estimator does not bias the effect estimate. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Can we calibrate simultaneously groundwater recharge and aquifer hydrodynamic parameters ?

    NASA Astrophysics Data System (ADS)

    Hassane Maina, Fadji; Ackerer, Philippe; Bildstein, Olivier

    2017-04-01

    By groundwater model calibration, we consider here fitting the measured piezometric heads by estimating the hydrodynamic parameters (storage term and hydraulic conductivity) and the recharge. It is traditionally recommended to avoid simultaneous calibration of groundwater recharge and flow parameters because of correlation between recharge and the flow parameters. From a physical point of view, little recharge associated with low hydraulic conductivity can provide very similar piezometric changes than higher recharge and higher hydraulic conductivity. If this correlation is true under steady state conditions, we assume that this correlation is much weaker under transient conditions because recharge varies in time and the parameters do not. Moreover, the recharge is negligible during summer time for many climatic conditions due to reduced precipitation, increased evaporation and transpiration by vegetation cover. We analyze our hypothesis through global sensitivity analysis (GSA) in conjunction with the polynomial chaos expansion (PCE) methodology. We perform GSA by calculating the Sobol indices, which provide a variance-based 'measure' of the effects of uncertain parameters (storage and hydraulic conductivity) and recharge on the piezometric heads computed by the flow model. The choice of PCE has the following two benefits: (i) it provides the global sensitivity indices in a straightforward manner, and (ii) PCE can serve as a surrogate model for the calibration of parameters. The coefficients of the PCE are computed by probabilistic collocation. We perform the GSA on simplified real conditions coming from an already built groundwater model dedicated to a subdomain of the Upper-Rhine aquifer (geometry, boundary conditions, climatic data). GSA shows that the simultaneous calibration of recharge and flow parameters is possible if the calibration is performed over at least one year. It provides also the valuable information of the sensitivity versus time, depending on the aquifer inertia and climatic conditions. The groundwater levels variations during recharge (increase) are sensitive to the storage coefficient whereas the groundwater levels variations after recharge (decrease) are sensitive to the hydraulic conductivity. The performed model calibration on synthetic data sets shows that the parameters and recharge are estimated quite accurately.

  5. Strategy quantification using body worn inertial sensors in a reactive agility task.

    PubMed

    Eke, Chika U; Cain, Stephen M; Stirling, Leia A

    2017-11-07

    Agility performance is often evaluated using time-based metrics, which provide little information about which factors aid or limit success. The objective of this study was to better understand agility strategy by identifying biomechanical metrics that were sensitive to performance speed, which were calculated with data from an array of body-worn inertial sensors. Five metrics were defined (normalized number of foot contacts, stride length variance, arm swing variance, mean normalized stride frequency, and number of body rotations) that corresponded to agility terms defined by experts working in athletic, clinical, and military environments. Eighteen participants donned 13 sensors to complete a reactive agility task, which involved navigating a set of cones in response to a vocal cue. Participants were grouped into fast, medium, and slow performance based on their completion time. Participants in the fast group had the smallest number of foot contacts (normalizing by height), highest stride length variance (normalizing by height), highest forearm angular velocity variance, and highest stride frequency (normalizing by height). The number of body rotations was not sensitive to speed and may have been determined by hand and foot dominance while completing the agility task. The results of this study have the potential to inform the development of a composite agility score constructed from the list of significant metrics. By quantifying the agility terms previously defined by expert evaluators through an agility score, this study can assist in strategy development for training and rehabilitation across athletic, clinical, and military domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Classification and global distribution of ocean precipitation types based on satellite passive microwave signatures

    NASA Astrophysics Data System (ADS)

    Gautam, Nitin

    The main objectives of this thesis are to develop a robust statistical method for the classification of ocean precipitation based on physical properties to which the SSM/I is sensitive and to examine how these properties vary globally and seasonally. A two step approach is adopted for the classification of oceanic precipitation classes from multispectral SSM/I data: (1)we subjectively define precipitation classes using a priori information about the precipitating system and its possible distinct signature on SSM/I data such as scattering by ice particles aloft in the precipitating cloud, emission by liquid rain water below freezing level, the difference of polarization at 19 GHz-an indirect measure of optical depth, etc.; (2)we then develop an objective classification scheme which is found to reproduce the subjective classification with high accuracy. This hybrid strategy allows us to use the characteristics of the data to define and encode classes and helps retain the physical interpretation of classes. The classification methods based on k-nearest neighbor and neural network are developed to objectively classify six precipitation classes. It is found that the classification method based neural network yields high accuracy for all precipitation classes. An inversion method based on minimum variance approach was used to retrieve gross microphysical properties of these precipitation classes such as column integrated liquid water path, column integrated ice water path, and column integrated min water path. This classification method is then applied to 2 years (1991-92) of SSM/I data to examine and document the seasonal and global distribution of precipitation frequency corresponding to each of these objectively defined six classes. The characteristics of the distribution are found to be consistent with assumptions used in defining these six precipitation classes and also with well known climatological patterns of precipitation regions. The seasonal and global distribution of these six classes is also compared with the earlier results obtained from Comprehensive Ocean Atmosphere Data Sets (COADS). It is found that the gross pattern of the distributions obtained from SSM/I and COADS data match remarkably well with each other.

  7. The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI.

    PubMed

    Thompson, William H; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed.

  8. What do we mean by sensitivity analysis? The need for comprehensive characterization of "global" sensitivity in Earth and Environmental systems models

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin V.

    2015-05-01

    Sensitivity analysis is an essential paradigm in Earth and Environmental Systems modeling. However, the term "sensitivity" has a clear definition, based in partial derivatives, only when specified locally around a particular point (e.g., optimal solution) in the problem space. Accordingly, no unique definition exists for "global sensitivity" across the problem space, when considering one or more model responses to different factors such as model parameters or forcings. A variety of approaches have been proposed for global sensitivity analysis, based on different philosophies and theories, and each of these formally characterizes a different "intuitive" understanding of sensitivity. These approaches focus on different properties of the model response at a fundamental level and may therefore lead to different (even conflicting) conclusions about the underlying sensitivities. Here we revisit the theoretical basis for sensitivity analysis, summarize and critically evaluate existing approaches in the literature, and demonstrate their flaws and shortcomings through conceptual examples. We also demonstrate the difficulty involved in interpreting "global" interaction effects, which may undermine the value of existing interpretive approaches. With this background, we identify several important properties of response surfaces that are associated with the understanding and interpretation of sensitivities in the context of Earth and Environmental System models. Finally, we highlight the need for a new, comprehensive framework for sensitivity analysis that effectively characterizes all of the important sensitivity-related properties of model response surfaces.

  9. Anxiety sensitivity and cannabis use problems, perceived barriers for quitting, and fear of quitting.

    PubMed

    Zvolensky, Michael J; Rogers, Andrew H; Manning, Kara; Hogan, Julianna B D; Paulus, Daniel J; Buckner, Julia D; Mayorga, Nubia A; Hallford, Gerald; Schmidt, Norman B

    2018-05-01

    Cannabis is among the most widely used psychoactive substances in the United States, and rates of cannabis use and cannabis-related problems are increasing. Anxiety sensitivity, or the fear of aversive interoceptive sensations, may be relevant to better understanding cannabis use problems and other significant cannabis use processes (e.g., beliefs about quitting). Previous research has primarily focused on the global anxiety sensitivity construct; however, anxiety sensitivity lower-order facets (Cognitive Concerns, Physical Concerns, and Social Concerns) tend to be differentially related to substance use processes in non-cannabis specific studies. The current study therefore explored anxiety sensitivity lower-order facets in relation to cannabis use problems, perceived barriers for cannabis cessation, and abstinence phobia (fear of not using cannabis) among a community sample of 203 cannabis-using adults. Results indicated that anxiety sensitivity Cognitive Concerns were significantly associated with each of the dependent measures and these effects were not explained by shared variance with the other lower-order factors or a range of other covariates (e.g., tobacco use). The present findings suggest future work may benefit from focusing on the role of anxiety sensitivity Cognitive Concerns in the maintenance of cannabis use. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Color constancy in natural scenes explained by global image statistics

    PubMed Central

    Foster, David H.; Amano, Kinjiro; Nascimento, Sérgio M. C.

    2007-01-01

    To what extent do observers' judgments of surface color with natural scenes depend on global image statistics? To address this question, a psychophysical experiment was performed in which images of natural scenes under two successive daylights were presented on a computer-controlled high-resolution color monitor. Observers reported whether there was a change in reflectance of a test surface in the scene. The scenes were obtained with a hyperspectral imaging system and included variously trees, shrubs, grasses, ferns, flowers, rocks, and buildings. Discrimination performance, quantified on a scale of 0 to 1 with a color-constancy index, varied from 0.69 to 0.97 over 21 scenes and two illuminant changes, from a correlated color temperature of 25,000 K to 6700 K and from 4000 K to 6700 K. The best account of these effects was provided by receptor-based rather than colorimetric properties of the images. Thus, in a linear regression, 43% of the variance in constancy index was explained by the log of the mean relative deviation in spatial cone-excitation ratios evaluated globally across the two images of a scene. A further 20% was explained by including the mean chroma of the first image and its difference from that of the second image and a further 7% by the mean difference in hue. Together, all four global color properties accounted for 70% of the variance and provided a good fit to the effects of scene and of illuminant change on color constancy, and, additionally, of changing test-surface position. By contrast, a spatial-frequency analysis of the images showed that the gradient of the luminance amplitude spectrum accounted for only 5% of the variance. PMID:16961965

  11. Color constancy in natural scenes explained by global image statistics.

    PubMed

    Foster, David H; Amano, Kinjiro; Nascimento, Sérgio M C

    2006-01-01

    To what extent do observers' judgments of surface color with natural scenes depend on global image statistics? To address this question, a psychophysical experiment was performed in which images of natural scenes under two successive daylights were presented on a computer-controlled high-resolution color monitor. Observers reported whether there was a change in reflectance of a test surface in the scene. The scenes were obtained with a hyperspectral imaging system and included variously trees, shrubs, grasses, ferns, flowers, rocks, and buildings. Discrimination performance, quantified on a scale of 0 to 1 with a color-constancy index, varied from 0.69 to 0.97 over 21 scenes and two illuminant changes, from a correlated color temperature of 25,000 K to 6700 K and from 4000 K to 6700 K. The best account of these effects was provided by receptor-based rather than colorimetric properties of the images. Thus, in a linear regression, 43% of the variance in constancy index was explained by the log of the mean relative deviation in spatial cone-excitation ratios evaluated globally across the two images of a scene. A further 20% was explained by including the mean chroma of the first image and its difference from that of the second image and a further 7% by the mean difference in hue. Together, all four global color properties accounted for 70% of the variance and provided a good fit to the effects of scene and of illuminant change on color constancy, and, additionally, of changing test-surface position. By contrast, a spatial-frequency analysis of the images showed that the gradient of the luminance amplitude spectrum accounted for only 5% of the variance.

  12. Using uncertainty and sensitivity analyses in socioecological agent-based models to improve their analytical performance and policy relevance.

    PubMed

    Ligmann-Zielinska, Arika; Kramer, Daniel B; Spence Cheruvelil, Kendra; Soranno, Patricia A

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system.

  13. Using Uncertainty and Sensitivity Analyses in Socioecological Agent-Based Models to Improve Their Analytical Performance and Policy Relevance

    PubMed Central

    Ligmann-Zielinska, Arika; Kramer, Daniel B.; Spence Cheruvelil, Kendra; Soranno, Patricia A.

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system. PMID:25340764

  14. Sensitivities of the hydrologic cycle to model physics, grid resolution, and ocean type in the aquaplanet Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Benedict, James J.; Medeiros, Brian; Clement, Amy C.; Pendergrass, Angeline G.

