Sample records for variant call format

  1. VCFR: A package to manipulate and visualize variant call format data in R

    USDA-ARS?s Scientific Manuscript database

    Software to call single nucleotide polymorphisms or related genetic variants has converged on the variant call format (vcf) as their output format of choice. This has created a need for tools to work with vcf files. While an increasing number of software exists to read vcf data, many of them only ex...

  2. The variant call format and VCFtools.

    PubMed

    Danecek, Petr; Auton, Adam; Abecasis, Goncalo; Albers, Cornelis A; Banks, Eric; DePristo, Mark A; Handsaker, Robert E; Lunter, Gerton; Marth, Gabor T; Sherry, Stephen T; McVean, Gilean; Durbin, Richard

    2011-08-01

    The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. http://vcftools.sourceforge.net

  3. cyvcf2: fast, flexible variant analysis with Python.

    PubMed

    Pedersen, Brent S; Quinlan, Aaron R

    2017-06-15

    Variant call format (VCF) files document the genetic variation observed after DNA sequencing, alignment and variant calling of a sample cohort. Given the complexity of the VCF format as well as the diverse variant annotations and genotype metadata, there is a need for fast, flexible methods enabling intuitive analysis of the variant data within VCF and BCF files. We introduce cyvcf2 , a Python library and software package for fast parsing and querying of VCF and BCF files and illustrate its speed, simplicity and utility. bpederse@gmail.com or aaronquinlan@gmail.com. cyvcf2 is available from https://github.com/brentp/cyvcf2 under the MIT license and from common python package managers. Detailed documentation is available at http://brentp.github.io/cyvcf2/. © The Author 2017. Published by Oxford University Press.

  4. BALSA: integrated secondary analysis for whole-genome and whole-exome sequencing, accelerated by GPU.

    PubMed

    Luo, Ruibang; Wong, Yiu-Lun; Law, Wai-Chun; Lee, Lap-Kei; Cheung, Jeanno; Liu, Chi-Man; Lam, Tak-Wah

    2014-01-01

    This paper reports an integrated solution, called BALSA, for the secondary analysis of next generation sequencing data; it exploits the computational power of GPU and an intricate memory management to give a fast and accurate analysis. From raw reads to variants (including SNPs and Indels), BALSA, using just a single computing node with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequencing (∼750 million 100 bp paired-end reads), or just 25 min for 210-fold whole exome sequencing. BALSA's speed is rooted at its parallel algorithms to effectively exploit a GPU to speed up processes like alignment, realignment and statistical testing. BALSA incorporates a 16-genotype model to support the calling of SNPs and Indels and achieves competitive variant calling accuracy and sensitivity when compared to the ensemble of six popular variant callers. BALSA also supports efficient identification of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while maintaining the same fidelity as BAM in variant calling, enables efficient storage and indexing, and facilitates the App development of downstream analyses. BALSA is available at: http://sourceforge.net/p/balsa.

  5. WhopGenome: high-speed access to whole-genome variation and sequence data in R.

    PubMed

    Wittelsbürger, Ulrich; Pfeifer, Bastian; Lercher, Martin J

    2015-02-01

    The statistical programming language R has become a de facto standard for the analysis of many types of biological data, and is well suited for the rapid development of new algorithms. However, variant call data from population-scale resequencing projects are typically too large to be read and processed efficiently with R's built-in I/O capabilities. WhopGenome can efficiently read whole-genome variation data stored in the widely used variant call format (VCF) file format into several R data types. VCF files can be accessed either on local hard drives or on remote servers. WhopGenome can associate variants with annotations such as those available from the UCSC genome browser, and can accelerate the reading process by filtering loci according to user-defined criteria. WhopGenome can also read other Tabix-indexed files and create indices to allow fast selective access to FASTA-formatted sequence files. The WhopGenome R package is available on CRAN at http://cran.r-project.org/web/packages/WhopGenome/. A Bioconductor package has been submitted. lercher@cs.uni-duesseldorf.de. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. m6ASNP: a tool for annotating genetic variants by m6A function.

    PubMed

    Jiang, Shuai; Xie, Yubin; He, Zhihao; Zhang, Ya; Zhao, Yuli; Chen, Li; Zheng, Yueyuan; Miao, Yanyan; Zuo, Zhixiang; Ren, Jian

    2018-05-01

    Large-scale genome sequencing projects have identified many genetic variants for diverse diseases. A major goal of these projects is to characterize these genetic variants to provide insight into their function and roles in diseases. N6-methyladenosine (m6A) is one of the most abundant RNA modifications in eukaryotes. Recent studies have revealed that aberrant m6A modifications are involved in many diseases. In this study, we present a user-friendly web server called "m6ASNP" that is dedicated to the identification of genetic variants that target m6A modification sites. A random forest model was implemented in m6ASNP to predict whether the methylation status of an m6A site is altered by the variants that surround the site. In m6ASNP, genetic variants in a standard variant call format (VCF) are accepted as the input data, and the output includes an interactive table that contains the genetic variants annotated by m6A function. In addition, statistical diagrams and a genome browser are provided to visualize the characteristics and to annotate the genetic variants. We believe that m6ASNP is a very convenient tool that can be used to boost further functional studies investigating genetic variants. The web server "m6ASNP" is implemented in JAVA and PHP and is freely available at [60].

  7. Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant.

