Sample records for variance-driven time gaps

  1. Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps

    NASA Astrophysics Data System (ADS)

    Treiber, Martin; Kesting, Arne; Helbing, Dirk

    2006-07-01

    We investigate the adaptation of the time headways in car-following models as a function of the local velocity variance, which is a measure of the inhomogeneity of traffic flow. We apply this mechanism to several car-following models and simulate traffic breakdowns in open systems with an on-ramp as bottleneck and in a closed ring road. Single-vehicle data and one-minute aggregated data generated by several virtual detectors show a semiquantitative agreement with microscopic and flow-density data from the Dutch freeway A9. This includes the observed distributions of the net time headways for free and congested traffic, the velocity variance as a function of density, and the fundamental diagram. The modal value of the time headway distribution is shifted by a factor of about 2 under congested conditions. Macroscopically, this corresponds to the capacity drop at the transition from free to congested traffic. The simulated fundamental diagram shows free, synchronized, and jammed traffic, and a wide scattering in the congested traffic regime. We explain this by a self-organized variance-driven process that leads to the spontaneous formation and decay of long-lived platoons even for a deterministic dynamics on a single lane.

  2. Robust analysis of semiparametric renewal process models

    PubMed Central

    Lin, Feng-Chang; Truong, Young K.; Fine, Jason P.

    2013-01-01

    Summary A rate model is proposed for a modulated renewal process comprising a single long sequence, where the covariate process may not capture the dependencies in the sequence as in standard intensity models. We consider partial likelihood-based inferences under a semiparametric multiplicative rate model, which has been widely studied in the context of independent and identical data. Under an intensity model, gap times in a single long sequence may be used naively in the partial likelihood with variance estimation utilizing the observed information matrix. Under a rate model, the gap times cannot be treated as independent and studying the partial likelihood is much more challenging. We employ a mixing condition in the application of limit theory for stationary sequences to obtain consistency and asymptotic normality. The estimator's variance is quite complicated owing to the unknown gap times dependence structure. We adapt block bootstrapping and cluster variance estimators to the partial likelihood. Simulation studies and an analysis of a semiparametric extension of a popular model for neural spike train data demonstrate the practical utility of the rate approach in comparison with the intensity approach. PMID:24550568

  3. Two dynamic regimes in the human gut microbiome

    PubMed Central

    Smillie, Chris S.; Alm, Eric J.

    2017-01-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)—a multivariate method developed for econometrics—to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes. PMID:28222117

  4. Two dynamic regimes in the human gut microbiome.

    PubMed

    Gibbons, Sean M; Kearney, Sean M; Smillie, Chris S; Alm, Eric J

    2017-02-01

    The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)-a multivariate method developed for econometrics-to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes.

  5. Gap-filling methods to impute eddy covariance flux data by preserving variance.

    NASA Astrophysics Data System (ADS)

    Kunwor, S.; Staudhammer, C. L.; Starr, G.; Loescher, H. W.

    2015-12-01

    To represent carbon dynamics, in terms of exchange of CO2 between the terrestrial ecosystem and the atmosphere, eddy covariance (EC) data has been collected using eddy flux towers from various sites across globe for more than two decades. However, measurements from EC data are missing for various reasons: precipitation, routine maintenance, or lack of vertical turbulence. In order to have estimates of net ecosystem exchange of carbon dioxide (NEE) with high precision and accuracy, robust gap-filling methods to impute missing data are required. While the methods used so far have provided robust estimates of the mean value of NEE, little attention has been paid to preserving the variance structures embodied by the flux data. Preserving the variance of these data will provide unbiased and precise estimates of NEE over time, which mimic natural fluctuations. We used a non-linear regression approach with moving windows of different lengths (15, 30, and 60-days) to estimate non-linear regression parameters for one year of flux data from a long-leaf pine site at the Joseph Jones Ecological Research Center. We used as our base the Michaelis-Menten and Van't Hoff functions. We assessed the potential physiological drivers of these parameters with linear models using micrometeorological predictors. We then used a parameter prediction approach to refine the non-linear gap-filling equations based on micrometeorological conditions. This provides us an opportunity to incorporate additional variables, such as vapor pressure deficit (VPD) and volumetric water content (VWC) into the equations. Our preliminary results indicate that improvements in gap-filling can be gained with a 30-day moving window with additional micrometeorological predictors (as indicated by lower root mean square error (RMSE) of the predicted values of NEE). Our next steps are to use these parameter predictions from moving windows to gap-fill the data with and without incorporation of potential driver variables of the parameters traditionally used. Then, comparisons of the predicted values from these methods and 'traditional' gap-filling methods (using 12 fixed monthly windows) will be assessed to show the scale of preserving variance. Further, this method will be applied to impute artificially created gaps for analyzing if variance is preserved.

  6. Smoothing spline ANOVA frailty model for recurrent event data.

    PubMed

    Du, Pang; Jiang, Yihua; Wang, Yuedong

    2011-12-01

    Gap time hazard estimation is of particular interest in recurrent event data. This article proposes a fully nonparametric approach for estimating the gap time hazard. Smoothing spline analysis of variance (ANOVA) decompositions are used to model the log gap time hazard as a joint function of gap time and covariates, and general frailty is introduced to account for between-subject heterogeneity and within-subject correlation. We estimate the nonparametric gap time hazard function and parameters in the frailty distribution using a combination of the Newton-Raphson procedure, the stochastic approximation algorithm (SAA), and the Markov chain Monte Carlo (MCMC) method. The convergence of the algorithm is guaranteed by decreasing the step size of parameter update and/or increasing the MCMC sample size along iterations. Model selection procedure is also developed to identify negligible components in a functional ANOVA decomposition of the log gap time hazard. We evaluate the proposed methods with simulation studies and illustrate its use through the analysis of bladder tumor data. © 2011, The International Biometric Society.

  7. Quantifying the Contribution of Wind-Driven Linear Response to the Seasonal and Interannual Variability of Amoc Volume Transports Across 26.5ºN

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; von Storch, J. S.; Haak, H.; Nakayama, K.; Marotzke, J.

    2014-12-01

    Surface wind stress is considered to be an important forcing of the seasonal and interannual variability of Atlantic Meridional Overturning Circulation (AMOC) volume transports. A recent study showed that even linear response to wind forcing captures observed features of the mean seasonal cycle. However, the study did not assess the contribution of wind-driven linear response in realistic conditions against the RAPID/MOCHA array observation or Ocean General Circulation Model (OGCM) simulations, because it applied a linear two-layer model to the Atlantic assuming constant upper layer thickness and density difference across the interface. Here, we quantify the contribution of wind-driven linear response to the seasonal and interannual variability of AMOC transports by comparing wind-driven linear simulations under realistic continuous stratification against the RAPID observation and OCGM (MPI-OM) simulations with 0.4º resolution (TP04) and 0.1º resolution (STORM). All the linear and MPI-OM simulations capture more than 60% of the variance in the observed mean seasonal cycle of the Upper Mid-Ocean (UMO) and Florida Strait (FS) transports, two components of the upper branch of the AMOC. The linear and TP04 simulations also capture 25-40% of the variance in the observed transport time series between Apr 2004 and Oct 2012; the STORM simulation does not capture the observed variance because of the stochastic signal in both datasets. Comparison of half-overlapping 12-month-long segments reveals some periods when the linear and TP04 simulations capture 40-60% of the observed variance, as well as other periods when the simulations capture only 0-20% of the variance. These results show that wind-driven linear response is a major contributor to the seasonal and interannual variability of the UMO and FS transports, and that its contribution varies in an interannual timescale, probably due to the variability of stochastic processes.

  8. Modality-Driven Classification and Visualization of Ensemble Variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald

    Paper for the IEEE Visualization Conference Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space.

  9. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  10. Symmetry in cold-to-hot and hot-to-cold valuation gaps.

    PubMed

    Fisher, Geoffrey; Rangel, Antonio

    2014-01-01

    Individuals commonly mispredict their future preferences when they make decisions in a visceral state different from their anticipated state at consumption. In the research reported here, we asked subjects to bid on different foods while exogenously varying their hunger levels at the time of decision and at the time of consumption. This procedure allowed us to test whether cold-to-hot and hot-to-cold gaps are symmetric in size and driven by similar mechanisms. We found that the effect size was symmetric: Hungry subjects overbid 20¢ for a snack they would eat later when they were satiated, and satiated subjects underbid 19¢ for a snack they would eat later when they were hungry. Furthermore, we found evidence that these gaps were driven by symmetric mechanisms that operate on the evaluation of visceral features of food, such as taste, as opposed to more cognitive features, such as healthiness.

  11. Floquet spin states in graphene under ac-driven spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    López, A.; Sun, Z. Z.; Schliemann, J.

    2012-05-01

    We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4×4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.

  12. Time-periodic solutions of driven-damped trimer granular crystals

    DOE PAGES

    Charalampidis, E. G.; Li, F.; Chong, C.; ...

    2015-01-01

    In this work, we consider time-periodic structures of granular crystals consisting of alternate chrome steel (S) and tungsten carbide (W) spherical particles where each unit cell follows the pattern of a 2:1 trimer: S-W-S. The configuration at the left boundary is driven by a harmonic in-time actuation with given amplitude and frequency while the right one is a fixed wall. Similar to the case of a dimer chain, the combination of dissipation, driving of the boundary, and intrinsic nonlinearity leads to complex dynamics. For fixed driving frequencies in each of the spectral gaps, we find that the nonlinear surface modesmore » and the states dictated by the linear drive collide in a saddle-node bifurcation as the driving amplitude is increased, beyond which the dynamics of the system becomes chaotic. While the bifurcation structure is similar for solutions within the first and second gap, those in the first gap appear to be less robust. We also conduct a continuation in driving frequency, where it is apparent that the nonlinearity of the system results in a complex bifurcation diagram, involving an intricate set of loops of branches, especially within the spectral gap. The theoretical findings are qualitatively corroborated by the experimental full-field visualization of the time-periodic structures.« less

  13. Laser-driven atomic-probe-beam diagnostics

    NASA Astrophysics Data System (ADS)

    Knyazev, B. A.; Greenly, J. B.; Hammer, D. A.

    2000-12-01

    A new laser-driven atomic-probe-beam diagnostic (LAD) is proposed for local, time-resolved measurements of electric field and ion dynamics in the accelerating gap of intense ion beam diodes. LAD adds new features to previous Stark-shift diagnostics which have been progressively developed in several laboratories, from passive observation of Stark effect on ion species or fast (charge-exchanged) neutrals present naturally in diodes, to active Stark atomic spectroscopy (ASAS) in which selected probe atoms were injected into the gap and excited to suitable states by resonant laser radiation. The LAD scheme is a further enhancement of ASAS in which the probe atoms are also used as a local (laser-ionized) ion source at an instant of time. Analysis of the ion energy and angular distribution after leaving the gap enables measurement, at the chosen ionization location in the gap, of both electrostatic potential and the development of ion divergence. Calculations show that all of these quantities can be measured with sub-mm and ns resolution. Using lithium or sodium probe atoms, fields from 0.1 to 10 MV/cm can be measured.

  14. On the Formation of Multiple Concentric Rings and Gaps in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Zhu, Zhaohuan; Hartmann, Lee

    2017-12-01

    As spiral waves driven by a planet in a gaseous disk steepen into a shock, they deposit angular momentum, opening a gap in the disk. This has been well studied using both linear theory and numerical simulations, but so far only for the primary spiral arm: the one directly attached to the planet. Using 2D hydrodynamic simulations, we show that the secondary and tertiary arms driven by a planet can also open gaps as they steepen into shocks. The depths of the secondary/tertiary gaps in surface density grow with time in a low-viscosity disk (α =5× {10}-5), so even low-mass planets (e.g., super-Earth or mini-Neptune-mass) embedded in the disk can open multiple observable gaps, provided that sufficient time has passed. Applying our results to the HL Tau disk, we show that a single 30 Earth-mass planet embedded in the ring at 68.8 au (B5) can reasonably well reproduce the positions of the two major gaps at 13.2 and 32.3 au (D1 and D2), and roughly reproduce two other major gaps at 64.2 and 74.7 au (D5 and D6) seen in the mm continuum. The positions of secondary/tertiary gaps are found to be sensitive to the planetary mass and the disk temperature profile, so with accurate observational measurements of the temperature structure, the positions of multiple gaps can be used to constrain the mass of the planet. We also comment on the gaps seen in the TW Hya and HD 163296 disk.

  15. Climate-driven seasonal geocenter motion during the GRACE period

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyue; Sun, Yu

    2018-03-01

    Annual cycles in the geocenter motion time series are primarily driven by mass changes in the Earth's hydrologic system, which includes land hydrology, atmosphere, and oceans. Seasonal variations of the geocenter motion have been reliably determined according to Sun et al. (J Geophys Res Solid Earth 121(11):8352-8370, 2016) by combining the Gravity Recovery And Climate Experiment (GRACE) data with an ocean model output. In this study, we reconstructed the observed seasonal geocenter motion with geophysical model predictions of mass variations in the polar ice sheets, continental glaciers, terrestrial water storage (TWS), and atmosphere and dynamic ocean (AO). The reconstructed geocenter motion time series is shown to be in close agreement with the solution based on GRACE data supporting with an ocean bottom pressure model. Over 85% of the observed geocenter motion time series, variance can be explained by the reconstructed solution, which allows a further investigation of the driving mechanisms. We then demonstrated that AO component accounts for 54, 62, and 25% of the observed geocenter motion variances in the X, Y, and Z directions, respectively. The TWS component alone explains 42, 32, and 39% of the observed variances. The net mass changes over oceans together with self-attraction and loading effects also contribute significantly (about 30%) to the seasonal geocenter motion in the X and Z directions. Other contributing sources, on the other hand, have marginal (less than 10%) impact on the seasonal variations but introduce a linear trend in the time series.

  16. Accuracy of the adiabatic-impulse approximation for closed and open quantum systems

    NASA Astrophysics Data System (ADS)

    Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.

  17. Variance stabilization and normalization for one-color microarray data using a data-driven multiscale approach.

    PubMed

    Motakis, E S; Nason, G P; Fryzlewicz, P; Rutter, G A

    2006-10-15

    Many standard statistical techniques are effective on data that are normally distributed with constant variance. Microarray data typically violate these assumptions since they come from non-Gaussian distributions with a non-trivial mean-variance relationship. Several methods have been proposed that transform microarray data to stabilize variance and draw its distribution towards the Gaussian. Some methods, such as log or generalized log, rely on an underlying model for the data. Others, such as the spread-versus-level plot, do not. We propose an alternative data-driven multiscale approach, called the Data-Driven Haar-Fisz for microarrays (DDHFm) with replicates. DDHFm has the advantage of being 'distribution-free' in the sense that no parametric model for the underlying microarray data is required to be specified or estimated; hence, DDHFm can be applied very generally, not just to microarray data. DDHFm achieves very good variance stabilization of microarray data with replicates and produces transformed intensities that are approximately normally distributed. Simulation studies show that it performs better than other existing methods. Application of DDHFm to real one-color cDNA data validates these results. The R package of the Data-Driven Haar-Fisz transform (DDHFm) for microarrays is available in Bioconductor and CRAN.

  18. RESPONDENT-DRIVEN SAMPLING AS MARKOV CHAIN MONTE CARLO

    PubMed Central

    GOEL, SHARAD; SALGANIK, MATTHEW J.

    2013-01-01

    Respondent-driven sampling (RDS) is a recently introduced, and now widely used, technique for estimating disease prevalence in hidden populations. RDS data are collected through a snowball mechanism, in which current sample members recruit future sample members. In this paper we present respondent-driven sampling as Markov chain Monte Carlo (MCMC) importance sampling, and we examine the effects of community structure and the recruitment procedure on the variance of RDS estimates. Past work has assumed that the variance of RDS estimates is primarily affected by segregation between healthy and infected individuals. We examine an illustrative model to show that this is not necessarily the case, and that bottlenecks anywhere in the networks can substantially affect estimates. We also show that variance is inflated by a common design feature in which sample members are encouraged to recruit multiple future sample members. The paper concludes with suggestions for implementing and evaluating respondent-driven sampling studies. PMID:19572381

  19. Defining the Costs of Reusable Flexible Ureteroscope Reprocessing Using Time-Driven Activity-Based Costing.

    PubMed

    Isaacson, Dylan; Ahmad, Tessnim; Metzler, Ian; Tzou, David T; Taguchi, Kazumi; Usawachintachit, Manint; Zetumer, Samuel; Sherer, Benjamin; Stoller, Marshall; Chi, Thomas

    2017-10-01

    Careful decontamination and sterilization of reusable flexible ureteroscopes used in ureterorenoscopy cases prevent the spread of infectious pathogens to patients and technicians. However, inefficient reprocessing and unavailability of ureteroscopes sent out for repair can contribute to expensive operating room (OR) delays. Time-driven activity-based costing (TDABC) was applied to describe the time and costs involved in reprocessing. Direct observation and timing were performed for all steps in reprocessing of reusable flexible ureteroscopes following operative procedures. Estimated times needed for each step by which damaged ureteroscopes identified during reprocessing are sent for repair were characterized through interviews with purchasing analyst staff. Process maps were created for reprocessing and repair detailing individual step times and their variances. Cost data for labor and disposables used were applied to calculate per minute and average step costs. Ten ureteroscopes were followed through reprocessing. Process mapping for ureteroscope reprocessing averaged 229.0 ± 74.4 minutes, whereas sending a ureteroscope for repair required an estimated 143 minutes per repair. Most steps demonstrated low variance between timed observations. Ureteroscope drying was the longest and highest variance step at 126.5 ± 55.7 minutes and was highly dependent on manual air flushing through the ureteroscope working channel and ureteroscope positioning in the drying cabinet. Total costs for reprocessing totaled $96.13 per episode, including the cost of labor and disposable items. Utilizing TDABC delineates the full spectrum of costs associated with ureteroscope reprocessing and identifies areas for process improvement to drive value-based care. At our institution, ureteroscope drying was one clearly identified target area. Implementing training in ureteroscope drying technique could save up to 2 hours per reprocessing event, potentially preventing expensive OR delays.

  20. Damping-free collective oscillations of a driven two-component Bose gas in optical lattices

    NASA Astrophysics Data System (ADS)

    Shchedrin, Gavriil; Jaschke, Daniel; Carr, Lincoln D.

    2018-04-01

    We explore the quantum many-body physics of a driven Bose-Einstein condensate in optical lattices. The laser field induces a gap in the generalized Bogoliubov spectrum proportional to the effective Rabi frequency. The lowest-lying modes in a driven condensate are characterized by zero group velocity and nonzero current. Thus, the laser field induces roton modes, which carry interaction in a driven condensate. We show that collective excitations below the energy of the laser-induced gap remain undamped, while above the gap they are characterized by a significantly suppressed Landau damping rate.

  1. Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA.

    PubMed

    Chen, Zixuan; Peng, Yujiao; Cao, Yue; Wang, Hui; Zhang, Jian-Rong; Chen, Hong-Yuan; Zhu, Jun-Jie

    2018-06-13

    Here, we present a mapping tool based on individual light-driven nano-oscillators for label-free single-molecule monitoring of microRNA. This design uses microRNA as a single-molecule damper for nano-oscillators by forming a rigid dual-strand structure in the gap between nano-oscillators and the immobilized surface. The ultrasensitive detection is attributed to comparable dimensions of the gap and microRNA. A developed surface plasmon-coupled scattering imaging technology enables us to directly measure the real-time gap distance vibration of multiple nano-oscillators with high accuracy and fast dynamics. High-level and low-level states of the oscillation amplitude indicate melting and hybridization statuses of microRNA. Lifetimes of two states reveal that the hybridization rate of microRNA is determined by the three-dimensional diffusion. This imaging technique contributes application potentials in a single-molecule detection and nanomechanics study.

  2. Gaps in the Body of Knowledge of Systems Engineering

    DTIC Science & Technology

    2012-07-01

    practices, agile development, Kanban , risk management, and decision management. This focus is being driven by the need to reduce time for delivery of...to incorporate Kanban approaches to scheduling the SE activities based on value. Rapid Fielding. In this situation, there is a short time to

  3. Discrimination of shot-noise-driven Poisson processes by external dead time - Application of radioluminescence from glass

    NASA Technical Reports Server (NTRS)

    Saleh, B. E. A.; Tavolacci, J. T.; Teich, M. C.

    1981-01-01

    Ways in which dead time can be used to constructively enhance or diminish the effects of point processes that display bunching in the shot-noise-driven doubly stochastic Poisson point process (SNDP) are discussed. Interrelations between photocount bunching arising in the SNDP and the antibunching character arising from dead-time effects are investigated. It is demonstrated that the dead-time-modified count mean and variance for an arbitrary doubly stochastic Poisson point process can be obtained from the Laplace transform of the single-fold and joint-moment-generating functions for the driving rate process. The theory is in good agreement with experimental values for radioluminescence radiation in fused silica, quartz, and glass, and the process has many applications in pulse, particle, and photon detection.

  4. Network Structure and Biased Variance Estimation in Respondent Driven Sampling

    PubMed Central

    Verdery, Ashton M.; Mouw, Ted; Bauldry, Shawn; Mucha, Peter J.

    2015-01-01

    This paper explores bias in the estimation of sampling variance in Respondent Driven Sampling (RDS). Prior methodological work on RDS has focused on its problematic assumptions and the biases and inefficiencies of its estimators of the population mean. Nonetheless, researchers have given only slight attention to the topic of estimating sampling variance in RDS, despite the importance of variance estimation for the construction of confidence intervals and hypothesis tests. In this paper, we show that the estimators of RDS sampling variance rely on a critical assumption that the network is First Order Markov (FOM) with respect to the dependent variable of interest. We demonstrate, through intuitive examples, mathematical generalizations, and computational experiments that current RDS variance estimators will always underestimate the population sampling variance of RDS in empirical networks that do not conform to the FOM assumption. Analysis of 215 observed university and school networks from Facebook and Add Health indicates that the FOM assumption is violated in every empirical network we analyze, and that these violations lead to substantially biased RDS estimators of sampling variance. We propose and test two alternative variance estimators that show some promise for reducing biases, but which also illustrate the limits of estimating sampling variance with only partial information on the underlying population social network. PMID:26679927

  5. Methodological challenges in assessment of current use of warfarin among patients with atrial fibrillation using dispensation data from administrative health care databases.

    PubMed

    Sinyavskaya, Liliya; Matteau, Alexis; Johnson, Sarasa; Durand, Madeleine

    2018-06-05

    Algorithms to define current exposure to warfarin using administrative data may be imprecise. Study objectives were to characterize dispensation patterns, to measure gaps between expected and observed refill dates for warfarin and direct oral anticoagulants (DOACs). Retrospective cohort study using administrative health care databases of the Régie de l'assurance-maladie du Québec. We identified every dispensation of warfarin, dabigatran, rivaroxaban, or apixaban for patients with AF initiating oral anticoagulants between 2010 and 2015. For each dispensation, we extracted date and duration. Refill gaps were calculated as difference between expected and observed dates of successive dispensation. Refill gaps were summarized using descriptive statistics. To account for repeated observations nested within patients and to assess the components of variance of refill gaps, we used unconditional multilevel linear models. We identified 61 516 new users. Majority were prescribed warfarin (60.3%), followed by rivaroxaban (16.4%), dabigatran (14.5%), apixaban (8.8%). Most frequent recorded duration of dispensation was 7 days, suggesting use of pharmacist-prepared weekly pillboxes. The average refill gap from multilevel model was higher for warfarin (9.28 days, 95%CI:8.97-9.59) compared with DOACs (apixaban 3.08 days, 95%CI: 2.96-3.20, dabigatran 3.70, 95%CI: 3.56-3.84, rivaroxaban 3.15, 95%CI: 3.03-3.27). The variance of refill gaps was greater among warfarin users than among DOAC users. Greater refill gaps for warfarin may reflect inadequate capture of the period covered by the number of dispensed pills recorded in administrative data. A time-dependent definition of exposure using dispensation data would lead to greater misclassification of warfarin than DOACs use. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  7. A Gap Analysis Needs Assessment Tool to Drive a Care Delivery and Research Agenda for Integration of Care and Sharing of Best Practices Across a Health System.

    PubMed

    Golden, Sherita Hill; Hager, Daniel; Gould, Lois J; Mathioudakis, Nestoras; Pronovost, Peter J

    2017-01-01

    In a complex health system, it is important to establish a systematic and data-driven approach to identifying needs. The Diabetes Clinical Community (DCC) of Johns Hopkins Medicine's Armstrong Institute for Patient Safety and Quality developed a gap analysis tool and process to establish the system's current state of inpatient diabetes care. The collectively developed tool assessed the following areas: program infrastructure; protocols, policies, and order sets; patient and health care professional education; and automated data access. For the purposes of this analysis, gaps were defined as those instances in which local resources, infrastructure, or processes demonstrated a variance against the current national evidence base or institutionally defined best practices. Following the gap analysis, members of the DCC, in collaboration with health system leadership, met to identify priority areas in order to integrate and synergize diabetes care resources and efforts to enhance quality and reduce disparities in care across the system. Key gaps in care identified included lack of standardized glucose management policies, lack of standardized training of health care professionals in inpatient diabetes management, and lack of access to automated data collection and analysis. These results were used to gain resources to support collaborative diabetes health system initiatives and to successfully obtain federal research funding to develop and pilot a pragmatic diabetes educational intervention. At a health system level, the summary format of this gap analysis tool is an effective method to clearly identify disparities in care to focus efforts and resources to improve care delivery. Copyright © 2016 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  8. The impact of plasma dynamics on the self-magnetic-pinch diode impedance

    DOE PAGES

    Bennett, Nichelle; Crain, M. Dale; Droemer, Darryl W.; ...

    2015-03-20

    In this study, the self-magnetic-pinch diode is being developed as an intense electron beam source for pulsed-power-driven x-ray radiography. The basic operation of this diode has long been understood in the context of pinched diodes, including the dynamic effect that the diode impedance decreases during the pulse due to electrode plasma formation and expansion. Experiments being conducted at Sandia National Laboratories' RITS-6 accelerator are helping to characterize these plasmas using time-resolved and time-integrated camera systems in the x-ray and visible. These diagnostics are analyzed in conjunction with particle-in-cell simulations of anode plasma formation and evolution. The results confirm the long-standingmore » theory of critical-current operation with the addition of a time-dependent anode-cathode gap length. Finally, the results may suggest that anomalous impedance collapse is driven by increased plasma radial drift, leading to larger-than-average ion v r × B θ acceleration into the gap.« less

  9. Improved Hybrid Modeling of Spent Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bibber, Karl van

    This work developed a new computational method for improving the ability to calculate the neutron flux in deep-penetration radiation shielding problems that contain areas with strong streaming. The “gold standard” method for radiation transport is Monte Carlo (MC) as it samples the physics exactly and requires few approximations. Historically, however, MC was not useful for shielding problems because of the computational challenge of following particles through dense shields. Instead, deterministic methods, which are superior in term of computational effort for these problems types but are not as accurate, were used. Hybrid methods, which use deterministic solutions to improve MC calculationsmore » through a process called variance reduction, can make it tractable from a computational time and resource use perspective to use MC for deep-penetration shielding. Perhaps the most widespread and accessible of these methods are the Consistent Adjoint Driven Importance Sampling (CADIS) and Forward-Weighted CADIS (FW-CADIS) methods. For problems containing strong anisotropies, such as power plants with pipes through walls, spent fuel cask arrays, active interrogation, and locations with small air gaps or plates embedded in water or concrete, hybrid methods are still insufficiently accurate. In this work, a new method for generating variance reduction parameters for strongly anisotropic, deep penetration radiation shielding studies was developed. This method generates an alternate form of the adjoint scalar flux quantity, Φ Ω, which is used by both CADIS and FW-CADIS to generate variance reduction parameters for local and global response functions, respectively. The new method, called CADIS-Ω, was implemented in the Denovo/ADVANTG software. Results indicate that the flux generated by CADIS-Ω incorporates localized angular anisotropies in the flux more effectively than standard methods. CADIS-Ω outperformed CADIS in several test problems. This initial work indicates that CADIS- may be highly useful for shielding problems with strong angular anisotropies. This is a benefit to the public by increasing accuracy for lower computational effort for many problems that have energy, security, and economic importance.« less

  10. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2018-04-23

    Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling.

  11. Hydrogeophysical Assessment of Aquifer Uncertainty Using Simulated Annealing driven MRF-Based Stochastic Joint Inversion

    NASA Astrophysics Data System (ADS)

    Oware, E. K.

    2017-12-01

    Geophysical quantification of hydrogeological parameters typically involve limited noisy measurements coupled with inadequate understanding of the target phenomenon. Hence, a deterministic solution is unrealistic in light of the largely uncertain inputs. Stochastic imaging (SI), in contrast, provides multiple equiprobable realizations that enable probabilistic assessment of aquifer properties in a realistic manner. Generation of geologically realistic prior models is central to SI frameworks. Higher-order statistics for representing prior geological features in SI are, however, usually borrowed from training images (TIs), which may produce undesirable outcomes if the TIs are unpresentatitve of the target structures. The Markov random field (MRF)-based SI strategy provides a data-driven alternative to TI-based SI algorithms. In the MRF-based method, the simulation of spatial features is guided by Gibbs energy (GE) minimization. Local configurations with smaller GEs have higher likelihood of occurrence and vice versa. The parameters of the Gibbs distribution for computing the GE are estimated from the hydrogeophysical data, thereby enabling the generation of site-specific structures in the absence of reliable TIs. In Metropolis-like SI methods, the variance of the transition probability controls the jump-size. The procedure is a standard Markov chain Monte Carlo (McMC) method when a constant variance is assumed, and becomes simulated annealing (SA) when the variance (cooling temperature) is allowed to decrease gradually with time. We observe that in certain problems, the large variance typically employed at the beginning to hasten burn-in may be unideal for sampling at the equilibrium state. The powerfulness of SA stems from its flexibility to adaptively scale the variance at different stages of the sampling. Degeneration of results were reported in a previous implementation of the MRF-based SI strategy based on a constant variance. Here, we present an updated version of the algorithm based on SA that appears to resolve the degeneration problem with seemingly improved results. We illustrate the performance of the SA version with a joint inversion of time-lapse concentration and electrical resistivity measurements in a hypothetical trinary hydrofacies aquifer characterization problem.

  12. On a two-phase Hele-Shaw problem with a time-dependent gap and distributions of sinks and sources

    NASA Astrophysics Data System (ADS)

    Savina, Tatiana; Akinyemi, Lanre; Savin, Avital

    2018-01-01

    A two-phase Hele-Shaw problem with a time-dependent gap describes the evolution of the interface, which separates two fluids sandwiched between two plates. The fluids have different viscosities. In addition to the change in the gap width of the Hele-Shaw cell, the interface is driven by the presence of some special distributions of sinks and sources located in both the interior and exterior domains. The effect of surface tension is neglected. Using the Schwarz function approach, we give examples of exact solutions when the interface belongs to a certain family of algebraic curves and the curves do not form cusps. The family of curves are defined by the initial shape of the free boundary.

  13. Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs

    NASA Astrophysics Data System (ADS)

    Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd

    2018-05-01

    We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.

  14. Computational and Theoretical Investigations of Strongly Correlated Fermions in Optical Lattices

    DTIC Science & Technology

    2013-08-29

    and two-particle spectral functions across the disorder - driven superconductor - insulator transition". 22. Invited speaker, \\Fermions in Optical...energy gaps across the disorder - driven superconductor - insulator transition", October 7, 2010, Harvard. 27. Seminar on \\Probing Quantum Phases of...Perimeter Institute, November 14, 2011. 37. Seminar on \\Single and two-particle energy gaps across the disorder - driven superconductor - insulator transition

  15. Decomposing the Household Food Insecurity Gap for Children of U.S.-Born and Foreign-Born Hispanics: Evidence from 1998 to 2011.

    PubMed

    Arteaga, Irma; Potochnick, Stephanie; Parsons, Sarah

    2017-10-01

    Using the Early Childhood Longitudinal Study-K, multivariate analysis, state fixed effects, and regression decomposition, we examine changes in food insecurity for Hispanic kindergarteners between 1998 and 2011, a time period of rapid immigration and political/socio-economic changes. During this time the household food insecurity gap between children of U.S.-born and foreign-born mothers increased by almost 7 percentage points. The factors-child, family, and state-that contributed to the nativity gap differed over time. In both periods, lower familial resources among immigrant families, i.e. endowment effects, contributed to the gap; this was the main component of the gap in 2011 but only one component in 1998. In 1998, heterogeneity in state effects was positively associated with the nativity food insecurity gap. This means that children of foreign-born mothers experience higher household food insecurity than do children of U.S.-born mothers in the same state, even after controlling for child and family characteristics. In 2011, almost half of the gap remained unexplained. This unexplained portion could be driven by differential effects of the Great Recession, growing anti-immigrant sentiment, and/or the relatively large share of unauthorized immigrants in 2011.

  16. Marital status, spousal coverage, and the gender gap in employer-sponsored health insurance.

    PubMed

    Buchmueller, T C

    Not only do men who work full time earn more than women, but they are more likely to receive employer-sponsored health benefits. This paper provides evidence on the gender gap in employer-sponsored health insurance. The results indicate that the gap is driven largely by the tendency of married women to decline employer-sponsored insurance in favor of being covered through their husbands. Indeed, among single workers, women are more likely than men to be offered insurance. These findings call into question the conclusion made by previous researchers that employers discriminate against women in the provision of health insurance.

  17. Deterministic Squeezed States with Collective Measurements and Feedback.

    PubMed

    Cox, Kevin C; Greve, Graham P; Weiner, Joshua M; Thompson, James K

    2016-03-04

    We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N=5×10^{4} laser-cooled ^{87}Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms-comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N=4×10^{5}  atoms. This is one of the largest reported entanglement enhancements to date in any system.

  18. The evolution of multiagency partnerships for safety over the course of research engagement: experiences from the NoGAPS project

    PubMed Central

    Donaldson, Alex; Gabbe, Belinda J; Muhammad, Akram; Shee, Anna Wong; Lloyd, David G; Cook, Jill

    2016-01-01

    Objective Implementation of effective population-level injury prevention interventions requires broad multiagency partnerships. Different stakeholders address this from varying perspectives, and potential conflicts in priorities need to be addressed for such partnerships to be effective. The researcher-led National Guidance for Australian football Partnerships and Safety (NoGAPS) project involved the engagement and participation of seven non-academic partners, including government health promotion and safety agencies; peak sports professional and advocacy bodies and health insurance organisations. Design The partnership's ongoing development was assessed by each partner completing the Victorian Health Promotion Foundation Partnership Analysis Tool (VPAT) annually over 2011–2015. Changes in VPAT scores were compared through repeated measures analysis of variance. Results Overall, mean total VPAT scores increased significantly over the 5-year period (125.1–141.2; F5,30=4.61, p=0.003), showing a significant improvement in how the partnership was functioning over time. This was largely driven by significant increases in several VPAT domains: ‘determining the need for a partnership’ (F5,30=4.15, p=0.006), ‘making sure the partnership works’ (F5,30=2.59, p=0.046), ‘planning collaborative action’ (F5,30=5.13, p=0.002) and ‘minimising the barriers to the partnership’ (F5,30=6.66, p<0.001). Conclusion This is the first study to assess the functioning of a multiagency partnership to address sport injury prevention implementation. For NoGAPS, the engagement of stakeholders from the outset facilitated the development of new and/or stronger links between non-academic partners. Partners shared the common goal of ensuring the real-world uptake of interventions and research evidence-informed recommendations. Effective multiagency partnerships have the potential to influence the implementation of policies and practices beyond the life of a research project. PMID:27016461

  19. Operational Consequences of Literacy Gap.

    DTIC Science & Technology

    1980-05-01

    Comprehension Scores on the Safety and Sanitation Content 37 11. Statistics on Experimental Groups’ Performance by Sex and Content 37 12. Analysis of...Variance of Experimental Groups by Sex and Content 38 13. Mean Comprehension Scores Broken Down by Content, Subject RGL and Reading Time 39 14. Analysis...ratings along a scale of difficulty which parallels the school grade scale. Burkett (1975) and Klare (1963; 1974-1975) provide summaries of the extensive

  20. Sojourning with the Homogeneous Poisson Process.

    PubMed

    Liu, Piaomu; Peña, Edsel A

    2016-01-01

    In this pedagogical article, distributional properties, some surprising, pertaining to the homogeneous Poisson process (HPP), when observed over a possibly random window, are presented. Properties of the gap-time that covered the termination time and the correlations among gap-times of the observed events are obtained. Inference procedures, such as estimation and model validation, based on event occurrence data over the observation window, are also presented. We envision that through the results in this paper, a better appreciation of the subtleties involved in the modeling and analysis of recurrent events data will ensue, since the HPP is arguably one of the simplest among recurrent event models. In addition, the use of the theorem of total probability, Bayes theorem, the iterated rules of expectation, variance and covariance, and the renewal equation could be illustrative when teaching distribution theory, mathematical statistics, and stochastic processes at both the undergraduate and graduate levels. This article is targeted towards both instructors and students.

  1. Modality-Driven Classification and Visualization of Ensemble Variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald

    Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no informationmore » about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. We apply a similar method to time-varying ensembles to illustrate the relationship between peak variance and bimodal or multimodal behavior. These classification schemes enable a deeper understanding of the behavior of the ensemble members by distinguishing between distributions that can be described by a single tendency and distributions which reflect divergent trends in the ensemble.« less

  2. Influence of Iatrogenic Gaps, Cement Type, and Time on Microleakage of Cast Posts Using Spectrophotometer and Glucose Filtration Measurements.

    PubMed

    Al-Madi, Ebtissam M; Al-Saleh, Samar A; Al-Khudairy, Reem I; Aba-Hussein, Taibah W

    2018-04-06

    To determine the influence of iatrogenic gaps, type of cement, and time on microleakage of cast posts using spectrophotometer and glucose filtration measurements. Forty-eight single-rooted teeth were divided into eight groups of six teeth each. Teeth were instrumented and obturated, and a cast post was fabricated. In addition to two control groups (positive and negative), a total of six groups were prepared: In four groups, an artificial 2- to 3-mm gap was created between post and residual gutta percha (GP), and two groups were prepared with intimate contact between post and residual GP. Posts were cemented with either zinc phosphate cement or resin cement. Leakage through the post after 1, 8, 14, and 20 days was measured using a glucose penetration model with two different reading methods. Mixed analysis of variance tests were performed to analyze the data. The presence of a gap between the apical end of the post and the most coronal portion of the GP remaining in the root canal after post space preparation increased microleakage significantly. However, microleakage was significantly less when the gap was refilled with GP compared to no gap. There was no difference in leakage between luting cements used. It was concluded that none of the cements were able to prevent microleakage. However, the addition of GP to residual GP did increase the sealing ability.

  3. Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations

    PubMed Central

    2011-01-01

    Background Previous one-dimensional network modeling of the cerebellar granular layer has been successfully linked with a range of cerebellar cortex oscillations observed in vivo. However, the recent discovery of gap junctions between Golgi cells (GoCs), which may cause oscillations by themselves, has raised the question of how gap-junction coupling affects GoC and granular-layer oscillations. To investigate this question, we developed a novel two-dimensional computational model of the GoC-granule cell (GC) circuit with and without gap junctions between GoCs. Results Isolated GoCs coupled by gap junctions had a strong tendency to generate spontaneous oscillations without affecting their mean firing frequencies in response to distributed mossy fiber input. Conversely, when GoCs were synaptically connected in the granular layer, gap junctions increased the power of the oscillations, but the oscillations were primarily driven by the synaptic feedback loop between GoCs and GCs, and the gap junctions did not change oscillation frequency or the mean firing rate of either GoCs or GCs. Conclusion Our modeling results suggest that gap junctions between GoCs increase the robustness of cerebellar cortex oscillations that are primarily driven by the feedback loop between GoCs and GCs. The robustness effect of gap junctions on synaptically driven oscillations observed in our model may be a general mechanism, also present in other regions of the brain. PMID:22330240

  4. Topological gaps without masses in driven graphene-like systems

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio

    2014-03-01

    We illustrate the possibility of realizing band gaps in graphene-like systems that fall outside the existing classification of gapped Dirac Hamiltonians in terms of masses. As our primary example we consider a band gap arising due to time-dependent distortions of the honeycomb lattice. By means of an exact, invertible, and transport-preserving mapping to a time-independent Hamiltonian, we show that the system exhibits Chern-insulating phases with quantized Hall conductivities +/-e2 / h . The chirality of the corresponding gapless edge modes is controllable by both the frequency of the driving and the manner in which sublattice symmetry is broken by the dynamical lattice modulations. We demonstrate that, while these phases are in the same topological sector as the Haldane model, they are nevertheless separated from the latter by a gap-closing transition unless an extra parameter is added to the Hamiltonian. Finally, we discuss a promising possible realization of this physics in photonic lattices. This work is supported in part by DOE Grant DEF-06ER46316 (T.I. and C.C.).

  5. 3D Photonic Crystals Build Up By Self-Organization Of Nanospheres

    DTIC Science & Technology

    2006-05-23

    variance for simple tetragonal Vst , of which general form is defined in Equation (5), could be an important parameter affecting band structure, and it is...plotted along with gap size both as a function of lattice parameter ratio c/a in Figure 2. Apparently, the inverse of variance, i.e. 1/ Vst , shows a...possible. 0.8 1.0 1.2 1.4 1.6 1.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 gap size (%) 1/ Vst c/a of simple tetragonal g ap s iz e (% ) 0.85 0.86

  6. Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression

    PubMed Central

    Verd, Berta; Crombach, Anton

    2017-01-01

    Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory processes in development. PMID:28158178

  7. Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression.

    PubMed

    Verd, Berta; Crombach, Anton; Jaeger, Johannes

    2017-02-01

    Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory processes in development.

  8. Modelling heterogeneity variances in multiple treatment comparison meta-analysis--are informative priors the better solution?

    PubMed

    Thorlund, Kristian; Thabane, Lehana; Mills, Edward J

    2013-01-11

    Multiple treatment comparison (MTC) meta-analyses are commonly modeled in a Bayesian framework, and weakly informative priors are typically preferred to mirror familiar data driven frequentist approaches. Random-effects MTCs have commonly modeled heterogeneity under the assumption that the between-trial variance for all involved treatment comparisons are equal (i.e., the 'common variance' assumption). This approach 'borrows strength' for heterogeneity estimation across treatment comparisons, and thus, ads valuable precision when data is sparse. The homogeneous variance assumption, however, is unrealistic and can severely bias variance estimates. Consequently 95% credible intervals may not retain nominal coverage, and treatment rank probabilities may become distorted. Relaxing the homogeneous variance assumption may be equally problematic due to reduced precision. To regain good precision, moderately informative variance priors or additional mathematical assumptions may be necessary. In this paper we describe four novel approaches to modeling heterogeneity variance - two novel model structures, and two approaches for use of moderately informative variance priors. We examine the relative performance of all approaches in two illustrative MTC data sets. We particularly compare between-study heterogeneity estimates and model fits, treatment effect estimates and 95% credible intervals, and treatment rank probabilities. In both data sets, use of moderately informative variance priors constructed from the pair wise meta-analysis data yielded the best model fit and narrower credible intervals. Imposing consistency equations on variance estimates, assuming variances to be exchangeable, or using empirically informed variance priors also yielded good model fits and narrow credible intervals. The homogeneous variance model yielded high precision at all times, but overall inadequate estimates of between-trial variances. Lastly, treatment rankings were similar among the novel approaches, but considerably different when compared with the homogenous variance approach. MTC models using a homogenous variance structure appear to perform sub-optimally when between-trial variances vary between comparisons. Using informative variance priors, assuming exchangeability or imposing consistency between heterogeneity variances can all ensure sufficiently reliable and realistic heterogeneity estimation, and thus more reliable MTC inferences. All four approaches should be viable candidates for replacing or supplementing the conventional homogeneous variance MTC model, which is currently the most widely used in practice.

  9. Resonant activation in a colored multiplicative thermal noise driven closed system.

    PubMed

    Ray, Somrita; Mondal, Debasish; Bag, Bidhan Chandra

    2014-05-28

    In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.

  10. System-level power optimization for real-time distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Luo, Jiong

    Power optimization is one of the crucial design considerations for modern electronic systems. In this thesis, we present several system-level power optimization techniques for real-time distributed embedded systems, based on dynamic voltage scaling, dynamic power management, and management of peak power and variance of the power profile. Dynamic voltage scaling has been widely acknowledged as an important and powerful technique to trade off dynamic power consumption and delay. Efficient dynamic voltage scaling requires effective variable-voltage scheduling mechanisms that can adjust voltages and clock frequencies adaptively based on workloads and timing constraints. For this purpose, we propose static variable-voltage scheduling algorithms utilizing criticalpath driven timing analysis for the case when tasks are assumed to have uniform switching activities, as well as energy-gradient driven slack allocation for a more general scenario. The proposed techniques can achieve closeto-optimal power savings with very low computational complexity, without violating any real-time constraints. We also present algorithms for power-efficient joint scheduling of multi-rate periodic task graphs along with soft aperiodic tasks. The power issue is addressed through both dynamic voltage scaling and power management. Periodic task graphs are scheduled statically. Flexibility is introduced into the static schedule to allow the on-line scheduler to make local changes to PE schedules through resource reclaiming and slack stealing, without interfering with the validity of the global schedule. We provide a unified framework in which the response times of aperiodic tasks and power consumption are dynamically optimized simultaneously. Interconnection network fabrics point to a new generation of power-efficient and scalable interconnection architectures for distributed embedded systems. As the system bandwidth continues to increase, interconnection networks become power/energy limited as well. Variable-frequency links have been designed by circuit designers for both parallel and serial links, which can adaptively regulate the supply voltage of transceivers to a desired link frequency, to exploit the variations in bandwidth requirement for power savings. We propose solutions for simultaneous dynamic voltage scaling of processors and links. The proposed solution considers real-time scheduling, flow control, and packet routing jointly. It can trade off the power consumption on processors and communication links via efficient slack allocation, and lead to more power savings than dynamic voltage scaling on processors alone. For battery-operated systems, the battery lifespan is an important concern. Due to the effects of discharge rate and battery recovery, the discharge pattern of batteries has an impact on the battery lifespan. Battery models indicate that even under the same average power consumption, reducing peak power current and variance in the power profile can increase the battery efficiency and thereby prolong battery lifetime. To take advantage of these effects, we propose battery-driven scheduling techniques for embedded applications, to reduce the peak power and the variance in the power profile of the overall system under real-time constraints. The proposed scheduling algorithms are also beneficial in addressing reliability and signal integrity concerns by effectively controlling peak power and variance of the power profile.

  11. Variance in Math Achievement Attributable to Visual Cognitive Constructs

    ERIC Educational Resources Information Center

    Oehlert, Jeremy J.

    2012-01-01

    Previous research has reported positive correlations between math achievement and the cognitive constructs of spatial visualization, working memory, and general intelligence; however, no single study has assessed variance in math achievement attributable to all three constructs, examined in combination. The current study fills this gap in the…

  12. Swiss and Dutch "consumer-driven health care": ideal model or reality?

    PubMed

    Okma, Kieke G H; Crivelli, Luca

    2013-02-01

    This article addresses three topics. First, it reports on the international interest in the health care reforms of Switzerland and The Netherlands in the 1990s and early 2000s that operate under the label "managed competition" or "consumer-driven health care." Second, the article reviews the behavior assumptions that make plausible the case for the model of "managed competition." Third, it analyze the actual reform experience of Switzerland and Holland to assess to what extent they confirm the validity of those assumptions. The article concludes that there is a triple gap in understanding of those topics: a gap between the theoretical model of managed competition and the reforms as implemented in both Switzerland and The Netherlands; second, a gap between the expectations of policy-makers and the results of the reforms, and third, a gap between reform outcomes and the observations of external commentators that have embraced the reforms as the ultimate success of "consumer-driven health care." The article concludes with a discussion of the implications of this "triple gap". Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Irreducible Uncertainty in Terrestrial Carbon Projections

    NASA Astrophysics Data System (ADS)

    Lovenduski, N. S.; Bonan, G. B.

    2016-12-01

    We quantify and isolate the sources of uncertainty in projections of carbon accumulation by the ocean and terrestrial biosphere over 2006-2100 using output from Earth System Models participating in the 5th Coupled Model Intercomparison Project. We consider three independent sources of uncertainty in our analysis of variance: (1) internal variability, driven by random, internal variations in the climate system, (2) emission scenario, driven by uncertainty in future radiative forcing, and (3) model structure, wherein different models produce different projections given the same emission scenario. Whereas uncertainty in projections of ocean carbon accumulation by 2100 is 100 Pg C and driven primarily by emission scenario, uncertainty in projections of terrestrial carbon accumulation by 2100 is 50% larger than that of the ocean, and driven primarily by model structure. This structural uncertainty is correlated with emission scenario: the variance associated with model structure is an order of magnitude larger under a business-as-usual scenario (RCP8.5) than a mitigation scenario (RCP2.6). In an effort to reduce this structural uncertainty, we apply various model weighting schemes to our analysis of variance in terrestrial carbon accumulation projections. The largest reductions in uncertainty are achieved when giving all the weight to a single model; here the uncertainty is of a similar magnitude to the ocean projections. Such an analysis suggests that this structural uncertainty is irreducible given current terrestrial model development efforts.

  14. Big Data Challenges of High-Dimensional Continuous-Time Mean-Variance Portfolio Selection and a Remedy.

    PubMed

    Chiu, Mei Choi; Pun, Chi Seng; Wong, Hoi Ying

    2017-08-01

    Investors interested in the global financial market must analyze financial securities internationally. Making an optimal global investment decision involves processing a huge amount of data for a high-dimensional portfolio. This article investigates the big data challenges of two mean-variance optimal portfolios: continuous-time precommitment and constant-rebalancing strategies. We show that both optimized portfolios implemented with the traditional sample estimates converge to the worst performing portfolio when the portfolio size becomes large. The crux of the problem is the estimation error accumulated from the huge dimension of stock data. We then propose a linear programming optimal (LPO) portfolio framework, which applies a constrained ℓ 1 minimization to the theoretical optimal control to mitigate the risk associated with the dimensionality issue. The resulting portfolio becomes a sparse portfolio that selects stocks with a data-driven procedure and hence offers a stable mean-variance portfolio in practice. When the number of observations becomes large, the LPO portfolio converges to the oracle optimal portfolio, which is free of estimation error, even though the number of stocks grows faster than the number of observations. Our numerical and empirical studies demonstrate the superiority of the proposed approach. © 2017 Society for Risk Analysis.

  15. Controlling Viscous Fingering Using Time-Dependent Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  16. Controlling Viscous Fingering Using Time-Dependent Strategies

    DOE PAGES

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    2015-10-20

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  17. Dynamic and Regression Modeling of Ocean Variability in the Tide-Gauge Record at Seasonal and Longer Periods

    NASA Technical Reports Server (NTRS)

    Hill, Emma M.; Ponte, Rui M.; Davis, James L.

    2007-01-01

    Comparison of monthly mean tide-gauge time series to corresponding model time series based on a static inverted barometer (IB) for pressure-driven fluctuations and a ocean general circulation model (OM) reveals that the combined model successfully reproduces seasonal and interannual changes in relative sea level at many stations. Removal of the OM and IB from the tide-gauge record produces residual time series with a mean global variance reduction of 53%. The OM is mis-scaled for certain regions, and 68% of the residual time series contain a significant seasonal variability after removal of the OM and IB from the tide-gauge data. Including OM admittance parameters and seasonal coefficients in a regression model for each station, with IB also removed, produces residual time series with mean global variance reduction of 71%. Examination of the regional improvement in variance caused by scaling the OM, including seasonal terms, or both, indicates weakness in the model at predicting sea-level variation for constricted ocean regions. The model is particularly effective at reproducing sea-level variation for stations in North America, Europe, and Japan. The RMS residual for many stations in these areas is 25-35 mm. The production of "cleaner" tide-gauge time series, with oceanographic variability removed, is important for future analysis of nonsecular and regionally differing sea-level variations. Understanding the ocean model's strengths and weaknesses will allow for future improvements of the model.

  18. Respondent-driven sampling as Markov chain Monte Carlo.

    PubMed

    Goel, Sharad; Salganik, Matthew J

    2009-07-30

    Respondent-driven sampling (RDS) is a recently introduced, and now widely used, technique for estimating disease prevalence in hidden populations. RDS data are collected through a snowball mechanism, in which current sample members recruit future sample members. In this paper we present RDS as Markov chain Monte Carlo importance sampling, and we examine the effects of community structure and the recruitment procedure on the variance of RDS estimates. Past work has assumed that the variance of RDS estimates is primarily affected by segregation between healthy and infected individuals. We examine an illustrative model to show that this is not necessarily the case, and that bottlenecks anywhere in the networks can substantially affect estimates. We also show that variance is inflated by a common design feature in which the sample members are encouraged to recruit multiple future sample members. The paper concludes with suggestions for implementing and evaluating RDS studies.

  19. Robust evaluation of time series classification algorithms for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.

    2014-03-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.

  20. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  1. Method and apparatus for controlling electrode gap during vacuum consumable arc remelting

    DOEpatents

    Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  2. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  3. The Impact of Environment on the Stellar Mass–Halo Mass Relation

    NASA Astrophysics Data System (ADS)

    Golden-Marx, Jesse B.; Miller, Christopher J.

    2018-06-01

    A large variance exists in the amplitude of the stellar mass–halo mass (SMHM) relation for group- and cluster-size halos. Using a sample of 254 clusters, we show that the magnitude gap between the brightest central galaxy (BCG) and its second or fourth brightest neighbor accounts for a significant portion of this variance. We find that at fixed halo mass, galaxy clusters with a larger magnitude gap have a higher BCG stellar mass. This relationship is also observed in semi-analytic representations of low-redshift galaxy clusters in simulations. This SMHM–magnitude gap stratification likely results from BCG growth via hierarchical mergers and may link the assembly of the halo with the growth of the BCG. Using a Bayesian model, we quantify the importance of the magnitude gap in the SMHM relation using a multiplicative stretch factor, which we find to be significantly non-zero. The inclusion of the magnitude gap in the SMHM relation results in a large reduction in the inferred intrinsic scatter in the BCG stellar mass at fixed halo mass. We discuss the ramifications of this result in the context of galaxy formation models of centrals in group- and cluster-size halos.

  4. Reinforcement Learning and Savings Behavior.

    PubMed

    Choi, James J; Laibson, David; Madrian, Brigitte C; Metrick, Andrew

    2009-12-01

    We show that individual investors over-extrapolate from their personal experience when making savings decisions. Investors who experience particularly rewarding outcomes from saving in their 401(k)-a high average and/or low variance return-increase their 401(k) savings rate more than investors who have less rewarding experiences with saving. This finding is not driven by aggregate time-series shocks, income effects, rational learning about investing skill, investor fixed effects, or time-varying investor-level heterogeneity that is correlated with portfolio allocations to stock, bond, and cash asset classes. We discuss implications for the equity premium puzzle and interventions aimed at improving household financial outcomes.

  5. Modelling heterogeneity variances in multiple treatment comparison meta-analysis – Are informative priors the better solution?