    2017-06-01

    Precipitation distributions and extremes play a fundamental role in shaping Earth's climate and yet are poorly represented in many global climate models. Here, a suite of idealized Community Atmosphere Model (CAM) aquaplanet simulations is examined to assess the aquaplanet's ability to reproduce hydroclimate statistics of real-Earth configurations and to investigate sensitivities of precipitation distributions and extremes to model physics, horizontal grid resolution, and ocean type. Little difference in precipitation statistics is found between aquaplanets using time-constant sea-surface temperatures and those implementing a slab ocean model with a 50 m mixed-layer depth. In contrast, CAM version 5.3 (CAM5.3) produces more time mean, zonally averaged precipitation than CAM version 4 (CAM4), while CAM4 generates significantly larger precipitation variance and frequencies of extremely intense precipitation events. The largest model configuration-based precipitation sensitivities relate to choice of horizontal grid resolution in the selected range 1-2°. Refining grid resolution has significant physics-dependent effects on tropical precipitation: for CAM4, time mean zonal mean precipitation increases along the Equator and the intertropical convergence zone (ITCZ) narrows, while for CAM5.3 precipitation decreases along the Equator and the twin branches of the ITCZ shift poleward. Increased grid resolution also reduces light precipitation frequencies and enhances extreme precipitation for both CAM4 and CAM5.3 resulting in better alignment with observational estimates. A discussion of the potential implications these hydrologic cycle sensitivities have on the interpretation of precipitation statistics in future climate projections is also presented.Plain Language SummaryPrecipitation plays a fundamental role in shaping Earth's climate. Global climate models predict the average precipitation reasonably well but often struggle to accurately represent how often it precipitates and at what intensity. Model precipitation errors are closely tied to imperfect representations of physical processes too small to be resolved on the model grid. The problem is compounded by the complexity of contemporary climate models and the many model configuration options available. In this study, we use an aquaplanet, a simplified global climate model entirely devoid of land masses, to explore the response of precipitation to several aspects of model configuration in a present-day climate state. Our results suggest that critical precipitation patterns, including extreme precipitation events that have large socio-economic impacts, are strongly sensitive to horizontal grid resolution and the representation of unresolved physical processes. Identification and understanding of such model configuration-related precipitation responses in the present-day climate will provide a more accurate estimate of model uncertainty necessary for an improved interpretation of precipitation changes in global warming projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29480543','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29480543"><span>A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Würschum, Tobias; Langer, Simon M; Longin, C Friedrich H; Tucker, Matthew R; Leiser, Willmar L</p> <p>2018-06-01</p> <p>The broad adaptability of heading time has contributed to the global success of wheat in a diverse array of climatic conditions. Here, we investigated the genetic architecture underlying heading time in a large panel of 1,110 winter wheat cultivars of worldwide origin. Genome-wide association mapping, in combination with the analysis of major phenology loci, revealed a three-component system that facilitates the adaptation of heading time in winter wheat. The photoperiod sensitivity locus Ppd-D1 was found to account for almost half of the genotypic variance in this panel and can advance or delay heading by many days. In addition, copy number variation at Ppd-B1 was the second most important source of variation in heading, explaining 8.3% of the genotypic variance. Results from association mapping and genomic prediction indicated that the remaining variation is attributed to numerous small-effect quantitative trait loci that facilitate fine-tuning of heading to the local climatic conditions. Collectively, our results underpin the importance of the two Ppd-1 loci for the adaptation of heading time in winter wheat and illustrate how the three components have been exploited for wheat breeding globally. © 2018 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PMB....61.3681G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PMB....61.3681G"><span>Designing a compact high performance brain PET scanner—simulation study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, Kuang; Majewski, Stan; Kinahan, Paul E.; Harrison, Robert L.; Elston, Brian F.; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V.; Brefczynski-Lewis, Julie A.; Qi, Jinyi</p> <p>2016-05-01</p> <p>The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér-Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of-interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4863179','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4863179"><span>Designing a compact high performance brain PET scanner—simulation study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gong, Kuang; Majewski, Stan; Kinahan, Paul E; Harrison, Robert L; Elston, Brian F; Manjeshwar, Ravindra; Dolinsky, Sergei; Stolin, Alexander V; Brefczynski-Lewis, Julie A; Qi, Jinyi</p> <p>2016-01-01</p> <p>The desire to understand normal and disordered human brain function of upright, moving persons in natural environments motivates the development of the ambulatory micro-dose brain PET imager (AMPET). An ideal system would be light weight but with high sensitivity and spatial resolution, although these requirements are often in conflict with each other. One potential approach to meet the design goals is a compact brain-only imaging device with a head-sized aperture. However, a compact geometry increases parallax error in peripheral lines of response, which increases bias and variance in region of interest (ROI) quantification. Therefore, we performed simulation studies to search for the optimal system configuration and to evaluate the potential improvement in quantification performance over existing scanners. We used the Cramér–Rao variance bound to compare the performance for ROI quantification using different scanner geometries. The results show that while a smaller ring diameter can increase photon detection sensitivity and hence reduce the variance at the center of the field of view, it can also result in higher variance in peripheral regions when the length of detector crystal is 15 mm or more. This variance can be substantially reduced by adding depth-of- interaction (DOI) measurement capability to the detector modules. Our simulation study also shows that the relative performance depends on the size of the ROI, and a large ROI favors a compact geometry even without DOI information. Based on these results, we propose a compact ‘helmet’ design using detectors with DOI capability. Monte Carlo simulations show the helmet design can achieve four-fold higher sensitivity and resolve smaller features than existing cylindrical brain PET scanners. The simulations also suggest that improving TOF timing resolution from 400 ps to 200 ps also results in noticeable improvement in image quality, indicating better timing resolution is desirable for brain imaging. PMID:27081753</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17567912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17567912"><span>Automated real time constant-specificity surveillance for disease outbreaks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wieland, Shannon C; Brownstein, John S; Berger, Bonnie; Mandl, Kenneth D</p> <p>2007-06-13</p> <p>For real time surveillance, detection of abnormal disease patterns is based on a difference between patterns observed, and those predicted by models of historical data. The usefulness of outbreak detection strategies depends on their specificity; the false alarm rate affects the interpretation of alarms. We evaluate the specificity of five traditional models: autoregressive, Serfling, trimmed seasonal, wavelet-based, and generalized linear. We apply each to 12 years of emergency department visits for respiratory infection syndromes at a pediatric hospital, finding that the specificity of the five models was almost always a non-constant function of the day of the week, month, and year of the study (p < 0.05). We develop an outbreak detection method, called the expectation-variance model, based on generalized additive modeling to achieve a constant specificity by accounting for not only the expected number of visits, but also the variance of the number of visits. The expectation-variance model achieves constant specificity on all three time scales, as well as earlier detection and improved sensitivity compared to traditional methods in most circumstances. Modeling the variance of visit patterns enables real-time detection with known, constant specificity at all times. With constant specificity, public health practitioners can better interpret the alarms and better evaluate the cost-effectiveness of surveillance systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=adult%2c+AND+motor+AND+coordination&pg=5&id=EJ933761','ERIC'); return false;" href="https://eric.ed.gov/?q=adult%2c+AND+motor+AND+coordination&pg=5&id=EJ933761"><span>Disentangling Stability, Variability and Adaptability in Human Performance: Focus on the Interplay between Local Variance and Serial Correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Torre, Kjerstin; Balasubramaniam, Ramesh</p> <p>2011-01-01</p> <p>We address the complex relationship between the stability, variability, and adaptability of psychological systems by decomposing the global variance of serial performance into two independent parts: the local variance (LV) and the serial correlation structure. For two time series with equal LV, the presence of persistent long-range correlations…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990018740&hterms=mean-variance+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmean-variance%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990018740&hterms=mean-variance+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmean-variance%2Banalysis"><span>Analysis of Darwin Rainfall Data: Implications on Sampling Strategy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rafael, Qihang Li; Bras, Rafael L.; Veneziano, Daniele</p> <p>1996-01-01</p> <p>Rainfall data collected by radar in the vicinity of Darwin, Australia, have been analyzed in terms of their mean, variance, autocorrelation of area-averaged rain rate, and diurnal variation. It is found that, when compared with the well-studied GATE (Global Atmospheric Research Program Atlantic Tropical Experiment) data, Darwin rainfall has larger coefficient of variation (CV), faster reduction of CV with increasing area size, weaker temporal correlation, and a strong diurnal cycle and intermittence. The coefficient of variation for Darwin rainfall has larger magnitude and exhibits larger spatial variability over the sea portion than over the land portion within the area of radar coverage. Stationary, and nonstationary models have been used to study the sampling errors associated with space-based rainfall measurement. The nonstationary model shows that the sampling error is sensitive to the starting sampling time for some sampling frequencies, due to the diurnal cycle of rain, but not for others. Sampling experiments using data also show such sensitivity. When the errors are averaged over starting time, the results of the experiments and the stationary and nonstationary models match each other very closely. In the small areas for which data are available for I>oth Darwin and GATE, the sampling error is expected to be larger for Darwin due to its larger CV.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27793590','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27793590"><span>Individual differences in children's global motion sensitivity correlate with TBSS-based measures of the superior longitudinal fasciculus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Braddick, Oliver; Atkinson, Janette; Akshoomoff, Natacha; Newman, Erik; Curley, Lauren B; Gonzalez, Marybel Robledo; Brown, Timothy; Dale, Anders; Jernigan, Terry</p> <p>2017-12-01</p> <p>Reduced global motion sensitivity, relative to global static form sensitivity, has been found in children with many neurodevelopmental disorders, leading to the "dorsal stream vulnerability" hypothesis (Braddick et al., 2003). Individual differences in typically developing children's global motion thresholds have been shown to be associated with variations in specific parietal cortical areas (Braddick et al., 2016). Here, in 125 children aged 5-12years, we relate individual differences in global motion and form coherence thresholds to fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF), a major fibre tract communicating between parietal lobe and anterior cortical areas. We find a positive correlation between FA of the right SLF and individual children's sensitivity to global motion coherence, while FA of the left SLF shows a negative correlation. Further analysis of parietal cortical area data shows that this is also asymmetrical, showing a stronger association with global motion sensitivity in the left hemisphere. None of these associations hold for an analogous measure of global form sensitivity. We conclude that a complex pattern of structural asymmetry, including the parietal lobe and the superior longitudinal fasciculus, is specifically linked to the development of sensitivity to global visual motion. This pattern suggests that individual differences in motion sensitivity are primarily linked to parietal brain areas interacting with frontal systems in making decisions on integrated motion signals, rather than in the extra-striate visual areas that perform the initial integration. The basis of motion processing deficits in neurodevelopmental disorders may depend on these same structures. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.7889E..0JL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.7889E..0JL"><span>Optimized doppler optical coherence tomography for choroidal capillary vasculature imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Gangjun; Qi, Wenjuan; Yu, Lingfeng; Chen, Zhongping</p> <p>2011-03-01</p> <p>In this paper, we analyzed the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images were compared. Blood vessels down to capillary level were able to be obtained with the optimized optical coherence color Doppler and Doppler variance method. For in-vivo imaging of human eyes, bulkmotion induced bulk phase must be identified and removed before using color Doppler method. It was found that the Doppler variance method is not sensitive to bulk motion and the method can be used without removing the bulk phase. A novel, simple and fast segmentation algorithm to indentify retinal pigment epithelium (RPE) was proposed and used to segment the retinal and choroidal layer. The algorithm was based on the detected OCT signal intensity difference between different layers. A spectrometer-based Fourier domain OCT system with a central wavelength of 890 nm and bandwidth of 150nm was used in this study. The 3-dimensional imaging volume contained 120 sequential two dimensional images with 2048 A-lines per image. The total imaging time was 12 seconds and the imaging area was 5x5 mm2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3176914','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3176914"><span>Deconstructing risk: Separable encoding of variance and skewness in the brain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Symmonds, Mkael; Wright, Nicholas D.; Bach, Dominik R.; Dolan, Raymond J.</p> <p>2011-01-01</p> <p>Risky choice entails a need to appraise all possible outcomes and integrate this information with individual risk preference. Risk is frequently quantified solely by statistical variance of outcomes, but here we provide evidence that individuals’ choice behaviour is sensitive to both dispersion (variance) and asymmetry (skewness) of outcomes. Using a novel behavioural paradigm in humans, we independently manipulated these ‘summary statistics’ while scanning subjects with fMRI. We show that a behavioural sensitivity to variance and skewness is mirrored in neuroanatomically dissociable representations of these quantities, with parietal cortex showing sensitivity to the former and prefrontal cortex and ventral striatum to the latter. Furthermore, integration of these objective risk metrics with subjective risk preference is expressed in a subject-specific coupling between neural activity and choice behaviour in anterior insula. Our findings show that risk is neither monolithic from a behavioural nor neural perspective and its decomposition is evident both in distinct behavioural preferences and in segregated underlying brain representations. PMID:21763444</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.2305S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.2305S"><span>On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saynisch, J.; Irrgang, C.; Thomas, M.</p> <p>2018-03-01</p> <p>Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fitting constants could be analyzed for physical properties of the ocean, e.g., the heat budget. To test and evaluate this approach, synthetic true and proxy magnetic signals are derived from a global circulation model of the ocean. Both data sets are compared in dependence of location and time scale. We study and report when and where the proxy data describe the true signal sufficiently well. Correlations above 0.6 and explained variances of above 80% can be reported for large parts of the Antarctic ocean, thus explaining the major part of the global, subseasonal magnetic signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22027935','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22027935"><span>Learning effect and test-retest variability of pulsar perimetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Salvetat, Maria Letizia; Zeppieri, Marco; Parisi, Lucia; Johnson, Chris A; Sampaolesi, Roberto; Brusini, Paolo</p> <p>2013-03-01</p> <p>To assess Pulsar Perimetry learning effect and test-retest variability (TRV) in normal (NORM), ocular hypertension (OHT), glaucomatous optic neuropathy (GON), and primary open-angle glaucoma (POAG) eyes. This multicenter prospective study included 43 NORM, 38 OHT, 33 GON, and 36 POAG patients. All patients underwent standard automated perimetry and Pulsar Contrast Perimetry using white stimuli modulated in phase and counterphase at 30 Hz (CP-T30W test). The learning effect and TRV for Pulsar Perimetry were assessed for 3 consecutive visual fields (VFs). The learning effect were evaluated by comparing results from the first session with the other 2. TRV was assessed by calculating the mean of the differences (in absolute value) between retests for each combination of single tests. TRV was calculated for Mean Sensitivity, Mean Defect, and single Mean Sensitivity for each 66 test locations. Influence of age, VF eccentricity, and loss severity on TRV were assessed using linear regression analysis and analysis of variance. The learning effect was not significant in any group (analysis of variance, P>0.05). TRV for Mean Sensitivity and Mean Defect was significantly lower in NORM and OHT (0.6 ± 0.5 spatial resolution contrast units) than in GON and POAG (0.9 ± 0.5 and 1.0 ± 0.8 spatial resolution contrast units, respectively) (Kruskal-Wallis test, P=0.04); however, the differences in NORM among age groups was not significant (Kruskal-Wallis test, P>0.05). Slight significant differences were found for the single Mean Sensitivity TRV among single locations (Duncan test, P<0.05). For POAG, TRV significantly increased with decreasing Mean Sensitivity and increasing Mean Defect (linear regression analysis, P<0.01). The Pulsar Perimetry CP-T30W test did not show significant learning effect in patients with standard automated perimetry experience. TRV for global indices was generally low, and was not related to patient age; it was only slightly affected by VF defect eccentricity, and significantly influenced by VF loss severity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1211541-entropy-vs-energy-waveform-processing-comparison-based-heat-equation','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1211541-entropy-vs-energy-waveform-processing-comparison-based-heat-equation"><span>Entropy vs. energy waveform processing: A comparison based on the heat equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hughes, Michael S.; McCarthy, John E.; Bruillard, Paul J.; ...</p> <p>2015-05-25</p> <p>Virtually all modern imaging devices collect electromagnetic or acoustic waves and use the energy carried by these waves to determine pixel values to create what is basically an “energy” picture. However, waves also carry “information”, as quantified by some form of entropy, and this may also be used to produce an “information” image. Numerous published studies have demonstrated the advantages of entropy, or “information imaging”, over conventional methods. The most sensitive information measure appears to be the joint entropy of the collected wave and a reference signal. The sensitivity of repeated experimental observations of a slowly-changing quantity may be definedmore » as the mean variation (i.e., observed change) divided by mean variance (i.e., noise). Wiener integration permits computation of the required mean values and variances as solutions to the heat equation, permitting estimation of their relative magnitudes. There always exists a reference, such that joint entropy has larger variation and smaller variance than the corresponding quantities for signal energy, matching observations of several studies. Moreover, a general prescription for finding an “optimal” reference for the joint entropy emerges, which also has been validated in several studies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090032029','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090032029"><span>Evaluation of TRMM Ground-Validation Radar-Rain Errors Using Rain Gauge Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Jianxin; Wolff, David B.</p> <p>2009-01-01</p> <p>Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) spaced-based rain estimates, and hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar-gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar-gauge differences into the gauge area-point error variance and radar rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar rain estimates at various times scales, and are helpful to better understand the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar rain products to validate versatile spaced-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement, and other satellites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.8817L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.8817L"><span>Evaluation of globally available precipitation data products as input for water balance models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lebrenz, H.; Bárdossy, A.</p> <p>2009-04-01</p> <p>Subject of this study is the evaluation of globally available precipitation data products, which are intended to be used as input variables for water balance models in ungauged basins. The selected data sources are a) the Global Precipitation Climatology Centre (GPCC), b) the Global Precipitation Climatology Project (GPCP) and c) the Climate Research Unit (CRU), resulting into twelve globally available data products. The data products imply different data bases, different derivation routines and varying resolutions in time and space. For validation purposes, the ground data from South Africa were screened on homogeneity and consistency by various tests and an outlier detection using multi-linear regression was performed. External Drift Kriging was subsequently applied on the ground data and the resulting precipitation arrays were compared to the different products with respect to quantity and variance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27604952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27604952"><span>Confidence intervals for the between-study variance in random-effects meta-analysis using generalised heterogeneity statistics: should we use unequal tails?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jackson, Dan; Bowden, Jack</p> <p>2016-09-07</p> <p>Confidence intervals for the between study variance are useful in random-effects meta-analyses because they quantify the uncertainty in the corresponding point estimates. Methods for calculating these confidence intervals have been developed that are based on inverting hypothesis tests using generalised heterogeneity statistics. Whilst, under the random effects model, these new methods furnish confidence intervals with the correct coverage, the resulting intervals are usually very wide, making them uninformative. We discuss a simple strategy for obtaining 95 % confidence intervals for the between-study variance with a markedly reduced width, whilst retaining the nominal coverage probability. Specifically, we consider the possibility of using methods based on generalised heterogeneity statistics with unequal tail probabilities, where the tail probability used to compute the upper bound is greater than 2.5 %. This idea is assessed using four real examples and a variety of simulation studies. Supporting analytical results are also obtained. Our results provide evidence that using unequal tail probabilities can result in shorter 95 % confidence intervals for the between-study variance. We also show some further results for a real example that illustrates how shorter confidence intervals for the between-study variance can be useful when performing sensitivity analyses for the average effect, which is usually the parameter of primary interest. We conclude that using unequal tail probabilities when computing 95 % confidence intervals for the between-study variance, when using methods based on generalised heterogeneity statistics, can result in shorter confidence intervals. We suggest that those who find the case for using unequal tail probabilities convincing should use the '1-4 % split', where greater tail probability is allocated to the upper confidence bound. The 'width-optimal' interval that we present deserves further investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910012351','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910012351"><span>On the Response of the Special Sensor Microwave/Imager to the Marine Environment: Implications for Atmospheric Parameter Retrievals. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Petty, Grant W.</p> <p>1990-01-01</p> <p>A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/5224609','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/5224609"><span>Testing life history predictions in a long-lived seabird: A population matrix approach with improved parameter estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Doherty, P.F.; Schreiber, E.A.; Nichols, J.D.; Hines, J.E.; Link, W.A.; Schenk, G.A.; Schreiber, R.W.</p> <p>2004-01-01</p> <p>Life history theory and associated empirical generalizations predict that population growth rate (λ) in long-lived animals should be most sensitive to adult survival; the rates to which λ is most sensitive should be those with the smallest temporal variances; and stochastic environmental events should most affect the rates to which λ is least sensitive. To date, most analyses attempting to examine these predictions have been inadequate, their validity being called into question by problems in estimating parameters, problems in estimating the variability of parameters, and problems in measuring population sensitivities to parameters. We use improved methodologies in these three areas and test these life-history predictions in a population of red-tailed tropicbirds (Phaethon rubricauda). We support our first prediction that λ is most sensitive to survival rates. However the support for the second prediction that these rates have the smallest temporal variance was equivocal. Previous support for the second prediction may be an artifact of a high survival estimate near the upper boundary of 1 and not a result of natural selection canalizing variances alone. We did not support our third prediction that effects of environmental stochasticity (El Niño) would most likely be detected in vital rates to which λ was least sensitive and which are thought to have high temporal variances. Comparative data-sets on other seabirds, within and among orders, and in other locations, are needed to understand these environmental effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1259901-identifying-sensitive-ranges-global-warming-precipitation-change-dependence-convective-parameters','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1259901-identifying-sensitive-ranges-global-warming-precipitation-change-dependence-convective-parameters"><span>Identifying sensitive ranges in global warming precipitation change dependence on convective parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bernstein, Diana N.; Neelin, J. David</p> <p>2016-04-28</p> <p>A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1259901-identifying-sensitive-ranges-global-warming-precipitation-change-dependence-convective-parameters','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1259901-identifying-sensitive-ranges-global-warming-precipitation-change-dependence-convective-parameters"><span>Identifying sensitive ranges in global warming precipitation change dependence on convective parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bernstein, Diana N.; Neelin, J. David</p> <p></p> <p>A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1016381','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1016381"><span>Assessing uncertainty in ecological systems using global sensitivity analyses: a case example of simulated wolf reintroduction effects on elk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fieberg, J.; Jenkins, Kurt J.</p> <p>2005-01-01</p> <p>Often landmark conservation decisions are made despite an incomplete knowledge of system behavior and inexact predictions of how complex ecosystems will respond to management actions. For example, predicting the feasibility and likely effects of restoring top-level carnivores such as the gray wolf (Canis lupus) to North American wilderness areas is hampered by incomplete knowledge of the predator-prey system processes and properties. In such cases, global sensitivity measures, such as Sobola?? indices, allow one to quantify the effect of these uncertainties on model predictions. Sobola?? indices are calculated by decomposing the variance in model predictions (due to parameter uncertainty) into main effects of model parameters and their higher order interactions. Model parameters with large sensitivity indices can then be identified for further study in order to improve predictive capabilities. Here, we illustrate the use of Sobola?? sensitivity indices to examine the effect of parameter uncertainty on the predicted decline of elk (Cervus elaphus) population sizes following a hypothetical reintroduction of wolves to Olympic National Park, Washington, USA. The strength of density dependence acting on survival of adult elk and magnitude of predation were the most influential factors controlling elk population size following a simulated wolf reintroduction. In particular, the form of density dependence in natural survival rates and the per-capita predation rate together accounted for over 90% of variation in simulated elk population trends. Additional research on wolf predation rates on elk and natural compensations in prey populations is needed to reliably predict the outcome of predatora??prey system behavior following wolf reintroductions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.5545A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.5545A"><span>Environmental controls of marine productivity hot spots around Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arrigo, Kevin R.; van Dijken, Gert L.; Strong, Aaron L.</p> <p>2015-08-01</p> <p>Antarctic coastal polynyas are biologically rich ecosystems that support large populations of mammals and birds and are globally significant sinks of atmospheric carbon dioxide. To support local phytoplankton blooms, these highly productive ecosystems require a large input of iron (Fe), the sources of which are poorly known. Here we assess the relative importance of six different environmental factors in controlling the amount of phytoplankton biomass and rates of net primary production (NPP) in 46 coastal polynyas around Antarctica. Data presented here suggest that melting ice shelves are a primary supplier of Fe to coastal polynyas, with basal melt rates explaining 59% of the between-polynya variance in mean chlorophyll a (Chl a) concentration. In a multiple regression analysis, which explained 78% of the variance in chlorophyll a (Chl a) between polynyas, basal melt rate explained twice as much of the variance as the next most important variable. Fe upwelled from sediments, which is partly controlled by continental shelf width, was also important in some polynyas. Of secondary importance to phytoplankton abundance and NPP were sea surface temperature and polynya size. Surprisingly, differences in light availability and the length of the open water season explained little or none of the variance in either Chl a or NPP between polynyas. If the productivity of coastal polynyas is indeed sensitive to the release of Fe from melting ice shelves, future changes in ice shelf melt rates could dramatically influence Antarctic coastal ecosystems and the ability of continental shelf waters to sequester atmospheric carbon dioxide. This article was corrected on 26 AUG 2015. See the end of the full text for details.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22253379-goal-oriented-sensitivity-analysis-lattice-kinetic-monte-carlo-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22253379-goal-oriented-sensitivity-analysis-lattice-kinetic-monte-carlo-simulations"><span>Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Arampatzis, Georgios, E-mail: garab@math.uoc.gr; Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003; Katsoulakis, Markos A., E-mail: markos@math.umass.edu</p> <p>2014-03-28</p> <p>In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that themore » new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB source code.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA522432','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA522432"><span>Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-12-01</p> <p>slight longitudinal variations, with secondary high- latitude peaks occurring over Greenland and Europe . As the QBO changes to the westerly phase, the...equatorial GW temperature variances from suborbital data (e.g., Eck- ermann et al. 1995). The extratropical wave variances are generally larger in the...emanating from tropopause altitudes, presumably radiated from tropospheric jet stream in- stabilities associated with baroclinic storm systems that</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3119020','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3119020"><span>Risk-sensitivity and the mean-variance trade-off: decision making in sensorimotor control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nagengast, Arne J.; Braun, Daniel A.; Wolpert, Daniel M.</p> <p>2011-01-01</p> <p>Numerous psychophysical studies suggest that the sensorimotor system chooses actions that optimize the average cost associated with a movement. Recently, however, violations of this hypothesis have been reported in line with economic theories of decision-making that not only consider the mean payoff, but are also sensitive to risk, that is the variability of the payoff. Here, we examine the hypothesis that risk-sensitivity in sensorimotor control arises as a mean-variance trade-off in movement costs. We designed a motor task in which participants could choose between a sure motor action that resulted in a fixed amount of effort and a risky motor action that resulted in a variable amount of effort that could be either lower or higher than the fixed effort. By changing the mean effort of the risky action while experimentally fixing its variance, we determined indifference points at which participants chose equiprobably between the sure, fixed amount of effort option and the risky, variable effort option. Depending on whether participants accepted a variable effort with a mean that was higher, lower or equal to the fixed effort, they could be classified as risk-seeking, risk-averse or risk-neutral. Most subjects were risk-sensitive in our task consistent with a mean-variance trade-off in effort, thereby, underlining the importance of risk-sensitivity in computational models of sensorimotor control. PMID:21208966</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27091742','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27091742"><span>Worldwide variation in hip fracture incidence weakly aligns with genetic divergence between populations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wallace, I J; Botigué, L R; Lin, M; Smaers, J B; Henn, B M; Grine, F E</p> <p>2016-09-01</p> <p>This study investigates the influence of genetic differentiation in determining worldwide heterogeneity in osteoporosis-related hip fracture rates. The results indicate that global variation in fracture incidence exceeds that expected on the basis of random genetic variance. Worldwide, the incidence of osteoporotic hip fractures varies considerably. This variability is believed to relate mainly to non-genetic factors. It is conceivable, however, that genetic susceptibility indeed differs across populations. Here, we present the first quantitative assessment of the effects of genetic differentiation on global variability in hip fracture rates. We investigate the observed variance in publically reported age-standardized rates of hip fracture among 28 populations from around the world relative to the expected variance given the phylogenetic relatedness of these populations. The extent to which these variances are similar constitutes a "phylogenetic signal," which was measured using the K statistic. Population genetic divergence was calculated using a robust array of genome-wide single nucleotide polymorphisms. While phylogenetic signal is maximized when K > 1, a K value of only 0.103 was detected in the combined-sex fracture rate pattern across the 28 populations, indicating that fracture rates vary more than expected based on phylogenetic relationships. When fracture rates for the sexes were analyzed separately, the degree of phylogenetic signal was also found to be small (females: K = 0.102; males: K = 0.081). The lack of a strong phylogenetic signal underscores the importance of factors other than stochastic genetic diversity in shaping worldwide heterogeneity in hip fracture incidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4019404','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4019404"><span>A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bailey, Matthew; Kauwe, John S. K.; Maxwell, Taylor J.</p> <p>2014-01-01</p> <p>Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (GxG), or gene-by-environment (GxE) interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRTMV) or either effect alone (LRTM or LRTV) in the presence of covariates. Using extensive simulations for our method and others we found that all parametric tests were sensitive to non-normality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean-only functional variant we demonstrate how linkage disequilibrium (LD) can produce variance-heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D’ and relatively low r2 values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect gene-by-gene interactions and also how vQTL are related to relationship loci (rQTL) and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait. PMID:24482837</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..560..364A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..560..364A"><span>Variance analysis of forecasted streamflow maxima in a wet temperate climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.</p> <p>2018-05-01</p> <p>Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JCAMD..19..203D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JCAMD..19..203D"><span>Towards the chemometric dissection of peptide - HLA-A*0201 binding affinity: comparison of local and global QSAR models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doytchinova, Irini A.; Walshe, Valerie; Borrow, Persephone; Flower, Darren R.</p> <p>2005-03-01</p> <p>The affinities of 177 nonameric peptides binding to the HLA-A*0201 molecule were measured using a FACS-based MHC stabilisation assay and analysed using chemometrics. Their structures were described by global and local descriptors, QSAR models were derived by genetic algorithm, stepwise regression and PLS. The global molecular descriptors included molecular connectivity χ indices, κ shape indices, E-state indices, molecular properties like molecular weight and log P, and three-dimensional descriptors like polarizability, surface area and volume. The local descriptors were of two types. The first used a binary string to indicate the presence of each amino acid type at each position of the peptide. The second was also position-dependent but used five z-scales to describe the main physicochemical properties of the amino acids forming the peptides. The models were developed using a representative training set of 131 peptides and validated using an independent test set of 46 peptides. It was found that the global descriptors could not explain the variance in the training set nor predict the affinities of the test set accurately. Both types of local descriptors gave QSAR models with better explained variance and predictive ability. The results suggest that, in their interactions with the MHC molecule, the peptide acts as a complicated ensemble of multiple amino acids mutually potentiating each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.288...66D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.288...66D"><span>Object-based classification of global undersea topography and geomorphological features from the SRTM30_PLUS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dekavalla, Maria; Argialas, Demetre</p> <p>2017-07-01</p> <p>The analysis of undersea topography and geomorphological features provides necessary information to related disciplines and many applications. The development of an automated knowledge-based classification approach of undersea topography and geomorphological features is challenging due to their multi-scale nature. The aim of the study is to develop and evaluate an automated knowledge-based OBIA approach to: i) decompose the global undersea topography to multi-scale regions of distinct morphometric properties, and ii) assign the derived regions to characteristic geomorphological features. First, the global undersea topography was decomposed through the SRTM30_PLUS bathymetry data to the so-called morphometric objects of discrete morphometric properties and spatial scales defined by data-driven methods (local variance graphs and nested means) and multi-scale analysis. The derived morphometric objects were combined with additional relative topographic position information computed with a self-adaptive pattern recognition method (geomorphons), and auxiliary data and were assigned to characteristic undersea geomorphological feature classes through a knowledge base, developed from standard definitions. The decomposition of the SRTM30_PLUS data to morphometric objects was considered successful for the requirements of maximizing intra-object and inter-object heterogeneity, based on the near zero values of the Moran's I and the low values of the weighted variance index. The knowledge-based classification approach was tested for its transferability in six case studies of various tectonic settings and achieved the efficient extraction of 11 undersea geomorphological feature classes. The classification results for the six case studies were compared with the digital global seafloor geomorphic features map (GSFM). The 11 undersea feature classes and their producer's accuracies in respect to the GSFM relevant areas were Basin (95%), Continental Shelf (94.9%), Trough (88.4%), Plateau (78.9%), Continental Slope (76.4%), Trench (71.2%), Abyssal Hill (62.9%), Abyssal Plain (62.4%), Ridge (49.8%), Seamount (48.8%) and Continental Rise (25.4%). The knowledge-based OBIA classification approach was considered transferable since the percentages of spatial and thematic agreement between the most of the classified undersea feature classes and the GSFM exhibited low deviations across the six case studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28463523','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28463523"><span>Everyday cognitive functioning and global cognitive performance are differentially associated with physical frailty and chronological age in older Chinese men and women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Tianyin; Wong, Gloria Hy; Luo, Hao; Tang, Jennifer Ym; Xu, Jiaqi; Choy, Jacky Cp; Lum, Terry Ys</p> <p>2017-05-02</p> <p>Intact cognition is a key determinant of quality of life. Here, we investigated the relative contribution of age and physical frailty to global and everyday cognition in older adults. Data came from 1396 community-dwelling, healthy Chinese older adults aged 65 or above. We measured their global cognition using the Cantonese Chinese Montreal Cognitive Assessment, everyday cognition with the short Chinese Lawton Instrumental Activities Daily Living scale, and physical frailty using the Fatigue, Resistance, Ambulation, Illness, and Loss of Weight Scale and grip strength. Multiple regression analysis was used to evaluate the comparative roles of age and physical frailty. In the global cognition model, age explained 12% and physical frailty explained 8% of the unique variance. This pattern was only evident in women, while the reverse (physical frailty explains a greater extent of variance) was evident in men. In the everyday cognition model, physical frailty explained 18% and chronological age explained 9% of the unique variance, with similar results across both genders. Physical frailty is a stronger indicator than age for everyday cognition in both genders and for global cognition in men. Our findings suggest that there are alternative indexes of cognitive aging than chronological age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23330628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23330628"><span>A prospective study of differential sources of school-related social support and adolescent global life satisfaction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Siddall, James; Huebner, E Scott; Jiang, Xu</p> <p>2013-01-01</p> <p>This study examined the cross-sectional and prospective relationships between three sources of school-related social support (parent involvement, peer support for learning, and teacher-student relationships) and early adolescents' global life satisfaction. The participants were 597 middle school students from 1 large school in the southeastern United States who completed measures of school social climate and life satisfaction on 2 occasions, 5 months apart. The results revealed that school-related experiences in terms of social support for learning contributed substantial amounts of variance to individual differences in adolescents' satisfaction with their lives as a whole. Cross-sectional multiple regression analyses of the differential contributions of the sources of support demonstrated that family and peer support for learning contributed statistically significant, unique variance to global life satisfaction reports. Prospective multiple regression analyses demonstrated that only family support for learning continued to contribute statistically significant, unique variance to the global life satisfaction reports at Time 2. The results suggest that school-related experiences, especially family-school interactions, spill over into adolescents' overall evaluations of their lives at a time when direct parental involvement in schooling and adolescents' global life satisfaction are generally declining. Recommendations for future research and educational policies and practices are discussed. © 2013 American Orthopsychiatric Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000025078','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000025078"><span>An Initial Study of the Sensitivity of Aircraft Vortex Spacing System (AVOSS) Spacing Sensitivity to Weather and Configuration Input Parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Riddick, Stephen E.; Hinton, David A.</p> <p>2000-01-01</p> <p>A study has been performed on a computer code modeling an aircraft wake vortex spacing system during final approach. This code represents an initial engineering model of a system to calculate reduced approach separation criteria needed to increase airport productivity. This report evaluates model sensitivity toward various weather conditions (crosswind, crosswind variance, turbulent kinetic energy, and thermal gradient), code configurations (approach corridor option, and wake demise definition), and post-processing techniques (rounding of provided spacing values, and controller time variance).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29481914','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29481914"><span>Associations among fear, disgust, and eating pathology in undergraduate men and women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anderson, Lisa M; Reilly, Erin E; Thomas, Jennifer J; Eddy, Kamryn T; Franko, Debra L; Hormes, Julia M; Anderson, Drew A</p> <p>2018-06-01</p> <p>Fear and disgust are distinct emotions that have been independently linked with EDs and may motivate avoidance behaviors that may be relevant targets for ED interventions (e.g., food rejection). Despite similar motivational function, it is possible that one emotion is more strongly associated with ED symptoms, relative to the other. Given that emerging evidence suggests that disgust-based behavior may be more difficult to change than fear-based behaviors, research is needed to evaluate whether each emotion differentially relates to ED symptoms. Therefore, the current study tested the relative importance of fear and disgust in accounting for variance in ED symptoms. Participants included undergraduate men (n = 127) and women (n = 263) from a university in the northeast US. Participants completed self-report measures assessing demographics, disordered eating attitudes and behaviors, and visual analog scales assessing fear and disgust responses to high-calorie food images, low-calorie food images, and non-food fear and disgust images. Bivariate correlations revealed significant positive associations among fear, disgust, and EDE-Q global symptom scores. Relative weights analysis results yielded relative importance weights that suggested disgust responding to high calorie food images accounts for the greatest total variance in EDE-Q global symptom scores in men, and fear responding to high calorie food images accounts for the greatest total variance in EDE-Q scores in women. Findings provide initial evidence that investigative and clinical efforts should consider fear and disgust as unique facets of negative affect with different patterns of relative importance to ED symptoms in undergraduate men and women. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9028M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9028M"><span>Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mai, Juliane; Tolson, Bryan</p> <p>2017-04-01</p> <p>The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters or model processes. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method independency of the convergence testing method, we applied it to three widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991, Campolongo et al., 2000), the variance-based Sobol' method (Solbol' 1993, Saltelli et al. 2010) and a derivative-based method known as Parameter Importance index (Goehler et al. 2013). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. Subsequently, we focus on the model-independency by testing the frugal method using the hydrologic model mHM (www.ufz.de/mhm) with about 50 model parameters. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed (and published) sensitivity results. This is one step towards reliable and transferable, published sensitivity results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23544661','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23544661"><span>Global variance in female population height: the influence of education, income, human development, life expectancy, mortality and gender inequality in 96 nations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mark, Quentin J</p> <p>2014-01-01</p> <p>Human height is a heritable trait that is known to be influenced by environmental factors and general standard of living. Individual and population stature is correlated with health, education and economic achievement. Strong sexual selection pressures for stature have been observed in multiple diverse populations, however; there is significant global variance in gender equality and prohibitions on female mate selection. This paper explores the contribution of general standard of living and gender inequality to the variance in global female population heights. Female population heights of 96 nations were culled from previously published sources and public access databases. Factor analysis with United Nations international data on education rates, life expectancy, incomes, maternal and childhood mortality rates, ratios of gender participation in education and politics, the Human Development Index (HDI) and the Gender Inequality Index (GII) was run. Results indicate that population heights vary more closely with gender inequality than with population health, income or education.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B31D0602T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B31D0602T"><span>Diagnosis of Processes Controlling Dissolved Organic Carbon (DOC) Export in a Subarctic Region by a Dynamic Ecosystem Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, J.</p> <p>2015-12-01</p> <p>Permafrost thawing in high latitudes allows more soil organic carbon (SOC) to become hydrologically accessible. This can increase dissolved organic carbon (DOC) exports and carbon release to the atmosphere as CO2 and CH4, with a positive feedback to regional and global climate warming. However, this portion of carbon loss through DOC export is often neglected in ecosystem models. In this paper, we incorporate a set of DOC-related processes (DOC production, mineralization, diffusion, sorption-desorption and leaching) into an Arctic-enabled version of the dynamic ecosystem model LPJ-GUESS (LPJ-GUESS WHyMe) to mechanistically model the DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS WHyMe with these DOC processes is applied to the Stordalen catchment in northern Sweden. The relative importance of different DOC-related processes for mineral and peatland soils for this region have been explored at both monthly and annual scales based on a detailed variance-based Sobol sensitivity analysis. For mineral soils, the annual DOC export is dominated by DOC fluxes in snowmelt seasons and the peak in spring is related to the runoff passing through top organic rich layers. Two processes, DOC sorption-desorption and production, are found to contribute most to the annual variance in DOC export. For peatland soils, the DOC export during snowmelt seasons is constrained by frozen soils and the processes of DOC production and mineralization, determining the magnitudes of DOC desorption in snowmelt seasons as well as DOC sorption in the rest of months, play the most important role in annual variances of DOC export. Generally, the seasonality of DOC fluxes is closely correlated with runoff seasonality in this region. The current implementation has demonstrated that DOC-related processes in the framework of LPJ-GUESS WHyMe are at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The quantified contributions from different processes on DOC export dynamics could be further linked to the climate change, vegetation composition change and permafrost thawing in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=197968&sitype=pr&','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=197968&sitype=pr&"><span>Age Dependent Variability in Gene Expression in Fischer 344 ...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in gene expression as an underlying cause for increased variability of phenotypic response in the aged. In this study, we utilized global analysis to compare variation in constitutive gene expression in the retinae of young (4 mos), middle-aged (11 mos) and aged (23 mos) Fischer 344 rats. Three hundred and forty transcripts were identified in which variance in expression increased from 4 to 23 mos of age, while only twelve transcripts were found for which it decreased. Functional roles for identified genes were clustered in basic biological categories including cell communication, function, metabolism and response to stimuli. Our data suggest that population stochastically-induced variability should be considered in assessing sensitivity due to old age. Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237275','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237275"><span>Long-Term Global Morphology of Gravity Wave Activity Using UARS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.</p> <p>1998-01-01</p> <p>This is the first quarter's report on research to extract global gravity-wave data from satellite data and to model those observations synoptically. Preliminary analysis of global maps of extracted middle atmospheric temperature variance from the CRISTA instrument is presented, which appear to contain gravity-wave information. Corresponding simulations of global gravity-wave and mountain-wave activity during this mission period are described using global ray-tracing and mountain-wave models, and interesting similarities among simulated data and CRISTA data are noted. Climatological simulations of mesospheric gravity-wave activity using the HWM-03 wind-temperature climatology are also reported, for comparison with UARS MLS data. Preparatory work on modeling of gravity wave observations from space-based platforms and subsequent interpretation of the MLS gravity-wave product are also described. Preliminary interpretation and relation to the research objectives are provided, and further action for the next quarter's research is recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=cancer+AND+Lung&id=EJ857033','ERIC'); return false;" href="https://eric.ed.gov/?q=cancer+AND+Lung&id=EJ857033"><span>Smoking and Cancers: Case-Robust Analysis of a Classic Data Set</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bentler, Peter M.; Satorra, Albert; Yuan, Ke-Hai</p> <p>2009-01-01</p> <p>A typical structural equation model is intended to reproduce the means, variances, and correlations or covariances among a set of variables based on parameter estimates of a highly restricted model. It is not widely appreciated that the sample statistics being modeled can be quite sensitive to outliers and influential observations, leading to bias…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053271&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053271&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DGlobal%2Bwarming"><span>Global-scale modes of surface temperature variability on interannual to century timescales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mann, Michael E.; Park, Jeffrey</p> <p>1994-01-01</p> <p>Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240226-approaches-analyze-sensitivity-simulated-hydrologic-fluxes-model-parameters-community-land-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240226-approaches-analyze-sensitivity-simulated-hydrologic-fluxes-model-parameters-community-land-model"><span>On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...</p> <p>2015-12-04</p> <p>Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017925','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017925"><span>The pyramid system for multiscale raster analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>De Cola, L.; Montagne, N.</p> <p>1993-01-01</p> <p>Geographical research requires the management and analysis of spatial data at multiple scales. As part of the U.S. Geological Survey's global change research program a software system has been developed that reads raster data (such as an image or digital elevation model) and produces a pyramid of aggregated lattices as well as various measurements of spatial complexity. For a given raster dataset the system uses the pyramid to report: (1) mean, (2) variance, (3) a spatial autocorrelation parameter based on multiscale analysis of variance, and (4) a monofractal scaling parameter based on the analysis of isoline lengths. The system is applied to 1-km digital elevation model (DEM) data for a 256-km2 region of central California, as well as to 64 partitions of the region. PYRAMID, which offers robust descriptions of data complexity, also is used to describe the behavior of topographic aspect with scale. ?? 1993.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23180899','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23180899"><span>Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Donnellan, M Brent; Kenny, David A; Trzesniewski, Kali H; Lucas, Richard E; Conger, Rand D</p> <p>2012-12-01</p> <p>The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3501685','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3501685"><span>Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.</p> <p>2012-01-01</p> <p>The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development. PMID:23180899</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4915747','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4915747"><span>Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chan, Kwun Chuen Gary; Yam, Sheung Chi Phillip; Zhang, Zheng</p> <p>2015-01-01</p> <p>Summary The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function. PMID:27346982</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27346982','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27346982"><span>Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Kwun Chuen Gary; Yam, Sheung Chi Phillip; Zhang, Zheng</p> <p>2016-06-01</p> <p>The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811303W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811303W"><span>False alarms: How early warning signals falsely predict abrupt sea ice loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, Till J. W.; Eisenman, Ian</p> <p>2016-04-01</p> <p>Uncovering universal early warning signals for critical transitions has become a coveted goal in diverse scientific disciplines, ranging from climate science to financial mathematics. There has been a flurry of recent research proposing such signals, with increasing autocorrelation and increasing variance being among the most widely discussed candidates. A number of studies have suggested that increasing autocorrelation alone may suffice to signal an impending transition, although some others have questioned this. Here we consider variance and autocorrelation in the context of sea ice loss in an idealized model of the global climate system. The model features no bifurcation, nor increased rate of retreat, as the ice disappears. Nonetheless, the autocorrelation of summer sea ice area is found to increase in a global warming scenario. The variance, by contrast, decreases. A simple physical mechanism is proposed to explain the occurrence of increasing autocorrelation but not variance when there is no approaching bifurcation. Additionally, a similar mechanism is shown to allow an increase in both indicators with no physically attainable bifurcation. This implies that relying on autocorrelation and variance as early warning signals can raise false alarms in the climate system, warning of "tipping points" that are not actually there.