    PubMed

    Sarmiento, José M; Añazco, Carolina C; Campos, Danae M; Prado, Gregory N; Navarro, Javier; González, Carlos B

    2004-11-05

    In rat kidney, two alternatively spliced transcripts are generated from the V2 vasopressin receptor gene. The large transcript (1.2 kb) encodes the canonical V2 receptor, whereas the small transcript encodes a splice variant displaying a distinct sequence corresponding to the putative seventh transmembrane domain and the intracellular C terminus of the V2 receptor. This work showed that the small spliced transcript is translated in the rat kidney collecting tubules. However, the protein encoded by the small transcript (here called the V2b splice variant) is retained inside the cell, in contrast to the preferential surface distribution of the V2 receptor (here called the V2a receptor). Cells expressing the V2b splice variant do not exhibit binding to 3H-labeled vasopressin. Interestingly, we found that expression of the splice variant V2b down-regulates the surface expression of the V2a receptor, most likely via the formation of V2a.V2b heterodimers as demonstrated by co-immunoprecipitation and fluorescence resonance energy transfer experiments between the V2a receptor and the V2b splice variant. The V2b splice variant would then be acting as a dominant negative. The effect of the V2b splice variant is specific, as it does not affect the surface expression of the G protein-coupled interleukin-8 receptor (CXCR1). Furthermore, the sequence encompassing residues 242-339, corresponding to the C-terminal domain of the V2b splice variant, also down-regulates the surface expression of the V2a receptor. We suggest that some forms of nephrogenic diabetes insipidus are due to overexpression of the splice variant V2b, which could retain the wild-type V2a receptor inside the cell via the formation of V2a.V2b heterodimers.

  8. Systematic comparison of variant calling pipelines using gold standard personal exome variants

    PubMed Central

    Hwang, Sohyun; Kim, Eiru; Lee, Insuk; Marcotte, Edward M.

    2015-01-01

    The success of clinical genomics using next generation sequencing (NGS) requires the accurate and consistent identification of personal genome variants. Assorted variant calling methods have been developed, which show low concordance between their calls. Hence, a systematic comparison of the variant callers could give important guidance to NGS-based clinical genomics. Recently, a set of high-confident variant calls for one individual (NA12878) has been published by the Genome in a Bottle (GIAB) consortium, enabling performance benchmarking of different variant calling pipelines. Based on the gold standard reference variant calls from GIAB, we compared the performance of thirteen variant calling pipelines, testing combinations of three read aligners—BWA-MEM, Bowtie2, and Novoalign—and four variant callers—Genome Analysis Tool Kit HaplotypeCaller (GATK-HC), Samtools mpileup, Freebayes and Ion Proton Variant Caller (TVC), for twelve data sets for the NA12878 genome sequenced by different platforms including Illumina2000, Illumina2500, and Ion Proton, with various exome capture systems and exome coverage. We observed different biases toward specific types of SNP genotyping errors by the different variant callers. The results of our study provide useful guidelines for reliable variant identification from deep sequencing of personal genomes. PMID:26639839

  9. Seshat: A Web service for accurate annotation, validation, and analysis of TP53 variants generated by conventional and next-generation sequencing.

    PubMed

    Tikkanen, Tuomas; Leroy, Bernard; Fournier, Jean Louis; Risques, Rosa Ana; Malcikova, Jitka; Soussi, Thierry

    2018-07-01

    Accurate annotation of genomic variants in human diseases is essential to allow personalized medicine. Assessment of somatic and germline TP53 alterations has now reached the clinic and is required in several circumstances such as the identification of the most effective cancer therapy for patients with chronic lymphocytic leukemia (CLL). Here, we present Seshat, a Web service for annotating TP53 information derived from sequencing data. A flexible framework allows the use of standard file formats such as Mutation Annotation Format (MAF) or Variant Call Format (VCF), as well as common TXT files. Seshat performs accurate variant annotations using the Human Genome Variation Society (HGVS) nomenclature and the stable TP53 genomic reference provided by the Locus Reference Genomic (LRG). In addition, using the 2017 release of the UMD_TP53 database, Seshat provides multiple statistical information for each TP53 variant including database frequency, functional activity, or pathogenicity. The information is delivered in standardized output tables that minimize errors and facilitate comparison of mutational data across studies. Seshat is a beneficial tool to interpret the ever-growing TP53 sequencing data generated by multiple sequencing platforms and it is freely available via the TP53 Website, http://p53.fr or directly at http://vps338341.ovh.net/. © 2018 Wiley Periodicals, Inc.

  10. Challenges imposed by minor reference alleles on the identification and reporting of clinical variants from exome data.

    PubMed

    Koko, Mahmoud; Abdallah, Mohammed O E; Amin, Mutaz; Ibrahim, Muntaser

    2018-01-15

    The conventional variant calling of pathogenic alleles in exome and genome sequencing requires the presence of the non-pathogenic alleles as genome references. This hinders the correct identification of variants with minor and/or pathogenic reference alleles warranting additional approaches for variant calling. More than 26,000 Exome Aggregation Consortium (ExAC) variants have a minor reference allele including variants with known ClinVar disease alleles. For instance, in a number of variants related to clotting disorders, the phenotype-associated allele is a human genome reference allele (rs6025, rs6003, rs1799983, and rs2227564 using the assembly hg19). We highlighted how the current variant calling standards miss homozygous reference disease variants in these sites and provided a bioinformatic panel that can be used to screen these variants using commonly available variant callers. We present exome sequencing results from an individual with venous thrombosis to emphasize how pathogenic alleles in clinically relevant variants escape variant calling while non-pathogenic alleles are detected. This article highlights the importance of specialized variant calling strategies in clinical variants with minor reference alleles especially in the context of personal genomes and exomes. We provide here a simple strategy to screen potential disease-causing variants when present in homozygous reference state.