    PubMed Central

    2013-01-01

    Background Multiple treatment comparison (MTC) meta-analyses are commonly modeled in a Bayesian framework, and weakly informative priors are typically preferred to mirror familiar data driven frequentist approaches. Random-effects MTCs have commonly modeled heterogeneity under the assumption that the between-trial variance for all involved treatment comparisons are equal (i.e., the ‘common variance’ assumption). This approach ‘borrows strength’ for heterogeneity estimation across treatment comparisons, and thus, ads valuable precision when data is sparse. The homogeneous variance assumption, however, is unrealistic and can severely bias variance estimates. Consequently 95% credible intervals may not retain nominal coverage, and treatment rank probabilities may become distorted. Relaxing the homogeneous variance assumption may be equally problematic due to reduced precision. To regain good precision, moderately informative variance priors or additional mathematical assumptions may be necessary. Methods In this paper we describe four novel approaches to modeling heterogeneity variance - two novel model structures, and two approaches for use of moderately informative variance priors. We examine the relative performance of all approaches in two illustrative MTC data sets. We particularly compare between-study heterogeneity estimates and model fits, treatment effect estimates and 95% credible intervals, and treatment rank probabilities. Results In both data sets, use of moderately informative variance priors constructed from the pair wise meta-analysis data yielded the best model fit and narrower credible intervals. Imposing consistency equations on variance estimates, assuming variances to be exchangeable, or using empirically informed variance priors also yielded good model fits and narrow credible intervals. The homogeneous variance model yielded high precision at all times, but overall inadequate estimates of between-trial variances. Lastly, treatment rankings were similar among the novel approaches, but considerably different when compared with the homogenous variance approach. Conclusions MTC models using a homogenous variance structure appear to perform sub-optimally when between-trial variances vary between comparisons. Using informative variance priors, assuming exchangeability or imposing consistency between heterogeneity variances can all ensure sufficiently reliable and realistic heterogeneity estimation, and thus more reliable MTC inferences. All four approaches should be viable candidates for replacing or supplementing the conventional homogeneous variance MTC model, which is currently the most widely used in practice. PMID:23311298

  6. Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-06-01

    Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.

  7. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.

    PubMed

    Dutta, Debashis

    2015-07-24

    The present work analyzes the electrodynamic dispersion of sample streams in a free-flow zone electrophoresis (FFZE) chamber resulting due to partial or complete blockage of electroosmotic flow (EOF) across the channel width by the sidewalls of the conduit. This blockage of EOF has been assumed to generate a pressure-driven backflow in the transverse direction for maintaining flow balance in the system. A parallel-plate based FFZE device with the analyte stream located far away from the channel side regions has been considered to simplify the current analysis. Applying a method-of-moments formulation, an analytic expression was derived for the variance of the sample zone at steady state as a function of its position in the separation chamber under these conditions. It has been shown that the increase in stream broadening due to the electrodynamic dispersion phenomenon is additive to the contributions from molecular diffusion and sample injection, and simply modifies the coefficient for the hydrodynamic dispersion term for a fixed lateral migration distance of the sample stream. Moreover, this dispersion mechanism can dominate the overall spatial variance of analyte zones when a significant fraction of the EOF is blocked by the channel sidewalls. The analysis also shows that analyte streams do not undergo any hydrodynamic broadening due to unwanted pressure-driven cross-flows in an FFZE chamber in the absence of a transverse electric field. The noted results have been validated using Monte Carlo simulations which further demonstrate that while the sample concentration profile at the channel outlet approaches a Gaussian distribution only in FFZE chambers substantially longer than the product of the axial pressure-driven velocity and the characteristic diffusion time in the system, the spatial variance of the exiting analyte stream is well described by the Taylor-Aris dispersion limit even in analysis ducts much shorter than this length scale. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. From Spelling Pronunciation to Lexical Access: A Second Step in Word Decoding?

    ERIC Educational Resources Information Center

    Elbro, Carsten; de Jong, Peter F.; Houter, Daphne; Nielsen, Anne-Mette

    2012-01-01

    There is a gap between "w..aa..sss" and "woz" ("was"). This is a gap between the output from a phonological recoding of a word and its lexical pronunciation. We suggest that ease of recognition of words from spelling pronunciations (like "w..aa..sss") contributes independent variance to word decoding ability…

  9. Climate driven changes to rainfall and streamflow patterns in a model tropical island hydrological system

    Treesearch

    Ayron M. Strauch; Richard A. MacKenzie; Christian P. Giardina; Gregory L. Bruland

    2015-01-01

    Rising atmospheric CO2 and resulting warming are expected to impact freshwater resources in the tropics, but few studies have documented how natural stream flow regimes in tropical watersheds will respond to changing rainfall patterns. To address this data gap, we utilized a space-for-time substitution across a naturally occurring and highly...

  10. Race and Stratification in College Enrollment over Time. CEPA Working Paper No. 16-14

    ERIC Educational Resources Information Center

    Baker, Rachel; Klasik, Daniel; Reardon, Sean F.

    2016-01-01

    In this study we examine trends in segregation by race and ethnicity in higher education from 1985 to 2013. We have three key findings. Over the past 30 years, students from different groups have attended college at increasingly similar rates; gaps are decreasing. But these decreases have been driven largely by large increases in minority student…

  11. Variability of the Denmark Strait overflow: Moored time series from 1996-2011

    NASA Astrophysics Data System (ADS)

    Jochumsen, Kerstin; Quadfasel, Detlef; Valdimarsson, Heã°Inn; Jónsson, SteingríMur

    2012-12-01

    The Denmark Strait overflow provides about half of the total dense water overflow from the Nordic Seas into the North Atlantic Ocean. The velocity of the overflow has been monitored in the Strait with two moored Acoustic Doppler Current Profilers since 1996 with several interruptions due to mooring losses or instrument failure. So far, overflow transports were only calculated when data from both moorings were available. In this work, we introduce a linear model to fill gaps in the time series when data from only one instrument is available. The mean overflow transport is 3.4 Sv and exhibits a variance of 2.0 Sv2. No significant trend was detected in the time series. The highest variability in the transport is associated with the passage of mesoscale eddies with time scales of 2-10 days (associated with a variance of 1.5 Sv2). Seasonal variability is weak and explains less than 5% of the variance in all time series, which is in contrast to the strong seasonal cycle found in high resolution model simulations. Interannual variability is on the order of 10% of the mean. A relation to atmospheric forcing such as the local wind stress curl, as well as to larger scale phenomena, e.g. the North Atlantic Oscillation, is not detected. Since 2005 data from moored temperature, conductivity and pressure recorders have been available as well, monitoring the hydrographic variability at the bottom of Denmark Strait. In recent years the temperature time series of the Denmark Strait overflow revealed a cooling, while the salinity stayed nearly constant.

  12. Variance-reduced simulation of lattice discrete-time Markov chains with applications in reaction networks

    NASA Astrophysics Data System (ADS)

    Maginnis, P. A.; West, M.; Dullerud, G. E.

    2016-10-01

    We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.

  13. Velocity storage contribution to vestibular self-motion perception in healthy human subjects.

    PubMed

    Bertolini, G; Ramat, S; Laurens, J; Bockisch, C J; Marti, S; Straumann, D; Palla, A

    2011-01-01

    Self-motion perception after a sudden stop from a sustained rotation in darkness lasts approximately as long as reflexive eye movements. We hypothesized that, after an angular velocity step, self-motion perception and reflexive eye movements are driven by the same vestibular pathways. In 16 healthy subjects (25-71 years of age), perceived rotational velocity (PRV) and the vestibulo-ocular reflex (rVOR) after sudden decelerations (90°/s(2)) from constant-velocity (90°/s) earth-vertical axis rotations were simultaneously measured (PRV reported by hand-lever turning; rVOR recorded by search coils). Subjects were upright (yaw) or 90° left-ear-down (pitch). After both yaw and pitch decelerations, PRV rose rapidly and showed a plateau before decaying. In contrast, slow-phase eye velocity (SPV) decayed immediately after the initial increase. SPV and PRV were fitted with the sum of two exponentials: one time constant accounting for the semicircular canal (SCC) dynamics and one time constant accounting for a central process, known as velocity storage mechanism (VSM). Parameters were constrained by requiring equal SCC time constant and VSM time constant for SPV and PRV. The gains weighting the two exponential functions were free to change. SPV were accurately fitted (variance-accounted-for: 0.85 ± 0.10) and PRV (variance-accounted-for: 0.86 ± 0.07), showing that SPV and PRV curve differences can be explained by a greater relative weight of VSM in PRV compared with SPV (twofold for yaw, threefold for pitch). These results support our hypothesis that self-motion perception after angular velocity steps is be driven by the same central vestibular processes as reflexive eye movements and that no additional mechanisms are required to explain the perceptual dynamics.

  14. Uncertainty relations and topological-band insulator transitions in 2D gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Romera, E.; Calixto, M.

    2015-05-01

    Uncertainty relations are studied for a characterization of topological-band insulator transitions in 2D gapped Dirac materials isostructural with graphene. We show that the relative or Kullback-Leibler entropy in position and momentum spaces, and the standard variance-based uncertainty relation give sharp signatures of topological phase transitions in these systems.

  15. Analysis of turbulent transport and mixing in transitional Rayleigh–Taylor unstable flow using direct numerical simulation data

    DOE PAGES

    Schilling, Oleg; Mueschke, Nicholas J.

    2010-10-18

    Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipationmore » and destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. Thus, these results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.« less

  16. Multilevel fluidic flow control in a rotationally-driven polyester film microdevice created using laser print, cut and laminate.

    PubMed

    Ouyang, Yiwen; Li, Jingyi; Phaneuf, Christopher; Riehl, Paul S; Forest, Craig; Begley, Matthew; Haverstick, Doris M; Landers, James P

    2016-01-21

    This paper presents a simple and cost-effective polyester toner microchip fabricated with laser print and cut lithography (PCL) to use with a battery-powered centrifugal platform for fluid handling. The combination of the PCL microfluidic disc and centrifugal platform: (1) allows parallel aliquoting of two different reagents of four different volumes ranging from nL to μL with an accuracy comparable to a piston-driven air pipette; (2) incorporates a reciprocating mixing unit driven by a surface-tension pump for further dilution of reagents, and (3) is amenable to larger scale integration of assay multiplexing (including all valves and mixers) without substantially increasing fabrication cost and time. For a proof of principle, a 10 min colorimetric assay for the quantitation of the protein level in the human blood plasma samples is demonstrated on chip with a limit of detection of ∼5 mg mL(-1) and coefficient of variance of ∼7%.

  17. Noise-Driven Phenotypic Heterogeneity with Finite Correlation Time in Clonal Populations.

    PubMed

    Lee, UnJin; Skinner, John J; Reinitz, John; Rosner, Marsha Rich; Kim, Eun-Jin

    2015-01-01

    There has been increasing awareness in the wider biological community of the role of clonal phenotypic heterogeneity in playing key roles in phenomena such as cellular bet-hedging and decision making, as in the case of the phage-λ lysis/lysogeny and B. Subtilis competence/vegetative pathways. Here, we report on the effect of stochasticity in growth rate, cellular memory/intermittency, and its relation to phenotypic heterogeneity. We first present a linear stochastic differential model with finite auto-correlation time, where a randomly fluctuating growth rate with a negative average is shown to result in exponential growth for sufficiently large fluctuations in growth rate. We then present a non-linear stochastic self-regulation model where the loss of coherent self-regulation and an increase in noise can induce a shift from bounded to unbounded growth. An important consequence of these models is that while the average change in phenotype may not differ for various parameter sets, the variance of the resulting distributions may considerably change. This demonstrates the necessity of understanding the influence of variance and heterogeneity within seemingly identical clonal populations, while providing a mechanism for varying functional consequences of such heterogeneity. Our results highlight the importance of a paradigm shift from a deterministic to a probabilistic view of clonality in understanding selection as an optimization problem on noise-driven processes, resulting in a wide range of biological implications, from robustness to environmental stress to the development of drug resistance.

  18. Statistical Analysis of Zebrafish Locomotor Response.

    PubMed

    Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.

  19. Statistical Analysis of Zebrafish Locomotor Response

    PubMed Central

    Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling’s T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling’s T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure. PMID:26437184

  20. Effects of excitation frequency on high-order terahertz sideband generation in semiconductors

    NASA Astrophysics Data System (ADS)

    Xie, Xiao-Tao; Zhu, Bang-Fen; Liu, Ren-Bao

    2013-10-01

    We theoretically investigate the effects of the excitation frequency on the plateau of high-order terahertz sideband generation (HSG) in semiconductors driven by intense terahertz (THz) fields. We find that the plateau of the sideband spectrum strongly depends on the detuning between the near-infrared laser field and the band gap. We use the quantum trajectory theory (three-step model) to understand the HSG. In the three-step model, an electron-hole pair is first excited by a weak laser, then driven by the strong THz field, and finally recombined to emit a photon with energy gain. When the laser is tuned below the band gap (negative detuning), the electron-hole generation is a virtual process that requires quantum tunneling to occur. When the energy gained by the electron-hole pair from the THz field is less than 3.17 times the ponderomotive energy (Up), the electron and the hole can be driven to the same position and recombined without quantum tunneling, so that the HSG will have large probability amplitude. This leads to a plateau feature of the HSG spectrum with a high-frequency cutoff at about 3.17Up above the band gap. Such a plateau feature is similar to the case of high-order harmonics generation in atoms where electrons have to overcome the binding energy to escape the atomic core. A particularly interesting excitation condition in HSG is that the laser can be tuned above the band gap (positive detuning), corresponding to the unphysical ‘negative’ binding energy in atoms for high-order harmonic generation. Now the electron-hole pair is generated by real excitation, but the recombination process can be real or virtual depending on the energy gained from the THz field, which determines the plateau feature in HSG. Both the numerical calculation and the quantum trajectory analysis reveal that for positive detuning, the HSG plateau cutoff depends on the frequency of the excitation laser. In particular, when the laser is tuned more than 3.17Up above the band gap, the HSG spectrum presents no plateau feature but instead sharp peaks near the band edge and near the excitation frequency.

  1. Reinforcement Learning and Savings Behavior*

    PubMed Central

    Choi, James J.; Laibson, David; Madrian, Brigitte C.; Metrick, Andrew

    2009-01-01

    We show that individual investors over-extrapolate from their personal experience when making savings decisions. Investors who experience particularly rewarding outcomes from saving in their 401(k)—a high average and/or low variance return—increase their 401(k) savings rate more than investors who have less rewarding experiences with saving. This finding is not driven by aggregate time-series shocks, income effects, rational learning about investing skill, investor fixed effects, or time-varying investor-level heterogeneity that is correlated with portfolio allocations to stock, bond, and cash asset classes. We discuss implications for the equity premium puzzle and interventions aimed at improving household financial outcomes. PMID:20352013

  2. Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control

    PubMed Central

    Egner, Tobias

    2013-01-01

    Conflict adaptation – a conflict-triggered improvement in the resolution of conflicting stimulus or response representations – has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous functional magnetic resonance imaging (fMRI) studies have localized activation foci associated with conflict resolution to dorsolateral prefrontal cortex (dlPFC). The traditional group-analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach in order to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face-word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed, while controlling for individual differences in mean reaction time and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral prefrontal cortex (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ~40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance. PMID:21568631

  3. The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall

    2004-05-01

    We devise a stochastic model for the effects of breaking waves and fit its distribution functions to laboratory and field data. This is used to represent the space time structure of momentum and energy forcing of the oceanic boundary layer in turbulence-resolving simulations. The aptness of this breaker model is evaluated in a direct numerical simulation (DNS) of an otherwise quiescent fluid driven by an isolated breaking wave, and the results are in good agreement with laboratory measurements. The breaker model faithfully reproduces the bulk features of a breaking event: the mean kinetic energy decays at a rate approaching t(-1) , and a long-lived vortex (eddy) is generated close to the water surface. The long lifetime of this vortex (more than 50 wave periods) makes it effective in energizing the surface region of oceanic boundary layers. Next, a comparison of several different DNS of idealized oceanic boundary layers driven by different surface forcing (i.e. constant current (as in Couette flow), constant stress, or a mixture of constant stress plus stochastic breakers) elucidates the importance of intermittent stress transmission to the underlying currents. A small amount of active breaking, about 1.6% of the total water surface area at any instant in time, significantly alters the instantaneous flow patterns as well as the ensemble statistics. Near the water surface a vigorous downwelling upwelling pattern develops at the head and tail of each three-dimensional breaker. This enhances the vertical velocity variance and generates both negative- and positive-signed vertical momentum flux. Analysis of the mean velocity and scalar profiles shows that breaking effectively increases the surface roughness z_o by more than a factor of 30; for our simulations z_o/lambda {≈} 0.04 to 0.06, where lambda is the wavelength of the breaking wave. Compared to a flow driven by a constant current, the extra mixing from breakers increases the mean eddy viscosity by more than a factor of 10 near the water surface. Breaking waves alter the usual balance of production and dissipation in the turbulent kinetic energy (TKE) budget; turbulent and pressure transports and breaker work are important sources and sinks in the budget. We also show that turbulent boundary layers driven by constant current and constant stress (i.e. with no breaking) differ in fundamental ways. The additional freedom provided by a constant-stress boundary condition permits finite velocity variances at the water surface, so that flows driven by constant stress mimic flows with weakly and statistically homogeneous breaking waves.

  4. Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets

    PubMed Central

    Hauser, Christopher K; Zhu, Dantong; Stanford, Terrence R

    2018-01-01

    In studies of voluntary movement, a most elemental quantity is the reaction time (RT) between the onset of a visual stimulus and a saccade toward it. However, this RT demonstrates extremely high variability which, in spite of extensive research, remains unexplained. It is well established that, when a visual target appears, oculomotor activity gradually builds up until a critical level is reached, at which point a saccade is triggered. Here, based on computational work and single-neuron recordings from monkey frontal eye field (FEF), we show that this rise-to-threshold process starts from a dynamic initial state that already contains other incipient, internally driven motor plans, which compete with the target-driven activity to varying degrees. The ensuing conflict resolution process, which manifests in subtle covariations between baseline activity, build-up rate, and threshold, consists of fundamentally deterministic interactions, and explains the observed RT distributions while invoking only a small amount of intrinsic randomness. PMID:29652247

  5. Squeezing and de-wetting of a shear thinning fluid drop between plane parallel surfaces: capillary adhesion phenomenon

    NASA Astrophysics Data System (ADS)

    Ward, Thomas

    2017-11-01

    The radial squeezing and de-wetting of a thin film of viscous shear thinning fluid filling the gap between parallel plane walls is examined both experimentally and theoretically for gap spacing much smaller than the capillary length. The interaction between motion of fluid in the gap driven by squeezing or de-wetting and surface tension is parameterized by a dimensionless variable, F, that is the ratio of the constant force supplied by the top plate (either positive or negative) to surface tension at the drop's circumference. Furthermore, the dimensionless form of the rate equation for the gap's motion reveals a time scale that is dependent on the drop volume when analyzed for a power law shear thinning fluid. In the de-wetting problem the analytical solution reveals the formation of a singularity, leading to capillary adhesion, as the gap spacing approaches a critical value that depends on F and the contact angle. Experiments are performed to test the analytical predictions for both squeezing, and de-wetting in the vicinity of the singularity.

  6. Patterns in Temporal Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral Reef

    PubMed Central

    Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.

    2014-01-01

    Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364

  7. Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Rehnberg, Morgan; Colwell, Joshua E.; Sremcevic, Miodrag

    2017-10-01

    We compare two methods for determining the size of self-gravity wakes in Saturn’s rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives:W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find:W ~ 10m and infer the wavelength of the fastest growing instabilityLambda(TOOMRE) = S + W ~ 30m.This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.

  8. Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Rehnberg, M.; Colwell, J. E.; Sremcevic, M.

    2017-12-01

    We compare two methods for determining the size of self-gravity wakes in Saturn's rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives: W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find: W 10m and infer the wavelength of the fastest growing instability lamdaT = S + W 30m. This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.

  9. Reconstruction of Arctic surface temperature in past 100 years using DINEOF

    NASA Astrophysics Data System (ADS)

    Zhang, Qiyi; Huang, Jianbin; Luo, Yong

    2015-04-01

    Global annual mean surface temperature has not risen apparently since 1998, which is described as global warming hiatus in recent years. However, measuring of temperature variability in Arctic is difficult because of large gaps in coverage of Arctic region in most observed gridded datasets. Since Arctic has experienced a rapid temperature change in recent years that called polar amplification, and temperature risen in Arctic is faster than global mean, the unobserved temperature in central Arctic will result in cold bias in both global and Arctic temperature measurement compared with model simulations and reanalysis datasets. Moreover, some datasets that have complete coverage in Arctic but short temporal scale cannot show Arctic temperature variability for long time. Data Interpolating Empirical Orthogonal Function (DINEOF) were applied to fill the coverage gap of NASA's Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP 250km smooth) product in Arctic with IABP dataset which covers entire Arctic region between 1979 and 1998, and to reconstruct Arctic temperature in 1900-2012. This method provided temperature reconstruction in central Arctic and precise estimation of both global and Arctic temperature variability with a long temporal scale. Results have been verified by extra independent station records in Arctic by statistical analysis, such as variance and standard deviation. The result of reconstruction shows significant warming trend in Arctic in recent 30 years, as the temperature trend in Arctic since 1997 is 0.76°C per decade, compared with 0.48°C and 0.67°C per decade from 250km smooth and 1200km smooth of GISTEMP. And global temperature trend is two times greater after using DINEOF. The discrepancies above stress the importance of fully consideration of temperature variance in Arctic because gaps of coverage in Arctic cause apparent cold bias in temperature estimation. The result of global surface temperature also proves that global warming in recent years is not as slow as thought.

  10. Ionization instability induced striations in low frequency and pulsed He/H2O atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2018-01-01

    In previous work [Kawamura et al., Plasma Sources Sci. Technol. 25, 054009 (2016)] and [Kawamura et al., J. Phys. D: Appl. Phys. 50, 145204 (2017)], 1D kinetic particle-in-cell (PIC) simulations of narrow gap (1 to 4 mm), high frequency (27 MHz) or dc-driven, He/2%H2O atmospheric pressure plasmas (APPs) showed an ionization instability resulting in standing striations (spatial oscillations) in the bulk plasma. We developed a steady-state striation theory which showed that the striations are due to non-local electron kinetics. In both the high frequency and dc-driven cases, the equilibrium electron density n0 in the plasma bulk was stationary. In this work, we first conduct 1D PIC simulations of a 1 mm gap He/2%H2O APP, driven by a sinusoidal current at a low frequency of f = 50 kHz such that ω = 2πf is well below the ionization frequency νiz. In this case, n0 varies with time, and we observe a time-varying instability which quasistatically depends on n0(t). At each phase of the rf cycle, the discharge resembles a dc discharge at the same n0. At higher frequencies (200 kHz-1 MHz), ω approaches νiz, and quasistatic equilibrium at each phase breaks down. The discharge is also driven with a 200 kHz, 50% duty cycle square wave pulse with a short rise and fall time of 0.1 μs in an attempt to directly measure the striation growth rate s during the on-cycle before it saturated. However, the spike in current during the rise time leads to a spike in electron temperature Te and hence νiz and s at the beginning of the rise which saturated during the beginning of the on-cycle. To predict the instability growth rate and saturation during and after the current spike, we extend our striation theory to include time-varying n0, Te, νiz, as well as terms for the nonlinear saturation and noise floor of the striation amplitude. The time-varying global model predictions are compared to the PIC simulations, showing reasonable agreement.

  11. Standing in the Gap: Theory and Practice Impacting Educational Opportunity and Achievement Gaps

    ERIC Educational Resources Information Center

    Beard, Karen Stansberry

    2018-01-01

    This case study is the first known employing flow in educational administration in the United States. Using Csikszentmihalyi's flow theory and Dantley's purpose-driven leadership, an administrator's practices were examined with respect to two guiding questions: (a) is purposefulness integral to closing extant gaps in achievement, and (b) are the…

  12. Quantum resonances in a single plaquette of Josephson junctions: excitations of Rabi oscillations

    NASA Astrophysics Data System (ADS)

    Fistul, M. V.

    2002-03-01

    We present a theoretical study of a quantum regime of the resistive (whirling) state of dc driven anisotropic single plaquette containing small Josephson junctions. The current-voltage characteristics of such systems display resonant steps that are due to the resonant interaction between the time dependent Josephson current and the excited electromagnetic oscillations (EOs). The voltage positions of the resonances are determined by the quantum interband transitions of EOs. We show that in the quantum regime as the system is driven on the resonance, coherent Rabi oscillations between the quantum levels of EOs occur. At variance with the classical regime the magnitude and the width of resonances are determined by the frequency of Rabi oscillations that in turn, depends in a peculiar manner on an externally applied magnetic field and the parameters of the system.

  13. Effect of insertion method and postinsertion time interval prior to force application on the removal torque of orthodontic miniscrews.

    PubMed

    Sharifi, Maryam; Ghassemi, Amirreza; Bayani, Shahin

    2015-01-01

    Success of orthodontic miniscrews in providing stable anchorage is dependent on their stability. The purpose of this study was to assess the effect of insertion method and postinsertion time interval on the removal torque of miniscrews as an indicator of their stability. Seventy-two miniscrews (Jeil Medical) were inserted into the femoral bones of three male German Shepherd dogs and assigned to nine groups of eight miniscrews. Three insertion methods, including hand-driven, motor-driven with 5.0-Ncm insertion torque, and motor-driven with 20.0-Ncm insertion torque, were tested. Three time intervals of 0, 2, and 6 weeks between miniscrew insertion and removal were tested as well. Removal torque values were measured in newton centimeters by a removal torque tester (IMADA). Data were analyzed by one-way analysis of variance (ANOVA) followed by the Bonferroni post hoc test at a .05 level of significance. A miniscrew survival rate of 93% was observed in this study. The highest mean value of removal torque among the three postinsertion intervals (2.4 ± 0.59 Ncm) was obtained immediately after miniscrew insertion with a statistically significant difference from the other two time intervals (P < .001). Insertion were observed in this regard (P = .46). The stability of miniscrews was not affected by the insertion method. However, of the postinsertion time intervals, the highest removal torque values were obtained immediately after insertion.

  14. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder.

    PubMed

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-04

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  15. All-Phononic Digital Transistor on the Basis of Gap-Soliton Dynamics in an Anharmonic Oscillator Ladder

    NASA Astrophysics Data System (ADS)

    Malishava, Merab; Khomeriki, Ramaz

    2015-09-01

    A conceptual mechanism of amplification of phonons by phonons on the basis of a nonlinear band-gap transmission (supratransmission) phenomenon is presented. As an example, a system of weakly coupled chains of anharmonic oscillators is considered. One (source) chain is driven harmonically by a boundary with a frequency located in the upper band close to the band edge of the ladder system. Amplification happens when a second (gate) chain is driven by a small signal in the counterphase and with the same frequency as the first chain. If the total driving of both chains overcomes the band-gap transmission threshold, the large amplitude band-gap soliton emerges and the amplification scenario is realized. The mechanism is interpreted as the nonlinear superposition of evanescent and propagating nonlinear modes manifesting in a single or double soliton generation working in band-gap or bandpass regimes, respectively. The results could be straightforwardly generalized for all-optical or all-magnonic contexts and have all the promise of logic gate operations.

  16. Reconstruction of Monsoon Driven South China Sea Surface Ocean Circulation using Coral Δ14C

    NASA Astrophysics Data System (ADS)

    Goodkin, N.; Bolton, A.; Karnauskas, K. B.; Hughen, K. A.; Griffin, S.; Druffel, E. R. M.

    2016-12-01

    The need to improve our understanding of annual and decadal climate behavior in the South China Sea is increasingly important, as this region includes the largest population density globally but encompasses few climate records. Here we present a record of annually resolved Δ14C from a coral collected off the coast of Nha Trang, Vietnam (12°12'49.90″N, 109°18'17.51″E), that reveals a significant correlation to regional winter sea level pressure (SLP) and sea surface temperature (SST), and extends back more than 400 years. Coral Δ14C during thermonuclear bomb testing indicates the presence of wet-season (summer) upwelling, demonstrated by low Δ14C values for both baseline and peak values relative to other records in the region (Bolton et al., 2016, Radiocarbon). However, annually resolved pre-bomb Δ14C correlates significantly to regional dry-season (winter) SLP and SST, indicating that annual variability is driven by changes to the East Asian Winter Monsoon (EAWM) and subsequent down-welling at this site. Spectral density is focused at 25, 11.8, 7, 4, and 3.2 years per cycle reflecting a range of influences on surface advection variability including the EAWM (D'Arrigo et al., 2005, GRL) and the El Nino Southern Oscillation (ENSO). Spectral power at all of these frequencies decreases following the Little Ice Age ( 1600-1850?) to today, indicating that wind driven surface advection was more variable when hemispheric temperatures were cooler. Decadal variance in the past 100 years is significantly correlated to variance records of the Arctic Oscillation (AO, Thompson and Wallace, 1989, GRL), suggesting that increasing variance in the EAWM may be tied to increasing variance of the AO during the Little Ice Age and vice versa.

  17. Stand dynamics following gap-scale exogenous disturbance in a single cohort mixed species stand in Morgan County, Tennessee

    Treesearch

    Brian S. Hughett; Wayne K. Clatterbuck

    2014-01-01

    Differences in composition, structure, and growth under canopy gaps created by the mortality of a single stem were analyzed using analysis of variance under two scenarios, with stem removed or with stem left as a standing snag. There were no significant differences in composition and structure of large diameter residual stems within upper canopy strata. Some...

  18. Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields

    NASA Astrophysics Data System (ADS)

    Kono, J.; Chin, A. H.

    2000-03-01

    Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.

  19. Cusping, transport and variance of solutions to generalized Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Carnaffan, Sean; Kawai, Reiichiro

    2017-06-01

    We study properties of solutions to generalized Fokker-Planck equations through the lens of the probability density functions of anomalous diffusion processes. In particular, we examine solutions in terms of their cusping, travelling wave behaviours, and variance, within the framework of stochastic representations of generalized Fokker-Planck equations. We give our analysis in the cases of anomalous diffusion driven by the inverses of the stable, tempered stable and gamma subordinators, demonstrating the impact of changing the distribution of waiting times in the underlying anomalous diffusion model. We also analyse the cases where the underlying anomalous diffusion contains a Lévy jump component in the parent process, and when a diffusion process is time changed by an uninverted Lévy subordinator. On the whole, we present a combination of four criteria which serve as a theoretical basis for model selection, statistical inference and predictions for physical experiments on anomalously diffusing systems. We discuss possible applications in physical experiments, including, with reference to specific examples, the potential for model misclassification and how combinations of our four criteria may be used to overcome this issue.

  20. Dynamic response functions, helical gaps, and fractional charges in quantum wires

    NASA Astrophysics Data System (ADS)

    Meng, Tobias; Pedder, Christopher J.; Tiwari, Rakesh P.; Schmidt, Thomas L.

    We show how experimentally accessible dynamic response functions can discriminate between helical gaps due to magnetic field, and helical gaps driven by electron-electron interactions (''umklapp gaps''). The latter are interesting since they feature gapped quasiparticles of fractional charge e / 2 , and - when coupled to a standard superconductor - an 8 π-Josephson effect and topological zero energy states bound to interfaces. National Research Fund, Luxembourg (ATTRACT 7556175), Deutsche Forschungsgemeinschaft (GRK 1621 and SFB 1143), Swiss National Science Foundation.

  1. A geometric level set model for ultrasounds analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarti, A.; Malladi, R.

    We propose a partial differential equation (PDE) for filtering and segmentation of echocardiographic images based on a geometric-driven scheme. The method allows edge-preserving image smoothing and a semi-automatic segmentation of the heart chambers, that regularizes the shapes and improves edge fidelity especially in presence of distinct gaps in the edge map as is common in ultrasound imagery. A numerical scheme for solving the proposed PDE is borrowed from level set methods. Results on human in vivo acquired 2D, 2D+time,3D, 3D+time echocardiographic images are shown.

  2. On Business-Driven IT Security Management and Mismatches between Security Requirements in Firms, Industry Standards and Research Work

    NASA Astrophysics Data System (ADS)

    Frühwirth, Christian

    Industry managers have long recognized the vital importance of information security for their businesses, but at the same time they perceived security as a technology-driven rather then a business-driven field. Today, this notion is changing and security management is shifting from technology- to business-oriented approaches. Whereas there is evidence of this shift in the literature, this paper argues that security standards and academic work have not yet taken it fully into account. We examine whether this disconnect has lead to a misalignment of IT security requirements in businesses versus industry standards and academic research. We conducted 13 interviews with practitioners from 9 different firms to investigate this question. The results present evidence for a significant gap between security requirements in industry standards and actually reported security vulnerabilities. We further find mismatches between the prioritization of security factors in businesses, standards and real-world threats. We conclude that security in companies serves the business need of protecting information availability to keep the business running at all times.

  3. A Technique for Estimating the Surface Conductivity of Single Molecules

    NASA Astrophysics Data System (ADS)

    Bau, Haim; Arsenault, Mark; Zhao, Hui; Purohit, Prashant; Goldman, Yale

    2007-11-01

    When an AC electric field at 2MHz was applied across a small gap between two metal electrodes elevated above a surface, rhodamine-phalloidin-labeled actin filaments were attracted to the gap and became suspended between the two electrodes. The variance of each filament's horizontal, lateral displacement was measured as a function of electric field intensity and position along the filament. The variance significantly decreased as the electric field intensity increased. Hypothesizing that the electric field induces electroosmotic flow around the filament that, in turn, induces drag on the filament, which appears as effective tension, we estimated the tension using a linear, Brownian dynamic model. Based on the tension, we estimated the filament's surface conductivity. Our experimental method provides a novel means for trapping and manipulating biological filaments and for probing the surface conductance and mechanical properties of single polymers.

  4. Reprocessing the GRACE-derived gravity field time series based on data-driven method for ocean tide alias error mitigation

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Sneeuw, Nico; Jiang, Weiping

    2017-04-01

    GRACE mission has contributed greatly to the temporal gravity field monitoring in the past few years. However, ocean tides cause notable alias errors for single-pair spaceborne gravimetry missions like GRACE in two ways. First, undersampling from satellite orbit induces the aliasing of high-frequency tidal signals into the gravity signal. Second, ocean tide models used for de-aliasing in the gravity field retrieval carry errors, which will directly alias into the recovered gravity field. GRACE satellites are in non-repeat orbit, disabling the alias error spectral estimation based on the repeat period. Moreover, the gravity field recovery is conducted in non-strictly monthly interval and has occasional gaps, which result in an unevenly sampled time series. In view of the two aspects above, we investigate the data-driven method to mitigate the ocean tide alias error in a post-processing mode.

  5. Finding the traces of behavioral and cognitive processes in big data and naturally occurring datasets.

    PubMed

    Paxton, Alexandra; Griffiths, Thomas L

    2017-10-01

    Today, people generate and store more data than ever before as they interact with both real and virtual environments. These digital traces of behavior and cognition offer cognitive scientists and psychologists an unprecedented opportunity to test theories outside the laboratory. Despite general excitement about big data and naturally occurring datasets among researchers, three "gaps" stand in the way of their wider adoption in theory-driven research: the imagination gap, the skills gap, and the culture gap. We outline an approach to bridging these three gaps while respecting our responsibilities to the public as participants in and consumers of the resulting research. To that end, we introduce Data on the Mind ( http://www.dataonthemind.org ), a community-focused initiative aimed at meeting the unprecedented challenges and opportunities of theory-driven research with big data and naturally occurring datasets. We argue that big data and naturally occurring datasets are most powerfully used to supplement-not supplant-traditional experimental paradigms in order to understand human behavior and cognition, and we highlight emerging ethical issues related to the collection, sharing, and use of these powerful datasets.

  6. Data-Driven Learning of Total and Local Energies in Elemental Boron

    NASA Astrophysics Data System (ADS)

    Deringer, Volker L.; Pickard, Chris J.; Csányi, Gábor

    2018-04-01

    The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β -rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.

  7. Data-Driven Learning of Total and Local Energies in Elemental Boron.

    PubMed

    Deringer, Volker L; Pickard, Chris J; Csányi, Gábor

    2018-04-13

    The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β-rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.

  8. Systematic Analysis of the Effect of Small Scale Permeability Heterogeneity on Hyporheic Exchange Flux and Residence Times

    NASA Astrophysics Data System (ADS)

    Laube, G.; Schmidt, C.; Fleckenstein, J. H.

    2014-12-01

    The hyporheic zone (HZ) contributes significantly to whole stream biogeochemical cycling. Biogeochemical reactions within the HZ are often transport limited, thus, understanding these reactions requires knowledge about the magnitude of hyporheic fluxes (HF) and the residence time (RT) of these fluxes within the HZ. While the hydraulics of HF are relatively well understood, studies addressing the influence of permeability heterogeneity lack systematic analysis and have even produced contradictory results (e.g. [1] vs. [2]). In order to close this gap, this study uses a statistical numerical approach to elucidate the influence of permeability heterogeneity on HF and RT. We simulated and evaluated 3750 2D-scenarios of sediment heterogeneity by means of Gaussian random fields with focus on total HF and RT distribution. The scenarios were based on ten realizations of each of all possible combinations of 15 different correlation lengths, 5 dipping angles and 5 permeability variances. Roughly 500 hyporheic stream traces were analyzed per simulation, for a total of almost two million stream traces analyzed for correlations between permeability heterogeneity, HF, and RT. Total HF and the RT variance positively correlated with permeability variance while the mean RT negatively correlated with permeability variance. In contrast, changes in correlation lengths and dipping angles had little effect on the examined properties RT and HF. These results provide a possible explanation of the seemingly contradictory conclusions of recent studies, given that the permeability variances in these studies differ by several orders of magnitude. [1] Bardini, L., Boano, F., Cardenas, M.B, Sawyer, A.H, Revelli, R. and Ridolfi, L. "Small-Scale Permeability Heterogeneity Has Negligible Effects on Nutrient Cycling in Streambeds." Geophysical Research Letters, 2013. doi:10.1002/grl.50224. [2] Zhou, Y., Ritzi, R. W., Soltanian, M. R. and Dominic, D. F. "The Influence of Streambed Heterogeneity on Hyporheic Flow in Gravelly Rivers." Groundwater, 2013. doi:10.1111/gwat.12048.

  9. Solving Immunology?

    PubMed Central

    Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L.; Bassaganya-Riera, Josep; Hafler, David A.; Sontag, Eduardo; Wang, Jin; Tsang, John S.; Day, Judy D.; Kleinstein, Steven; Butte, Atul J.; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C.

    2016-01-01

    Emergent responses of the immune system result from integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the NIAID workshop “Complex Systems Science, Modeling and Immunity” and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. PMID:27986392

  10. Electronic band-gap modified passive silicon optical modulator at telecommunications wavelengths.

    PubMed

    Zhang, Rui; Yu, Haohai; Zhang, Huaijin; Liu, Xiangdong; Lu, Qingming; Wang, Jiyang

    2015-11-13

    The silicon optical modulator is considered to be the workhorse of a revolution in communications. In recent years, the capabilities of externally driven active silicon optical modulators have dramatically improved. Self-driven passive modulators, especially passive silicon modulators, possess advantages in compactness, integration, low-cost, etc. Constrained by a large indirect band-gap and sensitivity-related loss, the passive silicon optical modulator is scarce and has been not advancing, especially at telecommunications wavelengths. Here, a passive silicon optical modulator is fabricated by introducing an impurity band in the electronic band-gap, and its nonlinear optics and applications in the telecommunications-wavelength lasers are investigated. The saturable absorption properties at the wavelength of 1.55 μm was measured and indicates that the sample is quite sensitive to light intensity and has negligible absorption loss. With a passive silicon modulator, pulsed lasers were constructed at wavelengths at 1.34 and 1.42 μm. It is concluded that the sensitive self-driven passive silicon optical modulator is a viable candidate for photonics applications out to 2.5 μm.

  11. Rod-filter-field optimization of the J-PARC RF-driven H{sup −} ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.

    2015-04-08

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second-stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). Although rod-filter-field (RFF) is indispensable and one of the most beam performance dominative parameters for the RF-driven H{sup −} ion source with the internal-antenna, the procedure to optimize it is not established. Inmore » order to optimize the RFF and establish the procedure, the beam performances of the J-PARC source with various types of rod-filter-magnets (RFMs) were measured. By changing RFM’s gap length and gap number inside of the region projecting the antenna inner-diameter along the beam axis, the dependence of the H{sup −} ion beam intensity on the net 2MHz-RF power was optimized. Furthermore, the fine-tuning of RFM’s cross-section (magnetmotive force) was indispensable for easy operation with the temperature (T{sub PE}) of the plasma electrode (PE) lower than 70°C, which minimizes the transverse emittances. The 5% reduction of RFM’s cross-section decreased the time-constant to recover the cesium effects after an slightly excessive cesiation on the PE from several 10 minutes to several minutes for T{sub PE} around 60°C.« less

  12. "Gap hunting" to characterize clustered probe signals in Illumina methylation array data.

    PubMed

    Andrews, Shan V; Ladd-Acosta, Christine; Feinberg, Andrew P; Hansen, Kasper D; Fallin, M Daniele

    2016-01-01

    The Illumina 450k array has been widely used in epigenetic association studies. Current quality-control (QC) pipelines typically remove certain sets of probes, such as those containing a SNP or with multiple mapping locations. An additional set of potentially problematic probes are those with DNA methylation distributions characterized by two or more distinct clusters separated by gaps. Data-driven identification of such probes may offer additional insights for downstream analyses. We developed a procedure, termed "gap hunting," to identify probes showing clustered distributions. Among 590 peripheral blood samples from the Study to Explore Early Development, we identified 11,007 "gap probes." The vast majority (9199) are likely attributed to an underlying SNP(s) or other variant in the probe, although SNP-affected probes exist that do not produce a gap signals. Specific factors predict which SNPs lead to gap signals, including type of nucleotide change, probe type, DNA strand, and overall methylation state. These expected effects are demonstrated in paired genotype and 450k data on the same samples. Gap probes can also serve as a surrogate for the local genetic sequence on a haplotype scale and can be used to adjust for population stratification. The characteristics of gap probes reflect potentially informative biology. QC pipelines may benefit from an efficient data-driven approach that "flags" gap probes, rather than filtering such probes, followed by careful interpretation of downstream association analyses. Our results should translate directly to the recently released Illumina EPIC array given the similar chemistry and content design.

  13. Does a robotic scrub nurse improve economy of movements?

    NASA Astrophysics Data System (ADS)

    Wachs, Juan P.; Jacob, Mithun; Li, Yu-Ting; Akingba, George

    2012-02-01

    Objective: Robotic assistance during surgery has been shown to be a useful resource to both augment the surgical skills of the surgeon through tele-operation, and to assist the surgeon handling the surgical instruments to the surgeon, similar to a surgical tech. We evaluated the performance and effect of a gesture driven surgical robotic nurse in the context of economy of movements, during an abdominal incision and closure exercise with a simulator. Methods: A longitudinal midline incision (100 mm) was performed on the simulated abdominal wall to enter the peritoneal cavity without damaging the internal organs. The wound was then closed using a blunt needle ensuring that no tissue is caught up by the suture material. All the instruments required to complete this task were delivered by a robotic surgical manipulator directly to the surgeon. The instruments were requested through voice and gesture recognition. The robotic system used a low end range sensor camera to extract the hand poses and for recognizing the gestures. The instruments were delivered to the vicinity of the patient, at chest height and at a reachable distance to the surgeon. Task performance measures for each of three abdominal incision and closure exercises were measured and compared to a human scrub nurse instrument delivery action. Picking instrument position variance, completion time and trajectory of the hand were recorded for further analysis. Results: The variance of the position of the robotic tip when delivering the surgical instrument is compared to the same position when a human delivers the instrument. The variance was found to be 88.86% smaller compared to the human delivery group. The mean task completion time to complete the surgical exercise was 162.7+/- 10.1 secs for the human assistant and 191.6+/- 3.3 secs (P<.01) when using the robotic standard display group. Conclusion: Multimodal robotic scrub nurse assistant improves the surgical procedure by reducing the number of movements (lower variance in the picking position). The variance of the picking point is closely related to the concept of economy of movements in the operating room. Improving the effectiveness of the operating room can potentially enhance the safety of surgical interventions without affecting the performance time.

  14. Lost in translation: bridging gaps between design and evidence-based design.

    PubMed

    Watkins, Nicholas; Keller, Amy

    2008-01-01

    The healthcare design community is adopting evidence-based design (EBD) at a startling rate. However, the role of research within an architectural practice is unclear. Reasons for the lack of clarity include multiple connotations of EBD, the tension between a research-driven market and market-driven research, and the competing expectations and standards of design practitioners and researchers. Research as part of EBD should be integral with the design process so that research directly contributes to building projects. Characteristics of a comprehensive programming methodology to close the gap between design and EBD are suggested.

  15. Fishing Quotas, Induced Allee Effect, and Fluctuation-Driven Extinction.

    PubMed

    Hastings, Harold M; Radin, Michael; Wiandt, Tamas

    2017-01-01

    We explore the potential of modifications to standard fishery models (for example Gordon-Schafer-Munro) to help understand events such as the collapse of the North Atlantic cod fishery. In particular we find that quota-driven and similar harvesting strategies induce an effective strong Allee effect (collapse if the population falls below a critical level). In the presence of environmental noise, fish population dynamics is similar to a random walk with (non-linear) drift. The expected survival time (first passage time to collapse) is shown to depend sensitively upon the amount of environmental noise and size of the 'safe zone' between the deterministic steady state population and the critical population level at which the system collapses; more precisely it is exponential in the cube of the size of the safe zone divided by the variance of the noise process. Similar scaling can be expected for more survival in more general systems with multiple steady states. Our calculations imply an amplification effect under which small increases in harvest yield large decreases in expected survival time, and one should be cautious in changes in harvesting, especially in fisheries with poor or limited data and fisheries affected by climate change.

  16. Radiation Effects In Satellite Cables

    DTIC Science & Technology

    1978-04-01

    reverse current across the gap through the ionized air trapped in the gap . This reverse current opposes the effect of the photo-driven current and reduces ...using the measured gap of 30 pm) has the right sign (negative) for both cables and is very close in magnitude for one but is low by about a factor of 2.5...experiments of Reference 32. Therefore, the effect of a 100 volt field in reducing transport of photoelectrons across the gap in the experiment should

  17. Recreational 3,4-methylenedioxymethamphetamine or 'ecstasy': Current perspective and future research prospects.

    PubMed

    Parrott, Andrew C; Downey, Luke A; Roberts, Carl A; Montgomery, Cathy; Bruno, Raimondo; Fox, Helen C

    2017-08-01

    The purpose of this article is to debate current understandings about the psychobiological effects of recreational 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy'), and recommend theoretically-driven topics for future research. Recent empirical findings, especially those from novel topic areas were reviewed. Potential causes for the high variance often found in group findings were also examined. The first empirical reports into psychobiological and psychiatric aspects from the early 1990s concluded that regular users demonstrated some selective psychobiological deficits, for instance worse declarative memory, or heightened depression. More recent research has covered a far wider range of psychobiological functions, and deficits have emerged in aspects of vision, higher cognitive skill, neurohormonal functioning, and foetal developmental outcomes. However, variance levels are often high, indicating that while some recreational users develop problems, others are less affected. Potential reasons for this high variance are debated. An explanatory model based on multi-factorial causation is then proposed. A number of theoretically driven research topics are suggested, in order to empirically investigate the potential causes for these diverse psychobiological deficits. Future neuroimaging studies should study the practical implications of any serotonergic and/or neurohormonal changes, using a wide range of functional measures.

  18. Explaining the Muslim employment gap in Western Europe: individual-level effects and ethno-religious penalties.

    PubMed

    Connor, Phillip; Koenig, Matthias

    2015-01-01

    It is well-documented that Muslims experience economic disadvantages in Western European labor markets. However, few studies comprehensively test individual-level explanations for the Muslim employment gap. Using data from the European Social Survey, this research note briefly examines the role of individual-level differences between Muslims and non-Muslims in mediating employment differences. Results reveal that human capital, migration background, religiosity, cultural values, and perceptions of discrimination jointly account for about 40% of the employment variance between Muslims and non-Muslims. Model specifications for first- and second-generation Muslim immigrants reveal a similar pattern, with migration background and perceived discrimination being of key relevance in mediating employment difference. While individual-level effects are indeed relevant, unexplained variance suggests that symbolic boundaries against Islam may still translate into tangible ethno-religious penalties. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Nation-scale adoption of new medicines by doctors: an application of the Bass diffusion model

    PubMed Central

    2012-01-01

    Background The adoption of new medicines is influenced by a complex set of social processes that have been widely examined in terms of individual prescribers’ information-seeking and decision-making behaviour. However, quantitative, population-wide analyses of how long it takes for new healthcare practices to become part of mainstream practice are rare. Methods We applied a Bass diffusion model to monthly prescription volumes of 103 often-prescribed drugs in Australia (monthly time series data totalling 803 million prescriptions between 1992 and 2010), to determine the distribution of adoption rates. Our aim was to test the utility of applying the Bass diffusion model to national-scale prescribing volumes. Results The Bass diffusion model was fitted to the adoption of a broad cross-section of drugs using national monthly prescription volumes from Australia (median R2 = 0.97, interquartile range 0.95 to 0.99). The median time to adoption was 8.2 years (IQR 4.9 to 12.1). The model distinguished two classes of prescribing patterns – those where adoption appeared to be driven mostly by external forces (19 drugs) and those driven mostly by social contagion (84 drugs). Those driven more prominently by internal forces were found to have shorter adoption times (p = 0.02 in a non-parametric analysis of variance by ranks). Conclusion The Bass diffusion model may be used to retrospectively represent the patterns of adoption exhibited in prescription volumes in Australia, and distinguishes between adoption driven primarily by external forces such as regulation, or internal forces such as social contagion. The eight-year delay between the introduction of a new medicine and the adoption of the prescribing practice suggests the presence of system inertia in Australian prescribing practices. PMID:22876867

  20. Inference on periodicity of circadian time series.

    PubMed

    Costa, Maria J; Finkenstädt, Bärbel; Roche, Véronique; Lévi, Francis; Gould, Peter D; Foreman, Julia; Halliday, Karen; Hall, Anthony; Rand, David A

    2013-09-01

    Estimation of the period length of time-course data from cyclical biological processes, such as those driven by the circadian pacemaker, is crucial for inferring the properties of the biological clock found in many living organisms. We propose a methodology for period estimation based on spectrum resampling (SR) techniques. Simulation studies show that SR is superior and more robust to non-sinusoidal and noisy cycles than a currently used routine based on Fourier approximations. In addition, a simple fit to the oscillations using linear least squares is available, together with a non-parametric test for detecting changes in period length which allows for period estimates with different variances, as frequently encountered in practice. The proposed methods are motivated by and applied to various data examples from chronobiology.

  1. Quantum transitions driven by one-bond defects in quantum Ising rings.

    PubMed

    Campostrini, Massimo; Pelissetto, Andrea; Vicari, Ettore

    2015-04-01

    We investigate quantum scaling phenomena driven by lower-dimensional defects in quantum Ising-like models. We consider quantum Ising rings in the presence of a bond defect. In the ordered phase, the system undergoes a quantum transition driven by the bond defect between a magnet phase, in which the gap decreases exponentially with increasing size, and a kink phase, in which the gap decreases instead with a power of the size. Close to the transition, the system shows a universal scaling behavior, which we characterize by computing, either analytically or numerically, scaling functions for the low-level energy differences and the two-point correlation function. We discuss the implications of these results for the nonequilibrium dynamics in the presence of a slowly varying parallel magnetic field h, when going across the first-order quantum transition at h=0.

  2. Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling

    PubMed Central

    Hagmann, Patric; Deco, Gustavo

    2015-01-01

    How a stimulus or a task alters the spontaneous dynamics of the brain remains a fundamental open question in neuroscience. One of the most robust hallmarks of task/stimulus-driven brain dynamics is the decrease of variability with respect to the spontaneous level, an effect seen across multiple experimental conditions and in brain signals observed at different spatiotemporal scales. Recently, it was observed that the trial-to-trial variability and temporal variance of functional magnetic resonance imaging (fMRI) signals decrease in the task-driven activity. Here we examined the dynamics of a large-scale model of the human cortex to provide a mechanistic understanding of these observations. The model allows computing the statistics of synaptic activity in the spontaneous condition and in putative tasks determined by external inputs to a given subset of brain regions. We demonstrated that external inputs decrease the variance, increase the covariances, and decrease the autocovariance of synaptic activity as a consequence of single node and large-scale network dynamics. Altogether, these changes in network statistics imply a reduction of entropy, meaning that the spontaneous synaptic activity outlines a larger multidimensional activity space than does the task-driven activity. We tested this model’s prediction on fMRI signals from healthy humans acquired during rest and task conditions and found a significant decrease of entropy in the stimulus-driven activity. Altogether, our study proposes a mechanism for increasing the information capacity of brain networks by enlarging the volume of possible activity configurations at rest and reliably settling into a confined stimulus-driven state to allow better transmission of stimulus-related information. PMID:26317432

  3. Reconstructing medieval climate in the tropical North Atlantic with corals from Anegada, British Virgin Islands

    NASA Astrophysics Data System (ADS)

    Kilbourne, K. H.; Xu, Y. Y.

    2014-12-01

    Resolving the patterns of climate variability during the Medieval Climate Anomaly (MCA) is key for exploring forced versus unforced variability during the last 1000 years. Tropical Atlantic climate is currently not well resolved during the MCA despite it being an important source of heat and moisture to the climate system today. To fill this data gap, we collected cores from Diploria strigosa corals brought onto the low-lying island of Anegada, British Virgin Islands (18.7˚N, 64.3˚S) during an overwash event and use paired analysis of Sr/Ca and δ18O in the skeletal aragonite to explore climate in the tropical Atlantic at the end of the MCA. The three sub-fossil corals used in this analysis overlap temporally and together span the years 1256-1372 C.E. An assessment of three modern corals from the study site indicates that the most robust features of climate reconstructions using Sr/Ca and δ18O in this species are the seasonal cycle and inter-annual variability. The modern seasonal temperature range is 2.8 degrees Celsius and the similarity between the modern and sub-fossil coral Sr/Ca indicates a similar range during the MCA. Today seasonal salinity changes locally are driven in large part by the migration of a regional salinity front. The modern corals capture the related large seasonal seawater δ18O change, but the sub-fossil corals indicate stable seawater δ18O throughout the year, supporting the idea that this site remained on one side of the salinity front continuously throughout the year. Inter-annual variability in the region is influenced by the cross-equatorial SST gradient, the North Atlantic Oscillation and ENSO. Gridded instrumental SST from the area surrounding Anegada and coral geochemical records from nearby Puerto Rico demonstrate concentrations of variance in specific frequency bands associated with these phenomena. The sub-fossil coral shows no concentration of variance in the modern ENSO frequency band, consistent with reduced ENSO variability found in central Pacific corals growing at the same time.

  4. The effectiveness of position- and composition-specific gap costs for protein similarity searches.

    PubMed

    Stojmirović, Aleksandar; Gertz, E Michael; Altschul, Stephen F; Yu, Yi-Kuo

    2008-07-01

    The flexibility in gap cost enjoyed by hidden Markov models (HMMs) is expected to afford them better retrieval accuracy than position-specific scoring matrices (PSSMs). We attempt to quantify the effect of more general gap parameters by separately examining the influence of position- and composition-specific gap scores, as well as by comparing the retrieval accuracy of the PSSMs constructed using an iterative procedure to that of the HMMs provided by Pfam and SUPERFAMILY, curated ensembles of multiple alignments. We found that position-specific gap penalties have an advantage over uniform gap costs. We did not explore optimizing distinct uniform gap costs for each query. For Pfam, PSSMs iteratively constructed from seeds based on HMM consensus sequences perform equivalently to HMMs that were adjusted to have constant gap transition probabilities, albeit with much greater variance. We observed no effect of composition-specific gap costs on retrieval performance. These results suggest possible improvements to the PSI-BLAST protein database search program. The scripts for performing evaluations are available upon request from the authors.