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032852','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032852"><span>Joint variability of global runoff and global sea surface temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCabe, G.J.; Wolock, D.M.</p> <p>2008-01-01</p> <p>Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4498611','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4498611"><span>Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Arampatzis, Georgios; Katsoulakis, Markos A.; Pantazis, Yannis</p> <p>2015-01-01</p> <p>Existing sensitivity analysis approaches are not able to handle efficiently stochastic reaction networks with a large number of parameters and species, which are typical in the modeling and simulation of complex biochemical phenomena. In this paper, a two-step strategy for parametric sensitivity analysis for such systems is proposed, exploiting advantages and synergies between two recently proposed sensitivity analysis methodologies for stochastic dynamics. The first method performs sensitivity analysis of the stochastic dynamics by means of the Fisher Information Matrix on the underlying distribution of the trajectories; the second method is a reduced-variance, finite-difference, gradient-type sensitivity approach relying on stochastic coupling techniques for variance reduction. Here we demonstrate that these two methods can be combined and deployed together by means of a new sensitivity bound which incorporates the variance of the quantity of interest as well as the Fisher Information Matrix estimated from the first method. The first step of the proposed strategy labels sensitivities using the bound and screens out the insensitive parameters in a controlled manner. In the second step of the proposed strategy, a finite-difference method is applied only for the sensitivity estimation of the (potentially) sensitive parameters that have not been screened out in the first step. Results on an epidermal growth factor network with fifty parameters and on a protein homeostasis with eighty parameters demonstrate that the proposed strategy is able to quickly discover and discard the insensitive parameters and in the remaining potentially sensitive parameters it accurately estimates the sensitivities. The new sensitivity strategy can be several times faster than current state-of-the-art approaches that test all parameters, especially in “sloppy” systems. In particular, the computational acceleration is quantified by the ratio between the total number of parameters over the number of the sensitive parameters. PMID:26161544</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.472.1458D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.472.1458D"><span>Prospects for discovering pulsars in future continuum surveys using variance imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, S.; Johnston, S.; Hobbs, G.</p> <p>2017-12-01</p> <p>In our previous paper, we developed a formalism for computing variance images from standard, interferometric radio images containing time and frequency information. Variance imaging with future radio continuum surveys allows us to identify radio pulsars and serves as a complement to conventional pulsar searches that are most sensitive to strictly periodic signals. Here, we carry out simulations to predict the number of pulsars that we can uncover with variance imaging in future continuum surveys. We show that the Australian SKA Pathfinder (ASKAP) Evolutionary Map of the Universe (EMU) survey can find ∼30 normal pulsars and ∼40 millisecond pulsars (MSPs) over and above the number known today, and similarly an all-sky continuum survey with SKA-MID can discover ∼140 normal pulsars and ∼110 MSPs with this technique. Variance imaging with EMU and SKA-MID will detect pulsars with large duty cycles and is therefore a potential tool for finding MSPs and pulsars in relativistic binary systems. Compared with current pulsar surveys at high Galactic latitudes in the Southern hemisphere, variance imaging with EMU and SKA-MID will be more sensitive, and will enable detection of pulsars with dispersion measures between ∼10 and 100 cm-3 pc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23C1663M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23C1663M"><span>Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mai, J.; Tolson, B.</p> <p>2017-12-01</p> <p>The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method's independency of the convergence testing method, we applied it to two widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991) and the variance-based Sobol' method (Solbol' 1993). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed sensitivity results. This is one step towards reliable and transferable, published sensitivity results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJSyS..46.2407W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJSyS..46.2407W"><span>An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Rui; Mansor, Maszatul M.; Purshouse, Robin C.; Fleming, Peter J.</p> <p>2015-10-01</p> <p>Many-objective optimisation problems remain challenging for many state-of-the-art multi-objective evolutionary algorithms. Preference-inspired co-evolutionary algorithms (PICEAs) which co-evolve the usual population of candidate solutions with a family of decision-maker preferences during the search have been demonstrated to be effective on such problems. However, it is unknown whether PICEAs are robust with respect to the parameter settings. This study aims to address this question. First, a global sensitivity analysis method - the Sobol' variance decomposition method - is employed to determine the relative importance of the parameters controlling the performance of PICEAs. Experimental results show that the performance of PICEAs is controlled for the most part by the number of function evaluations. Next, we investigate the effect of key parameters identified from the Sobol' test and the genetic operators employed in PICEAs. Experimental results show improved performance of the PICEAs as more preferences are co-evolved. Additionally, some suggestions for genetic operator settings are provided for non-expert users.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25409867','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25409867"><span>Development and evaluation of the INSPIRE measure of staff support for personal recovery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Williams, Julie; Leamy, Mary; Bird, Victoria; Le Boutillier, Clair; Norton, Sam; Pesola, Francesca; Slade, Mike</p> <p>2015-05-01</p> <p>No individualised standardised measure of staff support for mental health recovery exists. To develop and evaluate a measure of staff support for recovery. initial draft of measure based on systematic review of recovery processes; consultation (n = 61); and piloting (n = 20). Psychometric evaluation: three rounds of data collection from mental health service users (n = 92). INSPIRE has two sub-scales. The 20-item Support sub-scale has convergent validity (0.60) and adequate sensitivity to change. Exploratory factor analysis (variance 71.4-85.1 %, Kaiser-Meyer-Olkin 0.65-0.78) and internal consistency (range 0.82-0.85) indicate each recovery domain is adequately assessed. The 7-item Relationship sub-scale has convergent validity 0.69, test-retest reliability 0.75, internal consistency 0.89, a one-factor solution (variance 70.5 %, KMO 0.84) and adequate sensitivity to change. A 5-item Brief INSPIRE was also evaluated. INSPIRE and Brief INSPIRE demonstrate adequate psychometric properties, and can be recommended for research and clinical use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2529325','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2529325"><span>SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda</p> <p>2008-01-01</p> <p>Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes. PMID:18706080</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18706080','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18706080"><span>SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda</p> <p>2008-08-15</p> <p>It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51H1928J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51H1928J"><span>Observations-based GPP estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joiner, J.; Yoshida, Y.; Jung, M.; Tucker, C. J.; Pinzon, J. E.</p> <p>2017-12-01</p> <p>We have developed global estimates of gross primary production based on a relatively simple satellite observations-based approach using reflectance data from the MODIS instruments in the form of vegetation indices that provide information about photosynthetic capacity at both high temporal and spatial resolution and combined with information from chlorophyll solar-induced fluorescence from the Global Ozone Monitoring Experiment-2 instrument that is noisier and available only at lower temporal and spatial scales. We compare our gross primary production estimates with those from eddy covariance flux towers and show that they are competitive with more complicated extrapolated machine learning gross primary production products. Our results provide insight into the amount of variance in gross primary production that can be explained with satellite observations data and also show how processing of the satellite reflectance data is key to using it for accurate GPP estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800024641','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800024641"><span>Ozone data and mission sampling analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robbins, J. L.</p> <p>1980-01-01</p> <p>A methodology was developed to analyze discrete data obtained from the global distribution of ozone. Statistical analysis techniques were applied to describe the distribution of data variance in terms of empirical orthogonal functions and components of spherical harmonic models. The effects of uneven data distribution and missing data were considered. Data fill based on the autocorrelation structure of the data is described. Computer coding of the analysis techniques is included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29909586','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29909586"><span>Fractal dimension brain morphometry: a novel approach to quantify white matter in traumatic brain injury.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H</p> <p>2018-06-16</p> <p>Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29769407','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29769407"><span>Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pant, Sanjay</p> <p>2018-05-01</p> <p>A new class of functions, called the 'information sensitivity functions' (ISFs), which quantify the information gain about the parameters through the measurements/observables of a dynamical system are presented. These functions can be easily computed through classical sensitivity functions alone and are based on Bayesian and information-theoretic approaches. While marginal information gain is quantified by decrease in differential entropy, correlations between arbitrary sets of parameters are assessed through mutual information. For individual parameters, these information gains are also presented as marginal posterior variances, and, to assess the effect of correlations, as conditional variances when other parameters are given. The easy to interpret ISFs can be used to (a) identify time intervals or regions in dynamical system behaviour where information about the parameters is concentrated; (b) assess the effect of measurement noise on the information gain for the parameters; (c) assess whether sufficient information in an experimental protocol (input, measurements and their frequency) is available to identify the parameters; (d) assess correlation in the posterior distribution of the parameters to identify the sets of parameters that are likely to be indistinguishable; and (e) assess identifiability problems for particular sets of parameters. © 2018 The Authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12818965','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12818965"><span>Managing risk and expected financial return from selective expansion of operating room capacity: mean-variance analysis of a hospital's portfolio of surgeons.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dexter, Franklin; Ledolter, Johannes</p> <p>2003-07-01</p> <p>Surgeons using the same amount of operating room (OR) time differ in their achieved hospital contribution margins (revenue minus variable costs) by >1000%. Thus, to improve the financial return from perioperative facilities, OR strategic decisions should selectively focus additional OR capacity and capital purchasing on a few surgeons or subspecialties. These decisions use estimates of each surgeon's and/or subspecialty's contribution margin per OR hour. The estimates are subject to uncertainty (e.g., from outliers). We account for the uncertainties by using mean-variance portfolio analysis (i.e., quadratic programming). This method characterizes the problem of selectively expanding OR capacity based on the expected financial return and risk of different portfolios of surgeons. The assessment reveals whether the choices, of which surgeons have their OR capacity expanded, are sensitive to the uncertainties in the surgeons' contribution margins per OR hour. Thus, mean-variance analysis reduces the chance of making strategic decisions based on spurious information. We also assess the financial benefit of using mean-variance portfolio analysis when the planned expansion of OR capacity is well diversified over at least several surgeons or subspecialties. Our results show that, in such circumstances, there may be little benefit from further changing the portfolio to reduce its financial risk. Surgeon and subspecialty specific hospital financial data are uncertain, a fact that should be taken into account when making decisions about expanding operating room capacity. We show that mean-variance portfolio analysis can incorporate this uncertainty, thereby guiding operating room management decision-making and reducing the chance of a strategic decision being made based on spurious information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2864951','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2864951"><span>Genetic and Environmental Influences on Global Family Conflict</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Horwitz, Briana N.; Neiderhiser, Jenae M.; Ganiban, Jody M.; Spotts, Erica L.; Lichtenstein, Paul; Reiss, David</p> <p>2010-01-01</p> <p>This study examined genetic and environmental influences on global family conflict. The sample comprised 872 same-sex pairs of twin parents, their spouses/partners and one adolescent child per twin from the Twin and Offspring Study in Sweden (TOSS). The twins, spouses and child each reported on the degree of family conflict, and there was significant agreement among the family members’ ratings. These shared perspectives were explained by one common factor, indexing global family conflict. Genetic influences explained 36% of the variance in this common factor, suggesting that twins’ heritable characteristics contribute to family conflict, via genotype-environment correlation. Nonshared environmental effects explained the remaining 64% of this variance, indicating that twins’ unique childhood and/or current family experiences also play an important role. PMID:20438198</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.8105F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.8105F"><span>Input-variable sensitivity assessment for sediment transport relations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernández, Roberto; Garcia, Marcelo H.</p> <p>2017-09-01</p> <p>A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120003900&hterms=evapotranspiration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Devapotranspiration','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120003900&hterms=evapotranspiration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Devapotranspiration"><span>Evaluation of Global Observations-Based Evapotranspiration Datasets and IPCC AR4 Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mueller, B.; Seneviratne, S. I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J. B.; Guo, Z.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120003900'); toggleEditAbsImage('author_20120003900_show'); toggleEditAbsImage('author_20120003900_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120003900_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120003900_hide"></p> <p>2011-01-01</p> <p>Quantification of global land evapotranspiration (ET) has long been associated with large uncertainties due to the lack of reference observations. Several recently developed products now provide the capacity to estimate ET at global scales. These products, partly based on observational data, include satellite ]based products, land surface model (LSM) simulations, atmospheric reanalysis output, estimates based on empirical upscaling of eddycovariance flux measurements, and atmospheric water balance datasets. The LandFlux-EVAL project aims to evaluate and compare these newly developed datasets. Additionally, an evaluation of IPCC AR4 global climate model (GCM) simulations is presented, providing an assessment of their capacity to reproduce flux behavior relative to the observations ]based products. Though differently constrained with observations, the analyzed reference datasets display similar large-scale ET patterns. ET from the IPCC AR4 simulations was significantly smaller than that from the other products for India (up to 1 mm/d) and parts of eastern South America, and larger in the western USA, Australia and China. The inter-product variance is lower across the IPCC AR4 simulations than across the reference datasets in several regions, which indicates that uncertainties may be underestimated in the IPCC AR4 models due to shared biases of these simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5734726','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5734726"><span>Genetic variability of environmental sensitivity revealed by phenotypic variation in body weight and (its) correlations to physiological and behavioral traits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Quillet, Edwige; Bégout, Marie-Laure; Aupérin, Benoit; Khaw, Hooi Ling; Millot, Sandie; Valotaire, Claudiane; Kernéis, Thierry; Labbé, Laurent; Prunet, Patrick; Dupont-Nivet, Mathilde</p> <p>2017-01-01</p> <p>Adaptive phenotypic plasticity is a key component of the ability of organisms to cope with changing environmental conditions. Fish have been shown to exhibit a substantial level of phenotypic plasticity in response to abiotic and biotic factors. In the present study, we investigate the link between environmental sensitivity assessed globally (revealed by phenotypic variation in body weight) and more targeted physiological and behavioral indicators that are generally used to assess the sensitivity of a fish to environmental stressors. We took advantage of original biological material, the rainbow trout isogenic lines, which allowed the disentangling of the genetic and environmental parts of the phenotypic variance. Ten lines were characterized for the changes of body weight variability (weight measurements taken every month during 18 months), the plasma cortisol response to confinement stress (3 challenges) and a set of selected behavioral indicators. This study unambiguously demonstrated the existence of genetic determinism of environmental sensitivity, with some lines being particularly sensitive to environmental fluctuations and others rather insensitive. Correlations between coefficient of variation (CV) for body weight and behavioral and physiological traits were observed. This confirmed that CV for body weight could be used as an indicator of environmental sensitivity. As the relationship between indicators (CV weight, risk-taking, exploration and cortisol) was shown to be likely depending on the nature and intensity of the stressor, the joint use of several indicators should help to investigate the biological complexity of environmental sensitivity. PMID:29253015</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27482902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27482902"><span>Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tabachnick, Walter J</p> <p>2016-09-29</p> <p>The impact of anticipated changes in global climate on the arboviruses and the diseases they cause poses a significant challenge for public health. The past evolution of the dengue and yellow fever viruses provides clues about the influence of changes in climate on their future evolution. The evolution of both viruses has been influenced by virus interactions involving the mosquito species and the primate hosts involved in virus transmission, and by their domestic and sylvatic cycles. Information is needed on how viral genes in general influence phenotypic variance for important viral functions. Changes in global climate will alter the interactions of mosquito species with their primate hosts and with the viruses in domestic cycles, and greater attention should be paid to the sylvatic cycles. There is great danger for the evolution of novel viruses, such as new serotypes, that could compromise vaccination programs and jeopardize public health. It is essential to understand (a) both sylvatic and domestic cycles and (b) the role of virus genetic and environmental variances in shaping virus phenotypic variance to more fully assess the impact of global climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5649216','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5649216"><span>Extracting the Evaluations of Stereotypes: Bi-factor Model of the Stereotype Content Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sayans-Jiménez, Pablo; Cuadrado, Isabel; Rojas, Antonio J.; Barrada, Juan R.</p> <p>2017-01-01</p> <p>Stereotype dimensions—competence, morality and sociability—are fundamental to studying the perception of other groups. These dimensions have shown moderate/high positive correlations with each other that do not reflect the theoretical expectations. The explanation for this (e.g., halo effect) undervalues the utility of the shared variance identified. In contrast, in this work we propose that this common variance could represent the global evaluation of the perceived group. Bi-factor models are proposed to improve the internal structure and to take advantage of the information representing the shared variance among dimensions. Bi-factor models were compared with first order models and other alternative models in three large samples (300–309 participants). The relationships among the global and specific bi-factor dimensions with a global evaluation dimension (measured through a semantic differential) were estimated. The results support the use of bi-factor models rather than first order models (and other alternative models). Bi-factor models also show a greater utility to directly and more easily explore the stereotype content including its evaluative content. PMID:29085313</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28166317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28166317"><span>Effects of Reduced Acuity and Stereo Acuity on Saccades and Reaching Movements in Adults With Amblyopia and Strabismus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Niechwiej-Szwedo, Ewa; Goltz, Herbert C; Colpa, Linda; Chandrakumar, Manokaraananthan; Wong, Agnes M F</p> <p>2017-02-01</p> <p>Our previous work has shown that amblyopia disrupts the planning and execution of visually-guided saccadic and reaching movements. We investigated the association between the clinical features of amblyopia and aspects of visuomotor behavior that are disrupted by amblyopia. A total of 55 adults with amblyopia (22 anisometropic, 18 strabismic, 15 mixed mechanism), 14 adults with strabismus without amblyopia, and 22 visually-normal control participants completed a visuomotor task while their eye and hand movements were recorded. Univariate and multivariate analyses were performed to assess the association between three clinical predictors of amblyopia (amblyopic eye [AE] acuity, stereo sensitivity, and eye deviation) and seven kinematic outcomes, including saccadic and reach latency, interocular saccadic and reach latency difference, saccadic and reach precision, and PA/We ratio (an index of reach control strategy efficacy using online feedback correction). Amblyopic eye acuity explained 28% of the variance in saccadic latency, and 48% of the variance in mean saccadic latency difference between the amblyopic and fellow eyes (i.e., interocular latency difference). In contrast, for reach latency, AE acuity explained only 10% of the variance. Amblyopic eye acuity was associated with reduced endpoint saccadic (23% of variance) and reach (22% of variance) precision in the amblyopic group. In the strabismus without amblyopia group, stereo sensitivity and eye deviation did not explain any significant variance in saccadic and reach latency or precision. Stereo sensitivity was the best clinical predictor of deficits in reach control strategy, explaining 23% of total variance of PA/We ratio in the amblyopic group and 12% of variance in the strabismus without amblyopia group when viewing with the amblyopic/nondominant eye. Deficits in eye and limb movement initiation (latency) and target localization (precision) were associated with amblyopic acuity deficit, whereas changes in the sensorimotor reach strategy were associated with deficits in stereopsis. Importantly, more than 50% of variance was not explained by the measured clinical features. Our findings suggest that other factors, including higher order visual processing and attention, may have an important role in explaining the kinematic deficits observed in amblyopia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010842','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010842"><span>Global Maps of Lunar Neutron Fluxes from the LEND Instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140010842'); toggleEditAbsImage('author_20140010842_show'); toggleEditAbsImage('author_20140010842_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140010842_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140010842_hide"></p> <p>2012-01-01</p> <p>The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range < 0.015 eV) and fast neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015HESS...19.3153R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015HESS...19.3153R"><span>Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.</p> <p>2015-07-01</p> <p>Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3571732','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3571732"><span>Single neuron firing properties impact correlation-based population coding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hong, Sungho; Ratté, Stéphanie; Prescott, Steven A.; De Schutter, Erik</p> <p>2012-01-01</p> <p>Correlated spiking has been widely observed but its impact on neural coding remains controversial. Correlation arising from co-modulation of rates across neurons has been shown to vary with the firing rates of individual neurons. This translates into rate and correlation being equivalently tuned to the stimulus; under those conditions, correlated spiking does not provide information beyond that already available from individual neuron firing rates. Such correlations are irrelevant and can reduce coding efficiency by introducing redundancy. Using simulations and experiments in rat hippocampal neurons, we show here that pairs of neurons receiving correlated input also exhibit correlations arising from precise spike-time synchronization. Contrary to rate co-modulation, spike-time synchronization is unaffected by firing rate, thus enabling synchrony- and rate-based coding to operate independently. The type of output correlation depends on whether intrinsic neuron properties promote integration or coincidence detection: “ideal” integrators (with spike generation sensitive to stimulus mean) exhibit rate co-modulation whereas “ideal” coincidence detectors (with spike generation sensitive to stimulus variance) exhibit precise spike-time synchronization. Pyramidal neurons are sensitive to both stimulus mean and variance, and thus exhibit both types of output correlation proportioned according to which operating mode is dominant. Our results explain how different types of correlations arise based on how individual neurons generate spikes, and why spike-time synchronization and rate co-modulation can encode different stimulus properties. Our results also highlight the importance of neuronal properties for population-level coding insofar as neural networks can employ different coding schemes depending on the dominant operating mode of their constituent neurons. PMID:22279226</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A53C0386W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A53C0386W"><span>Early Warning Signals for Abrupt Change Raise False Alarm During Sea Ice Loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, T. J. W.; Eisenman, I.</p> <p>2015-12-01</p> <p>Uncovering universal early warning signals for critical transitions has become a coveted goal in diverse scientific disciplines, ranging from climate science to financial mathematics. There has been a flurry of recent research proposing such signals, with increasing autocorrelation and increasing variance being among the most widely discussed candidates. A number of studies have suggested that increasing autocorrelation alone may suffice to signal an impending transition, although some others have questioned this. Here, we consider variance and autocorrelation in the context of sea ice loss in an idealized model of the global climate system. The model features no bifurcation, nor increased rate of retreat, as the ice disappears. Nonetheless, the autocorrelation of summer sea ice area is found to increase with diminishing sea ice cover in a global warming scenario. The variance, by contrast, decreases. A simple physical mechanism is proposed to explain the occurrence of increasing autocorrelation but not variance in the model when there is no approaching bifurcation. Additionally, a similar mechanism is shown to allow an increase in both indicators with no physically attainable bifurcation. This implies that relying on autocorrelation and variance as early warning signals can raise false alarms in the climate system, warning of "tipping points" that are not actually there.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ChPhB..21e0506W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ChPhB..21e0506W"><span>Image encryption based on a delayed fractional-order chaotic logistic system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhen; Huang, Xia; Li, Ning; Song, Xiao-Na</p> <p>2012-05-01</p> <p>A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system. In the process of generating a key stream, the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security. Such a scheme is described in detail with security analyses including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. Experimental results show that the newly proposed image encryption scheme possesses high security.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA602233','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA602233"><span>Decision Support Tool for Deep Energy Efficiency Retrofits in DoD Installations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-01-01</p> <p>representations (HDMR). Chemical Engineering Science, 57, 4445–4460. 2. Sobol ’, I., 2001. Global sensitivity indices for nonlinear mathematical...models and their Monte Carlo estimates. Mathematics and computers in simulation, 55, 271–280. 3. Sobol , I. and Kucherenko, S., 2009. Derivative based...representations (HDMR). Chemical Engineering Science, 57, 4445–4460. 16. Sobol ’, I., 2001. Global sensitivity indices for nonlinear mathematical models and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1610283D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1610283D"><span>A high resolution global scale groundwater model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Graaf, Inge; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc</p> <p>2014-05-01</p> <p>As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater storage provides a large natural buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). With this global groundwater model we eventually intend to simulate the changes in the groundwater system over time that result from variations in recharge and abstraction. Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013), combined with our estimate of aquifer thickness for sedimentary basins. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. Based on our sensitivity analysis, in which we run the model with various hydrogeological parameter settings, we observed that most variance in groundwater depth is explained by variation in saturated conductivity, and, for the sediment basins, also by variation in recharge. We validated simulated groundwater heads with piezometer heads (available from www.glowasis.eu), resulting in a coefficient of determination for sedimentary basins of 0.92 with regression constant of 0.8. This shows the used method is suitable to build a global groundwater model using best available global information, and estimated water table depths are within acceptable accuracy in many parts of the world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGD.....9.9487H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGD.....9.9487H"><span>The 1% and 1 cm perspective in deriving and validating AOP data products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hooker, S. B.; Morrow, J. H.; Matsuoka, A.</p> <p>2012-07-01</p> <p>A next-generation in-water profiler designed to measure the apparent optical properties (AOPs) of seawater was developed and validated across a wide dynamic range of in-water properties. The new free-falling instrument, the Compact-Optical Profiling System (C-OPS), was based on a cluster of 19 state-of-the-art microradiometers spanning 320-780 nm and a new kite-shaped backplane design. The kite-shaped backplane includes tunable ballast, a hydrobaric buoyancy chamber, plus pitch and roll adjustments, to provide unprecedented stability and vertical resolution in near-surface waters. A unique data set was collected as part of the development activity and the first major field campaign that used the new instrument, the Malina expedition to the Beaufort Sea in the vicinity of the Mackenzie River outflow. The data were of sufficient resolution and quality to show that errors - more correctly, uncertainties - in the execution of data sampling protocols were measurable at the 1% and 1 cm level with C-OPS. A sensitivity analysis as a function of three water types established by the peak in the remote sensing reflectance spectrum, Rrs(λ), revealed which water types and which parts of the spectrum were the most sensitive to data acquisition uncertainties. Shallow riverine waters were the most sensitive water type, and the ultraviolet and near-infrared were the most sensitive parts of the spectrum. The sensitivity analysis also showed how the use of data products based on band ratios significantly mitigated the influence of data acquisition uncertainties. The unprecedented vertical resolution provided high quality data products at the spectral end members, which subsequently supported an alternative classification capability based on the spectral diffuse attenuation coefficient, Kd(λ). The Kd(320) and Kd(780) data showed how complex coastal systems can be distinguished two-dimensionally and how near-ice water masses are different from the open ocean. Finally, an algorithm for predicting the spectral absorption due to colored dissolved organic matter (CDOM), denoted aCDOM(λ), was developed using the Kd(320)/Kd(780) ratio, which was based on a linear relationship with respect to aCDOM(440), with over 99% of the variance explained. The robustness of the approach was established by expanding the use of the algorithm to include a geographically different coastal environment, the Southern Mid-Atlantic Bight, with no significant change in accuracy (approximately 98% of the variance explained). Alternative spectral end members reminiscent of next-generation (340 and 710 nm) as well as legacy satellite missions (412 and 670 nm) were also used to accurately derive aCDOM(440) from Kd(λ) ratios (94% or more of the variance explained).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080034471&hterms=Regression+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DRegression%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080034471&hterms=Regression+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DRegression%2Banalysis"><span>Dynamic and Regression Modeling of Ocean Variability in the Tide-Gauge Record at Seasonal and Longer Periods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hill, Emma M.; Ponte, Rui M.; Davis, James L.</p> <p>2007-01-01</p> <p>Comparison of monthly mean tide-gauge time series to corresponding model time series based on a static inverted barometer (IB) for pressure-driven fluctuations and a ocean general circulation model (OM) reveals that the combined model successfully reproduces seasonal and interannual changes in relative sea level at many stations. Removal of the OM and IB from the tide-gauge record produces residual time series with a mean global variance reduction of 53%. The OM is mis-scaled for certain regions, and 68% of the residual time series contain a significant seasonal variability after removal of the OM and IB from the tide-gauge data. Including OM admittance parameters and seasonal coefficients in a regression model for each station, with IB also removed, produces residual time series with mean global variance reduction of 71%. Examination of the regional improvement in variance caused by scaling the OM, including seasonal terms, or both, indicates weakness in the model at predicting sea-level variation for constricted ocean regions. The model is particularly effective at reproducing sea-level variation for stations in North America, Europe, and Japan. The RMS residual for many stations in these areas is 25-35 mm. The production of "cleaner" tide-gauge time series, with oceanographic variability removed, is important for future analysis of nonsecular and regionally differing sea-level variations. Understanding the ocean model's strengths and weaknesses will allow for future improvements of the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1375278-prediction-individual-social-demographic-role-based-travel-behavior-variability-using-long-term-gps-data','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1375278-prediction-individual-social-demographic-role-based-travel-behavior-variability-using-long-term-gps-data"><span>Prediction of Individual Social-Demographic Role Based on Travel Behavior Variability Using Long-Term GPS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhu, Lei; Gonder, Jeffrey; Lin, Lei</p> <p>2017-08-16</p> <p>With the development of and advances in smartphones and global positioning system (GPS) devices, travelers’ long-term travel behaviors are not impossible to obtain. This study investigates the pattern of individual travel behavior and its correlation with social-demographic features. For different social-demographic groups (e.g., full-time employees and students), the individual travel behavior may have specific temporal-spatial-mobile constraints. The study first extracts the home-based tours, including Home-to-Home and Home-to-Non-Home, from long-term raw GPS data. The travel behavior pattern is then delineated by home-based tour features, such as departure time, destination location entropy, travel time, and driving time ratio. The travel behavior variabilitymore » describes the variances of travelers’ activity behavior features for an extended period. After that, the variability pattern of an individual’s travel behavior is used for estimating the individual’s social-demographic information, such as social-demographic role, by a supervised learning approach, support vector machine. In this study, a long-term (18-month) recorded GPS data set from Puget Sound Regional Council is used. The experiment’s result is very promising. In conclusion, the sensitivity analysis shows that as the number of tours thresholds increases, the variability of most travel behavior features converges, while the prediction performance may not change for the fixed test data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1375278-prediction-individual-social-demographic-role-based-travel-behavior-variability-using-long-term-gps-data','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1375278-prediction-individual-social-demographic-role-based-travel-behavior-variability-using-long-term-gps-data"><span>Prediction of Individual Social-Demographic Role Based on Travel Behavior Variability Using Long-Term GPS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhu, Lei; Gonder, Jeffrey; Lin, Lei</p> <p></p> <p>With the development of and advances in smartphones and global positioning system (GPS) devices, travelers’ long-term travel behaviors are not impossible to obtain. This study investigates the pattern of individual travel behavior and its correlation with social-demographic features. For different social-demographic groups (e.g., full-time employees and students), the individual travel behavior may have specific temporal-spatial-mobile constraints. The study first extracts the home-based tours, including Home-to-Home and Home-to-Non-Home, from long-term raw GPS data. The travel behavior pattern is then delineated by home-based tour features, such as departure time, destination location entropy, travel time, and driving time ratio. The travel behavior variabilitymore » describes the variances of travelers’ activity behavior features for an extended period. After that, the variability pattern of an individual’s travel behavior is used for estimating the individual’s social-demographic information, such as social-demographic role, by a supervised learning approach, support vector machine. In this study, a long-term (18-month) recorded GPS data set from Puget Sound Regional Council is used. The experiment’s result is very promising. In conclusion, the sensitivity analysis shows that as the number of tours thresholds increases, the variability of most travel behavior features converges, while the prediction performance may not change for the fixed test data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20438198','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20438198"><span>Genetic and environmental influences on global family conflict.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Horwitz, Briana N; Neiderhiser, Jenae M; Ganiban, Jody M; Spotts, Erica L; Lichtenstein, Paul; Reiss, David</p> <p>2010-04-01</p> <p>This study examined genetic and environmental influences on global family conflict. The sample comprised 872 same-sex pairs of twin parents, their spouses/partners, and one adolescent child per twin from the Twin and Offspring Study in Sweden. The twins, spouses, and child each reported on the degree of family conflict, and there was significant agreement among the family members' ratings. These shared perspectives were explained by one common factor, indexing global family conflict. Genetic influences explained 36% of the variance in this common factor, suggesting that twins' heritable characteristics contribute to family conflict, via genotype-environment correlation. Nonshared environmental effects explained the remaining 64% of this variance, indicating that twins' unique childhood and/or current family experiences also play an important role. 2010 APA, all rights reserved</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/805105-influential-input-classification-probabilistic-multimedia-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/805105-influential-input-classification-probabilistic-multimedia-models"><span>Influential input classification in probabilistic multimedia models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.</p> <p>1999-05-01</p> <p>Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions onemore » should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23770119','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23770119"><span>Anxiety Sensitivity Index (ASI-3) subscales predict unique variance in anxiety and depressive symptoms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Olthuis, Janine V; Watt, Margo C; Stewart, Sherry H</p> <p>2014-03-01</p> <p>Anxiety sensitivity (AS) has been implicated in the development and maintenance of a range of mental health problems. The development of the Anxiety Sensitivity Index - 3, a psychometrically sound index of AS, has provided the opportunity to better understand how the lower-order factors of AS - physical, psychological, and social concerns - are associated with unique forms of psychopathology. The present study investigated these associations among 85 treatment-seeking adults with high AS. Participants completed measures of AS, anxiety, and depression. Multiple regression analyses controlling for other emotional disorder symptoms revealed unique associations between AS subscales and certain types of psychopathology. Only physical concerns predicted unique variance in panic, only cognitive concerns predicted unique variance in depressive symptoms, and social anxiety was predicted by only social concerns. Findings emphasize the importance of considering the multidimensional nature of AS in understanding its role in anxiety and depression and their treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..115.9010E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..115.9010E"><span>Modification of inertial oscillations by the mesoscale eddy field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elipot, Shane; Lumpkin, Rick; Prieto, GermáN.</p> <p>2010-09-01</p> <p>The modification of near-surface near-inertial oscillations (NIOs) by the geostrophic vorticity is studied globally from an observational standpoint. Surface drifter are used to estimate NIO characteristics. Despite its spatial resolution limits, altimetry is used to estimate the geostrophic vorticity. Three characteristics of NIOs are considered: the relative frequency shift with respect to the local inertial frequency; the near-inertial variance; and the inverse excess bandwidth, which is interpreted as a decay time scale. The geostrophic mesoscale flow shifts the frequency of NIOs by approximately half its vorticity. Equatorward of 30°N and S, this effect is added to a global pattern of blue shift of NIOs. While the global pattern of near-inertial variance is interpretable in terms of wind forcing, it is also observed that the geostrophic vorticity organizes the near-inertial variance; it is maximum for near zero values of the Laplacian of the vorticity and decreases for nonzero values, albeit not as much for positive as for negative values. Because the Laplacian of vorticity and vorticity are anticorrelated in the altimeter data set, overall, more near-inertial variance is found in anticyclonic vorticity regions than in cyclonic regions. While this is compatible with anticyclones trapping NIOs, the organization of near-inertial variance by the Laplacian of vorticity is also in very good agreement with previous theoretical and numerical predictions. The inverse bandwidth is a decreasing function of the gradient of vorticity, which acts like the gradient of planetary vorticity to increase the decay of NIOs from the ocean surface. Because the altimetry data set captures the largest vorticity gradients in energetic mesoscale regions, it is also observed that NIOs decay faster in large geostrophic eddy kinetic energy regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2834196','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2834196"><span>Environmental influences on the longitudinal covariance of expressive vocabulary: measuring the home literacy environment in a genetically sensitive design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hart, Sara A.; Petrill, Stephen A.; DeThorne, Laura S.; Deater-Deckard, Kirby; Thompson, Lee A.; Schatschneider, Chris; Cutting, Laurie E.</p> <p>2010-01-01</p> <p>Background Despite the well-replicated relationship between the home literacy environment and expressive vocabulary, few studies have examined the extent to which the home literacy environment is associated with the development of early vocabulary ability in the context of genetic influences. This study examined the influence of the home literacy environment on the longitudinal covariance of expressive vocabulary within a genetically sensitive design. Methods Participants were drawn from the Western Reserve Reading Project, a longitudinal twin project of 314 twin pairs based in Ohio. Twins were assessed via three annual home visits during early elementary school; expressive vocabulary was measured via the Boston Naming Test (BNT), and the Home Literacy Environment (HLE) was assessed using mothers’ report. Results The heritability of the BNT was moderate and significant at each measurement occasion, h2 = .29–.49, as were the estimates of the shared environment, c2 = .27–.39. HLE accounted for between 6–10% of the total variance in each year of vocabulary assessment. Furthermore, 7–9% of the total variance of the stability over time in BNT was accounted for by covariance in the home literacy environment. Conclusions These results indicate that aspects of the home literacy environment, as reported by mothers, account for some of the shared environmental variance associated with expressive vocabulary in school aged children. PMID:19298476</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4576','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4576"><span>Meta-analysis for explaining the variance in public transport demand elasticities in Europe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1998-01-01</p> <p>Results from past studies on transport demand elasticities show a large variance. This paper assesses key factors that influence the sensitivity of public transport users to transport costs in Europe, by carrying out a comparative analysis of the dif...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...796L..27R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...796L..27R"><span>Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek</p> <p>2014-12-01</p> <p>Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26723151','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26723151"><span>Spectral properties of the temporal evolution of brain network structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying</p> <p>2015-12-01</p> <p>The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Chaos..25l3112W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Chaos..25l3112W"><span>Spectral properties of the temporal evolution of brain network structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying</p> <p>2015-12-01</p> <p>The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..544..479B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..544..479B"><span>Developing and testing a global-scale regression model to quantify mean annual streamflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.</p> <p>2017-01-01</p> <p>Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23G0312H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23G0312H"><span>Assessing the aerosol direct and first indirect effects using ACM/GCM simulation results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, H.; Gu, Y.; Xue, Y.; Lu, C. H.</p> <p>2016-12-01</p> <p>Atmospheric aerosols have been found to play an important role in global climate change but there are still large uncertainty in evaluating its role in the climate system. The aerosols generally affect global and regional climate through the scattering and the absorption of solar radiation (direct effect) and through their influences on cloud particle, number and sizes (first indirect effect). The indirect effect will further affects cloud water content, cloud top albedo and surface precipitations. In this study, we investigate the global climatic effect of aerosols using a coupled NCEP Global Forecast System (GFS) and a land surface model (SSiB2) The OPAC (Optical Properties of Aerosols and Clouds) database is used for aerosol effect. The OPAC data provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions for investigating the global direct and first indirect effects of dust aerosols. For indirect forcings due to liquid water, we follow the approach presented by Jiang et al (2011), in which a parameterization of cloud effective radius was calculated to describe its variance with convective strength and aerosol concentration. Since the oceans also play an important role on aerosol climatic effect, we also design a set of simulations using a coupled atmosphere/ocean model (CFS) to evaluate the sensitivity of aerosol effect with two-way atmosphere-ocean interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GBioC..30.1756S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GBioC..30.1756S"><span>The CAFE model: A net production model for global ocean phytoplankton</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silsbe, Greg M.; Behrenfeld, Michael J.; Halsey, Kimberly H.; Milligan, Allen J.; Westberry, Toby K.</p> <p>2016-12-01</p> <p>The Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFE) net primary production model is an adaptable framework for advancing global ocean productivity assessments by exploiting state-of-the-art satellite ocean color analyses and addressing key physiological and ecological attributes of phytoplankton. Here we present the first implementation of the CAFE model that incorporates inherent optical properties derived from ocean color measurements into a mechanistic and accurate model of phytoplankton growth rates (μ) and net phytoplankton production (NPP). The CAFE model calculates NPP as the product of energy absorption (QPAR), and the efficiency (ϕμ) by which absorbed energy is converted into carbon biomass (CPhyto), while μ is calculated as NPP normalized to CPhyto. The CAFE model performance is evaluated alongside 21 other NPP models against a spatially robust and globally representative set of direct NPP measurements. This analysis demonstrates that the CAFE model explains the greatest amount of variance and has the lowest model bias relative to other NPP models analyzed with this data set. Global oceanic NPP from the CAFE model (52 Pg C m-2 yr-1) and mean division rates (0.34 day-1) are derived from climatological satellite data (2002-2014). This manuscript discusses and validates individual CAFE model parameters (e.g., QPAR and ϕμ), provides detailed sensitivity analyses, and compares the CAFE model results and parameterization to other widely cited models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22944674','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22944674"><span>A sensitive gel-based global O-glycomics approach reveals high levels of mannosyl glycans in the high mass region of the mouse brain proteome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Breloy, Isabelle; Pacharra, Sandra; Aust, Christina; Hanisch, Franz-Georg</p> <p>2012-08-01</p> <p>We developed a gel-based global O-glycomics method applicable for highly complex protein mixtures entrapped in discontinuous gradient gel layers. The protocol is based on in-gel proteolysis with pronase followed by (glyco)peptide elution and off-gel reductive β-elimination. The protocol offers robust performance with sensitivity in the low picomolar range, is compatible with gel-based proteomics, and shows superior performance in global applications in comparison with workflows eliminating glycans in-gel or from electroblotted glycoproteins. By applying this method, we analyzed the O-glycome of human myoblasts and of the mouse brain O-glycoproteome. After semipreparative separation of mouse brain proteins by one-dimensional SDS gel electrophoresis, the O-glycans from proteins in different mass ranges were characterized with a focus on O-mannose-based glycans. The relative proportion of the latter, which generally represent a rare modification, increases to comparatively high levels in the mouse brain proteome in dependence of increasing protein masses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916515R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916515R"><span>HOMPRA Europe - A gridded precipitation data set from European homogenized time series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rustemeier, Elke; Kapala, Alice; Meyer-Christoffer, Anja; Finger, Peter; Schneider, Udo; Venema, Victor; Ziese, Markus; Simmer, Clemens; Becker, Andreas</p> <p>2017-04-01</p> <p>Reliable monitoring data are essential for robust analyses of climate variability and, in particular, long-term trends. In this regard, a gridded, homogenized data set of monthly precipitation totals - HOMPRA Europe (HOMogenized PRecipitation Analysis of European in-situ data)- is presented. The data base consists of 5373 homogenized monthly time series, a carefully selected subset held by the Global Precipitation Climatology Centre (GPCC). The chosen series cover the period 1951-2005 and contain less than 10% missing values. Due to the large number of data, an automatic algorithm had to be developed for the homogenization of these precipitation series. In principal, the algorithm is based on three steps: * Selection of overlapping station networks in the same precipitation regime, based on rank correlation and Ward's method of minimal variance. Since the underlying time series should be as homogeneous as possible, the station selection is carried out by deterministic first derivation in order to reduce artificial influences. * The natural variability and trends were temporally removed by means of highly correlated neighboring time series to detect artificial break-points in the annual totals. This ensures that only artificial changes can be detected. The method is based on the algorithm of Caussinus and Mestre (2004). * In the last step, the detected breaks are corrected monthly by means of a multiple linear regression (Mestre, 2003). Due to the automation of the homogenization, the validation of the algorithm is essential. Therefore, the method was tested on artificial data sets. Additionally the sensitivity of the method was tested by varying the neighborhood series. If available in digitized form, the station history was also used to search for systematic errors in the jump detection. Finally, the actual HOMPRA Europe product is produced by interpolation of the homogenized series onto a 1° grid using one of the interpolation schems operationally at GPCC (Becker et al., 2013 and Schamm et al., 2014). Caussinus, H., und O. Mestre, 2004: Detection and correction of artificial shifts in climate series, Journal of the Royal, Statistical Society. Series C (Applied Statistics), 53(3), 405-425. Mestre, O., 2003: Correcting climate series using ANOVA technique, Proceedings of the fourth seminar Willmott, C.; Rowe, C. & Philpot, W., 1985: Small-scale climate maps: A sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring The American Carthographer, 12, 5-16 Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U. & Ziese, M., 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present Earth System Science Data, 5, 71-99 Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M. & Stender, P., 2014: Global gridded precipitation over land: a description of the new GPCC First Guess Daily product, Earth System Science Data, 6, 49-60</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26586084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26586084"><span>The role of cognitive effort in subjective reward devaluation and risky decision-making.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Apps, Matthew A J; Grima, Laura L; Manohar, Sanjay; Husain, Masud</p> <p>2015-11-20</p> <p>Motivation is underpinned by cost-benefit valuations where costs-such as physical effort or outcome risk-are subjectively weighed against available rewards. However, in many environments risks pertain not to the variance of outcomes, but to variance in the possible levels of effort required to obtain rewards (effort risks). Moreover, motivation is often guided by the extent to which cognitive-not physical-effort devalues rewards (effort discounting). Yet, very little is known about the mechanisms that underpin the influence of cognitive effort risks or discounting on motivation. We used two cost-benefit decision-making tasks to probe subjective sensitivity to cognitive effort (number of shifts of spatial attention) and to effort risks. Our results show that shifts of spatial attention when monitoring rapidly presented visual stimuli are perceived as effortful and devalue rewards. Additionally, most people are risk-averse, preferring safe, known amounts of effort over risky offers. However, there was no correlation between their effort and risk sensitivity. We show for the first time that people are averse to variance in the possible amount of cognitive effort to be exerted. These results suggest that cognitive effort sensitivity and risk sensitivity are underpinned by distinct psychological and neurobiological mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9643E..0YB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9643E..0YB"><span>Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz</p> <p>2015-10-01</p> <p>In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26676106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26676106"><span>Mixed emotions: Sensitivity to facial variance in a crowd of faces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Haberman, Jason; Lee, Pegan; Whitney, David</p> <p>2015-01-01</p> <p>The visual system automatically represents summary information from crowds of faces, such as the average expression. This is a useful heuristic insofar as it provides critical information about the state of the world, not simply information about the state of one individual. However, the average alone is not sufficient for making decisions about how to respond to a crowd. The variance or heterogeneity of the crowd--the mixture of emotions--conveys information about the reliability of the average, essential for determining whether the average can be trusted. Despite its importance, the representation of variance within a crowd of faces has yet to be examined. This is addressed here in three experiments. In the first experiment, observers viewed a sample set of faces that varied in emotion, and then adjusted a subsequent set to match the variance of the sample set. To isolate variance as the summary statistic of interest, the average emotion of both sets was random. Results suggested that observers had information regarding crowd variance. The second experiment verified that this was indeed a uniquely high-level phenomenon, as observers were unable to derive the variance of an inverted set of faces as precisely as an upright set of faces. The third experiment replicated and extended the first two experiments using method-of-constant-stimuli. Together, these results show that the visual system is sensitive to emergent information about the emotional heterogeneity, or ambivalence, in crowds of faces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24521570','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24521570"><span>The burden of non-communicable diseases in Nigeria; in the context of globalization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maiyaki, Musa Baba; Garbati, Musa Abubakar</p> <p>2014-01-01</p> <p>This paper highlights the tenets of globalization and how its elements have spread to sub-Saharan Africa, and Nigeria in particular. It assesses the growing burden of non-communicable diseases (NCDs) in Nigeria and its relationship with globalization. It further describes the conceptual framework on which to view the impact of globalization on NCDs in Nigeria. It assesses the Nigerian dimension of the relationship between the risk factors of NCDs and globalization. Appropriate recommendations on tackling the burden of NCDs in Nigeria based on cost-effective, culturally sensitive, and evidence-based interventions are highlighted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16098378','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16098378"><span>Symbol-string sensitivity and adult performance in lexical decision.