  11. Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, Matthew; Rudnicki, Jean; Midkiff, John

    2010-04-12

    The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of amore » lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.« less

  12. A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.

    PubMed

    van den Akker, Jeroen; Mishne, Gilad; Zimmer, Anjali D; Zhou, Alicia Y

    2018-04-17

    Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth, and mapping accuracy. With recent advances in NGS technology and software tools, the majority of variants called using NGS alone are in fact accurate and reliable. However, a small subset of difficult-to-call variants that still do require orthogonal confirmation exist. For this reason, many clinical laboratories confirm NGS results using orthogonal technologies such as Sanger sequencing. Here, we report the development of a deterministic machine-learning-based model to differentiate between these two types of variant calls: those that do not require confirmation using an orthogonal technology (high confidence), and those that require additional quality testing (low confidence). This approach allows reliable NGS-based calling in a clinical setting by identifying the few important variant calls that require orthogonal confirmation. We developed and tested the model using a set of 7179 variants identified by a targeted NGS panel and re-tested by Sanger sequencing. The model incorporated several signals of sequence characteristics and call quality to determine if a variant was identified at high or low confidence. The model was tuned to eliminate false positives, defined as variants that were called by NGS but not confirmed by Sanger sequencing. The model achieved very high accuracy: 99.4% (95% confidence interval: +/- 0.03%). It categorized 92.2% (6622/7179) of the variants as high confidence, and 100% of these were confirmed to be present by Sanger sequencing. Among the variants that were categorized as low confidence, defined as NGS calls of low quality that are likely to be artifacts, 92.1% (513/557) were found to be not present by Sanger sequencing. This work shows that NGS data contains sufficient characteristics for a machine-learning-based model to differentiate low from high confidence variants. Additionally, it reveals the importance of incorporating site-specific features as well as variant call features in such a model.

  13. Identification of missing variants by combining multiple analytic pipelines.

    PubMed

    Ren, Yingxue; Reddy, Joseph S; Pottier, Cyril; Sarangi, Vivekananda; Tian, Shulan; Sinnwell, Jason P; McDonnell, Shannon K; Biernacka, Joanna M; Carrasquillo, Minerva M; Ross, Owen A; Ertekin-Taner, Nilüfer; Rademakers, Rosa; Hudson, Matthew; Mainzer, Liudmila Sergeevna; Asmann, Yan W

    2018-04-16

    After decades of identifying risk factors using array-based genome-wide association studies (GWAS), genetic research of complex diseases has shifted to sequencing-based rare variants discovery. This requires large sample sizes for statistical power and has brought up questions about whether the current variant calling practices are adequate for large cohorts. It is well-known that there are discrepancies between variants called by different pipelines, and that using a single pipeline always misses true variants exclusively identifiable by other pipelines. Nonetheless, it is common practice today to call variants by one pipeline due to computational cost and assume that false negative calls are a small percent of total. We analyzed 10,000 exomes from the Alzheimer's Disease Sequencing Project (ADSP) using multiple analytic pipelines consisting of different read aligners and variant calling strategies. We compared variants identified by using two aligners in 50,100, 200, 500, 1000, and 1952 samples; and compared variants identified by adding single-sample genotyping to the default multi-sample joint genotyping in 50,100, 500, 2000, 5000 and 10,000 samples. We found that using a single pipeline missed increasing numbers of high-quality variants correlated with sample sizes. By combining two read aligners and two variant calling strategies, we rescued 30% of pass-QC variants at sample size of 2000, and 56% at 10,000 samples. The rescued variants had higher proportions of low frequency (minor allele frequency [MAF] 1-5%) and rare (MAF < 1%) variants, which are the very type of variants of interest. In 660 Alzheimer's disease cases with earlier onset ages of ≤65, 4 out of 13 (31%) previously-published rare pathogenic and protective mutations in APP, PSEN1, and PSEN2 genes were undetected by the default one-pipeline approach but recovered by the multi-pipeline approach. Identification of the complete variant set from sequencing data is the prerequisite of genetic association analyses. The current analytic practice of calling genetic variants from sequencing data using a single bioinformatics pipeline is no longer adequate with the increasingly large projects. The number and percentage of quality variants that passed quality filters but are missed by the one-pipeline approach rapidly increased with sample size.

  14. Best practices for evaluating single nucleotide variant calling methods for microbial genomics

    PubMed Central

    Olson, Nathan D.; Lund, Steven P.; Colman, Rebecca E.; Foster, Jeffrey T.; Sahl, Jason W.; Schupp, James M.; Keim, Paul; Morrow, Jayne B.; Salit, Marc L.; Zook, Justin M.