  5. Multiliteracies in Practice: Integrating Multimodal Production across the Curriculum

    ERIC Educational Resources Information Center

    Thibaut, Patricia; Curwood, Jen Scott

    2018-01-01

    Supported by ever-evolving digital tools and online spaces, we argue that multiliteracies can be used to close the gap between teacher-directed, individual, and assessment-driven learning, and authentic, shared, and purpose-driven learning. This is particularly evident through multimodal composition and collaboration in primary classrooms. Over…

  6. Simulation Study on the Self-Sustained Oscillations in DC Driven Glow Discharges at Atmospheric Pressure Under Different Gas Gaps

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; He, Yafeng; Liu, Fucheng

    2015-06-01

    In this paper, a one-dimensional plasma fluid model is employed to study the self-sustained oscillations in DC-driven helium glow discharges at atmospheric pressure under different gas gaps. Our simulation results indicate that a harmonic current oscillation with tiny amplitude always occur at the onset of instability and transits into a relaxation one as the conductivity of the semiconductor is decreased. It is found that the dynamics of the oscillations are dependent on the gas gaps. The discharge can only exhibit a simple oscillation with unique amplitude and frequency at smaller gas gaps (<2 mm) while it can exhibit a more complex oscillation with several different amplitudes and frequencies at larger gas gaps (>2 mm). The discharge modes in these current oscillations have also been analyzed. supported by National Natural Science Foundation of China (Nos. 11205044 and 11405042), Hebei Natural Science Fund of China (Nos. A2012201015 and A2011201006), the Research Foundation of Education Bureau of Hebei Province of China (No. Y2012009), the Postdoctoral Science Foundation of Hebei Province of China (No. B2014003004) and the Postdoctoral Foundation of Hebei University

  7. Forecasting Total Water Storage Changes in the Amazon basin using Atlantic and Pacific Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    De Linage, C.; Famiglietti, J. S.; Randerson, J. T.

    2013-12-01

    Floods and droughts frequently affect the Amazon River basin, impacting the transportation, river navigation, agriculture, economy and the carbon balance and biodiversity of several South American countries. The present study aims to find the main variables controlling the natural interannual variability of terrestrial water storage in the Amazon region and to propose a modeling framework for flood and drought forecasting. We propose three simple empirical models using a linear combination of lagged spatial averages of central Pacific (Niño 4 index) and tropical North Atlantic (TNAI index) sea surface temperatures (SST) to predict a decade-long record of 3°, monthly terrestrial water storage anomalies (TWSA) observed by the Gravity Recovery And Climate Experiment (GRACE) mission. In addition to a SST forcing term, the models included a relaxation term to simulate the memory of water storage anomalies in response to external variability in forcing. Model parameters were spatially-variable and individually optimized for each 3° grid cell. We also investigated the evolution of the predictive capability of our models with increasing minimum lead times for TWSA forecasts. TNAI was the primary external forcing for the central and western regions of the southern Amazon (35% of variance explained with a 3-month forecast), whereas Niño 4 was dominant in the northeastern part of the basin (61% of variance explained with a 3-month forecast). Forcing the model with a combination of the two indices improved the fit significantly (p<0.05) for at least 64% of the grid cells, compared to models forced solely with Niño 4 or TNAI. The combined model was able to explain 43% of the variance in the Amazon basin as a whole with a 3-month lead time. While 66% of the observed variance was explained in the northeastern Amazon, only 39% of the variance was captured by the combined model in the central and western regions, suggesting that other, more local, forcing sources were important in these regions. The predictive capability of the combined model was monotonically degraded with increasing lead times. Degradation was smaller in the northeastern Amazon (where 49% of the variance was explained using a 8-month lead time versus 69% for a 1 month lead time) compared to the western and central regions of southern Amazon (where 22% of the variance was explained at 8 months versus 43% at 1 month). Our model may provide early warning information about flooding in the northeastern region of the Amazon basin, where floodplain areas are extensive and the sensitivity of floods to external SST forcing was shown to be high. This work also strengthens our understanding of the mechanisms regulating interannual variability in Amazon fires, as TWSA deficits may subsequently lead to atmospheric water vapor deficits and reduced cloudiness via water-limited evapotranspiration. Finally, this work helps to bridge the gap between the current GRACE mission and the follow-on gravity mission.

  8. Simulation and performance of brushless dc motor actuators

    NASA Astrophysics Data System (ADS)

    Gerba, A., Jr.

    1985-12-01

    The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.

  9. Phase transition kinetics for a Bose Einstein condensate in a periodically driven band system

    NASA Astrophysics Data System (ADS)

    Michon, E.; Cabrera-Gutiérrez, C.; Fortun, A.; Berger, M.; Arnal, M.; Brunaud, V.; Billy, J.; Petitjean, C.; Schlagheck, P.; Guéry-Odelin, D.

    2018-05-01

    The dynamical transition of an atomic Bose–Einstein condensate from a spatially periodic state to a staggered state with alternating sign in its wavefunction is experimentally studied using a one-dimensional phase modulated optical lattice. We observe the crossover from quantum to thermal fluctuations as the triggering mechanism for the nucleation of staggered states. In good quantitative agreement with numerical simulations based on the truncated Wigner method, we experimentally investigate how the nucleation time varies with the renormalized tunneling rate, the atomic density, and the driving frequency. The effective inverted energy band in the driven lattice is identified as the key ingredient which explains the emergence of gap solitons as observed in numerics and the possibility to nucleate staggered states from interband excitations as reported experimentally.

  10. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime.

    PubMed

    Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T

    2013-01-01

    Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns.

  11. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime

    PubMed Central

    Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.

    2014-01-01

    Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns. PMID:24501591

  12. Machine Learning Prediction of the Energy Gap of Graphene Nanoflakes Using Topological Autocorrelation Vectors.

    PubMed

    Fernandez, Michael; Abreu, Jose I; Shi, Hongqing; Barnard, Amanda S

    2016-11-14

    The possibility of band gap engineering in graphene opens countless new opportunities for application in nanoelectronics. In this work, the energy gaps of 622 computationally optimized graphene nanoflakes were mapped to topological autocorrelation vectors using machine learning techniques. Machine learning modeling revealed that the most relevant correlations appear at topological distances in the range of 1 to 42 with prediction accuracy higher than 80%. The data-driven model can statistically discriminate between graphene nanoflakes with different energy gaps on the basis of their molecular topology.

  13. Making the Case for the Outlier: Researcher Reflections of an African-American Female Deputy Superintendent Who Decided to Close the Achievement Gap

    ERIC Educational Resources Information Center

    Beard, Karen Stansberry

    2012-01-01

    This article presents researcher reflections of a case study of a Black female deputy superintendent who made the value-driven decision to close the achievement gap in her district. I posit that she is an outlier because she is Black and female in a predominantly white male field of practice, she effectively closed the achievement gap through her…

  14. Earth Global Reference Atmospheric Model (GRAM99): Short Course

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2007-01-01

    Earth-GRAM is a FORTRAN software package that can run on a variety of platforms including PC's. For any time and location in the Earth's atmosphere, Earth-GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc.. Dispersions (perturbations) of these parameters are also provided and have realistic correlations, means, and variances - useful for Monte Carlo analysis. Earth-GRAM is driven by observations including a tropospheric database available from the National Climatic Data Center. Although Earth-GRAM can be run in a "stand-alone" mode, many users incorporate it into their trajectory codes. The source code is distributed free-of-charge to eligible recipients.

  15. Symmetry driven control of optical properties in WO 3 films

    DOE PAGES

    Herklotz, A.; Rus, S. F.; KC, S.; ...

    2017-06-23

    Optical band gap control of semiconducting thin films is critical for the optimization of photoelectronic and photochemical applications. In this work, we demonstrate that the optical band gap of WO 3 films can be continuously controlled through uniaxial strain induced by low-energy helium implantation. We show that the implantation of He into epitaxially grown and coherently strained WO 3 films can be used to induce single axis out-of-plane lattice expansion of up to 2%. Ellipsometric spectroscopy reveals that this lattice expansion shifts the absorption spectrum to lower energies and effectively reduces the optical band gap by about 0.18 eV permore » percent expansion of the out-of-plane unit cell length. Furthermore, density functional calculations show that this response is a direct result of changes in orbital degeneracy driven by changes in the octahedral rotations and tilts.« less

  16. Joule heating induced stream broadening in free-flow zone electrophoresis.

    PubMed

    Dutta, Debashis

    2018-03-01

    The use of an electric field in free-flow zone electrophoresis (FFZE) automatically leads to Joule heating yielding a higher temperature at the center of the separation chamber relative to that around the channel walls. For small amounts of heat generated, this thermal effect introduces a variation in the equilibrium position of the analyte molecules due to the dependence of liquid viscosity and analyte diffusivity on temperature leading to a modification in the position of the analyte stream as well as the zone width. In this article, an analytic theory is presented to quantitate such effects of Joule heating on FFZE assays in the limit of small temperature differentials across the channel gap yielding a closed form expression for the stream position and zone variance under equilibrium conditions. A method-of-moments approach is employed to develop this analytic theory, which is further validated with numerical solutions of the governing equations. Interestingly, the noted analyses predict that Joule heating can drift the location of the analyte stream either way of its equilibrium position realized in the absence of any temperature rise in the system, and also tends to reduce zone dispersion. The extent of these modifications, however, is governed by the electric field induced temperature rise and three Péclet numbers evaluated based on the axial pressure-driven flow, transverse electroosmotic and electrophoretic solute velocities in the separation chamber. Monte Carlo simulations of the FFZE system further establish a time and a length scale over which the results from the analytic theory are valid. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sample Size Calculations for Population Size Estimation Studies Using Multiplier Methods With Respondent-Driven Sampling Surveys.

    PubMed

    Fearon, Elizabeth; Chabata, Sungai T; Thompson, Jennifer A; Cowan, Frances M; Hargreaves, James R

    2017-09-14

    While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey. ©Elizabeth Fearon, Sungai T Chabata, Jennifer A Thompson, Frances M Cowan, James R Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 14.09.2017.

  18. Squaring Circles: The Gap for Interdisciplinary Trainees in a Discipline-Driven Academy

    ERIC Educational Resources Information Center

    Sibbald, Shannon L.; Peirson, Leslea; Boyko, Jennifer

    2015-01-01

    The growth of interdisciplinary health services research training programs across Canada has in part been due to acknowledgement of and efforts to bridge a gap between researchers, policy makers and practitioners. Consequently, a new breed of interdisciplinary health services researchers (many of whom have specialization in knowledge translation)…

  19. Predicting cancerlectins by the optimal g-gap dipeptides

    NASA Astrophysics Data System (ADS)

    Lin, Hao; Liu, Wei-Xin; He, Jiao; Liu, Xin-Hui; Ding, Hui; Chen, Wei

    2015-12-01

    The cancerlectin plays a key role in the process of tumor cell differentiation. Thus, to fully understand the function of cancerlectin is significant because it sheds light on the future direction for the cancer therapy. However, the traditional wet-experimental methods were money- and time-consuming. It is highly desirable to develop an effective and efficient computational tool to identify cancerlectins. In this study, we developed a sequence-based method to discriminate between cancerlectins and non-cancerlectins. The analysis of variance (ANOVA) was used to choose the optimal feature set derived from the g-gap dipeptide composition. The jackknife cross-validated results showed that the proposed method achieved the accuracy of 75.19%, which is superior to other published methods. For the convenience of other researchers, an online web-server CaLecPred was established and can be freely accessed from the website http://lin.uestc.edu.cn/server/CalecPred. We believe that the CaLecPred is a powerful tool to study cancerlectins and to guide the related experimental validations.

  20. A study on dependence of the structural, optical and electrical properties of cadmium lead sulphide thin films on Cd/Pb ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Sinitha B., E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Abraham, Anitha, E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Philip, Rachel Reena, E-mail: reenatara@rediffmail.com

    2014-10-15

    Cadmium Lead Sulphide thin films with systematic variation in Cd/Pb ratio are prepared at 333K by CBD, adjusting the reagent-molarity, deposition time and pH. XRD exhibits crystalline-amorphous transition as Cd% exceeds Pb%. AFM shows agglomeration of crystallites of size ∼50±5 nm. EDAX assess the composition whereas XPS ascertains the ternary formation, with binding energies of Pb4f{sub 7/2} and 4f{sub 5/2}, Cd3d{sub 5/2} and 3d{sub 3/2} and S2p at 137.03, 141.606, 404.667, 412.133 and 160.218 eV respectively. The optical absorption spectra reveal the variance in the direct allowed band gaps, from 1.57eV to 2.42 eV as Cd/Pb ratio increases from 0.2more » to 2.7, suggesting possibility of band gap engineering in the n-type films.« less

  1. Can Public Education Coexist with Participatory Culture?

    ERIC Educational Resources Information Center

    Losh, Elizabeth; Jenkins, Henry

    2012-01-01

    Participatory culture has many mechanisms to support peer-to-peer learning as young people enter interest-driven and friendship-driven networks. In this article, the authors argue that school librarians can help bridge the gap between the excitement of having students experiment with new forms of social learning and new digital-media practices,…

  2. Using Flexible Data-Driven Frameworks to Enhance School Psychology Training and Practice

    ERIC Educational Resources Information Center

    Coleman, Stephanie L.; Hendricker, Elise

    2016-01-01

    While a great number of scientific advances have been made in school psychology, the research to practice gap continues to exist, which has significant implications for training future school psychologists. Training in flexible, data-driven models may help school psychology trainees develop important competencies that will benefit them throughout…

  3. Dynamics of entanglement and the Schmidt gap in a driven light-matter system

    NASA Astrophysics Data System (ADS)

    Gómez-Ruiz, F. J.; Mendoza-Arenas, J. J.; Acevedo, O. L.; Rodríguez, F. J.; Quiroga, L.; Johnson, N. F.

    2018-01-01

    The ability to modify light-matter coupling in time (e.g. using external pulses) opens up the exciting possibility of generating and probing new aspects of quantum correlations in many-body light-matter systems. Here we study the impact of such a pulsed coupling on the light-matter entanglement in the Dicke model as well as the respective subsystem quantum dynamics. Our dynamical many-body analysis exploits the natural partition between the radiation and matter degrees of freedom, allowing us to explore time-dependent intra-subsystem quantum correlations by means of squeezing parameters, and the inter-subsystem Schmidt gap for different pulse duration (i.e. ramping velocity) regimes—from the near adiabatic to the sudden quench limits. Our results reveal that both types of quantities indicate the emergence of the superradiant phase when crossing the quantum critical point. In addition, at the end of the pulse light and matter remain entangled even though they become uncoupled, which could be exploited to generate entangled states in non-interacting systems.

  4. Mind the gap: implementation challenges break the link between HIV/AIDS research and practice.

    PubMed

    MacCarthy, Sarah; Reisner, Sari; Hoffmann, Michael; Perez-Brumer, Amaya; Silva-Santisteban, Alfonso; Nunn, Amy; Bastos, Leonardo; Vasconcellos, Mauricio Teixeira Leite de; Kerr, Ligia; Bastos, Francisco Inácio; Dourado, Inês

    2016-11-03

    Sampling strategies such as respondent-driven sampling (RDS) and time-location sampling (TLS) offer unique opportunities to access key populations such as men who have sex with men (MSM) and transgender women. Limited work has assessed implementation challenges of these methods. Overcoming implementation challenges can improve research quality and increase uptake of HIV services among key populations. Drawing from studies using RDS in Brazil and TLS in Peru, we summarize challenges encountered in the field and potential strategies to address them. In Brazil, study site selection, cash incentives, and seed selection challenged RDS implementation with MSM. In Peru, expansive geography, safety concerns, and time required for study participation complicated TLS implementation with MSM and transgender women. Formative research, meaningful participation of key populations across stages of research, and transparency in study design are needed to link HIV/AIDS research and practice. Addressing implementation challenges can close gaps in accessing services among those most burdened by the epidemic.

  5. Mind the gap: implementation challenges break the link between HIV/AIDS research and practice

    PubMed Central

    MacCarthy, Sarah; Reisner, Sari; Hoffmann, Michael; Perez-Brumer, Amaya; Silva-Santisteban, Alfonso; Nunn, Amy; Bastos, Leonardo; de Vasconcellos, Mauricio Teixeira Leite; Kerr, Ligia; Bastos, Francisco Inácio; Dourado, Inês

    2018-01-01

    Sampling strategies such as respondent-driven sampling (RDS) and time-location sampling (TLS) offer unique opportunities to access key populations such as men who have sex with men (MSM) and transgender women. Limited work has assessed implementation challenges of these methods. Overcoming implementation challenges can improve research quality and increase uptake of HIV services among key populations. Drawing from studies using RDS in Brazil and TLS in Peru, we summarize challenges encountered in the field and potential strategies to address them. In Brazil, study site selection, cash incentives, and seed selection challenged RDS implementation with MSM. In Peru, expansive geography, safety concerns, and time required for study participation complicated TLS implementation with MSM and transgender women. Formative research, meaningful participation of key populations across stages of research, and transparency in study design are needed to link HIV/AIDS research and practice. Addressing implementation challenges can close gaps in accessing services among those most burdened by the epidemic. PMID:27828609

  6. In-vivo gingival sulcus imaging using full-range, complex-conjugate-free, endoscopic spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Zhang, Kang; Yi, WonJin; Kang, Jin U.

    2012-01-01

    Frequent monitoring of gingival sulcus will provide valuable information for judging the presence and severity of periodontal disease. Optical coherence tomography, as a 3D high resolution high speed imaging modality is able to provide information for pocket depth, gum contour, gum texture, gum recession simultaneously. A handheld forward-viewing miniature resonant fiber-scanning probe was developed for in-vivo gingival sulcus imaging. The fiber cantilever driven by magnetic force vibrates at resonant frequency. A synchronized linear phase-modulation was applied in the reference arm by the galvanometer-driven reference mirror. Full-range, complex-conjugate-free, real-time endoscopic SD-OCT was achieved by accelerating the data process using graphics processing unit. Preliminary results showed a real-time in-vivo imaging at 33 fps with an imaging range of lateral 2 mm by depth 3 mm. Gap between the tooth and gum area was clearly visualized. Further quantification analysis of the gingival sulcus will be performed on the image acquired.

  7. Absence of thermalization in finite isolated interacting Floquet systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seetharam, Karthik; Titum, Paraj; Kolodrubetz, Michael

    Conventional wisdom suggests that the long time behavior of isolated interacting periodically driven (Floquet) systems is a featureless maximal entropy state characterized by an infinite temperature. Efforts to thwart this uninteresting fixed point include adding sufficient disorder to realize a Floquet many-body localized phase or working in a narrow region of drive frequencies to achieve glassy non-thermal behavior at long time. Here we show that in clean systems the Floquet eigenstates can exhibit non-thermal behavior due to finite system size. We consider a one-dimensional system of spinless fermions with nearest-neighbor interactions where the interaction term is driven. Interestingly, even withmore » no static component of the interaction, the quasienergy spectrum contains gaps and a significant fraction of the Floquet eigenstates, at all quasienergies, have non-thermal average doublon densities. Finally, we show that this non-thermal behavior arises due to emergent integrability at large interaction strength and discuss how the integrability breaks down with power-law dependence on system size.« less

  8. Absence of thermalization in finite isolated interacting Floquet systems

    NASA Astrophysics Data System (ADS)

    Seetharam, Karthik; Titum, Paraj; Kolodrubetz, Michael; Refael, Gil

    2018-01-01

    Conventional wisdom suggests that the long-time behavior of isolated interacting periodically driven (Floquet) systems is a featureless maximal-entropy state characterized by an infinite temperature. Efforts to thwart this uninteresting fixed point include adding sufficient disorder to realize a Floquet many-body localized phase or working in a narrow region of drive frequencies to achieve glassy nonthermal behavior at long time. Here we show that in clean systems the Floquet eigenstates can exhibit nonthermal behavior due to finite system size. We consider a one-dimensional system of spinless fermions with nearest-neighbor interactions where the interaction term is driven. Interestingly, even with no static component of the interaction, the quasienergy spectrum contains gaps and a significant fraction of the Floquet eigenstates, at all quasienergies, have nonthermal average doublon densities. We show that this nonthermal behavior arises due to emergent integrability at large interaction strength and discuss how the integrability breaks down with power-law dependence on system size.

  9. Absence of thermalization in finite isolated interacting Floquet systems

    DOE PAGES

    Seetharam, Karthik; Titum, Paraj; Kolodrubetz, Michael; ...

    2018-01-29

    Conventional wisdom suggests that the long time behavior of isolated interacting periodically driven (Floquet) systems is a featureless maximal entropy state characterized by an infinite temperature. Efforts to thwart this uninteresting fixed point include adding sufficient disorder to realize a Floquet many-body localized phase or working in a narrow region of drive frequencies to achieve glassy non-thermal behavior at long time. Here we show that in clean systems the Floquet eigenstates can exhibit non-thermal behavior due to finite system size. We consider a one-dimensional system of spinless fermions with nearest-neighbor interactions where the interaction term is driven. Interestingly, even withmore » no static component of the interaction, the quasienergy spectrum contains gaps and a significant fraction of the Floquet eigenstates, at all quasienergies, have non-thermal average doublon densities. Finally, we show that this non-thermal behavior arises due to emergent integrability at large interaction strength and discuss how the integrability breaks down with power-law dependence on system size.« less

  10. A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila.

    PubMed

    Verd, Berta; Clark, Erik; Wotton, Karl R; Janssens, Hilde; Jiménez-Guri, Eva; Crombach, Anton; Jaeger, Johannes

    2018-02-01

    Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.

  11. A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila

    PubMed Central

    Verd, Berta; Clark, Erik; Wotton, Karl R.; Janssens, Hilde; Jiménez-Guri, Eva; Crombach, Anton

    2018-01-01

    Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects. PMID:29451884

  12. The Gap Procedure: for the identification of phylogenetic clusters in HIV-1 sequence data.

    PubMed

    Vrbik, Irene; Stephens, David A; Roger, Michel; Brenner, Bluma G

    2015-11-04

    In the context of infectious disease, sequence clustering can be used to provide important insights into the dynamics of transmission. Cluster analysis is usually performed using a phylogenetic approach whereby clusters are assigned on the basis of sufficiently small genetic distances and high bootstrap support (or posterior probabilities). The computational burden involved in this phylogenetic threshold approach is a major drawback, especially when a large number of sequences are being considered. In addition, this method requires a skilled user to specify the appropriate threshold values which may vary widely depending on the application. This paper presents the Gap Procedure, a distance-based clustering algorithm for the classification of DNA sequences sampled from individuals infected with the human immunodeficiency virus type 1 (HIV-1). Our heuristic algorithm bypasses the need for phylogenetic reconstruction, thereby supporting the quick analysis of large genetic data sets. Moreover, this fully automated procedure relies on data-driven gaps in sorted pairwise distances to infer clusters, thus no user-specified threshold values are required. The clustering results obtained by the Gap Procedure on both real and simulated data, closely agree with those found using the threshold approach, while only requiring a fraction of the time to complete the analysis. Apart from the dramatic gains in computational time, the Gap Procedure is highly effective in finding distinct groups of genetically similar sequences and obviates the need for subjective user-specified values. The clusters of genetically similar sequences returned by this procedure can be used to detect patterns in HIV-1 transmission and thereby aid in the prevention, treatment and containment of the disease.

  13. Enhanced Forced Convection Heat Transfer using Small Scale Vorticity Concentrations Effected by Flow Driven, Aeroelastically Vibrating Reeds

    DTIC Science & Technology

    2016-08-03

    insulated from behind (using an air gap) as shown in figure III.3-1c. Each of the heated side walls are instrumented with seven equally-spaced T-Type...AFRL-AFOSR-VA-TR-2016-0339 Enhanced convection heat transfer using small-scale vorticity concentrations effected by flow-driven, aeroelastically...public release. Enhanced Forced Convection Heat Transfer using Small-Scale Vorticity Concentrations Effected by Flow-Driven, Aeroelastically Vibrating

  14. Experimental Investigation and Optimization of Response Variables in WEDM of Inconel - 718

    NASA Astrophysics Data System (ADS)

    Karidkar, S. S.; Dabade, U. A.

    2016-02-01

    Effective utilisation of Wire Electrical Discharge Machining (WEDM) technology is challenge for modern manufacturing industries. Day by day new materials with high strengths and capabilities are being developed to fulfil the customers need. Inconel - 718 is similar kind of material which is extensively used in aerospace applications, such as gas turbine, rocket motors, and spacecraft as well as in nuclear reactors and pumps etc. This paper deals with the experimental investigation of optimal machining parameters in WEDM for Surface Roughness, Kerf Width and Dimensional Deviation using DoE such as Taguchi methodology, L9 orthogonal array. By keeping peak current constant at 70 A, the effect of other process parameters on above response variables were analysed. Obtained experimental results were statistically analysed using Minitab-16 software. Analysis of Variance (ANOVA) shows pulse on time as the most influential parameter followed by wire tension whereas spark gap set voltage is observed to be non-influencing parameter. Multi-objective optimization technique, Grey Relational Analysis (GRA), shows optimal machining parameters such as pulse on time 108 Machine unit, spark gap set voltage 50 V and wire tension 12 gm for optimal response variables considered for the experimental analysis.

  15. Additive genetic variance in polyandry enables its evolution, but polyandry is unlikely to evolve through sexy or good sperm processes.

    PubMed

    Travers, L M; Simmons, L W; Garcia-Gonzalez, F

    2016-05-01

    Polyandry is widespread despite its costs. The sexually selected sperm hypotheses ('sexy' and 'good' sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2 ) while controlling for sampling variance due to male × male × female interactions. We also measured additive genetic variance in egg-to-adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg-to-adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest that the evolution of polyandry may not be driven by sexy sperm or good sperm processes. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  16. Observations and predictability of gap winds in a steep, narrow, fire-prone canyon in central Idaho, USA

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, N. S.; Forthofer, J.; Gibson, C.; Lamb, B. K.

    2017-12-01

    Frequent strong gap winds were measured in a deep, steep, wildfire-prone river canyon of central Idaho, USA during July-September 2013. Analysis of archived surface pressure data indicate that the gap wind events were driven by regional scale surface pressure gradients. The events always occurred between 0400 and 1200 LT and typically lasted 3-4 hours. The timing makes these events particularly hazardous for wildland firefighting applications since the morning is typically a period of reduced fire activity and unsuspecting firefighters could be easily endangered by the onset of strong downcanyon winds. The gap wind events were not explicitly forecast by operational numerical weather prediction (NWP) models due to the small spatial scale of the canyon ( 1-2 km wide) compared to the horizontal resolution of operational NWP models (3 km or greater). Custom WRF simulations initialized with NARR data were run at 1 km horizontal resolution to assess whether higher resolution NWP could accurately simulate the observed gap winds. Here, we show that the 1 km WRF simulations captured many of the observed gap wind events, although the strength of the events was underpredicted. We also present evidence from these WRF simulations which suggests that the Salmon River Canyon is near the threshold of WRF-resolvable terrain features when the standard WRF coordinate system and discretization schemes are used. Finally, we show that the strength of the gap wind events can be predicted reasonably well as a function of the surface pressure gradient across the gap, which could be useful in the absence of high-resolution NWP. These are important findings for wildland firefighting applications in narrow gaps where routine forecasts may not provide warning for wind effects induced by high-resolution terrain features.

  17. The effect of repetitive baseball pitching on medial elbow joint space gapping associated with 2 elbow valgus stressors in high school baseball players.

    PubMed

    Hattori, Hiroshi; Akasaka, Kiyokazu; Otsudo, Takahiro; Hall, Toby; Amemiya, Katsuya; Mori, Yoshihisa

    2018-04-01

    To prevent elbow injury in baseball players, various methods have been used to measure medial elbow joint stability with valgus stress. However, no studies have investigated higher levels of elbow valgus stress. This study investigated medial elbow joint space gapping measured ultrasonically resulting from a 30 N valgus stress vs. gravitational valgus stress after a repetitive throwing task. The study included 25 high school baseball players. Each subject pitched 100 times. The ulnohumeral joint space was measured ultrasonographically, before pitching and after each successive block of 20 pitches, with gravity stress or 30 N valgus stress. Two-way repeated measures analysis of variance and Pearson correlation coefficient analysis were used. The 30 N valgus stress produced significantly greater ulnohumeral joint space gapping than gravity stress before pitching and at each successive 20-pitch block (P < .01). For the 2 stress methods, ulnohumeral joint space gapping increased significantly from baseline after 60 pitches (P < .01). Strong significant correlations were found between the 2 methods for measurement of medial elbow joint space gapping (r = 0.727-0.859, P < .01). Gravity stress and 30 N valgus stress may produce different effects with respect to medial elbow joint space gapping before pitching; however, 30 N valgus stress appears to induce greater mechanical stress, which may be preferable when assessing joint instability but also has the potential to be more aggressive. The present results may indicate that constraining factors to medial elbow joint valgus stress matched typical viscoelastic properties of cyclic creep. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Laser-driven localization of collective CO vibrations in metal-carbonyl complexes

    NASA Astrophysics Data System (ADS)

    Lisaj, Mateusz; Kühn, Oliver

    2014-11-01

    Using the example of a cobalt dicarbonyl complex it is shown that two perpendicular linearly polarized IR laser pulses can be used to trigger an excitation of the delocalized CO stretching modes, which corresponds to an alternating localization of the vibration within one CO bond. The switching time for localization in either of the two bonds is determined by the energy gap between the symmetric and asymmetric fundamental transition frequencies. The phase of the oscillation between the two local bond excitations can be tuned by the relative phase of the two pulses. The extend of control of bond localization is limited by the anharmonicity of the potential energy surfaces leading to wave packet dispersion. This prevents such a simple pulse scheme from being used for laser-driven bond breaking in the considered example.

  19. Solving Immunology?

    PubMed

    Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L; Bassaganya-Riera, Josep; Hafler, David A; Sontag, Eduardo; Wang, Jin; Tsang, John S; Day, Judy D; Kleinstein, Steven H; Butte, Atul J; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C

    2017-02-01

    Emergent responses of the immune system result from the integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for the systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the National Institute of Allergy and Infectious Disease (NIAID) workshop 'Complex Systems Science, Modeling and Immunity' and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling, and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Data-Driven Learning for Beginners: The Case of German Verb-Preposition Collocations

    ERIC Educational Resources Information Center

    Vyatkina, Nina

    2016-01-01

    Research on data-driven learning (DDL), or teaching and learning languages with the help of electronic corpora, has shown that it is both effective and efficient. Nevertheless, DDL is still far from common pedagogical practice, not least because the empirical research on it is still limited and narrowly focused. This study addresses some gaps in…

  1. Physical context for theoretical approaches to sediment transport magnitude-frequency analysis in alluvial channels

    NASA Astrophysics Data System (ADS)

    Sholtes, Joel; Werbylo, Kevin; Bledsoe, Brian

    2014-10-01

    Theoretical approaches to magnitude-frequency analysis (MFA) of sediment transport in channels couple continuous flow probability density functions (PDFs) with power law flow-sediment transport relations (rating curves) to produce closed-form equations relating MFA metrics such as the effective discharge, Qeff, and fraction of sediment transported by discharges greater than Qeff, f+, to statistical moments of the flow PDF and rating curve parameters. These approaches have proven useful in understanding the theoretical drivers behind the magnitude and frequency of sediment transport. However, some of their basic assumptions and findings may not apply to natural rivers and streams with more complex flow-sediment transport relationships or management and design scenarios, which have finite time horizons. We use simple numerical experiments to test the validity of theoretical MFA approaches in predicting the magnitude and frequency of sediment transport. Median values of Qeff and f+ generated from repeated, synthetic, finite flow series diverge from those produced with theoretical approaches using the same underlying flow PDF. The closed-form relation for f+ is a monotonically increasing function of flow variance. However, using finite flow series, we find that f+ increases with flow variance to a threshold that increases with flow record length. By introducing a sediment entrainment threshold, we present a physical mechanism for the observed diverging relationship between Qeff and flow variance in fine and coarse-bed channels. Our work shows that through complex and threshold-driven relationships sediment transport mode, channel morphology, flow variance, and flow record length all interact to influence estimates of what flow frequencies are most responsible for transporting sediment in alluvial channels.

  2. Addressing variability in the acoustic startle reflex for accurate gap detection assessment.

    PubMed

    Longenecker, Ryan J; Kristaponyte, Inga; Nelson, Gregg L; Young, Jesse W; Galazyuk, Alexander V

    2018-06-01

    The acoustic startle reflex (ASR) is subject to substantial variability. This inherent variability consequently shapes the conclusions drawn from gap-induced prepulse inhibition of the acoustic startle reflex (GPIAS) assessments. Recent studies have cast doubt as to the efficacy of this methodology as it pertains to tinnitus assessment, partially, due to variability in and between data sets. The goal of this study was to examine the variance associated with several common data collection variables and data analyses with the aim to improve GPIAS reliability. To study this the GPIAS tests were conducted in adult male and female CBA/CaJ mice. Factors such as inter-trial interval, circadian rhythm, sex differences, and sensory adaptation were each evaluated. We then examined various data analysis factors which influence GPIAS assessment. Gap-induced facilitation, data processing options, and assessments of tinnitus were studied. We found that the startle reflex is highly variable in CBA/CaJ mice, but this can be minimized by certain data collection factors. We also found that careful consideration of temporal fluctuations of the ASR and controlling for facilitation can lead to more accurate GPIAS results. This study provides a guide for reducing variance in the GPIAS methodology - thereby improving the diagnostic power of the test. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Comparing Students With and Without Reading Difficulties on Reading Comprehension Assessments: A Meta-Analysis.

    PubMed

    Collins, Alyson A; Lindström, Esther R; Compton, Donald L

    Researchers have increasingly investigated sources of variance in reading comprehension test scores, particularly with students with reading difficulties (RD). The purpose of this meta-analysis was to determine if the achievement gap between students with RD and typically developing (TD) students varies as a function of different reading comprehension response formats (e.g., multiple choice, cloze). A systematic literature review identified 82 eligible studies. All studies administered reading comprehension assessments to students with RD and TD students in Grades K-12. Hedge's g standardized mean difference effect sizes were calculated, and random effects robust variance estimation techniques were used to aggregate average weighted effect sizes for each response format. Results indicated that the achievement gap between students with RD and TD students was larger for some response formats (e.g., picture selection ES g = -1.80) than others (e.g., retell ES g = -0.60). Moreover, for multiple-choice, cloze, and open-ended question response formats, single-predictor metaregression models explored potential moderators of heterogeneity in effect sizes. No clear patterns, however, emerged in regard to moderators of heterogeneity in effect sizes across response formats. Findings suggest that the use of different response formats may lead to variability in the achievement gap between students with RD and TD students.

  4. Signatures of a dissipative phase transition in photon correlation measurements

    NASA Astrophysics Data System (ADS)

    Fink, Thomas; Schade, Anne; Höfling, Sven; Schneider, Christian; Imamoglu, Ataç

    2018-04-01

    Understanding and characterizing phase transitions in driven-dissipative systems constitutes a new frontier for many-body physics1-8. A generic feature of dissipative phase transitions is a vanishing gap in the Liouvillian spectrum9, which leads to long-lived deviations from the steady state as the system is driven towards the transition. Here, we show that photon correlation measurements can be used to characterize the corresponding critical slowing down of non-equilibrium dynamics. We focus on the extensively studied phenomenon of optical bistability in GaAs cavity polaritons10,11, which can be described as a first-order dissipative phase transition12-14. Increasing the excitation strength towards the bistable range results in an increasing photon-bunching signal along with a decay time that is prolonged by more than nine orders of magnitude as compared with that of single polaritons. In the limit of strong polariton interactions leading to pronounced quantum fluctuations, the mean-field bistability threshold is washed out. Nevertheless, the functional form with which the Liouvillian gap closes as the thermodynamic limit is approached provides a signature of the emerging dissipative phase transition. Our results establish photon correlation measurements as an invaluable tool for studying dynamical properties of dissipative phase transitions without requiring phase-sensitive interferometric measurements.

  5. Unbiased estimation in seamless phase II/III trials with unequal treatment effect variances and hypothesis-driven selection rules.

    PubMed

    Robertson, David S; Prevost, A Toby; Bowden, Jack

    2016-09-30

    Seamless phase II/III clinical trials offer an efficient way to select an experimental treatment and perform confirmatory analysis within a single trial. However, combining the data from both stages in the final analysis can induce bias into the estimates of treatment effects. Methods for bias adjustment developed thus far have made restrictive assumptions about the design and selection rules followed. In order to address these shortcomings, we apply recent methodological advances to derive the uniformly minimum variance conditionally unbiased estimator for two-stage seamless phase II/III trials. Our framework allows for the precision of the treatment arm estimates to take arbitrary values, can be utilised for all treatments that are taken forward to phase III and is applicable when the decision to select or drop treatment arms is driven by a multiplicity-adjusted hypothesis testing procedure. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  6. Increasing ENSO-Driven Drought and Wildfire Risks in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Fasullo, J.; Otto-Bliesner, B. L.; Stevenson, S.

    2015-12-01

    ENSO-related teleconnections occurring in the transient climate states of the 20th and 21st centuries are examined using the NCAR CESM1-CAM5 Large Ensemble (LE). A focus is given to quantifying the changing nature of related variability in a warming climate, the statistical robustness of which is enhanced by the numerous members of the LE (presently ~40). It is found that while the dynamical components of ENSO's teleconnections weaken considerably in a warming world, associated variability over land is in many cases sustained by changes in the background state, such as for rainfall due to the background rise in specific humidity. In some fields, particularly those associated with associated with thermal stress (e.g. drought and wildfire), ENSO-related variance increases dramatically. This, combined with the fact that ENSO variance itself increases in a warming climate in the LE, contributes to dramatic projected increases in ENSO-driven drought and wildfire risks in a warming world.

  7. Variance change point detection for fractional Brownian motion based on the likelihood ratio test

    NASA Astrophysics Data System (ADS)

    Kucharczyk, Daniel; Wyłomańska, Agnieszka; Sikora, Grzegorz

    2018-01-01

    Fractional Brownian motion is one of the main stochastic processes used for describing the long-range dependence phenomenon for self-similar processes. It appears that for many real time series, characteristics of the data change significantly over time. Such behaviour one can observe in many applications, including physical and biological experiments. In this paper, we present a new technique for the critical change point detection for cases where the data under consideration are driven by fractional Brownian motion with a time-changed diffusion coefficient. The proposed methodology is based on the likelihood ratio approach and represents an extension of a similar methodology used for Brownian motion, the process with independent increments. Here, we also propose a statistical test for testing the significance of the estimated critical point. In addition to that, an extensive simulation study is provided to test the performance of the proposed method.

  8. Dynamics of three-tori in a periodically forced navier-stokes flow

    PubMed

    Lopez; Marques

    2000-07-31

    Three-tori solutions of the Navier-Stokes equations and their dynamics are elucidated by use of a global Poincare map. The flow is contained in a finite annular gap between two concentric cylinders, driven by the steady rotation and axial harmonic oscillations of the inner cylinder. The three-tori solutions undergo global bifurcations, including a new gluing bifurcation, associated with homoclinic and heteroclinic connections to unstable solutions (two-tori). These unstable two-tori act as organizing centers for the three-tori dynamics. A discrete space-time symmetry influences the dynamics.

  9. Trends in the earnings gender gap among dentists, physicians, and lawyers.

    PubMed

    Nguyen Le, Thanh An; Lo Sasso, Anthony T; Vujicic, Marko

    2017-04-01

    The authors examined the factors associated with sex differences in earnings for 3 professional occupations. The authors used a multivariate Blinder-Oaxaca method to decompose the differences in mean earnings across sex. Although mean differences in earnings between men and women narrowed over time, there remained large, unaccountable earnings differences between men and women among all professions after multivariate adjustments. For dentists, the unexplained difference in earnings for women was approximately constant at 62% to 66%. For physicians, the unexplained difference in earnings for women ranged from 52% to 57%. For lawyers, the unexplained difference in earnings for women was the smallest of the 3 professions but also exhibited the most growth, increasing from 34% in 1990 to 45% in 2010. The reduction in the earnings gap is driven largely by a general convergence between men and women in some, but not all, observable characteristics over time. Nevertheless, large unexplained gender gaps in earnings remain for all 3 professions. Policy makers must use care in efforts to alleviate earnings differences for men and women because measures could make matters worse without a clear understanding of the nature of the factors driving the differences. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  10. Quantification and visualization of injury and regeneration to the ciliated epithelium using quantitative flow imaging and speckle variance optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gamm, Ute A.; Huang, Brendan K.; Mis, Emily K.; Khokha, Mustafa K.; Choma, Michael A.

    2017-04-01

    Mucociliary flow is an important defense mechanism in the lung to remove inhaled pathogens and pollutants. A disruption of ciliary flow can lead to respiratory infections. Even though patients in the intensive care unit (ICU) either have or are very susceptible to respiratory infections, mucociliary flow is not well understood in the ICU setting. We recently demonstrated that hyperoxia, a consequence of administering supplemental oxygen to a patient in respiratory failure, can lead to a significant reduction of cilia-driven fluid flow in mouse trachea. There are other factors that are relevant to ICU medicine that can damage the ciliated tracheal epithelium, including inhalation injury and endotracheal tube placement. In this study we use two animal models, Xenopus embryo and ex vivo mouse trachea, to analyze flow defects in the injured ciliated epithelium. Injury is generated either mechanically with a scalpel or chemically by calcium chloride (CaCl2) shock, which efficiently but reversibly deciliates the embryo skin. In this study we used optical coherence tomography (OCT) and particle tracking velocimetry (PTV) to quantify cilia driven fluid flow over the surface of the Xenopus embryo. We additionally visualized damage to the ciliated epithelium by capturing 3D speckle variance images that highlight beating cilia. Mechanical injury disrupted cilia-driven fluid flow over the injured site, which led to a reduction in cilia-driven fluid flow over the whole surface of the embryo (n=7). The calcium chloride shock protocol proved to be highly effective in deciliating embryos (n=6). 3D speckle variance images visualized a loss of cilia and cilia-driven flow was halted immediately after application. We also applied CaCl2-shock to cultured ex vivo mouse trachea (n=8) and found, similarly to effects in Xenopus embryo, an extensive loss of cilia with resulting cessation of flow. We investigated the regeneration of the ciliated epithelium after an 8 day incubation period, and found that cilia had regrown and flow was completely restored. In conclusion, OCT is a valuable tool to visualize injury of the ciliated epithelium and to quantify reduction of generated flow. This method allows for systematic investigation of focal and diffuse injury of the ciliated epithelium and the assessment of mechanisms to compensate for loss of flow.

  11. Quantification and visualization of injury and regeneration in the developing ciliated epithelium using quantitative flow imaging and speckle variance optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gamm, Ute A.; Huang, Brendan K.; Mis, Emily K.; Khokha, Mustafa K.; Choma, Michael A.

    2017-02-01

    Premature infants are at a high risk for respiratory diseases owing to an underdeveloped respiratory system that is very susceptible to infection and inflammation. One aspect of respiratory health is the state of the ciliated respiratory epithelium which lines the trachea and bronchi. The ciliated epithelium is responsible for trapping and removing pathogens and pollutants from the lungs and an impairment of ciliary functionality can lead to recurring respiratory infections and subsequent lung damage. Mechanisms of cilia-driven fluid flow itself but also factors influenced by development like ciliary density and flow generation are incompletely understood. Furthermore, medical interventions like intubation and accidental aspiration can lead to focal or diffuse loss of cilia and disruption of flow. In this study we use two animal models, Xenopus embryo and ex vivo mouse trachea, to analyze flow defects in the injured ciliated epithelium. Injury is generated either mechanically with a scalpel or chemically by calcium chloride (CaCl2) shock, which efficiently but reversibly deciliates the embryo skin. In this study we used optical coherence tomography (OCT) and particle tracking velocimetry (PTV) to quantify cilia driven fluid flow over the surface of the Xenopus embryo. We additionally visualized damage to the ciliated epithelium by capturing 3D speckle variance images that highlight beating cilia. Mechanical injury disrupted cilia-driven fluid flow over the injured site, which led to a reduction in cilia-driven fluid flow over the whole surface of the embryo (n=7). The calcium chloride shock protocol proved to be highly effective in deciliating embryos (n=6). 3D speckle variance images visualized a loss of cilia and cilia-driven flow was halted immediately after application. We also applied CaCl2-shock to cultured ex vivo mouse trachea (n=8) and found, similarly to effects in Xenopus embryo, an extensive loss of cilia with resulting cessation of flow. We investigated the regeneration of the ciliated epithelium after an 8 day incubation period, and found that cilia had regrown and flow was completely restored. In conclusion, OCT is a valuable tool to visualize injury of the ciliated epithelium and to quantify reduction of generated flow. This method allows for systematic investigation of focal and diffuse injury of the ciliated epithelium and the assessment of mechanisms to compensate for loss of flow.

  12. Radiofrequency artefacts in echoplanar imaging induced by two 1.5 T MR scanners in close proximity.

    PubMed

    Li, X; Cui, J; Christopasak, S P; Kumar, A; Peng, Z-G

    2014-06-01

    The purpose of this study was to assess radio frequency (RF) artefacts in echoplanar imaging (EPI) induced by two 1.5 T MR scanners in close proximity and to find an effective method to correct them. Based on the intact shielding of rooms, experiments were performed by two MR scanners with similar centre frequencies. Phantom A (PA) was scanned in one scanner by EPI at different bandwidths (BWs). Simultaneously, phantom B was scanned in a fixed sequence for scanning with the other scanner. RF artefact gaps of PA, scanning time and the image signal-noise ratio (SNR) were measured and recorded. Statistical analysis was performed with the repeated-measures analysis of variance test. Based on findings obtained from PA, three healthy volunteers were studied at a conventional BW and a lower BW to observe the artefact variance. EPI RF artefacts were symmetrically situated in both sides of the image following the phase-encoding direction. The gap size of the artefact became larger and the SNR was significantly improved with a narrower BW. RF artefacts with a lower BW in volunteers presented the same characteristic as PA. For EPI RF artefacts produced by two 1.5 T MR scanners with approximately similar centre frequencies, we can reduce BWs in a suitable range to minimize the effect on MRI. MR scanners with the same field strength installed in the same vicinity might produce RF artefacts in the sequence at larger BWs. Reducing BWs properly is effective to control the position of artefacts and improve the image quality.

  13. Solar cycle variations in mesospheric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  14. Subjective and Objective Binge Eating in Relation to Eating Disorder Symptomatology, Depressive Symptoms, and Self-Esteem Among Treatment-Seeking Adolescents with Bulimia Nervosa

    PubMed Central

    Fitzsimmons-Craft, Ellen E.; Ciao, Anna C.; Accurso, Erin C.; Pisetsky, Emily M.; Peterson, Carol B.; Byrne, Catherine E.; Le Grange, Daniel

    2014-01-01

    This study investigated the importance of the distinction between objective (OBE) and subjective binge eating (SBE) among 80 treatment-seeking adolescents with bulimia nervosa (BN). We explored relationships among OBEs, SBEs, eating disorder (ED) symptomatology, depression, and self-esteem using two approaches. Group comparisons showed that OBE and SBE groups did not differ on ED symptoms or self-esteem; however, the SBE group had significantly greater depression. Examining continuous variables, OBEs (not SBEs) accounted for significant unique variance in global ED pathology, vomiting, and self-esteem. SBEs (not OBEs) accounted for significant unique variance in restraint and depression. Both OBEs and SBEs accounted for significant unique variance in eating concern; neither accounted for unique variance in weight/shape concern, laxative use, diuretic use, or driven exercise. Loss of control, rather than amount of food, may be most important in defining binge eating. Additionally, OBEs may indicate broader ED pathology while SBEs may indicate restrictive/depressive symptomatology. PMID:24852114

  15. Gas driven displacement in a Hele-Shaw cell with chemical reaction

    NASA Astrophysics Data System (ADS)

    White, Andrew; Ward, Thomas

    2011-11-01

    Injecting a less viscous fluid into a more viscous fluid produces instabilities in the form of fingering which grow radially from the less viscous injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). For two non-reacting fluids in a radial Hele-Shaw cell the ability of the gas phase to penetrate the liquid phase is largely dependent on the gap height, liquid viscosity and gas pressure. In contrast combining two reactive fluids such as aqueous calcium hydroxide and carbon dioxide, which form a precipitate, presents a more complex but technically relevant system. As the two species react calcium carbonate precipitates and increases the aqueous phase visocosity. This change in viscosity may have a significant impact on how the gas phase penetrates the liquid phase. Experimental are performed in a radial Hele-Shaw cell with gap heights O(10-100) microns by loading a single drop of aqueous calcium hydroxide and injecting carbon dioxide into the drop. The calcium hydroxide concentration, carbon dioxide pressure and gap height are varied and images of the gas penetration are analyzed to determine residual film thickness and bursting times.

  16. Two-dimensional numerical study of two counter-propagating helium plasma jets in air at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wen; Sang, Chaofeng; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn

    In this paper, a computational study of two counter-propagating helium plasma jets in ambient air is presented. A two-dimensional fluid model is applied to investigate the physical processes of the two plasma jets interaction (PJI) driven by equal and unequal voltages, respectively. In all studied cases, the PJI results in a decrease of both plasma bullets propagation velocity. When the two plasma jets are driven by equal voltages, they never merge but rather approach each other around the middle of the gas gap at a minimum approach distance, and the minimal distance decreases with the increase of both the appliedmore » voltages and initial electron density, but increases with the increase of the relative permittivity. When the two plasma jets are driven by unequal voltages, we observe the two plasma jets will merge at the position away from the middle of the gas gap. The effect of applied voltage difference on the PJI is also studied.« less

  17. Flexion and extension gaps created by the navigation-assisted gap technique show small acceptable mismatches and close mutual correlations.

    PubMed

    Lee, Dae-Hee; Shin, Young-Soo; Jeon, Jin-Ho; Suh, Dong-Won; Han, Seung-Beom

    2014-08-01

    The aim of this study was to investigate the mechanism underlying the development of gap differences in total knee arthroplasty using the navigation-assisted gap technique and to assess whether these gap differences have statistical significance. Ninety-two patients (105 knees) implanted with cruciate-retaining prostheses using the navigation-assisted gap balancing technique were prospectively analysed. Medial extension and flexion gaps and lateral extension and flexion gaps were measured at full extension and at 90° of flexion. Repeated measures analysis of variance was used to compare the mean values of these four gaps. The correlation coefficient between each pair of gaps was assessed using Pearson's correlation analysis. Mean intra-operative medial and lateral extension gaps were 20.6 ± 2.1 and 21.7 ± 2.2 mm, respectively, and mean intra-operative medial and lateral flexion gaps were 21.6 ± 2.7 and 22.1 ± 2.5 mm, respectively. The pairs of gaps differed significantly (P < 0.05 each), except for the difference between the medial flexion and lateral extension gaps (n.s.). All four gaps were significantly correlated with each other, with the highest correlation between the medial and lateral flexion gaps (r = 0.890, P < 0.001) and the lowest between the medial flexion and lateral extension gaps (r = 0.701, P < 0.001). Medial and lateral flexion and extension gaps created using the navigation-assisted gap technique differed significantly, although the differences between them were <2 mm, and the gaps were closely correlated. These narrow ranges of statistically acceptable gap differences and the strong correlations between gaps should be considered by surgeons, as should the risks of soft tissue over-release or unintentional increases in extension or flexion gap after preparation of the other gap.

  18. Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits

    NASA Astrophysics Data System (ADS)

    Lück, Christina; Kusche, Jürgen; Rietbroek, Roelof; Löcher, Anno

    2018-03-01

    Measuring the spatiotemporal variation of ocean mass allows for partitioning of volumetric sea level change, sampled by radar altimeters, into mass-driven and steric parts. The latter is related to ocean heat change and the current Earth's energy imbalance. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided monthly snapshots of the Earth's time-variable gravity field, from which one can derive ocean mass variability. However, GRACE has reached the end of its lifetime with data degradation and several gaps occurred during the last years, and there will be a prolonged gap until the launch of the follow-on mission GRACE-FO. Therefore, efforts focus on generating a long and consistent ocean mass time series by analyzing kinematic orbits from other low-flying satellites, i.e. extending the GRACE time series. Here we utilize data from the European Space Agency's (ESA) Swarm Earth Explorer satellites to derive and investigate ocean mass variations. For this aim, we use the integral equation approach with short arcs (Mayer-Gürr, 2006) to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits. We investigate the potential to bridge the gap between the GRACE and the GRACE-FO mission and to substitute missing monthly solutions with Swarm results of significantly lower resolution. Our monthly Swarm solutions have a root mean square error (RMSE) of 4.0 mm with respect to GRACE, whereas directly estimating constant, trend, annual, and semiannual (CTAS) signal terms leads to an RMSE of only 1.7 mm. Concerning monthly gaps, our CTAS Swarm solution appears better than interpolating existing GRACE data in 13.5 % of all cases, when artificially removing one solution. In the case of an 18-month artificial gap, 80.0 % of all CTAS Swarm solutions were found closer to the observed GRACE data compared to interpolated GRACE data. Furthermore, we show that precise modeling of non-gravitational forces acting on the Swarm satellites is the key for reaching these accuracies. Our results have implications for sea level budget studies, but they may also guide further research in gravity field analysis schemes, including satellites not dedicated to gravity field studies.

  19. The Genotype and Phenotype (GaP) registry: a living biobank for the analysis of quantitative traits.

    PubMed

    Gregersen, Peter K; Klein, Gila; Keogh, Mary; Kern, Marlena; DeFranco, Margaret; Simpfendorfer, Kim R; Kim, Sun Jung; Diamond, Betty

    2015-12-01

    We describe the development of the Genotype and Phenotype (GaP) Registry, a living biobank of normal volunteers who are genotyped for genetic markers related to human disease. Participants in the GaP can be recalled for hypothesis driven study of disease associated genetic variants. The GaP has facilitated functional studies of several autoimmune disease associated loci including Csk, Blk, PDRM1 (Blimp-1) and PTPN22. It is likely that expansion of such living biobank registries will play an important role in studying and understanding the function of disease associated alleles in complex disease.

  20. Post-Hurricane Successional Dynamics in Abundance and Diversity of Canopy Arthropods in a Tropical Rainforest.

    PubMed

    Schowalter, T D; Willig, M R; Presley, S J

    2017-02-01

    We quantified long-term successional trajectories of canopy arthropods on six tree species in a tropical rainforest ecosystem in the Luquillo Mountains of Puerto Rico that experienced repeated hurricane-induced disturbances during the 19-yr study (1991-2009). We expected: 1) differential performances of arthropod species to result in taxon- or guild-specific responses; 2) differences in initial conditions to result in distinct successional responses to each hurricane; and 3) the legacy of hurricane-created gaps to persist despite subsequent disturbances. At least one significant effect of gap, time after hurricane, or their interaction occurred for 53 of 116 analyses of taxon abundance, 31 of 84 analyses of guild abundance, and 21 of 60 analyses of biodiversity (e.g., richness, evenness, dominance, and rarity). Significant responses were ∼60% more common for time after hurricane than for gap creation, indicating that temporal changes in habitat during recovery were of primary importance. Both increases and decreases in abundance or diversity occurred in response to each factor. Guild-level responses were probably driven by changes in the abundance of resources on which they rely. For example, detritivores were most abundant soon after hurricanes when litter resources were elevated, whereas sap-suckers were most abundant in gaps where new foliage growth was the greatest. The legacy of canopy gaps created by Hurricane Hugo persisted for at least 19 yr, despite droughts and other hurricanes of various intensities that caused forest damage. This reinforces the need to consider historical legacies when seeking to understand responses to disturbance. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Managing Risk to Ensure a Successful Cassini/Huygens Saturn Orbit Insertion (SOI)

    NASA Technical Reports Server (NTRS)

    Witkowski, Mona M.; Huh, Shin M.; Burt, John B.; Webster, Julie L.