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pammer, Kristen; Lavis, Ruth; Cooper, Charity; Hansen, Peter C; Cornelissen, Piers L</p> <p>2005-09-01</p> <p>In this study of adult readers, we used a symbol-string task to assess participants' sensitivity to the position of briefly presented, non-alphabetic but letter-like symbols. We found that sensitivity in this task explained a significant proportion of sample variance in visual lexical decision. Based on a number of controls, we show that this relationship cannot be explained by other factors including: chronological age, intelligence, speed of processing and/or concentration, short term memory consolidation, or fixation stability. This approach represents a new way to elucidate how, and to what extent, individual variation in pre-orthographic visual and cognitive processes impinge on reading skills, and the results suggest that limitations set by visuo-spatial processes constrain visual word recognition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..558....9V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..558....9V"><span>Greenhouse gas scenario sensitivity and uncertainties in precipitation projections for central Belgium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Uytven, E.; Willems, P.</p> <p>2018-03-01</p> <p>Climate change impact assessment on meteorological variables involves large uncertainties as a result of incomplete knowledge on the future greenhouse gas concentrations and climate model physics, next to the inherent internal variability of the climate system. Given that the alteration in greenhouse gas concentrations is the driver for the change, one expects the impacts to be highly dependent on the considered greenhouse gas scenario (GHS). In this study, we denote this behavior as GHS sensitivity. Due to the climate model related uncertainties, this sensitivity is, at local scale, not always that strong as expected. This paper aims to study the GHS sensitivity and its contributing role to climate scenarios for a case study in Belgium. An ensemble of 160 CMIP5 climate model runs is considered and climate change signals are studied for precipitation accumulation, daily precipitation intensities and wet day frequencies. This was done for the different seasons of the year and the scenario periods 2011-2040, 2031-2060, 2051-2081 and 2071-2100. By means of variance decomposition, the total variance in the climate change signals was separated in the contribution of the differences in GHSs and the other model-related uncertainty sources. These contributions were found dependent on the variable and season. Following the time of emergence concept, the GHS uncertainty contribution is found dependent on the time horizon and increases over time. For the most distinct time horizon (2071-2100), the climate model uncertainty accounts for the largest uncertainty contribution. The GHS differences explain up to 18% of the total variance in the climate change signals. The results point further at the importance of the climate model ensemble design, specifically the ensemble size and the combination of climate models, whereupon climate scenarios are based. The numerical noise, introduced at scales smaller than the skillful scale, e.g. at local scale, was not considered in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12653292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12653292"><span>Models to predict emissions of health-damaging pollutants and global warming contributions of residential fuel/stove combinations in China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edwards, Rufus D; Smith, Kirk R; Zhang, Junfeng; Ma, Yuqing</p> <p>2003-01-01</p> <p>Residential energy use in developing countries has traditionally been associated with combustion devices of poor energy efficiency, which have been shown to produce substantial health-damaging pollution, contributing significantly to the global burden of disease, and greenhouse gas (GHG) emissions. Precision of these estimates in China has been hampered by limited data on stove use and fuel consumption in residences. In addition limited information is available on variability of emissions of pollutants from different stove/fuel combinations in typical use, as measurement of emission factors requires measurement of multiple chemical species in complex burn cycle tests. Such measurements are too costly and time consuming for application in conjunction with national surveys. Emissions of most of the major health-damaging pollutants (HDP) and many of the gases that contribute to GHG emissions from cooking stoves are the result of the significant portion of fuel carbon that is diverted to products of incomplete combustion (PIC) as a result of poor combustion efficiencies. The approximately linear increase in emissions of PIC with decreasing combustion efficiencies allows development of linear models to predict emissions of GHG and HDP intrinsically linked to CO2 and PIC production, and ultimately allows the prediction of global warming contributions from residential stove emissions. A comprehensive emissions database of three burn cycles of 23 typical fuel/stove combinations tested in a simulated village house in China has been used to develop models to predict emissions of HDP and global warming commitment (GWC) from cooking stoves in China, that rely on simple survey information on stove and fuel use that may be incorporated into national surveys. Stepwise regression models predicted 66% of the variance in global warming commitment (CO2, CO, CH4, NOx, TNMHC) per 1 MJ delivered energy due to emissions from these stoves if survey information on fuel type was available. Subsequently if stove type is known, stepwise regression models predicted 73% of the variance. Integrated assessment of policies to change stove or fuel type requires that implications for environmental impacts, energy efficiency, global warming and human exposures to HDP emissions can be evaluated. Frequently, this involves measurement of TSP or CO as the major HDPs. Incorporation of this information into models to predict GWC predicted 79% and 78% of the variance respectively. Clearly, however, the complexity of making multiple measurements in conjunction with a national survey would be both expensive and time consuming. Thus, models to predict HDP using simple survey information, and with measurement of either CO/CO2 or TSP/CO2 to predict emission factors for the other HDP have been derived. Stepwise regression models predicted 65% of the variance in emissions of total suspended particulate as grams of carbon (TSPC) per 1 MJ delivered if survey information on fuel and stove type was available and 74% if the CO/CO2 ratio was measured. Similarly stepwise regression models predicted 76% of the variance in COC emissions per MJ delivered with survey information on stove and fuel type and 85% if the TSPC/CO2 ratio was measured. Ultimately, with international agreements on emissions trading frameworks, similar models based on extensive databases of the fate of fuel carbon during combustion from representative household stoves would provide a mechanism for computing greenhouse credits in the residential sector as part of clean development mechanism frameworks and monitoring compliance to control regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020021959&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020021959&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGlobal%2Bwarming"><span>Sensitivity Studies for Space-Based Global Measurements of Atmospheric Carbon Dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mao, Jian-Ping; Kawa, S. Randolph; Bhartia, P. K. (Technical Monitor)</p> <p>2001-01-01</p> <p>Carbon dioxide (CO2) is well known as the primary forcing agent of global warming. Although the climate forcing due to CO2 is well known, the sources and sinks of CO2 are not well understood. Currently the lack of global atmospheric CO2 observations limits our ability to diagnose the global carbon budget (e.g., finding the so-called "missing sink") and thus limits our ability to understand past climate change and predict future climate response. Space-based techniques are being developed to make high-resolution and high-precision global column CO2 measurements. One of the proposed techniques utilizes the passive remote sensing of Earth's reflected solar radiation at the weaker vibration-rotation band of CO2 in the near infrared (approx. 1.57 micron). We use a line-by-line radiative transfer model to explore the potential of this method. Results of sensitivity studies for CO2 concentration variation and geophysical conditions (i.e., atmospheric temperature, surface reflectivity, solar zenith angle, aerosol, and cirrus cloud) will be presented. We will also present sensitivity results for an O2 A-band (approx. 0.76 micron) sensor that will be needed along with CO2 to make surface pressure and cloud height measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1214883-entropy-vs-energy-waveform-processing-comparison-heat-equation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1214883-entropy-vs-energy-waveform-processing-comparison-heat-equation"><span>ENTROPY VS. ENERGY WAVEFORM PROCESSING: A COMPARISON ON THE HEAT EQUATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hughes, Michael S.; McCarthy, John; Bruillard, Paul J.</p> <p>2015-05-25</p> <p>Virtually all modern imaging devices function by collecting either electromagnetic or acoustic backscattered waves and using the energy carried by these waves to determine pixel values that build up what is basically an ”energy” picture. However, waves also carry ”informa- tion” that also may be used to compute the pixel values in an image. We have employed several measures of information, all of which are based on different forms of entropy. Numerous published studies have demonstrated the advantages of entropy, or “information imaging”, over conventional methods for materials characterization and medical imaging. Similar results also have been obtained with microwaves.more » The most sensitive information measure appears to be the joint entropy of the backscattered wave and a reference signal. A typical study is comprised of repeated acquisition of backscattered waves from a specimen that is changing slowing with acquisition time or location. The sensitivity of repeated experimental observations of such a slowly changing quantity may be defined as the mean variation (i.e., observed change) divided by mean variance (i.e., observed noise). We compute the sensitivity for joint entropy and signal energy measurements assuming that noise is Gaussian and using Wiener integration to compute the required mean values and variances. These can be written as solutions to the Heat equation, which permits estimation of their magnitudes. There always exists a reference such that joint entropy has larger variation and smaller variance than the corresponding quantities for signal energy, matching observations of several studies. Moreover, a general prescription for finding an “optimal” reference for the joint entropy emerges, which also has been validated in several studies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.7461S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.7461S"><span>A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stolz, Douglas C.; Rutledge, Steven A.; Pierce, Jeffrey R.; van den Heever, Susan C.</p> <p>2017-07-01</p> <p>The objective of this study is to determine the relative contributions of normalized convective available potential energy (NCAPE), cloud condensation nuclei (CCN) concentrations, warm cloud depth (WCD), vertical wind shear (SHEAR), and environmental relative humidity (RH) to the variability of lightning and radar reflectivity within convective features (CFs) observed by the Tropical Rainfall Measuring Mission (TRMM) satellite. Our approach incorporates multidimensional binned representations of observations of CFs and modeled thermodynamics, kinematics, and CCN as inputs to develop approximations for total lightning density (TLD) and the average height of 30 dBZ radar reflectivity (AVGHT30). The results suggest that TLD and AVGHT30 increase with increasing NCAPE, increasing CCN, decreasing WCD, increasing SHEAR, and decreasing RH. Multiple-linear approximations for lightning and radar quantities using the aforementioned predictors account for significant portions of the variance in the binned data set (R2 ≈ 0.69-0.81). The standardized weights attributed to CCN, NCAPE, and WCD are largest, the standardized weight of RH varies relative to other predictors, while the standardized weight for SHEAR is comparatively small. We investigate these statistical relationships for collections of CFs within various geographic areas and compare the aerosol (CCN) and thermodynamic (NCAPE and WCD) contributions to variations in the CF population in a partial sensitivity analysis based on multiple-linear regression approximations computed herein. A global lightning parameterization is developed; the average difference between predicted and observed TLD decreases from +21.6 to +11.6% when using a hybrid approach to combine separate approximations over continents and oceans, thus highlighting the need for regionally targeted investigations in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000EP%26S...52..789K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000EP%26S...52..789K"><span>SLR precision analysis for LAGEOS I and II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kizilsu, Gaye; Sahin, Muhammed</p> <p>2000-10-01</p> <p>This paper deals with the problem of properly weighting satellite observations which are non-uniform in quality. The technique, the variance component estimation method developed by Helmert, was first applied to the 1987 LAGEOS I SLR data by Sahin et al. (1992). This paper investigates the performance of the globally distributed SLR stations using the Helmert type variance component estimation. As well as LAGEOS I data, LAGEOS II data were analysed, in order to compare with the previously analysed 1987 LAGEOS I data. The LAGEOS I and II data used in this research were obtained from the NASA Crustal Dynamics Data Information System (CDDIS), which archives data acquired from stations operated by NASA and by other U.S. and international organizations. The data covers the years 1994, 1995 and 1996. The analysis is based on "full-rate" laser observations, which consist of hundreds to thousands of ranges per satellite pass. The software used is based on the SATAN package (SATellite ANalysis) developed at the Royal Greenwich Observatory in the UK.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26703612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26703612"><span>WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang</p> <p>2015-12-21</p> <p>With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4721815','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4721815"><span>WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection †</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gong, Liangyi; Yang, Wu; Man, Dapeng; Dong, Guozhong; Yu, Miao; Lv, Jiguang</p> <p>2015-01-01</p> <p>With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate. PMID:26703612</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26159144','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26159144"><span>[Development and Application of a Performance Prediction Model for Home Care Nursing Based on a Balanced Scorecard using the Bayesian Belief Network].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Noh, Wonjung; Seomun, Gyeongae</p> <p>2015-06-01</p> <p>This study was conducted to develop key performance indicators (KPIs) for home care nursing (HCN) based on a balanced scorecard, and to construct a performance prediction model of strategic objectives using the Bayesian Belief Network (BBN). This methodological study included four steps: establishment of KPIs, performance prediction modeling, development of a performance prediction model using BBN, and simulation of a suggested nursing management strategy. An HCN expert group and a staff group participated. The content validity index was analyzed using STATA 13.0, and BBN was analyzed using HUGIN 8.0. We generated a list of KPIs composed of 4 perspectives, 10 strategic objectives, and 31 KPIs. In the validity test of the performance prediction model, the factor with the greatest variance for increasing profit was maximum cost reduction of HCN services. The factor with the smallest variance for increasing profit was a minimum image improvement for HCN. During sensitivity analysis, the probability of the expert group did not affect the sensitivity. Furthermore, simulation of a 10% image improvement predicted the most effective way to increase profit. KPIs of HCN can estimate financial and non-financial performance. The performance prediction model for HCN will be useful to improve performance.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JBO....15f1708S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JBO....15f1708S"><span>Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steinkellner, Oliver; Gruber, Clemens; Wabnitz, Heidrun; Jelzow, Alexander; Steinbrink, Jens; Fiebach, Jochen B.; MacDonald, Rainer; Obrig, Hellmuth</p> <p>2010-11-01</p> <p>We present results of a clinical study on bedside perfusion monitoring of the human brain by optical bolus tracking. We measure the kinetics of the contrast agent indocyanine green using time-domain near-IR spectroscopy (tdNIRS) in 10 patients suffering from acute unilateral ischemic stroke. In all patients, a delay of the bolus over the affected when compared to the unaffected hemisphere is found (mean: 1.5 s, range: 0.2 s to 5.2 s). A portable time-domain near-IR reflectometer is optimized and approved for clinical studies. Data analysis based on statistical moments of time-of-flight distributions of diffusely reflected photons enables high sensitivity to intracerebral changes in bolus kinetics. Since the second centralized moment, variance, is preferentially sensitive to deep absorption changes, it provides a suitable representation of the cerebral signals relevant for perfusion monitoring in stroke. We show that variance-based bolus tracking is also less susceptible to motion artifacts, which often occur in severely affected patients. We present data that clearly manifest the applicability of the tdNIRS approach to assess cerebral perfusion in acute stroke patients at the bedside. This may be of high relevance to its introduction as a monitoring tool on stroke units.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28438236','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28438236"><span>Personal and macro-systemic factors as predictors of quality of life in chronic schizophrenia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fontanil-Gómez, Yolanda; Alcedo Rodríguez, María A; Gutiérrez López, María I</p> <p>2017-05-01</p> <p>The goal of this research was to establish possible predictive factors for both subjective and externally assessed quality of life in people with chronic schizophrenia. Sixty-eight people with schizophrenia took part in the study and were assessed using the World Health Organisation Quality of Life Assessment - Brief Version (WHOQOL-BREF), the Quality of Life Scale (QLS), the Positive and Negative Syndrome Scale for Schizophrenia (PANSS), the Global Assessment of Functioning (GAF), the Social Functioning Scale (SFS) tests. Correlations and multiple regression analysis were conducted to determine possible predictors of quality of life. The residential environment (rural/urban), diagnosis, age at onset of disorder, global functioning and social functioning explained 68% of the total variance based on proxies’ assessment quality of life. Living arrangements and social functioning emerged as predictor variables for subjective quality of life, explaining a 47.3% of the total variance. Socio-cultural factors, such as social integration or the quality of interpersonal relationships, have more influence on these peoples’ physical and psychological health than certain personal factors, such as psychopathology. It is therefore advisable to pay attention to the environment and macro-systemic variables when developing intervention plans to improve their quality of life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25193042','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25193042"><span>Influence of gender on Tourette syndrome beyond adolescence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lichter, D G; Finnegan, S G</p> <p>2015-02-01</p> <p>Although boys are disproportionately affected by tics in Tourette syndrome (TS), this gender bias is attenuated in adulthood and a recent study has suggested that women may experience greater functional interference from tics than men. The authors assessed the gender distribution of adults in a tertiary University-based TS clinic population and the relative influence of gender and other variables on adult tic severity (YGTSS score) and psychosocial functioning (GAF score). We also determined retrospectively the influence of gender on change in global tic severity and overall TS impairment (YGTSS) since adolescence. Females were over-represented in relation to previously published epidemiologic surveys of both TS children and adults. Female gender was associated with a greater likelihood of tic worsening as opposed to tic improvement in adulthood; a greater likelihood of expansion as opposed to contraction of motor tic distribution; and with increased current motor tic severity and tic-related impairment. However, gender explained only a small percentage of the variance of the YGTSS global severity score and none of the variance of the GAF scale score. Psychosocial functioning was influenced most strongly by tic severity but also by a variety of comorbid neuropsychiatric disorders. Published by Elsevier Masson SAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25812096','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25812096"><span>Effects of influent fractionation, kinetics, stoichiometry and mass transfer on CH4, H2 and CO2 production for (plant-wide) modeling of anaerobic digesters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Solon, Kimberly; Flores-Alsina, Xavier; Gernaey, Krist V; Jeppsson, Ulf</p> <p>2015-01-01</p> <p>This paper examines the importance of influent fractionation, kinetic, stoichiometric and mass transfer parameter uncertainties when modeling biogas production in wastewater treatment plants. The anaerobic digestion model no. 1 implemented in the plant-wide context provided by the benchmark simulation model no. 2 is used to quantify the generation of CH₄, H₂and CO₂. A comprehensive global sensitivity analysis based on (i) standardized regression coefficients (SRC) and (ii) Morris' screening's (MS's) elementary effects reveals the set of parameters that influence the biogas production uncertainty the most. This analysis is repeated for (i) different temperature regimes and (ii) different solids retention times (SRTs) in the anaerobic digester. Results show that both SRC and MS are good measures of sensitivity unless the anaerobic digester is operating at low SRT and mesophilic conditions. In the latter situation, and due to the intrinsic nonlinearities of the system, SRC fails in decomposing the variance of the model predictions (R² < 0.7) making MS a more reliable method. At high SRT, influent fractionations are the most influential parameters for predictions of CH₄and CO₂emissions. Nevertheless, when the anaerobic digester volume is decreased (for the same load), the role of acetate degraders gains more importance under mesophilic conditions, while lipids and fatty acid metabolism is more influential under thermophilic conditions. The paper ends with a critical discussion of the results and their implications during model calibration and validation exercises.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=lonigan%2c+christopher&pg=6&id=EJ654394','ERIC'); return false;" href="https://eric.ed.gov/?q=lonigan%2c+christopher&pg=6&id=EJ654394"><span>Structure of Preschool Phonological Sensitivity: Overlapping Sensitivity to Rhyme, Words, Syllables, and Phonemes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Anthony, Jason L.; Lonigan, Christopher J.; Burgess, Stephen R.; Driscoll, Kimberly; Phillips, Beth M.; Cantor, Brenlee G.</p> <p>2002-01-01</p> <p>This study examined relations among sensitivity to words, syllables, rhymes, and phonemes in older and younger preschoolers. Confirmatory factor analyses found that a one-factor model best explained the date from both groups of children. Only variance common to all phonological sensitivity skills was related to print knowledge and rudimentary…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188048','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188048"><span>Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping</p> <p>2014-01-01</p> <p>Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....6535E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....6535E"><span>Gravity wave momentum flux estimation from CRISTA satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ern, M.; Preusse, P.; Alexander, M. J.; Offermann, D.</p> <p>2003-04-01</p> <p>Temperature altitude profiles measured by the CRISTA satellite were analyzed for gravity waves (GWs). Amplitudes, vertical and horizontal wavelengths of GWs are retrieved by applying a combination of maximum entropy method (MEM) and harmonic analysis (HA) to the temperature height profiles and subsequently comparing the so retrieved GW phases of adjacent altitude profiles. From these results global maps of the absolute value of the vertical flux of horizontal momentum have been estimated. Significant differences between distributions of the temperature variance and distributions of the momentum flux exist. For example, global maps of the momentum flux show a pronounced northward shift of the equatorial maximum whereas temperature variance maps of the tropics/subtropics are nearly symmetric with respect to the equator. This indicates the importance of the influence of horizontal and vertical wavelength distribution on global structures of the momentum flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT.......133H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT.......133H"><span>The effect of time-variant acoustical properties on orchestral instrument timbres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hajda, John Michael</p> <p>1999-06-01</p> <p>The goal of this study was to investigate the timbre of orchestral instrument tones. Kendall (1986) showed that time-variant features are important to instrument categorization. But the relative salience of specific time-variant features to each other and to other acoustical parameters is not known. As part of a convergence strategy, a battery of experiments was conducted to assess the importance of global amplitude envelope, spectral frequencies, and spectral amplitudes. An omnibus identification experiment investigated the salience of global envelope partitions (attack, steady state, and decay). Valid partitioning models should identify important boundary conditions in the evolution of a signal; therefore, these models should be based on signal characteristics. With the use of such a model for sustained continuant tones, the steady-state segment was more salient than the attack. These findings contradicted previous research, which used questionable operational definitions for signal partitioning. For the next set of experiments, instrument tones were analyzed by phase vocoder, and stimuli were created by additive synthesis. Edits and combinations of edits controlled global amplitude envelope, spectral frequencies, and relative spectral amplitudes. Perceptual measurements were made with distance estimation, Verbal Attribute Magnitude Estimation, and similarity scaling. Results indicated that the primary acoustical attribute was the long-time-average spectral centroid. Spectral centroid is a measure of the center of energy distribution for spectral frequency components. Instruments with high values of spectral centroid (bowed strings) sound nasal while instruments with low spectral centroid (flute, clarinet) sound not nasal. The secondary acoustical attribute was spectral amplitude time variance. Predictably, time variance correlated highly with subject ratings of vibrato. The control of relative spectral amplitudes was more salient than the control of global envelope and spectral frequencies. Both amplitude phase relationships and time- variant spectral centroid were affected by the control of relative spectral amplitudes. Further experimentation is required to determine the salience of these features. The finding that instrumental vibrato is a manifestation of spectral amplitude time variance contradicts the common belief that vibrato is due to frequency (pitch) and intensity (loudness) modulation. This study suggests that vibrato is due to a periodic modulation in timbre. Future research should employ musical contexts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29216467','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29216467"><span>Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tang, Jing; Yurova, Alla Y; Schurgers, Guy; Miller, Paul A; Olin, Stefan; Smith, Benjamin; Siewert, Matthias B; Olefeldt, David; Pilesjö, Petter; Poska, Anneli</p> <p>2018-05-01</p> <p>Tundra soils account for 50% of global stocks of soil organic carbon (SOC), and it is expected that the amplified climate warming in high latitude could cause loss of this SOC through decomposition. Decomposed SOC could become hydrologically accessible, which increase downstream dissolved organic carbon (DOC) export and subsequent carbon release to the atmosphere, constituting a positive feedback to climate warming. However, DOC export is often neglected in ecosystem models. In this paper, we incorporate processes related to DOC production, mineralization, diffusion, sorption-desorption, and leaching into a customized arctic version of the dynamic ecosystem model LPJ-GUESS in order to mechanistically model catchment DOC export, and to link this flux to other ecosystem processes. The extended LPJ-GUESS is compared to observed DOC export at Stordalen catchment in northern Sweden. Vegetation communities include flood-tolerant graminoids (Eriophorum) and Sphagnum moss, birch forest and dwarf shrub communities. The processes, sorption-desorption and microbial decomposition (DOC production and mineralization) are found to contribute most to the variance in DOC export based on a detailed variance-based Sobol sensitivity analysis (SA) at grid cell-level. Catchment-level SA shows that the highest mean DOC exports come from the Eriophorum peatland (fen). A comparison with observations shows that the model captures the seasonality of DOC fluxes. Two catchment simulations, one without water lateral routing and one without peatland processes, were compared with the catchment simulations with all processes. The comparison showed that the current implementation of catchment lateral flow and peatland processes in LPJ-GUESS are essential to capture catchment-level DOC dynamics and indicate the model is at an appropriate level of complexity to represent the main mechanism of DOC dynamics in soils. The extended model provides a new tool to investigate potential interactions among climate change, vegetation dynamics, soil hydrology and DOC dynamics at both stand-alone to catchment scales. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816968T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816968T"><span>Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi</p> <p>2016-04-01</p> <p>Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3330414','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3330414"><span>Factors in Outcomes of Short-Term Dynamic Psychotherapy for Chronic vs. Nonchronic Major Depression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>LUBORSKY, LESTER; DIGUER, LOUIS; CACCIOLA, JOHN; BARBER, JACQUES P.; MORAS, KARLA; SCHMIDT, KELLY; DERUBEIS, ROBERT J.</p> <p>1996-01-01</p> <p>The benefits, and variables influencing the benefits, of short-term dynamic psychotherapy for chronic major depression versus nonchronic major depression were examined for 49 patients. The two diagnostic groups started at the same level on the Beck Depression Inventory (BDI) and Global Assessment of Functioning Scale (GAF) and benefited similarly. The bases for the benefits were examined by linear models explaining 35% of termination BDI variance and 47% of termination GAF scores. By far the largest contributor to outcome was initial GAF, followed by presence of more than one comorbid Axis I diagnosis. Initial level of depression on the BDI was not a significant predictor of termination BDI. The chronic/ nonchronic distinction accounted for less than 1% of explained variance, and little was added by personality disorder, age, or gender. PMID:22700274</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19130204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19130204"><span>Sexual narcissism and the perpetration of sexual aggression.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Widman, Laura; McNulty, James K</p> <p>2010-08-01</p> <p>Despite indirect evidence linking narcissism to sexual aggression, studies directly examining this relationship have yielded inconsistent results. Likely contributing to such inconsistencies, prior research has used global measures of narcissism not sensitive to whether the components of narcissism are activated in sexual versus non-sexual domains. The current research avoided such problems by using a measure of sexual narcissism to predict sexual aggression. In a sample of 299 men and women, Study 1 validated the Sexual Narcissism Scale, a new sexuality research instrument with four subscales-Sexual Exploitation, Sexual Entitlement, Low Sexual Empathy, and Sexual Skill. Then, in a sample of 378 men, Study 2 demonstrated that sexual narcissism was associated with reports of the frequency of sexual aggression, three specific types of sexual aggression (unwanted sexual contact, sexual coercion, and attempted/completed rape), and the likelihood of future sexual aggression. Notably, global narcissism was unrelated to all indices of sexual aggression when sexual narcissism was controlled. That sexual narcissism outperformed global assessments of narcissism to account for variance in sexual aggression suggests that future research may benefit by examining whether sexual narcissism and other sexual-situation-specific measurements of personality can similarly provide a more valid test of the association between personality and other sexual behaviors and outcomes (e.g., contraceptive use, infidelity, sexual satisfaction).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4112751','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4112751"><span>Sexual Narcissism and the Perpetration of Sexual Aggression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McNulty, James K.</p> <p>2014-01-01</p> <p>Despite indirect evidence linking narcissism to sexual aggression, studies directly examining this relationship have yielded inconsistent results. Likely contributing to such inconsistencies, prior research has used global measures of narcissism not sensitive to whether the components of narcissism are activated in sexual versus non-sexual domains. The current research avoided such problems by using a measure of sexual narcissism to predict sexual aggression. In a sample of 299 men and women, Study 1 validated the Sexual Narcissism Scale, a new sexuality research instrument with four subscales—Sexual Exploitation, Sexual Entitlement, Low Sexual Empathy, and Sexual Skill. Then, in a sample of 378 men, Study 2 demonstrated that sexual narcissism was associated with reports of the frequency of sexual aggression, three specific types of sexual aggression (unwanted sexual contact, sexual coercion, and attempted/completed rape), and the likelihood of future sexual aggression. Notably, global narcissism was unrelated to all indices of sexual aggression when sexual narcissism was controlled. That sexual narcissism outperformed global assessments of narcissism to account for variance in sexual aggression suggests that future research may benefit by examining whether sexual narcissism and other sexual-situation-specific measurements of personality can similarly provide a more valid test of the association between personality and other sexual behaviors and outcomes (e.g., contraceptive use, infidelity, sexual satisfaction). PMID:19130204</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813510P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813510P"><span>Parametric uncertainties in global model simulations of black carbon column mass concentration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham</p> <p>2016-04-01</p> <p>Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m-2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10-9 g cm-2 in remote marine regions and 1.25 x 10-6 g cm-2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary comparisons of emulated BC vertical profiles from the AeroCom multi-model ensemble and Hiaper Pole-to-Pole (HIPPO) observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913224P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913224P"><span>Understanding climate impacts on vegetation using a spatiotemporal non-linear Granger causality framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papagiannopoulou, Christina; Decubber, Stijn; Miralles, Diego; Demuzere, Matthias; Dorigo, Wouter; Verhoest, Niko; Waegeman, Willem</p> <p>2017-04-01</p> <p>Satellite data provide an abundance of information about crucial climatic and environmental variables. These data - consisting of global records, spanning up to 35 years and having the form of multivariate time series with different spatial and temporal resolutions - enable the study of key climate-vegetation interactions. Although methods which are based on correlations and linear models are typically used for this purpose, their assumptions for linearity about the climate-vegetation relationships are too simplistic. Therefore, we adopt a recently proposed non-linear Granger causality analysis [1], in which we incorporate spatial information, concatenating data from neighboring pixels and training a joint model on the combined data. Experimental results based on global data sets show that considering non-linear relationships leads to a higher explained variance of past vegetation dynamics, compared to simple linear models. Our approach consists of several steps. First, we compile an extensive database [1], which includes multiple data sets for land surface temperature, near-surface air temperature, surface radiation, precipitation, snow water equivalents and surface soil moisture. Based on this database, high-level features are constructed and considered as predictors in our machine-learning framework. These high-level features include (de-trended) seasonal anomalies, lagged variables, past cumulative variables, and extreme indices, all calculated based on the raw climatic data. Second, we apply a spatiotemporal non-linear Granger causality framework - in which the linear predictive model is substituted for a non-linear machine learning algorithm - in order to assess which of these predictor variables Granger-cause vegetation dynamics at each 1° pixel. We use the de-trended anomalies of Normalized Difference Vegetation Index (NDVI) to characterize vegetation, being the target variable of our framework. Experimental results indicate that climate strongly (Granger-)causes vegetation dynamics in most regions globally. More specifically, water availability is the most dominant vegetation driver, being the dominant vegetation driver in 54% of the vegetated surface. Furthermore, our results show that precipitation and soil moisture have prolonged impacts on vegetation in semiarid regions, with up to 10% of additional explained variance on the vegetation dynamics occurring three months later. Finally, hydro-climatic extremes seem to have a remarkable impact on vegetation, since they also explain up to 10% of additional variance of vegetation in certain regions despite their infrequent occurrence. References [1] Papagiannopoulou, C., Miralles, D. G., Verhoest, N. E. C., Dorigo, W. A., and Waegeman, W.: A non-linear Granger causality framework to investigate climate-vegetation dynamics, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-266, in review, 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MSSP...96..201C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MSSP...96..201C"><span>Mixed kernel function support vector regression for global sensitivity analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng</p> <p>2017-11-01</p> <p>Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3973426','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3973426"><span>Spectrotemporal Modulation Sensitivity as a Predictor of Speech Intelligibility for Hearing-Impaired Listeners</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bernstein, Joshua G.W.; Mehraei, Golbarg; Shamma, Shihab; Gallun, Frederick J.; Theodoroff, Sarah M.; Leek, Marjorie R.</p> <p>2014-01-01</p> <p>Background A model that can accurately predict speech intelligibility for a given hearing-impaired (HI) listener would be an important tool for hearing-aid fitting or hearing-aid algorithm development. Existing speech-intelligibility models do not incorporate variability in suprathreshold deficits that are not well predicted by classical audiometric measures. One possible approach to the incorporation of such deficits is to base intelligibility predictions on sensitivity to simultaneously spectrally and temporally modulated signals. Purpose The likelihood of success of this approach was evaluated by comparing estimates of spectrotemporal modulation (STM) sensitivity to speech intelligibility and to psychoacoustic estimates of frequency selectivity and temporal fine-structure (TFS) sensitivity across a group of HI listeners. Research Design The minimum modulation depth required to detect STM applied to an 86 dB SPL four-octave noise carrier was measured for combinations of temporal modulation rate (4, 12, or 32 Hz) and spectral modulation density (0.5, 1, 2, or 4 cycles/octave). STM sensitivity estimates for individual HI listeners were compared to estimates of frequency selectivity (measured using the notched-noise method at 500, 1000measured using the notched-noise method at 500, 2000, and 4000 Hz), TFS processing ability (2 Hz frequency-modulation detection thresholds for 500, 10002 Hz frequency-modulation detection thresholds for 500, 2000, and 4000 Hz carriers) and sentence intelligibility in noise (at a 0 dB signal-to-noise ratio) that were measured for the same listeners in a separate study. Study Sample Eight normal-hearing (NH) listeners and 12 listeners with a diagnosis of bilateral sensorineural hearing loss participated. Data Collection and Analysis STM sensitivity was compared between NH and HI listener groups using a repeated-measures analysis of variance. A stepwise regression analysis compared STM sensitivity for individual HI listeners to audiometric thresholds, age, and measures of frequency selectivity and TFS processing ability. A second stepwise regression analysis compared speech intelligibility to STM sensitivity and the audiogram-based Speech Intelligibility Index. Results STM detection thresholds were elevated for the HI listeners, but only for low rates and high densities. STM sensitivity for individual HI listeners was well predicted by a combination of estimates of frequency selectivity at 4000 Hz and TFS sensitivity at 500 Hz but was unrelated to audiometric thresholds. STM sensitivity accounted for an additional 40% of the variance in speech intelligibility beyond the 40% accounted for by the audibility-based Speech Intelligibility Index. Conclusions Impaired STM sensitivity likely results from a combination of a reduced ability to resolve spectral peaks and a reduced ability to use TFS information to follow spectral-peak movements. Combining STM sensitivity estimates with audiometric threshold measures for individual HI listeners provided a more accurate prediction of speech intelligibility than audiometric measures alone. These results suggest a significant likelihood of success for an STM-based model of speech intelligibility for HI listeners. PMID:23636210</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ERL.....8a4002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ERL.....8a4002A"><span>Global pressures, specific responses: effects of nutrient enrichment in streams from different biomes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Artigas, Joan; García-Berthou, Emili; Bauer, Delia E.; Castro, Maria I.; Cochero, Joaquín; Colautti, Darío C.; Cortelezzi, Agustina; Donato, John C.; Elosegi, Arturo; Feijoó, Claudia; Giorgi, Adonis; Gómez, Nora; Leggieri, Leonardo; Muñoz, Isabel; Rodrigues-Capítulo, Alberto; Romaní, Anna M.; Sabater, Sergi</p> <p>2013-03-01</p> <p>We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6-4-fold following a before-after control-impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2-77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9-48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4208158','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4208158"><span>Observability Analysis of a MEMS INS/GPS Integration System with Gyroscope G-Sensitivity Errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing</p> <p>2014-01-01</p> <p>Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously. PMID:25171122</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25171122','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25171122"><span>Observability analysis of a MEMS INS/GPS integration system with gyroscope G-sensitivity errors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fan, Chen; Hu, Xiaoping; He, Xiaofeng; Tang, Kanghua; Luo, Bing</p> <p>2014-08-28</p> <p>Gyroscopes based on micro-electromechanical system (MEMS) technology suffer in high-dynamic applications due to obvious g-sensitivity errors. These errors can induce large biases in the gyroscope, which can directly affect the accuracy of attitude estimation in the integration of the inertial navigation system (INS) and the Global Positioning System (GPS). The observability determines the existence of solutions for compensating them. In this paper, we investigate the observability of the INS/GPS system with consideration of the g-sensitivity errors. In terms of two types of g-sensitivity coefficients matrix, we add them as estimated states to the Kalman filter and analyze the observability of three or nine elements of the coefficient matrix respectively. A global observable condition of the system is presented and validated. Experimental results indicate that all the estimated states, which include position, velocity, attitude, gyro and accelerometer bias, and g-sensitivity coefficients, could be made observable by maneuvering based on the conditions. Compared with the integration system without compensation for the g-sensitivity errors, the attitude accuracy is raised obviously.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011LNCS.6589..341C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011LNCS.6589..341C"><span>A Culture-Sensitive Agent in Kirman's Ant Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Shu-Heng; Liou, Wen-Ching; Chen, Ting-Yu</p> <p></p> <p>The global financial crisis brought a serious collapse involving a "systemic" meltdown. Internet technology and globalization have increased the chances for interaction between countries and people. The global economy has become more complex than ever before. Mark Buchanan [12] indicated that agent-based computer models will prevent another financial crisis and has been particularly influential in contributing insights. There are two reasons why culture-sensitive agent on the financial market has become so important. Therefore, the aim of this article is to establish a culture-sensitive agent and forecast the process of change regarding herding behavior in the financial market. We based our study on the Kirman's Ant Model[4,5] and Hofstede's Natational Culture[11] to establish our culture-sensitive agent based model. Kirman's Ant Model is quite famous and describes financial market herding behavior from the expectations of the future of financial investors. Hofstede's cultural consequence used the staff of IBM in 72 different countries to understand the cultural difference. As a result, this paper focuses on one of the five dimensions of culture from Hofstede: individualism versus collectivism and creates a culture-sensitive agent and predicts the process of change regarding herding behavior in the financial market. To conclude, this study will be of importance in explaining the herding behavior with cultural factors, as well as in providing researchers with a clearer understanding of how herding beliefs of people about different cultures relate to their finance market strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27168153','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27168153"><span>Antenatal interpersonal sensitivity is more strongly associated than perinatal depressive symptoms with postnatal mother-infant interaction quality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raine, Karen; Cockshaw, Wendell; Boyce, Philip; Thorpe, Karen</p> <p>2016-10-01</p> <p>Maternal mental health has enduring effects on children's life chances and is a substantial cost driver for child health, education and social services. A key linking mechanism is the quality of mother-infant interaction. A body of work associates maternal depressive symptoms across the antenatal and postnatal (perinatal) period with less-than-optimal mother-infant interaction. Our study aims to build on previous research in the field through exploring the association of a maternal personality trait, interpersonal sensitivity, measured in early pregnancy, with subsequent mother-infant interaction quality. We analysed data from the Avon Longitudinal Study of Parents and Children (ALSPAC) to examine the association between antenatal interpersonal sensitivity and postnatal mother-infant interaction quality in the context of perinatal depressive symptoms. Interpersonal sensitivity was measured during early pregnancy and depressive symptoms in the antenatal year and across the first 21 months of the postnatal period. In a subsample of the ALSPAC, mother-infant interaction was measured at 12 months postnatal through a standard observation. For the subsample that had complete data at all time points (n = 706), hierarchical regression examined the contribution of interpersonal sensitivity to variance in mother-infant interaction quality. Perinatal depressive symptoms predicted little variance in mother-infant interaction. Antenatal interpersonal sensitivity explained a greater proportion of variance in mother-infant interaction quality. The personality trait, interpersonal sensitivity, measured in early pregnancy, is a more robust indicator of subsequent mother-infant-interaction quality than perinatal depressive symptoms, thus affording enhanced opportunity to identify vulnerable mother-infant relationships for targeted early intervention.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4878274','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4878274"><span>Novel application of bacteriophage for controlling foaming in wastewater treatment plant- an eco-friendly approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Khairnar, Krishna; Chandekar, Rajshree; Nair, Aparna; Pal, Preeti; Paunikar, Waman N.</p> <p>2016-01-01</p> <p>ABSTRACT This addendum to “Novel application of bacteriophage for controlling foaming in wastewater treatment plant- an eco-friendly approach “ includes characteristics of the phages NOC1, NOC2 and NOC3 not discussed in the previous paper. The phage adsorption and host interaction properties, their sensitivity to pH and temperature are inferred. NOC2 is seen to be more temperature resistant while others are not. All the phages show pH sensitivity. There is a variance observed in the behavior of these phages. Also, applicability of the phage based system to large scale reactors is studied and discussed here. PMID:26890996</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26890996','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26890996"><span>Novel application of bacteriophage for controlling foaming in wastewater treatment plant- an eco-friendly approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khairnar, Krishna; Chandekar, Rajshree; Nair, Aparna; Pal, Preeti; Paunikar, Waman N</p> <p>2016-01-01</p> <p>This addendum to "Novel application of bacteriophage for controlling foaming in wastewater treatment plant- an eco-friendly approach " includes characteristics of the phages NOC1, NOC2 and NOC3 not discussed in the previous paper. The phage adsorption and host interaction properties, their sensitivity to pH and temperature are inferred. NOC2 is seen to be more temperature resistant while others are not. All the phages show pH sensitivity. There is a variance observed in the behavior of these phages. Also, applicability of the phage based system to large scale reactors is studied and discussed here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27232973','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27232973"><span>More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hubbart, Jason A; Guyette, Richard; Muzika, Rose-Marie</p> <p>2016-10-01</p> <p>For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15197791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15197791"><span>Measuring social impacts of breast carcinoma treatment in Chinese women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fielding, Richard; Lam, Wendy W T</p> <p>2004-06-15</p> <p>There is no existing instrument that is suitable for measuring the social impact of breast carcinoma (BC) and its treatment among women of Southern Chinese descent. In the current study, the authors assessed the validity of the Chinese Social Adjustment Scale, which was designed to address the need for such an instrument. Five dimensions of social concern were identified in a previous study of Cantonese-speaking Chinese women with BC; these dimensions were family and other relationships, intimacy, private self-image, and public self-image. The authors designed 40 items to address perceptions of change in these areas. These items were administered to a group of 226 women who had received treatment for BC, and factor analysis subsequently was performed to determine construct characteristics. The resulting draft instrument then was administered, along with other measures for the assessment of basic psychometric properties, to a second group of 367 women who recently had undergone surgery for BC. Factor analysis optimally identified 5 factors (corresponding to 33 items): 1) Relationships with Family (10 items, accounting for 22% of variance); 2) Self-Image (7 items, accounting for 15% of variance); 3) Relationships with Friends (7 items, accounting for 8% of variance); 4) Social Enjoyment (4 items, accounting for 6% of variance); and 5) Attractiveness and Sexuality (5 items, accounting for 5% of variance). Subscales were reliable (alpha = 0.63-0.93) and exhibited convergent validity in positive correlations with related measures and divergent validity in appropriate inverse or nonsignificant correlations with other measures. Criterion validity was good, and sensitivity was acceptable. Patterns of change on the scales were consistent with reports in the literature. Self-administration resulted in improved sensitivity. The 33-item Chinese Social Adjustment Scale validly, reliably, and sensitively measures the social impact of BC on Cantonese-speaking Hong Kong Chinese women. Further development of the scale to increase its sensitivity is underway. Copyright 2004 American Cancer Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2668735','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2668735"><span>Abbreviated neuropsychological assessment in schizophrenia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Harvey, Philip D.; Keefe, Richard S. E.; Patterson, Thomas L.; Heaton, Robert K.; Bowie, Christopher R.</p> <p>2008-01-01</p> <p>The aim of this study was to identify the best subset of neuropsychological tests for prediction of several different aspects of functioning in a large (n = 236) sample of older people with schizophrenia. While the validity of abbreviated assessment methods has been examined before, there has never been a comparative study of the prediction of different elements of cognitive impairment, real-world outcomes, and performance-based measures of functional capacity. Scores on 10 different tests from a neuropsychological assessment battery were used to predict global neuropsychological (NP) performance (indexed with averaged scores or calculated general deficit scores), performance-based indices of everyday-living skills and social competence, and case-manager ratings of real-world functioning. Forward entry stepwise regression analyses were used to identify the best predictors for each of the outcomes measures. Then, the analyses were adjusted for estimated premorbid IQ, which reduced the magnitude, but not the structure, of the correlations. Substantial amounts (over 70%) of the variance in overall NP performance were accounted for by a limited number of NP tests. Considerable variance in measures of functional capacity was also accounted for by a limited number of tests. Different tests constituted the best predictor set for each outcome measure. A substantial proportion of the variance in several different NP and functional outcomes can be accounted for by a small number of NP tests that can be completed in a few minutes, although there is considerable unexplained variance. However, the abbreviated assessments that best predict different outcomes vary across outcomes. Future studies should determine whether responses to pharmacological and remediation treatments can be captured with brief assessments as well. PMID:18720182</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025725','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025725"><span>MODFLOW 2000 Head Uncertainty, a First-Order Second Moment Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Glasgow, H.S.; Fortney, M.D.; Lee, J.; Graettinger, A.J.; Reeves, H.W.</p> <p>2003-01-01</p> <p>A computationally efficient method to estimate the variance and covariance in piezometric head results computed through MODFLOW 2000 using a first-order second moment (FOSM) approach is presented. This methodology employs a first-order Taylor series expansion to combine model sensitivity with uncertainty in geologic data. MODFLOW 2000 is used to calculate both the ground water head and the sensitivity of head to changes in input data. From a limited number of samples, geologic data are extrapolated and their associated uncertainties are computed through a conditional probability calculation. Combining the spatially related sensitivity and input uncertainty produces the variance-covariance matrix, the diagonal of which is used to yield the standard deviation in MODFLOW 2000 head. The variance in piezometric head can be used for calibrating the model, estimating confidence intervals, directing exploration, and evaluating the reliability of a design. A case study illustrates the approach, where aquifer transmissivity is the spatially related uncertain geologic input data. The FOSM methodology is shown to be applicable for calculating output uncertainty for (1) spatially related input and output data, and (2) multiple input parameters (transmissivity and recharge).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.4691B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.4691B"><span>Geological entropy and solute transport in heterogeneous porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bianchi, Marco; Pedretti, Daniele</p> <p>2017-06-01</p> <p>We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014441','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014441"><span>A multiple-objective optimal exploration strategy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Christakos, G.; Olea, R.A.</p> <p>1988-01-01</p> <p>Exploration for natural resources is accomplished through partial sampling of extensive domains. Such imperfect knowledge is subject to sampling error. Complex systems of equations resulting from modelling based on the theory of correlated random fields are reduced to simple analytical expressions providing global indices of estimation variance. The indices are utilized by multiple objective decision criteria to find the best sampling strategies. The approach is not limited by geometric nature of the sampling, covers a wide range in spatial continuity and leads to a step-by-step procedure. ?? 1988.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1715297T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1715297T"><span>In search of the best match: probing a multi-dimensional cloud microphysical parameter space to better understand what controls cloud thermodynamic phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tan, Ivy; Storelvmo, Trude</p> <p>2015-04-01</p> <p>Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters, which are also notoriously fraught with uncertainties. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has neglected to focus on improving the ability of GCMs to accurately simulate the present-day global distribution of thermodynamic phase partitioning in mixed-phase clouds. Liquid droplets and ice crystals not only influence the Earth's radiative budget and hence climate sensitivity via their contrasting optical properties, but also through the effects of their lifetimes in the atmosphere. The current study employs NCAR's CAM5.1, and uses observations of cloud phase obtained by NASA's CALIOP lidar over a 79-month period (November 2007 to June 2014) guide the accurate simulation of the global distribution of mixed-phase clouds in 20∘ latitudinal bands at the -10∘ C, -20∘C and -30∘C isotherms, by adjusting six relevant cloud microphysical tuning parameters in the CAM5.1 via Quasi-Monte Carlo sampling. Among the parameters include those that control the Wegener-Bergeron-Findeisen (WBF) timescale for the conversion of supercooled liquid droplets to ice and snow in mixed-phase clouds, the fraction of ice nuclei that nucleate ice in the atmosphere, ice crystal sedimentation speed, and wet scavenging in stratiform and convective clouds. Using a Generalized Linear Model as a variance-based sensitivity analysis, the relative contributions of each of the six parameters are quantified to gain a better understanding of the importance of their individual and two-way interaction effects on the liquid to ice proportion in mixed-phase clouds. Thus, the methodology implemented in the current study aims to search for the combination of cloud microphysical parameters in a GCM that produce the most accurate reproduction of observations of cloud thermodynamic phase, while simultaneously assessing the weaknesses of the parameterizations in the model. We find that the simulated proportion of liquid to ice in mixed-phase clouds is dominated by the fraction of active ice nuclei in the atmosphere and the WBF timescale. In a follow-up to this study, we apply these results to a fully-coupled GCM, CESM, and find that cloud thermodynamic phase has profound ramifications for the uncertainty associated with climate sensitivity estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26178527','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26178527"><span>Segregation of face sensitive areas within the fusiform gyrus using global signal regression? A study on amygdala resting-state functional connectivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kruschwitz, Johann D; Meyer-Lindenberg, Andreas; Veer, Ilya M; Wackerhagen, Carolin; Erk, Susanne; Mohnke, Sebastian; Pöhland, Lydia; Haddad, Leila; Grimm, Oliver; Tost, Heike; Romanczuk-Seiferth, Nina; Heinz, Andreas; Walter, Martin; Walter, Henrik</p> <p>2015-10-01</p> <p>The application of global signal regression (GSR) to resting-state functional magnetic resonance imaging data and its usefulness is a widely discussed topic. In this article, we report an observation of segregated distribution of amygdala resting-state functional connectivity (rs-FC) within the fusiform gyrus (FFG) as an effect of GSR in a multi-center-sample of 276 healthy subjects. Specifically, we observed that amygdala rs-FC was distributed within the FFG as distinct anterior versus posterior clusters delineated by positive versus negative rs-FC polarity when GSR was performed. To characterize this effect in more detail, post hoc analyses revealed the following: first, direct overlays of task-functional magnetic resonance imaging derived face sensitive areas and clusters of positive versus negative amygdala rs-FC showed that the positive amygdala rs-FC cluster corresponded best with the fusiform face area, whereas the occipital face area corresponded to the negative amygdala rs-FC cluster. Second, as expected from a hierarchical face perception model, these amygdala rs-FC defined clusters showed differential rs-FC with other regions of the visual stream. Third, dynamic connectivity analyses revealed that these amygdala rs-FC defined clusters also differed in their rs-FC variance across time to the amygdala. Furthermore, subsample analyses of three independent research sites confirmed reliability of the effect of GSR, as revealed by similar patterns of distinct amygdala rs-FC polarity within the FFG. In this article, we discuss the potential of GSR to segregate face sensitive areas within the FFG and furthermore discuss how our results may relate to the functional organization of the face-perception circuit. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ACPD...12.7545Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ACPD...12.7545Z"><span>The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.</p> <p>2012-03-01</p> <p>This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Sensitivity experiments are carried out to analyse the effects of these improvements in the process representation on the simulated aerosol properties and global distribution. The new parameterizations that have largest impact on the global mean aerosol optical depth and radiative effects turn out to be the water uptake scheme and cloud microphysics. The former leads to a significant decrease of aerosol water contents in the lower troposphere, and consequently smaller optical depth; the latter results in higher aerosol loading and longer lifetime due to weaker in-cloud scavenging. The combined effects of the new/updated parameterizations are demonstrated by comparing the new model results with those from the earlier version, and against observations. Model simulations are evaluated in terms of aerosol number concentrations against measurements collected from twenty field campaigns as well as from fixed measurement sites, and in terms of optical properties against the AERONET measurements. Results indicate a general improvement with respect to the earlier version. The aerosol size distribution and spatial-temporal variance simulated by HAM2 are in better agreement with the observations. Biases in the earlier model version in aerosol optical depth and in the Ångström parameter have been reduced. The paper also points out the remaining model deficiencies that need to be addressed in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20937759','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20937759"><span>Assessment of the relative merits of a few methods to detect evolutionary trends.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Laurin, Michel</p> <p>2010-12-01</p> <p>Some of the most basic questions about the history of life concern evolutionary trends. These include determining whether or not metazoans have become more complex over time, whether or not body size tends to increase over time (the Cope-Depéret rule), or whether or not brain size has increased over time in various taxa, such as mammals and birds. Despite the proliferation of studies on such topics, assessment of the reliability of results in this field is hampered by the variability of techniques used and the lack of statistical validation of these methods. To solve this problem, simulations are performed using a variety of evolutionary models (gradual Brownian motion, speciational Brownian motion, and Ornstein-Uhlenbeck), with or without a drift of variable amplitude, with variable variance of tips, and with bounds placed close or far from the starting values and final means of simulated characters. These are used to assess the relative merits (power, Type I error rate, bias, and mean absolute value of error on slope estimate) of several statistical methods that have recently been used to assess the presence of evolutionary trends in comparative data. Results show widely divergent performance of the methods. The simple, nonphylogenetic regression (SR) and variance partitioning using phylogenetic eigenvector regression (PVR) with a broken stick selection procedure have greatly inflated Type I error rate (0.123-0.180 at a 0.05 threshold), which invalidates their use in this context. However, they have the greatest power. Most variants of Felsenstein's independent contrasts (FIC; five of which are presented) have adequate Type I error rate, although two have a slightly inflated Type I error rate with at least one of the two reference trees (0.064-0.090 error rate at a 0.05 threshold). The power of all contrast-based methods is always much lower than that of SR and PVR, except under Brownian motion with a strong trend and distant bounds. Mean absolute value of error on slope of all FIC methods is slightly higher than that of phylogenetic generalized least squares (PGLS), SR, and PVR. PGLS performs well, with low Type I error rate, low error on regression coefficient, and power comparable with some FIC methods. Four variants of skewness analysis are examined, and a new method to assess significance of results is presented. However, all have consistently low power, except in rare combinations of trees, trend strength, and distance between final means and bounds. Globally, the results clearly show that FIC-based methods and PGLS are globally better than nonphylogenetic methods and variance partitioning with PVR. FIC methods and PGLS are sensitive to the model of evolution (and, hence, to branch length errors). Our results suggest that regressing raw character contrasts against raw geological age contrasts yields a good combination of power and Type I error rate. New software to facilitate batch analysis is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27295653','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27295653"><span>Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo</p> <p>2017-06-01</p> <p>Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1823S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1823S"><span>Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang</p> <p>2018-05-01</p> <p>Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16839781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16839781"><span>Automated brainstem co-registration (ABC) for MRI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Napadow, Vitaly; Dhond, Rupali; Kennedy, David; Hui, Kathleen K S; Makris, Nikos</p> <p>2006-09-01</p> <p>Group data analysis in brainstem neuroimaging is predicated on accurate co-registration of anatomy. As the brainstem is comprised of many functionally heterogeneous nuclei densely situated adjacent to one another, relatively small errors in co-registration can manifest in increased variance or decreased sensitivity (or significance) in detecting activations. We have devised a 2-stage automated, reference mask guided registration technique (Automated Brainstem Co-registration, or ABC) for improved brainstem co-registration. Our approach utilized a brainstem mask dataset to weight an automated co-registration cost function. Our method was validated through measurement of RMS error at 12 manually defined landmarks. These landmarks were also used as guides for a secondary manual co-registration option, intended for outlier individuals that may not adequately co-register with our automated method. Our methodology was tested on 10 healthy human subjects and compared to traditional co-registration techniques (Talairach transform and automated affine transform to the MNI-152 template). We found that ABC had a significantly lower mean RMS error (1.22 +/- 0.39 mm) than Talairach transform (2.88 +/- 1.22 mm, mu +/- sigma) and the global affine (3.26 +/- 0.81 mm) method. Improved accuracy was also found for our manual-landmark-guided option (1.51 +/- 0.43 mm). Visualizing individual brainstem borders demonstrated more consistent and uniform overlap for ABC compared to traditional global co-registration techniques. Improved robustness (lower susceptibility to outliers) was demonstrated with ABC through lower inter-subject RMS error variance compared with traditional co-registration methods. The use of easily available and validated tools (AFNI and FSL) for this method should ease adoption by other investigators interested in brainstem data group analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364887-accounting-cosmic-variance-studies-gravitationally-lensed-high-redshift-galaxies-hubble-frontier-field-clusters','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364887-accounting-cosmic-variance-studies-gravitationally-lensed-high-redshift-galaxies-hubble-frontier-field-clusters"><span>ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.</p> <p></p> <p>Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% atmore » redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoJI.174..265L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoJI.174..265L"><span>Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Qinya; Tromp, Jeroen</p> <p>2008-07-01</p> <p>We determine adjoint equations and Fréchet kernels for global seismic wave propagation based upon a Lagrange multiplier method. We start from the equations of motion for a rotating, self-gravitating earth model initially in hydrostatic equilibrium, and derive the corresponding adjoint equations that involve motions on an earth model that rotates in the opposite direction. Variations in the misfit function χ then may be expressed as , where δlnm = δm/m denotes relative model perturbations in the volume V, δlnd denotes relative topographic variations on solid-solid or fluid-solid boundaries Σ, and ∇Σδlnd denotes surface gradients in relative topographic variations on fluid-solid boundaries ΣFS. The 3-D Fréchet kernel Km determines the sensitivity to model perturbations δlnm, and the 2-D kernels Kd and Kd determine the sensitivity to topographic variations δlnd. We demonstrate also how anelasticity may be incorporated within the framework of adjoint methods. Finite-frequency sensitivity kernels are calculated by simultaneously computing the adjoint wavefield forward in time and reconstructing the regular wavefield backward in time. Both the forward and adjoint simulations are based upon a spectral-element method. We apply the adjoint technique to generate finite-frequency traveltime kernels for global seismic phases (P, Pdiff, PKP, S, SKS, depth phases, surface-reflected phases, surface waves, etc.) in both 1-D and 3-D earth models. For 1-D models these adjoint-generated kernels generally agree well with results obtained from ray-based methods. However, adjoint methods do not have the same theoretical limitations as ray-based methods, and can produce sensitivity kernels for any given phase in any 3-D earth model. The Fréchet kernels presented in this paper illustrate the sensitivity of seismic observations to structural parameters and topography on internal discontinuities. These kernels form the basis of future 3-D tomographic inversions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810059491&hterms=1091&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231091','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810059491&hterms=1091&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231091"><span>Evidence for wavelike anomalies with short meridional and large zonal scales in the lower stratospheric temperature field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stanford, J. L.; Short, D. A.</p> <p>1981-01-01</p> <p>Global microwave brightness temperature measurements are analyzed to investigate the range of meridional wavelengths 2000-3000 km where spectral studies reveal larger than expected variance. The data, from the TIROS-N Microwave Sounding Unit, are sensitive to lower stratospheric temperatures (30-150 mb). The results reveal striking temperature anomalies with short meridional wavelengths (2000-3000 km) and long zonal wavelengths (zonal wavenumbers 1-4). The anomalies, with amplitudes approximately 1-2 K, extend from the equatorial region to at least as high as 70 deg N and 70 deg S during January 1979. The features exhibit slow eastward movement or else are nearly stationary for several days. In the Northern Hemisphere, comparison with NMC data reveals that the strongest features tend to be associated with major jet streams.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5726280','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5726280"><span>Day-to-day affect is surprisingly stable: A two-year longitudinal study of well-being</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hudson, Nathan W.; Lucas, Richard E.; Donnellan, M. Brent</p> <p>2017-01-01</p> <p>Previous research suggests global assessments of cognitive well-being—life satisfaction—are relatively stable over time. Far fewer studies have examined the extent to which experiential measures of affective well-being—the moods/emotions people regularly experience—are stable, especially over extended periods of time. The present study used longitudinal data from a representative sample of Germans to investigate the long-term stability of different components of well-being. Participants provided global ratings of life satisfaction and affect, along with experiential measures of well-being up to three times over two years. Results indicated between one third and one half of the variance in people’s daily affect was attributable to trait-like latent variables. Replicating meta-analytic findings, 50% of the variance in global measures of well-being was attributable to trait-like latent variables. PMID:29238453</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060051610&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060051610&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DQbo"><span>Quasi-biennial Oscillations (QBO) as seen in GPS/CHAMP Tropospheric and Ionospheric Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, Dong L.; Pi, Xiaoqing; Ao, Chi O.; Mannucci, Anthony J.</p> <p>2006-01-01</p> <p>A viewgraph presentation on Quasi-biennial Oscillations (QBO) from Global Positioning System/Challenging Mini-Satellite Payload (GPS/CHAMP) tropospheric and ionsopheric data is shown. The topics include: 1) A brief review of QBO; 2) Characteristics of small-scale oscillations in GPS/CHAMP 50-Hz raw measurements; 3) Variations of lower atmospheric variances; and 4) Variations of E-region variances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25698015','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25698015"><span>Locus equations and coarticulation in three Australian languages.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Graetzer, Simone; Fletcher, Janet; Hajek, John</p> <p>2015-02-01</p> <p>Locus equations were applied to F2 data for bilabial, alveolar, retroflex, palatal, and velar plosives in three Australian languages. In addition, F2 variance at the vowel-consonant boundary, and, by extension, consonantal coarticulatory sensitivity, was measured. The locus equation slopes revealed that there were place-dependent differences in the magnitude of vowel-to-consonant coarticulation. As in previous studies, the non-coronal (bilabial and velar) consonants tended to be associated with the highest slopes, palatal consonants tended to be associated with the lowest slopes, and alveolar and retroflex slopes tended to be low to intermediate. Similarly, F2 variance measurements indicated that non-coronals displayed greater coarticulatory sensitivity to adjacent vowels than did coronals. Thus, both the magnitude of vowel-to-consonant coarticulation and the magnitude of consonantal coarticulatory sensitivity were seen to vary inversely with the magnitude of consonantal articulatory constraint. The findings indicated that, unlike results reported previously for European languages such as English, anticipatory vowel-to-consonant coarticulation tends to exceed carryover coarticulation in these Australian languages. Accordingly, on the F2 variance measure, consonants tended to be more sensitive to the coarticulatory effects of the following vowel. Prosodic prominence of vowels was a less significant factor in general, although certain language-specific patterns were observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22353368','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22353368"><span>Geobiological constraints on Earth system sensitivity to CO₂ during the Cretaceous and Cenozoic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Royer, D L; Pagani, M; Beerling, D J</p> <p>2012-07-01</p> <p>Earth system climate sensitivity (ESS) is the long-term (>10³ year) response of global surface temperature to doubled CO₂ that integrates fast and slow climate feedbacks. ESS has energy policy implications because global temperatures are not expected to decline appreciably for at least 10³ year, even if anthropogenic greenhouse gas emissions drop to zero. We report provisional ESS estimates of 3 °C or higher for some of the Cretaceous and Cenozoic based on paleo-reconstructions of CO₂ and temperature. These estimates are generally higher than climate sensitivities simulated from global climate models for the same ancient periods (approximately 3 °C). Climate models probably do not capture the full suite of positive climate feedbacks that amplify global temperatures during some globally warm periods, as well as other characteristic features of warm climates such as low meridional temperature gradients. These absent feedbacks may be related to clouds, trace greenhouse gases (GHGs), seasonal snow cover, and/or vegetation, especially in polar regions. Better characterization and quantification of these feedbacks is a priority given the current accumulation of atmospheric GHGs. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6721B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6721B"><span>Global-scale high-resolution ( 1 km) modelling of mean, maximum and minimum annual streamflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barbarossa, Valerio; Huijbregts, Mark; Hendriks, Jan; Beusen, Arthur; Clavreul, Julie; King, Henry; Schipper, Aafke</p> <p>2017-04-01</p> <p>Quantifying mean, maximum and minimum annual flow (AF) of rivers at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. AF metrics can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict AF metrics based on climate and catchment characteristics. Yet, so far, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. We developed global-scale regression models that quantify mean, maximum and minimum AF as function of catchment area and catchment-averaged slope, elevation, and mean, maximum and minimum annual precipitation and air temperature. We then used these models to obtain global 30 arc-seconds (˜ 1 km) maps of mean, maximum and minimum AF for each year from 1960 through 2015, based on a newly developed hydrologically conditioned digital elevation model. We calibrated our regression models based on observations of discharge and catchment characteristics from about 4,000 catchments worldwide, ranging from 100 to 106 km2 in size, and validated them against independent measurements as well as the output of a number of process-based global hydrological models (GHMs). The variance explained by our regression models ranged up to 90% and the performance of the models compared well with the performance of existing GHMs. Yet, our AF maps provide a level of spatial detail that cannot yet be achieved by current GHMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024479','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024479"><span>Global modeling of land water and energy balances. Part II: Land-characteristic contributions to spatial variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Milly, P.C.D.; Shmakin, A.B.</p> <p>2002-01-01</p> <p>Land water and energy balances vary around the globe because of variations in amount and temporal distribution of water and energy supplies and because of variations in land characteristics. The former control (water and energy supplies) explains much more variance in water and energy balances than the latter (land characteristics). A largely untested hypothesis underlying most global models of land water and energy balance is the assumption that parameter values based on estimated geographic distributions of soil and vegetation characteristics improve the performance of the models relative to the use of globally constant land parameters. This hypothesis is tested here through an evaluation of the improvement in performance of one land model associated with the introduction of geographic information on land characteristics. The capability of the model to reproduce annual runoff ratios of large river basins, with and without information on the global distribution of albedo, rooting depth, and stomatal resistance, is assessed. To allow a fair comparison, the model is calibrated in both cases by adjusting globally constant scale factors for snow-free albedo, non-water-stressed bulk stomatal resistance, and critical root density (which is used to determine effective root-zone depth). The test is made in stand-alone mode, that is, using prescribed radiative and atmospheric forcing. Model performance is evaluated by comparing modeled runoff ratios with observed runoff ratios for a set of basins where precipitation biases have been shown to be minimal. The withholding of information on global variations in these parameters leads to a significant degradation of the capability of the model to simulate the annual runoff ratio. An additional set of optimization experiments, in which the parameters are examined individually, reveals that the stomatal resistance is, by far, the parameter among these three whose spatial variations add the most predictive power to the model in stand-alone mode. Further single-parameter experiments with surface roughness length, available water capacity, thermal conductivity, and thermal diffusivity show very little sensitivity to estimated global variations in these parameters. Finally, it is found that even the constant-parameter model performance exceeds that of the Budyko and generalized Turc-Pike water-balance equations, suggesting that the model benefits also from information on the geographic variability of the temporal structure of forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H11D1368H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H11D1368H"><span>Comparison of Two Global Sensitivity Analysis Methods for Hydrologic Modeling over the Columbia River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hameed, M.; Demirel, M. C.; Moradkhani, H.</p> <p>2015-12-01</p> <p>Global Sensitivity Analysis (GSA) approach helps identify the effectiveness of model parameters or inputs and thus provides essential information about the model performance. In this study, the effects of the Sacramento Soil Moisture Accounting (SAC-SMA) model parameters, forcing data, and initial conditions are analysed by using two GSA methods: Sobol' and Fourier Amplitude Sensitivity Test (FAST). The simulations are carried out over five sub-basins within the Columbia River Basin (CRB) for three different periods: one-year, four-year, and seven-year. Four factors are considered and evaluated by using the two sensitivity analysis methods: the simulation length, parameter range, model initial conditions, and the reliability of the global sensitivity analysis methods. The reliability of the sensitivity analysis results is compared based on 1) the agreement between the two sensitivity analysis methods (Sobol' and FAST) in terms of highlighting the same parameters or input as the most influential parameters or input and 2) how the methods are cohered in ranking these sensitive parameters under the same conditions (sub-basins and simulation length). The results show the coherence between the Sobol' and FAST sensitivity analysis methods. Additionally, it is found that FAST method is sufficient to evaluate the main effects of the model parameters and inputs. Another conclusion of this study is that the smaller parameter or initial condition ranges, the more consistency and coherence between the sensitivity analysis methods results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22608987-integrated-approach-knowledge-discovery-computer-simulation-models-multi-dimensional-parameter-space','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22608987-integrated-approach-knowledge-discovery-computer-simulation-models-multi-dimensional-parameter-space"><span>An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten</p> <p>2016-06-08</p> <p>In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part ismore » to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1738K0003K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1738K0003K"><span>An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang</p> <p>2016-06-01</p> <p>In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813056L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813056L"><span>Under which conditions, additional monitoring data are worth gathering for improving decision making? Application of the VOI theory in the Bayesian Event Tree eruption forecasting framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loschetter, Annick; Rohmer, Jérémy</p> <p>2016-04-01</p> <p>Standard and new generation of monitoring observations provide in almost real-time important information about the evolution of the volcanic system. These observations are used to update the model and contribute to a better hazard assessment and to support decision making concerning potential evacuation. The framework BET_EF (based on Bayesian Event Tree) developed by INGV enables dealing with the integration of information from monitoring with the prospect of decision making. Using this framework, the objectives of the present work are i. to propose a method to assess the added value of information (within the Value Of Information (VOI) theory) from monitoring; ii. to perform sensitivity analysis on the different parameters that influence the VOI from monitoring. VOI consists in assessing the possible increase in expected value provided by gathering information, for instance through monitoring. Basically, the VOI is the difference between the value with information and the value without additional information in a Cost-Benefit approach. This theory is well suited to deal with situations that can be represented in the form of a decision tree such as the BET_EF tool. Reference values and ranges of variation (for sensitivity analysis) were defined for input parameters, based on data from the MESIMEX exercise (performed at Vesuvio volcano in 2006). Complementary methods for sensitivity analyses were implemented: local, global using Sobol' indices and regional using Contribution to Sample Mean and Variance plots. The results (specific to the case considered) obtained with the different techniques are in good agreement and enable answering the following questions: i. Which characteristics of monitoring are important for early warning (reliability)? ii. How do experts' opinions influence the hazard assessment and thus the decision? Concerning the characteristics of monitoring, the more influent parameters are the means rather than the variances for the case considered. For the parameters that concern expert setting, the weight attributed to monitoring measurement ω, the mean of thresholds, the economic context and the setting of the decision threshold are very influential. The interest of applying the VOI theory (more precisely the value of imperfect information) in the BET framework was demonstrated as support for helping experts in the setting of the monitoring system or for helping managers to decide the installation of additional monitoring systems. Acknowledgments: This work was carried out in the framework of the project MEDSUV. This project is funded under the call FP7 ENV.2012.6.4-2: Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept. Grant agreement n°308665.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SPIE.5765..758M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SPIE.5765..758M"><span>A guided-wave system for monitoring the wing skin-to-spar bond in unmanned aerial vehicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco; Marzani, Alessandro; Coccia, Stefano; Oliver, Joseph; Kosmatka, John; Rizzo, Piervincenzo; Restivo, Gaetano</p> <p>2005-05-01</p> <p>Unmanned Aerial Vehicles (UAVs) are being increasingly used in military as well as civil applications. A critical part of the structure is the adhesive bond between the wing skin and the supporting spar. If not detected early, bond defects originating during manufacturing or in service flight can lead to inefficient flight performance and eventual global failure. This paper will present results from a bond inspection system based on attached piezoelectric disks probing the skin-to-spar bondline with ultrasonic guided waves in the hundreds of kilohertz range. The test components were CFRP composite panels of two different fiber layups bonded to a CFRP composite tube using epoxy adhesive. Three types of bond conditions were simulated, namely regions of poor cohesive strength, regions with localized disbonds and well bonded regions. The root mean square and variance of the received time-domain signals and their discrete wavelet decompositions were computed for the dominant modes propagating through the various bond regions in two different inspection configurations. Semi-analytical finite element analysis of the bonded multilayer joint was also carried out to identify and predict the sensitivity of the predominant carrier modes to the different bond defects. Emphasis of this research is based upon designing a built-in system for monitoring the structural integrity of bonded joints in UAVs and other aerospace structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JOSAA..22..801R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JOSAA..22..801R"><span>Texture and haptic cues in slant discrimination: reliability-based cue weighting without statistically optimal cue combination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosas, Pedro; Wagemans, Johan; Ernst, Marc O.; Wichmann, Felix A.</p> <p>2005-05-01</p> <p>A number of models of depth-cue combination suggest that the final depth percept results from a weighted average of independent depth estimates based on the different cues available. The weight of each cue in such an average is thought to depend on the reliability of each cue. In principle, such a depth estimation could be statistically optimal in the sense of producing the minimum-variance unbiased estimator that can be constructed from the available information. Here we test such models by using visual and haptic depth information. Different texture types produce differences in slant-discrimination performance, thus providing a means for testing a reliability-sensitive cue-combination model with texture as one of the cues to slant. Our results show that the weights for the cues were generally sensitive to their reliability but fell short of statistically optimal combination - we find reliability-based reweighting but not statistically optimal cue combination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25168647','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25168647"><span>A Meta-Analytic Test of Redundancy and Relative Importance of the Dark Triad and Five-Factor Model of Personality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Boyle, Ernest H; Forsyth, Donelson R; Banks, George C; Story, Paul A; White, Charles D</p> <p>2015-12-01</p> <p>We examined the relationships between Machiavellianism, narcissism, and psychopathy-the three traits of the Dark Triad (DT)-and the Five-Factor Model (FFM) of personality. The review identified 310 independent samples drawn from 215 sources and yielded information pertaining to global trait relationships and facet-level relationships. We used meta-analysis to examine (a) the bivariate relations between the DT and the five global traits and 30 facets of the FFM, (b) the relative importance of each of the FFM global traits in predicting DT, and (c) the relationship between the DT and FFM facets identified in translational models of narcissism and psychopathy. These analyses identified consistent and theoretically meaningful associations between the DT traits and the facets of the FFM. The five traits of the FFM, in a relative importance analysis, accounted for much of the variance in Machiavellianism, narcissism, and psychopathy, respectively, and facet-level analyses identified specific facets of each FFM trait that were consistently associated with narcissism (e.g., angry/hostility, modesty) and psychopathy (e.g., straightforwardness, deliberation). The FFM explained nearly all of the variance in psychopathy (R(2) c  = .88) and a substantial portion of the variance in narcissism (R(2) c  = .42). © 2014 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4580246','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4580246"><span>The Negative Impact of Organizational Cynicism on Physicians and Nurses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Volpe, Rebecca L.; Mohammed, Susan; Hopkins, Margaret; Shapiro, Daniel; Dellasega, Cheryl</p> <p>2015-01-01</p> <p>Despite the potentially severe consequences that could result, there is a paucity of research on organizational cynicism within US healthcare providers. In response, this study investigated the effect of cynicism on organizational commitment, job satisfaction, and interest in leaving the hospital for another job in a sample of 205 physicians and 842 nurses. Three types of cynicism were investigated: trait (dispositional), global (directed toward the hospital), and local (directed toward a specific unit or department). Findings indicate that all three types of cynicism were negatively related to affective organizational commitment and job satisfaction, but positively related to interest in leaving. In both nurse and physician samples, cynicism explained about half of the variance in job satisfaction and affective commitment, which is the type of commitment managers are most eager to promote. Cynicism accounted for about a quarter and a third of the variance in interest in leaving the hospital for nurses and physicians, respectively. Trait, global and local cynicism each accounted for unique variance in affective commitment, satisfaction, and interest in leaving, with global cynicism exerting the largest influence on each outcome. The implications for managers are that activities aimed at decreasing organizational cynicism are likely to increase affective organizational commitment, job satisfaction, and organizational tenure. PMID:25350015</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28685603','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28685603"><span>The Role of Emotion Reactivity in Health Anxiety.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Bryan, Emily M; McLeish, Alison C; Johnson, Adrienne L</p> <p>2017-11-01</p> <p>Emotion reactivity, defined as heightened sensitivity, intensity, and persistence of emotional states, has been shown to contribute to the exacerbation of anxiety. However, the association between emotion reactivity and health anxiety has yet to be examined. The aim of the present investigation was to examine the unique predictive ability of emotion reactivity in terms of health anxiety in a sample of medically healthy undergraduates ( n = 194; 59.3% female, M age = 19.42, SD = 1.51, range = 18-26 years; 84.0% Caucasian). Findings indicated that, after controlling for the effects of gender, age, and anxiety sensitivity, greater emotion reactivity significantly predicted greater overall health anxiety (3.1% variance), as well as higher levels of affective (4.1% unique variance) and behavioral (4.8% unique variance) components. Findings suggest that experiencing emotions more frequently, intensely, and for longer durations of time prior to returning to baseline are associated with greater health preoccupations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950048340&hterms=accounting+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Daccounting%2Bsystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950048340&hterms=accounting+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Daccounting%2Bsystem"><span>Atmospheric pressure loading effects on Global Positioning System coordinate determinations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.</p> <p>1994-01-01</p> <p>Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1041086-optimal-solar-pv-arrays-integration-distributed-generation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1041086-optimal-solar-pv-arrays-integration-distributed-generation"><span>Optimal Solar PV Arrays Integration for Distributed Generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Omitaomu, Olufemi A; Li, Xueping</p> <p>2012-01-01</p> <p>Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introducemore » quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27273519','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27273519"><span>A method to estimate the contribution of regional genetic associations to complex traits from summary association statistics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pare, Guillaume; Mao, Shihong; Deng, Wei Q</p> <p>2016-06-08</p> <p>Despite considerable efforts, known genetic associations only explain a small fraction of predicted heritability. Regional associations combine information from multiple contiguous genetic variants and can improve variance explained at established association loci. However, regional associations are not easily amenable to estimation using summary association statistics because of sensitivity to linkage disequilibrium (LD). We now propose a novel method, LD Adjusted Regional Genetic Variance (LARGV), to estimate phenotypic variance explained by regional associations using summary statistics while accounting for LD. Our method is asymptotically equivalent to a multiple linear regression model when no interaction or haplotype effects are present. It has several applications, such as ranking of genetic regions according to variance explained or comparison of variance explained by two or more regions. Using height and BMI data from the Health Retirement Study (N = 7,776), we show that most genetic variance lies in a small proportion of the genome and that previously identified linkage peaks have higher than expected regional variance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4897708','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4897708"><span>A method to estimate the contribution of regional genetic associations to complex traits from summary association statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pare, Guillaume; Mao, Shihong; Deng, Wei Q.</p> <p>2016-01-01</p> <p>Despite considerable efforts, known genetic associations only explain a small fraction of predicted heritability. Regional associations combine information from multiple contiguous genetic variants and can improve variance explained at established association loci. However, regional associations are not easily amenable to estimation using summary association statistics because of sensitivity to linkage disequilibrium (LD). We now propose a novel method, LD Adjusted Regional Genetic Variance (LARGV), to estimate phenotypic variance explained by regional associations using summary statistics while accounting for LD. Our method is asymptotically equivalent to a multiple linear regression model when no interaction or haplotype effects are present. It has several applications, such as ranking of genetic regions according to variance explained or comparison of variance explained by two or more regions. Using height and BMI data from the Health Retirement Study (N = 7,776), we show that most genetic variance lies in a small proportion of the genome and that previously identified linkage peaks have higher than expected regional variance. PMID:27273519</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.5129G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.5129G"><span>Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.</p> <p>2018-04-01</p> <p>A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine stratocumulus regions, with substantially shorter lag times compared with the long-wave counterpart. This indicates that the short-wave radiation response to diurnal cloud development and dissipation is more rapid, which is found to be robust in the regional satellite observations. These global, diurnal radiation patterns and their coupling with other geophysical variables demonstrate the process-level understanding that can be gained using this approach and highlight a need for global, diurnal observing systems for Earth outgoing radiation in the future.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ClDy...42.2603Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ClDy...42.2603Q"><span>On the spread of changes in marine low cloud cover in climate model simulations of the 21st century</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qu, Xin; Hall, Alex; Klein, Stephen A.; Caldwell, Peter M.</p> <p>2014-05-01</p> <p>In 36 climate change simulations associated with phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), changes in marine low cloud cover (LCC) exhibit a large spread, and may be either positive or negative. Here we develop a heuristic model to understand the source of the spread. The model's premise is that simulated LCC changes can be interpreted as a linear combination of contributions from factors shaping the clouds' large-scale environment. We focus primarily on two factors—the strength of the inversion capping the atmospheric boundary layer (measured by the estimated inversion strength, EIS) and sea surface temperature (SST). For a given global model, the respective contributions of EIS and SST are computed. This is done by multiplying (1) the current-climate's sensitivity of LCC to EIS or SST variations, by (2) the climate-change signal in EIS or SST. The remaining LCC changes are then attributed to changes in greenhouse gas and aerosol concentrations, and other environmental factors. The heuristic model is remarkably skillful. Its SST term dominates, accounting for nearly two-thirds of the intermodel variance of LCC changes in CMIP3 models, and about half in CMIP5 models. Of the two factors governing the SST term (the SST increase and the sensitivity of LCC to SST perturbations), the SST sensitivity drives the spread in the SST term and hence the spread in the overall LCC changes. This sensitivity varies a great deal from model to model and is strongly linked to the types of cloud and boundary layer parameterizations used in the models. EIS and SST sensitivities are also estimated using observational cloud and meteorological data. The observed sensitivities are generally consistent with the majority of models as well as expectations from prior research. Based on the observed sensitivities and the relative magnitudes of simulated EIS and SST changes (which we argue are also physically reasonable), the heuristic model predicts LCC will decrease over the 21st-century. However, to place a strong constraint, for example on the magnitude of the LCC decrease, will require longer observational records and a careful assessment of other environmental factors producing LCC changes. Meanwhile, addressing biases in simulated EIS and SST sensitivities will clearly be an important step towards reducing intermodel spread in simulated LCC changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5037268','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5037268"><span>Performance of Language-Coordinated Collective Systems: A Study of Wine Recognition and Description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zubek, Julian; Denkiewicz, Michał; Dębska, Agnieszka; Radkowska, Alicja; Komorowska-Mach, Joanna; Litwin, Piotr; Stępień, Magdalena; Kucińska, Adrianna; Sitarska, Ewa; Komorowska, Krystyna; Fusaroli, Riccardo; Tylén, Kristian; Rączaszek-Leonardi, Joanna</p> <p>2016-01-01</p> <p>Most of our perceptions of and engagements with the world are shaped by our immersion in social interactions, cultural traditions, tools and linguistic categories. In this study we experimentally investigate the impact of two types of language-based coordination on the recognition and description of complex sensory stimuli: that of red wine. Participants were asked to taste, remember and successively recognize samples of wines within a larger set in a two-by-two experimental design: (1) either individually or in pairs, and (2) with or without the support of a sommelier card—a cultural linguistic tool designed for wine description. Both effectiveness of recognition and the kinds of errors in the four conditions were analyzed. While our experimental manipulations did not impact recognition accuracy, bias-variance decomposition of error revealed non-trivial differences in how participants solved the task. Pairs generally displayed reduced bias and increased variance compared to individuals, however the variance dropped significantly when they used the sommelier card. The effect of sommelier card reducing the variance was observed only in pairs, individuals did not seem to benefit from the cultural linguistic tool. Analysis of descriptions generated with the aid of sommelier cards shows that pairs were more coherent and discriminative than individuals. The findings are discussed in terms of global properties and dynamics of collective systems when constrained by different types of cultural practices. PMID:27729875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=well+AND+test&id=EJ1166145','ERIC'); return false;" href="https://eric.ed.gov/?q=well+AND+test&id=EJ1166145"><span>Tree-Based Global Model Tests for Polytomous Rasch Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Komboz, Basil; Strobl, Carolin; Zeileis, Achim</p> <p>2018-01-01</p> <p>Psychometric measurement models are only valid if measurement invariance holds between test takers of different groups. Global model tests, such as the well-established likelihood ratio (LR) test, are sensitive to violations of measurement invariance, such as differential item functioning and differential step functioning. However, these…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008664','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008664"><span>Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro</p> <p>2013-01-01</p> <p>Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..692S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..692S"><span>Biology: Survival of the finfish</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sunday, Jennifer</p> <p>2017-10-01</p> <p>A trait-based approach for assessing physiological sensitivity to climate change can connect a species' evolutionary past with its future vulnerability. Now a global assessment of freshwater and marine fishes reveals patterns of warming sensitivity, highlighting the importance of different biogeographies and identifying places where vulnerability runs high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=platykurtic&id=EJ548382','ERIC'); return false;" href="https://eric.ed.gov/?q=platykurtic&id=EJ548382"><span>An Investigation of the Raudenbush (1988) Test for Studying Variance Heterogeneity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Harwell, Michael</p> <p>1997-01-01</p> <p>The meta-analytic method proposed by S. W. Raudenbush (1988) for studying variance heterogeneity was studied. Results of a Monte Carlo study indicate that the Type I error rate of the test is sensitive to even modestly platykurtic score distributions and to the ratio of study sample size to the number of studies. (SLD)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100021086','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100021086"><span>Finite Element Model Calibration Approach for Area I-X</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.</p> <p>2010-01-01</p> <p>Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100005212','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100005212"><span>Finite Element Model Calibration Approach for Ares I-X</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.</p> <p>2010-01-01</p> <p>Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6843573-simulation-orientation-dependent-global-changes-camera-sensitivity-ect','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6843573-simulation-orientation-dependent-global-changes-camera-sensitivity-ect"><span>A simulation of orientation dependent, global changes in camera sensitivity in ECT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bieszk, J.A.; Hawman, E.G.; Malmin, R.E.</p> <p>1984-01-01</p> <p>ECT promises the abilities to: 1) observe radioisotope distributions in a patient without the summation of overlying activity to reduce contrast, and 2) measure quantitatively these distributions to further and more accurately assess organ function. Ideally, camera-based ECT systems should have a performance that is independent of camera orientation or gantry angle. This study is concerned with ECT quantitation errors that can arise from angle-dependent variations of camera sensitivity. Using simulated phantoms representative of heart and liver sections, the effects of sensitivity changes on reconstructed images were assessed both visually and quantitatively based on ROI sums. The sinogram for eachmore » test image was simulated with 128 linear digitization and 180 angular views. The global orientation-dependent sensitivity was modelled by applying an angular sensitivity dependence to the sinograms of the test images. Four sensitivity variations were studied. Amplitudes of 0% (as a reference), 5%, 10%, and 25% with a costheta dependence were studied as well as a cos2theta dependence with a 5% amplitude. Simulations were done with and without Poisson noise to: 1) determine trends in the quantitative effects as a function of the magnitude of the variation, and 2) to see how these effects are manifested in studies having statistics comparable to clinical cases. For the most realistic sensitivity variation (costheta, 5% ampl.), the ROIs chosen in the present work indicated changes of <0.5% in the noiseless case and <5% for the case with Poisson noise. The effects of statistics appear to dominate any effects due to global, sinusoidal, orientation-dependent sensitivity changes in the cases studied.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1213985','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1213985"><span>Evaluation of SNS Beamline Shielding Configurations using MCNPX Accelerated by ADVANTG</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Risner, Joel M; Johnson, Seth R.; Remec, Igor</p> <p>2015-01-01</p> <p>Shielding analyses for the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory pose significant computational challenges, including highly anisotropic high-energy sources, a combination of deep penetration shielding and an unshielded beamline, and a desire to obtain well-converged nearly global solutions for mapping of predicted radiation fields. The majority of these analyses have been performed using MCNPX with manually generated variance reduction parameters (source biasing and cell-based splitting and Russian roulette) that were largely based on the analyst's insight into the problem specifics. Development of the variance reduction parameters required extensive analyst time, and was often tailored to specific portionsmore » of the model phase space. We previously applied a developmental version of the ADVANTG code to an SNS beamline study to perform a hybrid deterministic/Monte Carlo analysis and showed that we could obtain nearly global Monte Carlo solutions with essentially uniform relative errors for mesh tallies that cover extensive portions of the model with typical voxel spacing of a few centimeters. The use of weight window maps and consistent biased sources produced using the FW-CADIS methodology in ADVANTG allowed us to obtain these solutions using substantially less computer time than the previous cell-based splitting approach. While those results were promising, the process of using the developmental version of ADVANTG was somewhat laborious, requiring user-developed Python scripts to drive much of the analysis sequence. In addition, limitations imposed by the size of weight-window files in MCNPX necessitated the use of relatively coarse spatial and energy discretization for the deterministic Denovo calculations that we used to generate the variance reduction parameters. We recently applied the production version of ADVANTG to this beamline analysis, which substantially streamlined the analysis process. We also tested importance function collapsing (in space and energy) capabilities in ADVANTG. These changes, along with the support for parallel Denovo calculations using the current version of ADVANTG, give us the capability to improve the fidelity of the deterministic portion of the hybrid analysis sequence, obtain improved weight-window maps, and reduce both the analyst and computational time required for the analysis process.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660309','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3660309"><span>Optimizing Complexity Measures for fMRI Data: Algorithm, Artifact, and Sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rubin, Denis; Fekete, Tomer; Mujica-Parodi, Lilianne R.</p> <p>2013-01-01</p> <p>Introduction Complexity in the brain has been well-documented at both neuronal and hemodynamic scales, with increasing evidence supporting its use in sensitively differentiating between mental states and disorders. However, application of complexity measures to fMRI time-series, which are short, sparse, and have low signal/noise, requires careful modality-specific optimization. Methods Here we use both simulated and real data to address two fundamental issues: choice of algorithm and degree/type of signal processing. Methods were evaluated with regard to resilience to acquisition artifacts common to fMRI as well as detection sensitivity. Detection sensitivity was quantified in terms of grey-white matter contrast and overlap with activation. We additionally investigated the variation of complexity with activation and emotional content, optimal task length, and the degree to which results scaled with scanner using the same paradigm with two 3T magnets made by different manufacturers. Methods for evaluating complexity were: power spectrum, structure function, wavelet decomposition, second derivative, rescaled range, Higuchi’s estimate of fractal dimension, aggregated variance, and detrended fluctuation analysis. To permit direct comparison across methods, all results were normalized to Hurst exponents. Results Power-spectrum, Higuchi’s fractal dimension, and generalized Hurst exponent based estimates were most successful by all criteria; the poorest-performing measures were wavelet, detrended fluctuation analysis, aggregated variance, and rescaled range. Conclusions Functional MRI data have artifacts that interact with complexity calculations in nontrivially distinct ways compared to other physiological data (such as EKG, EEG) for which these measures are typically used. Our results clearly demonstrate that decisions regarding choice of algorithm, signal processing, time-series length, and scanner have a significant impact on the reliability and sensitivity of complexity estimates. PMID:23700424</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG52A..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG52A..05G"><span>Global Sensitivity Applied to Dynamic Combined Finite Discrete Element Methods for Fracture Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godinez, H. C.; Rougier, E.; Osthus, D.; Srinivasan, G.</p> <p>2017-12-01</p> <p>Fracture propagation play a key role for a number of application of interest to the scientific community. From dynamic fracture processes like spall and fragmentation in metals and detection of gas flow in static fractures in rock and the subsurface, the dynamics of fracture propagation is important to various engineering and scientific disciplines. In this work we implement a global sensitivity analysis test to the Hybrid Optimization Software Suite (HOSS), a multi-physics software tool based on the combined finite-discrete element method, that is used to describe material deformation and failure (i.e., fracture and fragmentation) under a number of user-prescribed boundary conditions. We explore the sensitivity of HOSS for various model parameters that influence how fracture are propagated through a material of interest. The parameters control the softening curve that the model relies to determine fractures within each element in the mesh, as well a other internal parameters which influence fracture behavior. The sensitivity method we apply is the Fourier Amplitude Sensitivity Test (FAST), which is a global sensitivity method to explore how each parameter influence the model fracture and to determine the key model parameters that have the most impact on the model. We present several sensitivity experiments for different combination of model parameters and compare against experimental data for verification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B12B..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B12B..01C"><span>The role of climate in the global patterns of ecosystem carbon turnover rates - contrasts between data and models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Migliavacca, M.; Thurner, M.; Beer, C.; Jung, M.; Mu, M.; Randerson, J. T.; Saatchi, S. S.; Santoro, M.; Reichstein, M.</p> <p>2012-12-01</p> <p>The turnover rates of carbon in terrestrial ecosystems and their sensitivity to climate are instrumental properties for diagnosing the interannual variability and forecasting trends of biogeochemical processes and carbon-cycle-climate feedbacks. We propose to globally look at the spatial distribution of turnover rates of carbon to explore the association between bioclimatic regimes and the rates at which carbon cycles in terrestrial ecosystems. Based on data-driven approaches of ecosystem carbon fluxes and data-based estimates of ecosystem carbon stocks it is possible to build fully observationally supported diagnostics. These data driven diagnostics support the benchmarking of CMIP5 model outputs (Coupled Model Intercomparison Project Phase 5) with observationally based estimates. The models' performance is addressed by confronting spatial patterns of carbon fluxes and stocks with data, as well as the global and regional sensitivities of turnover rates to climate. Our results show strong latitudinal gradients globally, mostly controlled by temperature, which are not always paralleled by CMIP5 simulations. In northern colder regions is also where the largest difference in temperature sensitivity between models and data occurs. Interestingly, there seem to be two different statistical populations in the data (some with high, others with low apparent temperature sensitivity of carbon turnover rates), where the different models only seem to describe either one or the other population. Additionally, the comparisons within bioclimatic classes can even show opposite patterns between turnover rates and temperature in water limited regions. Overall, our analysis emphasizes the role of finding patterns and intrinsic properties instead of plain magnitudes of fluxes for diagnosing the sensitivities of terrestrial biogeochemical cycles to climate. Further, our regional analysis suggests a significant gap in addressing the partial influence of water in the ecosystem carbon turnover rates especially in very cold or water limited regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H51F1556B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H51F1556B"><span>Can We Use Regression Modeling to Quantify Mean Annual Streamflow at a Global-Scale?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barbarossa, V.; Huijbregts, M. A. J.; Hendriks, J. A.; Beusen, A.; Clavreul, J.; King, H.; Schipper, A.</p> <p>2016-12-01</p> <p>Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF using observations of discharge and catchment characteristics from 1,885 catchments worldwide, ranging from 2 to 106 km2 in size. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB [van Beek et al., 2011] by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area, mean annual precipitation and air temperature, average slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of agreement was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied globally at any point of the river network, provided that the input parameters are within the range of values employed in the calibration of the model. The performance is reduced for water scarce regions and further research should focus on improving such an aspect for regression-based global hydrological models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoRL..3817609R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoRL..3817609R"><span>Non-stationary internal tides observed with satellite altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ray, R. D.; Zaron, E. D.</p> <p>2011-09-01</p> <p>Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-1 tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 cm2. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110020752','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110020752"><span>Non-Stationary Internal Tides Observed with Satellite Altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Zaron, E. D.</p> <p>2011-01-01</p> <p>Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27547529','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27547529"><span>Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Naujokaitis-Lewis, Ilona; Curtis, Janelle M R</p> <p>2016-01-01</p> <p>Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4958004','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4958004"><span>Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Curtis, Janelle M.R.