    2015-01-01

    Innovations in sequencing technologies have allowed biologists to make incredible advances in understanding biological systems. As experience grows, researchers increasingly recognize that analyzing the wealth of data provided by these new sequencing platforms requires careful attention to detail for robust results. Thus far, much of the scientific Communit’s focus for use in bacterial genomics has been on evaluating genome assembly algorithms and rigorously validating assembly program performance. Missing, however, is a focus on critical evaluation of variant callers for these genomes. Variant calling is essential for comparative genomics as it yields insights into nucleotide-level organismal differences. Variant calling is a multistep process with a host of potential error sources that may lead to incorrect variant calls. Identifying and resolving these incorrect calls is critical for bacterial genomics to advance. The goal of this review is to provide guidance on validating algorithms and pipelines used in variant calling for bacterial genomics. First, we will provide an overview of the variant calling procedures and the potential sources of error associated with the methods. We will then identify appropriate datasets for use in evaluating algorithms and describe statistical methods for evaluating algorithm performance. As variant calling moves from basic research to the applied setting, standardized methods for performance evaluation and reporting are required; it is our hope that this review provides the groundwork for the development of these standards. PMID:26217378

  15. MToolBox: a highly automated pipeline for heteroplasmy annotation and prioritization analysis of human mitochondrial variants in high-throughput sequencing

    PubMed Central

    Diroma, Maria Angela; Santorsola, Mariangela; Guttà, Cristiano; Gasparre, Giuseppe; Picardi, Ernesto; Pesole, Graziano; Attimonelli, Marcella

    2014-01-01

    Motivation: The increasing availability of mitochondria-targeted and off-target sequencing data in whole-exome and whole-genome sequencing studies (WXS and WGS) has risen the demand of effective pipelines to accurately measure heteroplasmy and to easily recognize the most functionally important mitochondrial variants among a huge number of candidates. To this purpose, we developed MToolBox, a highly automated pipeline to reconstruct and analyze human mitochondrial DNA from high-throughput sequencing data. Results: MToolBox implements an effective computational strategy for mitochondrial genomes assembling and haplogroup assignment also including a prioritization analysis of detected variants. MToolBox provides a Variant Call Format file featuring, for the first time, allele-specific heteroplasmy and annotation files with prioritized variants. MToolBox was tested on simulated samples and applied on 1000 Genomes WXS datasets. Availability and implementation: MToolBox package is available at https://sourceforge.net/projects/mtoolbox/. Contact: marcella.attimonelli@uniba.it Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25028726

  16. Fast single-pass alignment and variant calling using sequencing data

    USDA-ARS?s Scientific Manuscript database

    Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...

  17. Variant calling in low-coverage whole genome sequencing of a Native American population sample.

    PubMed

    Bizon, Chris; Spiegel, Michael; Chasse, Scott A; Gizer, Ian R; Li, Yun; Malc, Ewa P; Mieczkowski, Piotr A; Sailsbery, Josh K; Wang, Xiaoshu; Ehlers, Cindy L; Wilhelmsen, Kirk C

    2014-01-30

    The reduction in the cost of sequencing a human genome has led to the use of genotype sampling strategies in order to impute and infer the presence of sequence variants that can then be tested for associations with traits of interest. Low-coverage Whole Genome Sequencing (WGS) is a sampling strategy that overcomes some of the deficiencies seen in fixed content SNP array studies. Linkage-disequilibrium (LD) aware variant callers, such as the program Thunder, may provide a calling rate and accuracy that makes a low-coverage sequencing strategy viable. We examined the performance of an LD-aware variant calling strategy in a population of 708 low-coverage whole genome sequences from a community sample of Native Americans. We assessed variant calling through a comparison of the sequencing results to genotypes measured in 641 of the same subjects using a fixed content first generation exome array. The comparison was made using the variant calling routines GATK Unified Genotyper program and the LD-aware variant caller Thunder. Thunder was found to improve concordance in a coverage dependent fashion, while correctly calling nearly all of the common variants as well as a high percentage of the rare variants present in the sample. Low-coverage WGS is a strategy that appears to collect genetic information intermediate in scope between fixed content genotyping arrays and deep-coverage WGS. Our data suggests that low-coverage WGS is a viable strategy with a greater chance of discovering novel variants and associations than fixed content arrays for large sample association analyses.

  18. Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.

    PubMed

    Zhang, Guoqiang; Wang, Jianfeng; Yang, Jin; Li, Wenjie; Deng, Yutian; Li, Jing; Huang, Jun; Hu, Songnian; Zhang, Bing

    2015-08-05

    To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3% in four samples, whereas the concordance of co-detected variant loci reached 99%. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5%) was higher than the SNPs specific to TargetSeq-Proton (60.0%) or specific to SureSelect-HiSeq (88.3%). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0%) and SureSelect-HiSeq-specific (89.6%) were higher than those of TargetSeq-Proton-specific (15.8%). In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the sequencing of platform-specific variants, the accuracy of variant calling by HiSeq 2000 was higher than that of Ion Proton, specifically for the InDel detection. Moreover, the variant calling software also influences the detection of SNPs and, specifically, InDels in Ion Proton exome sequencing.

  19. Inexpensive and Highly Reproducible Cloud-Based Variant Calling of 2,535 Human Genomes

    PubMed Central

    Shringarpure, Suyash S.; Carroll, Andrew; De La Vega, Francisco M.; Bustamante, Carlos D.

    2015-01-01

    Population scale sequencing of whole human genomes is becoming economically feasible; however, data management and analysis remains a formidable challenge for many research groups. Large sequencing studies, like the 1000 Genomes Project, have improved our understanding of human demography and the effect of rare genetic variation in disease. Variant calling on datasets of hundreds or thousands of genomes is time-consuming, expensive, and not easily reproducible given the myriad components of a variant calling pipeline. Here, we describe a cloud-based pipeline for joint variant calling in large samples using the Real Time Genomics population caller. We deployed the population caller on the Amazon cloud with the DNAnexus platform in order to achieve low-cost variant calling. Using our pipeline, we were able to identify 68.3 million variants in 2,535 samples from Phase 3 of the 1000 Genomes Project. By performing the variant calling in a parallel manner, the data was processed within 5 days at a compute cost of $7.33 per sample (a total cost of $18,590 for completed jobs and $21,805 for all jobs). Analysis of cost dependence and running time on the data size suggests that, given near linear scalability, cloud computing can be a cheap and efficient platform for analyzing even larger sequencing studies in the future. PMID:26110529