    2004-01-01

    I. Design: a) S/C designed to be largely single fault tolerant; b) Operate in flight demonstrated envelope, with margin; and c) Strict compliance with requirements & flight rules. II. Test: a) Baseline, fault & stress testing using flight system testbeds (H/W & S/W); b) In-flight checkout & demos to remove first time events. III. Failure Analysis: a) Critical event driven fault tree analysis; b) Risk mitigation & development of contingencies. IV) Residual Risks: a) Accepted pre-launch waivers to Single Point Failures; b) Unavoidable risks (e.g. natural disaster). V) Mission Assurance: a) Strict process for characterization of variances (ISAs, PFRs & Waivers; b) Full time Mission Assurance Manager reports to Program Manager: 1) Independent assessment of compliance with institutional standards; 2) Oversight & risk assessment of ISAs, PFRs & Waivers etc.; and 3) Risk Management Process facilitator.

  2. Development toward School Readiness: A Holistic Model

    ERIC Educational Resources Information Center

    Gaynor, Alan Kibbe

    2015-01-01

    A systemic analysis of early childhood development factors explains the variance in school readiness among representative U.S. 5-year-olds. The underlying theory incorporates a set of causally interactive endogenous variables that are hypothesized to be driven by the effects of three exogenous variables: parental education, immigrant status and…

  3. Kinetic simulations of gas breakdown in the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.

    2017-06-01

    The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.

  4. Gap probability - Measurements and models of a pecan orchard

    NASA Technical Reports Server (NTRS)

    Strahler, Alan H.; Li, Xiaowen; Moody, Aaron; Liu, YI

    1992-01-01

    Measurements and models are compared for gap probability in a pecan orchard. Measurements are based on panoramic photographs of 50* by 135 view angle made under the canopy looking upwards at regular positions along transects between orchard trees. The gap probability model is driven by geometric parameters at two levels-crown and leaf. Crown level parameters include the shape of the crown envelope and spacing of crowns; leaf level parameters include leaf size and shape, leaf area index, and leaf angle, all as functions of canopy position.

  5. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.

    PubMed

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiangyang; Li, Guangtao

    2017-04-05

    In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO 2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λ max of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  6. A capillary-driven micromixer: idea and fabrication

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Te; Lee, Chun-Che

    2012-10-01

    Microfluidic systems have been drawing attention upon the various branches of engineering science and the allied areas within biology and biomedicine. In this paper, a fabrication of a capillary-driven micromixer using photoresist JSR and glasses is proposed. We design three types of planar capillary-driven micormixers with different sizes of baffles in the channel. Flow tests have shown that the micromixer with a baffle gap of 100 μm and space of 100 μm reaches a best mixing performance of 93% in gray-level image analysis.

  7. AC-driven bilayer graphene: quasienergy spectrum of electrons and generation of soliton-like electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Kukhar, Egor I.

    2018-01-01

    Quasienergy spectrum of electrons in biased bigraphene subjected to the linear polarized high-frequency electromagnetic radiation has been derived. Quasienergy bands of ac-driven bigraphene have been investigated. Dynamical appearing of the saddle points in band structure of biased bigraphene and energy gap modification have been predicted. Electromagnetic field equation has been written using obtained quasienergy spectrum. The solution corresponding to the soliton-like electromagnetic wave has been obtained. The conditions of soliton-like wave generation in ac-driven bigraphene have been discussed.

  8. Patient level cost of diabetes self-management education programmes: an international evaluation

    PubMed Central

    Doyle, Gerardine; O'Donnell, Shane; Quigley, Etáin; Cullen, Kate; Gibney, Sarah; Levin-Zamir, Diane; Ganahl, Kristin; Müller, Gabriele; Muller, Ingrid; Maindal, Helle Terkildsen; Chang, Wushou Peter; Van Den Broucke, Stephan

    2017-01-01

    Objectives The objective of this study was to examine the value of time-driven activity-based costing (TDABC) in understanding the process and costs of delivering diabetes self-management education (DSME) programmes in a multicountry comparative study. Setting Outpatient settings in five European countries (Austria, Denmark, Germany, Ireland, UK) and two countries outside Europe, Taiwan and Israel. Participants Providers of DSME programmes across participating countries (N=16) including healthcare professionals, administrators and patients taking part in DSME programmes. Primary and secondary measures Primary measure: time spent by providers in the delivery of DSME and resources consumed in order to compute programme costs. Secondary measures: self-report measures of behavioural self-management and diabetes disease/health-related outcomes. Results We found significant variation in costs and the processes of how DSME programmes are provided across and within countries. Variations in costs were driven by a combination of price variances, mix of personnel skill and efficiency variances. Higher cost programmes were not found to have achieved better relative outcomes. The findings highlight the value of TDABC in calculating a patient level cost and potential of the methodology to identify process improvements in guiding the optimal allocation of scarce resources in diabetes care, in particular for DSME that is often underfunded. Conclusions This study is the first to measure programme costs using estimates of the actual resources used to educate patients about managing their medical condition and is the first study to map such costs to self-reported behavioural and disease outcomes. The results of this study will inform clinicians, managers and policy makers seeking to enhance the delivery of DSME programmes. The findings highlight the benefits of adopting a TDABC approach to understanding the drivers of the cost of DSME programmes in a multicountry study to reveal opportunities to bend the cost curve for DSME. PMID:28583913

  9. Investigating the application of Rasch theory in measuring change in middle school student performance in physical science

    NASA Astrophysics Data System (ADS)

    Cunningham, Jessica D.

    Newton's Universe (NU), an innovative teacher training program, strives to obtain measures from rural, middle school science teachers and their students to determine the impact of its distance learning course on understanding of temperature. No consensus exists on the most appropriate and useful method of analysis to measure change in psychological constructs over time. Several item response theory (IRT) models have been deemed useful in measuring change, which makes the choice of an IRT model not obvious. The appropriateness and utility of each model, including a comparison to a traditional analysis of variance approach, was investigated using middle school science student performance on an assessment over an instructional period. Predetermined criteria were outlined to guide model selection based on several factors including research questions, data properties, and meaningful interpretations to determine the most appropriate model for this study. All methods employed in this study reiterated one common interpretation of the data -- specifically, that the students of teachers with any NU course experience had significantly greater gains in performance over the instructional period. However, clear distinctions were made between an analysis of variance and the racked and stacked analysis using the Rasch model. Although limited research exists examining the usefulness of the Rasch model in measuring change in understanding over time, this study applied these methods and detailed plausible implications for data-driven decisions based upon results for NU and others. Being mindful of the advantages and usefulness of each method of analysis may help others make informed decisions about choosing an appropriate model to depict changes to evaluate other programs. Results may encourage other researchers to consider the meaningfulness of using IRT for this purpose. Results have implications for data-driven decisions for future professional development courses, in science education and other disciplines. KEYWORDS: Item Response Theory, Rasch Model, Racking and Stacking, Measuring Change in Student Performance, Newton's Universe teacher training

  10. Patient level cost of diabetes self-management education programmes: an international evaluation.

    PubMed

    Doyle, Gerardine; O'Donnell, Shane; Quigley, Etáin; Cullen, Kate; Gibney, Sarah; Levin-Zamir, Diane; Ganahl, Kristin; Müller, Gabriele; Muller, Ingrid; Maindal, Helle Terkildsen; Chang, Wushou Peter; Van Den Broucke, Stephan

    2017-06-04

    The objective of this study was to examine the value of time-driven activity-based costing (TDABC) in understanding the process and costs of delivering diabetes self-management education (DSME) programmes in a multicountry comparative study. Outpatient settings in five European countries (Austria, Denmark, Germany, Ireland, UK) and two countries outside Europe, Taiwan and Israel. Providers of DSME programmes across participating countries (N=16) including healthcare professionals, administrators and patients taking part in DSME programmes. Primary measure: time spent by providers in the delivery of DSME and resources consumed in order to compute programme costs. Secondary measures: self-report measures of behavioural self-management and diabetes disease/health-related outcomes. We found significant variation in costs and the processes of how DSME programmes are provided across and within countries. Variations in costs were driven by a combination of price variances, mix of personnel skill and efficiency variances. Higher cost programmes were not found to have achieved better relative outcomes. The findings highlight the value of TDABC in calculating a patient level cost and potential of the methodology to identify process improvements in guiding the optimal allocation of scarce resources in diabetes care, in particular for DSME that is often underfunded. This study is the first to measure programme costs using estimates of the actual resources used to educate patients about managing their medical condition and is the first study to map such costs to self-reported behavioural and disease outcomes. The results of this study will inform clinicians, managers and policy makers seeking to enhance the delivery of DSME programmes. The findings highlight the benefits of adopting a TDABC approach to understanding the drivers of the cost of DSME programmes in a multicountry study to reveal opportunities to bend the cost curve for DSME. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Choice in experiential learning: True preferences or experimental artifacts?

    PubMed

    Ashby, Nathaniel J S; Konstantinidis, Emmanouil; Yechiam, Eldad

    2017-03-01

    The rate of selecting different options in the decisions-from-feedback paradigm is commonly used to measure preferences resulting from experiential learning. While convergence to a single option increases with experience, some variance in choice remains even when options are static and offer fixed rewards. Employing a decisions-from-feedback paradigm followed by a policy-setting task, we examined whether the observed variance in choice is driven by factors related to the paradigm itself: Continued exploration (e.g., believing options are non-stationary) or exploitation of perceived outcome patterns (i.e., a belief that sequential choices are not independent). Across two studies, participants showed variance in their choices, which was related (i.e., proportional) to the policies they set. In addition, in Study 2, participants' reported under-confidence was associated with the amount of choice variance in later choices and policies. These results suggest that variance in choice is better explained by participants lacking confidence in knowing which option is better, rather than methodological artifacts (i.e., exploration or failures to recognize outcome independence). As such, the current studies provide evidence for the decisions-from-feedback paradigm's validity as a behavioral research method for assessing learned preferences. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effective production control in an automotive industry: MRP vs. demand-driven MRP

    NASA Astrophysics Data System (ADS)

    Shofa, Mohamad Jihan; Widyarto, Wahyu Oktri

    2017-06-01

    Material Requirements Planning (MRP) has deficiencies when dealing with current business environments, marked by a more complex network, a huge variety of products with longer lead time, and uncertain demands. This drives Demand-Driven MRP (DDMRP) approach to deal with those challenges. DDMRP is designed to connect the availability of materials and supplies directly from the actual condition using bills of materials (BOMs). Nevertheless, only few studies have scientifically proved the performance of DDMRP over MRP for controlling production and inventory control. Therefore, this research fills this gap by evaluating and comparing the performance of DDMRP and MRP in terms of level of effective inventory in the system. The evaluation was conducted through a simulation using data from an automotive company in Indonesia. The input parameters of scenarios were given for running the simulation. Based on the simulation, for the observed critical parts, DDMRP gave better results than MRP in terms of lead time and inventory level. DDMRP compressed the lead time part from 52 to 3 days (94% reduced) and, overall, the inventory level was in an effective condition. This suggests that DDMRP is more effective for controlling the production-inventory than MRP.

  13. Seasonal Predictability in a Model Atmosphere.

    NASA Astrophysics Data System (ADS)

    Lin, Hai

    2001-07-01

    The predictability of atmospheric mean-seasonal conditions in the absence of externally varying forcing is examined. A perfect-model approach is adopted, in which a global T21 three-level quasigeostrophic atmospheric model is integrated over 21 000 days to obtain a reference atmospheric orbit. The model is driven by a time-independent forcing, so that the only source of time variability is the internal dynamics. The forcing is set to perpetual winter conditions in the Northern Hemisphere (NH) and perpetual summer in the Southern Hemisphere.A significant temporal variability in the NH 90-day mean states is observed. The component of that variability associated with the higher-frequency motions, or climate noise, is estimated using a method developed by Madden. In the polar region, and to a lesser extent in the midlatitudes, the temporal variance of the winter means is significantly greater than the climate noise, suggesting some potential predictability in those regions.Forecast experiments are performed to see whether the presence of variance in the 90-day mean states that is in excess of the climate noise leads to some skill in the prediction of these states. Ensemble forecast experiments with nine members starting from slightly different initial conditions are performed for 200 different 90-day means along the reference atmospheric orbit. The serial correlation between the ensemble means and the reference orbit shows that there is skill in the 90-day mean predictions. The skill is concentrated in those regions of the NH that have the largest variance in excess of the climate noise. An EOF analysis shows that nearly all the predictive skill in the seasonal means is associated with one mode of variability with a strong axisymmetric component.

  14. Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts

    NASA Astrophysics Data System (ADS)

    Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève

    2013-04-01

    Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the variance-enhanced products, compared to the bi-linear interpolation, which is a decisive advantage. The disaggregation technique of Perica and Foufoula-Georgiou (1996) hence represents an interesting way of bridging the gap between the meteorological models' resolution and the high degree of spatial precision sometimes required by hydrological models in their precipitation representation. References Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I. 2010. Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48 (3): RG3003, [np]. Doi: 10.1029/2009RG000314. Perica, S., and Foufoula-Georgiou, E. 1996. Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. Journal Of Geophysical Research, 101(D21): 26347-26361. Ruiz, J., Saulo, C. and Kalnay, E. 2009. Comparison of Methods Used to Generate Probabilistic Quantitative Precipitation Forecasts over South America. Weather and forecasting, 24: 319-336. DOI: 10.1175/2008WAF2007098.1 This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.

  15. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints.

    PubMed

    Sundharam, Sakthivel Manikandan; Navet, Nicolas; Altmeyer, Sebastian; Havet, Lionel

    2018-02-20

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system.

  16. A Model-Driven Co-Design Framework for Fusing Control and Scheduling Viewpoints

    PubMed Central

    Navet, Nicolas; Havet, Lionel

    2018-01-01

    Model-Driven Engineering (MDE) is widely applied in the industry to develop new software functions and integrate them into the existing run-time environment of a Cyber-Physical System (CPS). The design of a software component involves designers from various viewpoints such as control theory, software engineering, safety, etc. In practice, while a designer from one discipline focuses on the core aspects of his field (for instance, a control engineer concentrates on designing a stable controller), he neglects or considers less importantly the other engineering aspects (for instance, real-time software engineering or energy efficiency). This may cause some of the functional and non-functional requirements not to be met satisfactorily. In this work, we present a co-design framework based on timing tolerance contract to address such design gaps between control and real-time software engineering. The framework consists of three steps: controller design, verified by jitter margin analysis along with co-simulation, software design verified by a novel schedulability analysis, and the run-time verification by monitoring the execution of the models on target. This framework builds on CPAL (Cyber-Physical Action Language), an MDE design environment based on model-interpretation, which enforces a timing-realistic behavior in simulation through timing and scheduling annotations. The application of our framework is exemplified in the design of an automotive cruise control system. PMID:29461489

  17. Synoptic volumetric variations and flushing of the Tampa Bay estuary

    NASA Astrophysics Data System (ADS)

    Wilson, M.; Meyers, S. D.; Luther, M. E.

    2014-03-01

    Two types of analyses are used to investigate the synoptic wind-driven flushing of Tampa Bay in response to the El Niño-Southern Oscillation (ENSO) cycle from 1950 to 2007. Hourly sea level elevations from the St. Petersburg tide gauge, and wind speed and direction from three different sites around Tampa Bay are used for the study. The zonal (u) and meridional (v) wind components are rotated clockwise by 40° to obtain axial and co-axial components according to the layout of the bay. First, we use the subtidal observed water level as a proxy for mean tidal height to estimate the rate of volumetric bay outflow. Second, we use wavelet analysis to bandpass sea level and wind data in the time-frequency domain to isolate the synoptic sea level and surface wind variance. For both analyses the long-term monthly climatology is removed and we focus on the volumetric and wavelet variance anomalies. The overall correlation between the Oceanic Niño Index and volumetric analysis is small due to the seasonal dependence of the ENSO response. The mean monthly climatology between the synoptic wavelet variance of elevation and axial winds are in close agreement. During the winter, El Niño (La Niña) increases (decreases) the synoptic variability, but decreases (increases) it during the summer. The difference in winter El Niño/La Niña wavelet variances is about 20 % of the climatological value, meaning that ENSO can swing the synoptic flushing of the bay by 0.22 bay volumes per month. These changes in circulation associated with synoptic variability have the potential to impact mixing and transport within the bay.

  18. Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer

    DOE PAGES

    Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw; ...

    2017-02-22

    Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less

  19. Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw

    Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less

  20. School Districts and Student Achievement

    ERIC Educational Resources Information Center

    Chingos, Matthew M.; Whitehurst, Grover J.; Gallaher, Michael R.

    2015-01-01

    School districts are a focus of education reform efforts in the United States, but there is very little existing research about how important they are to student achievement. We fill this gap in the literature using 10 years of student-level, statewide data on fourth- and fifth-grade students in Florida and North Carolina. A variance decomposition…

  1. Comparing Students with and without Reading Difficulties on Reading Comprehension Assessments: A Meta-Analysis

    ERIC Educational Resources Information Center

    Collins, Alyson A.; Lindström, Esther R.; Compton, Donald L.

    2018-01-01

    Researchers have increasingly investigated sources of variance in reading comprehension test scores, particularly with students with reading difficulties (RD). The purpose of this meta-analysis was to determine if the achievement gap between students with RD and typically developing (TD) students varies as a function of different reading…

  2. Lens intracellular hydrostatic pressure is generated by the circulation of sodium and modulated by gap junction coupling

    PubMed Central

    Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; White, Thomas W.; Brink, Peter R.

    2011-01-01

    We recently modeled fluid flow through gap junction channels coupling the pigmented and nonpigmented layers of the ciliary body. The model suggested the channels could transport the secretion of aqueous humor, but flow would be driven by hydrostatic pressure rather than osmosis. The pressure required to drive fluid through a single layer of gap junctions might be just a few mmHg and difficult to measure. In the lens, however, there is a circulation of Na+ that may be coupled to intracellular fluid flow. Based on this hypothesis, the fluid would cross hundreds of layers of gap junctions, and this might require a large hydrostatic gradient. Therefore, we measured hydrostatic pressure as a function of distance from the center of the lens using an intracellular microelectrode-based pressure-sensing system. In wild-type mouse lenses, intracellular pressure varied from ∼330 mmHg at the center to zero at the surface. We have several knockout/knock-in mouse models with differing levels of expression of gap junction channels coupling lens fiber cells. Intracellular hydrostatic pressure in lenses from these mouse models varied inversely with the number of channels. When the lens’ circulation of Na+ was either blocked or reduced, intracellular hydrostatic pressure in central fiber cells was either eliminated or reduced proportionally. These data are consistent with our hypotheses: fluid circulates through the lens; the intracellular leg of fluid circulation is through gap junction channels and is driven by hydrostatic pressure; and the fluid flow is generated by membrane transport of sodium. PMID:21624945

  3. Magnetic force driven magnetoelectric effect in bi-cantilever composites

    NASA Astrophysics Data System (ADS)

    Zhang, Ru; Wu, Gaojian; Zhang, Ning

    2017-12-01

    The magnetic force driven magnetoelectric (ME) effect in bi-cantilever Mn-Zn-Ferrite /PZT composites is presented. Compared with single cantilever, the ME voltage coefficient in bi-cantilever composite is a little lower and the resonance frequency is higher, but the bi-cantilever structure is advantageous for integration. When the magnetic gap is 3 mm, the ME voltage coefficient can achieve 6.2 Vcm-1Oe-1 at resonance under optimum bias field Hm=1030 Oe; when the magnetic gap is 1.5 mm, the ME voltage coefficient can get the value as high as 4.4 Vcm-1Oe-1 under much lower bias field H=340 Oe. The stable ME effect in bi-cantilever composites has important potential application in the design of new type ME device.

  4. Probing ultrafast proton induced dynamics in transparent dielectrics

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Coughlan, M.; Nersisyan, G.; Senje, L.; Jung, D.; Currell, F.; Riley, D.; Lewis, C. L. S.; Zepf, M.; Dromey, B.

    2018-05-01

    A scheme has been developed permitting the spatial and temporal characterisation of ultrafast dynamics induced by laser driven proton bursts in transparent dielectrics. Advantage is taken of the high degree of synchronicity between the proton bursts generated during laser-foil target interactions and the probing laser to provide the basis for streaking of the dynamics. Relaxation times of electrons (<10‑12 s) are measured following swift excitation across the optical band gap for various glass samples. A temporal resolution of <500 fs is achieved demonstrating that these ultrafast dynamics can be characterized on a single-shot basis.

  5. Noise and drift analysis of non-equally spaced timing data

    NASA Technical Reports Server (NTRS)

    Vernotte, F.; Zalamansky, G.; Lantz, E.

    1994-01-01

    Generally, it is possible to obtain equally spaced timing data from oscillators. The measurement of the drifts and noises affecting oscillators is then performed by using a variance (Allan variance, modified Allan variance, or time variance) or a system of several variances (multivariance method). However, in some cases, several samples, or even several sets of samples, are missing. In the case of millisecond pulsar timing data, for instance, observations are quite irregularly spaced in time. Nevertheless, since some observations are very close together (one minute) and since the timing data sequence is very long (more than ten years), information on both short-term and long-term stability is available. Unfortunately, a direct variance analysis is not possible without interpolating missing data. Different interpolation algorithms (linear interpolation, cubic spline) are used to calculate variances in order to verify that they neither lose information nor add erroneous information. A comparison of the results of the different algorithms is given. Finally, the multivariance method was adapted to the measurement sequence of the millisecond pulsar timing data: the responses of each variance of the system are calculated for each type of noise and drift, with the same missing samples as in the pulsar timing sequence. An estimation of precision, dynamics, and separability of this method is given.

  6. Importance sampling variance reduction for the Fokker–Planck rarefied gas particle method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collyer, B.S., E-mail: benjamin.collyer@gmail.com; London Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF; Connaughton, C.

    The Fokker–Planck approximation to the Boltzmann equation, solved numerically by stochastic particle schemes, is used to provide estimates for rarefied gas flows. This paper presents a variance reduction technique for a stochastic particle method that is able to greatly reduce the uncertainty of the estimated flow fields when the characteristic speed of the flow is small in comparison to the thermal velocity of the gas. The method relies on importance sampling, requiring minimal changes to the basic stochastic particle scheme. We test the importance sampling scheme on a homogeneous relaxation, planar Couette flow and a lid-driven-cavity flow, and find thatmore » our method is able to greatly reduce the noise of estimated quantities. Significantly, we find that as the characteristic speed of the flow decreases, the variance of the noisy estimators becomes independent of the characteristic speed.« less

  7. Homeostasis in the vertebrate lens: mechanisms of solute exchange

    PubMed Central

    Dahm, Ralf; van Marle, Jan; Quinlan, Roy A.; Prescott, Alan R.; Vrensen, Gijs F. J. M.

    2011-01-01

    The eye lens is avascular, deriving nutrients from the aqueous and vitreous humours. It is, however, unclear which mechanisms mediate the transfer of solutes between these humours and the lens' fibre cells (FCs). In this review, we integrate the published data with the previously unpublished ultrastructural, dye loading and magnetic resonance imaging results. The picture emerging is that solute transfer between the humours and the fibre mass is determined by four processes: (i) paracellular transport of ions, water and small molecules along the intercellular spaces between epithelial and FCs, driven by Na+-leak conductance; (ii) membrane transport of such solutes from the intercellular spaces into the fibre cytoplasm by specific carriers and transporters; (iii) gap-junctional coupling mediating solute flux between superficial and deeper fibres, Na+/K+-ATPase-driven efflux of waste products in the equator, and electrical coupling of fibres; and (iv) transcellular transfer via caveoli and coated vesicles for the uptake of macromolecules and cholesterol. There is evidence that the Na+-driven influx of solutes occurs via paracellular and membrane transport and the Na+/K+-ATPase-driven efflux of waste products via gap junctions. This micro-circulation is likely restricted to the superficial cortex and nearly absent beyond the zone of organelle loss, forming a solute exchange barrier in the lens. PMID:21402585

  8. Design and simulation of a new bidirectional actuator for haptic systems featuring MR fluid

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Quoc; Tri, Diep Bao; Cuong, Vo Van; Choi, Seung-Bok

    2017-04-01

    In this research, a new configuration of bidirectional actuator featuring MR fluid (BMRA) is proposed for haptic application. The proposed BMRA consists of a driving disc, a driving housing and a driven disc. The driving disc is placed inside the driving housing and rotates counter to each other by a servo DC motor and a bevel gear system. The driven shaft is also placed inside the housing and next to the driving disc. The gap between the two disc and the gap between the discs and the housing are filled with MR fluid. On the driven disc, two mutual magnetic coils are placed. By applying currents to the two coils mutually, the torque at the output shaft, which is fixed to the driven disc, can be controlled with positive, zero or negative value. This make the actuator be suitable for haptic application. After a review of MR fluid and its application, configuration of the proposed BMRA is presented. The modeling of the actuator is then derived based on Bingham rheological model of MRF and magnetic finite element analysis (FEA). The optimal design of the actuator is then performed to minimize the mass of the BMRA. From the optimal design result, performance characteristics of the actuator is simulated and detailed design of a prototype actuator is conducted.

  9. A new hybrid model for filling gaps and forecast in sea level: application to the eastern English Channel and the North Atlantic Sea (western France)

    NASA Astrophysics Data System (ADS)

    Turki, Imen; Laignel, Benoit; Kakeh, Nabil; Chevalier, Laetitia; Costa, Stephane

    2015-04-01

    This research is carried out in the framework of the program Surface Water and Ocean Topography (SWOT) which is a partnership between NASA and CNES. Here, a new hybrid model is implemented for filling gaps and forecasting the hourly sea level variability by combining classical harmonic analyses to high statistical methods to reproduce the deterministic and stochastic processes, respectively. After simulating the mean trend sea level and astronomical tides, the nontidal residual surges are investigated using an autoregressive moving average (ARMA) methods by two ways: (1) applying a purely statistical approach and (2) introducing the SLP in ARMA as a main physical process driving the residual sea level. The new hybrid model is applied to the western Atlantic sea and the eastern English Channel. Using ARMA model and considering the SLP, results show that the hourly sea level observations of gauges with are well reproduced with a root mean square error (RMSE) ranging between 4.5 and 7 cm for 1 to 30 days of gaps and an explained variance more than 80 %. For larger gaps of months, the RMSE reaches 9 cm. The negative and the positive extreme values of sea levels are also well reproduced with a mean explained variance between 70 and 85 %. The statistical behavior of 1-year modeled residual components shows good agreements with observations. The frequency analysis using the discrete wavelet transform illustrate strong correlations between observed and modeled energy spectrum and the bands of variability. Accordingly, the proposed model presents a coherent, simple, and easy tool to estimate the total sea level at timescales from days to months. The ARMA model seems to be more promising for filling gaps and estimating the sea level at larger scales of years by introducing more physical processes driving its stochastic variability.

  10. Self-regulatory processes mediate the intention-behavior relation for adherence and exercise behaviors.

    PubMed

    de Bruin, Marijn; Sheeran, Paschal; Kok, Gerjo; Hiemstra, Anneke; Prins, Jan M; Hospers, Harm J; van Breukelen, Gerard J P

    2012-11-01

    Understanding the gap between people's intentions and actual health behavior is an important issue in health psychology. Our aim in this study was to investigate whether self-regulatory processes (monitoring goal progress and responding to discrepancies) mediate the intention-behavior relation in relation to HIV medication adherence (Study 1) and intensive exercise behavior (Study 2). In Study 1, questionnaire and electronically monitored adherence data were collected at baseline and 3 months later from patients in the control arm of an HIV-adherence intervention study. In Study 2, questionnaire data was collected at 3 time points 6-weeks apart in a cohort study of physical activity. Complete data at all time points were obtained from 51 HIV-infected patients and 499 intensive exercise participants. Intentions were good predictors of behavior and explained 25 to 30% of the variance. Self-regulatory processes explained an additional 11% (Study 1) and 6% (Study 2) of variance in behavior on top of intentions. Regression and bootstrap analyses revealed at least partial, and possibly full, mediation of the intention-behavior relation by self-regulatory processes. The present studies indicate that self-regulatory processes may explain how intentions drive behavior. Future tests, using different health behaviors and experimental designs, could firmly establish whether self-regulatory processes complement current health behavior theories and should become routine targets for intervention. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  11. Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California

    USGS Publications Warehouse

    Ralph, F.M.; Coleman, T.; Neiman, P.J.; Zamora, R.J.; Dettinger, Mike

    2013-01-01

    This study is motivated by diverse needs for better forecasts of extreme precipitation and floods. It is enabled by unique hourly observations collected over six years near California’s Russian River and by recent advances in the science of atmospheric rivers (ARs). This study fills key gaps limiting the prediction of ARs and, especially, their impacts by quantifying the duration of AR conditions and the role of duration in modulating hydrometeorological impacts. Precursor soil moisture conditions and their relationship to streamflow are also shown. On the basis of 91 well-observed events during 2004-10, the study shows that the passage of ARs over a coastal site lasted 20 h on average and that 12% of the AR events exceeded 30 h. Differences in storm-total water vapor transport directed up the mountain slope contribute 74% of the variance in storm-total rainfall across the events and 61% of the variance in storm-total runoff volume. ARs with double the composite mean duration produced nearly 6 times greater peak streamflow and more than 7 times the storm-total runoff volume. When precursor soil moisture was less than 20%, even heavy rainfall did not lead to significant streamflow. Predicting which AR events are likely to produce extreme impacts on precipitation and runoff requires accurate prediction of AR duration at landfall and observations of precursor soil moisture conditions.

  12. Broadening of Analyte Streams due to a Transverse Pressure Gradient in Free-Flow Isoelectric Focusing

    PubMed Central

    Dutta, Debashis

    2017-01-01

    Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system. PMID:28081900

  13. Subjective and objective binge eating in relation to eating disorder symptomatology, depressive symptoms, and self-esteem among treatment-seeking adolescents with bulimia nervosa.

    PubMed

    Fitzsimmons-Craft, Ellen E; Ciao, Anna C; Accurso, Erin C; Pisetsky, Emily M; Peterson, Carol B; Byrne, Catherine E; Le Grange, Daniel

    2014-07-01

    This study investigated the importance of the distinction between objective (OBE) and subjective binge eating (SBE) among 80 treatment-seeking adolescents with bulimia nervosa. We explored relationships among OBEs, SBEs, eating disorder (ED) symptomatology, depression, and self-esteem using two approaches. Group comparisons showed that OBE and SBE groups did not differ on ED symptoms or self-esteem; however, the SBE group had significantly greater depression. Examining continuous variables, OBEs (not SBEs) accounted for significant unique variance in global ED pathology, vomiting, and self-esteem. SBEs (not OBEs) accounted for significant unique variance in restraint and depression. Both OBEs and SBEs accounted for significant unique variance in eating concern; neither accounted for unique variance in weight/shape concern, laxative use, diuretic use, or driven exercise. Loss of control, rather than amount of food, may be most important in defining binge eating. Additionally, OBEs may indicate broader ED pathology, while SBEs may indicate restrictive/depressive symptomatology. Copyright © 2014 John Wiley & Sons, Ltd and Eating Disorders Association.

  14. Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li 2CuO 2

    DOE PAGES

    Johnston, Steve; Monney, Claude; Bisogni, Valentina; ...

    2016-02-17

    Strongly correlated insulators are broadly divided into two classes: Mott–Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li 2CuO 2, wheremore » Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li 2CuO 2.« less

  15. Effect of Preparation Depth on the Marginal and Internal Adaptation of Computer-aided Design/Computer-assisted Manufacture Endocrowns.

    PubMed

    Gaintantzopoulou, M D; El-Damanhoury, H M

    The aim of the study was to evaluate the effect of preparation depth and intraradicular extension on the marginal and internal adaptation of computer-aided design/computer-assisted manufacture (CAD/CAM) endocrown restorations. Standardized preparations were made in resin endodontic tooth models (Nissin Dental), with an intracoronal preparation depth of 2 mm (group H2), with extra 1- (group H3) or 2-mm (group H4) intraradicular extensions in the root canals (n=12). Vita Enamic polymer-infiltrated ceramic-network material endocrowns were fabricated using the CEREC AC CAD/CAM system and were seated on the prepared teeth. Specimens were evaluated by microtomography. Horizontal and vertical tomographic sections were recorded and reconstructed by using the CTSkan software (TView v1.1, Skyscan).The surface/void volume (S/V) in the region of interest was calculated. Marginal gap (MG), absolute marginal discrepancy (MD), and internal marginal gap were measured at various measuring locations and calculated in microscale (μm). Marginal and internal discrepancy data (μm) were analyzed with nonparametric Kruskal-Wallis analysis of variance by ranks with Dunn's post hoc, whereas S/V data were analyzed by one-way analysis of variance and Bonferroni multiple comparisons (α=0.05). Significant differences were found in MG, MD, and internal gap width values between the groups, with H2 showing the lowest values from all groups. S/V calculations presented significant differences between H2 and the other two groups (H3 and H4) tested, with H2 again showing the lowest values. Increasing the intraradicular extension of endocrown restorations increased the marginal and internal gap of endocrown restorations.

  16. 42 CFR 456.521 - Conditions for granting variance requests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time... is unable to meet the time requirements for which the variance is requested; and (2) A revised UR...

  17. Significant improvements of electrical discharge machining performance by step-by-step updated adaptive control laws

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Wu, Jianyang; Xu, Xiaoyi; Mu, Xin; Dou, Yunping

    2018-02-01

    In order to obtain improved electrical discharge machining (EDM) performance, we have dedicated more than a decade to correcting one essential EDM defect, the weak stability of the machining, by developing adaptive control systems. The instabilities of machining are mainly caused by complicated disturbances in discharging. To counteract the effects from the disturbances on machining, we theoretically developed three control laws from minimum variance (MV) control law to minimum variance and pole placements coupled (MVPPC) control law and then to a two-step-ahead prediction (TP) control law. Based on real-time estimation of EDM process model parameters and measured ratio of arcing pulses which is also called gap state, electrode discharging cycle was directly and adaptively tuned so that a stable machining could be achieved. To this end, we not only theoretically provide three proved control laws for a developed EDM adaptive control system, but also practically proved the TP control law to be the best in dealing with machining instability and machining efficiency though the MVPPC control law provided much better EDM performance than the MV control law. It was also shown that the TP control law also provided a burn free machining.

  18. An Analysis of Variance Approach for the Estimation of Response Time Distributions in Tests

    ERIC Educational Resources Information Center

    Attali, Yigal

    2010-01-01

    Generalizability theory and analysis of variance methods are employed, together with the concept of objective time pressure, to estimate response time distributions and the degree of time pressure in timed tests. By estimating response time variance components due to person, item, and their interaction, and fixed effects due to item types and…

  19. Sequence-of-events-driven automation of the deep space network

    NASA Technical Reports Server (NTRS)

    Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.

    1996-01-01

    In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.

  20. Sequence-of-Events-Driven Automation of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Hill, R., Jr.; Fayyad, K.; Smyth, C.; Santos, T.; Chen, R.; Chien, S.; Bevan, R.

    1996-01-01

    In February 1995, sequence-of-events (SOE)-driven automation technology was demonstrated for a Voyager telemetry downlink track at DSS 13. This demonstration entailed automated generation of an operations procedure (in the form of a temporal dependency network) from project SOE information using artificial intelligence planning technology and automated execution of the temporal dependency network using the link monitor and control operator assistant system. This article describes the overall approach to SOE-driven automation that was demonstrated, identifies gaps in SOE definitions and project profiles that hamper automation, and provides detailed measurements of the knowledge engineering effort required for automation.

  1. Brain Signal Variability is Parametrically Modifiable

    PubMed Central

    Garrett, Douglas D.; McIntosh, Anthony R.; Grady, Cheryl L.

    2014-01-01

    Moment-to-moment brain signal variability is a ubiquitous neural characteristic, yet remains poorly understood. Evidence indicates that heightened signal variability can index and aid efficient neural function, but it is not known whether signal variability responds to precise levels of environmental demand, or instead whether variability is relatively static. Using multivariate modeling of functional magnetic resonance imaging-based parametric face processing data, we show here that within-person signal variability level responds to incremental adjustments in task difficulty, in a manner entirely distinct from results produced by examining mean brain signals. Using mixed modeling, we also linked parametric modulations in signal variability with modulations in task performance. We found that difficulty-related reductions in signal variability predicted reduced accuracy and longer reaction times within-person; mean signal changes were not predictive. We further probed the various differences between signal variance and signal means by examining all voxels, subjects, and conditions; this analysis of over 2 million data points failed to reveal any notable relations between voxel variances and means. Our results suggest that brain signal variability provides a systematic task-driven signal of interest from which we can understand the dynamic function of the human brain, and in a way that mean signals cannot capture. PMID:23749875

  2. The Effects of Elbow Bracing on Medial Elbow Joint Space Gapping Associated With Repetitive Throwing in High School Baseball Players

    PubMed Central

    Hattori, Hiroshi; Akasaka, Kiyokazu; Otsudo, Takahiro; Takei, Keiichi; Yamamoto, Mitsuru

    2017-01-01

    Background: Throwing athletes risk medial elbow injury from extreme valgus stress generated across the medial elbow during throwing. Braces have been developed to protect the elbow joint; however, no previous study has investigated the effects of elbow bracing on medial elbow joint space gapping associated with repetitive throwing. Hypothesis/Purpose: The purpose of this study was to investigate the effects of elbow bracing on medial elbow joint space gapping during repetitive throwing. Our hypothesis was that an elbow brace may reduce mechanical stress on the elbow by reducing medial elbow joint space gapping. Study Design: Controlled laboratory study. Methods: Twenty-five high school baseball players participated in this study. Each subject pitched 100 times under 2 conditions: control (without elbow brace) and elbow brace. The ulnohumeral joint space was measured ultrasonically before pitching and after every block of 20 pitches. Measurement of the ulnohumeral joint space was carried out using ultrasound with the forearm hanging by the side. Two-way repeated-measures analysis of variance and post hoc tests were used to compare ulnohumeral joint space with repeated pitching and between the elbow brace and control conditions. Results: In the control condition, ulnohumeral joint space after 60 pitches was significantly greater than that before pitching (P < .01). In contrast, in the elbow brace condition, ulnohumeral joint space was not significantly different after repeated pitching. When comparing these 2 conditions, ulnohumeral joint space in the control condition was significantly greater than that in the elbow brace condition after 60 pitches (P < .01). Conclusion: An elbow brace has the effect of preventing medial elbow joint space gapping with repeated throwing when determined ultrasonically by measuring the ulnohumeral joint space under gravity load. Clinical Relevance: An elbow brace worn during baseball pitching practice may help reduce mechanical stress on the elbow by reducing medial elbow joint space gapping. PMID:28451622

  3. The Effects of Elbow Bracing on Medial Elbow Joint Space Gapping Associated With Repetitive Throwing in High School Baseball Players.

    PubMed

    Hattori, Hiroshi; Akasaka, Kiyokazu; Otsudo, Takahiro; Takei, Keiichi; Yamamoto, Mitsuru

    2017-04-01

    Throwing athletes risk medial elbow injury from extreme valgus stress generated across the medial elbow during throwing. Braces have been developed to protect the elbow joint; however, no previous study has investigated the effects of elbow bracing on medial elbow joint space gapping associated with repetitive throwing. The purpose of this study was to investigate the effects of elbow bracing on medial elbow joint space gapping during repetitive throwing. Our hypothesis was that an elbow brace may reduce mechanical stress on the elbow by reducing medial elbow joint space gapping. Controlled laboratory study. Twenty-five high school baseball players participated in this study. Each subject pitched 100 times under 2 conditions: control (without elbow brace) and elbow brace. The ulnohumeral joint space was measured ultrasonically before pitching and after every block of 20 pitches. Measurement of the ulnohumeral joint space was carried out using ultrasound with the forearm hanging by the side. Two-way repeated-measures analysis of variance and post hoc tests were used to compare ulnohumeral joint space with repeated pitching and between the elbow brace and control conditions. In the control condition, ulnohumeral joint space after 60 pitches was significantly greater than that before pitching ( P < .01). In contrast, in the elbow brace condition, ulnohumeral joint space was not significantly different after repeated pitching. When comparing these 2 conditions, ulnohumeral joint space in the control condition was significantly greater than that in the elbow brace condition after 60 pitches ( P < .01). An elbow brace has the effect of preventing medial elbow joint space gapping with repeated throwing when determined ultrasonically by measuring the ulnohumeral joint space under gravity load. An elbow brace worn during baseball pitching practice may help reduce mechanical stress on the elbow by reducing medial elbow joint space gapping.

  4. The spatial and temporal patterns of odors sampled by lobsters and crabs in a turbulent plume.

    PubMed

    Reidenbach, Matthew A; Koehl, M A R

    2011-09-15

    Odors are dispersed across aquatic habitats by turbulent water flow as filamentous, intermittent plumes. Many crustaceans sniff (take discrete samples of ambient water and the odors it carries) by flicking their olfactory antennules. We used planar laser-induced fluorescence to investigate how flicking antennules of different morphologies (long antennules of spiny lobsters, Panulirus argus; short antennules of blue crabs, Callinectes sapidus) sample fluctuating odor signals at different positions in a turbulent odor plume in a flume to determine whether the patterns of concentrations captured can provide information about an animal's position relative to the odor source. Lobster antennules intercept odors during a greater percentage of flicks and encounter higher peak concentrations than do crab antennules, but because crabs flick at higher frequency, the duration of odor-free gaps between encountered odor pulses is similar. For flicking antennules there were longer time gaps between odor encounters as the downstream distance to the odor source decreases, but shorter gaps along the plume centerline than near the edge. In contrast to the case for antennule flicking, almost all odor-free gaps were <500 ms at all positions in the plume if concentration was measured continuously at the same height as the antennules. Variance in concentration is lower and mean concentration is greater near the substratum, where leg chemosensors continuously sample the plume, than in the water where antennules sniff. Concentrations sampled by legs increase as an animal nears an odor source, but decrease for antennules. Both legs and antennules encounter higher concentrations near the centerline than at the edge of the plume.

  5. Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations.

    PubMed

    Krasnopolsky, Vladimir; Nadiga, Sudhir; Mehra, Avichal; Bayler, Eric; Behringer, David

    2016-01-01

    A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived "ocean color" (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA's operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed--signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN's generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.

  6. Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations

    PubMed Central

    Nadiga, Sudhir; Mehra, Avichal; Bayler, Eric; Behringer, David

    2016-01-01

    A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA's operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN's generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series. PMID:26819586

  7. A comparison of the marginal adaptation of cathode-arc vapor-deposited titanium and cast base metal copings

    PubMed Central

    Wu, JC; Lai, LC; Sheets, CG; Earthman, J; Newcomb, R

    2011-01-01

    Statement of problem A new fabrication process has been developed where a titanium coping, which has a gold colored titanium nitride outer layer can be reliably fused to porcelain, but the marginal adaptation characteristics are still undetermined. Purpose The primary purpose of this study is to compare the rate of Clinically Acceptable Marginal Adaptation (CAMA-defined as a marginal gap mean ≤60 μm) of cathode-arc vapor-deposited titanium with the CAMA rate for the cast base metal copings. In addition, the study will evaluate the marginal gap scores themselves to assess their mean difference between the two study groups. Finally, the study will present two analyses of group differences in variability to support the contention that the titanium copings perform more consistently than their base metal counterparts. Material and methods Thirty-seven cathode-arc vapor-deposited titanium copings and 40 cast base metal copings were evaluated by computer-based image analysis using an optical microscope. The conventional lost wax technique was used to fabricate the 40 cast base metal copings that were 0.3 mm thick. The titanium copings were 0.3 mm thick and were formed by a collection of atomic titanium vapor onto a refractory die duplicate in a high vacuum chamber. Fifty vertical marginal gap measurements were collected from each of the 77 copings and the mean of these measurements was computed to form a gap score for each coping. Next, the gap score was compared to the 60 μm criterion to classify each coping as to whether it did or did not achieve Clinically Acceptable Marginal Adaption (CAMA). A comparison of the CAMA rates for each type of coping was used to address the primary purpose of this study. In addition, the gap scores themselves were used to test the (one-sided) hypothesis that the mean of the titanium gap scores is smaller than the mean of the base metal gap scores. Finally, the assertion that the titanium copings provide more consistency in their marginal gap performance was tested in two ways. First, the means of the titanium gap scores were compared to the means of the marginal gap scores for the base metal copings. Second, the standard deviations of the marginal gap scores for the titanium copings were compared with those for the base metal copings. Results Statistical comparison of the CAMA rates for each type of coping showed that the CAMA criterion was achieved by 24 of the 37 (64.86%) titanium copings, while 19 of the 40 (47.50%) base metal copings met this same standard. Noninferiority of the titanium copings was established by the 2-sided 90% Confidence Interval for the 17.36% difference in these rates (−0.95%, 35.68%) and noninferiority of titanium coping adaption was also demonstrated by the Wald Test rejection of the tentative hypothesis of inferiority (Z-score=1.9191, one-sided p=0.0275). The mean of the vertical marginal gap scores for the titanium copings (56.9025) was significantly less than the mean of the marginal gap scores for the base metal copings (71.9041) as shown by the Satterthwaite t-score=−2.29 (one-sided p=0.0126). To compare the adaption consistency of the titanium copings to the base metal counterparts the difference between the variance of the marginal gap scores for the titanium copings (594.843) and the variance of the marginal gap scores for the base metal copings (1510.901) was found to be statistically significant (Folded-F test score=2.63, p=0.0042). Our second method for showing that the titanium copings performed more consistently than the base metal comparisons was to use a one-sided test to show that the mean of the standard deviations of the vertical gap measurements for each titanium coping (29.9835) was significantly lower than the mean of the standard deviations of the vertical gap measurements for each base metal coping (36.1332). This test produced a Satterthwaite’s t-score of −2.24 (one-sided p=0.0141), indicating the titanium adaption was significantly more consistent. Conclusions Cathode-arc vapor deposited titanium copings exhibited a higher rate of Clinically Acceptable Marginal Adaption (CAMA) than the comparison base metal copings. Comparison of the coping marginal adaption score variances and direct assessment of the coping marginal adaption scores provided additional evidence that the titanium copings performed better and with more consistency than their base metal counterparts. PMID:21640242

  8. Bridging the Gap: Linking Simulation and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krajewski, Paul E.; Carsley, John; Stoudt, Mark R.

    2012-09-01

    The Materials Genome Initiative (MGI) which is a key enabler for the Advanced Manufacturing Partnership, announced in 2011 by U.S. President Barack Obama, was established to accelerate the development and deployment of advanced materials. The MGI is driven by the need to "bridge the gap" between (I) experimental results and computational analysis to enable the rapid development and validation of new mateirals, and (II) the processes required to convert these materials into useable goods.

  9. Onset of space charge effects in liquid argon ionization chambers

    NASA Astrophysics Data System (ADS)

    Toggerson, B.; Newcomer, A.; Rutherfoord, J.; Walker, R. B.

    2009-09-01

    Using a thin-gap liquid argon ionization chamber and Strontium-90 beta sources we have measured ionization currents over a wide range of gap potentials. These precision "HV plateau curves" advance the understanding of liquid argon sampling calorimeter signals, particularly at high ionization rates. The order of magnitude differences in the activities of the beta sources allow us to estimate where the ionization chamber is driven into the space-charge dominated regime.

  10. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... driven in tightly so that they do not occupy more than one inch of vertical height; and (3) Hardwood... used to fill in any remaining vertical gaps. (d) Manufactured pier heights. Manufactured pier heights...

  11. Implementing NASA's Capability-Driven Approach: Insight into NASA's Processes for Maturing Exploration Systems

    NASA Technical Reports Server (NTRS)

    Williams-Byrd, Julie; Arney, Dale; Rodgers, Erica; Antol, Jeff; Simon, Matthew; Hay, Jason; Larman, Kevin

    2015-01-01

    NASA is engaged in transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities focused on low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. Through pioneering, NASA seeks to address national goals to develop the capacity for people to work, learn, operate, live, and thrive safely beyond the Earth for extended periods of time. However, pioneering space involves more than the daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. This shift also requires a change in operating processes for NASA. The Agency can no longer afford to engineer systems for specific missions and destinations and instead must focus on common capabilities that enable a range of destinations and missions. NASA has codified a capability driven approach, which provides flexible guidance for the development and maturation of common capabilities necessary for human pioneers beyond LEO. This approach has been included in NASA policy and is captured in the Agency's strategic goals. It is currently being implemented across NASA's centers and programs. Throughout 2014, NASA engaged in an Agency-wide process to define and refine exploration-related capabilities and associated gaps, focusing only on those that are critical for human exploration beyond LEO. NASA identified 12 common capabilities ranging from Environmental Control and Life Support Systems to Robotics, and established Agency-wide teams or working groups comprised of subject matter experts that are responsible for the maturation of these exploration capabilities. These teams, called the System Maturation Teams (SMTs) help formulate, guide and resolve performance gaps associated with the identified exploration capabilities. The SMTs are defining performance parameters and goals for each of the 12 capabilities, developing maturation plans and roadmaps for the identified performance gaps, specifying the interfaces between the various capabilities, and ensuring that the capabilities mature and integrate to enable future pioneering missions. By managing system development through the SMTs instead of traditional NASA programs and projects, the Agency is shifting from mission-driven development to a more flexible, capability-driven development. The process NASA uses to establish, integrate, prioritize, and manage the SMTs and associated capabilities is iterative. NASA relies on the Human Exploration and Operation Mission Directorate's SMT Integration Team within Advanced Exploration Systems to coordinate and facilitate the SMT process. The SMT Integration team conducts regular reviews and coordination meetings among the SMTs and has developed a number of tools to help the Agency implement capability driven processes. The SMT Integration team is uniquely positioned to help the Agency coordinate the SMTs and other processes that are making the capability-driven approach a reality. This paper will introduce the SMTs and the 12 key capabilities they represent. The role of the SMTs will be discussed with respect to Agency-wide processes to shift from mission-focused exploration to a capability-driven pioneering approach. Specific examples will be given to highlight systems development and testing within the SMTs. These examples will also show how NASA is using current investments in the International Space Station and future investments to develop and demonstrate capabilities. The paper will conclude by describing next steps and a process for soliciting feedback from the space exploration community to refine NASA's process for developing common exploration capabilities.

  12. Variance Estimation, Design Effects, and Sample Size Calculations for Respondent-Driven Sampling

    PubMed Central

    2006-01-01

    Hidden populations, such as injection drug users and sex workers, are central to a number of public health problems. However, because of the nature of these groups, it is difficult to collect accurate information about them, and this difficulty complicates disease prevention efforts. A recently developed statistical approach called respondent-driven sampling improves our ability to study hidden populations by allowing researchers to make unbiased estimates of the prevalence of certain traits in these populations. Yet, not enough is known about the sample-to-sample variability of these prevalence estimates. In this paper, we present a bootstrap method for constructing confidence intervals around respondent-driven sampling estimates and demonstrate in simulations that it outperforms the naive method currently in use. We also use simulations and real data to estimate the design effects for respondent-driven sampling in a number of situations. We conclude with practical advice about the power calculations that are needed to determine the appropriate sample size for a study using respondent-driven sampling. In general, we recommend a sample size twice as large as would be needed under simple random sampling. PMID:16937083

  13. Contextual explanations for numeracy and literacy skill disparities between native and foreign-born adults in western countries.

    PubMed

    Levels, Mark; Dronkers, Jaap; Jencks, Christopher

    2017-01-01

    Using new direct measures of numeracy and literacy skills among 85,875 adults in 17 Western countries, we find that foreign-born adults have lower mean skills than native-born adults of the same age (16 to 64) in all of the examined countries. The gaps are small, and vary substantially between countries. Multilevel models reveal that immigrant populations' demographic and socioeconomic characteristics, employment, and language proficiency explain about half of the cross-national variance of numeracy and literacy skills gaps. Differences in origin countries' average education level also account for variation in the size of the immigrant-native skills gap. The more protective labor markets in immigrant-receiving countries are, the less well immigrants are skilled in numeracy and literacy compared to natives. For those who migrate before their teens (the 1.5 generation), access to an education system that accommodates migrants' special needs is crucial. The 1 and 1.5 generation have smaller numeracy and literacy skills gaps in more ethnically diverse societies.

  14. Neuroticism explains unwanted variance in Implicit Association Tests of personality: possible evidence for an affective valence confound.

    PubMed

    Fleischhauer, Monika; Enge, Sören; Miller, Robert; Strobel, Alexander; Strobel, Anja

    2013-01-01

    Meta-analytic data highlight the value of the Implicit Association Test (IAT) as an indirect measure of personality. Based on evidence suggesting that confounding factors such as cognitive abilities contribute to the IAT effect, this study provides a first investigation of whether basic personality traits explain unwanted variance in the IAT. In a gender-balanced sample of 204 volunteers, the Big-Five dimensions were assessed via self-report, peer-report, and IAT. By means of structural equation modeling (SEM), latent Big-Five personality factors (based on self- and peer-report) were estimated and their predictive value for unwanted variance in the IAT was examined. In a first analysis, unwanted variance was defined in the sense of method-specific variance which may result from differences in task demands between the two IAT block conditions and which can be mirrored by the absolute size of the IAT effects. In a second analysis, unwanted variance was examined in a broader sense defined as those systematic variance components in the raw IAT scores that are not explained by the latent implicit personality factors. In contrast to the absolute IAT scores, this also considers biases associated with the direction of IAT effects (i.e., whether they are positive or negative in sign), biases that might result, for example, from the IAT's stimulus or category features. None of the explicit Big-Five factors was predictive for method-specific variance in the IATs (first analysis). However, when considering unwanted variance that goes beyond pure method-specific variance (second analysis), a substantial effect of neuroticism occurred that may have been driven by the affective valence of IAT attribute categories and the facilitated processing of negative stimuli, typically associated with neuroticism. The findings thus point to the necessity of using attribute category labels and stimuli of similar affective valence in personality IATs to avoid confounding due to recoding.

  15. Two-rate periodic protocol with dynamics driven through many cycles

    NASA Astrophysics Data System (ADS)

    Kar, Satyaki

    2017-02-01

    We study the long time dynamics in closed quantum systems periodically driven via time dependent parameters with two frequencies ω1 and ω2=r ω1 . Tuning of the ratio r there can unleash plenty of dynamical phenomena to occur. Our study includes integrable models like Ising and X Y models in d =1 and the Kitaev model in d =1 and 2 and can also be extended to Dirac fermions in graphene. We witness the wave-function overlap or dynamic freezing that occurs within some small/ intermediate frequency regimes in the (ω1,r ) plane (with r ≠0 ) when the ground state is evolved through a single cycle of driving. However, evolved states soon become steady with long driving, and the freezing scenario gets rarer. We extend the formalism of adiabatic-impulse approximation for many cycle driving within our two-rate protocol and show the near-exact comparisons at small frequencies. An extension of the rotating wave approximation is also developed to gather an analytical framework of the dynamics at high frequencies. Finally we compute the entanglement entropy in the stroboscopically evolved states within the gapped phases of the system and observe how it gets tuned with the ratio r in our protocol. The minimally entangled states are found to fall within the regime of dynamical freezing. In general, the results indicate that the entanglement entropy in our driven short-ranged integrable systems follow a genuine nonarea law of scaling and show a convergence (with a r dependent pace) towards volume scaling behavior as the driving is continued for a long time.

  16. Distribution Characteristics of Air-Bone Gaps – Evidence of Bias in Manual Audiometry

    PubMed Central

    Margolis, Robert H.; Wilson, Richard H.; Popelka, Gerald R.; Eikelboom, Robert H.; Swanepoel, De Wet; Saly, George L.