</p> <p>2016-01-01</p> <p>Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along with demographic parameters in sensitivity routines. GRIP 2.0 is an important decision-support tool that can be used to prioritize research, identify habitat-based thresholds and management intervention points to improve probability of species persistence, and evaluate trade-offs of alternative management options. PMID:27547529</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JLwT...24.1543O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JLwT...24.1543O"><span>Influence of Random DC Offsets on Burst-Mode Receiver Sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ossieur, Peter; de Ridder, Tine; Qiu, Xing-Zhi; Vandewege, Jan</p> <p>2006-03-01</p> <p>This paper presents the influence of random direct current (dc) offsets on the sensitivity of dc-coupled burst-mode receivers (BMRxs). It is well known that a BMRx exhibits a noisy decision threshold, resulting in a sensitivity penalty. If the BMRx is dc coupled, an additional penalty is incurred by random dc offsets. This penalty can only be determined for a statistically significant number of fabricated BMRx samples. Using Monte Carlo (MC) simulations and a detailed BMRx model, the relationship between the variance of this random dc offset, the resulting sensitivity penalty, and BMRx yield (the fraction of fabricated BMRx samples that meets a given sensitivity specification) is evaluated as a function of various receiver parameters. The obtained curves can be used to trade off BMRx die area against sensitivity for a given yield. It is demonstrated that a thorough understanding of the relationship between BMRx sensitivity, BMRx yield, and the variance of the random dc offsets is needed to optimize a dc-coupled BMRx with respect to sensitivity and die area for a given yield. It is shown that compensation of dc offsets with a resolution of 8 bits results in a sensitivity penalty of 1 dB for a wide range of random dc offsets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148c4102D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148c4102D"><span>Addressing global uncertainty and sensitivity in first-principles based microkinetic models by an adaptive sparse grid approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Döpking, Sandra; Plaisance, Craig P.; Strobusch, Daniel; Reuter, Karsten; Scheurer, Christoph; Matera, Sebastian</p> <p>2018-01-01</p> <p>In the last decade, first-principles-based microkinetic modeling has been developed into an important tool for a mechanistic understanding of heterogeneous catalysis. A commonly known, but hitherto barely analyzed issue in this kind of modeling is the presence of sizable errors from the use of approximate Density Functional Theory (DFT). We here address the propagation of these errors to the catalytic turnover frequency (TOF) by global sensitivity and uncertainty analysis. Both analyses require the numerical quadrature of high-dimensional integrals. To achieve this efficiently, we utilize and extend an adaptive sparse grid approach and exploit the confinement of the strongly non-linear behavior of the TOF to local regions of the parameter space. We demonstrate the methodology on a model of the oxygen evolution reaction at the Co3O4 (110)-A surface, using a maximum entropy error model that imposes nothing but reasonable bounds on the errors. For this setting, the DFT errors lead to an absolute uncertainty of several orders of magnitude in the TOF. We nevertheless find that it is still possible to draw conclusions from such uncertain models about the atomistic aspects controlling the reactivity. A comparison with derivative-based local sensitivity analysis instead reveals that this more established approach provides incomplete information. Since the adaptive sparse grids allow for the evaluation of the integrals with only a modest number of function evaluations, this approach opens the way for a global sensitivity analysis of more complex models, for instance, models based on kinetic Monte Carlo simulations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20931787','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20931787"><span>[Application of Fourier amplitude sensitivity test in Chinese healthy volunteer population pharmacokinetic model of tacrolimus].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guan, Zheng; Zhang, Guan-min; Ma, Ping; Liu, Li-hong; Zhou, Tian-yan; Lu, Wei</p> <p>2010-07-01</p> <p>In this study, we evaluated the influence of different variance from each of the parameters on the output of tacrolimus population pharmacokinetic (PopPK) model in Chinese healthy volunteers, using Fourier amplitude sensitivity test (FAST). Besides, we estimated the index of sensitivity within whole course of blood sampling, designed different sampling times, and evaluated the quality of parameters' and the efficiency of prediction. It was observed that besides CL1/F, the index of sensitivity for all of the other four parameters (V1/F, V2/F, CL2/F and k(a)) in tacrolimus PopPK model showed relatively high level and changed fast with the time passing. With the increase of the variance of k(a), its indices of sensitivity increased obviously, associated with significant decrease in sensitivity index for the other parameters, and obvious change in peak time as well. According to the simulation of NONMEM and the comparison among different fitting results, we found that the sampling time points designed according to FAST surpassed the other time points. It suggests that FAST can access the sensitivities of model parameters effectively, and assist the design of clinical sampling times and the construction of PopPK model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29440410','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29440410"><span>Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Power, Jonathan D; Plitt, Mark; Gotts, Stephen J; Kundu, Prantik; Voon, Valerie; Bandettini, Peter A; Martin, Alex</p> <p>2018-02-27</p> <p>"Functional connectivity" techniques are commonplace tools for studying brain organization. A critical element of these analyses is to distinguish variance due to neurobiological signals from variance due to nonneurobiological signals. Multiecho fMRI techniques are a promising means for making such distinctions based on signal decay properties. Here, we report that multiecho fMRI techniques enable excellent removal of certain kinds of artifactual variance, namely, spatially focal artifacts due to motion. By removing these artifacts, multiecho techniques reveal frequent, large-amplitude blood oxygen level-dependent (BOLD) signal changes present across all gray matter that are also linked to motion. These whole-brain BOLD signals could reflect widespread neural processes or other processes, such as alterations in blood partial pressure of carbon dioxide (pCO 2 ) due to ventilation changes. By acquiring multiecho data while monitoring breathing, we demonstrate that whole-brain BOLD signals in the resting state are often caused by changes in breathing that co-occur with head motion. These widespread respiratory fMRI signals cannot be isolated from neurobiological signals by multiecho techniques because they occur via the same BOLD mechanism. Respiratory signals must therefore be removed by some other technique to isolate neurobiological covariance in fMRI time series. Several methods for removing global artifacts are demonstrated and compared, and were found to yield fMRI time series essentially free of motion-related influences. These results identify two kinds of motion-associated fMRI variance, with different physical mechanisms and spatial profiles, each of which strongly and differentially influences functional connectivity patterns. Distance-dependent patterns in covariance are nearly entirely attributable to non-BOLD artifacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24903418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24903418"><span>SensA: web-based sensitivity analysis of SBML models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Floettmann, Max; Uhlendorf, Jannis; Scharp, Till; Klipp, Edda; Spiesser, Thomas W</p> <p>2014-10-01</p> <p>SensA is a web-based application for sensitivity analysis of mathematical models. The sensitivity analysis is based on metabolic control analysis, computing the local, global and time-dependent properties of model components. Interactive visualization facilitates interpretation of usually complex results. SensA can contribute to the analysis, adjustment and understanding of mathematical models for dynamic systems. SensA is available at http://gofid.biologie.hu-berlin.de/ and can be used with any modern browser. The source code can be found at https://bitbucket.org/floettma/sensa/ (MIT license) © The Author 2014. Published by Oxford University Press.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B33B0398I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B33B0398I"><span>Comparison of Modeling Approaches for Carbon Partitioning: Impact on Estimates of Global Net Primary Production and Equilibrium Biomass of Woody Vegetation from MODIS GPP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ise, T.; Litton, C. M.; Giardina, C. P.; Ito, A.</p> <p>2009-12-01</p> <p>Plant partitioning of carbon (C) to above- vs. belowground, to growth vs. respiration, and to short vs. long lived tissues exerts a large influence on ecosystem structure and function with implications for the global C budget. Importantly, outcomes of process-based terrestrial vegetation models are likely to vary substantially with different C partitioning algorithms. However, controls on C partitioning patterns remain poorly quantified, and studies have yielded variable, and at times contradictory, results. A recent meta-analysis of forest studies suggests that the ratio of net primary production (NPP) and gross primary production (GPP) is fairly conservative across large scales. To illustrate the effect of this unique meta-analysis-based partitioning scheme (MPS), we compared an application of MPS to a terrestrial satellite-based (MODIS) GPP to estimate NPP vs. two global process-based vegetation models (Biome-BGC and VISIT) to examine the influence of C partitioning on C budgets of woody plants. Due to the temperature dependence of maintenance respiration, NPP/GPP predicted by the process-based models increased with latitude while the ratio remained constant with MPS. Overall, global NPP estimated with MPS was 17 and 27% lower than the process-based models for temperate and boreal biomes, respectively, with smaller differences in the tropics. Global equilibrium biomass of woody plants was then calculated from the NPP estimates and tissue turnover rates from VISIT. Since turnover rates differed greatly across tissue types (i.e., metabolically active vs. structural), global equilibrium biomass estimates were sensitive to the partitioning scheme employed. The MPS estimate of global woody biomass was 7-21% lower than that of the process-based models. In summary, we found that model output for NPP and equilibrium biomass was quite sensitive to the choice of C partitioning schemes. Carbon use efficiency (CUE; NPP/GPP) by forest biome and the globe. Values are means for 2001-2006.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25003213','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25003213"><span>Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy</p> <p>2014-10-15</p> <p>Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=sauce&pg=5&id=EJ1020921','ERIC'); return false;" href="https://eric.ed.gov/?q=sauce&pg=5&id=EJ1020921"><span>Dopamine D1 Sensitivity in the Prefrontal Cortex Predicts General Cognitive Abilities and is Modulated by Working Memory Training</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D.</p> <p>2013-01-01</p> <p>A common source of variance (i.e., "general intelligence") underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=law+AND+animals&pg=3&id=EJ688576','ERIC'); return false;" href="https://eric.ed.gov/?q=law+AND+animals&pg=3&id=EJ688576"><span>Predicting Risk Sensitivity in Humans and Lower Animals: Risk as Variance or Coefficient of Variation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Weber, Elke U.; Shafir, Sharoni; Blais, Ann-Renee</p> <p>2004-01-01</p> <p>This article examines the statistical determinants of risk preference. In a meta-analysis of animal risk preference (foraging birds and insects), the coefficient of variation (CV), a measure of risk per unit of return, predicts choices far better than outcome variance, the risk measure of normative models. In a meta-analysis of human risk…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140009182','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140009182"><span>Climate Sensitivity in the Anthropocene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Previdi, M.; Liepert, B. G.; Peteet, Dorothy M.; Hansen, J.; Beerling, D. J.; Broccoli, A. J.; Frolking, S.; Galloway, J. N.; Heimann, M.; LeQuere, C.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140009182'); toggleEditAbsImage('author_20140009182_show'); toggleEditAbsImage('author_20140009182_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140009182_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140009182_hide"></p> <p>2014-01-01</p> <p>Climate sensitivity in its most basic form is defined as the equilibrium change in global surface temperature that occurs in response to a climate forcing, or externally imposed perturbation of the planetary energy balance. Within this general definition, several specific forms of climate sensitivity exist that differ in terms of the types of climate feedbacks they include. Based on evidence from Earth's history, we suggest here that the relevant form of climate sensitivity in the Anthropocene (e.g. from which to base future greenhouse gas (GHG) stabilization targets) is the Earth system sensitivity including fast feedbacks from changes in water vapour, natural aerosols, clouds and sea ice, slower surface albedo feedbacks from changes in continental ice sheets and vegetation, and climate-GHG feedbacks from changes in natural (land and ocean) carbon sinks. Traditionally, only fast feedbacks have been considered (with the other feedbacks either ignored or treated as forcing), which has led to estimates of the climate sensitivity for doubled CO2 concentrations of about 3 C. The 2×CO2 Earth system sensitivity is higher than this, being approx. 4-6 C if the ice sheet/vegetation albedo feedback is included in addition to the fast feedbacks, and higher still if climate-GHG feedbacks are also included. The inclusion of climate-GHG feedbacks due to changes in the natural carbon sinks has the advantage of more directly linking anthropogenic GHG emissions with the ensuing global temperature increase, thus providing a truer indication of the climate sensitivity to human perturbations. The Earth system climate sensitivity is difficult to quantify due to the lack of palaeo-analogues for the present-day anthropogenic forcing, and the fact that ice sheet and climate-GHG feedbacks have yet to become globally significant in the Anthropocene. Furthermore, current models are unable to adequately simulate the physics of ice sheet decay and certain aspects of the natural carbon and nitrogen cycles. Obtaining quantitative estimates of the Earth system sensitivity is therefore a high priority for future work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..510P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..510P"><span>Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean</p> <p>2013-04-01</p> <p>Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary effects and the one-at-a-time approach (O.A.T); and (ii), we applied Sobol's global sensitivity analysis method which is based on variance decompositions. Results illustrate that ψm (maximum sorption rate of mobile colloids), kdmc (solute desorption rate from mobile colloids), and Ks (saturated hydraulic conductivity) are the most sensitive parameters with respect to the contaminant travel time. The analyses indicate that this new module is able to simulate the colloid-facilitated contaminant transport. However, validations under laboratory conditions are needed to confirm the occurrence of the colloid transport phenomenon and to understand model prediction under non-saturated soil conditions. Future work will involve monitoring of the colloidal transport phenomenon through soil column experiments. The anticipated outcome will provide valuable information on the understanding of the dominant mechanisms responsible for colloidal transports, colloid-facilitated contaminant transport and, also, the colloid detachment/deposition processes impacts on soil hydraulic properties. References: Šimůnek, J., C. He, L. Pang, & S. A. Bradford, Colloid-Facilitated Solute Transport in Variably Saturated Porous Media: Numerical Model and Experimental Verification, Vadose Zone Journal, 2006, 5, 1035-1047 Šimůnek, J., M. Šejna, & M. Th. van Genuchten, The C-Ride Module for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media, Version 1.0, PC Progress, Prague, Czech Republic, 45 pp., 2012.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20398426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20398426"><span>Global quantitative indices reflecting provider process-of-care: data-base derivation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moran, John L; Solomon, Patricia J</p> <p>2010-04-19</p> <p>Controversy has attended the relationship between risk-adjusted mortality and process-of-care. There would be advantage in the establishment, at the data-base level, of global quantitative indices subsuming the diversity of process-of-care. A retrospective, cohort study of patients identified in the Australian and New Zealand Intensive Care Society Adult Patient Database, 1993-2003, at the level of geographic and ICU-level descriptors (n = 35), for both hospital survivors and non-survivors. Process-of-care indices were established by analysis of: (i) the smoothed time-hazard curve of individual patient discharge and determined by pharmaco-kinetic methods as area under the hazard-curve (AUC), reflecting the integrated experience of the discharge process, and time-to-peak-hazard (TMAX, in days), reflecting the time to maximum rate of hospital discharge; and (ii) individual patient ability to optimize output (as length-of-stay) for recorded data-base physiological inputs; estimated as a technical production-efficiency (TE, scaled [0,(maximum)1]), via the econometric technique of stochastic frontier analysis. For each descriptor, multivariate correlation-relationships between indices and summed mortality probability were determined. The data-set consisted of 223129 patients from 99 ICUs with mean (SD) age and APACHE III score of 59.2(18.9) years and 52.7(30.6) respectively; 41.7% were female and 45.7% were mechanically ventilated within the first 24 hours post-admission. For survivors, AUC was maximal in rural and for-profit ICUs, whereas TMAX (>or= 7.8 days) and TE (>or= 0.74) were maximal in tertiary-ICUs. For non-survivors, AUC was maximal in tertiary-ICUs, but TMAX (>or= 4.2 days) and TE (>or= 0.69) were maximal in for-profit ICUs. Across descriptors, significant differences in indices were demonstrated (analysis-of-variance, P <or= 0.0001). Total explained variance, for survivors (0.89) and non-survivors (0.89), was maximized by combinations of indices demonstrating a low correlation with mortality probability. Global indices reflecting process of care may be formally established at the level of national patient data-bases. These indices appear orthogonal to mortality outcome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B53C1964L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B53C1964L"><span>Modeled Carbon Cycle Responses to Altered Precipitation Amount and Interannual Variation in Desert Grassland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, G.; Wilcox, K.; Rudgers, J.; Litvak, M. E.; Newsome, S. D.; Collins, S. L.; Pockman, W.; Luo, Y.</p> <p>2017-12-01</p> <p>Altered amounts and increased interannual variation of precipitation are likely to occur on a regional to global scale in the late 21st Century, yet understanding the interactive effects of these changes on ecosystem processes is limited. Here, we modeled the responses of the carbon cycle in a desert grassland at the Sevilleta National Wildlife Refuge (SEV) to changes in precipitation amount and interannual variation using the Terrestrial Ecosystem model. After model calibration, we generated 100-year hourly weather data by randomly repeated sampling of observed hourly weather data at SEV from 2000 to 2012. We then modified this 100-year time series to create six climate scenarios: (1) ambient (AMB); (2) increased air temperature by 4.3 °C in summer and 3.3 °C in other seasons for each year (IT); (3) 20% decreased precipitation amount for every event (DP); (4) combined IT and DP (DPT); (5) 100% increased precipitation interannual variance without changing the mean (IV); (6) combined IT and IV (IVT). Our results showed IV significantly increased the sensitivity of NPP to continuous extreme drought. In addition, the increased number of extreme drought years caused by IV exacerbated the negative influence of individual extreme drought events on soil organic carbon (SOC). The IV climate scenario showed the highest interannual variance of carbon fluxes and SOC, but increased temperature reduced this variance. DP and IV decreased NPP by 10.7% and 18.3% compared with AMB, respectively, and the negative impact of IV on NPP was more severe than that of DP. Our results indicate that the increased interannual variation in precipitation could have more severe impacts on terrestrial ecosystems that exceed the decrease in predicted average annual precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008MAP....99...43B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008MAP....99...43B"><span>Adaptive use of research aircraft data sets for hurricane forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biswas, M. K.; Krishnamurti, T. N.</p> <p>2008-02-01</p> <p>This study uses an adaptive observational strategy for hurricane forecasting. It shows the impacts of Lidar Atmospheric Sensing Experiment (LASE) and dropsonde data sets from Convection and Moisture Experiment (CAMEX) field campaigns on hurricane track and intensity forecasts. The following cases are used in this study: Bonnie, Danielle and Georges of 1998 and Erin, Gabrielle and Humberto of 2001. A single model run for each storm is carried out using the Florida State University Global Spectral Model (FSUGSM) with the European Center for Medium Range Weather Forecasts (ECMWF) analysis as initial conditions, in addition to 50 other model runs where the analysis is randomly perturbed for each storm. The centers of maximum variance of the DLM heights are located from the forecast error variance fields at the 84-hr forecast. Back correlations are then performed using the centers of these maximum variances and the fields at the 36-hr forecast. The regions having the highest correlations in the vicinity of the hurricanes are indicative of regions from where the error growth emanates and suggests the need for additional observations. Data sets are next assimilated in those areas that contain high correlations. Forecasts are computed using the new initial conditions for the storm cases, and track and intensity skills are then examined with respect to the control forecast. The adaptive strategy is capable of identifying sensitive areas where additional observations can help in reducing the hurricane track forecast errors. A reduction of position error by approximately 52% for day 3 of forecast (averaged over 7 storm cases) over the control runs is observed. The intensity forecast shows only a slight positive impact due to the model’s coarse resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3500573','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3500573"><span>Microarchitecture and Bone Quality in the Human Calcaneus; Local Variations of Fabric Anisotropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Souzanchi, M F; Palacio-Mancheno, P E; Borisov, Y; Cardoso, L; Cowin, SC</p> <p>2012-01-01</p> <p>The local variability of microarchitecture of human trabecular calcaneus bone is investigated using high resolution microCT scanning. The fabric tensor is employed as the measure of the microarchitecture of the pore structure of a porous medium. It is hypothesized that a fabric tensor-dependent poroelastic ultrasound approach will more effectively predict the data variance than will porosity alone. The specific aims of the present study are i) to quantify the morphology and local anisotropy of the calcaneus microarchitecture with respect to anatomical directions, ii) to determine the interdependence, or lack thereof, of microarchitecture parameters, fabric, and volumetric bone mineral density (vBMD), and iii) to determine the relative ability of vBMD and fabric measurements in evaluating the variance in ultrasound wave velocity measurements along orthogonal directions in the human calcaneus. Our results show that the microarchitecture in the analyzed regions of human calcanei is anisotropic, with a preferred alignment along the posterior-anterior direction. Strong correlation was found between most scalar architectural parameters and vBMD. However, no statistical correlation was found between vBMD and the fabric components, the measures of the pore microstructure orientation. Therefore, among the parameters usually considered for cancellous bone (i.e., classic histomorphometric parameters such as porosity, trabecular thickness, number and separation), only fabric components explain the data variance that cannot be explained by vBMD, a global mass measurement, which lacks the sensitivity and selectivity to distinguish osteoporotic from healthy subjects because it is insensitive to directional changes in bone architecture. This study demonstrates that a multi-directional, fabric-dependent poroelastic ultrasound approach has the capability of characterizing anisotropic bone properties (bone quality) beyond bone mass, and could help to better understand anisotropic changes in bone architecture using ultrasound. PMID:22807141</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=study+AND+abroad&pg=2&id=EJ1074787','ERIC'); return false;" href="https://eric.ed.gov/?q=study+AND+abroad&pg=2&id=EJ1074787"><span>Intercultural Sensitivity through Short-Term Study Abroad</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bloom, Melanie; Miranda, Arturo</p> <p>2015-01-01</p> <p>One of the foremost-cited rationales for study abroad during college is the development of a global perspective and intercultural sensitivity. Although this argument is mentioned frequently in promotional materials for study abroad, it has not yet been backed by research based on the outcomes of students' study abroad experiences. As more…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15718066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15718066"><span>The unique relationship between fear of cognitive dyscontrol and self-reports of problematic drinking.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koven, Nancy S; Heller, Wendy; Miller, Gregory A</p> <p>2005-03-01</p> <p>Research has established positive associations between anxiety sensitivity (AS) and problematic drinking in clinical samples. The present study confirmed this relationship in a nonclinical sample (N=162) and investigated which AS dimension best predicts self-reports of problematic drinking. Only one AS facet, fear of cognitive dyscontrol (FCC), was associated with symptoms of alcohol dependence, severity of drinking problems, and alcohol-related expectations of global, positive changes, sexual enhancement, and tension reduction. The possible role of depression in these relationships was also evaluated. A series of hierarchical regressions revealed that, when trait anxiety, anxious arousal, and anxious apprehension were statistically removed, depression did not contribute significant variance beyond the effects of FMC and other anxiety measures. Results suggest that FCC is uniquely associated with self-reports of problematic drinking behaviors and attitudes. Implications for tension-reduction models of alcohol are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999dsaa.book..120C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999dsaa.book..120C"><span>An Affect-Centered Model of the Psyche and its Consequences for a New Understanding of Nonlinear Psychodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ciompi, Luc</p> <p></p> <p>At variance with a purely cognitivistic approach, an affect-centered model of mental functioning called `fractal affect-logic' is presented on the basis of current emotional-psychological and neurobiological research. Functionally integrated feeling-thinking-behaving programs generated by action appear in this model as the basic `building blocks' of the psyche. Affects are understood as the essential source of energy that mobilises and organises both linear and nonlinear affective-cognitive dynamics, under the influence of appropriate control parameters and order parameters. Global patterns of affective-cognitive functioning form dissipative structures in the sense of Prigogine, with affect-specific attractors and repulsors, bifurcations, high sensitivity for initial conditions and a fractal overall structure that may be represented in a complex potential landscape of variable configuration. This concept opens new possibilities of understanding normal and pathological psychodynamics and sociodynamics, with numerous practical and theoretical implications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27337515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27337515"><span>Observed sensitivity during family interactions and cumulative risk: A study of multiple dyads per family.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Browne, Dillon T; Leckie, George; Prime, Heather; Perlman, Michal; Jenkins, Jennifer M</p> <p>2016-07-01</p> <p>The present study sought to investigate the family, individual, and dyad-specific contributions to observed cognitive sensitivity during family interactions. Moreover, the influence of cumulative risk on sensitivity at the aforementioned levels of the family was examined. Mothers and 2 children per family were observed interacting in a round robin design (i.e., mother-older sibling, mother younger-sibling and sibling-dyad, N = 385 families). Data were dyadic, in that there were 2 directional scores per interaction, and were analyzed using a multilevel formulation of the Social Relations Model. Variance partitioning revealed that cognitive sensitivity is simultaneously a function of families, individuals and dyads, though the importance of these components varies across family roles. Cognitive sensitivity for mothers was primarily attributable to individual differences, whereas cognitive sensitivity for children was predominantly attributable to family and dyadic differences, especially for youngest children. Cumulative risk explained family and individual variance in cognitive sensitivity, particularly when actors were older or in a position of relative competence or authority (i.e., mother to children, older to younger siblings). Overall, this study demonstrates that cognitive sensitivity operates across levels of family organization, and is negatively impacted by psychosocial risk. (PsycINFO Database Record (c) 2016 APA, all rights reserved).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5060537','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5060537"><span>Do patient experiences on priority aspects of health care predict their global rating of quality of care? A study in five patient groups</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>De Boer, Dolf; Delnoij, Diana; Rademakers, Jany</p> <p>2010-01-01</p> <p>Abstract Background  Patient‐given global ratings are frequently interpreted as summary measures of the patient perspective, with limited understanding of what these ratings summarize. Global ratings may be determined by patient experiences on priority aspects of care. Objectives  (i) identify patient priorities regarding elements of care for breast cancer, hip‐ or knee surgery, cataract surgery, rheumatoid arthritis and diabetes, (ii) establish whether experiences regarding priorities are associated with patient‐given global ratings, and (iii) determine whether patient experiences regarding priorities are better predictors of global ratings than experiences concerning less important aspects of care. Setting and participants  Data collected for the development of five consumer quality index surveys – disease‐specific questionnaires that capture patient experiences and priorities – were used. Results  Priorities varied: breast cancer patients for example, prioritized rapid access to care and diagnostics, while diabetics favoured dignity and appropriate frequency of tests. Experiences regarding priorities were inconsistently related to global ratings of care. Regression analyses indicated that demographics explain 2.4–8.4% of the variance in global rating. Introducing patient experiences regarding priorities increased the variance explained to 21.1–35.1%; models with less important aspects of care explained 11.8–23.2%. Conclusions  Some experiences regarding priorities are strongly related to the global rating while others are poorly related. Global ratings are marginally dependent on demographics, and experiences regarding priorities are somewhat better predictors of global rating than experiences regarding less important elements. As it remains to be fully determined what global ratings summarize, caution is warranted when using these ratings as summary measures. PMID:20550597</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960042636','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960042636"><span>Relating the Hadamard Variance to MCS Kalman Filter Clock Estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hutsell, Steven T.</p> <p>1996-01-01</p> <p>The Global Positioning System (GPS) Master Control Station (MCS) currently makes significant use of the Allan Variance. This two-sample variance equation has proven excellent as a handy, understandable tool, both for time domain analysis of GPS cesium frequency standards, and for fine tuning the MCS's state estimation of these atomic clocks. The Allan Variance does not explicitly converge for the nose types of alpha less than or equal to minus 3 and can be greatly affected by frequency drift. Because GPS rubidium frequency standards exhibit non-trivial aging and aging noise characteristics, the basic Allan Variance analysis must be augmented in order to (a) compensate for a dynamic frequency drift, and (b) characterize two additional noise types, specifically alpha = minus 3, and alpha = minus 4. As the GPS program progresses, we will utilize a larger percentage of rubidium frequency standards than ever before. Hence, GPS rubidium clock characterization will require more attention than ever before. The three sample variance, commonly referred to as a renormalized Hadamard Variance, is unaffected by linear frequency drift, converges for alpha is greater than minus 5, and thus has utility for modeling noise in GPS rubidium frequency standards. This paper demonstrates the potential of Hadamard Variance analysis in GPS operations, and presents an equation that relates the Hadamard Variance to the MCS's Kalman filter process noises.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2789754','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2789754"><span>Global sea level linked to global temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vermeer, Martin; Rahmstorf, Stefan</p> <p>2009-01-01</p> <p>We propose a simple relationship linking global sea-level variations on time scales of decades to centuries to global mean temperature. This relationship is tested on synthetic data from a global climate model for the past millennium and the next century. When applied to observed data of sea level and temperature for 1880–2000, and taking into account known anthropogenic hydrologic contributions to sea level, the correlation is >0.99, explaining 98% of the variance. For future global temperature scenarios of the Intergovernmental Panel on Climate Change's Fourth Assessment Report, the relationship projects a sea-level rise ranging from 75 to 190 cm for the period 1990–2100. PMID:19995972</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC53A1251T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC53A1251T"><span>Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree-Ring Chronologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tootle, G.; Anderson, S.; Grissino-Mayer, H.</p> <p>2012-12-01</p> <p>Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. Tree-ring chronologies (TRCs) were used to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k-nearest neighbor techniques. Moisture sensitive tree-ring chronologies in and adjacent to the UCRB were correlated with regional soil moisture and tested for temporal stability. TRCs that were positively correlated and stable for the calibration period were retained. Stepwise linear regression was applied to identify the best predictor combinations for each soil moisture region. The regressions explained 42-78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained increased variance in the datasets. Reconstructed soil moisture was standardized and compared with standardized reconstructed streamflow and snow water equivalent from the same region. Soil moisture reconstructions were highly correlated with streamflow and snow water equivalent reconstructions, indicating reconstructions of soil moisture in the UCRB using TRCs successfully represent hydrologic trends, including the identification of periods of prolonged drought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.351...59C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.351...59C"><span>An efficient algorithm for building locally refined hp - adaptive H-PCFE: Application to uncertainty quantification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chakraborty, Souvik; Chowdhury, Rajib</p> <p>2017-12-01</p> <p>Hybrid polynomial correlated function expansion (H-PCFE) is a novel metamodel formulated by coupling polynomial correlated function expansion (PCFE) and Kriging. Unlike commonly available metamodels, H-PCFE performs a bi-level approximation and hence, yields more accurate results. However, till date, it is only applicable to medium scaled problems. In order to address this apparent void, this paper presents an improved H-PCFE, referred to as locally refined hp - adaptive H-PCFE. The proposed framework computes the optimal polynomial order and important component functions of PCFE, which is an integral part of H-PCFE, by using global variance based sensitivity analysis. Optimal number of training points are selected by using distribution adaptive sequential experimental design. Additionally, the formulated model is locally refined by utilizing the prediction error, which is inherently obtained in H-PCFE. Applicability of the proposed approach has been illustrated with two academic and two industrial problems. To illustrate the superior performance of the proposed approach, results obtained have been compared with those obtained using hp - adaptive PCFE. It is observed that the proposed approach yields highly accurate results. Furthermore, as compared to hp - adaptive PCFE, significantly less number of actual function evaluations are required for obtaining results of similar accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2632665','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2632665"><span>Global gene expression profiling of oral cavity cancers suggests molecular heterogeneity within anatomic subsites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Severino, Patricia; Alvares, Adriana M; Michaluart, Pedro; Okamoto, Oswaldo K; Nunes, Fabio D; Moreira-Filho, Carlos A; Tajara, Eloiza H</p> <p>2008-01-01</p> <p>Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies. PMID:19014556</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2746422','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2746422"><span>Object Perception Impairments Predict Instrumental Activities of Daily Living Dependence in Alzheimer's Disease</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>JEFFERSON, ANGELA L.; BARAKAT, LAMIA P.; GIOVANNETTI, TANIA; PAUL, ROBERT H.; GLOSSER, GUILA</p> <p>2009-01-01</p> <p>This study examined the contribution of object perception and spatial localization to functional dependence among Alzheimer's disease (AD) patients. Forty patients with probable AD completed measures assessing verbal recognition memory, working memory, object perception, spatial localization, semantic knowledge, and global cognition. Primary caregivers completed a measure of activities of daily living (ADLs) that included instrumental and basic self-care subscales (i.e., IADLs and BADLs, respectively). Stepwise multiple regressions revealed that global cognition accounted for significant portions of variance among the ADL total, IADL, and BADL scores. However, when global cognition was removed from the model, object perception was the only significant cognitive predictor of the ADL total and IADL subscale scores, accounting for 18.5% and 19.3% of the variance, respectively. When considering multiple cognitive components simultaneously, object perception and the integrity of the inferotemporal cortex is important in the completion of functional abilities in general and IADLs in particular among AD patients. PMID:16822730</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960020554','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960020554"><span>Sensitivity Analysis of the Static Aeroelastic Response of a Wing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eldred, Lloyd B.</p> <p>1993-01-01</p> <p>A technique to obtain the sensitivity of the static aeroelastic response of a three dimensional wing model is designed and implemented. The formulation is quite general and accepts any aerodynamic and structural analysis capability. A program to combine the discipline level, or local, sensitivities into global sensitivity derivatives is developed. A variety of representations of the wing pressure field are developed and tested to determine the most accurate and efficient scheme for representing the field outside of the aerodynamic code. Chebyshev polynomials are used to globally fit the pressure field. This approach had some difficulties in representing local variations in the field, so a variety of local interpolation polynomial pressure representations are also implemented. These panel based representations use a constant pressure value, a bilinearly interpolated value. or a biquadraticallv interpolated value. The interpolation polynomial approaches do an excellent job of reducing the numerical problems of the global approach for comparable computational effort. Regardless of the pressure representation used. sensitivity and response results with excellent accuracy have been produced for large integrated quantities such as wing tip deflection and trim angle of attack. The sensitivities of such things as individual generalized displacements have been found with fair accuracy. In general, accuracy is found to be proportional to the relative size of the derivatives to the quantity itself.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NPGeo..20...97L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NPGeo..20...97L"><span>Characterization of turbulence stability through the identification of multifractional Brownian motions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, K. C.</p> <p>2013-02-01</p> <p>Multifractional Brownian motions have become popular as flexible models in describing real-life signals of high-frequency features in geoscience, microeconomics, and turbulence, to name a few. The time-changing Hurst exponent, which describes regularity levels depending on time measurements, and variance, which relates to an energy level, are two parameters that characterize multifractional Brownian motions. This research suggests a combined method of estimating the time-changing Hurst exponent and variance using the local variation of sampled paths of signals. The method consists of two phases: initially estimating global variance and then accurately estimating the time-changing Hurst exponent. A simulation study shows its performance in estimation of the parameters. The proposed method is applied to characterization of atmospheric stability in which descriptive statistics from the estimated time-changing Hurst exponent and variance classify stable atmosphere flows from unstable ones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2839032','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2839032"><span>Negative Affect as a Mediator of the Relationship between Vigorous-Intensity Exercise and Smoking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tart, Candyce D.; Leyro, Teresa M.; Richter, Ashley; Zvolensky, Michael J.; Rosenfield, David; Smits, Jasper A. J.</p> <p>2010-01-01</p> <p>The present cross-sectional study evaluated whether people who engage in vigorous-intensity exercise are better able to regulate negative affective states, thereby changing core maintenance factors of smoking. Participants were a community sample of adults (n = 270) who completed self-report measures of physical activity, cigarette smoking, anxiety sensitivity, and negative affect. Consistent with hypothesis, vigorous-intensity exercise was related to lower levels of cigarette smoking, accounting for 10% of the variance in smoking. Additionally, negative affect mediated the relationship between vigorous-intensity physical activity and cigarette smoking, accounting for about 12% of this relation. Furthermore, these relationships were stronger for individuals with high anxiety sensitivity than for those with low anxiety sensitivity; including anxiety sensitivity as a moderator of the mediated relationship increased the amount of variance accounted for by negative affect to 17%. The findings are discussed in relation to developing further scientific insight into the mechanisms and pathways relevant to understanding the association among vigorous-intensity exercise, smoking, and emotional vulnerability. PMID:20171786</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930051770&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D70%26Ntt%3Dwater','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930051770&hterms=water&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D70%26Ntt%3Dwater"><span>Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sun, Jielun</p> <p>1993-01-01</p> <p>Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26410319','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26410319"><span>Novel images extraction model using improved delay vector variance feature extraction and multi-kernel neural network for EEG detection and prediction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ge, Jing; Zhang, Guoping</p> <p>2015-01-01</p> <p>Advanced intelligent methodologies could help detect and predict diseases from the EEG signals in cases the manual analysis is inefficient available, for instance, the epileptic seizures detection and prediction. This is because the diversity and the evolution of the epileptic seizures make it very difficult in detecting and identifying the undergoing disease. Fortunately, the determinism and nonlinearity in a time series could characterize the state changes. Literature review indicates that the Delay Vector Variance (DVV) could examine the nonlinearity to gain insight into the EEG signals but very limited work has been done to address the quantitative DVV approach. Hence, the outcomes of the quantitative DVV should be evaluated to detect the epileptic seizures. To develop a new epileptic seizure detection method based on quantitative DVV. This new epileptic seizure detection method employed an improved delay vector variance (IDVV) to extract the nonlinearity value as a distinct feature. Then a multi-kernel functions strategy was proposed in the extreme learning machine (ELM) network to provide precise disease detection and prediction. The nonlinearity is more sensitive than the energy and entropy. 87.5% overall accuracy of recognition and 75.0% overall accuracy of forecasting were achieved. The proposed IDVV and multi-kernel ELM based method was feasible and effective for epileptic EEG detection. Hence, the newly proposed method has importance for practical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NIMPA.782...47C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NIMPA.782...47C"><span>The neutron-gamma Feynman variance to mean approach: Gamma detection and total neutron-gamma detection (theory and practice)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan</p> <p>2015-05-01</p> <p>Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2553624','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2553624"><span>Race and Gender Matter: A Multidimensional Approach to Conceptualizing and Measuring Stress in African American Women</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Woods-Giscombé, Cheryl L.; Lobel, Marci</p> <p>2008-01-01</p> <p>Based on prior research and theory, the authors constructed a multidimensional model of stress in African American women comprised of race-related, gender-related, and generic stress. Exposure to and appraisal of these three types of stress were combined into a higher-order global stress factor. Using structural equation modeling, the fit of this stress factor and its ability to predict distress symptoms were examined in 189 socioeconomically diverse African American women aged 21 to 78. Results support the multidimensional conceptualization and operationalization of stress. Race-related, gender-related, and generic stress contributed equally to the global stress factor, and global stress predicted a significant amount of variance in distress symptoms and intensity. This model exhibited better fit than a model without a global stress factor, in which each stress component predicted distress directly. Furthermore, race-related, gender-related, and generic stress did not contribute to distress beyond their representation in the global stress factor. These findings illustrate that stress related to central elements of identity, namely race and gender, cohere with generic stress to define the stress experience of African American women. PMID:18624581</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18624581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18624581"><span>Race and gender matter: a multidimensional approach to conceptualizing and measuring stress in African American women.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Woods-Giscombé, Cheryl L; Lobel, Marci</p> <p>2008-07-01</p> <p>Based on prior research and theory, the authors constructed a multidimensional model of stress in African American women comprised of race-related, gender-related, and generic stress. Exposure to and appraisal of these three types of stress were combined into a higher-order global stress factor. Using structural equation modeling, the fit of this stress factor and its ability to predict distress symptoms were examined in 189 socioeconomically diverse African American women aged 21 to 78. Results support the multidimensional conceptualization and operationalization of stress. Race-related, gender-related, and generic stress contributed equally to the global stress factor, and global stress predicted a significant amount of variance in distress symptoms and intensity. This model exhibited better fit than a model without a global stress factor, in which each stress component predicted distress directly. Furthermore, race-related, gender-related, and generic stress did not contribute to distress beyond their representation in the global stress factor. These findings illustrate that stress related to central elements of identity, namely race and gender, cohere with generic stress to define the stress experience of African American women. Copyright (c) 2008 APA, all rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22651681','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22651681"><span>Dancing with the Muses: dissociation and flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thomson, Paula; Jaque, S Victoria</p> <p>2012-01-01</p> <p>This study investigated dissociative psychological processes and flow (dispositional and state) in a group of professional and pre-professional dancers (n=74). In this study, high scores for global (Mdn=4.14) and autotelic (Mdn=4.50) flow suggest that dancing was inherently integrating and rewarding, although 17.6% of the dancers were identified as possibly having clinical levels of dissociation (Dissociative Experiences Scale-Taxon cutoff score≥20). The results of the multivariate analysis of variance indicated that subjects with high levels of dissociation had significantly lower levels of global flow (p<.05). Stepwise linear regression analyses demonstrated that dispositional flow negatively predicted the dissociative constructs of depersonalization and taxon (p<.05) but did not significantly predict the variance in absorption/imagination (p>.05). As hypothesized, dissociation and flow seem to operate as different mental processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.8173H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.8173H"><span>Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, Pei; Wu, Shiliang; McCarty, Jessica L.; Gao, Yang</p> <p>2018-06-01</p> <p>Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our sensitivity model simulations, through some simplified perturbations to precipitation in the GEOS-Chem model, show that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosol lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequencies in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the changes of precipitation intensity and frequency over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10 % or higher at the regional scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053165&hterms=centennials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcentennials','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053165&hterms=centennials&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcentennials"><span>Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mann, Michael E.; Lall, Upmanu; Saltzman, Barry</p> <p>1995-01-01</p> <p>We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030494','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030494"><span>Quantitative methods to direct exploration based on hydrogeologic information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.</p> <p>2006-01-01</p> <p>Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060036566&hterms=sensitivity+scale&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsensitivity%2Bscale','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060036566&hterms=sensitivity+scale&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsensitivity%2Bscale"><span>(abstract) Using TOPEX/Poseidon Sea Level Observations to Test the Sensitivity of an Ocean Model to Wind Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, Lee-Lueng; Chao, Yi</p> <p>1996-01-01</p> <p>It has been demonstrated that current-generation global ocean general circulation models (OGCM) are able to simulate large-scale sea level variations fairly well. In this study, a GFDL/MOM-based OGCM was used to investigate its sensitivity to different wind forcing. Simulations of global sea level using wind forcing from the ERS-1 Scatterometer and the NMC operational analysis were compared to the observations made by the TOPEX/Poseidon (T/P) radar altimeter for a two-year period. The result of the study has demonstrated the sensitivity of the OGCM to the quality of wind forcing, as well as the synergistic use of two spaceborne sensors in advancing the study of wind-driven ocean dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19394705','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19394705"><span>Transformational leadership and depressive symptoms: a prospective study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Munir, Fehmidah; Nielsen, Karina; Carneiro, Isabella Gomes</p> <p>2010-01-01</p> <p>The aim of this study was to examine the association between transformational leadership and depressive symptoms in employees working within healthcare. 447 employees completed a baseline survey and 274 completed a follow-up survey 18 months later. 188 completed both baseline and follow-up survey. Transformational leadership was measured using the Global Transformational Leadership Scale and depression was measured using with the Major Depression Inventory. Transformational leadership was negatively associated with depressive symptoms at baseline (beta=-0.31, p<.01, 8% variance) follow-up (beta=- 0.25, p<.01, 3% variance) and prospectively (beta=- 0.21, p<.05, 4% variance). Managers with a transformational leadership style may help toward protecting employees from developing major depression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1389.1865K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1389.1865K"><span>Sensitivity Analysis of Stability Problems of Steel Structures using Shell Finite Elements and Nonlinear Computation Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kala, Zdeněk; Kala, Jiří</p> <p>2011-09-01</p> <p>The main focus of the paper is the analysis of the influence of residual stress on the ultimate limit state of a hot-rolled member in compression. The member was modelled using thin-walled elements of type SHELL 181 and meshed in the programme ANSYS. Geometrical and material non-linear analysis was used. The influence of residual stress was studied using variance-based sensitivity analysis. In order to obtain more general results, the non-dimensional slenderness was selected as a study parameter. Comparison of the influence of the residual stress with the influence of other dominant imperfections is illustrated in the conclusion of the paper. All input random variables were considered according to results of experimental research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AdSpR..56.2356J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AdSpR..56.2356J"><span>Modeling the ratio of photosynthetically active radiation to broadband global solar radiation using ground and satellite-based data in the tropics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janjai, S.; Wattan, R.; Sripradit, A.</p> <p>2015-12-01</p> <p>Data from four stations in Thailand are used to model the ratio of photosynthetically active radiation (PAR) to broadband global solar radiation. The model expresses the ratio of PAR-to-broadband global solar radiation as a function of cloud index, aerosol optical depth, precipitable water, total ozone column and solar zenith angle. Data from the MTSAT-1R and OMI/AURA satellites are used to estimate the cloud index and total ozone column, respectively at each of the four stations, while aerosol optical depth and precipitable water are retrieved from Aerosol Robotic Network (AERONET) sunphotometer measurements, also available at each station. When tested against hourly measurements, the model exhibits a coefficient of variance (R2) equal to or better than 0.96, and root mean square difference (RMSD) in the range of 7.3-7.9% and mean bias difference (MBD) of -4.5% to 3.5%. The model compares favorably with other existing models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..121e2061W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..121e2061W"><span>Forecast and analysis of the ratio of electric energy to terminal energy consumption for global energy internet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si</p> <p>2018-02-01</p> <p>In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980236728&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980236728&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwind%2Bmonitor"><span>Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin</p> <p>1998-01-01</p> <p>Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180000063','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180000063"><span>Failure Bounding And Sensitivity Analysis Applied To Monte Carlo Entry, Descent, And Landing Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gaebler, John A.; Tolson, Robert H.</p> <p>2010-01-01</p> <p>In the study of entry, descent, and landing, Monte Carlo sampling methods are often employed to study the uncertainty in the designed trajectory. The large number of uncertain inputs and outputs, coupled with complicated non-linear models, can make interpretation of the results difficult. Three methods that provide statistical insights are applied to an entry, descent, and landing simulation. The advantages and disadvantages of each method are discussed in terms of the insights gained versus the computational cost. The first method investigated was failure domain bounding which aims to reduce the computational cost of assessing the failure probability. Next a variance-based sensitivity analysis was studied for the ability to identify which input variable uncertainty has the greatest impact on the uncertainty of an output. Finally, probabilistic sensitivity analysis is used to calculate certain sensitivities at a reduced computational cost. These methods produce valuable information that identifies critical mission parameters and needs for new technology, but generally at a significant computational cost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27510625','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27510625"><span>Noninvasive evaluation of global and regional left ventricular function using computed tomography and magnetic resonance imaging: a meta-analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaniewska, Malwina; Schuetz, Georg M; Willun, Steffen; Schlattmann, Peter; Dewey, Marc</p> <p>2017-04-01</p> <p>To compare the diagnostic accuracy of computed tomography (CT) in the assessment of global and regional left ventricular (LV) function with magnetic resonance imaging (MRI). MEDLINE, EMBASE and ISI Web of Science were systematically reviewed. Evaluation included: ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV) and left ventricular mass (LVM). Differences between modalities were analysed using limits of agreement (LoA). Publication bias was measured by Egger's regression test. Heterogeneity was evaluated using Cochran's Q test and Higgins I 2 statistic. In the presence of heterogeneity the DerSimonian-Laird method was used for estimation of heterogeneity variance. Fifty-three studies including 1,814 patients were identified. The mean difference between CT and MRI was -0.56 % (LoA, -11.6-10.5 %) for EF, 2.62 ml (-34.1-39.3 ml) for EDV and 1.61 ml (-22.4-25.7 ml) for ESV, 3.21 ml (-21.8-28.3 ml) for SV and 0.13 g (-28.2-28.4 g) for LVM. CT detected wall motion abnormalities on a per-segment basis with 90 % sensitivity and 97 % specificity. CT is accurate for assessing global LV function parameters but the limits of agreement versus MRI are moderately wide, while wall motion deficits are detected with high accuracy. • CT helps to assess patients with coronary artery disease (CAD). • MRI is the reference standard for evaluation of left ventricular function. • CT provides accurate assessment of global left ventricular function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESSD...10..857E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESSD...10..857E"><span>GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin</p> <p>2018-04-01</p> <p>Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at <a href="https://doi.org/10.1594/PANGAEA.879658" target="_blank">https://doi.org/10.1594/PANGAEA.879658</a>.