  20. Mapping Ribonucleotides Incorporated into DNA by Hydrolytic End-Sequencing.

    PubMed

    Orebaugh, Clinton D; Lujan, Scott A; Burkholder, Adam B; Clausen, Anders R; Kunkel, Thomas A

    2018-01-01

    Ribonucleotides embedded within DNA render the DNA sensitive to the formation of single-stranded breaks under alkali conditions. Here, we describe a next-generation sequencing method called hydrolytic end sequencing (HydEn-seq) to map ribonucleotides inserted into the genome of Saccharomyce cerevisiae strains deficient in ribonucleotide excision repair. We use this method to map several genomic features in wild-type and replicase variant yeast strains.

  1. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research

    PubMed Central

    Lai, Zhongwu; Markovets, Aleksandra; Ahdesmaki, Miika; Chapman, Brad; Hofmann, Oliver; McEwen, Robert; Johnson, Justin; Dougherty, Brian; Barrett, J. Carl; Dry, Jonathan R.

    2016-01-01

    Abstract Accurate variant calling in next generation sequencing (NGS) is critical to understand cancer genomes better. Here we present VarDict, a novel and versatile variant caller for both DNA- and RNA-sequencing data. VarDict simultaneously calls SNV, MNV, InDels, complex and structural variants, expanding the detected genetic driver landscape of tumors. It performs local realignments on the fly for more accurate allele frequency estimation. VarDict performance scales linearly to sequencing depth, enabling ultra-deep sequencing used to explore tumor evolution or detect tumor DNA circulating in blood. In addition, VarDict performs amplicon aware variant calling for polymerase chain reaction (PCR)-based targeted sequencing often used in diagnostic settings, and is able to detect PCR artifacts. Finally, VarDict also detects differences in somatic and loss of heterozygosity variants between paired samples. VarDict reprocessing of The Cancer Genome Atlas (TCGA) Lung Adenocarcinoma dataset called known driver mutations in KRAS, EGFR, BRAF, PIK3CA and MET in 16% more patients than previously published variant calls. We believe VarDict will greatly facilitate application of NGS in clinical cancer research. PMID:27060149

  2. Extensive Diversity of Prion Strains Is Defined by Differential Chaperone Interactions and Distinct Amyloidogenic Regions

    PubMed Central

    Stein, Kevin C.; True, Heather L.

    2014-01-01

    Amyloidogenic proteins associated with a variety of unrelated diseases are typically capable of forming several distinct self-templating conformers. In prion diseases, these different structures, called prion strains (or variants), confer dramatic variation in disease pathology and transmission. Aggregate stability has been found to be a key determinant of the diverse pathological consequences of different prion strains. Yet, it remains largely unclear what other factors might account for the widespread phenotypic variation seen with aggregation-prone proteins. Here, we examined a set of yeast prion variants of the [RNQ+] prion that differ in their ability to induce the formation of another yeast prion called [PSI+]. Remarkably, we found that the [RNQ+] variants require different, non-contiguous regions of the Rnq1 protein for both prion propagation and [PSI+] induction. This included regions outside of the canonical prion-forming domain of Rnq1. Remarkably, such differences did not result in variation in aggregate stability. Our analysis also revealed a striking difference in the ability of these [RNQ+] variants to interact with the chaperone Sis1. Thus, our work shows that the differential influence of various amyloidogenic regions and interactions with host cofactors are critical determinants of the phenotypic consequences of distinct aggregate structures. This helps reveal the complex interdependent factors that influence how a particular amyloid structure may dictate disease pathology and progression. PMID:24811344

  3. Group-based variant calling leveraging next-generation supercomputing for large-scale whole-genome sequencing studies.

    PubMed

    Standish, Kristopher A; Carland, Tristan M; Lockwood, Glenn K; Pfeiffer, Wayne; Tatineni, Mahidhar; Huang, C Chris; Lamberth, Sarah; Cherkas, Yauheniya; Brodmerkel, Carrie; Jaeger, Ed; Smith, Lance; Rajagopal, Gunaretnam; Curran, Mark E; Schork, Nicholas J

    2015-09-22

    Next-generation sequencing (NGS) technologies have become much more efficient, allowing whole human genomes to be sequenced faster and cheaper than ever before. However, processing the raw sequence reads associated with NGS technologies requires care and sophistication in order to draw compelling inferences about phenotypic consequences of variation in human genomes. It has been shown that different approaches to variant calling from NGS data can lead to different conclusions. Ensuring appropriate accuracy and quality in variant calling can come at a computational cost. We describe our experience implementing and evaluating a group-based approach to calling variants on large numbers of whole human genomes. We explore the influence of many factors that may impact the accuracy and efficiency of group-based variant calling, including group size, the biogeographical backgrounds of the individuals who have been sequenced, and the computing environment used. We make efficient use of the Gordon supercomputer cluster at the San Diego Supercomputer Center by incorporating job-packing and parallelization considerations into our workflow while calling variants on 437 whole human genomes generated as part of large association study. We ultimately find that our workflow resulted in high-quality variant calls in a computationally efficient manner. We argue that studies like ours should motivate further investigations combining hardware-oriented advances in computing systems with algorithmic developments to tackle emerging 'big data' problems in biomedical research brought on by the expansion of NGS technologies.