    2015-01-01

    Objective Five databases were mined to examine distributions of air-bone gaps obtained by automated and manual audiometry. Differences in distribution characteristics were examined for evidence of influences unrelated to the audibility of test signals. Design The databases provided air- and bone-conduction thresholds that permitted examination of air-bone gap distributions that were free of ceiling and floor effects. Cases with conductive hearing loss were eliminated based on air-bone gaps, tympanometry, and otoscopy, when available. The analysis is based on 2,378,921 threshold determinations from 721,831 subjects from five databases. Results Automated audiometry produced air-bone gaps that were normally distributed suggesting that air- and bone-conduction thresholds are normally distributed. Manual audiometry produced air-bone gaps that were not normally distributed and show evidence of biasing effects of assumptions of expected results. In one database, the form of the distributions showed evidence of inclusion of conductive hearing losses. Conclusions Thresholds obtained by manual audiometry show tester bias effects from assumptions of the patient’s hearing loss characteristics. Tester bias artificially reduces the variance of bone-conduction thresholds and the resulting air-bone gaps. Because the automated method is free of bias from assumptions of expected results, these distributions are hypothesized to reflect the true variability of air- and bone-conduction thresholds and the resulting air-bone gaps. PMID:26627469

  17. Model of ultrafast demagnetization driven by spin-orbit coupling in a photoexcited antiferromagnetic insulator Cr2O3

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Zhang, Na; Jin, Wei; Chang, Jun

    2017-06-01

    We theoretically study the dynamic time evolution following laser pulse pumping in an antiferromagnetic insulator Cr2O3. From the photoexcited high-spin quartet states to the long-lived low-spin doublet states, the ultrafast demagnetization processes are investigated by solving the dissipative Schrödinger equation. We find that the demagnetization times are of the order of hundreds of femtoseconds, in good agreement with recent experiments. The switching times could be strongly reduced by properly tuning the energy gaps between the multiplet energy levels of Cr3+. Furthermore, the relaxation times also depend on the hybridization of atomic orbitals in the first photoexcited state. Our results suggest that the selective manipulation of the electronic structure by engineering stress-strain or chemical substitution allows effective control of the magnetic state switching in photoexcited insulating transition-metal oxides.

  18. PARTNERING TO IMPROVE HUMAN EXPOSURE METHODS

    EPA Science Inventory

    Methods development research is an application-driven scientific area that addresses programmatic needs. The goals are to reduce measurement uncertainties, address data gaps, and improve existing analytical procedures for estimating human exposures. Partnerships have been develop...

  19. Sterilization by negative and positive DC plasma with a micro discharge gap at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Hua; Jiang, Lin-Xiu; Jiang, Yong-Rong; Zhu, Jian-Min; Chen, Zhen-Cheng

    2017-11-01

    A new needle-to-droplet electrode structure with a micro discharge gap (2 mm) was designed to achieve direct current (DC) discharge plasma in ambient air with the aim of using the plasma to sterilize liquids. Without using noble gases or an external air flow, we succeeded in generating both a negative and positive DC plasma at atmospheric pressure. The plasma was driven by a 0 to -20,000 V, 100 W DC power supply. A stainless steel needle with a tip diameter of ˜ 50μm and a 200-μL droplet of bacteria-containing liquid served as the electrodes. At atmospheric pressure and room temperature (23∘C), utilizing the negative DC plasma, the discharge time lasted 10 s; the results showed that the higher the discharge voltage, the more efficient the sterilization effect. Conversely, when we applied a voltage of -5.5 kV, we found that the sterilization effect was more efficient for longer discharge times. Our findings demonstrate that Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) can be killed in about 30 s. Our experiments show that our sterilization method required less time and was more efficient for positive than for negative DC plasma under the same conditions.

  20. Using physiology to understand climate-driven changes in disease and their implications for conservation.

    PubMed

    Rohr, Jason R; Raffel, Thomas R; Blaustein, Andrew R; Johnson, Pieter T J; Paull, Sara H; Young, Suzanne

    2013-01-01

    Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host-parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host-parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change-disease literature. We stress that much of the work on how climate influences host-parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host-parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host-parasite interactions. However, several outstanding questions remain to be answered before investigators can accurately predict how changes in climatic means and variances will affect infectious diseases and the conservation status of host populations.

  1. Using physiology to understand climate-driven changes in disease and their implications for conservation

    PubMed Central

    Rohr, Jason R.; Raffel, Thomas R.; Blaustein, Andrew R.; Johnson, Pieter T. J.; Paull, Sara H.; Young, Suzanne

    2013-01-01

    Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host–parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host–parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change–disease literature. We stress that much of the work on how climate influences host–parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host–parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host–parasite interactions. However, several outstanding questions remain to be answered before investigators can accurately predict how changes in climatic means and variances will affect infectious diseases and the conservation status of host populations. PMID:27293606

  2. A DATA-DRIVEN MODEL FOR SPECTRA: FINDING DOUBLE REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsalmantza, P.; Hogg, David W., E-mail: vivitsal@mpia.de

    2012-07-10

    We present a data-driven method-heteroscedastic matrix factorization, a kind of probabilistic factor analysis-for modeling or performing dimensionality reduction on observed spectra or other high-dimensional data with known but non-uniform observational uncertainties. The method uses an iterative inverse-variance-weighted least-squares minimization procedure to generate a best set of basis functions. The method is similar to principal components analysis (PCA), but with the substantial advantage that it uses measurement uncertainties in a responsible way and accounts naturally for poorly measured and missing data; it models the variance in the noise-deconvolved data space. A regularization can be applied, in the form of a smoothnessmore » prior (inspired by Gaussian processes) or a non-negative constraint, without making the method prohibitively slow. Because the method optimizes a justified scalar (related to the likelihood), the basis provides a better fit to the data in a probabilistic sense than any PCA basis. We test the method on Sloan Digital Sky Survey (SDSS) spectra, concentrating on spectra known to contain two redshift components: these are spectra of gravitational lens candidates and massive black hole binaries. We apply a hypothesis test to compare one-redshift and two-redshift models for these spectra, utilizing the data-driven model trained on a random subset of all SDSS spectra. This test confirms 129 of the 131 lens candidates in our sample and all of the known binary candidates, and turns up very few false positives.« less

  3. Statistical analysis of interfacial gap in a cementless stem FE model.

    PubMed

    Park, Youngbae; Choi, Donok; Hwang, Deuk Soo; Yoon, Yong-San

    2009-02-01

    In cementless total hip arthroplasty, a fair amount of interfacial gap exists between the femoral stem and the bone. However, the effect of these gaps on the mechanical stability of the stem is poorly understood. In this paper, a finite element model with various interfacial gap definitions is used to quantify the effect of interfacial gaps on the primary stability of a Versys Fiber Metal Taper stem under stair climbing loads. In the first part, 500 random interfacial gap definitions were simulated. The resulting micromotion was approximately inversely proportional to the contact ratio, and the variance of the micromotion was greater with a lower contact ratio. Moreover, when the magnitude of the micromotion was compared between the gap definitions that had contact at a specific site and those that had no contact at that site, it was found that gaps located in the proximal-medial region of the stem surface had the most important effect on the micromotion. In a second trial, 17 gap definitions mimicking a gap pattern that has been observed experimentally were simulated. For a given contact ratio, the micromotion observed in the second trial was lower than the average result of those in the first, where the gaps were placed randomly. In either trial, when the contact ratio was higher than 40%, the micromotion showed no significant difference (first trial) or a gentle slope (-0.24 mum% in the second trial) in relation to the contact ratio. Considering the reported contact ratios for properly implanted stems, variations in the amount of interfacial gap would not likely cause a drastic difference in micromotion, and this effect could be easily overshadowed by other clinical factors. In conclusion, differences in interfacial gaps are not expected to have a noticeable effect on the clinical micromotion of this cementless stem.

  4. Data gaps in anthropogenically driven local-scale species richness change studies across the Earth's terrestrial biomes.

    PubMed

    Murphy, Grace E P; Romanuk, Tamara N

    2016-05-01

    There have been numerous attempts to synthesize the results of local-scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local-scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome-driver combinations we have identified as most critical in terms of where local-scale species richness change studies are lacking include the following: land-use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local-scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.

  5. Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons

    PubMed Central

    Fetsch, Christopher R.

    2013-01-01

    The richness of perceptual experience, as well as its usefulness for guiding behavior, depends upon the synthesis of information across multiple senses. Recent decades have witnessed a surge in our understanding of how the brain combines sensory signals, or cues. Much of this research has been guided by one of two distinct approaches, one driven primarily by neurophysiological observations, the other guided by principles of mathematical psychology and psychophysics. Conflicting results and interpretations have contributed to a conceptual gap between psychophysical and physiological accounts of cue integration, but recent studies of visual-vestibular cue integration have narrowed this gap considerably. PMID:23686172

  6. The Deepwater Horizon Oil Spill Through the Lens of Human Health and the Ecosystem.

    PubMed

    Lichtveld, Maureen; Sherchan, Samendra; Gam, Kaitlyn B; Kwok, Richard K; Mundorf, Christopher; Shankar, Arti; Soares, Lissa

    2016-12-01

    This review examines current research ascertaining the impact of the Deepwater Horizon oil spill on human health and ecosystems. Driven by the need to strategically focus research funding, the authors also assess the implications of those findings and promote a transdisciplinary research agenda addressing critical gaps.Epidemiologic studies conducted in workers and vulnerable communities in the spill's aftermath showed that non-chemical stressors affect resilience. Ecosystem-wise salt marsh species showed variability in structural and functional changes, attributed to species-specific tolerance, oil exposure, and belowground plant organs damage.Lacking baseline exposure assessment data hampers assessing the impact of chemical stressors. Research priorities include leveraging existing women/child dyads and worker cohorts to advance exposure characterization and counter early adverse effects in most vulnerable populations. Key policy gaps include mandated just-in-time emergency resources to ascertain immediate post-event exposures and contemporary legislation addressing human and ecosystem health in an integrated rather than silo fashion.

  7. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave

    DOE PAGES

    Rettig, L.; Cortés, R.; Chu, J. -H.; ...

    2016-01-25

    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time-and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of themore » dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. In conclusion, our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order.« less

  8. Theory of superconductivity in a three-orbital model of Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Wang, Q. H.; Platt, C.; Yang, Y.; Honerkamp, C.; Zhang, F. C.; Hanke, W.; Rice, T. M.; Thomale, R.

    2013-10-01

    In conventional and high transition temperature copper oxide and iron pnictide superconductors, the Cooper pairs all have even parity. As a rare exception, Sr2RuO4 is the first prime candidate for topological chiral p-wave superconductivity, which has time-reversal breaking odd-parity Cooper pairs known to exist before only in the neutral superfluid 3He. However, there are several key unresolved issues hampering the microscopic description of the unconventional superconductivity. Spin fluctuations at both large and small wave vectors are present in experiments, but how they arise and drive superconductivity is not yet clear. Spontaneous edge current is expected but not observed conclusively. Specific experiments point to highly band- and/or momentum-dependent energy gaps for quasiparticle excitations in the superconducting state. Here, by comprehensive functional renormalization group calculations with all relevant bands, we disentangle the various competing possibilities. In particular, we show the small wave vector spin fluctuations, driven by a single two-dimensional band, trigger p-wave superconductivity with quasi-nodal energy gaps.

  9. Kinetic simulations of gas breakdown in the dense plasma focus

    DOE PAGES

    Bennett, N.; Blasco, M.; Breeding, K.; ...

    2017-06-09

    We describe the first fully-kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus and are shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. In the past, researchers noted three breakdown patterns related to pressure. Simulationmore » and analytic results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.« less

  10. The Deepwater Horizon Oil Spill Through the Lens of Human Health and the Ecosystem

    PubMed Central

    Lichtveld, Maureen; Sherchan, Samendra; Gam, Kaitlyn B.; Kwok, Richard K.; Mundorf, Christopher; Shankar, Arti; Soares, Lissa

    2016-01-01

    This review examines current research ascertaining the impact of the Deepwater Horizon oil spill on human health and ecosystems. Driven by the need to strategically focus research funding, the authors also assess the implications of those findings, and promote a transdisciplinary research agenda addressing critical gaps. Epidemiologic studies conducted in workers and vulnerable communities in the spill’s aftermath showed that non-chemical stressors affect resilience. Ecosystem-wise salt marsh species showed variability in structural and functional changes, attributed to species-specific tolerance, oil exposure, and belowground plant organs damage. Lacking baseline exposure assessment data hampers assessing the impact of chemical stressors. Research priorities include leveraging existing women/child dyads and worker cohorts to advance exposure characterization and counter early adverse effects in most vulnerable populations. Key policy gaps include mandated just-in-time emergency resources to ascertain immediate post-event exposures, and contemporary legislation addressing human- and ecosystem health in an integrated rather than silo fashion. PMID:27722880

  11. Designs and Plans for MAIZE: a 1 MA LTD-Driven Z-Pinch

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Gomez, M. R.; Zier, J.; Tang, W.; French, D. M.; Hoff, B. W.; Jordan, N.; Cruz, E.; Lau, Y. Y.; Fowler-Guzzardo, T.; Meisel, J.; Mazarakis, M. G.; Cuneo, M. E.; Johnston, M. D.; Mehlhorn, T. A.; Kim, A. A.; Sinebryukhov, V. A.

    2007-11-01

    We present designs and experimental plans of the first 1 MA z-pinch in the USA to be driven by a Linear Transformer Driver (LTD). The Michigan Accelerator for Inductive Z-pinch Experiments, (MAIZE), is based on the LTD developed at the Institute for High Current Electronics, utilizing 80 capacitors and 40 spark gap switches to deliver a 1 MA, 100 kV pulse with <100 ns risetime. Designs will be presented of a low-inductance MITL terminated in a wire-array z-pinch. Initial, planned experiments will evaluate the LTD driving time-changing inductance of imploding 4-16 wire-array z-pinches. Wire ablation dynamics, axial-correlations and instability development will be explored. *This work was supported by U. S. DoE through Sandia National Laboratories award number 240985 to the University of Michigan. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  12. Making Meaning of Adversity: Experiences of Women Leaders in Higher Education

    ERIC Educational Resources Information Center

    Diehl, Amy B.

    2013-01-01

    Despite the fact that women now earn more bachelor's, master's and doctorates than men, a gender gap for women leaders persists in the field of higher education. Women hold only 26 percent of all college and university presidencies with a large variance by type of institution. Women lead 33 percent of associate's level institutions but only 22…

  13. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    NASA Astrophysics Data System (ADS)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  14. Precision matters for position decoding in the early fly embryo

    NASA Astrophysics Data System (ADS)

    Petkova, Mariela D.; Tkacik, Gasper; Wieschaus, Eric F.; Bialek, William; Gregor, Thomas

    Genetic networks can determine cell fates in multicellular organisms with precision that often reaches the physical limits of the system. However, it is unclear how the organism uses this precision and whether it has biological content. Here we address this question in the developing fly embryo, in which a genetic network of patterning genes reaches 1% precision in positioning cells along the embryo axis. The network consists of three interconnected layers: an input layer of maternal gradients, a processing layer of gap genes, and an output layer of pair-rule genes with seven-striped patterns. From measurements of gap gene protein expression in hundreds of wild-type embryos we construct a ``decoder'', which is a look-up table that determines cellular positions from the concentration means, variances and co-variances. When we apply the decoder to measurements in mutant embryos lacking various combinations of the maternal inputs, we predict quantitative changes in the output layer such as missing, altered or displaced stripes. We confirm these predictions by measuring pair-rule expression in the mutant embryos. Our results thereby show that the precision of the patterning network is biologically meaningful and a necessary feature for decoding cell positions in the early fly embryo.

  15. Demographic analysis, a comparison of the jackknife and bootstrap methods, and predation projection: a case study of Chrysopa pallens (Neuroptera: Chrysopidae).

    PubMed

    Yu, Ling-Yuan; Chen, Zhen-Zhen; Zheng, Fang-Qiang; Shi, Ai-Ju; Guo, Ting-Ting; Yeh, Bao-Hua; Chi, Hsin; Xu, Yong-Yu

    2013-02-01

    The life table of the green lacewing, Chrysopa pallens (Rambur), was studied at 22 degrees C, a photoperiod of 15:9 (L:D) h, and 80% relative humidity in the laboratory. The raw data were analyzed using the age-stage, two-sex life table. The intrinsic rate of increase (r), the finite rate of increase (lambda), the net reproduction rate (R0), and the mean generation time (T) of Ch. pallens were 0.1258 d(-1), 1.1340 d(-1), 241.4 offspring and 43.6 d, respectively. For the estimation of the means, variances, and SEs of the population parameters, we compared the jackknife and bootstrap techniques. Although similar values of the means and SEs were obtained with both techniques, significant differences were observed in the frequency distribution and variances of all parameters. The jackknife technique will result in a zero net reproductive rate upon the omission of a male, an immature death, or a nonreproductive female. This result represents, however, a contradiction because an intrinsic rate of increase exists in this situation. Therefore, we suggest that the jackknife technique should not be used for the estimation of population parameters. In predator-prey interactions, the nonpredatory egg and pupal stages of the predator are time refuges for the prey, and the pest population can grow during these times. In this study, a population projection based on the age-stage, two-sex life table is used to determine the optimal interval between releases to fill the predation gaps and maintain the predatory capacity of the control agent.

  16. Physiological correlates of mental workload

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.

    1980-01-01

    A literature review was conducted to assess the basis of and techniques for physiological assessment of mental workload. The study findings reviewed had shortcomings involving one or more of the following basic problems: (1) physiologic arousal can be easily driven by nonworkload factors, confounding any proposed metric; (2) the profound absence of underlying physiologic models has promulgated a multiplicity of seemingly arbitrary signal processing techniques; (3) the unspecified multidimensional nature of physiological "state" has given rise to a broad spectrum of competing noncommensurate metrics; and (4) the lack of an adequate definition of workload compels physiologic correlations to suffer either from the vagueness of implicit workload measures or from the variance of explicit subjective assessments. Using specific studies as examples, two basic signal processing/data reduction techniques in current use, time and ensemble averaging are discussed.

  17. In Schizophrenia, Depression, Anxiety, and Physiosomatic Symptoms Are Strongly Related to Psychotic Symptoms and Excitation, Impairments in Episodic Memory, and Increased Production of Neurotoxic Tryptophan Catabolites: a Multivariate and Machine Learning Study.

    PubMed

    Kanchanatawan, Buranee; Thika, Supaksorn; Sirivichayakul, Sunee; Carvalho, André F; Geffard, Michel; Maes, Michael

    2018-04-01

    The depression, anxiety and physiosomatic symptoms (DAPS) of schizophrenia are associated with negative symptoms and changes in tryptophan catabolite (TRYCAT) patterning. The aim of this study is to delineate the associations between DAPS and psychosis, hostility, excitation, and mannerism (PHEM) symptoms, cognitive tests as measured using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) and IgA/IgM responses to TRYCATs. We included 40 healthy controls and 80 participants with schizophrenia. Depression and anxiety symptoms were measured with The Hamilton Depression (HAM-D) and Anxiety (HAM-A) Rating Scales, respectively. Physiosomatic symptoms were assessed with the Fibromyalgia and Chronic Fatigue Syndrome Rating Scale (FF). Negative symptoms as well as CERAD tests, including Verbal Fluency Test (VFT), Mini-Mental State Examination (MMSE), Word List Memory (WLM), and WL Delayed Recall were measured, while ratios of IgA responses to noxious/protective TRYCATs (IgA NOX_PRO) were computed. Schizophrenia symptoms consisted of two dimensions, a first comprising PHEM and negative symptoms, and a second DAPS symptoms. A large part of the variance in DAPS was explained by psychotic symptoms and WLM. Of the variance in HAM-D, 58.9% was explained by the regression on excitement, IgA NOX_PRO ratio, WLM, and VFT; 29.9% of the variance in HAM-A by psychotic symptoms and IgA NOX/PRO; and 45.5% of the variance in FF score by psychotic symptoms, IgA NOX/PRO, and WLM. Neural network modeling shows that PHEM, IgA NOX_PRO, WLM, and MMSE are the dominant variables predicting DAPS. DAPS appear to be driven by PHEM and negative symptoms coupled with impairments in episodic memory, especially false memory creation, while all symptom dimension and cognitive impairments may be driven by an increased production of noxious TRYCATs, including picolinic, quinolinic, and xanthurenic acid.

  18. Monkeys time their pauses of movement and not their movement-kinematics during a synchronization-continuation rhythmic task.

    PubMed

    Donnet, Sophie; Bartolo, Ramon; Fernandes, José Maria; Cunha, João Paulo Silva; Prado, Luis; Merchant, Hugo

    2014-05-01

    A critical question in tapping behavior is to understand whether the temporal control is exerted on the duration and trajectory of the downward-upward hand movement or on the pause between hand movements. In the present study, we determined the duration of both the movement execution and pauses of monkeys performing a synchronization-continuation task (SCT), using the speed profile of their tapping behavior. We found a linear increase in the variance of pause-duration as a function of interval, while the variance of the motor implementation was relatively constant across intervals. In fact, 96% of the variability of the duration of a complete tapping cycle (pause + movement) was due to the variability of the pause duration. In addition, we performed a Bayesian model selection to determine the effect of interval duration (450-1,000 ms), serial-order (1-6 produced intervals), task phase (sensory cued or internally driven), and marker modality (auditory or visual) on the duration of the movement-pause and tapping movement. The results showed that the most important parameter used to successfully perform the SCT was the control of the pause duration. We also found that the kinematics of the tapping movements was concordant with a stereotyped ballistic control of the hand pressing the push-button. The present findings support the idea that monkeys used an explicit timing strategy to perform the SCT, where a dedicated timing mechanism controlled the duration of the pauses of movement, while also triggered the execution of fixed movements across each interval of the rhythmic sequence. Copyright © 2014 the American Physiological Society.

  19. Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Conti, S.; Perali, A.; Peeters, F. M.; Neilson, D.

    2017-12-01

    Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap Eg˜80 - 120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.

  20. The Principal as a Key Actor in Promoting Teachers' Innovativeness--Analyzing the Innovativeness of Teaching Staff with Variance-Based Partial Least Square Modeling

    ERIC Educational Resources Information Center

    Buske, Ramona

    2018-01-01

    The study examines the correlation between collective innovativeness of the teaching staff and the principal's leadership style as well as additional school structure characteristics. The construct of collective innovativeness is examined as a precondition of successful school improvement processes driven by the teaching staff. Based on…

  1. Influence of Different Ceramic Systems on Marginal Misfit.

    PubMed

    Vargas, S P; Neves, A C C; Vitti, R; Amaral, M; Henrique, M N; Silva-Concílio, L R

    2017-09-01

    the aim of this study was to evaluate the marginal misfit at the interface between a ceramic coping and its abutment. Twenty-four specimens were made with solid abutments. The specimens were divided into 3 groups according to the ceramic system (n = 8): Lava (zirconia), IPS e.max Press (lithium disilicate), and IPS Empress Esthetic (leucite). All copings were cemented with resin luting agent (RelyX U200) and the marginal misfit were evaluated at 3 different times: initial, after cementation, and after mechanical cycling using a linear measuring microscope (Measuring Microscope STM-Olympus) at a magnification of 40x. All specimens were subjected to mechanical cycling (1 million cycles) by an universal testing machine (Instron 8800). The results were statistically analyzed using Analysis of Variance and Student's t-test (α = 0.05). all groups showed an increase in the marginal misfit after cementation. The lithium disilicate group demonstrated the lowest interacial gap values at each evaluation (p = 0.001). The zirconia and leucite groups showed similar interfacial gap values (initial, p = 0.244; and post cementation, p = 0.751). the cementation increase the marginal misfit, but the mechanical cycling did not influence the marginal misfit of the ceramics systems evaluated. Copyright© 2017 Dennis Barber Ltd.

  2. Excitonic gap formation in pumped Dirac materials

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Pertsova, Anna; Markiewicz, Robert S.; Balatsky, Alexander V.

    2017-05-01

    Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of material parameters for which our theory predicts large gaps and high critical temperatures and which could be realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.

  3. Hispanic-White Differences in Lifespan Variability in the United States

    PubMed Central

    Lariscy, Joseph T.; Nau, Claudia; Firebaugh, Glenn; Hummer, Robert A.

    2016-01-01

    This study is the first to investigate whether and, if so, why Hispanics and non-Hispanic whites in the United States differ in the variability of their lifespans. Although Hispanics enjoy higher life expectancy than whites, very little is known about how lifespan variability—and thus uncertainty about length of life—differs by race/ethnicity. We use 2010 U.S. National Vital Statistics System data to calculate lifespan variance at ages 10 and older for Hispanics and whites, and then decompose the Hispanic-white variance difference into cause-specific spread, allocation, and timing effects. In addition to their higher life expectancy relative to whites, Hispanics also exhibit 7 % lower lifespan variability, with a larger gap among women than men. Differences in cause-specific incidence (allocation effects) explain nearly two-thirds of Hispanics’ lower lifespan variability, mainly because of the higher mortality from suicide, accidental poisoning, and lung cancer among whites. Most of the remaining Hispanic-white variance difference is due to greater age dispersion (spread effects) in mortality from heart disease and residual causes among whites than Hispanics. Thus, the Hispanic paradox—that a socioeconomically disadvantaged population (Hispanics) enjoys a mortality advantage over a socioeconomically advantaged population (whites)—pertains to lifespan variability as well as to life expectancy. Efforts to reduce U.S. lifespan variability and simultaneously increase life expectancy, especially for whites, should target premature, young adult causes of death—in particular, suicide, accidental poisoning, and homicide. We conclude by discussing how the analysis of Hispanic-white differences in lifespan variability contributes to our understanding of the Hispanic paradox. PMID:26682740

  4. Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: Synergistic effect and optimization study.

    PubMed

    Mosleh, Soleiman; Rahimi, Mahmood Reza

    2017-03-01

    Degradation of abamectin pesticide was carried out using visible light driven Cu 2 (OH)PO 4 -HKUST-1 MOF photocatalyst through the sonophotocatalytic technique. Cu 2 (OH)PO 4 -HKUST-1 MOF as a visible-light driven photocatalyst, was synthesized and characterized by XRD, SEM, EDS and DRS. The direct bang gaps of HKUST-1 MOF and Cu 2 (OH)PO 4 -HKUST-1 MOF were estimated about 2.63 and 2.59eV, respectively, which reveals that these photocatalysts can be activated under blue light illumination. All sonophotodegradation experiments were performed using a continuous flow-loop reactor. The central composite design (CCD) methodology was applied for modeling, optimization and investigation of influence of operational parameters, i.e. irradiation time, pH, solution flow rate, oxygen flow rate, initial concentration and photocatalyst dosage on the sonophotocatalytic degradation of abamectin. The maximum degradation efficiency of 99.93% was found at optimal values as 20min, 4, 90mL/min, 0.2mL/min, 30mg/L and 0.4g/L, for irradiation time, pH, solution flow rate, oxygen flow rate, initial concentration and photocatalyst dosage, respectively. Evaluation of the synergism in the combination of ultrasonic and photocatalysis lead to a synergistic index of 2.19, which reveals that coupling of ultrasonic and photocatalysis has a greater efficiency than the sum of individual procedures for degradation of abamectin. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.

    PubMed

    Frick, Eric; Rahmatalla, Salam

    2018-04-04

    The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.

  6. Real-time value-driven diagnosis

    NASA Technical Reports Server (NTRS)

    Dambrosio, Bruce

    1995-01-01

    Diagnosis is often thought of as an isolated task in theoretical reasoning (reasoning with the goal of updating our beliefs about the world). We present a decision-theoretic interpretation of diagnosis as a task in practical reasoning (reasoning with the goal of acting in the world), and sketch components of our approach to this task. These components include an abstract problem description, a decision-theoretic model of the basic task, a set of inference methods suitable for evaluating the decision representation in real-time, and a control architecture to provide the needed continuing coordination between the agent and its environment. A principal contribution of this work is the representation and inference methods we have developed, which extend previously available probabilistic inference methods and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.

  7. Per-pixel bias-variance decomposition of continuous errors in data-driven geospatial modeling: A case study in environmental remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Burt, James E.

    2017-12-01

    This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for understanding and improving spatially-explicit data-driven models of continuous variables in environmental remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping land imperviousness (0-100%) using Landsat images, our results showed that BVD can reveal sources of estimation errors, map how these sources vary across space, reveal the effects of various model characteristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically, BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sample allocation - training samples should capture the full complexity of the modeled process, and more samples should be allocated to regions with more complex underlying processes rather than regions covering larger areas. Through examining the relationships between model characteristics and their effects on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or the squared value of the difference between observation and estimate), we found that the two error metrics embody different diagnostic emphases, can lead to different conclusions about the same model, and may suggest different solutions for performance improvement. We emphasize BVD's strength in revealing the connection between model characteristics and estimation accuracy, as understanding this relationship empowers analysts to effectively steer performance through model adjustments.

  8. Stakeholder-Driven Quality Improvement: A Compelling Force for Clinical Practice Guidelines.

    PubMed

    Rosenfeld, Richard M; Wyer, Peter C

    2018-01-01

    Clinical practice guideline development should be driven by rigorous methodology, but what is less clear is where quality improvement enters the process: should it be a priority-guiding force, or should it enter only after recommendations are formulated? We argue for a stakeholder-driven approach to guideline development, with an overriding goal of quality improvement based on stakeholder perceptions of needs, uncertainties, and knowledge gaps. In contrast, the widely used topic-driven approach, which often makes recommendations based only on randomized controlled trials, is driven by epidemiologic purity and evidence rigor, with quality improvement a downstream consideration. The advantages of a stakeholder-driven versus a topic-driven approach are highlighted by comparisons of guidelines for otitis media with effusion, thyroid nodules, sepsis, and acute bacterial rhinosinusitis. These comparisons show that stakeholder-driven guidelines are more likely to address the quality improvement needs and pressing concerns of clinicians and patients, including understudied populations and patients with multiple chronic conditions. Conversely, a topic-driven approach often addresses "typical" patients, based on research that may not reflect the needs of high-risk groups excluded from studies because of ethical issues or a desire for purity of research design.

  9. Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Roberts, D. Aaron

    2010-01-01

    We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.

  10. Wavelets, ridgelets, and curvelets for Poisson noise removal.

    PubMed

    Zhang, Bo; Fadili, Jalal M; Starck, Jean-Luc

    2008-07-01

    In order to denoise Poisson count data, we introduce a variance stabilizing transform (VST) applied on a filtered discrete Poisson process, yielding a near Gaussian process with asymptotic constant variance. This new transform, which can be deemed as an extension of the Anscombe transform to filtered data, is simple, fast, and efficient in (very) low-count situations. We combine this VST with the filter banks of wavelets, ridgelets and curvelets, leading to multiscale VSTs (MS-VSTs) and nonlinear decomposition schemes. By doing so, the noise-contaminated coefficients of these MS-VST-modified transforms are asymptotically normally distributed with known variances. A classical hypothesis-testing framework is adopted to detect the significant coefficients, and a sparsity-driven iterative scheme reconstructs properly the final estimate. A range of examples show the power of this MS-VST approach for recovering important structures of various morphologies in (very) low-count images. These results also demonstrate that the MS-VST approach is competitive relative to many existing denoising methods.

  11. Monte Carlo isotopic inventory analysis for complex nuclear systems

    NASA Astrophysics Data System (ADS)

    Phruksarojanakun, Phiphat

    Monte Carlo Inventory Simulation Engine (MCise) is a newly developed method for calculating isotopic inventory of materials. It offers the promise of modeling materials with complex processes and irradiation histories, which pose challenges for current, deterministic tools, and has strong analogies to Monte Carlo (MC) neutral particle transport. The analog method, including considerations for simple, complex and loop flows, is fully developed. In addition, six variance reduction tools provide unique capabilities of MCise to improve statistical precision of MC simulations. Forced Reaction forces an atom to undergo a desired number of reactions in a given irradiation environment. Biased Reaction Branching primarily focuses on improving statistical results of the isotopes that are produced from rare reaction pathways. Biased Source Sampling aims at increasing frequencies of sampling rare initial isotopes as the starting particles. Reaction Path Splitting increases the population by splitting the atom at each reaction point, creating one new atom for each decay or transmutation product. Delta Tracking is recommended for high-frequency pulsing to reduce the computing time. Lastly, Weight Window is introduced as a strategy to decrease large deviations of weight due to the uses of variance reduction techniques. A figure of merit is necessary to compare the efficiency of different variance reduction techniques. A number of possibilities for figure of merit are explored, two of which are robust and subsequently used. One is based on the relative error of a known target isotope (1/R 2T) and the other on the overall detection limit corrected by the relative error (1/DkR 2T). An automated Adaptive Variance-reduction Adjustment (AVA) tool is developed to iteratively define parameters for some variance reduction techniques in a problem with a target isotope. Sample problems demonstrate that AVA improves both precision and accuracy of a target result in an efficient manner. Potential applications of MCise include molten salt fueled reactors and liquid breeders in fusion blankets. As an example, the inventory analysis of a liquid actinide fuel in the In-Zinerator, a sub-critical power reactor driven by a fusion source, is examined. The result reassures MCise as a reliable tool for inventory analysis of complex nuclear systems.

  12. Cyclic fatigue analysis of twisted file rotary NiTi instruments used in reciprocating motion.

    PubMed

    Gambarini, G; Gergi, R; Naaman, A; Osta, N; Al Sudani, D

    2012-09-01

    To evaluate the cyclic fatigue fracture resistance of engine-driven twisted file (TF) instruments under reciprocating movement. A sample of 30 size 25, 0.08 taper NiTi TF instruments was tested in a simulated canal with 60˚ angle of curvature and a 3 mm radius. During mechanical testing, different movement kinematics were used at a constant speed, which resulted in three experimental groups (each group n = 10). The instruments from the first group (G1) were rotated until fracture occurred. The instruments in the second (G2) and third group (G3) were driven under reciprocating movement with different angles of reciprocation. The time of fracture for each instrument was measured, and statistical analysis was performed using one-way analysis of variance followed by Tukey's Honestly Significant Different test. Reciprocating movement resulted in a significantly longer cyclic fatigue life (P < 0.0001) when compared with continuous rotation. No difference was found between reciprocation 150° clockwise/30° counterclockwise (CW/CCW) and 30° CW/150° CCW. The reciprocating movement was associated with an extended cyclic fatigue life of the TF size 0.25, 0.08 taper instruments in comparison with conventional rotation. © 2012 International Endodontic Journal.

  13. Smart campus: Data on energy consumption in an ICT-driven university.

    PubMed

    Popoola, Segun I; Atayero, Aderemi A; Okanlawon, Theresa T; Omopariola, Benson I; Takpor, Olusegun A

    2018-02-01

    In this data article, we present a comprehensive dataset on electrical energy consumption in a university that is practically driven by Information and Communication Technologies (ICTs). The total amount of electricity consumed at Covenant University, Ota, Nigeria was measured, monitored, and recorded on daily basis for a period of 12 consecutive months (January-December, 2016). Energy readings were observed from the digital energy meter (EDMI Mk10E) located at the distribution substation that supplies electricity to the university community. The complete energy data are clearly presented in tables and graphs for relevant utility and potential reuse. Also, descriptive first-order statistical analyses of the energy data are provided in this data article. For each month, the histogram distribution and time series plot of the monthly energy consumption data are analyzed to show insightful trends of energy consumption in the university. Furthermore, data on the significant differences in the means of daily energy consumption are made available as obtained from one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests. The information provided in this data article will foster research development in the areas of energy efficiency, planning, policy formulation, and management towards the realization of smart campuses.

  14. An incremental double-layer capacitance of a planar nano gap and its application in cardiac-troponin T detection.

    PubMed

    Hsueh, Hsiao-Ting; Lin, Chih-Ting

    2016-05-15

    Surface potential is one of the most important properties at solid-liquid interfaces. It can be modulated by the voltage applied on the electrode or by the surface properties. Hence, surface potential is a good indicator for surface modifications, such as biomolecular bindings. In this work, we proposed a planar nano-gap structure for surface-potential difference monitoring. Based on the proposed architecture, the variance of surface-potential difference can be determined by electrical double layer capacitance (EDLC) between the nano-gap electrodes. Using cyclic voltammetry method, in this work, we demonstrated a relationship between surface potential and EDLC by chemically modifying surface properties. Finally, we also showed the proposed planar nano-gap device provides the capability for cardiac-troponin T (cTnT) measurements with co-existed 10 µg/ml BSA interference. The detection dynamic range is from 100 pg/ml to 1 µg/ml. Based on experimental results and extrapolation, the detection limit is less than 100 pg/ml in diluted PBS buffer (0.01X PBS). These results demonstrated the planar nano-gap architecture having potentials on biomolecular detection through monitoring of surface-potential variation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Free-Surface flow dynamics and its effect on travel time distribution in unsaturated fractured zones - findings from analogue percolation experiments

    NASA Astrophysics Data System (ADS)

    Noffz, Torsten; Kordilla, Jannes; Dentz, Marco; Sauter, Martin

    2017-04-01

    Flow in unsaturated fracture networks constitutes a high potential for rapid mass transport and can therefore possibly contributes to the vulnerability of aquifer systems. Numerical models are generally used to predict flow and transport and have to reproduce various complex effects of gravity-driven flow dynamics. However, many classical volume-effective modelling approaches often do not grasp the non-linear free surface flow dynamics and partitioning behaviour at fracture intersections in unsaturated fracture networks. Better process understanding can be obtained by laboratory experiments, that isolate single aspects of the mass partitioning process, which influence travel time distributions and allow possible cross-scale applications. We present a series of percolation experiments investigating partitioning dynamics of unsaturated multiphase flow at an individual horizontal fracture intersection. A high precision multichannel dispenser is used to establish gravity-driven free surface flow on a smooth and vertical PMMA (poly(methyl methacrylate)) surface at rates ranging from 1.5 to 4.5 mL/min to obtain various flow modes (droplets; rivulets). Cubes with dimensions 20 x 20 x 20 cm are used to create a set of simple geometries. A digital balance provides continuous real-time cumulative mass bypassing the network. The influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes is shown in single-inlet experiments. Droplet and rivulet flow are delineated and a transition zone exhibiting mixed flow modes can be determined. Furthermore, multi-inlet setups with constant total inflow rates are used to reduce variance and the effect of erratic free-surface flow dynamics. Investigated parameters include: variable aperture widths df, horizontal offsets dv of the vertical fracture surface and alternating injection methods for both droplet and rivulet flow. Repetitive structures with several horizontal fractures extend arrival times but also complexity and variance. Finally, impacts of variable geometric features and flow modes on partitioning dynamics are highlighted by normalized fracture inflow rates. For higher flow rates, i.e. rivulet flows dominates, the effectiveness of filling horizontal fractures strongly increases. We demonstrate that the filling can be described by plug flow, which transitions into a Washburn-type flow at later times, and derive an analytical solution for the case of rivulet flows. Droplet flow dominated flow experiments exhibit a high bypass efficiency, which cannot be described by plug-flow, however, they also transition into a Washburn stage.

  16. Effects of cloud cover and meteorology in estimating ground-level air pollution using MAIAC AOD in the Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Xiao, Q.; Liu, Y.

    2017-12-01

    Satellite aerosol optical depth (AOD) has been used to assess fine particulate matter (PM2.5) pollution worldwide. However, non-random missing AOD due to cloud cover or high surface reflectance can cause up to 80% data loss and bias model-estimated spatial and temporal trends of PM2.5. Previous studies filled the data gap largely by spatial smoothing which ignored the impact of cloud cover and meteorology on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a flexible Multiple Imputation (MI) method that combines cloud fraction, elevation, humidity, temperature, and spatiotemporal trends to impute the missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1 km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 were 0.81 and 0.73 (for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. This method provides reliable PM2.5 predictions with complete coverage at high resolution. By including all the pixels of all days into model development, this method corrected the sampling bias in satellite-driven air pollution modelling due to non-random missingness in AOD. Comparing with previously reported gap-filling methods, the MI method has the strength of not relying on ground PM2.5 measurements, therefore allows the prediction of historical PM2.5 levels prior to the establishment of regular ground monitoring networks.

  17. Evaluation of the marginal fit of metal copings fabricated on three different marginal designs using conventional and accelerated casting techniques: an in vitro study.

    PubMed

    Vaidya, Sharad; Parkash, Hari; Bhargava, Akshay; Gupta, Sharad

    2014-01-01

    Abundant resources and techniques have been used for complete coverage crown fabrication. Conventional investing and casting procedures for phosphate-bonded investments require a 2- to 4-h procedure before completion. Accelerated casting techniques have been used, but may not result in castings with matching marginal accuracy. The study measured the marginal gap and determined the clinical acceptability of single cast copings invested in a phosphate-bonded investment with the use of conventional and accelerated methods. One hundred and twenty cast coping samples were fabricated using conventional and accelerated methods, with three finish lines: Chamfer, shoulder and shoulder with bevel. Sixty copings were prepared with each technique. Each coping was examined with a stereomicroscope at four predetermined sites and measurements of marginal gaps were documented for each. A master chart was prepared for all the data and was analyzed using Statistical Package for the Social Sciences version. Evidence of marginal gap was then evaluated by t-test. Analysis of variance and Post-hoc analysis were used to compare two groups as well as to make comparisons between three subgroups . Measurements recorded showed no statistically significant difference between conventional and accelerated groups. Among the three marginal designs studied, shoulder with bevel showed the best marginal fit with conventional as well as accelerated casting techniques. Accelerated casting technique could be a vital alternative to the time-consuming conventional casting technique. The marginal fit between the two casting techniques showed no statistical difference.

  18. Bridging a possible gap of GRACE observations in the Arctic Ocean using existing GRACE data and in situ bottom pressure sensors

    NASA Astrophysics Data System (ADS)

    Peralta Ferriz, C.; Morison, J.

    2014-12-01

    Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1

  19. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series

    PubMed Central

    Fransson, Peter

    2016-01-01

    Abstract Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box–Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed. PMID:27784176

  20. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.

    PubMed

    Thompson, William Hedley; Fransson, Peter

    2016-12-01

    Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.

  1. Phonon-induced ultrafast band gap control in LaTiO3

    NASA Astrophysics Data System (ADS)

    Gu, Mingqiang; Rondinelli, James M.

    We propose a route for ultrafast band gap engineering in correlated transition metal oxides by using optically driven phonons. We show that the ∖Gamma-point electron band energies can be deterministically tuned in the nonequilibrium state. Taking the Mott insulator LaTiO3 as an example, we show that such phonon-assisted processes dynamically induce an indirect-to-direct band gap transition or even a metal-to-insulator transition, depending on the electron correlation strength. We explain the origin of the dynamical band structure control and also establish its generality by examining related oxides. Lastly, we describe experimental routes to realize the band structure control with impulsive stimulated Raman scattering.

  2. Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng

    2011-01-01

    We elucidate the fundamental physics of nanoscale dopants in narrow band-gap thermoelectric nanocomposites XPbmYTe2+m (X=Ag,Na; Y=Sb,Bi) using first-principles calculations. Our re- sults unveil distinct band-structure modulations, most notably a sizable band-gap widening driven by nanodopant-induced lattice strain and a band split-off at the conduction band minimum caused by the spin-orbit interaction of the dopant Sb or Bi atoms. Boltzmann transport calculations demon- strate that these band modulations have significant but competing effects on high-temperature elec- tron transport behavior. These results offer insights for understanding recent experimental findings and suggest principles for optimizing thermoelectric properties of narrow band-gap semiconductors.

  3. 42 CFR 456.522 - Content of request for variance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time... travel time between the remote facility and each facility listed in paragraph (e) of this section; (f...

  4. Factors affecting particle collection by electro-osmosis in microfluidic systems.

    PubMed

    Mohtar, Mohd Nazim; Hoettges, Kai F; Hughes, Michael P

    2014-02-01

    Alternating-current electro-osmosis, a phenomenon of fluid transport due to the interaction between an electrical double layer and a tangential electric field, has been used both for inducing fluid movement and for the concentration of particles suspended in the fluid. This offers many advantages over other phenomena used to trap particles, such as placing particles at an electrode centre rather than an edge; benefits of scale, where electrodes hundreds of micrometers across can trap particles from the molecules to cells at the same rate; and a trapping volume limited by the vortex height, a phenomenon thus far unstudied. In this paper, the collection of particles due to alternating-current electro-osmosis driven collection is examined for a range of particle concentrations, inter-electrode gap widths, chamber heights and media viscosity and density. A model of collection behaviour is described where particle collection over time is governed by two processes, one driven by the vortices and the other by sedimentation, allowing the determination of the maximum height of vortex-driven collection, but also indicates how trapping is limited by high particle concentrations and fluid velocities. The results also indicate that viscosity, rather than density, is a significant governing factor in determining the trapping behaviour of particles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Data-Driven Diffusion Of Innovations: Successes And Challenges In 3 Large-Scale Innovative Delivery Models

    PubMed Central

    Dorr, David A.; Cohen, Deborah J.; Adler-Milstein, Julia

    2018-01-01

    Failed diffusion of innovations may be linked to an inability to use and apply data, information, and knowledge to change perceptions of current practice and motivate change. Using qualitative and quantitative data from three large-scale health care delivery innovations—accountable care organizations, advanced primary care practice, and EvidenceNOW—we assessed where data-driven innovation is occurring and where challenges lie. We found that implementation of some technological components of innovation (for example, electronic health records) has occurred among health care organizations, but core functions needed to use data to drive innovation are lacking. Deficits include the inability to extract and aggregate data from the records; gaps in sharing data; and challenges in adopting advanced data functions, particularly those related to timely reporting of performance data. The unexpectedly high costs and burden incurred during implementation of the innovations have limited organizations’ ability to address these and other deficits. Solutions that could help speed progress in data-driven innovation include facilitating peer-to-peer technical assistance, providing tailored feedback reports to providers from data aggregators, and using practice facilitators skilled in using data technology for quality improvement to help practices transform. Policy efforts that promote these solutions may enable more rapid uptake of and successful participation in innovative delivery system reforms. PMID:29401031

  6. Data-Driven Diffusion Of Innovations: Successes And Challenges In 3 Large-Scale Innovative Delivery Models.

    PubMed

    Dorr, David A; Cohen, Deborah J; Adler-Milstein, Julia

    2018-02-01

    Failed diffusion of innovations may be linked to an inability to use and apply data, information, and knowledge to change perceptions of current practice and motivate change. Using qualitative and quantitative data from three large-scale health care delivery innovations-accountable care organizations, advanced primary care practice, and EvidenceNOW-we assessed where data-driven innovation is occurring and where challenges lie. We found that implementation of some technological components of innovation (for example, electronic health records) has occurred among health care organizations, but core functions needed to use data to drive innovation are lacking. Deficits include the inability to extract and aggregate data from the records; gaps in sharing data; and challenges in adopting advanced data functions, particularly those related to timely reporting of performance data. The unexpectedly high costs and burden incurred during implementation of the innovations have limited organizations' ability to address these and other deficits. Solutions that could help speed progress in data-driven innovation include facilitating peer-to-peer technical assistance, providing tailored feedback reports to providers from data aggregators, and using practice facilitators skilled in using data technology for quality improvement to help practices transform. Policy efforts that promote these solutions may enable more rapid uptake of and successful participation in innovative delivery system reforms.

  7. Determining the size of a complete disturbance landscape: multi-scale, continental analysis of forest change.

    PubMed

    Buma, Brian; Costanza, Jennifer K; Riitters, Kurt

    2017-11-21

    The scale of investigation for disturbance-influenced processes plays a critical role in theoretical assumptions about stability, variance, and equilibrium, as well as conservation reserve and long-term monitoring program design. Critical consideration of scale is required for robust planning designs, especially when anticipating future disturbances whose exact locations are unknown. This research quantified disturbance proportion and pattern (as contagion) at multiple scales across North America. This pattern of scale-associated variability can guide selection of study and management extents, for example, to minimize variance (measured as standard deviation) between any landscapes within an ecoregion. We identified the proportion and pattern of forest disturbance (30 m grain size) across multiple landscape extents up to 180 km 2 . We explored the variance in proportion of disturbed area and the pattern of that disturbance between landscapes (within an ecoregion) as a function of the landscape extent. In many ecoregions, variance between landscapes within an ecoregion was minimal at broad landscape extents (low standard deviation). Gap-dominated regions showed the least variance, while fire-dominated showed the largest. Intensively managed ecoregions displayed unique patterns. A majority of the ecoregions showed low variance between landscapes at some scale, indicating an appropriate extent for incorporating natural regimes and unknown future disturbances was identified. The quantification of the scales of disturbance at the ecoregion level provides guidance for individuals interested in anticipating future disturbances which will occur in unknown spatial locations. Information on the extents required to incorporate disturbance patterns into planning is crucial for that process.

  8. Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma.

    PubMed

    Aryal, Madhava P; Nagaraja, Tavarekere N; Brown, Stephen L; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R

    2014-10-01

    The distribution of dynamic contrast-enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either (1) plasma volume (vp), (2) vp and forward volume transfer constant (K(trans)) or (3) vp, K(trans) and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions--mean, median, variance and skewness--were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p ≥ 0.10; Wilcoxon signed-rank and paired t tests). These and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Performance of time-varying predictors in multilevel models under an assumption of fixed or random effects.

    PubMed

    Baird, Rachel; Maxwell, Scott E

    2016-06-01

    Time-varying predictors in multilevel models are a useful tool for longitudinal research, whether they are the research variable of interest or they are controlling for variance to allow greater power for other variables. However, standard recommendations to fix the effect of time-varying predictors may make an assumption that is unlikely to hold in reality and may influence results. A simulation study illustrates that treating the time-varying predictor as fixed may allow analyses to converge, but the analyses have poor coverage of the true fixed effect when the time-varying predictor has a random effect in reality. A second simulation study shows that treating the time-varying predictor as random may have poor convergence, except when allowing negative variance estimates. Although negative variance estimates are uninterpretable, results of the simulation show that estimates of the fixed effect of the time-varying predictor are as accurate for these cases as for cases with positive variance estimates, and that treating the time-varying predictor as random and allowing negative variance estimates performs well whether the time-varying predictor is fixed or random in reality. Because of the difficulty of interpreting negative variance estimates, 2 procedures are suggested for selection between fixed-effect and random-effect models: comparing between fixed-effect and constrained random-effect models with a likelihood ratio test or fitting a fixed-effect model when an unconstrained random-effect model produces negative variance estimates. The performance of these 2 procedures is compared. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Ultrafast laser-induced modifications of energy bands of non-metal crystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2009-10-01

    Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.

  11. Judging the 'passability' of dynamic gaps in a virtual rugby environment.

    PubMed

    Watson, Gareth; Brault, Sebastien; Kulpa, Richard; Bideau, Benoit; Butterfield, Joe; Craig, Cathy

    2011-10-01

    Affordances have recently been proposed as a guiding principle in perception-action research in sport (Fajen, Riley, & Turvey, 2009). In the present study, perception of the 'passability' affordance of a gap between two approaching defenders in rugby is explored. A simplified rugby gap closure scenario was created using immersive, interactive virtual reality technology where 14 novice participants (attacker) judged the passability of the gap between two virtual defenders via a perceptual judgment (button press) task. The scenario was modeled according to tau theory (Lee, 1976) and a psychophysical function was fitted to the response data. Results revealed that a tau-based informational quantity could account for 82% of the variance in the data. Findings suggest that the passability affordance in this case, is defined by this variable and participants were able to use it in order to inform prospective judgments as to passability. These findings contribute to our understanding of affordances and how they may be defined in this particular sporting scenario; however, some limitations regarding methodology, such as decoupling perception and action are also acknowledged. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Where do inmmigrants fare worse? Modeling workplace wage gap variation with longitudinal employer-employee data.

    PubMed

    Tomaskovic-Devey, Donald; Hällsten, Martin; Avent-Holt, Dustin

    2015-01-01

    The authors propose a strategy for observing and explaining workplace variance in categorically linked inequalities. Using Swedish economy-wide linked employer-employee panel data, the authors examine variation in workplace wage inequalities between native Swedes and non-Western immigrants. Consistent with relational inequality theory, the authors' findings are that immigrant-native wage gaps vary dramatically across workplaces, even net of strong human capital controls. The authors also find that, net of observed and fixed-effect controls for individual traits, workplace immigrant-native wage gaps decline with increased workplace immigrant employment and managerial representation and increase when job segregation rises. These results are stronger in high-inequality workplaces and for white-collar employees: contexts in which one expects status-based claims on organizational resources, the central causal mechanism identified by relational inequality theory, to be stronger. The authors conclude that workplace variation in the non-Western immigrant-native wage gaps is contingent on organizational variationin the relative power of groups and the institutional context in which that power is exercised.

  13. Estimation of the geochemical threshold and its statistical significance

    USGS Publications Warehouse

    Miesch, A.T.

    1981-01-01

    A statistic is proposed for estimating the geochemical threshold and its statistical significance, or it may be used to identify a group of extreme values that can be tested for significance by other means. The statistic is the maximum gap between adjacent values in an ordered array after each gap has been adjusted for the expected frequency. The values in the ordered array are geochemical values transformed by either ln(?? - ??) or ln(?? - ??) and then standardized so that the mean is zero and the variance is unity. The expected frequency is taken from a fitted normal curve with unit area. The midpoint of an adjusted gap that exceeds the corresponding critical value may be taken as an estimate of the geochemical threshold, and the associated probability indicates the likelihood that the threshold separates two geochemical populations. The adjusted gap test may fail to identify threshold values if the variation tends to be continuous from background values to the higher values that reflect mineralized ground. However, the test will serve to identify other anomalies that may be too subtle to have been noted by other means. ?? 1981.

  14. Contextual explanations for numeracy and literacy skill disparities between native and foreign-born adults in western countries

    PubMed Central

    Jencks, Christopher

    2017-01-01

    Using new direct measures of numeracy and literacy skills among 85,875 adults in 17 Western countries, we find that foreign-born adults have lower mean skills than native-born adults of the same age (16 to 64) in all of the examined countries. The gaps are small, and vary substantially between countries. Multilevel models reveal that immigrant populations’ demographic and socioeconomic characteristics, employment, and language proficiency explain about half of the cross-national variance of numeracy and literacy skills gaps. Differences in origin countries’ average education level also account for variation in the size of the immigrant-native skills gap. The more protective labor markets in immigrant-receiving countries are, the less well immigrants are skilled in numeracy and literacy compared to natives. For those who migrate before their teens (the 1.5 generation), access to an education system that accommodates migrants’ special needs is crucial. The 1 and 1.5 generation have smaller numeracy and literacy skills gaps in more ethnically diverse societies. PMID:28301541

  15. Right ventrolateral prefrontal cortex mediates individual differences in conflict-driven cognitive control.

    PubMed

    Egner, Tobias

    2011-12-01

    Conflict adaptation--a conflict-triggered improvement in the resolution of conflicting stimulus or response representations--has become a widely used probe of cognitive control processes in both healthy and clinical populations. Previous fMRI studies have localized activation foci associated with conflict resolution to dorsolateral PFC (dlPFC). The traditional group analysis approach employed in these studies highlights regions that are, on average, activated during conflict resolution, but does not necessarily reveal areas mediating individual differences in conflict resolution, because between-subject variance is treated as noise. Here, we employed a complementary approach to elucidate the neural bases of variability in the proficiency of conflict-driven cognitive control. We analyzed two independent fMRI data sets of face-word Stroop tasks by using individual variability in the behavioral expression of conflict adaptation as the metric against which brain activation was regressed while controlling for individual differences in mean RT and Stroop interference. Across the two experiments, a replicable neural substrate of individual variation in conflict adaptation was found in ventrolateral PFC (vlPFC), specifically, in the right inferior frontal gyrus, pars orbitalis (BA 47). Unbiased regression estimates showed that variability in activity in this region accounted for ∼ 40% of the variance in behavioral expression of conflict adaptation across subjects, thus documenting a heretofore unsuspected key role for vlPFC in mediating conflict-driven adjustments in cognitive control. We speculate that vlPFC plays a primary role in conflict control that is supplemented by dlPFC recruitment under conditions of suboptimal performance.