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19570929','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19570929"><span>The cognitive cost of anticholinergic burden: decreased response to cognitive training in schizophrenia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vinogradov, Sophia; Fisher, Melissa; Warm, Heather; Holland, Christine; Kirshner, Margaret A; Pollock, Bruce G</p> <p>2009-09-01</p> <p>Schizophrenia is treated with medications that raise serum anticholinergic activity and are known to adversely affect cognition. The authors examined the relationship between serum anticholinergic activity and baseline cognitive performance and response to computerized cognitive training in outpatients with schizophrenia. Fifty-five patients were randomly assigned to either computerized cognitive training or a computer games control condition. A neurocognitive battery based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative was performed at baseline and after the intervention. Serum anticholinergic activity, measured at study entry by radioreceptor assay, was available for 49 patients. Serum anticholinergic activity showed a significant negative correlation with baseline performance in verbal working memory and verbal learning and memory, accounting for 7% of the variance in these measures, independent of age, IQ, or symptom severity. Patients in the cognitive training condition (N=25) showed a significant gain in global cognition compared to those in the control condition, but this improvement was negatively correlated with anticholinergic burden. Serum anticholinergic activity uniquely accounted for 20% of the variance in global cognition change, independent of age, IQ, or symptom severity. Serum anticholinergic activity in schizophrenia patients shows a significant association with impaired performance in MATRICS-based measures of verbal working memory and verbal learning and memory and is significantly associated with a lowered response to an intensive course of computerized cognitive training. These findings underscore the cognitive cost of medications that carry a high anticholinergic burden. The findings also have implications for the design and evaluation of cognitive treatments for schizophrenia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26093429','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26093429"><span>Point focusing using loudspeaker arrays from the perspective of optimal beamforming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bai, Mingsian R; Hsieh, Yu-Hao</p> <p>2015-06-01</p> <p>Sound focusing is to create a concentrated acoustic field in the region surrounded by a loudspeaker array. This problem was tackled in the previous research via the Helmholtz integral approach, brightness control, acoustic contrast control, etc. In this paper, the same problem was revisited from the perspective of beamforming. A source array model is reformulated in terms of the steering matrix between the source and the field points, which lends itself to the use of beamforming algorithms such as minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV) originally intended for sensor arrays. The beamforming methods are compared with the conventional methods in terms of beam pattern, directional index, and control effort. Objective tests are conducted to assess the audio quality by using perceptual evaluation of audio quality (PEAQ). Experiments of produced sound field and listening tests are conducted in a listening room, with results processed using analysis of variance and regression analysis. In contrast to the conventional energy-based methods, the results have shown that the proposed methods are phase-sensitive in light of the distortionless constraint in formulating the array filters, which helps enhance audio quality and focusing performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26817655','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26817655"><span>A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berman, A; Horovitz, Talia; Kaim, M; Gacitua, H</p> <p>2016-10-01</p> <p>The combined temperature-humidity heat stress is estimated in farm animals by indices derived of an index based on human thermal comfort sensation. The latter index consists of temperature and humidity measures that sum to form the temperature-humidity index (THI). The hitherto unknown relative contribution of temperature and humidity to the THI was examined. A temperature-humidity data set (temperature 20-42 °C and relative humidity 10-70 %) was used to assess by regression procedures the relative weights of temperature and humidity in the variance of THI values produced by six commonly used heat stress indices. The temperature (Ta) effect was predominant (0.82-0.95 of variance) and humidity accounted for only 0.05 to 0.12 of THI variance, half of the variance encountered in animal responses to variable humidity heat stress. Significant difference in THI values was found between indices in the relative weights of temperature and humidity. As in THI indices, temperature and humidity are expressed in different physical units, their sum has no physical attributes, and empirical evaluations assess THI relation to animal responses. A sensible heat THI was created, in which at higher temperatures humidity reaches 0.25 of sensible heat, similarly to evaporative heat loss span in heat stressed animals. It relates to ambient temperature-humidity similarly to present THI; its values are similar to other THI but greater at higher humidity. In warm conditions, mean animal responses are similar in both indices. The higher sensitivity to humidity makes this index preferable for warm-humid conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29476313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29476313"><span>Sensitivity to Peer Evaluation and Its Genetic and Environmental Determinants: Findings from a Population-Based Twin Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Klippel, Annelie; Reininghaus, Ulrich; Viechtbauer, Wolfgang; Decoster, Jeroen; Delespaul, Philippe; Derom, Cathérine; de Hert, Marc; Jacobs, Nele; Menne-Lothmann, Claudia; Rutten, Bart; Thiery, Evert; van Os, Jim; van Winkel, Ruud; Myin-Germeys, Inez; Wichers, Marieke</p> <p>2018-02-23</p> <p>Adolescents and young adults are highly focused on peer evaluation, but little is known about sources of their differential sensitivity. We examined to what extent sensitivity to peer evaluation is influenced by interacting environmental and genetic factors. A sample of 354 healthy adolescent twin pairs (n = 708) took part in a structured, laboratory task in which they were exposed to peer evaluation. The proportion of the variance in sensitivity to peer evaluation due to genetic and environmental factors was estimated, as was the association with specific a priori environmental risk factors. Differences in sensitivity to peer evaluation between adolescents were explained mainly by non-shared environmental influences. The results on shared environmental influences were not conclusive. No impact of latent genetic factors or gene-environment interactions was found. Adolescents with lower self-rated positions on the social ladder or who reported to have been bullied more severely showed significantly stronger responses to peer evaluation. Not genes, but subjective social status and past experience of being bullied seem to impact sensitivity to peer evaluation. This suggests that altered response to peer evaluation is the outcome of cumulative sensitization to social interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H34F..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H34F..06M"><span>A Data-Driven Assessment of the Sensitivity of Global Ecosystems to Climate Anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miralles, D. G.; Papagiannopoulou, C.; Demuzere, M.; Decubber, S.; Waegeman, W.; Verhoest, N.; Dorigo, W.</p> <p>2017-12-01</p> <p>Vegetation is a central player in the climate system, constraining atmospheric conditions through a series of feedbacks. This fundamental role highlights the importance of understanding regional drivers of ecological sensitivity and the response of vegetation to climatic changes. While nutrient availability and short-term disturbances can be crucial for vegetation at various spatiotemporal scales, natural vegetation dynamics are overall driven by climate. At monthly scales, the interactions between vegetation and climate become complex: some vegetation types react preferentially to specific climatic changes, with different levels of intensity, resilience and lagged response. For our current Earth System Models (ESMs) being able to capture this complexity is crucial but extremely challenging. This adds uncertainty to our projections of future climate and the fate of global ecosystems. Here, following a Granger causality framework based on a non-linear random forest predictive model, we exploit the current wealth of satellite data records to uncover the main climatic drivers of monthly vegetation variability globally. Results based on three decades of satellite data indicate that water availability is the most dominant factor driving vegetation in over 60% of the vegetated land. This overall dependency of ecosystems on water availability is larger than previously reported, partly owed to the ability of our machine-learning framework to disentangle the co-linearites between climatic drivers, and to quantify non-linear impacts of climate on vegetation. Our observation-based results are then used to benchmark ESMs on their representation of vegetation sensitivity to climate and climatic extremes. Our findings indicate that the sensitivity of vegetation to climatic anomalies is ill-reproduced by some widely-used ESMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMNG23C1095D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMNG23C1095D"><span>Fractional Gaussian model in global optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dimri, V. P.; Srivastava, R. P.</p> <p>2009-12-01</p> <p>Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28035271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28035271"><span>Sensitivity analysis of Repast computational ecology models with R/Repast.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prestes García, Antonio; Rodríguez-Patón, Alfonso</p> <p>2016-12-01</p> <p>Computational ecology is an emerging interdisciplinary discipline founded mainly on modeling and simulation methods for studying ecological systems. Among the existing modeling formalisms, the individual-based modeling is particularly well suited for capturing the complex temporal and spatial dynamics as well as the nonlinearities arising in ecosystems, communities, or populations due to individual variability. In addition, being a bottom-up approach, it is useful for providing new insights on the local mechanisms which are generating some observed global dynamics. Of course, no conclusions about model results could be taken seriously if they are based on a single model execution and they are not analyzed carefully. Therefore, a sound methodology should always be used for underpinning the interpretation of model results. The sensitivity analysis is a methodology for quantitatively assessing the effect of input uncertainty in the simulation output which should be incorporated compulsorily to every work based on in-silico experimental setup. In this article, we present R/Repast a GNU R package for running and analyzing Repast Simphony models accompanied by two worked examples on how to perform global sensitivity analysis and how to interpret the results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.8496K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.8496K"><span>Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kimura, Satoshi; Jenkins, Adrian; Dutrieux, Pierre; Forryan, Alexander; Naveira Garabato, Alberto C.; Firing, Yvonne</p> <p>2016-12-01</p> <p>Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ˜0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29378317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29378317"><span>Decoding the auditory brain with canonical component analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Cheveigné, Alain; Wong, Daniel D E; Di Liberto, Giovanni M; Hjortkjær, Jens; Slaney, Malcolm; Lalor, Edmund</p> <p>2018-05-15</p> <p>The relation between a stimulus and the evoked brain response can shed light on perceptual processes within the brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer Interface (BCI) applications. While the classic event-related potential (ERP) is appropriate for isolated stimuli, more sophisticated "decoding" strategies are needed to address continuous stimuli such as speech, music or environmental sounds. Here we describe an approach based on Canonical Correlation Analysis (CCA) that finds the optimal transform to apply to both the stimulus and the response to reveal correlations between the two. Compared to prior methods based on forward or backward models for stimulus-response mapping, CCA finds significantly higher correlation scores, thus providing increased sensitivity to relatively small effects, and supports classifier schemes that yield higher classification scores. CCA strips the brain response of variance unrelated to the stimulus, and the stimulus representation of variance that does not affect the response, and thus improves observations of the relation between stimulus and response. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S22A..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S22A..06C"><span>A Bayesian-Based Novel Methodology to Generate Reliable Site Response Mapping Sensitive to Data Uncertainties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chakraborty, A.; Goto, H.</p> <p>2017-12-01</p> <p>The 2011 off the Pacific coast of Tohoku earthquake caused severe damage in many areas further inside the mainland because of site-amplification. Furukawa district in Miyagi Prefecture, Japan recorded significant spatial differences in ground motion even at sub-kilometer scales. The site responses in the damage zone far exceeded the levels in the hazard maps. A reason why the mismatch occurred is that mapping follow only the mean value at the measurement locations with no regard to the data uncertainties and thus are not always reliable. Our research objective is to develop a methodology to incorporate data uncertainties in mapping and propose a reliable map. The methodology is based on a hierarchical Bayesian modeling of normally-distributed site responses in space where the mean (μ), site-specific variance (σ2) and between-sites variance(s2) parameters are treated as unknowns with a prior distribution. The observation data is artificially created site responses with varying means and variances for 150 seismic events across 50 locations in one-dimensional space. Spatially auto-correlated random effects were added to the mean (μ) using a conditionally autoregressive (CAR) prior. The inferences on the unknown parameters are done using Markov Chain Monte Carlo methods from the posterior distribution. The goal is to find reliable estimates of μ sensitive to uncertainties. During initial trials, we observed that the tau (=1/s2) parameter of CAR prior controls the μ estimation. Using a constraint, s = 1/(k×σ), five spatial models with varying k-values were created. We define reliability to be measured by the model likelihood and propose the maximum likelihood model to be highly reliable. The model with maximum likelihood was selected using a 5-fold cross-validation technique. The results show that the maximum likelihood model (μ*) follows the site-specific mean at low uncertainties and converges to the model-mean at higher uncertainties (Fig.1). This result is highly significant as it successfully incorporates the effect of data uncertainties in mapping. This novel approach can be applied to any research field using mapping techniques. The methodology is now being applied to real records from a very dense seismic network in Furukawa district, Miyagi Prefecture, Japan to generate a reliable map of the site responses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28129146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28129146"><span>A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio</p> <p>2017-11-01</p> <p>Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1963N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1963N"><span>Arctic Sea Ice in a 1.5°C Warmer World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niederdrenk, Anne Laura; Notz, Dirk</p> <p>2018-02-01</p> <p>We examine the seasonal cycle of Arctic sea ice in scenarios with limited future global warming. To do so, we analyze two sets of observational records that cover the observational uncertainty of Arctic sea ice loss per degree of global warming. The observations are combined with 100 simulations of historical and future climate evolution from the Max Planck Institute Earth System Model Grand Ensemble. Based on the high-sensitivity observations, we find that Arctic September sea ice is lost with low probability (P≈ 10%) for global warming of +1.5°C above preindustrial levels and with very high probability (P> 99%) for global warming of +2°C above preindustrial levels. For the low-sensitivity observations, September sea ice is extremely unlikely to disappear for +1.5°C warming (P≪ 1%) and has low likelihood (P≈ 10%) to disappear even for +2°C global warming. For March, both observational records suggest a loss of 15% to 20% of Arctic sea ice area for 1.5°C to 2°C global warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800025483','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800025483"><span>Geodetic positioning using a global positioning system of satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fell, P. J.</p> <p>1980-01-01</p> <p>Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4071098','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4071098"><span>Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wullschleger, Stan D.; Epstein, Howard E.; Box, Elgene O.; Euskirchen, Eugénie S.; Goswami, Santonu; Iversen, Colleen M.; Kattge, Jens; Norby, Richard J.; van Bodegom, Peter M.; Xu, Xiaofeng</p> <p>2014-01-01</p> <p>Background Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Scope Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Conclusions Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait–environment relationships. Surprisingly, despite being important to land–atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be required if we are to overcome these and other shortcomings. PMID:24793697</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA243742','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA243742"><span>Incorporation of Differential Global Positioning System Measurements Using an Extended Kalman Filter for Improved Reference System Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-12-01</p> <p>Kalman filtering. As GPS usage expands throughout the military and civilian communities, I hope this thesis provides a small contribution in this area...of the measurement’equation. In this thesis, some of the INS states not part of a measurement equation need a small amount of added noise to...estimating the state, but the variance often goes negative. A small amount of added noise in the filter keeps the variance of the state positive and does not</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920042314&hterms=present+value+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpresent%2Bvalue%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920042314&hterms=present+value+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpresent%2Bvalue%2Banalysis"><span>Estimates of tropical analysis differences in daily values produced by two operational centers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kasahara, Akira; Mizzi, Arthur P.</p> <p>1992-01-01</p> <p>To assess the uncertainty of daily synoptic analyses for the atmospheric state, the intercomparison of three First GARP Global Experiment level IIIb datasets is performed. Daily values of divergence, vorticity, temperature, static stability, vertical motion, mixing ratio, and diagnosed diabatic heating rate are compared for the period of 26 January-11 February 1979. The spatial variance and mean, temporal mean and variance, 2D wavenumber power spectrum, anomaly correlation, and normalized square difference are employed for comparison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817438L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817438L"><span>Pinatubo Emulation in Multiple Models (POEMs): co-ordinated experiments in the ISA-MIP model intercomparison activity component of the SPARC Stratospheric Sulphur and it's Role in Climate initiative (SSiRC)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Lindsay; Mann, Graham; Carslaw, Ken; Toohey, Matthew; Aquila, Valentina</p> <p>2016-04-01</p> <p>The World Climate Research Program's SPARC initiative has a new international activity "Stratospheric Sulphur and its Role in Climate" (SSiRC) to better understand changes in stratospheric aerosol and precursor gaseous sulphur species. One component of SSiRC involves an intercomparison "ISA-MIP" of composition-climate models that simulate the stratospheric aerosol layer interactively. Within PoEMS each modelling group will run a "perturbed physics ensemble" (PPE) of interactive stratospheric aerosol (ISA) simulations of the Pinatubo eruption, varying several uncertain parameters associated with the eruption's SO2 emissions and model processes. A powerful new technique to quantify and attribute sources of uncertainty in complex global models is described by Lee et al. (2011, ACP). The analysis uses Gaussian emulation to derive a probability density function (pdf) of predicted quantities, essentially interpolating the PPE results in multi-dimensional parameter space. Once trained on the ensemble, a Monte Carlo simulation with the fast Gaussian emulator enabling a full variance-based sensitivity analysis. The approach has already been used effectively by Carslaw et al., (2013, Nature) to quantify the uncertainty in the cloud albedo effect forcing from a 3D global aerosol-microphysics model allowing to compare the sensitivy of different predicted quantities to uncertainties in natural and anthropogenic emissions types, and structural parameters in the models. Within ISA-MIP, each group will carry out a PPE of runs, with the subsequent analysis with the emulator assessing the uncertainty in the volcanic forcings predicted by each model. In this poster presentation we will give an outline of the "PoEMS" analysis, describing the uncertain parameters to be varied and the relevance to further understanding differences identified in previous international stratospheric aerosol assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.209.1677A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.209.1677A"><span>Seismic evidence for broad attenuation anomalies in the asthenosphere beneath the Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adenis, Alice; Debayle, Eric; Ricard, Yanick</p> <p>2017-06-01</p> <p>We present QADR17, a global model of Rayleigh-wave attenuation based on a massive surface wave data set (372 629 frequency-dependent attenuation curves in the period range 50-260 s). We correct for focusing-defocusing effects and geometrical spreading, and perform a stringent selection to only keep robust observations. Then, data with close epicentres recorded at the same station are clustered, as they sample the same Earth's structure. After this pre-selection, our data set consists of about 35 000 curves that constrain the Rayleigh-wave intrinsic attenuation in the upper mantle. The logarithms of the attenuation along the individual rays are then inverted to obtain global maps of the logarithm of the local attenuation. After a first inversion, outliers are rejected and a second inversion yields a variance reduction of about 45 per cent. Our attenuation maps present strong agreement with surface tectonics at periods lower than 200 s, with low attenuation under continents and high attenuation under oceans. Over oceans, attenuation decreases with increasing crustal ages, but at periods sensitive to the uppermost 150 km, mid-ocean ridges are not characterized by a very localized anomaly, in contrast to what is commonly observed for seismic velocity models. Attenuation is rather well correlated with hotspots, especially in the Pacific ocean, where a strong attenuating anomaly is observed in the long wavelength component of our signal at periods sampling the oceanic asthenosphere. We suggest that this anomaly results from the horizontal spreading of several thermal plumes within the asthenosphere. Strong velocity reductions associated with high attenuation anomalies of moderate amplitudes beneath the East Pacific Rise, the Red Sea and the eastern part of Asia may require additional mechanisms, such as partial melting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24085086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24085086"><span>Shutterless solution for simultaneous focal plane array temperature estimation and nonuniformity correction in uncooled long-wave infrared camera.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Yanpeng; Tisse, Christel-Loic</p> <p>2013-09-01</p> <p>In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2864925','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2864925"><span>Body Image and Marital Satisfaction: Evidence for the Mediating Role of Sexual Frequency and Sexual Satisfaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Meltzer, Andrea L.; McNulty, James K.</p> <p>2010-01-01</p> <p>How does women’s body image shape their interpersonal relationships? Based on recent theories of risk regulation and empirical evidence that sex is an emotionally risky behavior for women, we predicted that women’s body image would predict increased sexual frequency and thus increased sexual and marital satisfaction for both partners. The current study of 53 recently married couples provided results consistent with this prediction. Specifically, wives’ perceptions of their sexual attractiveness were positively associated with both wives’ and husbands’ marital satisfaction, controlling for wives’ body size, wives’ global self-esteem, wives’ neuroticism, and reports of whether or not the couple was trying to get pregnant, and both of these associations were mediated by increased sexual frequency and higher sexual satisfaction. Notably, wives’ perceptions of their sexual attractiveness uniquely accounted for 6% of the variance in husbands’ marital satisfaction and 19% of the variance in wives’ marital satisfaction. Accordingly, marital interventions may greatly benefit by addressing women’s body esteem. PMID:20438191</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188319','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188319"><span>Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende</p> <p>2014-01-01</p> <p>Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70118976','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70118976"><span>Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.</p> <p>2014-01-01</p> <p>Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26898320','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26898320"><span>Associations of reward sensitivity with food consumption, activity pattern, and BMI in children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>De Decker, Annelies; Sioen, Isabelle; Verbeken, Sandra; Braet, Caroline; Michels, Nathalie; De Henauw, Stefaan</p> <p>2016-05-01</p> <p>In the current study, the associations of reward sensitivity with weight related behaviors and body mass index were investigated in a general population sample of 443 Flemish children (50.3% boys) aged 5.5-12 years. Cross-sectional data on palatable food consumption frequency, screen time, physical activity, parental education level and measured length and weight were collected. The Drive subscale of the 'Behavioral Inhibition Scale/Behavioral Activation Scale' was used as a short method to measure reward sensitivity. A significant positive association of reward sensitivity with the fast food and sweet drink consumption frequency was found. Furthermore, a significant positive association of reward sensitivity with the z-score of body mass index was demonstrated, which explained additional variance to the variance explained by palatable food consumption frequency, screen time, physical activity and parental education level. Hence, the assessment of reward sensitivity may have an added value to the assessment of weight-related behavior indicators when evaluating the determinants of overweight in a child. In sum, children high in reward sensitivity might be more attracted to fast food and sweet drinks, and hence, might be more vulnerable to develop unfavorable food habits and overweight. These findings suggest that considering inter-individual differences in reward sensitivity is of importance in future childhood obesity prevention campaigns. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9785E..1VT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9785E..1VT"><span>Improving the performance of lesion-based computer-aided detection schemes of breast masses using a case-based adaptive cueing method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tan, Maxine; Aghaei, Faranak; Wang, Yunzhi; Qian, Wei; Zheng, Bin</p> <p>2016-03-01</p> <p>Current commercialized CAD schemes have high false-positive (FP) detection rates and also have high correlations in positive lesion detection with radiologists. Thus, we recently investigated a new approach to improve the efficacy of applying CAD to assist radiologists in reading and interpreting screening mammograms. Namely, we developed a new global feature based CAD approach/scheme that can cue the warning sign on the cases with high risk of being positive. In this study, we investigate the possibility of fusing global feature or case-based scores with the local or lesion-based CAD scores using an adaptive cueing method. We hypothesize that the information from the global feature extraction (features extracted from the whole breast regions) are different from and can provide supplementary information to the locally-extracted features (computed from the segmented lesion regions only). On a large and diverse full-field digital mammography (FFDM) testing dataset with 785 cases (347 negative and 438 cancer cases with masses only), we ran our lesion-based and case-based CAD schemes "as is" on the whole dataset. To assess the supplementary information provided by the global features, we used an adaptive cueing method to adaptively adjust the original CAD-generated detection scores (Sorg) of a detected suspicious mass region based on the computed case-based score (Scase) of the case associated with this detected region. Using the adaptive cueing method, better sensitivity results were obtained at lower FP rates (<= 1 FP per image). Namely, increases of sensitivities (in the FROC curves) of up to 6.7% and 8.2% were obtained for the ROI and Case-based results, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950059276&hterms=information+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinformation%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950059276&hterms=information+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinformation%2Banalysis"><span>Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huffman, George J.; Adler, Robert F.; Rudolf, Bruno; Schneider, Udo; Keehn, Peter R.</p> <p>1995-01-01</p> <p>The 'satellite-gauge model' (SGM) technique is described for combining precipitation estimates from microwave satellite data, infrared satellite data, rain gauge analyses, and numerical weather prediction models into improved estimates of global precipitation. Throughout, monthly estimates on a 2.5 degrees x 2.5 degrees lat-long grid are employed. First, a multisatellite product is developed using a combination of low-orbit microwave and geosynchronous-orbit infrared data in the latitude range 40 degrees N - 40 degrees S (the adjusted geosynchronous precipitation index) and low-orbit microwave data alone at higher latitudes. Then the rain gauge analysis is brougth in, weighting each field by its inverse relative error variance to produce a nearly global, observationally based precipitation estimate. To produce a complete global estimate, the numerical model results are used to fill data voids in the combined satellite-gauge estimate. Our sequential approach to combining estimates allows a user to select the multisatellite estimate, the satellite-gauge estimate, or the full SGM estimate (observationally based estimates plus the model information). The primary limitation in the method is imperfections in the estimation of relative error for the individual fields. The SGM results for one year of data (July 1987 to June 1988) show important differences from the individual estimates, including model estimates as well as climatological estimates. In general, the SGM results are drier in the subtropics than the model and climatological results, reflecting the relatively dry microwave estimates that dominate the SGM in oceanic regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26610033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26610033"><span>A Multilevel AR(1) Model: Allowing for Inter-Individual Differences in Trait-Scores, Inertia, and Innovation Variance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jongerling, Joran; Laurenceau, Jean-Philippe; Hamaker, Ellen L</p> <p>2015-01-01</p> <p>In this article we consider a multilevel first-order autoregressive [AR(1)] model with random intercepts, random autoregression, and random innovation variance (i.e., the level 1 residual variance). Including random innovation variance is an important extension of the multilevel AR(1) model for two reasons. First, between-person differences in innovation variance are important from a substantive point of view, in that they capture differences in sensitivity and/or exposure to unmeasured internal and external factors that influence the process. Second, using simulation methods we show that modeling the innovation variance as fixed across individuals, when it should be modeled as a random effect, leads to biased parameter estimates. Additionally, we use simulation methods to compare maximum likelihood estimation to Bayesian estimation of the multilevel AR(1) model and investigate the trade-off between the number of individuals and the number of time points. We provide an empirical illustration by applying the extended multilevel AR(1) model to daily positive affect ratings from 89 married women over the course of 42 consecutive days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213..815O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213..815O"><span>Full waveform inversion using envelope-based global correlation norm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oh, Ju-Won; Alkhalifah, Tariq</p> <p>2018-05-01</p> <p>To increase the feasibility of full waveform inversion on real data, we suggest a new objective function, which is defined as the global correlation of the envelopes of modelled and observed data. The envelope-based global correlation norm has the advantage of the envelope inversion that generates artificial low-frequency information, which provides the possibility to recover long-wavelength structure in an early stage. In addition, the envelope-based global correlation norm maintains the advantage of the global correlation norm, which reduces the sensitivity of the misfit to amplitude errors so that the performance of inversion on real data can be enhanced when the exact source wavelet is not available and more complex physics are ignored. Through the synthetic example for 2-D SEG/EAGE overthrust model with inaccurate source wavelet, we compare the performance of four different approaches, which are the least-squares waveform inversion, least-squares envelope inversion, global correlation norm and envelope-based global correlation norm. Finally, we apply the envelope-based global correlation norm on the 3-D Ocean Bottom Cable (OBC) data from the North Sea. The envelope-based global correlation norm captures the strong reflections from the high-velocity caprock and generates artificial low-frequency reflection energy that helps us recover long-wavelength structure of the model domain in the early stages. From this long-wavelength model, the conventional global correlation norm is sequentially applied to invert for higher-resolution features of the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.A52D..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.A52D..02R"><span>Predictability Experiments With the Navy Operational Global Atmospheric Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reynolds, C. A.; Gelaro, R.; Rosmond, T. E.</p> <p>2003-12-01</p> <p>There are several areas of research in numerical weather prediction and atmospheric predictability, such as targeted observations and ensemble perturbation generation, where it is desirable to combine information about the uncertainty of the initial state with information about potential rapid perturbation growth. Singular vectors (SVs) provide a framework to accomplish this task in a mathematically rigorous and computationally feasible manner. In this study, SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS). The analysis error variance information produced by the NRL Atmospheric Variational Data Assimilation System is used as the initial-time SV norm. These VAR SVs are compared to SVs for which total energy is both the initial and final time norms (TE SVs). The incorporation of analysis error variance information has a significant impact on the structure and location of the SVs. This in turn has a significant impact on targeted observing applications. The utility and implications of such experiments in assessing the analysis error variance estimates will be explored. Computing support has been provided by the Department of Defense High Performance Computing Center at the Naval Oceanographic Office Major Shared Resource Center at Stennis, Mississippi.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28370082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28370082"><span>Big Data Challenges of High-Dimensional Continuous-Time Mean-Variance Portfolio Selection and a Remedy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chiu, Mei Choi; Pun, Chi Seng; Wong, Hoi Ying</p> <p>2017-08-01</p> <p>Investors interested in the global financial market must analyze financial securities internationally. Making an optimal global investment decision involves processing a huge amount of data for a high-dimensional portfolio. This article investigates the big data challenges of two mean-variance optimal portfolios: continuous-time precommitment and constant-rebalancing strategies. We show that both optimized portfolios implemented with the traditional sample estimates converge to the worst performing portfolio when the portfolio size becomes large. The crux of the problem is the estimation error accumulated from the huge dimension of stock data. We then propose a linear programming optimal (LPO) portfolio framework, which applies a constrained ℓ 1 minimization to the theoretical optimal control to mitigate the risk associated with the dimensionality issue. The resulting portfolio becomes a sparse portfolio that selects stocks with a data-driven procedure and hence offers a stable mean-variance portfolio in practice. When the number of observations becomes large, the LPO portfolio converges to the oracle optimal portfolio, which is free of estimation error, even though the number of stocks grows faster than the number of observations. Our numerical and empirical studies demonstrate the superiority of the proposed approach. © 2017 Society for Risk Analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29036413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29036413"><span>Smooth quantile normalization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hicks, Stephanie C; Okrah, Kwame; Paulson, Joseph N; Quackenbush, John; Irizarry, Rafael A; Bravo, Héctor Corrada</p> <p>2018-04-01</p> <p>Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and unwanted technical variation in high-throughput data. Global normalization methods are based on the assumption that observed variability in global properties is due to technical reasons and are unrelated to the biology of interest. For example, some methods correct for differences in sequencing read counts by scaling features to have similar median values across samples, but these fail to reduce other forms of unwanted technical variation. Methods such as quantile normalization transform the statistical distributions across samples to be the same and assume global differences in the distribution are induced by only technical variation. However, it remains unclear how to proceed with normalization if these assumptions are violated, for example, if there are global differences in the statistical distributions between biological conditions or groups, and external information, such as negative or control features, is not available. Here, we introduce a generalization of quantile normalization, referred to as smooth quantile normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample should be the same (or have the same distributional shape) within biological groups or conditions, but allowing that they may differ between groups. We illustrate the advantages of our method on several high-throughput datasets with global differences in distributions corresponding to different biological conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff and root mean squared error of qsmooth compared to other global normalization methods. A software implementation is available from https://github.com/stephaniehicks/qsmooth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B22A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B22A..06S"><span>Modeling Dynamics of South American Rangelands to Climate Variability and Human Impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanimirova, R.; Arevalo, P. A.; Kaufmann, R.; Maus, V.; Lesiv, M.; Havlik, P.; Friedl, M. A.</p> <p>2017-12-01</p> <p>The combined pressures of climate change and shifting dietary preferences are creating an urgent need to improve understanding of how climate and land management are jointly affecting the sustainability of rangelands. In particular, our ability to effectively manage rangelands in a manner that satisfies increasing demand for meat and dairy while reducing environmental impact depends on the sensitivity of rangelands to perturbations from both climate (e.g., drought) and land use (e.g., grazing). To characterize the sensitivity of rangeland vegetation to variation in climate, we analyzed gridded time series of satellite and climate data at 0.5-degree spatial resolution from 2003 to 2016 for rangeland ecosystems in South America. We used panel regression and canonical correlation to analyze the relationship between time series of enhanced vegetation index (EVI) derived from NASA's Moderate Spatial Resolution Imaging Spectroradiometer (MODIS) and gridded precipitation and air temperature data from the University of East Anglia's Climate Research Unit. To quantify the degree to which livestock management explains geographic variation of EVI, we used global livestock distribution (FAO) and feed requirements data from the Global Biosphere Management Model (GLOBIOM). Because rangeland ecosystems are sensitive to changes in meteorological variables at different time scales, we evaluated the strength of coupling between anomalies in EVI and anomalies in temperature and standardized precipitation index (SPI) data at 1-6 month lags. Our results show statistically significant relationships between EVI and precipitation during summer, fall, and winter in both tropical and subtropical agroecological zones of South America. Further, lagged precipitation effects, which reflect memory in the system, explain significant variance in winter EVI anomalies. While precipitation emerges as the dominant driver of variability in rangeland greenness, we find evidence of a management-induced signal as well. Our modeling framework integrates satellite observation, meteorological data sets, and land use/cover change information to improve our capability to monitor and manage the long-term sustainability of rangelands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B22A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B22A..06S"><span>Variability in lateral carbon export from four major tributaries in the Upper Mississippi River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanimirova, R.; Arevalo, P. A.; Kaufmann, R.; Maus, V.; Lesiv, M.; Havlik, P.; Friedl, M. A.</p> <p>2016-12-01</p> <p>The combined pressures of climate change and shifting dietary preferences are creating an urgent need to improve understanding of how climate and land management are jointly affecting the sustainability of rangelands. In particular, our ability to effectively manage rangelands in a manner that satisfies increasing demand for meat and dairy while reducing environmental impact depends on the sensitivity of rangelands to perturbations from both climate (e.g., drought) and land use (e.g., grazing). To characterize the sensitivity of rangeland vegetation to variation in climate, we analyzed gridded time series of satellite and climate data at 0.5-degree spatial resolution from 2003 to 2016 for rangeland ecosystems in South America. We used panel regression and canonical correlation to analyze the relationship between time series of enhanced vegetation index (EVI) derived from NASA's Moderate Spatial Resolution Imaging Spectroradiometer (MODIS) and gridded precipitation and air temperature data from the University of East Anglia's Climate Research Unit. To quantify the degree to which livestock management explains geographic variation of EVI, we used global livestock distribution (FAO) and feed requirements data from the Global Biosphere Management Model (GLOBIOM). Because rangeland ecosystems are sensitive to changes in meteorological variables at different time scales, we evaluated the strength of coupling between anomalies in EVI and anomalies in temperature and standardized precipitation index (SPI) data at 1-6 month lags. Our results show statistically significant relationships between EVI and precipitation during summer, fall, and winter in both tropical and subtropical agroecological zones of South America. Further, lagged precipitation effects, which reflect memory in the system, explain significant variance in winter EVI anomalies. While precipitation emerges as the dominant driver of variability in rangeland greenness, we find evidence of a management-induced signal as well. Our modeling framework integrates satellite observation, meteorological data sets, and land use/cover change information to improve our capability to monitor and manage the long-term sustainability of rangelands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810018954','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810018954"><span>An analytic technique for statistically modeling random atomic clock errors in estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fell, P. J.</p> <p>1981-01-01</p> <p>Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7263E..0UP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7263E..0UP"><span>Non-localization and localization ROC analyses using clinically based scoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paquerault, Sophie; Samuelson, Frank W.; Myers, Kyle J.; Smith, Robert C.</p> <p>2009-02-01</p> <p>We are investigating the potential for differences in study conclusions when assessing the estimated impact of a computer-aided detection (CAD) system on readers' performance. The data utilized in this investigation were derived from a multi-reader multi-case observer study involving one hundred mammographic background images to which fixed-size and fixed-intensity Gaussian signals were added, generating a low- and high-intensity signal sets. The study setting allowed CAD assessment in two situations: when CAD sensitivity was 1) superior or 2) lower than the average reader. Seven readers were asked to review each set in the unaided and CAD-aided reading modes, mark and rate their findings. Using this data, we studied the effect on study conclusion of three clinically-based receiver operating characteristic (ROC) scoring definitions. These scoring definitions included both location-specific and non-location-specific rules. The results showed agreement in the estimated impact of CAD on the overall reader performance. In the study setting where CAD sensitivity is superior to the average reader, the mean difference in AUC between the CAD-aided read and unaided read was 0.049 (95%CIs: -0.027; 0.130) for the image scoring definition that is based on non-location-specific rules, and 0.104 (95%CIs: 0.036; 0.174) and 0.090 (95%CIs: 0.031; 0.155) for image scoring definitions that are based on location-specific rules. The increases in AUC were statistically significant for the location-specific scoring definitions. It was further observed that the variance on these estimates was reduced when using the location-specific scoring definitions compared to that using a non-location-specific scoring definition. In the study setting where CAD sensitivity is equivalent or lower than the average reader, the mean differences in AUC are slightly above 0.01 for all image scoring definitions. These increases in AUC were not statistical significant for any of the image scoring definitions. The results on the variance analysis differed from those observed in the other study setting. This investigation furthers our understanding of the relationships between non-localization-specific and localization-specific ROC assessment methodologies and their relevance to clinical practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20095724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20095724"><span>Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa</p> <p>2010-01-21</p> <p>Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12405474','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12405474"><span>The cost of understanding other people: social cognition predicts young children's sensitivity to criticism.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cutting, Alexandra L; Dunn, Judy</p> <p>2002-10-01</p> <p>Individual differences in sensitivity to teacher criticism, and their links with individual differences in social cognition, were examined in 141 young children from diverse family backgrounds. Children's sensitivity to teacher criticism was assessed in their first year of school (mean age 5.13 years), using a puppet scenario in which a teacher criticises the child for making an error in school work. Understanding of false belief and mixed emotions was assessed at the same time. One hundred and thirteen of the children had been seen one year earlier in preschool, when comprehensive assessments were made of false belief and emotion understanding. Individual differences were apparent in children's sensitivity to teacher criticism, which were correlated with individual differences in both preschool and concurrent social cognition: children with more advanced social cognition were more sensitive to teacher criticism. Regression analyses showed that preschool social cognition was especially important, explaining unique variance in sensitivity to criticism over and above variance accounted for by concurrent sociocognitive ability. The results suggest that there are costs as well as benefits to understanding other people, at least for young children, and that individual differences in early social cognition may have distinct developmental trajectories. These issues, along with implications for research into children's responses to criticism and failure, are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015437','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015437"><span>Updating the Standard Spatial Observer for Contrast Detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahumada, Albert J.; Watson, Andrew B.</p> <p>2011-01-01</p> <p>Watson and Ahmuada (2005) constructed a Standard Spatial Observer (SSO) model for foveal luminance contrast signal detection based on the Medelfest data (Watson, 1999). Here we propose two changes to the model, dropping the oblique effect from the CSF and using the cone density data of Curcio et al. (1990) to estimate the variation of sensitivity with eccentricity. Dropping the complex images, and using medians to exclude outlier data points, the SSO model now accounts for essentially all the predictable variance in the data, with an RMS prediction error of only 0.67 dB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AtmEn..87..189Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AtmEn..87..189Y"><span>Global emission projections of particulate matter (PM): II. Uncertainty analyses of on-road vehicle exhaust emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Fang; Winijkul, Ekbordin; Bond, Tami C.; Streets, David G.</p> <p>2014-04-01</p> <p>Estimates of future emissions are necessary for understanding the future health of the atmosphere, designing national and international strategies for air quality control, and evaluating mitigation policies. Emission inventories are uncertain and future projections even more so, thus it is important to quantify the uncertainty inherent in emission projections. This paper is the second in a series that seeks to establish a more mechanistic understanding of future air pollutant emissions based on changes in technology. The first paper in this series (Yan et al., 2011) described a model that projects emissions based on dynamic changes of vehicle fleet, Speciated Pollutant Emission Wizard-Trend, or SPEW-Trend. In this paper, we explore the underlying uncertainties of global and regional exhaust PM emission projections from on-road vehicles in the coming decades using sensitivity analysis and Monte Carlo simulation. This work examines the emission sensitivities due to uncertainties in retirement rate, timing of emission standards, transition rate of high-emitting vehicles called “superemitters”, and emission factor degradation rate. It is concluded that global emissions are most sensitive to parameters in the retirement rate function. Monte Carlo simulations show that emission uncertainty caused by lack of knowledge about technology composition is comparable to the uncertainty demonstrated by alternative economic scenarios, especially during the period 2010-2030.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.1502K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.1502K"><span>Reconstruction of Local Sea Levels at South West Pacific Islands—A Multiple Linear Regression Approach (1988-2014)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.</p> <p>2018-02-01</p> <p>Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28548390','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28548390"><span>A step towards removing plasma volume variance from the Athlete's Biological Passport: The use of biomarkers to describe vascular volumes from a simple blood test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lobigs, Louisa M; Sottas, Pierre-Edouard; Bourdon, Pitre C; Nikolovski, Zoran; El-Gingo, Mohamed; Varamenti, Evdokia; Peeling, Peter; Dawson, Brian; Schumacher, Yorck O</p> <p>2018-02-01</p> <p>The haematological module of the Athlete's Biological Passport (ABP) has significantly impacted the prevalence of blood manipulations in elite sports. However, the ABP relies on a number of concentration-based markers of erythropoiesis, such as haemoglobin concentration ([Hb]), which are influenced by shifts in plasma volume (PV). Fluctuations in PV contribute to the majority of biological variance associated with volumetric ABP markers. Our laboratory recently identified a panel of common chemistry markers (from a simple blood test) capable of describing ca 67% of PV variance, presenting an applicable method to account for volume shifts within anti-doping practices. Here, this novel PV marker was included into the ABP adaptive model. Over a six-month period (one test per month), 33 healthy, active males provided blood samples and performed the CO-rebreathing method to record PV (control). In the final month participants performed a single maximal exercise effort to promote a PV shift (mean PV decrease -17%, 95% CI -9.75 to -18.13%). Applying the ABP adaptive model, individualized reference limits for [Hb] and the OFF-score were created, with and without the PV correction. With the PV correction, an average of 66% of [Hb] within-subject variance is explained, narrowing the predicted reference limits, and reducing the number of atypical ABP findings post-exercise. Despite an increase in sensitivity there was no observed loss of specificity with the addition of the PV correction. The novel PV marker presented here has the potential to improve the ABP's rate of correct doping detection by removing the confounding effects of PV variance. Copyright © 2017 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=neglected+AND+children&pg=7&id=EJ939916','ERIC'); return false;" href="https://eric.ed.gov/?q=neglected+AND+children&pg=7&id=EJ939916"><span>Sensitivity to Speech Rhythm Explains Individual Differences in Reading Ability Independently of Phonological Awareness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Holliman, Andrew J.; Wood, Clare; Sheehy, Kieron</p> <p>2008-01-01</p> <p>This study considered whether sensitivity to speech rhythm can predict concurrent variance in reading attainment after individual differences in age, vocabulary, and phonological awareness have been controlled. Five- to six-year-old English-speaking children completed a battery of phonological processing assessments and reading assessments, along…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31K..03I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31K..03I"><span>Assessment of Forecast Sensitivity to Observation and Its Application to Satellite Radiances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ide, K.</p> <p>2017-12-01</p> <p>The Forecast sensitivity to observation provides practical and useful metric for the assessment of observation impact without conducting computationally intensive data denial experiments. Quite often complex data assimilation systems use a simplified version of the forecast sensitivity formulation based on ensembles. In this talk, we first present the comparison of forecast sensitivity for 4DVar, Hybrid-4DEnVar, and 4DEnKF with or without such simplifications using a highly nonlinear model. We then present the results of ensemble forecast sensitivity to satellite radiance observations for Hybrid-4DEnVart using NOAA's Global Forecast System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20171786','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20171786"><span>Negative affect as a mediator of the relationship between vigorous-intensity exercise and smoking.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tart, Candyce D; Leyro, Teresa M; Richter, Ashley; Zvolensky, Michael J; Rosenfield, David; Smits, Jasper A J</p> <p>2010-06-01</p> <p>The present cross-sectional study evaluated whether people who engage in vigorous-intensity exercise are better able to regulate negative affective states, thereby changing core maintenance factors of smoking. Participants were a community sample of adults (n = 270) who completed self-report measures of physical activity, cigarette smoking, anxiety sensitivity, and negative affect. Consistent with hypothesis, vigorous-intensity exercise was related to lower levels of cigarette smoking, accounting for 10% of the variance in smoking. Additionally, negative affect mediated the relationship between vigorous-intensity physical activity and cigarette smoking, accounting for about 12% of this relation. Furthermore, these relationships were stronger for individuals with high anxiety sensitivity than for those with low anxiety sensitivity; including anxiety sensitivity as a moderator of the mediated relationship increased the amount of variance accounted for by negative affect to 17%. The findings are discussed in relation to developing further scientific insight into the mechanisms and pathways relevant to understanding the association among vigorous-intensity exercise, smoking, and emotional vulnerability. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27519239','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27519239"><span>Auditory Perception, Suprasegmental Speech Processing, and Vocabulary Development in Chinese Preschoolers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Hsiao-Lan S; Chen, I-Chen; Chiang, Chun-Han; Lai, Ying-Hui; Tsao, Yu</p> <p>2016-10-01</p> <p>The current study examined the associations between basic auditory perception, speech prosodic processing, and vocabulary development in Chinese kindergartners, specifically, whether early basic auditory perception may be related to linguistic prosodic processing in Chinese Mandarin vocabulary acquisition. A series of language, auditory, and linguistic prosodic tests were given to 100 preschool children who had not yet learned how to read Chinese characters. The results suggested that lexical tone sensitivity and intonation production were significantly correlated with children's general vocabulary abilities. In particular, tone awareness was associated with comprehensive language development, whereas intonation production was associated with both comprehensive and expressive language development. Regression analyses revealed that tone sensitivity accounted for 36% of the unique variance in vocabulary development, whereas intonation production accounted for 6% of the variance in vocabulary development. Moreover, auditory frequency discrimination was significantly correlated with lexical tone sensitivity, syllable duration discrimination, and intonation production in Mandarin Chinese. Also it provided significant contributions to tone sensitivity and intonation production. Auditory frequency discrimination may indirectly affect early vocabulary development through Chinese speech prosody. © The Author(s) 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4375N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4375N"><span>Impact of Uncertainties in Meteorological Forcing Data and Land Surface Parameters on Global Estimates of Terrestrial Water Balance Components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasonova, O. N.; Gusev, Ye. M.; Kovalev, Ye. E.