  4. Impact of genotyping errors on statistical power of association tests in genomic analyses: A case study

    PubMed Central

    Hou, Lin; Sun, Ning; Mane, Shrikant; Sayward, Fred; Rajeevan, Nallakkandi; Cheung, Kei-Hoi; Cho, Kelly; Pyarajan, Saiju; Aslan, Mihaela; Miller, Perry; Harvey, Philip D.; Gaziano, J. Michael; Concato, John; Zhao, Hongyu

    2017-01-01

    A key step in genomic studies is to assess high throughput measurements across millions of markers for each participant’s DNA, either using microarrays or sequencing techniques. Accurate genotype calling is essential for downstream statistical analysis of genotype-phenotype associations, and next generation sequencing (NGS) has recently become a more common approach in genomic studies. How the accuracy of variant calling in NGS-based studies affects downstream association analysis has not, however, been studied using empirical data in which both microarrays and NGS were available. In this article, we investigate the impact of variant calling errors on the statistical power to identify associations between single nucleotides and disease, and on associations between multiple rare variants and disease. Both differential and nondifferential genotyping errors are considered. Our results show that the power of burden tests for rare variants is strongly influenced by the specificity in variant calling, but is rather robust with regard to sensitivity. By using the variant calling accuracies estimated from a substudy of a Cooperative Studies Program project conducted by the Department of Veterans Affairs, we show that the power of association tests is mostly retained with commonly adopted variant calling pipelines. An R package, GWAS.PC, is provided to accommodate power analysis that takes account of genotyping errors (http://zhaocenter.org/software/). PMID:28019059

  5. SeqMule: automated pipeline for analysis of human exome/genome sequencing data.

    PubMed

    Guo, Yunfei; Ding, Xiaolei; Shen, Yufeng; Lyon, Gholson J; Wang, Kai

    2015-09-18

    Next-generation sequencing (NGS) technology has greatly helped us identify disease-contributory variants for Mendelian diseases. However, users are often faced with issues such as software compatibility, complicated configuration, and no access to high-performance computing facility. Discrepancies exist among aligners and variant callers. We developed a computational pipeline, SeqMule, to perform automated variant calling from NGS data on human genomes and exomes. SeqMule integrates computational-cluster-free parallelization capability built on top of the variant callers, and facilitates normalization/intersection of variant calls to generate consensus set with high confidence. SeqMule integrates 5 alignment tools, 5 variant calling algorithms and accepts various combinations all by one-line command, therefore allowing highly flexible yet fully automated variant calling. In a modern machine (2 Intel Xeon X5650 CPUs, 48 GB memory), when fast turn-around is needed, SeqMule generates annotated VCF files in a day from a 30X whole-genome sequencing data set; when more accurate calling is needed, SeqMule generates consensus call set that improves over single callers, as measured by both Mendelian error rate and consistency. SeqMule supports Sun Grid Engine for parallel processing, offers turn-key solution for deployment on Amazon Web Services, allows quality check, Mendelian error check, consistency evaluation, HTML-based reports. SeqMule is available at http://seqmule.openbioinformatics.org.

  6. Pan-cancer analysis reveals technical artifacts in TCGA germline variant calls.

    PubMed

    Buckley, Alexandra R; Standish, Kristopher A; Bhutani, Kunal; Ideker, Trey; Lasken, Roger S; Carter, Hannah; Harismendy, Olivier; Schork, Nicholas J

    2017-06-12

    Cancer research to date has largely focused on somatically acquired genetic aberrations. In contrast, the degree to which germline, or inherited, variation contributes to tumorigenesis remains unclear, possibly due to a lack of accessible germline variant data. Here we called germline variants on 9618 cases from The Cancer Genome Atlas (TCGA) database representing 31 cancer types. We identified batch effects affecting loss of function (LOF) variant calls that can be traced back to differences in the way the sequence data were generated both within and across cancer types. Overall, LOF indel calls were more sensitive to technical artifacts than LOF Single Nucleotide Variant (SNV) calls. In particular, whole genome amplification of DNA prior to sequencing led to an artificially increased burden of LOF indel calls, which confounded association analyses relating germline variants to tumor type despite stringent indel filtering strategies. The samples affected by these technical artifacts include all acute myeloid leukemia and practically all ovarian cancer samples. We demonstrate how technical artifacts induced by whole genome amplification of DNA can lead to false positive germline-tumor type associations and suggest TCGA whole genome amplified samples be used with caution. This study draws attention to the need to be sensitive to problems associated with a lack of uniformity in data generation in TCGA data.

  7. VIPER: a web application for rapid expert review of variant calls.

    PubMed

    Wöste, Marius; Dugas, Martin

    2018-06-01

    With the rapid development in next-generation sequencing, cost and time requirements for genomic sequencing are decreasing, enabling applications in many areas such as cancer research. Many tools have been developed to analyze genomic variation ranging from single nucleotide variants to whole chromosomal aberrations. As sequencing throughput increases, the number of variants called by such tools also grows. Often employed manual inspection of such calls is thus becoming a time-consuming procedure. We developed the Variant InsPector and Expert Rating tool (VIPER) to speed up this process by integrating the Integrative Genomics Viewer into a web application. Analysts can then quickly iterate through variants, apply filters and make decisions based on the generated images and variant metadata. VIPER was successfully employed in analyses with manual inspection of more than 10 000 calls. VIPER is implemented in Java and Javascript and is freely available at https://github.com/MarWoes/viper. marius.woeste@uni-muenster.de. Supplementary data are available at Bioinformatics online.