  16. The unique contributions of perceiver and target characteristics in person perception.

    PubMed

    Hehman, Eric; Sutherland, Clare A M; Flake, Jessica K; Slepian, Michael L

    2017-10-01

    Models of person perception have long asserted that our impressions of others are guided by characteristics of both the target and perceiver. However, research has not yet quantified to what extent perceivers and targets contribute to different impressions. This quantification is theoretically critical, as it addresses how much an impression arises from "our minds" versus "others' faces." Here, we apply cross-classified random effects models to address this fundamental question in social cognition, using approximately 700,000 ratings of faces. With this approach, we demonstrate that (a) different trait impressions have unique causal processes, meaning that some impressions are largely informed by perceiver-level characteristics whereas others are driven more by physical target-level characteristics; (b) modeling of perceiver- and target-variance in impressions informs fundamental models of social perception; (c) Perceiver × Target interactions explain a substantial portion of variance in impressions; (d) greater emotional intensity in stimuli decreases the influence of the perceiver; and (e) more variable, naturalistic stimuli increases variation across perceivers. Important overarching patterns emerged. Broadly, traits and dimensions representing inferences of character (e.g., dominance) are driven more by perceiver characteristics than those representing appearance-based appraisals (e.g., youthful-attractiveness). Moreover, inferences made of more ambiguous traits (e.g., creative) or displays (e.g., faces with less extreme emotions, less-controlled stimuli) are similarly driven more by perceiver than target characteristics. Together, results highlight the large role that perceiver and target variability play in trait impressions, and develop a new topography of trait impressions that considers the source of the impression. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-06-01

    We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.

  18. Option pricing for stochastic volatility model with infinite activity Lévy jumps

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoli; Zhuang, Xintian

    2016-08-01

    The purpose of this paper is to apply the stochastic volatility model driven by infinite activity Lévy processes to option pricing which displays infinite activity jumps behaviors and time varying volatility that is consistent with the phenomenon observed in underlying asset dynamics. We specially pay attention to three typical Lévy processes that replace the compound Poisson jumps in Bates model, aiming to capture the leptokurtic feature in asset returns and volatility clustering effect in returns variance. By utilizing the analytical characteristic function and fast Fourier transform technique, the closed form formula of option pricing can be derived. The intelligent global optimization search algorithm called Differential Evolution is introduced into the above highly dimensional models for parameters calibration so as to improve the calibration quality of fitted option models. Finally, we perform empirical researches using both time series data and options data on financial markets to illustrate the effectiveness and superiority of the proposed method.

  19. Why is China’s wind power generation not living up to its potential?

    NASA Astrophysics Data System (ADS)

    Huenteler, Joern; Tang, Tian; Chan, Gabriel; Diaz Anadon, Laura

    2018-04-01

    Following a decade of unprecedented investment, China now has the world’s largest installed base of wind power capacity. Yet, despite siting most wind farms in the wind-rich Northern and Western provinces, electricity generation from Chinese wind farms has not reached the performance benchmarks of the United States and many other advanced economies. This has resulted in lower environmental, economic, and health benefits than anticipated. We develop a framework to explain the performance of the Chinese and US wind sectors, accounting for a comprehensive set of driving factors. We apply this framework to a novel dataset of virtually all wind farms installed in China and the United States through the end of 2013. We first estimate the wind sector’s technical potential using a methodology that produces consistent estimates for both countries. We compare this potential to actual performance and find that Chinese wind farms generated electricity at 37%–45% of their annual technical potential during 2006–2013 compared to 54%–61% in the United States. Our findings underscore that the larger gap between actual performance and technical potential in China compared to the United States is significantly driven by delays in grid connection (14% of the gap) and curtailment due to constraints in grid management (10% of the gap), two challenges of China’s wind power expansion covered extensively in the literature. However, our findings show that China’s underperformance is also driven by suboptimal turbine model selection (31% of the gap), wind farm siting (23% of the gap), and turbine hub heights (6% of the gap)—factors that have received less attention in the literature and, crucially, are locked-in for the lifetime of wind farms. This suggests that besides addressing grid connection delays and curtailment, China will also need policy measures to address turbine siting and technology choices to achieve its national goals and increase utilization up to US levels.

  20. Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence

    NASA Astrophysics Data System (ADS)

    Mathai, Varghese; Prakash, Vivek N.; Brons, Jon; Sun, Chao; Lohse, Detlef

    2015-09-01

    Particles suspended in turbulent flows are affected by the turbulence and at the same time act back on the flow. The resulting coupling can give rise to rich variability in their dynamics. Here we report experimental results from an investigation of finite-sized buoyant spheres in turbulence. We find that even a marginal reduction in the particle's density from that of the fluid can result in strong modification of its dynamics. In contrast to classical spatial filtering arguments and predictions of particle models, we find that the particle acceleration variance increases with size. We trace this reversed trend back to the growing contribution from wake-induced forces, unaccounted for in current particle models in turbulence. Our findings highlight the need for improved multiphysics based models that account for particle wake effects for a faithful representation of buoyant-sphere dynamics in turbulence.

  1. Investigation on the influence of electrode geometry on characteristics of coaxial dielectric barrier discharge reactor driven by an oscillating microsecond pulsed power supply

    NASA Astrophysics Data System (ADS)

    Miao, Chuanrun; Liu, Feng; Wang, Qian; Cai, Meiling; Fang, Zhi

    2018-03-01

    In this paper, an oscillating microsecond pulsed power supply with rise time of several tens of nanosecond (ns) is used to excite a coaxial DBD with double layer dielectric barriers. The effects of various electrode geometries by changing the size of inner quartz tube (different electrode gaps) on the discharge uniformity, power deposition, energy efficiency, and operation temperature are investigated by electrical, optical, and temperature diagnostics. The electrical parameters of the coaxial DBD are obtained from the measured applied voltage and current using an equivalent electrical model. The energy efficiency and the power deposition in air gap of coaxial DBD with various electrode geometries are also obtained with the obtained electrical parameters, and the heat loss and operation temperature are analyzed by a heat conduction model. It is found that at the same applied voltage, with the increasing of the air gap, the discharge uniformity becomes worse and the discharge power deposition and the energy efficiency decrease. At 2.5 mm air gap and 24 kV applied voltage, the energy efficiency of the coaxial DBD reaches the maximum value of 68.4%, and the power deposition in air gap is 23.6 W and the discharge uniformity is the best at this case. The corresponding operation temperature of the coaxial DBD reaches 64.3 °C after 900 s operation and the temperature of the inner dielectric barrier is 114.4 °C under thermal balance. The experimental results provide important experimental references and are important to optimize the design and the performance of coaxial DBD reactor.

  2. Giant Electric Field Enhancement in Split Ring Resonators Featuring Nanometer-Sized Gaps

    NASA Astrophysics Data System (ADS)

    Bagiante, S.; Enderli, F.; Fabiańska, J.; Sigg, H.; Feurer, T.

    2015-01-01

    Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm-1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.

  3. SHARD - a SeisComP3 module for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Weber, B.; Becker, J.; Ellguth, E.; Henneberger, R.; Herrnkind, S.; Roessler, D.

    2016-12-01

    Monitoring building and structure response to strong earthquake ground shaking or human-induced vibrations in real-time forms the backbone of modern structural health monitoring (SHM). The continuous data transmission, processing and analysis reduces drastically the time decision makers need to plan for appropriate response to possible damages of high-priority buildings and structures. SHARD is a web browser based module using the SeisComp3 framework to monitor the structural health of buildings and other structures by calculating standard engineering seismology parameters and checking their exceedance in real-time. Thresholds can be defined, e.g. compliant with national building codes (IBC2000, DIN4149 or EC8), for PGA/PGV/PGD, response spectra and drift ratios. In case thresholds are exceeded automatic or operator driven reports are generated and send to the decision makers. SHARD also determines waveform quality in terms of data delay and variance to report sensor status. SHARD is the perfect tool for civil protection to monitor simultaneously multiple city-wide critical infrastructure as hospitals, schools, governmental buildings and structures as bridges, dams and power substations.

  4. Personality and culture: demarcating between the common and the unique.

    PubMed

    Poortinga, Y H; Van Hemert, D A

    2001-12-01

    Four traditions in research on personality and culture are distinguished: (i) the culture-and-personality school and recent relativistic perspectives, (ii) the trait approach, (iii) interactionistic orientations, and (iv) situationist approaches. Next, the first two of these traditions are evaluated to ascertain how much variance is explained by culture. Thereafter, it is argued that the (questionable) focus on explanations with a high level of inclusiveness or generality is a major reason for the near absence of situationist interpretation of cross-cultural differences. Finally, three possible strategies are discussed to bridge the gap between relativism (emphasizing differences) and universalism (assuming basic similarities). A suggestion is made as to how both approaches can be valuable when unexplainable, as well as explainable variances, in cross-cultural personality research are taken seriously.

  5. Parity-time symmetry-breaking mechanism of dynamic Mott transitions in dissipative systems

    DOE PAGES

    Tripathi, Vikram; Galda, Alexey; Barman, Himadri; ...

    2016-07-05

    Here, we describe the critical behavior of the electric field-driven (dynamic) Mott insulator-to-metal transitions in dissipative Fermi and Bose systems in terms of non-Hermitian Hamiltonians invariant under simultaneous parity (P) and time-reversal (T) operations. The dynamic Mott transition is identified as a PT symmetry-breaking phase transition, with the Mott insulating state corresponding to the regime of unbroken PT symmetry with a real energy spectrum. We also established that the imaginary part of the Hamiltonian arises from the combined effects of the driving field and inherent dissipation. We derive the renormalization and collapse of the Mott gap at the dielectric breakdownmore » and describe the resulting critical behavior of transport characteristics. The critical exponent we obtained is in an excellent agreement with experimental findings.« less

  6. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro

    2013-01-01

    Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.

  7. Can Optimism, Pessimism, Hope, Treatment Credibility and Treatment Expectancy Be Distinguished in Patients Undergoing Total Hip and Total Knee Arthroplasty?

    PubMed Central

    Haanstra, Tsjitske M.; Tilbury, Claire; Kamper, Steven J.; Tordoir, Rutger L.; Vliet Vlieland, Thea P. M.; Nelissen, Rob G. H. H.; Cuijpers, Pim; de Vet, Henrica C. W.; Dekker, Joost; Knol, Dirk L.; Ostelo, Raymond W.

    2015-01-01

    Objectives The constructs optimism, pessimism, hope, treatment credibility and treatment expectancy are associated with outcomes of medical treatment. While these constructs are grounded in different theoretical models, they nonetheless show some conceptual overlap. The purpose of this study was to examine whether currently available measurement instruments for these constructs capture the conceptual differences between these constructs within a treatment setting. Methods Patients undergoing Total Hip and Total Knee Arthroplasty (THA and TKA) (Total N = 361; 182 THA; 179 TKA), completed the Life Orientation Test-Revised for optimism and pessimism, the Hope Scale, the Credibility Expectancy Questionnaire for treatment credibility and treatment expectancy. Confirmatory factor analysis was used to examine whether the instruments measure distinct constructs. Four theory-driven models with one, two, four and five latent factors were evaluated using multiple fit indices and Δχ2 tests, followed by some posthoc models. Results The results of the theory driven confirmatory factor analysis showed that a five factor model in which all constructs loaded on separate factors yielded the most optimal and satisfactory fit. Posthoc, a bifactor model in which (besides the 5 separate factors) a general factor is hypothesized accounting for the commonality of the items showed a significantly better fit than the five factor model. All specific factors, except for the hope factor, showed to explain a substantial amount of variance beyond the general factor. Conclusion Based on our primary analyses we conclude that optimism, pessimism, hope, treatment credibility and treatment expectancy are distinguishable in THA and TKA patients. Postdoc, we determined that all constructs, except hope, showed substantial specific variance, while also sharing some general variance. PMID:26214176

  8. Can Optimism, Pessimism, Hope, Treatment Credibility and Treatment Expectancy Be Distinguished in Patients Undergoing Total Hip and Total Knee Arthroplasty?

    PubMed

    Haanstra, Tsjitske M; Tilbury, Claire; Kamper, Steven J; Tordoir, Rutger L; Vliet Vlieland, Thea P M; Nelissen, Rob G H H; Cuijpers, Pim; de Vet, Henrica C W; Dekker, Joost; Knol, Dirk L; Ostelo, Raymond W

    2015-01-01

    The constructs optimism, pessimism, hope, treatment credibility and treatment expectancy are associated with outcomes of medical treatment. While these constructs are grounded in different theoretical models, they nonetheless show some conceptual overlap. The purpose of this study was to examine whether currently available measurement instruments for these constructs capture the conceptual differences between these constructs within a treatment setting. Patients undergoing Total Hip and Total Knee Arthroplasty (THA and TKA) (Total N = 361; 182 THA; 179 TKA), completed the Life Orientation Test-Revised for optimism and pessimism, the Hope Scale, the Credibility Expectancy Questionnaire for treatment credibility and treatment expectancy. Confirmatory factor analysis was used to examine whether the instruments measure distinct constructs. Four theory-driven models with one, two, four and five latent factors were evaluated using multiple fit indices and Δχ2 tests, followed by some posthoc models. The results of the theory driven confirmatory factor analysis showed that a five factor model in which all constructs loaded on separate factors yielded the most optimal and satisfactory fit. Posthoc, a bifactor model in which (besides the 5 separate factors) a general factor is hypothesized accounting for the commonality of the items showed a significantly better fit than the five factor model. All specific factors, except for the hope factor, showed to explain a substantial amount of variance beyond the general factor. Based on our primary analyses we conclude that optimism, pessimism, hope, treatment credibility and treatment expectancy are distinguishable in THA and TKA patients. Postdoc, we determined that all constructs, except hope, showed substantial specific variance, while also sharing some general variance.

  9. Validation of anthropometry and foot-to-foot bioelectrical resistance against a three-component model to assess total body fat in children: the IDEFICS study.

    PubMed

    Bammann, K; Huybrechts, I; Vicente-Rodriguez, G; Easton, C; De Vriendt, T; Marild, S; Mesana, M I; Peeters, M W; Reilly, J J; Sioen, I; Tubic, B; Wawro, N; Wells, J C; Westerterp, K; Pitsiladis, Y; Moreno, L A

    2013-04-01

    To compare different field methods for estimating body fat mass with a reference value derived by a three-component (3C) model in pre-school and school children across Europe. Multicentre validation study. Seventy-eight preschool/school children aged 4-10 years from four different European countries. A standard measurement protocol was carried out in all children by trained field workers. A 3C model was used as the reference method. The field methods included height and weight measurement, circumferences measured at four sites, skinfold measured at two-six sites and foot-to-foot bioelectrical resistance (BIA) via TANITA scales. With the exception of height and neck circumference, all single measurements were able to explain at least 74% of the fat-mass variance in the sample. In combination, circumference models were superior to skinfold models and height-weight models. The best predictions were given by trunk models (combining skinfold and circumference measurements) that explained 91% of the observed fat-mass variance. The optimal data-driven model for our sample includes hip circumference, triceps skinfold and total body mass minus resistance index, and explains 94% of the fat-mass variance with 2.44 kg fat mass limits of agreement. In all investigated models, prediction errors were associated with fat mass, although to a lesser degree in the investigated skinfold models, arm models and the data-driven models. When studying total body fat in childhood populations, anthropometric measurements will give biased estimations as compared to gold standard measurements. Nevertheless, our study shows that when combining circumference and skinfold measurements, estimations of fat mass can be obtained with a limit of agreement of 1.91 kg in normal weight children and of 2.94 kg in overweight or obese children.

  10. Evolution of information-driven HIV/AIDS policies in China.

    PubMed

    Sun, Xinhua; Lu, Fan; Wu, Zunyou; Poundstone, Katharine; Zeng, Gang; Xu, Peng; Zhang, Dapeng; Liu, Kangmai; Liau, Adrian

    2010-12-01

    As China continues to commit to universal access to HIV/AIDS prevention, treatment and care services, its HIV/AIDS policies have become increasingly information driven. We review China's key national-level HIV/AIDS policies and discuss policy gaps and challenges ahead. We conducted a desk review of key national-level policies that have had a major impact on China's HIV/AIDS epidemic, and examined recent epidemiological data relevant to China's HIV response. National-level policies that have had a major impact on China's HIV/AIDS response include: 'Four Frees and One Care'; 5-year action plans; and HIV/AIDS regulation. These landmark policies have facilitated massive scaling up of services over the past decade. For example, the number of drug users provided with methadone maintenance treatment significantly increased from 8116 in 2005 to 241 975 in 2009; almost a 30-fold increase. The 'Four Frees and One Care' policy has increased the number of people living with AIDS on anti-retroviral treatment from some 100 patients in 2003 to over 80 000 in 2009. However, stigma and discrimination remains major obstacles for people living with HIV/AIDS trying to access services. China's current national policies are increasingly information driven and responsive to changes in the epidemic. However, gaps remain in policy implementation, and new policies are needed to meet emerging challenges.

  11. Free electron laser

    DOEpatents

    Villa, Francesco

    1990-01-01

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  12. Regression analysis for bivariate gap time with missing first gap time data.

    PubMed

    Huang, Chia-Hui; Chen, Yi-Hau

    2017-01-01

    We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.

  13. Small-scale grassland assembly patterns differ above and below the soil surface.

    PubMed

    Price, Jodi N; Hiiesalu, Inga; Gerhold, Pille; Pärtel, Meelis

    2012-06-01

    The existence of deterministic assembly rules for plant communities remains an important and unresolved topic in ecology. Most studies examining community assembly have sampled aboveground species diversity and composition. However, plants also coexist belowground, and many coexistence theories invoke belowground competition as an explanation for aboveground patterns. We used next-generation sequencing that enables the identification of roots and rhizomes from mixed-species samples to measure coexisting species at small scales in temperate grasslands. We used comparable data from above (conventional methods) and below (molecular techniques) the soil surface (0.1 x 0.1 x 0.1 m volume). To detect evidence for nonrandom patterns in the direction of biotic or abiotic assembly processes, we used three assembly rules tests (richness variance, guild proportionality, and species co-occurrence indices) as well as pairwise association tests. We found support for biotic assembly rules aboveground, with lower variance in species richness than expected and more negative species associations. Belowground plant communities were structured more by abiotic processes, with greater variability in richness and guild proportionality than expected. Belowground assembly is largely driven by abiotic processes, with little evidence for competition-driven assembly, and this has implications for plant coexistence theories that are based on competition for soil resources.

  14. Condition monitoring of an electro-magnetic brake using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Gofran, T.; Neugebauer, P.; Schramm, D.

    2017-10-01

    This paper presents a data-driven approach to Condition Monitoring of Electromagnetic brakes without use of additional sensors. For safe and efficient operation of electric motor a regular evaluation and replacement of the friction surface of the brake is required. One such evaluation method consists of direct or indirect sensing of the air-gap between pressure plate and magnet. A larger gap is generally indicative of worn surface(s). Traditionally this has been accomplished by the use of additional sensors - making existing systems complex, cost- sensitive and difficult to maintain. In this work a feed-forward Artificial Neural Network (ANN) is learned with the electrical data of the brake by supervised learning method to estimate the air-gap. The ANN model is optimized on the training set and validated using the test set. The experimental results of estimated air-gap with accuracy of over 95% demonstrate the validity of the proposed approach.

  15. Intercultural Sensitivity of Teachers Working with Refugee Children

    ERIC Educational Resources Information Center

    Strekalova, Ekaterina

    2013-01-01

    Student diversity in American classrooms is exponentially increasing while teachers serving these students remain relatively culturally homogeneous. Moreover, the proficiency test-driven reality of today's education fosters a tendency among teachers to minimize cultural differences of their students. This cultural gap in schools raises special…

  16. The Genetic and Environmental Etiologies of the Relations between Cognitive Skills and Components of Reading Ability

    PubMed Central

    Christopher, Micaela E.; Keenan, Janice M.; Hulslander, Jacqueline; DeFries, John C.; Miyake, Akira; Wadsworth, Sally J.; Willcutt, Erik; Pennington, Bruce; Olson, Richard K.

    2016-01-01

    While previous research has shown cognitive skills to be important predictors of reading ability in children, the respective roles for genetic and environmental influences on these relations is an open question. The present study explored the genetic and environmental etiologies underlying the relations between selected executive functions and cognitive abilities (working memory, inhibition, processing speed, and naming speed) with three components of reading ability (word reading, reading comprehension, and listening comprehension). Twin pairs drawn from the Colorado Front Range (n = 676; 224 monozygotic pairs; 452 dizygotic pairs) between the ages of eight and 16 (M = 11.11) were assessed on multiple measures of each cognitive and reading-related skill. Each cognitive and reading-related skill was modeled as a latent variable, and behavioral genetic analyses estimated the portions of phenotypic variance on each latent variable due to genetic, shared environmental, and nonshared environmental influences. The covariance between the cognitive skills and reading-related skills was driven primarily by genetic influences. The cognitive skills also shared large amounts of genetic variance, as did the reading-related skills. The common cognitive genetic variance was highly correlated with the common reading genetic variance, suggesting that genetic influences involved in general cognitive processing are also important for reading ability. Skill-specific genetic variance in working memory and processing speed also predicted components of reading ability. Taken together, the present study supports a genetic association between children’s cognitive ability and reading ability. PMID:26974208

  17. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies

    DOE PAGES

    Seo, Hosung; Govoni, Marco; Galli, Giulia

    2016-02-15

    Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states maymore » be harnessed for the realization of qubits. As a result, the strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.« less

  18. Oscillations emerging from noise-driven steady state in networks with electrical synapses and subthreshold resonance

    PubMed Central

    Tchumatchenko, Tatjana; Clopath, Claudia

    2014-01-01

    Oscillations play a critical role in cognitive phenomena and have been observed in many brain regions. Experimental evidence indicates that classes of neurons exhibit properties that could promote oscillations, such as subthreshold resonance and electrical gap junctions. Typically, these two properties are studied separately but it is not clear which is the dominant determinant of global network rhythms. Our aim is to provide an analytical understanding of how these two effects destabilize the fluctuation-driven state, in which neurons fire irregularly, and lead to an emergence of global synchronous oscillations. Here we show how the oscillation frequency is shaped by single neuron resonance, electrical and chemical synapses.The presence of both gap junctions and subthreshold resonance are necessary for the emergence of oscillations. Our results are in agreement with several experimental observations such as network responses to oscillatory inputs and offer a much-needed conceptual link connecting a collection of disparate effects observed in networks. PMID:25405458

  19. The ABC of stereotypes about groups: Agency/socioeconomic success, conservative-progressive beliefs, and communion.

    PubMed

    Koch, Alex; Imhoff, Roland; Dotsch, Ron; Unkelbach, Christian; Alves, Hans

    2016-05-01

    Previous research argued that stereotypes differ primarily on the 2 dimensions of warmth/communion and competence/agency. We identify an empirical gap in support for this notion. The theoretical model constrains stereotypes a priori to these 2 dimensions; without this constraint, participants might spontaneously employ other relevant dimensions. We fill this gap by complementing the existing theory-driven approaches with a data-driven approach that allows an estimation of the spontaneously employed dimensions of stereotyping. Seven studies (total N = 4,451) show that people organize social groups primarily based on their agency/socioeconomic success (A), and as a second dimension, based on their conservative-progressive beliefs (B). Communion (C) is not found as a dimension by its own, but rather as an emergent quality in the two-dimensional space of A and B, resulting in a 2D ABC model of stereotype content about social groups. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Semiparametric methods to contrast gap time survival functions: Application to repeat kidney transplantation.

    PubMed

    Shu, Xu; Schaubel, Douglas E

    2016-06-01

    Times between successive events (i.e., gap times) are of great importance in survival analysis. Although many methods exist for estimating covariate effects on gap times, very few existing methods allow for comparisons between gap times themselves. Motivated by the comparison of primary and repeat transplantation, our interest is specifically in contrasting the gap time survival functions and their integration (restricted mean gap time). Two major challenges in gap time analysis are non-identifiability of the marginal distributions and the existence of dependent censoring (for all but the first gap time). We use Cox regression to estimate the (conditional) survival distributions of each gap time (given the previous gap times). Combining fitted survival functions based on those models, along with multiple imputation applied to censored gap times, we then contrast the first and second gap times with respect to average survival and restricted mean lifetime. Large-sample properties are derived, with simulation studies carried out to evaluate finite-sample performance. We apply the proposed methods to kidney transplant data obtained from a national organ transplant registry. Mean 10-year graft survival of the primary transplant is significantly greater than that of the repeat transplant, by 3.9 months (p=0.023), a result that may lack clinical importance. © 2015, The International Biometric Society.

  1. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-01

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  2. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion.

    PubMed

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-02

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  3. Genetic and environmental contributions to the associations between intraindividual variability in reaction time and cognitive function.

    PubMed

    Finkel, Deborah; Pedersen, Nancy L

    2014-01-01

    Intraindividual variability (IIV) in reaction time has been related to cognitive decline, but questions remain about the nature of this relationship. Mean and range in movement and decision time for simple reaction time were available from 241 individuals aged 51-86 years at the fifth testing wave of the Swedish Adoption/Twin Study of Aging. Cognitive performance on four factors was also available: verbal, spatial, memory, and speed. Analyses indicated that range in reaction time could be used as an indicator of IIV. Heritability estimates were 35% for mean reaction and 20% for range in reaction. Multivariate analysis indicated that the genetic variance on the memory, speed, and spatial factors is shared with genetic variance for mean or range in reaction time. IIV shares significant genetic variance with fluid ability in late adulthood, over and above and genetic variance shared with mean reaction time.

  4. Detecting Service Chains and Feature Interactions in Sensor-Driven Home Network Services

    PubMed Central

    Inada, Takuya; Igaki, Hiroshi; Ikegami, Kosuke; Matsumoto, Shinsuke; Nakamura, Masahide; Kusumoto, Shinji

    2012-01-01

    Sensor-driven services often cause chain reactions, since one service may generate an environmental impact that automatically triggers another service. We first propose a framework that can formalize and detect such service chains based on ECA (event, condition, action) rules. Although the service chain can be a major source of feature interactions, not all service chains lead to harmful interactions. Therefore, we then propose a method that identifies feature interactions within the service chains. Specifically, we characterize the degree of deviation of every service chain by evaluating the gap between expected and actual service states. An experimental evaluation demonstrates that the proposed method successfully detects 11 service chains and 6 feature interactions within 7 practical sensor-driven services. PMID:23012499

  5. Segmentation editing improves efficiency while reducing inter-expert variation and maintaining accuracy for normal brain tissues in the presence of space-occupying lesions

    PubMed Central

    Deeley, MA; Chen, A; Datteri, R; Noble, J; Cmelak, A; Donnelly, EF; Malcolm, A; Moretti, L; Jaboin, J; Niermann, K; Yang, Eddy S; Yu, David S; Dawant, BM

    2013-01-01

    Image segmentation has become a vital and often rate limiting step in modern radiotherapy treatment planning. In recent years the pace and scope of algorithm development, and even introduction into the clinic, have far exceeded evaluative studies. In this work we build upon our previous evaluation of a registration driven segmentation algorithm in the context of 8 expert raters and 20 patients who underwent radiotherapy for large space-occupying tumors in the brain. In this work we tested four hypotheses concerning the impact of manual segmentation editing in a randomized single-blinded study. We tested these hypotheses on the normal structures of the brainstem, optic chiasm, eyes and optic nerves using the Dice similarity coefficient, volume, and signed Euclidean distance error to evaluate the impact of editing on inter-rater variance and accuracy. Accuracy analyses relied on two simulated ground truth estimation methods: STAPLE and a novel implementation of probability maps. The experts were presented with automatic, their own, and their peers’ segmentations from our previous study to edit. We found, independent of source, editing reduced inter-rater variance while maintaining or improving accuracy and improving efficiency with at least 60% reduction in contouring time. In areas where raters performed poorly contouring from scratch, editing of the automatic segmentations reduced the prevalence of total anatomical miss from approximately 16% to 8% of the total slices contained within the ground truth estimations. These findings suggest that contour editing could be useful for consensus building such as in developing delineation standards, and that both automated methods and even perhaps less sophisticated atlases could improve efficiency, inter-rater variance, and accuracy. PMID:23685866

  6. Allan Variance Computed in Space Domain: Definition and Application to InSAR Data to Characterize Noise and Geophysical Signal.

    PubMed

    Cavalié, Olivier; Vernotte, François

    2016-04-01

    The Allan variance was introduced 50 years ago for analyzing the stability of frequency standards. In addition to its metrological interest, it may be also considered as an estimator of the large trends of the power spectral density (PSD) of frequency deviation. For instance, the Allan variance is able to discriminate different types of noise characterized by different power laws in the PSD. The Allan variance was also used in other fields than time and frequency metrology: for more than 20 years, it has been used in accelerometry, geophysics, geodesy, astrophysics, and even finances. However, it seems that up to now, it has been exclusively applied for time series analysis. We propose here to use the Allan variance on spatial data. Interferometric synthetic aperture radar (InSAR) is used in geophysics to image ground displacements in space [over the synthetic aperture radar (SAR) image spatial coverage] and in time thanks to the regular SAR image acquisitions by dedicated satellites. The main limitation of the technique is the atmospheric disturbances that affect the radar signal while traveling from the sensor to the ground and back. In this paper, we propose to use the Allan variance for analyzing spatial data from InSAR measurements. The Allan variance was computed in XY mode as well as in radial mode for detecting different types of behavior for different space-scales, in the same way as the different types of noise versus the integration time in the classical time and frequency application. We found that radial Allan variance is the more appropriate way to have an estimator insensitive to the spatial axis and we applied it on SAR data acquired over eastern Turkey for the period 2003-2011. Spatial Allan variance allowed us to well characterize noise features, classically found in InSAR such as phase decorrelation producing white noise or atmospheric delays, behaving like a random walk signal. We finally applied the spatial Allan variance to an InSAR time series to detect when the geophysical signal, here the ground motion, emerges from the noise.

  7. Receptive fields selection for binary feature description.

    PubMed

    Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal

    2014-06-01

    Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.

  8. A Multi-layer, Data-driven Advanced Reasoning Tool for Intelligent Data Mining and Analysis for Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Du, Pengwei; Greitzer, Frank L.

    2012-12-31

    This paper presents the multi-layer, data-driven advanced reasoning tool (M-DART), a proof-of-principle decision support tool for improved power system operation. M-DART will cross-correlate and examine different data sources to assess anomalies, infer root causes, and anneal data into actionable information. By performing higher-level reasoning “triage” of diverse data sources, M-DART focuses on early detection of emerging power system events and identifies highest priority actions for the human decision maker. M-DART represents a significant advancement over today’s grid monitoring technologies that apply offline analyses to derive model-based guidelines for online real-time operations and use isolated data processing mechanisms focusing on individualmore » data domains. The development of the M-DART will bridge these gaps by reasoning about results obtained from multiple data sources that are enabled by the smart grid infrastructure. This hybrid approach integrates a knowledge base that is trained offline but tuned online to capture model-based relationships while revealing complex causal relationships among data from different domains.« less

  9. Ultrafast electronic dynamics driven by nuclear motion

    NASA Astrophysics Data System (ADS)

    Vendrell, Oriol

    2016-05-01

    The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.

  10. Magnetic fields in giant planet formation and protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Keith, Sarah Louise

    2015-12-01

    Protoplanetary discs channel accretion onto their host star. How this is achieved is critical to the growth of giant planets which capture their massive gaseous atmosphere from the surrounding flow. Theoretical studies find that an embedded magnetic field could power accretion by hydromagnetic turbulence or torques from a large-scale field. This thesis presents a study of the inuence of magnetic fields in three key aspects of this process: circumplanetary disc accretion, gas flow across gaps in protoplanetary discs, and magnetic-braking in accretion discs. The first study examines the conditions needed for self-consistent accretion driven by magnetic fields or gravitational instability. Models of these discs typically rely on hydromagnetic turbulence as the source of effective viscosity. However, magnetically coupled,accreting regions may be so limited that the disc may not support sufficient inflow. An improved Shakura-Sunyaev ? disc is used to calculate the ionisation fraction and strength of non-ideal effects. Steady magnetically-driven accretion is limited to the thermally ionised, inner disc so that accretion in the remainder of the disc is time-dependent. The second study addresses magnetic flux transport in an accretion gap evacuated by a giant planet. Assuming the field is passively drawn along with the gas, the hydrodynamical simulation of Tanigawa, Ohtsuki & Machida (2012) is used for an a posteriori analysis of the gap field structure. This is used to post-calculate magnetohydrodynamical quantities. This assumption is self-consistent as magnetic forces are found to be weak, and good magnetic coupling ensures the field is frozen into the gas. Hall drift dominates across much of the gap, with the potential to facilitate turbulence and modify the toroidal field according to the global field orientation. The third study considers the structure and stability of magnetically-braked accretion discs. Strong evidence for MRI dead-zones has renewed interest in accretion powered by large-scale fields. An equilibrium model is presented for the radial structure of an axisymmetric, magnetically-braked accretion disc connected to a force-free external field. The accretion rate is multivalued at protoplanetary disc column densities, featuring an `S-curve' associated with models of accretion outbursting. A local, linear analysis of the stability of radial modes finds that the rapidly accreting, middle and upper solution branches are unstable, further highlighting the potential for eruptive accretion events.

  11. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  12. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  13. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application.

    PubMed

    Zahodne, Laura B; Manly, Jennifer J; Brickman, Adam M; Narkhede, Atul; Griffith, Erica Y; Guzman, Vanessa A; Schupf, Nicole; Stern, Yaakov

    2015-10-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. Copyright © 2015. Published by Elsevier Ltd.

  14. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application

    PubMed Central

    Zahodne, Laura B.; Manly, Jennifer J.; Brickman, Adam M.; Narkhede, Atul; Griffith, Erica Y.; Guzman, Vanessa A.; Schupf, Nicole; Stern, Yaakov

    2016-01-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. PMID:26348002

  15. Enhancing target variance in personality impressions: highlighting the person in person perception.

    PubMed

    Paulhus, D L; Reynolds, S

    1995-12-01

    D. A. Kenny (1994) estimated the components of personality rating variance to be 15, 20, and 20% for target, rater, and relationship, respectively. To enhance trait variance and minimize rater variance, we designed a series of studies of personality perception in discussion groups (N = 79, 58, and 59). After completing a Big Five questionnaire, participants met 7 times in small groups. After Meetings 1 and 7, group members rated each other. By applying the Social Relations Model (D. A. Kenny and L. La Voie, 1984) to each Big Five dimension at each point in time, we were able to evaluate 6 rating effects as well as rating validity. Among the findings were that (a) target variance was the largest component (almost 30%), whereas rater variance was small (less than 11%); (b) rating validity improved significantly with acquaintance, although target variance did not; and (c) no reciprocity was found, but projection was significant for Agreeableness.

  16. Recovering Wood and McCarthy's ERP-prototypes by means of ERP-specific procrustes-rotation.

    PubMed

    Beauducel, André

    2018-02-01

    The misallocation of treatment-variance on the wrong component has been discussed in the context of temporal principal component analysis of event-related potentials. There is, until now, no rotation-method that can perfectly recover Wood and McCarthy's prototypes without making use of additional information on treatment-effects. In order to close this gap, two new methods: for component rotation were proposed. After Varimax-prerotation, the first method identifies very small slopes of successive loadings. The corresponding loadings are set to zero in a target-matrix for event-related orthogonal partial Procrustes- (EPP-) rotation. The second method generates Gaussian normal distributions around the peaks of the Varimax-loadings and performs orthogonal Procrustes-rotation towards these Gaussian distributions. Oblique versions of this Gaussian event-related Procrustes- (GEP) rotation and of EPP-rotation are based on Promax-rotation. A simulation study revealed that the new orthogonal rotations recover Wood and McCarthy's prototypes and eliminate misallocation of treatment-variance. In an additional simulation study with a more pronounced overlap of the prototypes GEP Promax-rotation reduced the variance misallocation slightly more than EPP Promax-rotation. Comparison with Existing Method(s): Varimax- and conventional Promax-rotations resulted in substantial misallocations of variance in simulation studies when components had temporal overlap. A substantially reduced misallocation of variance occurred with the EPP-, EPP Promax-, GEP-, and GEP Promax-rotations. Misallocation of variance can be minimized by means of the new rotation methods: Making use of information on the temporal order of the loadings may allow for improvements of the rotation of temporal PCA components. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 42 CFR 456.521 - Conditions for granting variance requests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time...

  18. 42 CFR 456.525 - Request for renewal of variance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time...

  19. 42 CFR 456.525 - Request for renewal of variance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time...

  20. VARIANCE ANISOTROPY IN KINETIC PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Tulasi N.; Matthaeus, William H.; Oughton, Sean

    Solar wind fluctuations admit well-documented anisotropies of the variance matrix, or polarization, related to the mean magnetic field direction. Typically, one finds a ratio of perpendicular variance to parallel variance of the order of 9:1 for the magnetic field. Here we study the question of whether a kinetic plasma spontaneously generates and sustains parallel variances when initiated with only perpendicular variance. We find that parallel variance grows and saturates at about 5% of the perpendicular variance in a few nonlinear times irrespective of the Reynolds number. For sufficiently large systems (Reynolds numbers) the variance approaches values consistent with the solarmore » wind observations.« less

  1. The ties that bind what is known to the recall of what is new.

    PubMed

    Nelson, D L; Zhang, N

    2000-12-01

    Cued recall success varies with what people know and with what they do during an episode. This paper focuses on prior knowledge and disentangles the relative effects of 10 features of words and their relationships on cued recall. Results are reported for correlational and multiple regression analyses of data obtained from free association norms and from 29 experiments. The 10 features were only weakly correlated with each other in the norms and, with notable exceptions, in the experiments. The regression analysis indicated that forward cue-to-target strength explained the most variance, followed by backward target-to-cue strength. Target connectivity and set size explained the next most variance, along with mediated cue-to-target strength. Finally, frequency, concreteness, shared associate strength, and cue set size also contributed significantly to recall. Taken together, indices of prior word knowledge explain 49% of the recall variance. Theoretically driven equations that use free association to predict cued recall were also evaluated. Each equation was designed to condense multiple indices of word interconnectivity into a single predictor.

  2. Effects of California community college students' gender, self-efficacy, and attitudes and beliefs toward physics on conceptual understanding of Newtonian mechanics

    NASA Astrophysics Data System (ADS)

    Said, Asma

    Despite the advances made in various fields, women are still considered as minorities in the fields of science and mathematics. There is a gender gap regarding women's participation and achievement in physics. Self-efficacy and attitudes and beliefs toward physics have been identified as predictors of students' performance on conceptual surveys in physics courses. The present study, which used two-way analysis of variance and multiple linear regression analyses at a community college in California, revealed there is no gender gap in achievement between male and female students in physics courses. Furthermore, there is an achievement gap between students who are enrolled in algebra-based and calculus-based physics courses. The findings indicate that attitudes and beliefs scores can be used as predictors of students' performance on conceptual surveys in physics courses. However, scores of self-efficacy cannot be used as predictors of students' performance on conceptual surveys in physics courses.

  3. Reconstructing the Alps-Carpathians-Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion

    NASA Astrophysics Data System (ADS)

    Handy, Mark R.; Ustaszewski, Kamil; Kissling, Eduard

    2015-01-01

    Palinspastic map reconstructions and plate motion studies reveal that switches in subduction polarity and the opening of slab gaps beneath the Alps and Dinarides were triggered by slab tearing and involved widespread intracrustal and crust-mantle decoupling during Adria-Europe collision. In particular, the switch from south-directed European subduction to north-directed "wrong-way" Adriatic subduction beneath the Eastern Alps was preconditioned by two slab-tearing events that were continuous in Cenozoic time: (1) late Eocene to early Oligocene rupturing of the oppositely dipping European and Adriatic slabs; these ruptures nucleated along a trench-trench transfer fault connecting the Alps and Dinarides; (2) Oligocene to Miocene steepening and tearing of the remaining European slab under the Eastern Alps and western Carpathians, while subduction of European lithosphere continued beneath the Western and Central Alps. Following the first event, post-late Eocene NW motion of the Adriatic Plate with respect to Europe opened a gap along the Alps-Dinarides transfer fault which was filled with upwelling asthenosphere. The resulting thermal erosion of the lithosphere led to the present slab gap beneath the northern Dinarides. This upwelling also weakened the upper plate of the easternmost part of the Alpine orogen and induced widespread crust-mantle decoupling, thus facilitating Pannonian extension and roll-back subduction of the Carpathian oceanic embayment. The second slab-tearing event triggered uplift and peneplainization in the Eastern Alps while opening a second slab gap, still present between the Eastern and Central Alps, that was partly filled by northward counterclockwise subduction of previously unsubducted Adriatic continental lithosphere. In Miocene time, Adriatic subduction thus jumped westward from the Dinarides into the heart of the Alpine orogen, where northward indentation and wedging of Adriatic crust led to rapid exhumation and orogen-parallel escape of decoupled Eastern Alpine crust toward the Pannonian Basin. The plate reconstructions presented here suggest that Miocene subduction and indentation of Adriatic lithosphere in the Eastern Alps were driven primarily by the northward push of the African Plate and possibly enhanced by neutral buoyancy of the slab itself, which included dense lower crust of the Adriatic continental margin.

  4. Psychosocial correlates to high school girls' leisure-time physical activity: a test of the theory of planned behavior.

    PubMed

    Kerner, Matthew S; Kurrant, Anthony B

    2003-12-01

    This study was designed to test the efficacy of the theory of planned behavior in predicting intention to engage in leisure-time physical activity and leisure-time physical activity behavior of high school girls. Rating scales were used for assessing attitude to leisure-time physical activity, subjective norm, perceived control, and intention to engage in leisure-time physical activity among 129 ninth through twelfth graders. Leisure-time physical activity was obtained from 3-wk. diaries. The first hierarchical multiple regression indicated that perceived control added (R2 change = .033) to the contributions of attitude to leisure-time physical activity and subjective norm in accounting for 50.7% of the total variance of intention to engage in leisure-time physical activity. The second regression analysis indicated that almost 10% of the variance of leisure-time physical activity was explicated by intention to engage in leisure-time physical activity and perceived control, with perceived control contributing 6.4%. From both academic and theoretical standpoints, our findings support the theory of planned behavior, although quantitatively the variance of leisure-time physical activity was not well-accounted for. In addition, considering the small percentage increase in variance explained by the addition of perceived control explaining variance of intention to engage in leisure-time physical activity, the pragmatism of implementing the measure of perceived control is questionable for this population.

  5. Idealized Numerical Modeling Experiments of the Diurnal Cycle of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Navarro, Erika L.

    Numerical experiments are performed to evaluate the role of the daily cycle of radiation on axisymmetric hurricane structure. Although a diurnal response in the high cloudiness of tropical cyclones (TCs) has been well documented in the past, the impact to storm structure and intensity remains unknown. Previous modeling work attributes differences in results to experimental setup (e.g., initial and boundary conditions) as well as to radiative parameterization schemes. Here, a numerically-simulated TC in a statistical steady-state is examined to quantify the TC response to the daily cycle of radiation, and a modified, Sawyer-Eliassen approach is applied to evaluate the dynamical mechanism. Fourier analysis in time reveals a spatially coherent pattern in the temperature, wind, and latent heating tendency fields that is statistically significant at the 95% level. This signal accounts for up to 62% of the variance in the temperature field of the upper troposphere, and is mainly concentrated in the TC outflow layer. Composite analysis reveals a cycle in the storm intensity in the low-levels, which lags a periodic response in the latent heating tendency by 6 h. Average magnitudes of the azimuthal wind anomalies near the radius of maximum wind (RMW) are 1 m/s and account for 21% of the overall variance. A hypothesis is drawn from these results that the TC diurnal cycle is comprised of two distinct, periodic circulations: (1) a radiatively-driven circulation in the TC outflow layer due to absorption of solar radiation, and (2) a convectively-driven circulation in the lower and middle troposphere due to anomalous latent heating from convection. These responses are coupled and are periodic with respect to the diurnal cycle. Using a modified, Sawyer-Eliassen approach for time-varying heating, these hypotheses are evaluated to determine the impact of periodic diurnal heating on a balanced vortex. Periodic heating near the top of the vortex produces a local overturning circulation in the region of heating that manifests as inertia-buoyancy waves in the storm environment. Periodic heating in the lower troposphere drives an overturning circulation that resembles the Sawyer-Eliassen solution. This low-level heating induces a positive perturbation azimuthal wind response of 4 m/s near the RMW, which lags the maximum in streamfunction by 6 h. Comparison of these solutions to the numerically-simulated TC reveals a close correspondence of results, suggesting that the axisymmetric TC diurnal cycle is a balanced response driven by periodic heating. The sensitivity of these results to the length of the diurnal period and the vortex intensity are evaluated using the modified, Sawyer-Eliassen approach. Although the true diurnal period is fixed in nature, these experiments allow for the relationship between the magnitude and structure of the TC diurnal signal to the length of the diurnal period to be explored. Results demonstrate that the TC diurnal cycle exhibits large variance, even for the same heating distributions. High-frequency forcing projects mainly onto inertia-buoyancy waves, while low-frequency produces a balanced response resembling the Sawyer-Eliassen solution. Comparison to two, numerically simulated TCs with modified diurnal periods show similar results. In addition, stronger diurnal signals are observed for stronger vortices, suggesting a dependence of the TC diurnal signal on the underlying state of the vortex. These results imply that the magnitude and structure of the TC diurnal signal in nature varies throughout the storm lifetime, and is a function of the structure and intensity of the vortex.

  6. MISSING BLACK HOLES UNVEIL THE SUPERNOVA EXPLOSION MECHANISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Wiktorowicz, Grzegorz; Fryer, Chris L.

    2012-09-20

    It is firmly established that the stellar mass distribution is smooth, covering the range 0.1-100 M{sub Sun }. It is to be expected that the masses of the ensuing compact remnants correlate with the masses of their progenitor stars, and thus it is generally thought that the remnant masses should be smoothly distributed from the lightest white dwarfs to the heaviest black holes (BHs). However, this intuitive prediction is not borne out by observed data. In the rapidly growing population of remnants with observationally determined masses, a striking mass gap has emerged at the boundary between neutron stars (NSs) andmore » BHs. The heaviest NSs reach a maximum of two solar masses, while the lightest BHs are at least five solar masses. Over a decade after the discovery, the gap has become a significant challenge to our understanding of compact object formation. We offer new insights into the physical processes that bifurcate the formation of remnants into lower-mass NSs and heavier BHs. Combining the results of stellar modeling with hydrodynamic simulations of supernovae, we both explain the existence of the gap and also put stringent constraints on the inner workings of the supernova explosion mechanism. In particular, we show that core-collapse supernovae are launched within 100-200 ms of the initial stellar collapse, implying that the explosions are driven by instabilities with a rapid (10-20 ms) growth time. Alternatively, if future observations fill in the gap, this will be an indication that these instabilities develop over a longer (>200 ms) timescale.« less

  7. Characterization of turbulence stability through the identification of multifractional Brownian motions

    NASA Astrophysics Data System (ADS)

    Lee, K. C.

    2013-02-01

    Multifractional Brownian motions have become popular as flexible models in describing real-life signals of high-frequency features in geoscience, microeconomics, and turbulence, to name a few. The time-changing Hurst exponent, which describes regularity levels depending on time measurements, and variance, which relates to an energy level, are two parameters that characterize multifractional Brownian motions. This research suggests a combined method of estimating the time-changing Hurst exponent and variance using the local variation of sampled paths of signals. The method consists of two phases: initially estimating global variance and then accurately estimating the time-changing Hurst exponent. A simulation study shows its performance in estimation of the parameters. The proposed method is applied to characterization of atmospheric stability in which descriptive statistics from the estimated time-changing Hurst exponent and variance classify stable atmosphere flows from unstable ones.

  8. Wind-driven changes of surface current, temperature, and chlorophyll observed by satellites north of New Guinea

    NASA Astrophysics Data System (ADS)

    Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard

    2016-04-01

    Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.

  9. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James

    2013-01-01

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks [Scargle 1998]-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piece- wise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by [Arias-Castro, Donoho and Huo 2003]. In the spirit of Reproducible Research [Donoho et al. (2008)] all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.

  10. An Experimental and numerical Study for squeezing flow

    NASA Astrophysics Data System (ADS)

    Nathan, Rungun; Lang, Ji; Wu, Qianhong; Vucbmss Team

    2017-11-01

    We report an experimental and numerical study to examine the transient squeezing flow driven by sudden external impacts. The phenomenon is widely observed in industrial applications, e.g. squeeze dampers, or in biological systems, i.e. joints lubrication. However, there is a lack of investigation that captures the transient flow feature during the process. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. The heavy piston was released from rest, creating a fast compaction on the thin fluid gap underneath. The motion of the piston and the fluid pressure build-up was recorded. For this dynamic process, a CFD simulation was performed which shows excellent agreement with the experimental data. Both the numerical and experimental results show that, the squeezing flow starts with the inviscid limit when the viscous fluid effect has no time to appear, and thereafter becomes a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. The study presented herein, filling the gap in the literature, will have broad impacts in industrial and biomedical applications. This research was supported by the National Science Foundation under Award 1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  11. Micro-bubbles and Micro-particles are Not Faithful Tracers of Turbulent Acceleration

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Mathai, Varghese; Calzavarini, Enrico; Brons, Jon; Lohse, Detlef

    2016-11-01

    We report on the Lagrangian statistics of acceleration of small (sub-Kolmogorov) bubbles and tracer particles with Stokes number St <<1 in turbulent flow. At decreasing Reynolds number, the bubble accelerations show deviations from that of tracer particles, i.e. they deviate from the Heisenberg-Yaglom prediction and show a quicker decorrelation despite their small size and minute St. Using direct numerical simulations, we show that these effects arise due the drift of these particles through the turbulent flow. We theoretically predict this gravity-driven effect for developed isotropic turbulence, with the ratio of Stokes to Froude number or equivalently the particle drift-velocity governing the enhancement of acceleration variance and the reductions in correlation time and intermittency. Our predictions are in good agreement with experimental and numerical results. The present findings are relevant to a range of scenarios encompassing tiny bubbles and droplets that drift through the turbulent oceans and the atmosphere.

  12. The number statistics and optimal history of non-equilibrium steady states of mortal diffusing particles

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch

    2015-05-01

    Suppose that a point-like steady source at x = 0 injects particles into a half-infinite line. The particles diffuse and die. At long times a non-equilibrium steady state sets in, and we assume that it involves many particles. If the particles are non-interacting, their total number N in the steady state is Poisson-distributed with mean \\bar{N} predicted from a deterministic reaction-diffusion equation. Here we determine the most likely density history of this driven system conditional on observing a given N. We also consider two prototypical examples of interacting diffusing particles: (i) a family of mortal diffusive lattice gases with constant diffusivity (as illustrated by the simple symmetric exclusion process with mortal particles), and (ii) random walkers that can annihilate in pairs. In both examples we calculate the variances of the (non-Poissonian) stationary distributions of N.

  13. Multiplexed LC-MS/MS analysis of horse plasma proteins to study doping in sport.

    PubMed

    Barton, Chris; Beck, Paul; Kay, Richard; Teale, Phil; Roberts, Jane

    2009-06-01

    The development of protein biomarkers for the indirect detection of doping in horse is a potential solution to doping threats such as gene and protein doping. A method for biomarker candidate discovery in horse plasma is presented using targeted analysis of proteotypic peptides from horse proteins. These peptides were first identified in a novel list of the abundant proteins in horse plasma. To monitor these peptides, an LC-MS/MS method using multiple reaction monitoring was developed to study the quantity of 49 proteins in horse plasma in a single run. The method was optimised and validated, and then applied to a population of race-horses to study protein variance within a population. The method was finally applied to longitudinal time courses of horse plasma collected after administration of an anabolic steroid to demonstrate utility for hypothesis-driven discovery of doping biomarker candidates.

  14. Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth's bow shock

    NASA Technical Reports Server (NTRS)

    Wilkinson, W. P.; Pardaens, A. K.; Schwartz, S. J.; Burgess, D.; Luehr, H.; Kessel, R. L.; Dunlop, M.; Farrugia, C. J.

    1993-01-01

    Attention is given to ion and magnetic field measurements at the earth's bow shock from the AMPTE-UKS and -IRM spacecraft, which were examined in high time resolution during a 45-min interval when the field remained closely aligned with the model bow shock normal. Dense ion beams were detected almost exclusively in the midst of short-duration periods of turbulent magnetic field wave activity. Many examples of propagation at large elevation angles relative to the ecliptic plane, which is inconsistent with reflection in the standard model shock configuration, were discovered. The associated waves are elliptically polarized and are preferentially left-handed in the observer's frame of reference, but are less confined to the maximum variance plane than other previously studied foreshock waves. The association of the wave activity with the ion beams suggests that the former may be triggered by an ion-driven instability, and possible candidates are discussed.

  15. Observed spatiotemporal variability of boundary-layer turbulence over flat, heterogeneous terrain

    NASA Astrophysics Data System (ADS)

    Maurer, V.; Kalthoff, N.; Wieser, A.; Kohler, M.; Mauder, M.; Gantner, L.

    2016-02-01

    In the spring of 2013, extensive measurements with multiple Doppler lidar systems were performed. The instruments were arranged in a triangle with edge lengths of about 3 km in a moderately flat, agriculturally used terrain in northwestern Germany. For 6 mostly cloud-free convective days, vertical velocity variance profiles were calculated. Weighted-averaged surface fluxes proved to be more appropriate than data from individual sites for scaling the variance profiles; but even then, the scatter of profiles was mostly larger than the statistical error. The scatter could not be explained by mean wind speed or stability, whereas time periods with significantly increased variance contained broader thermals. Periods with an elevated maximum of the variance profiles could also be related to broad thermals. Moreover, statistically significant spatial differences of variance were found. They were not influenced by the existing surface heterogeneity. Instead, thermals were preserved between two sites when the travel time was shorter than the large-eddy turnover time. At the same time, no thermals passed for more than 2 h at a third site that was located perpendicular to the mean wind direction in relation to the first two sites. Organized structures of turbulence with subsidence prevailing in the surroundings of thermals can thus partly explain significant spatial variance differences existing for several hours. Therefore, the representativeness of individual variance profiles derived from measurements at a single site cannot be assumed.

  16. Reciprocal Elucidation: A Student-Led Pedagogy in Multidisciplinary Undergraduate Research Conferences

    ERIC Educational Resources Information Center

    Walkington, Helen; Hill, Jennifer; Kneale, Pauline E.

    2017-01-01

    There is no previous study of the benefits of attending a national multidisciplinary conference dedicated to undergraduate researchers, despite the growing number of such conferences internationally. This paper addresses the gap in knowledge of the learning gains from these conferences, and reveals a student driven learning process, a…

  17. Intelligence-Driven Border Security: A Promethean View of U.S. Border Patrol Intelligence Operations

    DTIC Science & Technology

    2015-12-01

    USBP agent, intelligence ( BPA -I), information sharing, capability gap analysis process (CGAP), Tucson Sector Red Team 15. NUMBER OF PAGES 109 16...27 2. BPA -I .............................................................................................28 3. BPA -I Requirements...71 APPENDIX A. PROFESSIONAL INTELLIGENCE ASSOCIATIONS— ADDITIONAL OPPORTUNITIES FOR BPA -IS

  18. Informal Learning of Women Small Business Owners

    ERIC Educational Resources Information Center

    Sharafizad, Jalleh

    2018-01-01

    Purpose: The purpose of this paper is to investigate women small business owners' informal learning behaviour. There is limited qualitative research that examines women small business owners' learning process and this study aims to address this gap. The study was driven by the following research questions: "Do women small business owners…

  19. Next Step Mobile: Strategy, Services, & PRM

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2012-01-01

    As emerging information technologies have driven demand for new library communication channels, there has been increased interest in the use of mobile tools to promote interaction, expand outreach, market programs, and enhance the library experience. Libraries today are at widely different levels of mobile engagement, a gap poised to grow as…

  20. Calibrating a Method for Reconstructing ENSO Variance in the Eastern Tropical Pacific Using Mg/Ca in Individual Planktic Foraminifera

    NASA Astrophysics Data System (ADS)

    Rongstad, B.; Marchitto, T. M., Jr.; Koutavas, A.; Mekik, F.