</p> <p>2009-04-01</p> <p>Global estimates of the components of terrestrial water balance depend on a technique of estimation and on the global observational data sets used for this purpose. Land surface modelling is an up-to-date and powerful tool for such estimates. However, the results of modelling are affected by the quality of both a model and input information (including meteorological forcing data and model parameters). The latter is based on available global data sets containing meteorological data, land-use information, and soil and vegetation characteristics. Now there are a lot of global data sets, which differ in spatial and temporal resolution, as well as in accuracy and reliability. Evidently, uncertainties in global data sets will influence the results of model simulations, but to which extent? The present work is an attempt to investigate this issue. The work is based on the land surface model SWAP (Soil Water - Atmosphere - Plants) and global 1-degree data sets on meteorological forcing data and the land surface parameters, provided within the framework of the Second Global Soil Wetness Project (GSWP-2). The 3-hourly near-surface meteorological data (for the period from 1 July 1982 to 31 December 1995) are based on reanalyses and gridded observational data used in the International Satellite Land-Surface Climatology Project (ISLSCP) Initiative II. Following the GSWP-2 strategy, we used a number of alternative global forcing data sets to perform different sensitivity experiments (with six alternative versions of precipitation, four versions of radiation, two pure reanalysis products and two fully hybridized products of meteorological data). To reveal the influence of model parameters on simulations, in addition to GSWP-2 parameter data sets, we produced two alternative global data sets with soil parameters on the basis of their relationships with the content of clay and sand in a soil. After this the sensitivity experiments with three different sets of parameters were performed. As a result, 16 variants of global annual estimates of water balance components were obtained. Application of alternative data sets on radiation, precipitation, and soil parameters allowed us to reveal the influence of uncertainties in input data on global estimates of water balance components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29216207','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29216207"><span>Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Poplová, Michaela; Sovka, Pavel; Cifra, Michal</p> <p>2017-01-01</p> <p>Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5720749','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5720749"><span>Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Poplová, Michaela; Sovka, Pavel</p> <p>2017-01-01</p> <p>Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal. PMID:29216207</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26508015','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26508015"><span>Limitations of Poisson statistics in describing radioactive decay.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sitek, Arkadiusz; Celler, Anna M</p> <p>2015-12-01</p> <p>The assumption that nuclear decays are governed by Poisson statistics is an approximation. This approximation becomes unjustified when data acquisition times longer than or even comparable with the half-lives of the radioisotope in the sample are considered. In this work, the limits of the Poisson-statistics approximation are investigated. The formalism for the statistics of radioactive decay based on binomial distribution is derived. The theoretical factor describing the deviation of variance of the number of decays predicated by the Poisson distribution from the true variance is defined and investigated for several commonly used radiotracers such as (18)F, (15)O, (82)Rb, (13)N, (99m)Tc, (123)I, and (201)Tl. The variance of the number of decays estimated using the Poisson distribution is significantly different than the true variance for a 5-minute observation time of (11)C, (15)O, (13)N, and (82)Rb. Durations of nuclear medicine studies often are relatively long; they may be even a few times longer than the half-lives of some short-lived radiotracers. Our study shows that in such situations the Poisson statistics is unsuitable and should not be applied to describe the statistics of the number of decays in radioactive samples. However, the above statement does not directly apply to counting statistics at the level of event detection. Low sensitivities of detectors which are used in imaging studies make the Poisson approximation near perfect. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4455997','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4455997"><span>Updated Global Burden of Cholera in Endemic Countries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ali, Mohammad; Nelson, Allyson R.; Lopez, Anna Lena; Sack, David A.</p> <p>2015-01-01</p> <p>Background The global burden of cholera is largely unknown because the majority of cases are not reported. The low reporting can be attributed to limited capacity of epidemiological surveillance and laboratories, as well as social, political, and economic disincentives for reporting. We previously estimated 2.8 million cases and 91,000 deaths annually due to cholera in 51 endemic countries. A major limitation in our previous estimate was that the endemic and non-endemic countries were defined based on the countries’ reported cholera cases. We overcame the limitation with the use of a spatial modelling technique in defining endemic countries, and accordingly updated the estimates of the global burden of cholera. Methods/Principal Findings Countries were classified as cholera endemic, cholera non-endemic, or cholera-free based on whether a spatial regression model predicted an incidence rate over a certain threshold in at least three of five years (2008-2012). The at-risk populations were calculated for each country based on the percent of the country without sustainable access to improved sanitation facilities. Incidence rates from population-based published studies were used to calculate the estimated annual number of cases in endemic countries. The number of annual cholera deaths was calculated using inverse variance-weighted average case-fatality rate (CFRs) from literature-based CFR estimates. We found that approximately 1.3 billion people are at risk for cholera in endemic countries. An estimated 2.86 million cholera cases (uncertainty range: 1.3m-4.0m) occur annually in endemic countries. Among these cases, there are an estimated 95,000 deaths (uncertainty range: 21,000-143,000). Conclusion/Significance The global burden of cholera remains high. Sub-Saharan Africa accounts for the majority of this burden. Our findings can inform programmatic decision-making for cholera control. PMID:26043000</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070030258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070030258"><span>Development of a Pressure Sensitive Paint System for Measuring Global Surface Pressures on Rotorcraft Blades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Wong, Oliver D.; Oglesby, Donald M.; Ingram, JoAnne L.</p> <p>2007-01-01</p> <p>This paper will describe the results from a proof of concept test to examine the feasibility of using Pressure Sensitive Paint (PSP) to measure global surface pressures on rotorcraft blades in hover. The test was performed using the U.S. Army 2-meter Rotor Test Stand (2MRTS) and 15% scale swept rotor blades. Data were collected from five blades using both the intensity- and lifetime-based approaches. This paper will also outline several modifications and improvements that are underway to develop a system capable of measuring pressure distributions on up to four blades simultaneously at hover and forward flight conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://onlinelibrary.wiley.com/doi/10.1029/2011JF002326/abstract','USGSPUBS'); return false;" href="http://onlinelibrary.wiley.com/doi/10.1029/2011JF002326/abstract"><span>Probabilistic prediction of barrier-island response to hurricanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Plant, Nathaniel G.; Stockdon, Hilary F.</p> <p>2012-01-01</p> <p>Prediction of barrier-island response to hurricane attack is important for assessing the vulnerability of communities, infrastructure, habitat, and recreational assets to the impacts of storm surge, waves, and erosion. We have demonstrated that a conceptual model intended to make qualitative predictions of the type of beach response to storms (e.g., beach erosion, dune erosion, dune overwash, inundation) can be reformulated in a Bayesian network to make quantitative predictions of the morphologic response. In an application of this approach at Santa Rosa Island, FL, predicted dune-crest elevation changes in response to Hurricane Ivan explained about 20% to 30% of the observed variance. An extended Bayesian network based on the original conceptual model, which included dune elevations, storm surge, and swash, but with the addition of beach and dune widths as input variables, showed improved skill compared to the original model, explaining 70% of dune elevation change variance and about 60% of dune and shoreline position change variance. This probabilistic approach accurately represented prediction uncertainty (measured with the log likelihood ratio), and it outperformed the baseline prediction (i.e., the prior distribution based on the observations). Finally, sensitivity studies demonstrated that degrading the resolution of the Bayesian network or removing data from the calibration process reduced the skill of the predictions by 30% to 40%. The reduction in skill did not change conclusions regarding the relative importance of the input variables, and the extended model's skill always outperformed the original model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800045585&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcurrent%2Bfeedback','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800045585&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcurrent%2Bfeedback"><span>Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, W.-C.; Stone, P. H.</p> <p>1980-01-01</p> <p>The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23254229','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23254229"><span>Intolerance for discomfort among smokers: comparison of smoking-specific and non-specific measures to smoking history and patterns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sirota, Alan D; Rohsenow, Damaris J; Dolan, Sara L; Martin, Rosemarie A; Kahler, Christopher W</p> <p>2013-03-01</p> <p>Intolerance of discomfort associated with recent smoking cessation has been studied with only one smoking-specific questionnaire. The present study investigates the extent to which the previously validated Intolerance for Smoking Abstinence Discomfort Questionnaire (IDQ-S) scales share variance with (a) laboratory measures of distress tolerance (Paced Serial Addition Task and a breath-holding task) that have themselves been validated against smoking history, (b) the cold pressor task (not previously validated for smoking), and (c) an anxiety sensitivity questionnaire previously used for a similar purpose. The study then tests the hypothesis that the IDQ-S scales will have a higher correlation with smoking rate and dependence and with number and length of past smoking cessation attempts than with anxiety sensitivity or behavioral distress tolerance tasks do, since those measures are not smoking-specific. Sixty daily smokers recruited from the community completed the measures. The behavioral tasks and anxiety sensitivity shared little common variance. Anxiety sensitivity correlated more highly with IDQ-S than did the behavioral tasks but only 27% of variance was shared with the IDQ-S Withdrawal Intolerance; no distress tolerance measure correlated significantly with the IDQ-S Lack of Cognitive Coping scale. Only the IDQ-S scales correlated significantly with nicotine dependence, rate and past cessation: Withdrawal Intolerance with nicotine dependence and rate, and Lack of Cognitive Coping with fewer quit attempts. The smoking-specific measure of intolerance for discomfort may be more useful in smoking research than the less specific measures of distress tolerance. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614086W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614086W"><span>Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiß, Felix; Stacke, Tobias; Hagemann, Stefan</p> <p>2014-05-01</p> <p>Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in the tropics, north western Canada, eastern U.S. and northern Europe up to few years in the Sahara, the Arabian Peninsula, continental Eurasia and central U.S. Some models simulate very long memory all over the globe. This behavior is associated with differences between the models in the maximum root and soil depth. Models with shallow roots and deep soils exhibit longer memories than models with similar soil and root depths. Further analysis will be conducted to clearly divide models into groups based on their inter-model spatial correlation of simulated soil moisture characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980039549&hterms=boden&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D30%26Ntt%3Dboden','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980039549&hterms=boden&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D30%26Ntt%3Dboden"><span>Global astrometry with the space interferometry mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boden, A.; Unwin, S.; Shao, M.</p> <p>1997-01-01</p> <p>The prospects for global astrometric measurements with the space interferometry mission (SIM) are discussed. The SIM mission will perform four microarcsec astrometric measurements on objects as faint as 20 mag using the optical interferometry technique with a 10 m baseline. The SIM satellite will perform narrow angle astrometry and global astrometry by means of an astrometric grid. The sensitivities of the SIM global astrometric performance and the grid accuracy versus instrumental parameters and sky coverage schemes are reported on. The problems in finding suitable astrometric grid objects to support microarcsec astrometry, and related ground-based observation programs are discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020663','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020663"><span>CRUST 5.1: A global crustal model at 5° x 5°</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mooney, Walter D.; Laske, Gabi; Masters, T. Guy</p> <p>1998-01-01</p> <p>We present a new global model for the Earth's crust based on seismic refraction data published in the period 1948–1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5° × 5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical Vp- Vs and Vp-density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earth's crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5.1. We find that the application of crustal corrections to long-period (167 s) Rayleigh waves significantly increases the variance in the phase velocity maps and strengthens the upper mantle velocity anomalies beneath stable continental regions. A simple calculation of crustal isostacy indicates significant lateral variations in upper mantle density. The model CRUST 5.1 provides a complete description of the physical properties of the Earth's crust at a scale of 5° × 5° and can be used for a wide range of seismological and nonseismological problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21466138','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21466138"><span>The effect of displacement on sensitivity to first- and second-order global motion in 5-year-olds and adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ellemberg, D; Lewis, T L; Maurer, D; Lee, B; Ledgeway, T; Guilemot, J P; Lepore, F</p> <p>2010-01-01</p> <p>We compared the development of sensitivity to first- versus second-order global motion in 5-year-olds (n=24) and adults (n=24) tested at three displacements (0.1, 0.5 and 1.0 degrees). Sensitivity was measured with Random-Gabor Kinematograms (RGKs) formed with luminance-modulated (first-order) or contrast-modulated (second-order) concentric Gabor patterns. Five-year-olds were less sensitive than adults to the direction of both first- and second-order global motion at every displacement tested. In addition, the immaturity was smallest at the smallest displacement, which required the least spatial integration, and smaller for first-order than for second-order global motion at the middle displacement. The findings suggest that the development of sensitivity to global motion is limited by the development of spatial integration and by different rates of development of sensitivity to first- versus second-order signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28558882','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28558882"><span>Validation of the Persian version of the Schizophrenia Cognition Rating Scale (SCoRS) in patients with schizophrenia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mazhari, Shahrzad; Ghafaree-Nejad, Ali R; Soleymani-Zade, Somayeh; Keefe, Richard S E</p> <p>2017-06-01</p> <p>The Schizophrenia Cognition Rating Scale (SCoRS) is an interview-based assessment of cognition that involves interviews with patients and informants. The SCoRS has shown good reliability, validity, and sensitivity to cognitive impairment in schizophrenia, with the advantage of brief administration and scoring time. The present study aimed to test the concurrent validity of the Persian version of the SCoRS. A group of 35 patients with schizophrenia and a group of 35 healthy controls received the Persian-SCoRS in the first session, and a standardized performance-based cognitive battery, the Brief Assessment of Cognition in Schizophrenia (BACS), in the second session.Our results indicated that the Persian version of the SCoRS was sensitive to cognitive impairment in the patients. The Persian SCoRS global rating was significantly associated with the composite score generated from the Persian version of the BACS and predicted functional outcomes as measured by Global Assessment of Functioning (GAF) and World Health Organization Quality of Life (WHO QOL). A Persian version of the SCoRS, an interview based measure of cognition that included informants, is related to cognitive performance and global functioning. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28751680','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28751680"><span>Limits of Risk Predictability in a Cascading Alternating Renewal Process Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Xin; Moussawi, Alaa; Korniss, Gyorgy; Bakdash, Jonathan Z; Szymanski, Boleslaw K</p> <p>2017-07-27</p> <p>Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Alternating Renewal Process (CARP) to forecast interconnected global risks. However, assessments of the model's prediction precision are limited by lack of sufficient ground truth data. Here, we establish prediction precision as a function of input data size by using alternative long ground truth data generated by simulations of the CARP model with known parameters. We illustrate the approach on a model of fires in artificial cities assembled from basic city blocks with diverse housing. The results confirm that parameter recovery variance exhibits power law decay as a function of the length of available ground truth data. Using CARP, we also demonstrate estimation using a disparate dataset that also has dependencies: real-world prediction precision for the global risk model based on the World Economic Forum Global Risk Report. We conclude that the CARP model is an efficient method for predicting catastrophic cascading events with potential applications to emerging local and global interconnected risks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhRvE..67c1916K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhRvE..67c1916K"><span>Analysis of globally connected active rotators with excitatory and inhibitory connections using the Fokker-Planck equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanamaru, Takashi; Sekine, Masatoshi</p> <p>2003-03-01</p> <p>The globally connected active rotators with excitatory and inhibitory connections are analyzed using the nonlinear Fokker-Planck equation. The bifurcation diagram of the system is obtained numerically, and both periodic solutions and chaotic solutions are found. By observing the interspike interval, the coefficient of variance, and the correlation coefficient of the system, the relationship of our model to the biological data is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25640747','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25640747"><span>Efficient statistical tests to compare Youden index: accounting for contingency correlation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Fangyao; Xue, Yuqiang; Tan, Ming T; Chen, Pingyan</p> <p>2015-04-30</p> <p>Youden index is widely utilized in studies evaluating accuracy of diagnostic tests and performance of predictive, prognostic, or risk models. However, both one and two independent sample tests on Youden index have been derived ignoring the dependence (association) between sensitivity and specificity, resulting in potentially misleading findings. Besides, paired sample test on Youden index is currently unavailable. This article develops efficient statistical inference procedures for one sample, independent, and paired sample tests on Youden index by accounting for contingency correlation, namely associations between sensitivity and specificity and paired samples typically represented in contingency tables. For one and two independent sample tests, the variances are estimated by Delta method, and the statistical inference is based on the central limit theory, which are then verified by bootstrap estimates. For paired samples test, we show that the estimated covariance of the two sensitivities and specificities can be represented as a function of kappa statistic so the test can be readily carried out. We then show the remarkable accuracy of the estimated variance using a constrained optimization approach. Simulation is performed to evaluate the statistical properties of the derived tests. The proposed approaches yield more stable type I errors at the nominal level and substantially higher power (efficiency) than does the original Youden's approach. Therefore, the simple explicit large sample solution performs very well. Because we can readily implement the asymptotic and exact bootstrap computation with common software like R, the method is broadly applicable to the evaluation of diagnostic tests and model performance. Copyright © 2015 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3924420','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3924420"><span>Generalized Polynomial Chaos Based Uncertainty Quantification for Planning MRgLITT Procedures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fahrenholtz, S.; Stafford, R. J.; Maier, F.; Hazle, J. D.; Fuentes, D.</p> <p>2014-01-01</p> <p>Purpose A generalized polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided Laser Induced Thermal Therapies (MRgLITT). Methods Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n=4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. Results Within the range of physically meaningful constitutive values relevant to the ablative temperature regime of MRgLITT, the sensitivity study indicated that the optical parameters, particularly the anisotropy factor, created the most variance in the stochastic model's output temperature prediction. Further, within the statistical sense considered, a nonlinear model of the temperature and damage dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. Conclusions Given parameter uncertainties and mathematical modeling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning. PMID:23692295</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22363593','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22363593"><span>Nonparametric evaluation of quantitative traits in population-based association studies when the genetic model is unknown.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Konietschke, Frank; Libiger, Ondrej; Hothorn, Ludwig A</p> <p>2012-01-01</p> <p>Statistical association between a single nucleotide polymorphism (SNP) genotype and a quantitative trait in genome-wide association studies is usually assessed using a linear regression model, or, in the case of non-normally distributed trait values, using the Kruskal-Wallis test. While linear regression models assume an additive mode of inheritance via equi-distant genotype scores, Kruskal-Wallis test merely tests global differences in trait values associated with the three genotype groups. Both approaches thus exhibit suboptimal power when the underlying inheritance mode is dominant or recessive. Furthermore, these tests do not perform well in the common situations when only a few trait values are available in a rare genotype category (disbalance), or when the values associated with the three genotype categories exhibit unequal variance (variance heterogeneity). We propose a maximum test based on Marcus-type multiple contrast test for relative effect sizes. This test allows model-specific testing of either dominant, additive or recessive mode of inheritance, and it is robust against variance heterogeneity. We show how to obtain mode-specific simultaneous confidence intervals for the relative effect sizes to aid in interpreting the biological relevance of the results. Further, we discuss the use of a related all-pairwise comparisons contrast test with range preserving confidence intervals as an alternative to Kruskal-Wallis heterogeneity test. We applied the proposed maximum test to the Bogalusa Heart Study dataset, and gained a remarkable increase in the power to detect association, particularly for rare genotypes. Our simulation study also demonstrated that the proposed non-parametric tests control family-wise error rate in the presence of non-normality and variance heterogeneity contrary to the standard parametric approaches. We provide a publicly available R library nparcomp that can be used to estimate simultaneous confidence intervals or compatible multiplicity-adjusted p-values associated with the proposed maximum test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020034759&hterms=isoprene&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Disoprene','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020034759&hterms=isoprene&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Disoprene"><span>Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)</p> <p>1996-01-01</p> <p>Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100002097&hterms=fractions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfractions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100002097&hterms=fractions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfractions"><span>A Method for Retrieving Ground Flash Fraction from Satellite Lightning Imager Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.</p> <p>2009-01-01</p> <p>A general theory for retrieving the fraction of ground flashes in N lightning observed by a satellite-based lightning imager is provided. An "exponential model" is applied as a physically reasonable constraint to describe the measured optical parameter distributions, and population statistics (i.e., mean, variance) are invoked to add additional constraints to the retrieval process. The retrieval itself is expressed in terms of a Bayesian inference, and the Maximum A Posteriori (MAP) solution is obtained. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The ability to retrieve ground flash fraction has important benefits to the atmospheric chemistry community. For example, using the method to partition the existing satellite global lightning climatology into separate ground and cloud flash climatologies will improve estimates of lightning nitrogen oxides (NOx) production; this in turn will improve both regional air quality and global chemistry/climate model predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38..921K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38..921K"><span>Variability Analysis of the Horizontal Geomagnetic Component: A Case Study Based on Records from Vassouras Observatory (Brazil)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klausner, Virginia; Papa, Andres; Mendes, Odim; Oliveira Domingues, Margarete</p> <p></p> <p>It is well known that any of the components of the magnetic field measured on the Earth's surface presents characteristic frequencies with 24, 12, 8 and 6-hour period. Those typical kinds of oscillations of the geomagnetic field are known as solar quiet variation and are primary due to the global thermotidal wind systems which conduct currents flowing in the "dynamo region" of the ionosphere, the E-region. In this study, the horizontal component amplitude observed by ground-based observatories belonged to the INTERMAGNET network have been used to analyze the global pattern variance of the Sq variation. In particular we focused our attention on Vassouras Observatory (VSS), Rio de Janeiro, Brazil, which has been active since 1915. In the next years, a brazilian network of magnetometers will be implemented and VSS can be used as reference. This work aims mainly to highlight and interpret these quiet daily variations over the Brazilian sector compared to the features from other magnetic stations reasonably distributed over the whole Earth's surface. The methodological approach is based on wavelet cross-correlation technique. This technique is useful to isolate the period of the spectral components of geomagnetic field in each station and to correlate them as function of scale (period) between VSS and the other stations. The wavelet cross-correlation coefficient strongly depends on the scale. We study the geomagnetically quiet days at equinox and solstice months during low and high solar activity. As preliminary remarks, the results show that the records in the magnetic stations have primary a latitudinal dependence affected by the time of year and level of solar activity. On the other hand, records of magnetic stations located at the same dip latitude but at different longitude presented some peculiarities. These results indicated that the winds driven the dynamo are very sensitive of the location of the geomagnetic station, i. e., its effects depend upon the direction of the Earth's main field with respect to a local driving electric field direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29671129','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29671129"><span>Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anderson, David F; Yuan, Chaojie</p> <p>2018-04-18</p> <p>A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830060823&hterms=primary+function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dprimary%2Bfunction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830060823&hterms=primary+function&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dprimary%2Bfunction"><span>Satellites for the study of ocean primary productivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, R. C.; Baker, K. S.</p> <p>1983-01-01</p> <p>The use of remote sensing techniques for obtaining estimates of global marine primary productivity is examined. It is shown that remote sensing and multiplatform (ship, aircraft, and satellite) sampling strategies can be used to significantly lower the variance in estimates of phytoplankton abundance and of population growth rates from the values obtained using the C-14 method. It is noted that multiplatform sampling strategies are essential to assess the mean and variance of phytoplankton biomass on a regional or on a global basis. The relative errors associated with shipboard and satellite estimates of phytoplankton biomass and primary productivity, as well as the increased statistical accuracy possible from the utilization of contemporaneous data from both sampling platforms, are examined. It is shown to be possible to follow changes in biomass and the distribution patterns of biomass as a function of time with the use of satellite imagery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B13I..05Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B13I..05Q"><span>Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quetin, G. R.; Swann, A. L. S.</p> <p>2017-12-01</p> <p>Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19747554','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19747554"><span>Reduced variance in monozygous twins for multiple MR parameters: implications for disease studies and the genetic basis of brain structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pell, Gaby S; Briellmann, Regula S; Lawrence, Kate M; Glencross, Deborah; Wellard, R Mark; Berkovic, Samuel F; Jackson, Graeme D</p> <p>2010-01-15</p> <p>Twin studies offer the opportunity to determine the relative contribution of genes versus environment in traits of interest. Here, we investigate the extent to which variance in brain structure is reduced in monozygous twins with identical genetic make-up. We investigate whether using twins as compared to a control population reduces variability in a number of common magnetic resonance (MR) structural measures, and we investigate the location of areas under major genetic influences. This is fundamental to understanding the benefit of using twins in studies where structure is the phenotype of interest. Twenty-three pairs of healthy MZ twins were compared to matched control pairs. Volume, T2 and diffusion MR imaging were performed as well as spectroscopy (MRS). Images were compared using (i) global measures of standard deviation and effect size, (ii) voxel-based analysis of similarity and (iii) intra-pair correlation. Global measures indicated a consistent increase in structural similarity in twins. The voxel-based and correlation analyses indicated a widespread pattern of increased similarity in twin pairs, particularly in frontal and temporal regions. The areas of increased similarity were most widespread for the diffusion trace and least widespread for T2. MRS showed consistent reduction in metabolite variation that was significant in the temporal lobe N-acetylaspartate (NAA). This study has shown the distribution and magnitude of reduced variability in brain volume, diffusion, T2 and metabolites in twins. The data suggest that evaluation of twins discordant for disease is indeed a valid way to attribute genetic or environmental influences to observed abnormalities in patients since evidence is provided for the underlying assumption of decreased variability in twins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22613067','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22613067"><span>Performance of an artificial neural network for vertical root fracture detection: an ex vivo study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kositbowornchai, Suwadee; Plermkamon, Supattra; Tangkosol, Tawan</p> <p>2013-04-01</p> <p>To develop an artificial neural network for vertical root fracture detection. A probabilistic neural network design was used to clarify whether a tooth root was sound or had a vertical root fracture. Two hundred images (50 sound and 150 vertical root fractures) derived from digital radiography--used to train and test the artificial neural network--were divided into three groups according to the number of training and test data sets: 80/120,105/95 and 130/70, respectively. Either training or tested data were evaluated using grey-scale data per line passing through the root. These data were normalized to reduce the grey-scale variance and fed as input data of the neural network. The variance of function in recognition data was calculated between 0 and 1 to select the best performance of neural network. The performance of the neural network was evaluated using a diagnostic test. After testing data under several variances of function, we found the highest sensitivity (98%), specificity (90.5%) and accuracy (95.7%) occurred in Group three, for which the variance of function in recognition data was between 0.025 and 0.005. The neural network designed in this study has sufficient sensitivity, specificity and accuracy to be a model for vertical root fracture detection. © 2012 John Wiley & Sons A/S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950049135&hterms=bias+correction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbias%2Bcorrection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950049135&hterms=bias+correction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbias%2Bcorrection"><span>Estimation of the electromagnetic bias from retracked TOPEX data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rodriguez, Ernesto; Martin, Jan M.</p> <p>1994-01-01</p> <p>We examine the electromagnetic (EM) bias by using retracked TOPEX altimeter data. In contrast to previous studies, we use a parameterization of the EM bias which does not make stringent assumptions about the form of the correction or its global behavior. We find that the most effective single parameter correction uses the altimeter-estimated wind speed but that other parameterizations, using a wave age related parameter of significant wave height, may also significantly reduce the repeat pass variance. The different corrections are compared, and their improvement of the TOPEX height variance is quantified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT...tmp..103S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT...tmp..103S"><span>Study of water based nanofluid flows in annular tubes using numerical simulation and sensitivity analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siadaty, Moein; Kazazi, Mohsen</p> <p>2018-04-01</p> <p>Convective heat transfer, entropy generation and pressure drop of two water based nanofluids (Cu-water and Al2O3-water) in horizontal annular tubes are scrutinized by means of computational fluids dynamics, response surface methodology and sensitivity analysis. First, central composite design is used to perform a series of experiments with diameter ratio, length to diameter ratio, Reynolds number and solid volume fraction. Then, CFD is used to calculate the Nusselt Number, Euler number and entropy generation. After that, RSM is applied to fit second order polynomials on responses. Finally, sensitivity analysis is conducted to manage the above mentioned parameters inside tube. Totally, 62 different cases are examined. CFD results show that Cu-water and Al2O3-water have the highest and lowest heat transfer rate, respectively. In addition, analysis of variances indicates that increase in solid volume fraction increases dimensionless pressure drop for Al2O3-water. Moreover, it has a significant negative and insignificant effects on Cu-water Nusselt and Euler numbers, respectively. Analysis of Bejan number indicates that frictional and thermal entropy generations are the dominant irreversibility in Al2O3-water and Cu-water flows, respectively. Sensitivity analysis indicates dimensionless pressure drop sensitivity to tube length for Cu-water is independent of its diameter ratio at different Reynolds numbers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25797570','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25797570"><span>Optimal consistency in microRNA expression analysis using reference-gene-based normalization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xi; Gardiner, Erin J; Cairns, Murray J</p> <p>2015-05-01</p> <p>Normalization of high-throughput molecular expression profiles secures differential expression analysis between samples of different phenotypes or biological conditions, and facilitates comparison between experimental batches. While the same general principles apply to microRNA (miRNA) normalization, there is mounting evidence that global shifts in their expression patterns occur in specific circumstances, which pose a challenge for normalizing miRNA expression data. As an alternative to global normalization, which has the propensity to flatten large trends, normalization against constitutively expressed reference genes presents an advantage through their relative independence. Here we investigated the performance of reference-gene-based (RGB) normalization for differential miRNA expression analysis of microarray expression data, and compared the results with other normalization methods, including: quantile, variance stabilization, robust spline, simple scaling, rank invariant, and Loess regression. The comparative analyses were executed using miRNA expression in tissue samples derived from subjects with schizophrenia and non-psychiatric controls. We proposed a consistency criterion for evaluating methods by examining the overlapping of differentially expressed miRNAs detected using different partitions of the whole data. Based on this criterion, we found that RGB normalization generally outperformed global normalization methods. Thus we recommend the application of RGB normalization for miRNA expression data sets, and believe that this will yield a more consistent and useful readout of differentially expressed miRNAs, particularly in biological conditions characterized by large shifts in miRNA expression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21458828','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21458828"><span>Quantitative measures detect sensory and motor impairments in multiple sclerosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Newsome, Scott D; Wang, Joseph I; Kang, Jonathan Y; Calabresi, Peter A; Zackowski, Kathleen M</p> <p>2011-06-15</p> <p>Sensory and motor dysfunction in multiple sclerosis (MS) is often assessed with rating scales which rely heavily on clinical judgment. Quantitative devices may be more precise than rating scales. To quantify lower extremity sensorimotor measures in individuals with MS, evaluate the extent to which they can detect functional systems impairments, and determine their relationship to global disability measures. We tested 145 MS subjects and 58 controls. Vibration thresholds were quantified using a Vibratron-II device. Strength was quantified by a hand-held dynamometer. We also recorded Expanded Disability Status Scale (EDSS) and Timed 25-Foot Walk (T25FW). t-tests and Wilcoxon-rank sum were used to compare group data. Spearman correlations were used to assess relationships between each measure. We also used a step-wise linear regression model to determine how much the quantitative measures explain the variance in the respective functional systems scores (FSS). EDSS scores ranged from 0-7.5, mean disease duration was 10.4 ± 9.6 years, and 66% were female. In relapsing-remitting MS, but not progressive MS, poorer vibration sensation correlated with a worse EDSS score, whereas progressive groups' ankle/hip strength changed significantly with EDSS progression. Interestingly, not only did sensorimotor measures significantly correlate with global disability measures (i.e., EDSS), but they had improved sensitivity, as they detected impairments in up to 32% of MS subjects with normal sensory and pyramidal FSS. Sensory and motor deficits in MS can be quantified using clinically accessible tools and distinguish differences among MS subtypes. We show that quantitative sensorimotor measures are more sensitive than FSS from the EDSS. These tools have the potential to be used as clinical outcome measures in practice and for future MS clinical trials of neurorehabilitative and neuroreparative interventions. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3090542','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3090542"><span>Quantitative measures detect sensory and motor impairments in multiple sclerosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Newsome, Scott D.; Wang, Joseph I.; Kang, Jonathan Y.; Calabresi, Peter A.; Zackowski, Kathleen M.</p> <p>2011-01-01</p> <p>Background Sensory and motor dysfunction in multiple sclerosis (MS) is often assessed with rating scales which rely heavily on clinical judgment. Quantitative devices may be more precise than rating scales. Objective To quantify lower extremity sensorimotor measures in individuals with MS, evaluate the extent to which they can detect functional systems impairments, and determine their relationship to global disability measures. Methods We tested 145 MS subjects and 58 controls. Vibration thresholds were quantified using a Vibratron-II device. Strength was quantified by a hand-held dynamometer. We also recorded Expanded Disability Status Scale (EDSS) and timed 25-foot walk (T25FW). T-tests and Wilcoxon-rank sum were used to compare group data. Spearman correlations were used to assess relationships between each measure. We also used a step-wise linear regression model to determine how much the quantitative measures explain the variance in the respective functional systems scores (FSS). Results EDSS scores ranged from 0-7.5, mean disease duration was 10.4±9.6 years, and 66% were female. In RRMS, but not progressive MS, poorer vibration sensation correlated with a worse EDSS score, whereas progressive groups’ ankle/hip strength changed significantly with EDSS progression. Interestingly, not only did sensorimotor measures significantly correlate with global disability measures (EDSS), but they had improved sensitivity, as they detected impairments in up to 32% of MS subjects with normal sensory FSS. Conclusions Sensory and motor deficits can be quantified using clinically accessible tools and distinguish differences among MS subtypes. We show that quantitative sensorimotor measures are more sensitive than FSS from the EDSS. These tools have the potential to be used as clinical outcome measures in practice and for future MS clinical trials of neurorehabilitative and neuroreparative interventions. PMID:21458828</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13a5006H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13a5006H"><span>Sources of uncertainty in hydrological climate impact assessment: a cross-scale study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.</p> <p>2018-01-01</p> <p>Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAP...123g5103U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAP...123g5103U"><span>Global sensitivity analysis of multiscale properties of porous materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.</p> <p>2018-02-01</p> <p>Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70160437','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70160437"><span>A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered pallid sturgeon example</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.</p> <p>2017-01-01</p> <p>We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5415346','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5415346"><span>Toddler Emotional States, Temperamental Traits, and Their Interaction: Associations with Mothers’ and Fathers’ Parenting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fields, Margaret A.; Cole, Pamela M.; Maggi, Mirella C.</p> <p>2016-01-01</p> <p>We investigated the degree to which toddlers’ observed emotional states, toddlers’ temperamental traits, and their interaction accounted for variance in mothers’ and fathers’ parenting. Main effects of two emotional states (positive emotion and negative emotion), three temperamental traits (negative affectivity, effortful control, and surgency) as well as state-by-trait interactions, were examined in relation to parental sensitivity, positive affect, and negative affect. The hypothesis that toddlers’ temperamental traits would moderate the association between their observed emotional states and parenting was partially supported. Significant state-by-trait interactions were found in models predicting the probability that mothers and fathers expressed negative affect towards their toddlers. For parental sensitivity and positive affect, only main effects of temperament and/or emotion expression accounted for variance in parenting. PMID:28479643</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-01-07/pdf/2011-48.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-01-07/pdf/2011-48.pdf"><span>76 FR 1145 - Alabama Power Company; Notice of Application for Amendment of License and Soliciting Comments...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-01-07</p> <p>... drought-based temporary variance of the Martin Project rule curve and minimum flow releases at the Yates... requesting a drought- based temporary variance to the Martin Project rule curve. The rule curve variance...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25520675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25520675"><span>Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brand, John; Johnson, Aaron P</p> <p>2014-01-01</p> <p>In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4251296','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4251296"><span>Attention to local and global levels of hierarchical Navon figures affects rapid scene categorization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brand, John; Johnson, Aaron P.</p> <p>2014-01-01</p> <p>In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19453372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19453372"><span>A diffusion-based approach to stochastic individual growth and energy budget, with consequences to life-history optimization and population dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Filin, I</p> <p>2009-06-01</p> <p>Using diffusion processes, I model stochastic individual growth, given exogenous hazards and starvation risk. By maximizing survival to final size, optimal life histories (e.g. switching size for habitat/dietary shift) are determined by two ratios: mean growth rate over growth variance (diffusion coefficient) and mortality rate over mean growth rate; all are size dependent. For example, switching size decreases with either ratio, if both are positive. I provide examples and compare with previous work on risk-sensitive foraging and the energy-predation trade-off. I then decompose individual size into reversibly and irreversibly growing components, e.g. reserves and structure. I provide a general expression for optimal structural growth, when reserves grow stochastically. I conclude that increased growth variance of reserves delays structural growth (raises threshold size for its commencement) but may eventually lead to larger structures. The effect depends on whether the structural trait is related to foraging or defence. Implications for population dynamics are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2746159','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2746159"><span>Additive Genetic Variability and the Bayesian Alphabet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gianola, Daniel; de los Campos, Gustavo; Hill, William G.; Manfredi, Eduardo; Fernando, Rohan</p> <p>2009-01-01</p> <p>The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic-assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called “Bayes A”) with respect to priors is illustrated with a simulation. Methods that can solve potential shortcomings of some of these Bayesian regression procedures are discussed briefly. PMID:19620397</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyA..465..261A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyA..465..261A"><span>Refined composite multivariate generalized multiscale fuzzy entropy: A tool for complexity analysis of multichannel signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Azami, Hamed; Escudero, Javier</p> <p>2017-01-01</p> <p>Multiscale entropy (MSE) is an appealing tool to characterize the complexity of time series over multiple temporal scales. Recent developments in the field have tried to extend the MSE technique in different ways. Building on these trends, we propose the so-called refined composite multivariate multiscale fuzzy entropy (RCmvMFE) whose coarse-graining step uses variance (RCmvMFEσ2) or mean (RCmvMFEμ). We investigate the behavior of these multivariate methods on multichannel white Gaussian and 1/ f noise signals, and two publicly available biomedical recordings. Our simulations demonstrate that RCmvMFEσ2 and RCmvMFEμ lead to more stable results and are less sensitive to the signals' length in comparison with the other existing multivariate multiscale entropy-based methods. The classification results also show that using both the variance and mean in the coarse-graining step offers complexity profiles with complementary information for biomedical signal analysis. We also made freely available all the Matlab codes used in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4085792','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4085792"><span>Subjective and Objective Binge Eating in Relation to Eating Disorder Symptomatology, Depressive Symptoms, and Self-Esteem Among Treatment-Seeking Adolescents with Bulimia Nervosa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fitzsimmons-Craft, Ellen E.; Ciao, Anna C.; Accurso, Erin C.; Pisetsky, Emily M.; Peterson, Carol B.; Byrne, Catherine E.; Le Grange, Daniel</p> <p>2014-01-01</p> <p>This study investigated the importance of the distinction between objective (OBE) and subjective binge eating (SBE) among 80 treatment-seeking adolescents with bulimia nervosa (BN). We explored relationships among OBEs, SBEs, eating disorder (ED) symptomatology, depression, and self-esteem using two approaches. Group comparisons showed that OBE and SBE groups did not differ on ED symptoms or self-esteem; however, the SBE group had significantly greater depression. Examining continuous variables, OBEs (not SBEs) accounted for significant unique variance in global ED pathology, vomiting, and self-esteem. SBEs (not OBEs) accounted for significant unique variance in restraint and depression. Both OBEs and SBEs accounted for significant unique variance in eating concern; neither accounted for unique variance in weight/shape concern, laxative use, diuretic use, or driven exercise. Loss of control, rather than amount of food, may be most important in defining binge eating. Additionally, OBEs may indicate broader ED pathology while SBEs may indicate restrictive/depressive symptomatology. PMID:24852114</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23401482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23401482"><span>Rapid and sensitive MRM-based mass spectrometry approach for systematically exploring ganglioside-protein interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tian, Ruijun; Jin, Jing; Taylor, Lorne; Larsen, Brett; Quaggin, Susan E; Pawson, Tony</p> <p>2013-04-01</p> <p>Gangliosides are ubiquitous components of cell membranes. Their interactions with bacterial toxins and membrane-associated proteins (e.g. receptor tyrosine kinases) have important roles in the regulation of multiple cellular functions. Currently, an effective approach for measuring ganglioside-protein interactions especially in a large-scale fashion is largely missing. To this end, we report a facile MS-based approach to explore gangliosides extracted from cells and measure their interactions with protein of interest globally. We optimized a two-step protocol for extracting total gangliosides from cells within 2 h. Easy-to-use magnetic beads conjugated with a protein of interest were used to capture interacting gangliosides. To measure ganglioside-protein interaction on a global scale, we applied a high-sensitive LC-MS system, containing hydrophilic interaction LC separation and multiple reaction monitoring-based MS for ganglioside detection. Sensitivity for ganglioside GM1 is below 100 pg, and the whole analysis can be done in 20 min with isocratic elution. To measure ganglioside interactions with soluble vascular endothelial growth factor receptor 1 (sFlt1), we extracted and readily detected 36 species of gangliosides from perivascular retinal pigment epithelium cells across eight different classes. Twenty-three ganglioside species have significant interactions with sFlt1 as compared with IgG control based on p value cutoff <0.05. These results show that the described method provides a rapid and high-sensitive approach for systematically measuring ganglioside-protein interactions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29732802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29732802"><span>[Numerical analysis of inter-specific relationships in the estuary salt marsh plant community of southern Chongming Dongtan, Shanghai.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Wen Hui; Li, Xiu Zhen; Jiang, Jun Yan; Huang, Xing; Zhang, Yun Qing; Zhang, Qian; Zhou, Yun Xuan</p> <p>2016-05-01</p> <p>The salt marsh plant communities were investigated with quadrats in the southern Chongming Dongtan. Based on the vegetation coverage and the 2×2 contingency table, 8 common species among the 17 higher plants recorded were analyzed. The variance ratio of overall association, Chi-square test and Spearman rank correlation coefficient were used to describe the relevance and correlations between species pairs. The results showed that W (48.61), a statistical index to test the variance ratio (VR=0.61), fell outside of the range of Chi-square test, indicating that the overall correlation of all vegetation species was significantly negative. According to the environment adaptation mode of dominant species and the main influencing factors, the species were divided into 4 ecological groups, i.e., Phragmites australis, Carex scabrifolia-Scirpus triqueter - Juncellus serotinus, Spartina alterniflora - Scirpus mariqueter, Echinochloa crusgalli - Imperata cylindrica, based on the ranking of Spearman correlation coefficient. The inter-specific relationships in the salt marsh plant community of southern Chongming Dongtan were complicated and extremely unstable with species sensitive to environmental impacts. According to the analysis of relationships between the species and their pre-sent distribution, we suggested using S. mariqueter as target species to provide strategies for protecting native species based habitats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25370632','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25370632"><span>Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, So-Yeon; Kim, Il Han; Ye, Sung-Joon; Carlson, Joel; Park, Jong Min</p> <p>2014-11-01</p> <p>Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman's rank correlation coefficients (rs) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MISPORT) were calculated, and their correlations were analyzed in the same way. There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The rs values of contrast to the global gamma passing rates with criteria of 2%/2 mm, 2%/1 mm, and 1%/2 mm were 0.536, 0.473, and 0.718, respectively. The respective values for variance were 0.551, 0.481, and 0.688. In the case of local gamma passing rates, the rs values of contrast were 0.547, 0.578, and 0.620, respectively, and those of variance were 0.519, 0.527, and 0.569. All of the rs values in those cases were statistically significant (p < 0.003). In the cases of global and local gamma passing rates, MISPORT showed the highest correlations among the conventional modulation indices. For global passing rates, rs values of MISPORT were -0.420, -0.330, and -0.632, respectively, and those for local passing rates were -0.455, -0.490 and -0.502. The values of rs of contrast, variance, and MISPORT with the MLC errors were -0.863, -0.828, and 0.795, respectively, all with statistical significances (p < 0.001). The correlations with statistical significances between variance and dose-volumetric differences were observed more frequently than the others. The contrast (d = 1) and variance (d = 1) calculated from fluence maps of VMAT plans showed considerable correlations with the plan deliverability, indicating their potential use as indicators for assessing the degree of modulation of VMAT plans. Both contrast and variance consistently showed better performance than the conventional modulation indices for VMAT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJMPB..2882003N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJMPB..2882003N"><span>Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nuccitelli, Dana; Cowtan, Kevin; Jacobs, Peter; Richardson, Mark; Way, Robert G.; Blackburn, Anne-Marie; Stolpe, Martin B.; Cook, John</p> <p>2014-04-01</p> <p>Lu (2013) (L13) argued that solar effects and anthropogenic halogenated gases can explain most of the observed warming of global mean surface air temperatures since 1850, with virtually no contribution from atmospheric carbon dioxide (CO2) concentrations. Here we show that this conclusion is based on assumptions about the saturation of the CO2-induced greenhouse effect that have been experimentally falsified. L13 also confuses equilibrium and transient response, and relies on data sources that have been superseeded due to known inaccuracies. Furthermore, the statistical approach of sequential linear regression artificially shifts variance onto the first predictor. L13's artificial choice of regression order and neglect of other relevant data is the fundamental cause of the incorrect main conclusion. Consideration of more modern data and a more parsimonious multiple regression model leads to contradiction with L13's statistical results. Finally, the correlation arguments in L13 are falsified by considering either the more appropriate metric of global heat accumulation, or data on longer timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4019975','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4019975"><span>Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Myer, Gregory D; Ford, Kevin R; Khoury, Jane; Succop, Paul; Hewett, Timothy E</p> <p>2014-01-01</p> <p>Objective Knee abduction moment (KAM) during landing predicts non-contact anterior cruciate ligament (ACL) injury risk with high sensitivity and specificity in female athletes. The purpose of this study was to employ sensitive laboratory (lab-based) tools to determine predictive mechanisms that underlie increased KAM during landing. Methods Female basketball and soccer players (N=744) from a single county public school district were recruited to participate in testing of anthropometrics, maturation, laxity/flexibility, strength and landing biomechanics. Linear regression was used to model KAM, and logistic regression was used to examine high (>25.25 Nm of KAM) versus low KAM as surrogate for ACL injury risk. Results The most parsimonious model included independent predictors (β±1 SE) (1) peak knee abduction angle (1.78±0.05; p<0.001), (2) peak knee extensor moment (0.17±0.01; p<0.001), (3) knee flexion range of motion (0.15±0.03; p<0.01), (4) body mass index (BMI) Z-score (−1.67±0.36; p<0.001) and (5) tibia length (−0.50±0.14; p<0.001) and accounted for 78% of the variance in KAM during landing. The logistic regression model that employed these same variables predicted high KAM status with 85% sensitivity and 93% specificity and a C-statistic of 0.96. Conclusions Increased knee abduction angle, quadriceps recruitment, tibia length and BMI with decreased knee flexion account for 80% of the measured variance in KAM during a drop vertical jump. Clinical relevance Females who demonstrate increased KAM are more responsive and more likely to benefit from neuromuscular training. These findings should significantly enhance the identification of those at increased risk and facilitate neuromuscular training targeted to this important risk factor (high KAM) for ACL injury. PMID:20558526</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24683334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24683334"><span>Multiobjective robust design of the double wishbone suspension system based on particle swarm optimization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Xianfu; Lin, Yuqun</p> <p>2014-01-01</p> <p>The performance of the suspension system is one of the most important factors in the vehicle design. For the double wishbone suspension system, the conventional deterministic optimization does not consider any deviations of design parameters, so design sensitivity analysis and robust optimization design are proposed. In this study, the design parameters of the robust optimization are the positions of the key points, and the random factors are the uncertainties in manufacturing. A simplified model of the double wishbone suspension is established by software ADAMS. The sensitivity analysis is utilized to determine main design variables. Then, the simulation experiment is arranged and the Latin hypercube design is adopted to find the initial points. The Kriging model is employed for fitting the mean and variance of the quality characteristics according to the simulation results. Further, a particle swarm optimization method based on simple PSO is applied and the tradeoff between the mean and deviation of performance is made to solve the robust optimization problem of the double wishbone suspension system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1177077','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1177077"><span>Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.</p> <p></p> <p>The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24830736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24830736"><span>Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Apte, Advait A; Senger, Ryan S; Fong, Stephen S</p> <p>2014-01-01</p> <p>Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>