  8. Whole Genome Sequence of Two Wild-Derived Mus musculus domesticus Inbred Strains, LEWES/EiJ and ZALENDE/EiJ, with Different Diploid Numbers

    PubMed Central

    Morgan, Andrew P.; Didion, John P.; Doran, Anthony G.; Holt, James M.; McMillan, Leonard; Keane, Thomas M.; de Villena, Fernando Pardo-Manuel

    2016-01-01

    Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format) and alignments (BAM format) are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction. PMID:27765810

  9. VarBin, a novel method for classifying true and false positive variants in NGS data

    PubMed Central

    2013-01-01

    Background Variant discovery for rare genetic diseases using Illumina genome or exome sequencing involves screening of up to millions of variants to find only the one or few causative variant(s). Sequencing or alignment errors create "false positive" variants, which are often retained in the variant screening process. Methods to remove false positive variants often retain many false positive variants. This report presents VarBin, a method to prioritize variants based on a false positive variant likelihood prediction. Methods VarBin uses the Genome Analysis Toolkit variant calling software to calculate the variant-to-wild type genotype likelihood ratio at each variant change and position divided by read depth. The resulting Phred-scaled, likelihood-ratio by depth (PLRD) was used to segregate variants into 4 Bins with Bin 1 variants most likely true and Bin 4 most likely false positive. PLRD values were calculated for a proband of interest and 41 additional Illumina HiSeq, exome and whole genome samples (proband's family or unrelated samples). At variant sites without apparent sequencing or alignment error, wild type/non-variant calls cluster near -3 PLRD and variant calls typically cluster above 10 PLRD. Sites with systematic variant calling problems (evident by variant quality scores and biases as well as displayed on the iGV viewer) tend to have higher and more variable wild type/non-variant PLRD values. Depending on the separation of a proband's variant PLRD value from the cluster of wild type/non-variant PLRD values for background samples at the same variant change and position, the VarBin method's classification is assigned to each proband variant (Bin 1 to Bin 4). Results To assess VarBin performance, Sanger sequencing was performed on 98 variants in the proband and background samples. True variants were confirmed in 97% of Bin 1 variants, 30% of Bin 2, and 0% of Bin 3/Bin 4. Conclusions These data indicate that VarBin correctly classifies the majority of true variants as Bin 1 and Bin 3/4 contained only false positive variants. The "uncertain" Bin 2 contained both true and false positive variants. Future work will further differentiate the variants in Bin 2. PMID:24266885

  10. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics.

    PubMed

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.

  11. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics

    PubMed Central

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid. PMID:26840129

  12. Modeling of porous concrete elements under load

    NASA Astrophysics Data System (ADS)

    Demchyna, B. H.; Famuliak, Yu. Ye.; Demchyna, Kh. B.

    2017-12-01

    It is known that cell concretes are almost immediately destroyed under load, having reached certain critical stresses. Such kind of destruction is called a "catastrophic failure". Process of crack formation is one of the main factors, influencing process of concrete destruction. Modern theory of crack formation is mainly based on the Griffith theory of destruction. However, the mentioned theory does not completely correspond to the structure of cell concrete with its cell structure, because the theory is intended for a solid body. The article presents one of the possible variants of modelling of the structure of cell concrete and gives some assumptions concerning the process of crack formation in such hollow, not solid environment.

  13. A hybrid computational strategy to address WGS variant analysis in >5000 samples.

    PubMed

    Huang, Zhuoyi; Rustagi, Navin; Veeraraghavan, Narayanan; Carroll, Andrew; Gibbs, Richard; Boerwinkle, Eric; Venkata, Manjunath Gorentla; Yu, Fuli

    2016-09-10

    The decreasing costs of sequencing are driving the need for cost effective and real time variant calling of whole genome sequencing data. The scale of these projects are far beyond the capacity of typical computing resources available with most research labs. Other infrastructures like the cloud AWS environment and supercomputers also have limitations due to which large scale joint variant calling becomes infeasible, and infrastructure specific variant calling strategies either fail to scale up to large datasets or abandon joint calling strategies. We present a high throughput framework including multiple variant callers for single nucleotide variant (SNV) calling, which leverages hybrid computing infrastructure consisting of cloud AWS, supercomputers and local high performance computing infrastructures. We present a novel binning approach for large scale joint variant calling and imputation which can scale up to over 10,000 samples while producing SNV callsets with high sensitivity and specificity. As a proof of principle, we present results of analysis on Cohorts for Heart And Aging Research in Genomic Epidemiology (CHARGE) WGS freeze 3 dataset in which joint calling, imputation and phasing of over 5300 whole genome samples was produced in under 6 weeks using four state-of-the-art callers. The callers used were SNPTools, GATK-HaplotypeCaller, GATK-UnifiedGenotyper and GotCloud. We used Amazon AWS, a 4000-core in-house cluster at Baylor College of Medicine, IBM power PC Blue BioU at Rice and Rhea at Oak Ridge National Laboratory (ORNL) for the computation. AWS was used for joint calling of 180 TB of BAM files, and ORNL and Rice supercomputers were used for the imputation and phasing step. All other steps were carried out on the local compute cluster. The entire operation used 5.2 million core hours and only transferred a total of 6 TB of data across the platforms. Even with increasing sizes of whole genome datasets, ensemble joint calling of SNVs for low coverage data can be accomplished in a scalable, cost effective and fast manner by using heterogeneous computing platforms without compromising on the quality of variants.