    2017-12-01

    El Niño Southern Oscillation (ENSO) is Earth's dominant mode of interannual climate variability, and is responsible for widespread climatic, ecological and societal impacts, such as reduced upwelling and fishery collapse in the eastern equatorial Pacific during El Niño events. While corals offer high resolution records of paleo-ENSO, continuous and gap-free records for the tropical Pacific are rare. Individual foraminifera analyses provide an opportunity to create continuous down-core records of ENSO through the construction and comparison of species-specific sea surface temperature (SST) distributions at different time periods; however, there has been little focus on calibrating this technique to modern ENSO conditions. Here, we present data from a core-top calibration of individual Mg/Ca measurements in planktic foraminifera in the eastern tropical Pacific, using surface dweller G. ruber and thermocline dweller N. dutertrei. We convert the individual Mg/Ca measurements to inferred temperature distributions for each species, and then compare the distributions to modern day temperature characteristics including vertical structure, annual mean, seasonality, and interannual variability. ENSO variance is theoretically inferred from the tails of the distributions: El Niño events affect the warm tail and La Niña events affect the cool tail. Finally, we discuss the utility of individual measurements of Mg/Ca in planktic foraminifera to reconstruct ENSO in down-core sections.

  1. The CIRCORT database: Reference ranges and seasonal changes in diurnal salivary cortisol derived from a meta-dataset comprised of 15 field studies

    PubMed Central

    Miller, Robert; Stalder, Tobias; Jarczok, Marc; Almeida, David M.; Badrick, Ellena; Bartels, Meike; Boomsma, Dorret I.; Coe, Christopher L.; Dekker, Marieke C. J.; Donzella, Bonny; Fischer, Joachim E.; Gunnar, Megan R.; Kumari, Meena; Lederbogen, Florian; Oldehinkel, Albertine J.; Power, Christine; Rosmalen, Judith G.; Ryff, Carol D.; Subramanian, S V; Tiemeier, Henning; Watamura, Sarah E.; Kirschbaum, Clemens

    2016-01-01

    Diurnal salivary cortisol profiles are valuable indicators of adrenocortical functioning in epidemiological research and clinical practice. However, normative reference values derived from a large number of participants and across a wide age range are still missing. To fill this gap, data were compiled from 15 independently conducted field studies with a total of 104,623 salivary cortisol samples obtained from 18,698 unselected individuals (mean age: 48.3 years, age range: 0.5 to 98.5 years, 39% females). Besides providing a descriptive analysis of the complete dataset, we also performed mixed-effects growth curve modeling of diurnal salivary cortisol (i.e., 1 to 16 hours after awakening). Cortisol decreased significantly across the day and was influenced by both, age and sex. Intriguingly, we also found a pronounced impact of sampling season with elevated diurnal cortisol in spring and decreased levels in autumn. However, the majority of variance was accounted for by between-participant and between-study variance components. Based on these analyses, reference ranges (LC/MS-MS calibrated) for cortisol concentrations in saliva were derived for different times across the day, with more specific reference ranges generated for males and females in different age categories. This integrative summary provides important reference values on salivary cortisol to aid basic scientists and clinicians in interpreting deviations from the normal diurnal cycle. PMID:27448524

  2. Development of a Policy-Relevant Child Maltreatment Research Strategy

    PubMed Central

    MacMillan, Harriet L; Jamieson, Ellen; Wathen, C Nadine; Boyle, Michael H; Walsh, Christine A; Omura, John; Walker, Jason M; Lodenquai, Gregory

    2007-01-01

    Child maltreatment is associated with a huge burden of suffering, yet there are serious gaps in knowledge about its epidemiology and approaches to intervention. This article describes the development of a proposed national research framework in child maltreatment, as requested by the Department of Justice, Canada, based on (1) a review of the literature, (2) consultation with experts, and (3) application of evaluation criteria for considering research priorities. The article identifies gaps in knowledge about child maltreatment in Canada and proposes a research agenda to make evidence-based policy decisions more likely. Although this work was driven by gaps in Canada's knowledge about child maltreatment, the international scope of the review and consultation process could make the findings useful to broader research and policy audiences. PMID:17517119

  3. Topological phase transition and unexpected mass acquisition of Dirac fermion in TlBi(S1-xSex)2

    NASA Astrophysics Data System (ADS)

    Niu, Chengwang; Dai, Ying; Zhu, Yingtao; Lu, Jibao; Ma, Yandong; Huang, Baibiao

    2012-10-01

    Based on first-principles calculations and effective Hamiltonian analysis, we predict a topological phase transition from normal to topological insulators and the opening of a gap without breaking the time-reversal symmetry in TlBi(S1-xSex)2. The transition can be driven by modulating the Se concentration, and the rescaled spin-orbit coupling and lattice parameters are the key ingredients for the transition. For topological surface states, the Dirac cone evolves differently as the explicit breaking of inversion symmetry and the energy band can be opened under asymmetry surface. Our results present theoretical evidence for experimental observations [Xu et al., Science 332, 560 (2011); Sato et al., Nat. Phys. 7, 840 (2011)].

  4. The SW Sex Phenomenon as an Evolutionary Stage of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Schmidtobreick, L.

    From recent large observing campaigns, one finds that nearly all non- or weakly magnetic cataclysmic variables in the orbital period range between 2.8 and 4 hours are of SW Sex type and as such experience very high mass transfer rates. The evolution of cataclysmic variables as for any interacting binary is driven by angular momentum loss which results in a decrease of the orbital period on evolutionary time scales. In particular, all long-period systems need to cross the SW Sex regime of the orbital period distribution before entering the period gap. This makes the SW Sex phenomenon an evolutionary stage in the life of a cataclysmic variable. Here, I present a short overview of the current state of research on these systems.

  5. Generation mechanism of hydrogen peroxide in dc plasma with a liquid electrode

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Ishibashi, Naoto

    2018-04-01

    The production mechanism of liquid-phase H2O2 in dc driven plasma in O2 and Ar with a water electrode was investigated. When a water anode was used, the concentration of H2O2 increased linearly with the treatment time. The production rate was proportional to the discharge current, and there was no dependence on the gap distance. On the other hand, the production rate was much smaller with a water anode. We concluded that the production of gas-phase H2O2 in the cathode sheath just above a water cathode and diffusion of this H2O2 into the water constitute the key mechanism in the production of liquid-phase H2O2.

  6. Accretion dynamics in pre-main sequence binaries

    NASA Astrophysics Data System (ADS)

    Tofflemire, B.; Mathieu, R.; Herczeg, G.; Ardila, D.; Akeson, R.; Ciardi, D.; Johns-Krull, C.

    Binary stars are a common outcome of star formation. Orbital resonances, especially in short-period systems, are capable of reshaping the distribution and flows of circumstellar material. Simulations of the binary-disk interaction predict a dynamically cleared gap around the central binary, accompanied by periodic ``pulsed'' accretion events that are driven by orbital motion. To place observational constraints on the binary-disk interaction, we have conducted a long-term monitoring program tracing the time-variable accretion behavior of 9 short-period binaries. In this proceeding we present two results from our campaign: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system.

  7. Electron-ion coupling in semiconductors beyond Fermi's Golden Rule [On the electron-ion coupling in semiconductors beyond Fermi's Golden Rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Nikita; Li, Zheng; Tkachenko, Victor

    2017-01-31

    In the present study, a theoretical study of electron-phonon (electron-ion) coupling rates in semiconductors driven out of equilibrium is performed. Transient change of optical coefficients reflects the band gap shrinkage in covalently bonded materials, and thus, the heating of atomic lattice. Utilizing this dependence, we test various models of electron-ion coupling. The simulation technique is based on tight-binding molecular dynamics. Our simulations with the dedicated hybrid approach (XTANT) indicate that the widely used Fermi's golden rule can break down describing material excitation on femtosecond time scales. In contrast, dynamical coupling proposed in this work yields a reasonably good agreement ofmore » simulation results with available experimental data.« less

  8. Spacecraft methods and structures with enhanced attitude control that facilitates gyroscope substitutions

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Kurland, Jeffrey A. (Inventor); Dawson, Alec M. (Inventor); Wu, Yeong-Wei A. (Inventor); Uetrecht, David S. (Inventor)

    2004-01-01

    Methods and structures are provided that enhance attitude control during gyroscope substitutions by insuring that a spacecraft's attitude control system does not drive its absolute-attitude sensors out of their capture ranges. In a method embodiment, an operational process-noise covariance Q of a Kalman filter is temporarily replaced with a substantially greater interim process-noise covariance Q. This replacement increases the weight given to the most recent attitude measurements and hastens the reduction of attitude errors and gyroscope bias errors. The error effect of the substituted gyroscopes is reduced and the absolute-attitude sensors are not driven out of their capture range. In another method embodiment, this replacement is preceded by the temporary replacement of an operational measurement-noise variance R with a substantially larger interim measurement-noise variance R to reduce transients during the gyroscope substitutions.

  9. Metal-insulator transition in NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Kuneš, J.; Baldassarre, L.; Schächner, B.; Rabia, K.; Kuntscher, C. A.; Korotin, Dm. M.; Anisimov, V. I.; McLeod, J. A.; Kurmaev, E. Z.; Moewes, A.

    2010-01-01

    The origin of the gap in NiS2 as well as the pressure- and doping-induced metal-insulator transition in the NiS2-xSex solid solutions are investigated both theoretically using the first-principles band structures combined with the dynamical mean-field approximation for the electronic correlations and experimentally by means of infrared and x-ray absorption spectroscopies. The bonding-antibonding splitting in the S-S (Se-Se) dimer is identified as the main parameter controlling the size of the charge gap. The implications for the metal-insulator transition driven by pressure and Se doping are discussed.

  10. Structure and variability of the Western Maine Coastal Current

    USGS Publications Warehouse

    Churchill, J.H.; Pettigrew, N.R.; Signell, R.P.

    2005-01-01

    Analyses of CTD and moored current meter data from 1998 and 2000 reveal a number of mechanisms influencing the flow along the western coast of Maine. On occasions, the Eastern Maine Coastal Current extends into the western Gulf of Maine where it takes the form of a deep (order 100 m deep) and broad (order 20 km wide) southwestward flow with geostrophic velocities exceeding 20 cm s -1. This is not a coastally trapped flow, however. In fields of geostrophic velocity, computed from shipboard-CTD data, the core of this current is roughly centered at the 100 m isobath and its onshore edge is no closer than 10 km from the coast. Geostrophic velocity fields also reveal a relatively shallow (order 10 m deep) baroclinic flow adjacent to the coast. This flow is also directed to the southwest and appears to be principally comprised of local river discharge. Analyses of moored current meter data reveal wind-driven modulations of the coastal flow that are consistent with expectations from simple theoretical models. However, a large fraction of the near-shore current variance does not appear to be directly related to wind forcing. Sea-surface temperature imagery, combined with analysis of the moored current meter data, suggests that eddies and meanders within the coastal flow may at times dominate the near-shore current variance. ?? 2005 Elsevier Ltd. All rights reserved.

  11. Advanced Variance Reduction Strategies for Optimizing Mesh Tallies in MAVRIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplow, Douglas E.; Blakeman, Edward D; Wagner, John C

    2007-01-01

    More often than in the past, Monte Carlo methods are being used to compute fluxes or doses over large areas using mesh tallies (a set of region tallies defined on a mesh that overlays the geometry). For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas. The CADIS (Consistent Adjoint Driven Importance Sampling) methodology has been shown to very efficientlymore » optimize the calculation of a response (flux or dose) for a single point or a small region using weight windows and a biased source based on the adjoint of that response. This has been incorporated into codes such as ADVANTG (based on MCNP) and the new sequence MAVRIC, which will be available in the next release of SCALE. In an effort to compute lower uncertainties everywhere in the problem, Larsen's group has also developed several methods to help distribute particles more evenly, based on forward estimates of flux. This paper focuses on the use of a forward estimate to weight the placement of the source in the adjoint calculation used by CADIS, which we refer to as a forward-weighted CADIS (FW-CADIS).« less

  12. Brain signal variability is parametrically modifiable.

    PubMed

    Garrett, Douglas D; McIntosh, Anthony R; Grady, Cheryl L

    2014-11-01

    Moment-to-moment brain signal variability is a ubiquitous neural characteristic, yet remains poorly understood. Evidence indicates that heightened signal variability can index and aid efficient neural function, but it is not known whether signal variability responds to precise levels of environmental demand, or instead whether variability is relatively static. Using multivariate modeling of functional magnetic resonance imaging-based parametric face processing data, we show here that within-person signal variability level responds to incremental adjustments in task difficulty, in a manner entirely distinct from results produced by examining mean brain signals. Using mixed modeling, we also linked parametric modulations in signal variability with modulations in task performance. We found that difficulty-related reductions in signal variability predicted reduced accuracy and longer reaction times within-person; mean signal changes were not predictive. We further probed the various differences between signal variance and signal means by examining all voxels, subjects, and conditions; this analysis of over 2 million data points failed to reveal any notable relations between voxel variances and means. Our results suggest that brain signal variability provides a systematic task-driven signal of interest from which we can understand the dynamic function of the human brain, and in a way that mean signals cannot capture. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Optimal distribution of integration time for intensity measurements in Stokes polarimetry.

    PubMed

    Li, Xiaobo; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie; Hu, Haofeng

    2015-10-19

    We consider the typical Stokes polarimetry system, which performs four intensity measurements to estimate a Stokes vector. We show that if the total integration time of intensity measurements is fixed, the variance of the Stokes vector estimator depends on the distribution of the integration time at four intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the Stokes vector estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time by employing Lagrange multiplier method. According to the theoretical analysis and real-world experiment, it is shown that the total variance of the Stokes vector estimator can be significantly decreased about 40% in the case discussed in this paper. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improves the measurement accuracy of the polarimetric system.

  14. Optimal distribution of integration time for intensity measurements in degree of linear polarization polarimetry.

    PubMed

    Li, Xiaobo; Hu, Haofeng; Liu, Tiegen; Huang, Bingjing; Song, Zhanjie

    2016-04-04

    We consider the degree of linear polarization (DOLP) polarimetry system, which performs two intensity measurements at orthogonal polarization states to estimate DOLP. We show that if the total integration time of intensity measurements is fixed, the variance of the DOLP estimator depends on the distribution of integration time for two intensity measurements. Therefore, by optimizing the distribution of integration time, the variance of the DOLP estimator can be decreased. In this paper, we obtain the closed-form solution of the optimal distribution of integration time in an approximate way by employing Delta method and Lagrange multiplier method. According to the theoretical analyses and real-world experiments, it is shown that the variance of the DOLP estimator can be decreased for any value of DOLP. The method proposed in this paper can effectively decrease the measurement variance and thus statistically improve the measurement accuracy of the polarimetry system.

  15. Studies of the Plasma Triggering Mechanism of Inverse Pinch Switch

    DTIC Science & Technology

    1993-11-10

    plasma - focus driven plasma-puff was also discussed in comparison with the hypocycloidal pinch plasma-puff triggering. The main discharge of inverse pinch switch with plasma - focus driven plasma-puff trigger is found to be more azimuthally uniform than that with hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron with a low impedance Z = 9 ohms can transfer a high voltage pulse with a superior pulse-shape fidelity over that with

  16. Developing a measure of cultural-, maturity-, or esteem-driven modesty among Jewish women.

    PubMed

    Andrews, Caryn Scheinberg

    2014-01-01

    Understanding modesty and how it relates to religiosity among Jewish women was relatively unexplained, and as part of a larger study, a measure was needed. The purpose of this article is to report on three studies which represent the three stages of instrument development of a measure of modesty among Jewish women, "Your Views of Modesty": (a) content/concept definition; (b) instrument development; and (c) evaluation of the psychometric properties of the instrument: reliability and validity. In Study I, Q methodology was used to define the domain and results suggesting that modesty has multidimensions. In Study II, an instrument was developed based on distinctive perspectives from each group or what was important and not so important. This formed a 25-item Likert scale. In Study III, a survey of 300 Jewish women revealed internal consistency estimates with Cronbach's alpha 0.92, indicating high degree of internal consistency reliability for "Your Views of Modesty." For construct validity, four factors were found explaining 55% of the variance of modesty: (a) religion-driven, (b) maturity-driven, (c) esteem-driven, and (d) public-based modesty was identified. "Your Views of Modesty" shows good evidence for reliability and validity in this Jewish population.

  17. Testing the temporal nature of social disorder through abandoned buildings and interstitial spaces.

    PubMed

    Wallace, Danielle; Schalliol, David

    2015-11-01

    With the recent housing crisis, studying abandoned buildings has once again become important. However, it has been some time since abandoned buildings were the subject of direct study, leaving scholars with scant knowledge about the characteristics of abandoned buildings, how they change, and their relationship to neighborhood processes. To fill this gap, we employed longitudinal photographic and SSO evaluations of 36 abandoned buildings and their immediate surroundings in Chicago for one year (n=587). Results demonstrate the presence and severity of social disorder cues vary across time points and the time of day of observation. There is a relationship between abandoned buildings and social disorder, though the relationship is not a trend. Also, social disorder is diminished around extremely decayed buildings. Lastly, we find that our results are driven by the measurement of places ignored by most SSO studies, including alleys and the rear side of buildings. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Time Scale for Adiabaticity Breakdown in Driven Many-Body Systems and Orthogonality Catastrophe

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim

    2017-11-01

    The adiabatic theorem is a fundamental result in quantum mechanics, which states that a system can be kept arbitrarily close to the instantaneous ground state of its Hamiltonian if the latter varies in time slowly enough. The theorem has an impressive record of applications ranging from foundations of quantum field theory to computational molecular dynamics. In light of this success it is remarkable that a practicable quantitative understanding of what "slowly enough" means is limited to a modest set of systems mostly having a small Hilbert space. Here we show how this gap can be bridged for a broad natural class of physical systems, namely, many-body systems where a small move in the parameter space induces an orthogonality catastrophe. In this class, the conditions for adiabaticity are derived from the scaling properties of the parameter-dependent ground state without a reference to the excitation spectrum. This finding constitutes a major simplification of a complex problem, which otherwise requires solving nonautonomous time evolution in a large Hilbert space.

  19. Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier

    PubMed Central

    Allen, Victoria W; Shirasu-Hiza, Mimi

    2018-01-01

    Despite being pervasive, the control of programmed grooming is poorly understood. We addressed this gap by developing a high-throughput platform that allows long-term detection of grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by two major internal programs. One of these programs regulates the timing of grooming and involves the core circadian clock components cycle, clock, and period. The second program regulates the duration of grooming and, while dependent on cycle and clock, appears to be independent of period. This emerging dual control model in which one program controls timing and another controls duration, resembles the two-process regulatory model of sleep. Together, our quantitative approach presents the opportunity for further dissection of mechanisms controlling long-term grooming in Drosophila. PMID:29485401

  20. Validation of buoyancy driven spectral tensor model using HATS data

    NASA Astrophysics Data System (ADS)

    Chougule, A.; Mann, J.; Kelly, M.; Larsen, G. C.

    2016-09-01

    We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper. The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model is described via five parameters: the dissipation rate (ɛ), length scale of energy-containing eddies (L), a turbulence anisotropy parameter (Γ), gradient Richardson number (Ri) representing the atmospheric stability and the rate of destruction of temperature variance (ηθ).

  1. A General and Efficient Method for Incorporating Precise Spike Times in Globally Time-Driven Simulations

    PubMed Central

    Hanuschkin, Alexander; Kunkel, Susanne; Helias, Moritz; Morrison, Abigail; Diesmann, Markus

    2010-01-01

    Traditionally, event-driven simulations have been limited to the very restricted class of neuronal models for which the timing of future spikes can be expressed in closed form. Recently, the class of models that is amenable to event-driven simulation has been extended by the development of techniques to accurately calculate firing times for some integrate-and-fire neuron models that do not enable the prediction of future spikes in closed form. The motivation of this development is the general perception that time-driven simulations are imprecise. Here, we demonstrate that a globally time-driven scheme can calculate firing times that cannot be discriminated from those calculated by an event-driven implementation of the same model; moreover, the time-driven scheme incurs lower computational costs. The key insight is that time-driven methods are based on identifying a threshold crossing in the recent past, which can be implemented by a much simpler algorithm than the techniques for predicting future threshold crossings that are necessary for event-driven approaches. As run time is dominated by the cost of the operations performed at each incoming spike, which includes spike prediction in the case of event-driven simulation and retrospective detection in the case of time-driven simulation, the simple time-driven algorithm outperforms the event-driven approaches. Additionally, our method is generally applicable to all commonly used integrate-and-fire neuronal models; we show that a non-linear model employing a standard adaptive solver can reproduce a reference spike train with a high degree of precision. PMID:21031031

  2. Racial and Ethnic Infant Mortality Gaps and the Role of Socio-Economic Status

    PubMed Central

    Elder, Todd E.; Goddeeris, John H.; Haider, Steven J.

    2016-01-01

    We assess the extent to which differences in socio-economic status are associated with racial and ethnic gaps in a fundamental measure of population health: the rate at which infants die. Using micro-level Vital Statistics data from 2000 to 2004, we examine mortality gaps of infants born to white, black, Mexican, Puerto Rican, Asian, and Native American mothers. We find that between-group mortality gaps are strongly and consistently (except for Mexican infants) associated with maternal marital status, education, and age, and that these same characteristics are powerful predictors of income and poverty for new mothers in U.S. Census data. Despite these similarities, we document a fundamental difference in the mortality gap for the three high mortality groups: whereas the black-white and Puerto Rican-white mortality gaps mainly occur at low birth weights, the Native American-white gap occurs almost exclusively at higher birth weights. We further examine the one group whose IMR is anomalous compared to the other groups: infants of Mexican mothers die at relatively low rates given their socio-economic disadvantage. We find that this anomaly is driven by lower infant mortality among foreign-born mothers, a pattern found within many racial/ethnic groups. Overall, we conclude that the infant mortality gaps for our six racial/ethnic groups exhibit many commonalities, and these commonalities suggest a prominent role for socio-economic differences. PMID:27695196

  3. An Epidemiology Primer: Bridging the Gap between Epidemiology and Psychology.

    DTIC Science & Technology

    1981-07-01

    to the methods traditionally used in the field of psychology , The intent of this report is to describe some of these methods and explain the. in a...Hypotheses are formulated and tested in much the ame manmer and chi-square, regression, correLation, and analyses of variance are commonly employed in...etudies of morb~idity and mortality. It elsa we fu that epidemiologic studies employ rat"s and measures which, although sldm see in psychology , are

  4. Effect of various putty-wash impression techniques on marginal fit of cast crowns.

    PubMed

    Nissan, Joseph; Rosner, Ofir; Bukhari, Mohammed Amin; Ghelfan, Oded; Pilo, Raphael

    2013-01-01

    Marginal fit is an important clinical factor that affects restoration longevity. The accuracy of three polyvinyl siloxane putty-wash impression techniques was compared by marginal fit assessment using the nondestructive method. A stainless steel master cast containing three abutments with three metal crowns matching the three preparations was used to make 45 impressions: group A = single-step technique (putty and wash impression materials used simultaneously), group B = two-step technique with a 2-mm relief (putty as a preliminary impression to create a 2-mm wash space followed by the wash stage), and group C = two-step technique with a polyethylene spacer (plastic spacer used with the putty impression followed by the wash stage). Accuracy was assessed using a toolmaker microscope to measure and compare the marginal gaps between each crown and finish line on the duplicated stone casts. Each abutment was further measured at the mesial, buccal, and distal aspects. One-way analysis of variance was used for statistical analysis. P values and Scheffe post hoc contrasts were calculated. Significance was determined at .05. One-way analysis of variance showed significant differences among the three impression techniques in all three abutments and at all three locations (P < .001). Group B yielded dies with minimal gaps compared to groups A and C. The two-step impression technique with 2-mm relief was the most accurate regarding the crucial clinical factor of marginal fit.

  5. Rapid Percolation of Water through Soil Macropores Affects Reading and Calibration of Large Encapsulated TDR Sensors

    NASA Astrophysics Data System (ADS)

    Matula, Svatopluk; Dolezal, Frantisek; Moreira Barradas, Joao Manuel

    2015-04-01

    The electromagnetic soil water content sensors are invaluable tools because of their selective sensitivity to water, versatility, ease of automation and large resolution. A common drawback of most their types is their preferential sensitivity to water near to their surfaces. The ways in which the drawback manifests itself were explored for the case of large Time-Domain Reflectometry (TDR) sensors Aqua-Tel-TDR (Automata, Inc., now McCrometer CONNECT). Their field performance was investigated and compared with the results of field and laboratory calibration. The field soil was loamy Chernozem on a carbonate-rich loess substrate, while the laboratory calibration was done in fine quartz sand. In the field, the sensors were installed horizontally into pre-bored holes after being wrapped in slurry of native soil or fine earth. Large sensor-to-sensor variability of readings was observed. It was partially removed by field calibration. The occurrence of percolation events could be easily recognised, because they made the TDR readings suddenly rising and sometimes considerably exceeding the saturated water content. After the events, the TDR readings fell, usually equally suddenly, remaining afterwards at the levels somewhat higher than those before the event. These phenomena can be explained by the preferential flow of water in natural and artificial soil macropores around the sensors. It is hypothesised that the percolating water which enters the gaps and other voids around the sensors accumulates there for short time, being hindered by the sensors themselves. This water also has a enlarged opportunity to get absorbed by the adjacent soil matrix. The variance of TDR readings obtained during the field calibration does not differ significantly from the variance of the corresponding gravimetric sampling data. This suggests that the slope of the field calibration equation is close to unity, in contrast to the laboratory calibration in quartz sand. This difference in slopes can be explained by the presence or absence, respectively, of gaps around the sensors. A typical percolation event and dry period records are presented and analysed. Sensors of this type can be used for qualitative detection of preferential flow and perhaps also for its quantification. The readings outside the percolation events indicate that the sensor environment imitates the native soil reasonably well and that the field-calibrated sensors can provide us with quantitative information about the actual soil water content.

  6. Diffusion-advection within dynamic biological gaps driven by structural motion

    NASA Astrophysics Data System (ADS)

    Asaro, Robert J.; Zhu, Qiang; Lin, Kuanpo

    2018-04-01

    To study the significance of advection in the transport of solutes, or particles, within thin biological gaps (channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the synaptic cleft; this choice is motivated by the cleft's readily modeled structure, which allows for well-defined mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number, AD, that quantifies the ratio of time scales of advection versus diffusion. Another parameter, AM, is also defined by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical properties vis-a ̀-vis the advection versus diffusion process. For example, it is found that AD˜1 /R2 , where R is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the dependence of structural motion that drives fluid flow on R . AM, on the other hand, is directly related (essentially proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of competition of advection versus diffusion within biological gaplike structures. The importance of the random, versus a regular, nature of structural motion and of the resulting transient nature of advection under random motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic energy (ATP) plays in this competitive process.

  7. A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered pallid sturgeon example

    USGS Publications Warehouse

    Wildhaber, Mark L.; Albers, Janice; Green, Nicholas; Moran, Edward H.

    2017-01-01

    We develop a fully-stochasticized, age-structured population model suitable for population viability analysis (PVA) of fish and demonstrate its use with the endangered pallid sturgeon (Scaphirhynchus albus) of the Lower Missouri River as an example. The model incorporates three levels of variance: parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level, temporal variance (uncertainty caused by random environmental fluctuations over time) applied at the time-step level, and implicit individual variance (uncertainty caused by differences between individuals) applied within the time-step level. We found that population dynamics were most sensitive to survival rates, particularly age-2+ survival, and to fecundity-at-length. The inclusion of variance (unpartitioned or partitioned), stocking, or both generally decreased the influence of individual parameters on population growth rate. The partitioning of variance into parameter and temporal components had a strong influence on the importance of individual parameters, uncertainty of model predictions, and quasiextinction risk (i.e., pallid sturgeon population size falling below 50 age-1+ individuals). Our findings show that appropriately applying variance in PVA is important when evaluating the relative importance of parameters, and reinforce the need for better and more precise estimates of crucial life-history parameters for pallid sturgeon.

  8. Pollinator-driven ecological speciation in plants: new evidence and future perspectives

    PubMed Central

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.

    2014-01-01

    Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate innovative experimental approaches, and they employ modern tools in genetics and floral trait quantification. Future advances to the field require better quantification of selection through male fitness and pollinator isolation, for instance by exploiting next-generation sequencing technologies. By combining these new tools with strategically chosen study systems, and smart experimental design, we predict that examples of pollinator-driven speciation will be among the most widespread and compelling of all cases of ecological speciation. PMID:24418954

  9. An Algorithm Framework for Isolating Anomalous Signals in Electromagnetic Data

    NASA Astrophysics Data System (ADS)

    Kappler, K. N.; Schneider, D.; Bleier, T.; MacLean, L. S.

    2016-12-01

    QuakeFinder and its international collaborators have installed and currently maintain an array of 165 three-axis induction magnetometer instrument sites in California, Peru, Taiwan, Greece, Chile and Sumatra. Based on research by Bleier et al. (2009), Fraser-Smith et al. (1990), and Freund (2007), the electromagnetic data from these instruments are being analyzed for pre-earthquake signatures. This analysis consists of both private research by QuakeFinder, and institutional collaborators (PUCP in Peru, NCU in Taiwan, NOA in Greece, LASP at University of Colorado, Stanford, UCLA, NASA-ESI, NASA-AMES and USC-CSEP). QuakeFinder has developed an algorithm framework aimed at isolating anomalous signals (pulses) in the time series. Results are presented from an application of this framework to induction-coil magnetometer data. Our data driven approach starts with sliding windows applied to uniformly resampled array data with a variety of lengths and overlap. Data variance (a proxy for energy) is calculated on each window and a short-term average/ long-term average (STA/LTA) filter is applied to the variance time series. Pulse identification is done by flagging time intervals in the STA/LTA filtered time series which exceed a threshold. Flagged time intervals are subsequently fed into a feature extraction program which computes statistical properties of the resampled data. These features are then filtered using a Principal Component Analysis (PCA) based method to cluster similar pulses. We explore the extent to which this approach categorizes pulses with known sources (e.g. cars, lightning, etc.) and the remaining pulses of unknown origin can be analyzed with respect to their relationship with seismicity. We seek a correlation between these daily pulse-counts (with known sources removed) and subsequent (days to weeks) seismic events greater than M5 within 15km radius. Thus we explore functions which map daily pulse-counts to a time series representing the likelihood of a seismic event occurring at some future time. These "pseudo-probabilities" can in turn be represented as Molchan diagrams. The Molchan curve provides an effective cost function for optimization and allows for a rigorous statistical assessment of the validity of pre-earthquake signals in the electromagnetic data.

  10. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling.

    PubMed

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-07-14

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath.

  11. Correcting Spatial Variance of RCM for GEO SAR Imaging Based on Time-Frequency Scaling

    PubMed Central

    Yu, Ze; Lin, Peng; Xiao, Peng; Kang, Lihong; Li, Chunsheng

    2016-01-01

    Compared with low-Earth orbit synthetic aperture radar (SAR), a geosynchronous (GEO) SAR can have a shorter revisit period and vaster coverage. However, relative motion between this SAR and targets is more complicated, which makes range cell migration (RCM) spatially variant along both range and azimuth. As a result, efficient and precise imaging becomes difficult. This paper analyzes and models spatial variance for GEO SAR in the time and frequency domains. A novel algorithm for GEO SAR imaging with a resolution of 2 m in both the ground cross-range and range directions is proposed, which is composed of five steps. The first is to eliminate linear azimuth variance through the first azimuth time scaling. The second is to achieve RCM correction and range compression. The third is to correct residual azimuth variance by the second azimuth time-frequency scaling. The fourth and final steps are to accomplish azimuth focusing and correct geometric distortion. The most important innovation of this algorithm is implementation of the time-frequency scaling to correct high-order azimuth variance. As demonstrated by simulation results, this algorithm can accomplish GEO SAR imaging with good and uniform imaging quality over the entire swath. PMID:27428974

  12. Non-Gaussian statistics and nanosecond dynamics of electrostatic fluctuations affecting optical transitions in proteins.

    PubMed

    Martin, Daniel R; Matyushov, Dmitry V

    2012-08-30

    We show that electrostatic fluctuations of the protein-water interface are globally non-Gaussian. The electrostatic component of the optical transition energy (energy gap) in a hydrated green fluorescent protein is studied here by classical molecular dynamics simulations. The distribution of the energy gap displays a high excess in the breadth of electrostatic fluctuations over the prediction of the Gaussian statistics. The energy gap dynamics include a nanosecond component. When simulations are repeated with frozen protein motions, the statistics shifts to the expectations of linear response and the slow dynamics disappear. We therefore suggest that both the non-Gaussian statistics and the nanosecond dynamics originate largely from global, low-frequency motions of the protein coupled to the interfacial water. The non-Gaussian statistics can be experimentally verified from the temperature dependence of the first two spectral moments measured at constant-volume conditions. Simulations at different temperatures are consistent with other indicators of the non-Gaussian statistics. In particular, the high-temperature part of the energy gap variance (second spectral moment) scales linearly with temperature and extrapolates to zero at a temperature characteristic of the protein glass transition. This result, violating the classical limit of the fluctuation-dissipation theorem, leads to a non-Boltzmann statistics of the energy gap and corresponding non-Arrhenius kinetics of radiationless electronic transitions, empirically described by the Vogel-Fulcher-Tammann law.

  13. Compounding approach for univariate time series with nonstationary variances

    NASA Astrophysics Data System (ADS)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  14. Compounding approach for univariate time series with nonstationary variances.

    PubMed

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  15. Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light-Matter Interaction toward Excellent Photodetectors.

    PubMed

    Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun

    2017-09-26

    Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.

  16. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5

    PubMed Central

    Lu, Y. F.; Kono, H.; Larkin, T. I.; Rost, A. W.; Takayama, T.; Boris, A. V.; Keimer, B.; Takagi, H.

    2017-01-01

    The excitonic insulator is a long conjectured correlated electron phase of narrow-gap semiconductors and semimetals, driven by weakly screened electron–hole interactions. Having been proposed more than 50 years ago, conclusive experimental evidence for its existence remains elusive. Ta2NiSe5 is a narrow-gap semiconductor with a small one-electron bandgap EG of <50 meV. Below TC=326 K, a putative excitonic insulator is stabilized. Here we report an optical excitation gap Eop ∼0.16 eV below TC comparable to the estimated exciton binding energy EB. Specific heat measurements show the entropy associated with the transition being consistent with a primarily electronic origin. To further explore this physics, we map the TC–EG phase diagram tuning EG via chemical and physical pressure. The dome-like behaviour around EG∼0 combined with our transport, thermodynamic and optical results are fully consistent with an excitonic insulator phase in Ta2NiSe5. PMID:28205553

  17. Encapsulated silicene: A robust large-gap topological insulator

    DOE PAGES

    Kou, Liangzhi; Ma, Yandong; Yan, Binghai; ...

    2015-08-20

    The quantum spin Hall (QSH) effect predicted in silicene has raised exciting prospects of new device applications compatible with current microelectronic technology. Efforts to explore this novel phenomenon, however, have been impeded by fundamental challenges imposed by silicene’s small topologically nontrivial band gap and fragile electronic properties susceptible to environmental degradation effects. Here we propose a strategy to circumvent these challenges by encapsulating silicene between transition-metal dichalcogenides (TMDCs) layers. First-principles calculations show that such encapsulated silicene exhibit a two-orders-of-magnitude enhancement in its nontrivial band gap, which is driven by the strong spin–orbit coupling effect in TMDCs via the proximity effect.more » Moreover, the cladding TMDCs layers also shield silicene from environmental gases that are detrimental to the QSH state in free-standing silicene. In conclusion, the encapsulated silicene represents a novel two-dimensional topological insulator with a robust nontrivial band gap suitable for room-temperature applications, which has significant implications for innovative QSH device design and fabrication.« less

  18. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet-Triplet Energy Gap.

    PubMed

    Freeman, David M E; Musser, Andrew J; Frost, Jarvist M; Stern, Hannah L; Forster, Alexander K; Fallon, Kealan J; Rapidis, Alexandros G; Cacialli, Franco; McCulloch, Iain; Clarke, Tracey M; Friend, Richard H; Bronstein, Hugo

    2017-08-16

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and "bright" singlets, allowing thermal population exchange between them and eliminating a significant loss channel in devices. In conjugated polymers, this gap has proved resistant to modification. Here, we introduce a general approach to reduce the singlet-triplet energy gap in fully conjugated polymers, using a donor-orthogonal acceptor motif to spatially separate electron and hole wave functions. This new generation of conjugated polymers allows for a greatly reduced exchange energy, enhancing triplet formation and enabling thermally activated delayed fluorescence. We find that the mechanisms of both processes are driven by excited-state mixing between π-π*and charge-transfer states, affording new insight into reverse intersystem crossing.

  19. Universal interaction-driven gap in metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senger, Mitchell J.; McCulley, Daniel R.; Lotfizadeh, Neda; Deshpande, Vikram V.; Minot, Ethan D.

    2018-02-01

    Suspended metallic carbon nanotubes (m-CNTs) exhibit a remarkably large transport gap that can exceed 100 meV. Both experiment and theory suggest that strong electron-electron interactions play a crucial role in generating this electronic structure. To further understand this strongly interacting system, we have performed electronic measurements of suspended m-CNTs with known diameter and chiral angle. Spectrally resolved photocurrent microscopy was used to determine m-CNT structure. The room-temperature electrical characteristics of 18 individually contacted m-CNTs were compared to their respective diameter and chiral angle. At the charge neutrality point, we observe a peak in m-CNT resistance that scales exponentially with inverse diameter. Using a thermally activated transport model, we estimate that the transport gap is (450 meV nm)/D , where D is CNT diameter. We find no correlation between the gap and the CNT chiral angle. Our results add important constraints to theories attempting to describe the electronic structure of m-CNTs.

  20. Hollow-Core Photonic Band Gap Fibers for Particle Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert J.; Spencer, James E.; /SLAC

    Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies inmore » the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.« less

  1. Quantum mechanical expansion of variance of a particle in a weakly non-uniform electric and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Poh Kam; Kosaka, Wataru; Oikawa, Shun-ichi

    We have solved the Heisenberg equation of motion for the time evolution of the position and momentum operators for a non-relativistic spinless charged particle in the presence of a weakly non-uniform electric and magnetic field. It is shown that the drift velocity operator obtained in this study agrees with the classical counterpart, and that, using the time dependent operators, the variances in position and momentum grow with time. The expansion rate of variance in position and momentum are dependent on the magnetic gradient scale length, however, independent of the electric gradient scale length. In the presence of a weakly non-uniformmore » electric and magnetic field, the theoretical expansion rates of variance expansion are in good agreement with the numerical analysis. It is analytically shown that the variance in position reaches the square of the interparticle separation, which is the characteristic time much shorter than the proton collision time of plasma fusion. After this time, the wavefunctions of the neighboring particles would overlap, as a result, the conventional classical analysis may lose its validity. The broad distribution of individual particle in space means that their Coulomb interactions with other particles become weaker than that expected in classical mechanics.« less

  2. Ties That Do Not Bind: Musings on the Specious Relevance of Academic Research.

    ERIC Educational Resources Information Center

    Bolton, Michael J.; Stolcis, Gregory B.

    2003-01-01

    Discusses the gap between academic research and practice in public administration and argues that it can be traced to conflicts such as theoretical vs. pragmatic knowledge, data-supported vs. logic-driven information, scientific method vs. case studies, academic vs. practitioner journals, and tenure vs. organizational effectiveness. Explores…

  3. "Scrubbing" Data for D3M

    ERIC Educational Resources Information Center

    Mercurius, Neil

    2005-01-01

    Data-driven decision-making (D3M) appears to be the new buzz phrase for this century, the information age. On the education front, teachers and administrators are engaging in data-centered dialog in grade-level meetings, lounges, hallways, and classrooms as they brainstorm toward closing the gap in student achievement. Clearly, such discussion…

  4. The Moderating Effects of School Climate on Bullying Prevention Efforts

    ERIC Educational Resources Information Center

    Low, Sabina; Van Ryzin, Mark

    2014-01-01

    Bullying prevention efforts have yielded mixed effects over the last 20 years. Program effectiveness is driven by a number of factors (e.g., program elements and implementation), but there remains a dearth of understanding regarding the role of school climate on the impact of bullying prevention programs. This gap is surprising, given research…

  5. Teaching the Teachers

    ERIC Educational Resources Information Center

    Kronholz, June

    2012-01-01

    Data-driven instruction began its spread across the country about a decade ago, in the footsteps of the No Child Left Behind requirement that schools administer yearly achievement tests. Those tests didn't help teachers spot and backfill learning gaps, though. Scores came back after everyone had moved on to the next grade, and anyway, the tests…

  6. Bridging the Gulf between Courtroom and Classroom: A Reflective Essay on "Law and School Reform."

    ERIC Educational Resources Information Center

    Biddle, James R.

    1999-01-01

    Heubert's "Law & School Reform Report" is an interdisciplinary exploration of schooling litigation and legislation since 1950. Superficially resembling a primer of successful law-driven reforms, the book actually reveals the great gap between legal victories and educational successes. Child advocacy is needed to redress inequities.…

  7. Application Development Methodology Appropriateness: An Exploratory Case Study Bridging the Gap between Framework Characteristics and Selection

    ERIC Educational Resources Information Center

    Williams, Lawrence H., Jr.

    2013-01-01

    This qualitative study analyzed experiences of twenty software developers. The research showed that all software development methodologies are distinct from each other. While some, such as waterfall, focus on traditional, plan-driven approaches that allow software requirements and design to evolve; others facilitate ambiguity and uncertainty by…

  8. Multiple indicators, multiple causes measurement error models

    DOE PAGES

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...

    2014-06-25

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  9. Multiple Indicators, Multiple Causes Measurement Error Models

    PubMed Central

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.

    2014-01-01

    Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535

  10. Multiple indicators, multiple causes measurement error models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  11. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns.

    PubMed

    Snowden, R J; Treue, S; Andersen, R A

    1992-01-01

    We studied the response of single units to moving random dot patterns in areas V1 and MT of the alert macaque monkey. Most cells could be driven by such patterns; however, many cells in V1 did not give a consistent response but fired at a particular point during stimulus presentation. Thus different dot patterns can produce a markedly different response at any particular time, though the time averaged response is similar. A comparison of the directionality of cells in both V1 and MT using random dot patterns shows the cells of MT to be far more directional. In addition our estimates of the percentage of directional cells in both areas are consistent with previous reports using other stimuli. However, we failed to find a bimodality of directionality in V1 which has been reported in some other studies. The variance associated with response was determined for individual cells. In both areas the variance was found to be approximately equal to the mean response, indicating little difference between extrastriate and striate cortex. These estimates are in broad agreement (though the variance appears a little lower) with those of V1 cells of the anesthetized cat. The response of MT cells was simulated on a computer from the estimates derived from the single unit recordings. While the direction tuning of MT cells is quite wide (mean half-width at half-height approximately 50 degrees) it is shown that the cells can reliably discriminate much smaller changes in direction, and the performance of the cells with the smallest discriminanda were comparable to thresholds measured with human subjects using the same stimuli (approximately 1.1 degrees). Minimum discriminanda for individual cells occurred not at the preferred direction, that is, the peak of their tuning curves, but rather on the steep flanks of their tuning curves. This result suggests that the cells which may mediate the discrimination of motion direction may not be the cells most sensitive to that direction.

  12. Resonances in a periodically driven bosonic system.

    PubMed

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  13. Current quantization and fractal hierarchy in a driven repulsive lattice gas.

    PubMed

    Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco

    2017-11-01

    Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.

  14. Resonances in a periodically driven bosonic system

    NASA Astrophysics Data System (ADS)

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  15. Current quantization and fractal hierarchy in a driven repulsive lattice gas

    NASA Astrophysics Data System (ADS)

    Rotondo, Pietro; Sellerio, Alessandro Luigi; Glorioso, Pietro; Caracciolo, Sergio; Cosentino Lagomarsino, Marco; Gherardi, Marco

    2017-11-01

    Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the nonequilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density.

  16. Facial and prosodic emotion recognition in social anxiety disorder.

    PubMed

    Tseng, Huai-Hsuan; Huang, Yu-Lien; Chen, Jian-Ting; Liang, Kuei-Yu; Lin, Chao-Cheng; Chen, Sue-Huei

    2017-07-01

    Patients with social anxiety disorder (SAD) have a cognitive preference to negatively evaluate emotional information. In particular, the preferential biases in prosodic emotion recognition in SAD have been much less explored. The present study aims to investigate whether SAD patients retain negative evaluation biases across visual and auditory modalities when given sufficient response time to recognise emotions. Thirty-one SAD patients and 31 age- and gender-matched healthy participants completed a culturally suitable non-verbal emotion recognition task and received clinical assessments for social anxiety and depressive symptoms. A repeated measures analysis of variance was conducted to examine group differences in emotion recognition. Compared to healthy participants, SAD patients were significantly less accurate at recognising facial and prosodic emotions, and spent more time on emotion recognition. The differences were mainly driven by the lower accuracy and longer reaction times for recognising fearful emotions in SAD patients. Within the SAD patients, lower accuracy of sad face recognition was associated with higher severity of depressive and social anxiety symptoms, particularly with avoidance symptoms. These findings may represent a cross-modality pattern of avoidance in the later stage of identifying negative emotions in SAD. This pattern may be linked to clinical symptom severity.

  17. Mental toughness as a moderator of the intention-behaviour gap in the rehabilitation of knee pain.

    PubMed

    Gucciardi, Daniel F

    2016-06-01

    The purpose of this study was to investigate the role of mental toughness in maximising the effect of intentions to perform rehabilitative exercises on behaviour among a sample of people with knee pain. Cross-sectional survey, with a 2-week time-lagged assessment of exercise behaviour. In total, 193 individuals (nfemale=107, nmale=84) aged between 18 and 69 years (M=30.79, SD=9.39) participated, with 136 (70.5%) retained at both assessment points. At time 1, participants completed an online, multisection survey that encompassed measures of demographic details, severity of problems associated with the knee (e.g., pain, symptoms), past behaviour, mental toughness, and the theory of planned behaviour constructs (TPB; attitudes, subjective norms, perceived behavioural, intentions). Two weeks later, participants retrospectively reported their exercise behaviour for the past 14 days using an online survey. Moderated regression analyses indicated that mental toughness and its interaction with intention accounted for an additional 3% and 4% of the variance in exercise behaviour, respectively. Past behaviour, attitudes, and mental toughness all had direct effects on behaviour, alongside a meaningful interaction between intentions and mental toughness. Specifically, intentions had a stronger effect on exercise behaviour among those individuals high in mental toughness compared to those low in this personal resource. The results of this study shed new light on the intention-behaviour gap by indicating that mental toughness increases the likelihood that intention is translated into action. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Anti-reflection coating design for metallic terahertz meta-materials

    DOE PAGES

    Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias; ...

    2018-01-26

    We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extendedmore » gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.« less

  19. Anti-reflection coating design for metallic terahertz meta-materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias

    We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extendedmore » gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.« less

  20. Anti-reflection coating design for metallic terahertz meta-materials.

    PubMed

    Pancaldi, Matteo; Freeman, Ryan; Hudl, Matthias; Hoffmann, Matthias C; Urazhdin, Sergei; Vavassori, Paolo; Bonetti, Stefano

    2018-02-05

    We demonstrate a silicon-based, single-layer anti-reflection coating that suppresses the reflectivity of metals at near-infrared frequencies, enabling optical probing of nano-scale structures embedded in highly reflective surroundings. Our design does not affect the interaction of terahertz radiation with metallic structures that can be used to achieve terahertz near-field enhancement. We have verified the functionality of the design by calculating and measuring the reflectivity of both infrared and terahertz radiation from a silicon/gold double layer as a function of the silicon thickness. We have also fabricated the unit cell of a terahertz meta-material, a dipole antenna comprising two 20-nm thick extended gold plates separated by a 2 μm gap, where the terahertz field is locally enhanced. We used the time-domain finite element method to demonstrate that such near-field enhancement is preserved in the presence of the anti-reflection coating. Finally, we performed magneto-optical Kerr effect measurements on a single 3-nm thick, 1-μm wide magnetic wire placed in the gap of such a dipole antenna. The wire only occupies 2% of the area probed by the laser beam, but its magneto-optical response can be clearly detected. Our design paves the way for ultrafast time-resolved studies, using table-top femtosecond near-infrared lasers, of dynamics in nano-structures driven by strong terahertz radiation.

  1. Can personality close the intention-behavior gap for healthy eating? An examination with the HEXACO personality traits.

    PubMed

    Monds, Lauren A; MacCann, Carolyn; Mullan, Barbara A; Wong, Cara; Todd, Jemma; Roberts, Richard D

    2016-10-01

    The aim of this study was to investigate the predictive and moderating effects of HEXACO personality factors, in addition to theory of planned behavior (TPB) variables, on fruit and vegetable consumption. American college students (N = 1036) from 24 institutions were administered the TPB, HEXACO and a self-reported fruit and vegetable consumption measure. The TPB predicted 11-17% of variance in fruit and vegetable consumption, with greater variance accounted for in healthy weight compared to overweight individuals. Personality did not significantly improve the prediction of behavior above TPB constructs; however, conscientiousness was a significant incremental predictor of intention in both healthy weight and overweight/obese groups. While support was found for the TPB as an important predictor of fruit and vegetable consumption in students, little support was found for personality factors. Such findings have implications for interventions designed to target students at risk of chronic disease.

  2. Perspective: Structural fluctuation of protein and Anfinsen's thermodynamic hypothesis

    NASA Astrophysics Data System (ADS)

    Hirata, Fumio; Sugita, Masatake; Yoshida, Masasuke; Akasaka, Kazuyuki

    2018-01-01

    The thermodynamics hypothesis, casually referred to as "Anfinsen's dogma," is described theoretically in terms of a concept of the structural fluctuation of protein or the first moment (average structure) and the second moment (variance and covariance) of the structural distribution. The new theoretical concept views the unfolding and refolding processes of protein as a shift of the structural distribution induced by a thermodynamic perturbation, with the variance-covariance matrix varying. Based on the theoretical concept, a method to characterize the mechanism of folding (or unfolding) is proposed. The transition state, if any, between two stable states is interpreted as a gap in the distribution, which is created due to an extensive reorganization of hydrogen bonds among back-bone atoms of protein and with water molecules in the course of conformational change. Further perspective to applying the theory to the computer-aided drug design, and to the material science, is briefly discussed.

  3. The genetic variance but not the genetic covariance of life-history traits changes towards the north in a time-constrained insect.

    PubMed

    Sniegula, Szymon; Golab, Maria J; Drobniak, Szymon M; Johansson, Frank

    2018-06-01

    Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life-history traits and the correlations among these traits. To predict the response of life-history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance-covariance matrix, G. Here, we estimated G for key life-history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set-up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude-specific covariance of the life-history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance-covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance-covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  4. Modeling rainfall-runoff relationship using multivariate GARCH model

    NASA Astrophysics Data System (ADS)

    Modarres, R.; Ouarda, T. B. M. J.

    2013-08-01

    The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.

  5. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE PAGES

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO 2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion,more » charge density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  6. A Bias and Variance Analysis for Multistep-Ahead Time Series Forecasting.

    PubMed

    Ben Taieb, Souhaib; Atiya, Amir F

    2016-01-01

    Multistep-ahead forecasts can either be produced recursively by iterating a one-step-ahead time series model or directly by estimating a separate model for each forecast horizon. In addition, there are other strategies; some of them combine aspects of both aforementioned concepts. In this paper, we present a comprehensive investigation into the bias and variance behavior of multistep-ahead forecasting strategies. We provide a detailed review of the different multistep-ahead strategies. Subsequently, we perform a theoretical study that derives the bias and variance for a number of forecasting strategies. Finally, we conduct a Monte Carlo experimental study that compares and evaluates the bias and variance performance of the different strategies. From the theoretical and the simulation studies, we analyze the effect of different factors, such as the forecast horizon and the time series length, on the bias and variance components, and on the different multistep-ahead strategies. Several lessons are learned, and recommendations are given concerning the advantages, disadvantages, and best conditions of use of each strategy.

  7. The Variance Reaction Time Model

    ERIC Educational Resources Information Center

    Sikstrom, Sverker

    2004-01-01

    The variance reaction time model (VRTM) is proposed to account for various recognition data on reaction time, the mirror effect, receiver-operating-characteristic (ROC) curves, etc. The model is based on simple and plausible assumptions within a neural network: VRTM is a two layer neural network where one layer represents items and one layer…

  8. Reducing the socio-economic status achievement gap at University by promoting mastery-oriented assessment.

    PubMed

    Smeding, Annique; Darnon, Céline; Souchal, Carine; Toczek-Capelle, Marie-Christine; Butera, Fabrizio

    2013-01-01

    In spite of official intentions to reduce inequalities at University, students' socio-economic status (SES) is still a major determinant of academic success. The literature on the dual function of University suggests that University serves not only an educational function (i.e., to improve students' learning), but also a selection function (i.e., to compare people, and orient them towards different positions in society). Because current assessment practices focus on the selection more than on the educational function, their characteristics fit better with norms and values shared by dominant high-status groups and may favour high-SES students over low-SES students in terms of performances. A focus on the educational function (i.e., mastery goals), instead, may support low-SES students' achievement, but empirical evidence is currently lacking. The present research set out to provide such evidence and tested, in two field studies and a randomised field experiment, the hypothesis that focusing on University's educational function rather than on its selection function may reduce the SES achievement gap. Results showed that a focus on learning, mastery-oriented goals in the assessment process reduced the SES achievement gap at University. For the first time, empirical data support the idea that low-SES students can perform as well as high-SES students if they are led to understand assessment as part of the learning process, a way to reach mastery goals, rather than as a way to compare students to each other and select the best of them, resulting in performance goals. This research thus provides a theoretical framework to understand the differential effects of assessment on the achievement of high and low-SES students, and paves the way toward the implementation of novel, theory-driven interventions to reduce the SES-based achievement gap at University.

  9. Variance reduction for Fokker–Planck based particle Monte Carlo schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorji, M. Hossein, E-mail: gorjih@ifd.mavt.ethz.ch; Andric, Nemanja; Jenny, Patrick

    Recently, Fokker–Planck based particle Monte Carlo schemes have been proposed and evaluated for simulations of rarefied gas flows [1–3]. In this paper, the variance reduction for particle Monte Carlo simulations based on the Fokker–Planck model is considered. First, deviational based schemes were derived and reviewed, and it is shown that these deviational methods are not appropriate for practical Fokker–Planck based rarefied gas flow simulations. This is due to the fact that the deviational schemes considered in this study lead either to instabilities in the case of two-weight methods or to large statistical errors if the direct sampling method is applied.more » Motivated by this conclusion, we developed a novel scheme based on correlated stochastic processes. The main idea here is to synthesize an additional stochastic process with a known solution, which is simultaneously solved together with the main one. By correlating the two processes, the statistical errors can dramatically be reduced; especially for low Mach numbers. To assess the methods, homogeneous relaxation, planar Couette and lid-driven cavity flows were considered. For these test cases, it could be demonstrated that variance reduction based on parallel processes is very robust and effective.« less

  10. Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.

    2004-01-01

    In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .

  11. Controlling Posture and Vergence Eye Movements in Quiet Stance: Effects of Thin Plantar Inserts

    PubMed Central

    Foisy, A.; Gaertner, C.; Matheron, E.; Kapoula, Z.

    2015-01-01

    The purpose of this study was to assess properties of vergence and saccade eye movements as well as posture in quiet stance, and the effects of thin plantar inserts upon postural and oculomotor control. The performances of 36 young healthy subjects were recorded by a force platform and an eye tracker in three testing conditions: without plantar stimulation, with a 3 millimetre-thick plantar insert, either a Medial or a Lateral Arch Support (MAS / LAS). The results showed a decrease of the Surface and Variance of Speed and a more posterior position of the CoP with either stimulation compared with the control condition. The fractal analysis showed a decrease with MAS. Wavelet analysis in the time-frequency domain revealed an increase in the Cancelling Time of the low frequency band with MAS. These results suggest a better stability for a lower energy cost. Concerning eye movements, the inserts influenced only vergence (not saccades): MAS caused an increase of the phasic amplitude of divergence, and conversely a decrease of the tonic amplitude. In contrast, LAS caused an increase of the tonic amplitude of convergence. Thus, MAS renders divergence less visually driven, while LAS renders convergence more visually driven. We conclude that the CNS uses the podal signal for both postural and vergence control via specific mechanisms. Plantar inserts have an influence upon posture and vergence movements in a different way according to the part of the foot sole being stimulated. These results can be useful to clinicians interested in foot or eye. PMID:26637132

  12. A Report Card for Risk Management in Higher Education for Two-Year Colleges in Minnesota, Wisconsin, and Michigan: A Study to Assess Gaps Regarding Risk Management in Higher Education

    ERIC Educational Resources Information Center

    Centko, John David

    2017-01-01

    The purpose of this study was to organize the identified risks into one of the five classifications in order to establish a taxonomy created by peers and to measure the variances in the level of risk at two-year colleges. A universal problem for colleges and universities is the difficulty of finding peer groups that have and are willing to share…

  13. Pertussis immunity and epidemiology: mode and duration of vaccine-induced immunity.

    PubMed

    Magpantay, F M G; Domenech DE Cellès, M; Rohani, P; King, A A

    2016-06-01

    The resurgence of pertussis in some countries that maintain high vaccination coverage has drawn attention to gaps in our understanding of the epidemiological effects of pertussis vaccines. In particular, major questions surround the nature, degree and durability of vaccine protection. To address these questions, we used mechanistic transmission models to examine regional time series incidence data from Italy in the period immediately following the introduction of acellular pertussis (aP) vaccine. Our results concur with recent animal-challenge experiments wherein infections in aP-vaccinated individuals proved as transmissible as those in naive individuals but much less symptomatic. On the other hand, the data provide evidence for vaccine-driven reduction in susceptibility, which we quantify via a synthetic measure of vaccine impact. As to the precise nature of vaccine failure, the data do not allow us to distinguish between leakiness and waning of vaccine immunity, or some combination of these. Across the range of well-supported models, the nature and duration of vaccine protection, the age profile of incidence and the range of projected epidemiological futures differ substantially, underscoring the importance of the remaining unknowns. We identify key data gaps: sources of data that can supply the information needed to eliminate these remaining uncertainties.

  14. Automatic Control of Arc Process for Making Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Pulumbarit, Robert B.; Victor, Joe

    2004-01-01

    An automatic-control system has been devised for a process in which carbon nanotubes are produced in an arc between a catalyst-filled carbon anode and a graphite cathode. The control system includes a motor-driven screw that adjusts the distance between the electrodes. The system also includes a bridge circuit that puts out a voltage proportional to the difference between (1) the actual value of potential drop across the arc and (2) a reference value between 38 and 40 V (corresponding to a current of about 100 A) at which the yield of carbon nanotubes is maximized. Utilizing the fact that the potential drop across the arc increases with the interelectrode gap, the output of the bridge circuit is fed to a motor-control circuit that causes the motor to move the anode toward or away from the cathode if the actual potential drop is more or less, respectively, than the reference potential. Thus, the system regulates the interelectrode gap to maintain the optimum potential drop. The system also includes circuitry that records the potential drop across the arc and the relative position of the anode holder as function of time.

  15. Laser-Induced Modification Of Energy Bands Of Transparent Solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-10-01

    Laser-induced variations of electron energy bands of transparent solids significantly affect the initial stages of laser-induced ablation (LIA) influencing rates of ionization and light absorption by conduction-band electrons. We analyze fast variations with characteristic duration in femto-second time domain that include: 1) switching electron functions from bonding to anti-bonding configuration due to laser-induced ionization; 2) laser-driven oscillations of electrons in quasi-momentum space; and 3) direct distortion of the inter-atomic potential by electric field of laser radiation. Among those effects, the latter two have zero delay and reversibly modify band structure taking place from the beginning of laser action. They are of special interest due to their strong influence on the initial stage and threshold of laser ablation. The oscillations modify the electron-energy bands by adding pondermotive potential. The direct action of radiation's electric field leads to high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the forbidden-energy bands. FKE provides decrease of the effective band gap while the electron oscillations lead either to monotonous increase or oscillatory variations of the gap. We analyze the competition between those two opposite trends and their role in initiating LIA.

  16. Accommodation and Health Costs of Deinstitutionalized People with Mental Illness Living in Residential Services in Brazil.

    PubMed

    Razzouk, Denise

    2018-04-30

    Health costs are the main hindrances for expanding community mental health services. Exploring patient profiles and cost predictors may be useful for optimising financial resources. However, the deinstitutionalisation process may burden health budgets in terms of supporting multiple community services based on varying levels of need. This study assessed accommodation and health service costs, quality of life and clinical and psychosocial profiles among individuals receiving mental healthcare through residential services. Specific accommodation cost predictors were also verified. Health costs were assessed from the perspective of a public health provider using a microcosting bottom-up approach at 20 residential services in São Paulo, Brazil. Instruments used to assess health costs and patient profiles included the Brazilian version of the Client Socio-demographic and Service Receipt Inventory (CSSRI), the Mini International Neuropsychiatric Interview (MINI), the Clinical Global Impression-Severity Scale (CGI-S), the Independent Living Skills Survey (ILLS), the Social Behaviour Scale (SBS) and the Quality of Life Scale (QLS). One hundred and forty-seven residents, predominantly experiencing psychotic disorders, were interviewed. The geographical region and length of time spent living in residential services or in a psychiatric hospital predicted 66% of the variance in accommodation costs. The CGI-S and ILLS scores and years of education explained 52.7% of the variance in quality of life. Accommodation costs were not driven by patient profile variables, while region and time spent in a hospital or in residential services were the main cost predictors. Semi-staffed homes may be an alternative for resource optimisation among individuals with mild impairment, particularly if strategies for psychosocial rehabilitation and improving quality of life are implemented.

  17. Reconstruction of Local Sea Levels at South West Pacific Islands—A Multiple Linear Regression Approach (1988-2014)

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.

    2018-02-01

    Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.

  18. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  19. Performance evaluation of four directional emissivity analytical models with thermal SAIL model and airborne images.

    PubMed

    Ren, Huazhong; Liu, Rongyuan; Yan, Guangjian; Li, Zhao-Liang; Qin, Qiming; Liu, Qiang; Nerry, Françoise

    2015-04-06

    Land surface emissivity is a crucial parameter in the surface status monitoring. This study aims at the evaluation of four directional emissivity models, including two bi-directional reflectance distribution function (BRDF) models and two gap-frequency-based models. Results showed that the kernel-driven BRDF model could well represent directional emissivity with an error less than 0.002, and was consequently used to retrieve emissivity with an accuracy of about 0.012 from an airborne multi-angular thermal infrared data set. Furthermore, we updated the cavity effect factor relating to multiple scattering inside canopy, which improved the performance of the gap-frequency-based models.

  20. Efficient semiconductor multicycle terahertz pulse source

    NASA Astrophysics Data System (ADS)

    Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.

    2018-05-01

    Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.

  1. Evaluation and comparison of the marginal adaptation of two different substructure materials.

    PubMed

    Karaman, Tahir; Ulku, Sabiha Zelal; Zengingul, Ali Ihsan; Guven, Sedat; Eratilla, Veysel; Sumer, Ebru

    2015-06-01

    In this study, we aimed to evaluate the amount of marginal gap with two different substructure materials using identical margin preparations. Twenty stainless steel models with a chamfer were prepared with a CNC device. Marginal gap measurements of the galvano copings on these stainless steel models and Co-Cr copings obtained by a laser-sintering method were made with a stereomicroscope device before and after the cementation process and surface properties were evaluated by scanning electron microscopy (SEM). A dependent t-test was used to compare the mean of the two groups for normally distributed data, and two-way variance analysis was used for more than two data sets. Pearson's correlation analysis was also performed to assess relationships between variables. According to the results obtained, the marginal gap in the galvano copings before cementation was measured as, on average, 24.47 ± 5.82 µm before and 35.11 ± 6.52 µm after cementation; in the laser-sintered Co-Cr structure, it was, on average, 60.45 ± 8.87 µm before and 69.33 ± 9.03 µm after cementation. A highly significant difference (P<.001) was found in marginal gap measurements of galvano copings and a significant difference (P<.05) was found in marginal gap measurements of the laser-sintered Co-Cr copings. According to the SEM examination, surface properties of laser sintered Co-Cr copings showed rougher structure than galvano copings. The galvano copings showed a very smooth surface. Marginal gaps values of both groups before and after cementation were within the clinically acceptable level. The smallest marginal gaps occurred with the use of galvano copings.

  2. Evaluation and comparison of the marginal adaptation of two different substructure materials

    PubMed Central

    Karaman, Tahir; Ulku, Sabiha Zelal; Zengingul, Ali Ihsan; Eratilla, Veysel; Sumer, Ebru

    2015-01-01

    PURPOSE In this study, we aimed to evaluate the amount of marginal gap with two different substructure materials using identical margin preparations. MATERIALS AND METHODS Twenty stainless steel models with a chamfer were prepared with a CNC device. Marginal gap measurements of the galvano copings on these stainless steel models and Co-Cr copings obtained by a laser-sintering method were made with a stereomicroscope device before and after the cementation process and surface properties were evaluated by scanning electron microscopy (SEM). A dependent t-test was used to compare the mean of the two groups for normally distributed data, and two-way variance analysis was used for more than two data sets. Pearson's correlation analysis was also performed to assess relationships between variables. RESULTS According to the results obtained, the marginal gap in the galvano copings before cementation was measured as, on average, 24.47 ± 5.82 µm before and 35.11 ± 6.52 µm after cementation; in the laser-sintered Co-Cr structure, it was, on average, 60.45 ± 8.87 µm before and 69.33 ± 9.03 µm after cementation. A highly significant difference (P<.001) was found in marginal gap measurements of galvano copings and a significant difference (P<.05) was found in marginal gap measurements of the laser-sintered Co-Cr copings. According to the SEM examination, surface properties of laser sintered Co-Cr copings showed rougher structure than galvano copings. The galvano copings showed a very smooth surface. CONCLUSION Marginal gaps values of both groups before and after cementation were within the clinically acceptable level. The smallest marginal gaps occurred with the use of galvano copings. PMID:26140178

  3. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  4. Model and system learners, optimal process constructors and kinetic theory-based goal-oriented design: A new paradigm in materials and processes informatics

    NASA Astrophysics Data System (ADS)

    Abisset-Chavanne, Emmanuelle; Duval, Jean Louis; Cueto, Elias; Chinesta, Francisco

    2018-05-01

    Traditionally, Simulation-Based Engineering Sciences (SBES) has relied on the use of static data inputs (model parameters, initial or boundary conditions, … obtained from adequate experiments) to perform simulations. A new paradigm in the field of Applied Sciences and Engineering has emerged in the last decade. Dynamic Data-Driven Application Systems [9, 10, 11, 12, 22] allow the linkage of simulation tools with measurement devices for real-time control of simulations and applications, entailing the ability to dynamically incorporate additional data into an executing application, and in reverse, the ability of an application to dynamically steer the measurement process. It is in that context that traditional "digital-twins" are giving raise to a new generation of goal-oriented data-driven application systems, also known as "hybrid-twins", embracing models based on physics and models exclusively based on data adequately collected and assimilated for filling the gap between usual model predictions and measurements. Within this framework new methodologies based on model learners, machine learning and kinetic goal-oriented design are defining a new paradigm in materials, processes and systems engineering.

  5. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan

    2017-11-01

    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  6. Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Eduardo; Flayac, Hugo; Savona, Vincenzo

    2015-08-01

    We develop a numerical procedure to efficiently model the nonequilibrium steady state of one-dimensional arrays of open quantum systems based on a matrix-product operator ansatz for the density matrix. The procedure searches for the null eigenvalue of the Liouvillian superoperator by sweeping along the system while carrying out a partial diagonalization of the single-site stationary problem. It bears full analogy to the density-matrix renormalization-group approach to the ground state of isolated systems, and its numerical complexity scales as a power law with the bond dimension. The method brings considerable advantage when compared to the integration of the time-dependent problem via Trotter decomposition, as it can address arbitrarily long-ranged couplings. Additionally, it ensures numerical stability in the case of weakly dissipative systems thanks to a slow tuning of the dissipation rates along the sweeps. We have tested the method on a driven-dissipative spin chain, under various assumptions for the Hamiltonian, drive, and dissipation parameters, and compared the results to those obtained both by Trotter dynamics and Monte Carlo wave function methods. Accurate and numerically stable convergence was always achieved when applying the method to systems with a gapped Liouvillian and a nondegenerate steady state.

  7. Safety in numbers: extinction arising from predator-driven Allee effects.

    PubMed

    Gregory, Stephen D; Courchamp, Franck

    2010-05-01

    Experimental evidence of extinction via an Allee effect (AE) is a priority as more species become threatened by human activity. Kramer & Drake (2010) begin the International Year of Biodiversity with the important--but double-edged--demonstration that predators can induce an AE in their prey. The good news is that their experiments help bridge the knowledge gap between theoretical and empirical AEs. The bad news is that this predator-driven AE precipitates the prey extinction via a demographic AE. Although their findings will be sensitive to departures from their experimental protocol, this link between predation and population extinction could have important consequences for many prey species.

  8. Study of double wall panels for use in propeller driven aircraft

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    Propeller driven aircraft have exhibited high levels of interior noise. Most absorption materials are not effective at low frequencies where maximum noise levels occur. Two panels separated by an air gap are suggested as an alternative means of noise attenuation. This design produces an impedance mismatch where a sound wave travels backwards to the source. The higher the impedance, the higher the reflected soundwave intensity. Two aluminum panels with helium in between and two panels with one being perforated were investigated. Helium increases the transmission loss because of a greater impedance mismatch than air. The transmission loss of the unperforated panel is higher throughout the frequency range tested.

  9. Study of double wall panels for use in propeller driven aircraft

    NASA Astrophysics Data System (ADS)

    Atwal, M.; Bernhard, R.

    1984-05-01

    Propeller driven aircraft have exhibited high levels of interior noise. Most absorption materials are not effective at low frequencies where maximum noise levels occur. Two panels separated by an air gap are suggested as an alternative means of noise attenuation. This design produces an impedance mismatch where a sound wave travels backwards to the source. The higher the impedance, the higher the reflected soundwave intensity. Two aluminum panels with helium in between and two panels with one being perforated were investigated. Helium increases the transmission loss because of a greater impedance mismatch than air. The transmission loss of the unperforated panel is higher throughout the frequency range tested.

  10. Characteristics of a Direct Current-driven plasma jet operated in open air

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Di, Cong; Jia, Pengying; Bao, Wenting

    2013-09-01

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  11. Differential Survivorship of Invasive Mosquito Species in South Florida Cemeteries: Do Site-Specific Microclimates Explain Patterns of Coexistence and Exclusion?

    PubMed Central

    LOUNIBOS, L. P.; O'MEARA, G. F.; JULIANO, S. A.; NISHIMURA, N.; ESCHER, R. L.; REISKIND, M. H.; CUTWA, M.; GREENE, K.

    2010-01-01

    Within 2 yr of the arrival of the invasive container mosquito Aedes albopictus (Skuse), the previously dominant invasive mosquito Aedes aegypti (L.) disappeared from many Florida cemeteries. At some cemeteries, however, Ae. aegypti populations seem stable despite Ae. albopictus invasion. We sought to understand this variation in the outcome (exclusion, coexistence) of this invasion, given that previous experiments show that Ae. albopictus is the superior larval competitor. We tested experimentally the hypothesis that climate-dependent egg survivorship differs between exclusion and coexistence cemeteries and that differences in invasion outcome are associated with microclimate. Viability of eggs oviposited in the laboratory and suspended in vases at six cemeteries was significantly greater for Ae. aegypti than for Ae. albopictus, and greater in 2001 than in 2006. Cemeteries differed significantly in egg survivorship of Ae. albopictus, but not of Ae. aegypti, which is consistent with the hypothesis that Ae. albopictus suffers site-specific, climate-driven egg mortality that mitigates the competitive superiority of larval Ae. albopictus. Principal component (PC) analysis of microclimate records from vases during the experiments yielded three PCs accounting for >96% of the variance in both years of experiments. Multivariate analysis of variance of the three PCs revealed significant microclimate differences among the six cemeteries and between exclusion versus coexistence cemeteries. Stepwise logistic regression of egg survivorship versus microclimate PCs yielded significant fits for both species, and twice as much variance explained for Ae. albopictus as for Ae. aegypti in both years. Higher mortalities in 2006 were associated with high average daily maximum temperatures in vases, with lethal thresholds for both species at ≈40°C. From 1990 to 2007, vase occupancy by Ae. albopictus increased and that by Ae. aegypti decreased, with increasing seasonal precipitation at one well-sampled cemetery. Results support the hypothesis that locally variable climate-driven mortality of Ae. albopictus eggs contributes to patterns of exclusion of, or coexistence with, Ae. aegypti. PMID:20852732

  12. Binary-disk interaction. II. Gap-opening criteria for unequal-mass binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Valle, Luciano; Escala, Andrés, E-mail: ldelvalleb@gmail.com

    We study the interaction of an unequal-mass binary with an isothermal circumbinary disk, motivated by the theoretical and observational evidence that after a major merger of gas-rich galaxies, a massive gaseous disk with a supermassive black hole binary will be formed in the nuclear region. We focus on the gravitational torques that the binary exerts on the disk and how these torques can drive the formation of a gap in the disk. This exchange of angular momentum between the binary and the disk is mainly driven by the gravitational interaction between the binary and a strong nonaxisymmetric density perturbation thatmore » is produced in the disk, in response to the presence of the binary. Using smoothed particle hydrodynamics numerical simulations, we test two gap-opening criteria, one that assumes the geometry of the density perturbation is an ellipsoid/thick spiral and another that assumes a flat spiral geometry for the density perturbation. We find that the flat spiral gap-opening criterion successfully predicts which simulations will have a gap in the disk and which will not. We also study the limiting cases predicted by the gap-opening criteria. Since the viscosity in our simulations is considerably smaller than the expected value in the nuclear regions of gas-rich merging galaxies, we conclude that in such environments the formation of a circumbinary gap is unlikely.« less

  13. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services.

    PubMed

    Genung, Mark A; Fox, Jeremy; Williams, Neal M; Kremen, Claire; Ascher, John; Gibbs, Jason; Winfree, Rachael

    2017-07-01

    The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments. © 2017 by the Ecological Society of America.

  14. A core stochastic population projection model for Florida manatees (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Runge, Michael C.; Sanders-Reed, Carol A.; Fonnesbeck, Christopher J.

    2007-01-01

    A stochastic, stage-based population model was developed to describe the life history and forecast the population dynamics of the Florida manatee (Trichechus manatus latirostris) in four separate regions of Florida. This population model includes annual variability in survival and reproductive rates, demographic stochasticity, effects of changes in warm-water capacity, and catastrophes. Further, the model explicitly accounts for uncertainty in parameter estimates. This model is meant to serve as a flexible tool for use in assessments relevant to management decision making, and was used in the State of Florida's recent biological status review. The parameter estimates and model structure described herein reflect our understanding of manatee demography at the time that this status review was completed. In the Northwest and Upper St. Johns regions, the model predicts that the populations will increase over time until warm-water capacity is reached, at which point growth will taper off. In the Atlantic region, the model predicts a stable or slightly increasing population over the next decade or so, and then a decrease as industrial warm-water capacity is lost. In the Southwest region, the model predicts a decline over time, driven by high annual mortality in the short-term and exacerbated by loss of industrial warm-water winter refuges over the next 40 years. Statewide, the likelihood of a 50% or greater decline in three manatee generations was 12%; the likelihood of a 20% or greater decline in two generations was 56%. These declines are largely driven by the anticipated loss of warm-water capacity, especially in the Atlantic and Southwest regions. The estimates of probability of extinction within 100 years were 11.9% for the Southwest region, 0.6% for the Northwest, 0.04% for the Atlantic, and <0.02% for the Upper St. Johns. The estimated probability that the statewide population will fall below 1000 animals within 100 years was 2.3%. Thus, while the estimated probability of extinction is low, the model predicts that current and emerging threats are likely to result in a long-term decline in the statewide population and a change in the regional distribution of manatees. Analyses of sensitivity and variance contribution highlight the importance of reducing uncertainty in some life-history parameters, particularly adult survival, temporal variance of adult survival, and long-term warm-water capacity. This core biological model is expected to evolve over time, as better information becomes available about manatees and their habitat, and as new assessment needs arise. We anticipate that this core model will be customized for other state and federal assessments in the near future.

  15. Complexity of possibly gapped histogram and analysis of histogram.

    PubMed

    Fushing, Hsieh; Roy, Tania

    2018-02-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.

  16. Complexity of possibly gapped histogram and analysis of histogram

    PubMed Central

    Roy, Tania

    2018-01-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT. PMID:29515829

  17. Complexity of possibly gapped histogram and analysis of histogram

    NASA Astrophysics Data System (ADS)

    Fushing, Hsieh; Roy, Tania

    2018-02-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.

  18. Quantum thermodynamics for driven dissipative bosonic systems

    NASA Astrophysics Data System (ADS)

    Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham

    2018-02-01

    We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.

  19. Nonlinear activity of acoustically driven gas bubble near a rigid boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksimov, Alexey

    2015-10-28

    The presence of a boundary can produce considerable changes in the oscillation amplitude of the bubble and its scattered echo. The present study fills a gap in the literature, in that it is concerned theoretically with the bubble activity at relatively small distances from the rigid boundary. It was shown that the bi-spherical coordinates provide separation of variables and are more suitable for analysis of the dynamics of these constrained bubbles. Explicit formulas have been derived which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and themore » boundary. As applications, time reversal technique for gas leakage detection and radiation forces that are induced by an acoustic wave on a constrained bubble were analyzed.« less

  20. 42 CFR 456.522 - Content of request for variance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time..., mental hospital, and ICF located within a 50-mile radius of the facility; (e) The distance and average...

  1. A stochastic hybrid model for pricing forward-start variance swaps

    NASA Astrophysics Data System (ADS)

    Roslan, Teh Raihana Nazirah

    2017-11-01

    Recently, market players have been exposed to the astounding increase in the trading volume of variance swaps. In this paper, the forward-start nature of a variance swap is being inspected, where hybridizations of equity and interest rate models are used to evaluate the price of discretely-sampled forward-start variance swaps. The Heston stochastic volatility model is being extended to incorporate the dynamics of the Cox-Ingersoll-Ross (CIR) stochastic interest rate model. This is essential since previous studies on variance swaps were mainly focusing on instantaneous-start variance swaps without considering the interest rate effects. This hybrid model produces an efficient semi-closed form pricing formula through the development of forward characteristic functions. The performance of this formula is investigated via simulations to demonstrate how the formula performs for different sampling times and against the real market scenario. Comparison done with the Monte Carlo simulation which was set as our main reference point reveals that our pricing formula gains almost the same precision in a shorter execution time.

  2. Evaluation of outpatient service quality in Eastern Saudi Arabia

    PubMed Central

    Fraihi, Khalid J. Al; FAMCO, Dip; FAMCO, Fellow; Latif, Shahid A.

    2016-01-01

    Objectives: To investigate perceptions and expectations of patients regarding hospital outpatient services by using a service quality gap model and factors influencing such gaps. Methods: In this cross-sectional descriptive study conducted between October and November 2014 in the outpatient waiting areas of a hospital in the Eastern Province of Saudi Arabia, a sample of 306 patients was selected by convenience sampling technique. The data was collected through an Arabic version of the service quality (SERVQUAL) questionnaire consisting of 2 parts: patients’ demographic characteristics, and 22 items scales of patients’ expectations and perceptions of SERVQUAL. The data was analyzed by confirmatory factor analysis, independent, and paired t samples tests and one way analysis of variance test. Results: The results showed that the proposed model for service quality dimensions had a good fit by satisfying the recommended values. The patients’ expectations exceeded perceptions in all service quality dimensions indicating statistically significant service quality gaps (t=26.3, p<0.000). Findings revealed that the empathy dimension contributed most patients’ expectations (4.7 ± 0.5) and perceptions (3.7 ± 0.8) scores, and responsiveness contributed least to expectations (4.5 ± 0.6) and perceptions (3.2 ± 0.8) scores. Prompt services showed highest service quality gap, while observation of privacy showed the smallest service quality gap in the statements. The study showed a significant association between gender, age, education, multiple visits, and service quality dimensions. Conclusion: The proposed model is valid and reliable and significant service quality gaps of all 5 dimensions need to be prioritized and addressed by focused improvement efforts of hospital management. PMID:27052285

  3. Evaluation of outpatient service quality in Eastern Saudi Arabia. Patient's expectations and perceptions.

    PubMed

    Al Fraihi, Khalid J; Latif, Shahid A

    2016-04-01

    To investigate perceptions and expectations of patients regarding hospital outpatient services by using a service quality gap model and factors influencing such gaps. In this cross-sectional descriptive study conducted between October and November 2014 in the outpatient waiting areas of a hospital in the Eastern Province of Saudi Arabia, a sample of 306 patients was selected by convenience sampling technique. The data was collected through an Arabic version of the service quality (SERVQUAL) questionnaire consisting of 2 parts: patients' demographic characteristics, and 22 items scales of patients' expectations and perceptions of SERVQUAL. The data was analyzed by confirmatory factor analysis, independent, and paired t samples tests and one way analysis of variance test The results showed that the proposed model for service quality dimensions had a good fit by satisfying the recommended values. The patients' expectations exceeded perceptions in all service quality dimensions indicating statistically significant service quality gaps (t=26.3, p less than 0.000). Findings revealed that the empathy dimension contributed most patients' expectations (4.7 ± 0.5) and perceptions (3.7 ± 0.8) scores, and responsiveness contributed least to expectations (4.5 ± 0.6) and perceptions (3.2 ± 0.8) scores. Prompt services showed highest service quality gap, while observation of privacy showed the smallest service quality gap in the statements. The study showed a significant association between gender, age, education, multiple visits, and service quality dimensions. The proposed model is valid and reliable and significant service quality gaps of all 5 dimensions need to be prioritized and addressed by focused improvement efforts of hospital management.

  4. Adiabatic elimination of inertia of the stochastic microswimmer driven by α -stable noise

    NASA Astrophysics Data System (ADS)

    Noetel, Joerg; Sokolov, Igor M.; Schimansky-Geier, Lutz

    2017-10-01

    We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α -stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τϕ, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t ≫τϕ , is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.

  5. Adiabatic elimination of inertia of the stochastic microswimmer driven by α-stable noise.

    PubMed

    Noetel, Joerg; Sokolov, Igor M; Schimansky-Geier, Lutz

    2017-10-01

    We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α-stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τ_{ϕ}, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t≫τ_{ϕ}, is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.

  6. A comparison of selection at list time and time-stratified sampling for estimating suspended sediment loads

    Treesearch

    Robert B. Thomas; Jack Lewis

    1993-01-01

    Time-stratified sampling of sediment for estimating suspended load is introduced and compared to selection at list time (SALT) sampling. Both methods provide unbiased estimates of load and variance. The magnitude of the variance of the two methods is compared using five storm populations of suspended sediment flux derived from turbidity data. Under like conditions,...

  7. Proving Value in Radiology: Experience Developing and Implementing a Shareable Open Source Registry Platform Driven by Radiology Workflow.

    PubMed

    Gichoya, Judy Wawira; Kohli, Marc D; Haste, Paul; Abigail, Elizabeth Mills; Johnson, Matthew S

    2017-10-01

    Numerous initiatives are in place to support value based care in radiology including decision support using appropriateness criteria, quality metrics like radiation dose monitoring, and efforts to improve the quality of the radiology report for consumption by referring providers. These initiatives are largely data driven. Organizations can choose to purchase proprietary registry systems, pay for software as a service solution, or deploy/build their own registry systems. Traditionally, registries are created for a single purpose like radiation dosage or specific disease tracking like diabetes registry. This results in a fragmented view of the patient, and increases overhead to maintain such single purpose registry system by requiring an alternative data entry workflow and additional infrastructure to host and maintain multiple registries for different clinical needs. This complexity is magnified in the health care enterprise whereby radiology systems usually are run parallel to other clinical systems due to the different clinical workflow for radiologists. In the new era of value based care where data needs are increasing with demand for a shorter turnaround time to provide data that can be used for information and decision making, there is a critical gap to develop registries that are more adapt to the radiology workflow with minimal overhead on resources for maintenance and setup. We share our experience of developing and implementing an open source registry system for quality improvement and research in our academic institution that is driven by our radiology workflow.

  8. Oxygen octahedra distortion induced structural and magnetic phase transitions in Bi{sub 1−x}Ca{sub x}Fe{sub 1−x}Mn{sub x}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pawan; Kar, Manoranjan, E-mail: mano@iitp.ac.in; Shankhwar, Nisha

    2015-05-21

    The co-doping of Ca and Mn in respective Bi and Fe-sites of BiFeO{sub 3} lattice leads to structural transition from rhombohedral (R3c space group) to orthorhombic (Pbnm space group) crystal symmetry. The tilt angle for anti-phase rotation of the oxygen octahedra of BiFeO{sub 3} at room temperature is observed to be ∼13.8°. It decreases with the increase in the co-doping percentage which suggests the composition-driven structural phase transition. The remnant magnetization for sample with 15% of co-doping becomes about 16 times that of BiFeO{sub 3}. It may be attributed to the suppression of cycloid spin structure and uncompensated spins atmore » the surface of nanocrystallites. Further increase in co-doping percentage results in the sharp reduction of remnant magnetization due to the dominant contribution from the collinear antiferromagnetic ordering in the Pbnm space group. The Arrott plot analysis clearly indicates the composition-driven crossover from the antiferromagnetic to weak ferromagnetic ordering and vice versa. Electron spin resonance results provide the evidence for the composition-driven phase transitions from an incommensurate spin cycloidal modulated state to one with nearly homogeneous spin order. The band gap (2.17 eV) of BiFeO{sub 3} measured using UV-Vis spectra was supported by the resonance Raman spectra.« less

  9. Interannual abundance changes of gelatinous carnivore zooplankton unveil climate-driven hydrographic variations in the Iberian Peninsula, Portugal.

    PubMed

    D'Ambrosio, Mariaelena; Molinero, Juan C; Azeiteiro, Ulisses M; Pardal, Miguel A; Primo, Ana L; Nyitrai, Daniel; Marques, Sónia C

    2016-09-01

    The persistent massive blooms of gelatinous zooplankton recorded during recent decades may be indicative of marine ecosystem changes. In this study, we investigated the potential influence of the North Atlantic climate (NAO) variability on decadal abundance changes of gelatinous carnivore zooplankton in the Mondego estuary, Portugal, over the period 2003-2013. During the 11-year study, the community of gelatinous carnivores encompassed a larger diversity of hydromedusae than siphonophores; the former dominated by Obelia spp., Lizzia blondina, Clythia hemisphaerica, Liriope tetraphylla and Solmaris corona, while the latter dominated by Muggiaea atlantica. Gelatinous carnivore zooplankton displayed marked interannual variability and mounting species richness over the period examined. Their pattern of abundance shifted towards larger abundances ca. 2007 and significant phenological changes. The latter included a shift in the mean annual pattern (from unimodal to bimodal peak, prior and after 2007 respectively) and an earlier timing of the first annual peak concurrent with enhanced temperatures. These changes were concurrent with the climate-driven environmental variability mainly controlled by the NAO, which displayed larger variance after 2007 along with an enhanced upwelling activity. Structural equation modelling allowed depicting cascading effects derived from the NAO influence on regional climate and upwelling variability further shaping water temperature. Such cascading effect percolated the structure and dynamics of the community of gelatinous carnivore zooplankton in the Mondego estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nomenclature101.com: A Free, Student-Driven Organic Chemistry Nomenclature Learning Tool

    ERIC Educational Resources Information Center

    Flynn, Alison B.; Caron, Jeanette; Laroche, Jamey; Daviau-Duguay, Melissa; Marcoux, Caroline; Richard, Gise`le

    2014-01-01

    Fundamental to a student's understanding of organic chemistry is the ability to interpret and use its language, including molecules' names and other key terms. A learning gap exists in that students often struggle with organic nomenclature. Although many resources describe the rules for naming molecules, there is a paucity of resources…

  11. The Impact of Standards-Based Reform on Teachers: The Case of "No Child Left Behind"

    ERIC Educational Resources Information Center

    Smith, Jason M.; Kovacs, Philip E.

    2011-01-01

    Standards-based reform is a trend affecting the educational systems of nations around the world, driven by desires to create educational systems suited to increasing economic productivity. In the USA, The No Child Left Behind (NCLB) Act of 2001 includes goals of reducing achievement gaps and getting "highly qualified" teachers in all…

  12. Data-Driven Decisions: Using Equity Theory to Highlight Implications for Underserved Students

    ERIC Educational Resources Information Center

    Fowler, Denver J.; Brown, Kelly

    2018-01-01

    By using equity theory through a social justice lens, the authors intend to highlight how data are currently being used to solve the "what" and not the "why" as it relates to achievement gaps for marginalized students in urban settings. School practitioners have been utilizing quantitative data, such as district and state…

  13. Problematising the Use of Education to Address Social Inequity: Could Participatory Action Research Be a Step Forwards?

    ERIC Educational Resources Information Center

    Giannakaki, Marina-Stefania; McMillan, Ian David; Karamichas, John

    2018-01-01

    This paper critiques international trends towards certain school practices aimed at promoting equity and social justice by closing gaps in specific learning outcomes among students. It argues that even though some of these practices (e.g. individualised student support, data-driven leadership) improve learning outcomes for certain groups…

  14. The Role of After-School Digital Media Clubs in Closing Participation Gaps and Expanding Social Networks

    ERIC Educational Resources Information Center

    Vickery, Jacqueline Ryan

    2014-01-01

    This article considers how after-school digital media clubs, as an example of informal learning, can provide meaningful opportunities for youth to participate in the creation of interest-driven learning ecologies through media production. Ethnographic research was conducted in two after-school digital media clubs at a large, ethnically diverse,…

  15. Ten recommendations for software engineering in research.

    PubMed

    Hastings, Janna; Haug, Kenneth; Steinbeck, Christoph

    2014-01-01

    Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.

  16. Responding to Cyber Bullying: An Action Tool for School Leaders

    ERIC Educational Resources Information Center

    Myers, Jill Joline; McCaw, Donna S.; Hemphill, Leaunda S.

    2011-01-01

    A parent brings a cyber bullying incident to your attention and expects you to resolve it. What are the students' rights and your responsibilities according to the law? Because the laws regarding disciplinary action are still evolving, this manual fills the gap by providing public school leaders with data-driven solutions for managing cyber…

  17. Research Advances: Eating Clay? Look to Soil for New Leads in Arthritis Treatment; The Fate of Tetracyclines

    ERIC Educational Resources Information Center

    King, Angela G.

    2006-01-01

    Teachers often struggle to excite students about geology, with most young people in today's technology-driven society being unfamiliar with rocks and minerals. Discussions centered on medical geology, the science that studies the link between normal environmental factors and geographical distribution of health problems, may help bridge the gap.…

  18. International Students with Dependent Children: The Reproduction of Gender Norms

    ERIC Educational Resources Information Center

    Brooks, Rachel

    2015-01-01

    Extant research on family migration for education has focused almost exclusively on the education of children. We thus know very little about family migration when it is driven by the educational projects of parents. To begin to redress this gap, this paper explores the experiences of families who have moved to the United Kingdom primarily to…

  19. Systematic research on Ag2X (X = O, S, Se, Te) as visible and near-infrared light driven photocatalysts and effects of their electronic structures

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Wu, Zhaomei; Zhu, Yingming; Tian, Wen; Liang, Bin

    2018-01-01

    Four silver chalcogen compounds, Ag2O, Ag2S, Ag2Se and Ag2Te, can be utilized as visible-light-driven photocatalysts. In this research, the electronic structures of these compounds were analyzed by simulation and experiments to systematically reveal the relationship between photocatalytic performance and energetic structure. All four chalcogenides exhibited interesting photocatalytic activities under ultraviolet, visible and near-infrared light. However, their photocatalytic performances and stability significantly depended on the band gap width, and the valence band and conduct band position, which was determined by their composition. Increasing the X atomic number from O to Te resulted in the upward movement of the valence band top and the conduct band bottom, which resulted in narrower band gaps, a wider absorption spectrum, a weaker photo-oxidization capacity, a higher recombination probability of hole and electron pairs, lower quantum efficiency, and worse stability. Among them, Ag2O has the highest photocatalytic performance and stability due to its widest band gap and lowest position of VB and CB. The combined action of photogenerated holes and different radicals, depending on the different electronic structures, including anion ozone radical, hydroxide radical, and superoxide radical, was observed and understood. The results of experimental observations and simulations of the four silver chalcogen compounds suggested that a proper electronic structure is necessary to obtain a balance between photocatalytic performance and absorbable light region in the development of new photocatalysts.

  20. 42 CFR 456.524 - Notification of Administrator's action and duration of variance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time Requirements § 456.524 Notification of Administrator's action and duration of...

  1. Switches in subduction polarity, slab tearing and the opening of slab gaps along the Alpine chain - a view from the bottom up

    NASA Astrophysics Data System (ADS)

    Handy, M. R.; Ustaszewski, K. M.; Kissling, E. H.

    2013-12-01

    Kinematic reconstructions of the Alpine orogen from Late Cretaceous to present time reveal that slab tearing and switches of subduction polarity are related to two slab gaps presently imaged as low-velocity anomalies at the transition of the Eastern and Central Alps, and beneath the northern Dinarides. A lithosphere-scale transfer fault at the Alps-Dinarides join (ADT) linked S-directed subduction of the oceanic part of the European plate in the Alps with N-directed subduction of the continental part of the Adriatic plate in the Dinarides in Late Cretaceous to Paleogene time. Transfer faulting in the Dinarides was initially situated along a suture zone, then jumped westward no later than 40 Ma as thrusting and subduction affected more external units of the Alps and Dinarides. Late Eocene Alpine collision led to a slowing of Adria-Europe convergence and initial rupturing of the European and Adriatic slabs in Eocene-Oligocene time, when most of the oceanic lithosphere broke off. This thermally preconditioned the lithosphere for a radical reorganization of slabs and mantle flow in the Alpine domain beginning in early Miocene time. This included the onset of Carpathian rollback subduction, as well as counterclockwise rotation and N-ward subduction of Adriatic continental lithosphere into the space beneath the Eastern Alps that was vacated by foundering and renewed tearing of the European slab in Oligocene-early Miocene time. Our plate reconstructions indicate that this tear nucleated at the tip of a subducted sliver of European continental lithosphere coinciding with the present location of the narrow slab gap between the Eastern and Central Alps. This tear then propagated horizontally to the NE along the subducted boundary of the European margin and the Carpathian embayment of the Alpine Tethyan ocean. The surface response to slab tearing included peneplainization and uplift of part of the Eastern Alps. Transfer faulting along the ADT gave way to back-arc extension and strike-slip faulting behind the retreating Carpathian orogeny no later than 23 Ma. Continued NW-motion of the Adriatic microplate in Oligocene-Miocene time opened a gap along the former ADT which filled with upwelling asthenosphere. We speculate that this thermally eroded the Miocene slab beneath the northern Dinarides, giving rise to the present slab gap there. The forces governing motion of the Adriatic microplate changed both with time and the nature of the subducting lithosphere. From 84-35 Ma, the NW-retreat of the down-going European plate facilitated the independent motion of Adria at 1-2 cm/a with respect to Europe. Adria's motion may have been driven partly by suction behind this European slab which comprised mostly old oceanic lithosphere. With the onset of Alpine collision at c. 35 Ma, the slabs became gravitationally unstable and ruptured. N-ward subduction of a fragment of Adriatic continental lithosphere beneath the Eastern Alps in Miocene time was probably initiated by push from Africa and possibly enhanced by neutral to negative buoyancy of the slab itself which included dense lower crust of the Adriatic continental margin.

  2. Bridging gaps: On the performance of airborne LiDAR to model wood mouse-habitat structure relationships in pine forests.

    PubMed

    Jaime-González, Carlos; Acebes, Pablo; Mateos, Ana; Mezquida, Eduardo T

    2017-01-01

    LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge this gap, we investigated and compared the performance of LiDAR and field data to model habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high mountain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were summarized by means of Principal Component Analyses (PCA). We then analyzed wood mouse's habitat preferences using three different models based on: (i) field PCs predictors, (ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a variance partitioning analysis. Elevation was also included as a predictor in the three models. Our results indicate that LiDAR derived variables were better predictors than field-based variables. The model combining both data sets slightly improved the predictive power of the model. Field derived variables indicated that wood mouse was positively influenced by the gradient of increasing shrub cover and negatively affected by elevation. Regarding LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest vertical structure positively influenced wood mouse, although elevation interacted negatively with the complexity in vertical structure, indicating wood mouse's preferences for plots with lower elevations but with complex forest vertical structure. The combined model was similar to the LiDAR-based model and included the gradient of shrub cover measured in the field. Variance partitioning showed that LiDAR-based variables, together with elevation, were the most important predictors and that part of the variation explained by shrub cover was shared. LiDAR derived variables were good surrogates of environmental characteristics explaining habitat preferences by the wood mouse. Our LiDAR metrics represented structural features of the forest patch, such as the presence and cover of shrubs, as well as other characteristics likely including time since perturbation, food availability and predation risk. Our results suggest that LiDAR is a promising technology for further exploring habitat preferences by small mammal communities.

  3. 42 CFR 456.520 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time Requirements § 456.520 Definitions... granted by the Administrator to the Medicaid agency for a specific remote facility to use time periods...

  4. Cross-bispectrum computation and variance estimation

    NASA Technical Reports Server (NTRS)

    Lii, K. S.; Helland, K. N.

    1981-01-01

    A method for the estimation of cross-bispectra of discrete real time series is developed. The asymptotic variance properties of the bispectrum are reviewed, and a method for the direct estimation of bispectral variance is given. The symmetry properties are described which minimize the computations necessary to obtain a complete estimate of the cross-bispectrum in the right-half-plane. A procedure is given for computing the cross-bispectrum by subdividing the domain into rectangular averaging regions which help reduce the variance of the estimates and allow easy application of the symmetry relationships to minimize the computational effort. As an example of the procedure, the cross-bispectrum of a numerically generated, exponentially distributed time series is computed and compared with theory.

  5. The effects of in-vehicle tasks and time-gap selection while reclaiming control from adaptive cruise control (ACC) with bus simulator.

    PubMed

    Lin, Tsang-Wei; Hwang, Sheue-Ling; Su, Jau-Ming; Chen, Wan-Hui

    2008-05-01

    This research aimed to find out the effects of in-vehicle distractions and time-gap settings with a fix-based bus driving simulator in a following scenario. Professional bus drivers were recruited to perform in-vehicle tasks while driving with adaptive cruise control (ACC) of changeable time-gap settings in freeway traffic. Thirty subjects were divided equally into three groups for different in-vehicle task modes (between subjects), including no task distraction, hands-free, and manual modes. Further, time-gap settings for the experimental ACC were: shorter than 1.0 s, 1.0-1.5 s, 1.5-2.0 s, and longer than 2.0 s (within subjects). Longitudinal (mean headway, forward collision rate, and response time) and lateral control (mean lateral lane position and its standard deviation) performance was assessed. In the results, longitudinal control performance was worsened by both shorter time-gaps and heavier in-vehicle tasks. But the interaction indicated that the harm by heavier in-vehicle distraction could be improved by longer time-gaps. As for the lateral control, it would only be negatively affected by shorter time-gap settings. This research indicates the effects of time-gaps and in-vehicle distraction, as well as the interaction. Proper time-gap selection under different in-vehicle distractions can help avoid accidents and keep safe.

  6. Task-Driven Tube Current Modulation and Regularization Design in Computed Tomography with Penalized-Likelihood Reconstruction.

    PubMed

    Gang, G J; Siewerdsen, J H; Stayman, J W

    2016-02-01

    This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index ( d' ). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. The task-driven design yielded the best performance, improving d' by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d' by 16% and 9%, respectively. This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.

  7. The CIRCORT database: Reference ranges and seasonal changes in diurnal salivary cortisol derived from a meta-dataset comprised of 15 field studies.

    PubMed

    Miller, Robert; Stalder, Tobias; Jarczok, Marc; Almeida, David M; Badrick, Ellena; Bartels, Meike; Boomsma, Dorret I; Coe, Christopher L; Dekker, Marieke C J; Donzella, Bonny; Fischer, Joachim E; Gunnar, Megan R; Kumari, Meena; Lederbogen, Florian; Power, Christine; Ryff, Carol D; Subramanian, S V; Tiemeier, Henning; Watamura, Sarah E; Kirschbaum, Clemens

    2016-11-01

    Diurnal salivary cortisol profiles are valuable indicators of adrenocortical functioning in epidemiological research and clinical practice. However, normative reference values derived from a large number of participants and across a wide age range are still missing. To fill this gap, data were compiled from 15 independently conducted field studies with a total of 104,623 salivary cortisol samples obtained from 18,698 unselected individuals (mean age: 48.3 years, age range: 0.5-98.5 years, 39% females). Besides providing a descriptive analysis of the complete dataset, we also performed mixed-effects growth curve modeling of diurnal salivary cortisol (i.e., 1-16h after awakening). Cortisol decreased significantly across the day and was influenced by both, age and sex. Intriguingly, we also found a pronounced impact of sampling season with elevated diurnal cortisol in spring and decreased levels in autumn. However, the majority of variance was accounted for by between-participant and between-study variance components. Based on these analyses, reference ranges (LC/MS-MS calibrated) for cortisol concentrations in saliva were derived for different times across the day, with more specific reference ranges generated for males and females in different age categories. This integrative summary provides important reference values on salivary cortisol to aid basic scientists and clinicians in interpreting deviations from the normal diurnal cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Variance in Dominant Grain Size Across the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Chamberlain, E. L.; Esposito, C. R.; Wagner, R. W.; Mohrig, D. C.

    2016-02-01

    Proposals to restore coastal Louisiana often center on Mississippi River diversion projects wherein water and sediment are routed into wetlands and shallow waters in an effort to build land. Successful design and implementation of diversions will include consideration of behavior and characteristics of sediment, both in the river and in the receiving basin. The Mississippi River sediment load is primarily mud (roughly 75%), with the remainder being very-fine to medium sand or organic detritus. The dominance of muds leads many to suggest that diversions should focus on capturing the mud fraction despite the smaller size and longer settling times required for these particles compared to sand; others believe that sand should be the focus. We present a systemic analysis of the texture of land-building sediment in the Mississippi Delta using borehole data from various depositional environments representing a range of spatial scales, system ages, and fluvial and basin characteristics. We include subdelta-scale data from the incipient Wax Lake Delta and from the distal plain of the abandoned Lafourche subdelta, as well as crevasse-scale data from modern Cubit's Gap and the Attakapas splay, an inland Lafourche crevasse. Comparison of these sites demonstrates a large variance in the volumetric mud to sand ratios across the system. We consider the differences to be emblematic of the various forcings on each lobe as it formed and suggest that the most efficient building block for a diversion is a function of the receiving basin and is not uniform across the entire delta.

  9. Repeated measurements of mite and pet allergen levels in house dust over a time period of 8 years.

    PubMed

    Antens, C J M; Oldenwening, M; Wolse, A; Gehring, U; Smit, H A; Aalberse, R C; Kerkhof, M; Gerritsen, J; de Jongste, J C; Brunekreef, B

    2006-12-01

    Studies of the association between indoor allergen exposure and the development of allergic diseases have often measured allergen exposure at one point in time. We investigated the variability of house dust mite (Der p 1, Der f 1) and cat (Fel d 1) allergen in Dutch homes over a period of 8 years. Data were obtained in the Dutch PIAMA birth cohort study. Dust from the child's mattress, the parents' mattress and the living room floor was collected at four points in time, when the child was 3 months, 4, 6 and 8 years old. Dust samples were analysed for Der p 1, Der f 1 and Fel d 1 by sandwich enzyme immuno assay. Mite allergen concentrations for the child's mattress, the parents' mattress and the living room floor were moderately correlated between time-points. Agreement was better for cat allergen. For Der p 1 and Der f 1 on the child's mattress, the within-home variance was close to or smaller than the between-home variance in most cases. For Fel d 1, the within-home variance was almost always smaller than the between-home variance. Results were similar for allergen levels expressed per gram of dust and allergen levels expressed per square metre of the sampled surface. Variance ratios were smaller when samples were taken at shorter time intervals than at longer time intervals. Over a period of 4 years, mite and cat allergens measured in house dust are sufficiently stable to use single measurements with confidence in epidemiological studies. The within-home variance was larger when samples were taken 8 years apart so that over such long periods, repetition of sampling is recommended.

  10. The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI.

    PubMed

    Thompson, William H; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed.

  11. Edge states and phase diagram for graphene under polarized light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi -Xiang; Li, Fuxiang

    2016-03-22

    In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less

  12. Surface switching statistics of rotating fluid: Disk-rim gap effects

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Iima, Makoto

    2017-04-01

    We examined the influence of internal noise on the irregular switching of the shape of the free surface of fluids in an open cylindrical vessel driven by a bottom disk rotating at constant speed [Suzuki, Iima, and Hayase, Phys. Fluids 18, 101701 (2006), 10.1063/1.2359740]. A slight increase in the disk-rim gap (less than 3% of the disk radius) was established experimentally to cause significant changes in this system, specifically, frequent appearance of the surface descending event connecting a nonaxisymmetric shape in strong mixing flow (turbulent flow) and an axisymmetric shape in laminar flow, as well as a shift in critical Reynolds number that define the characteristic states. The physical mechanism underlying the change is analyzed in terms of flow characteristics in the disk-rim gap, which acts as a noise source, and a mathematical model established from measurements of the surface height fluctuations with noise term.

  13. Polyanion Driven Antiferromagnetic and Insulating Ground State of Olivine Phosphates: LiMPO4

    NASA Astrophysics Data System (ADS)

    Jena, Ajit Kumar; Nanda, B. R. K.; Condensed Matter Theory; Computation Team

    Through density functional calculations we have investigated the electronic and magnetic properties of LiMPO4, where M is a 3d transition metal element. We find that contrary to many transition metal oxides, in these Olivine phosphates the band gap is originated due to crystal field anisotropy as well as weak O-p - M-d covalent interaction. Both of them are attributed to the presence of PO43- polyanion. The anisotropic crystal field, in the absence of covalent interactions, creates atomically localized non-degenerate M-d states and therefore the gap is a natural outcome. Onsite repulsion, due to strong correlation effect, further enhances the gap. These localized d states favor high-spin configuration which leads to antiferromagnetic ordering due to Hund's coupling. Experimentally observed low Neel temperature of this family of compounds is explained from the DFT obtained spin exchange interaction parameters. Work supported by Nissan Research Program.

  14. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3.

    PubMed

    Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu

    2017-02-15

    Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor Sr x Bi 2 Se 3 . We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs.

  15. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps. PMID:26168242

  16. Structural Dynamics of Tropical Moist Forest Gaps.

    PubMed

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6%) within gaps. Both sites demonstrate limited gap contagiousness defined by an increase in the likelihood of mortality in the immediate vicinity (~6 m) of existing gaps.

  17. Seasonal and Interannual Variation of Currents and Water Properties off the Mid-East Coast of Korea

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Chang, K. I.; Nam, S.

    2016-02-01

    Since 1999, physical parameters such as current, temperature, and salinity off the mid-east coast of Korea have been continuously observed from the long-term buoy station called `East-Sea Real-time Ocean monitoring Buoy (ESROB)'. Applying harmonic analysis to 6-year-long (2007-2012) depth-averaged current data from the ESROB, a mean seasonal cycle of alongshore currents, characterized by poleward current in average and equatorward current in summer, is extracted which accounts for 5.8% of the variance of 40 hours low-pass filtered currents. In spite of the small variance explained, a robust seasonality of summertime equatorward reversal typifies the low-passed alongshore currents along with low-density water. To reveal the dynamics underlying the seasonal variation, each term of linearized, depth-averaged momentum equations is estimated using the data from ESROB, adjacent tide gauge stations, and serial hydrographic stations. The result indicates that the reversal of alongshore pressure gradient is a major driver of the equatorward reversals in summer. The reanalysis wind product (MERRA) and satellite altimeter-derived sea surface height (AVISO) data show correlated features between positive (negative) wind stress curl and sea surface depression (uplift). Quantitative estimates reveal that the wind-stress curl accounts for 42% of alongshore sea level variation. Summertime low-density water originating from the northern coastal region is a footprint of the buoyancy-driven equatorward current. An interannual variation (anomalies from the mean seasonal cycle) of alongshore currents and its possible driving mechanisms will be discussed.

  18. Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.

  19. Incomplete and inconsistent information provided to men making decisions for treatment of early-stage prostate cancer.

    PubMed

    Snow, Stephanie L; Panton, Rachel L; Butler, Lorna J; Wilke, Derek R; Rutledge, Robert D H; Bell, David G; Rendon, Ricardo A

    2007-05-01

    To determine whether there is a gap between what patients know about early-stage prostate cancer and what they need to know to make treatment decisions, and whether the information patients receive varies depending on their treating physician. Needs assessment was performed using a questionnaire consisting of 41 statements about early-stage prostate cancer. Statements were divided into six thematic subsets. Participants used a 5-point Likert scale to rate statements in terms of knowledge of the information and importance to a treatment decision. Information gaps were defined as significant difference between the importance and knowledge of an item. Descriptive statistics were used to describe demographic subscale scores. The information gap was analyzed by a paired t test for each thematic subset. One-way analyses of variance were used to detect any differences on the basis of treating physician. Questionnaires were distributed to 270 men (135 treated by radical prostatectomy, 135 by external beam radiotherapy). The return rate was 51% (138 questionnaires). A statistically significant information gap was found among all six thematic subsets, with five of the six P values less than 0.0001. Statistically significant variation was observed in the amount of information patients received from their treating physicians among four of the thematic subsets. There is an information gap between what early-stage prostate cancer patients need to know and the information they receive. Additionally there is a difference in the amount of information provided by different physicians.

  20. Request-Driven Schedule Automation for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Tran, Daniel; Arroyo, Belinda; Call, Jared; Mercado, Marisol

    2010-01-01

    The DSN Scheduling Engine (DSE) has been developed to increase the level of automated scheduling support available to users of NASA s Deep Space Network (DSN). We have adopted a request-driven approach to DSN scheduling, in contrast to the activity-oriented approach used up to now. Scheduling requests allow users to declaratively specify patterns and conditions on their DSN service allocations, including timing, resource requirements, gaps, overlaps, time linkages among services, repetition, priorities, and a wide range of additional factors and preferences. The DSE incorporates a model of the key constraints and preferences of the DSN scheduling domain, along with algorithms to expand scheduling requests into valid resource allocations, to resolve schedule conflicts, and to repair unsatisfied requests. We use time-bounded systematic search with constraint relaxation to return nearby solutions if exact ones cannot be found, where the relaxation options and order are under user control. To explore the usability aspects of our approach we have developed a graphical user interface incorporating some crucial features to make it easier to work with complex scheduling requests. Among these are: progressive revelation of relevant detail, immediate propagation and visual feedback from a user s decisions, and a meeting calendar metaphor for repeated patterns of requests. Even as a prototype, the DSE has been deployed and adopted as the initial step in building the operational DSN schedule, thus representing an important initial validation of our overall approach. The DSE is a core element of the DSN Service Scheduling Software (S(sup 3)), a web-based collaborative scheduling system now under development for deployment to all DSN users.

Top