  14. Variant Review with the Integrative Genomics Viewer.

    PubMed

    Robinson, James T; Thorvaldsdóttir, Helga; Wenger, Aaron M; Zehir, Ahmet; Mesirov, Jill P

    2017-11-01

    Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV's variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Structure and Function of Centromeric and Pericentromeric Heterochromatin in Arabidopsis thaliana.

    PubMed

    Simon, Lauriane; Voisin, Maxime; Tatout, Christophe; Probst, Aline V

    2015-01-01

    The centromere is a specific chromosomal region where the kinetochore assembles to ensure the faithful segregation of sister chromatids during mitosis and meiosis. Centromeres are defined by a local enrichment of the specific histone variant CenH3 mostly at repetitive satellite sequences. A larger pericentromeric region containing repetitive sequences and transposable elements surrounds the centromere that adopts a particular chromatin state characterized by specific histone variants and post-translational modifications and forms a transcriptionally repressive chromosomal environment. In the model organism Arabidopsis thaliana centromeric and pericentromeric domains form conspicuous heterochromatin clusters called chromocenters in interphase. Here we discuss, using Arabidopsis as example, recent insight into mechanisms involved in maintenance and establishment of centromeric and pericentromeric chromatin signatures as well as in chromocenter formation.

  16. VOTable JAVA Streaming Writer and Applications.

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Kembhavi, A.; Kale, S.

    2004-07-01

    Virtual Observatory related tools use a new standard for data transfer called the VOTable format. This is a variant of the xml format that enables easy transfer of data over the web. We describe a streaming interface that can bridge the VOTable format, through a user friendly graphical interface, with the FITS and ASCII formats, which are commonly used by astronomers. A streaming interface is important for efficient use of memory because of the large size of catalogues. The tools are developed in JAVA to provide a platform independent interface. We have also developed a stand-alone version that can be used to convert data stored in ASCII or FITS format on a local machine. The Streaming writer is successfully being used in VOPlot (See Kale et al 2004 for a description of VOPlot).We present the test results of converting huge FITS and ASCII data into the VOTable format on machines that have only limited memory.

  17. Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data

    NASA Astrophysics Data System (ADS)

    Sandmann, Sarah; de Graaf, Aniek O.; Karimi, Mohsen; van der Reijden, Bert A.; Hellström-Lindberg, Eva; Jansen, Joop H.; Dugas, Martin

    2017-02-01

    Valid variant calling results are crucial for the use of next-generation sequencing in clinical routine. However, there are numerous variant calling tools that usually differ in algorithms, filtering strategies, recommendations and thus, also in the output. We evaluated eight open-source tools regarding their ability to call single nucleotide variants and short indels with allelic frequencies as low as 1% in non-matched next-generation sequencing data: GATK HaplotypeCaller, Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools and VarDict. We analysed two real datasets from patients with myelodysplastic syndrome, covering 54 Illumina HiSeq samples and 111 Illumina NextSeq samples. Mutations were validated by re-sequencing on the same platform, on a different platform and expert based review. In addition we considered two simulated datasets with varying coverage and error profiles, covering 50 samples each. In all cases an identical target region consisting of 19 genes (42,322 bp) was analysed. Altogether, no tool succeeded in calling all mutations. High sensitivity was always accompanied by low precision. Influence of varying coverages- and background noise on variant calling was generally low. Taking everything into account, VarDict performed best. However, our results indicate that there is a need to improve reproducibility of the results in the context of multithreading.

  18. DangerTrack: A scoring system to detect difficult-to-assess regions.

    PubMed

    Dolgalev, Igor; Sedlazeck, Fritz; Busby, Ben

    2017-01-01

    Over recent years, multiple groups have shown that a large number of structural variants, repeats, or problems with the underlying genome assembly have dramatic effects on the mapping, calling, and overall reliability of single nucleotide polymorphism calls. This project endeavored to develop an easy-to-use track for looking at structural variant and repeat regions. This track, DangerTrack, can be displayed alongside the existing Genome Reference Consortium assembly tracks to warn clinicians and biologists when variants of interest may be incorrectly called, of dubious quality, or on an insertion or copy number expansion. While mapping and variant calling can be automated, it is our opinion that when these regions are of interest to a particular clinical or research group, they warrant a careful examination, potentially involving localized reassembly. DangerTrack is available at https://github.com/DCGenomics/DangerTrack.

  19. Evaluation of exome variants using the Ion Proton Platform to sequence error-prone regions.

    PubMed

    Seo, Heewon; Park, Yoomi; Min, Byung Joo; Seo, Myung Eui; Kim, Ju Han

    2017-01-01

    The Ion Proton sequencer from Thermo Fisher accurately determines sequence variants from target regions with a rapid turnaround time at a low cost. However, misleading variant-calling errors can occur. We performed a systematic evaluation and manual curation of read-level alignments for the 675 ultrarare variants reported by the Ion Proton sequencer from 27 whole-exome sequencing data but that are not present in either the 1000 Genomes Project and the Exome Aggregation Consortium. We classified positive variant calls into 393 highly likely false positives, 126 likely false positives, and 156 likely true positives, which comprised 58.2%, 18.7%, and 23.1% of the variants, respectively. We identified four distinct error patterns of variant calling that may be bioinformatically corrected when using different strategies: simplicity region, SNV cluster, peripheral sequence read, and base inversion. Local de novo assembly successfully corrected 201 (38.7%) of the 519 highly likely or likely false positives. We also demonstrate that the two sequencing kits from Thermo Fisher (the Ion PI Sequencing 200 kit V3 and the Ion PI Hi-Q kit) exhibit different error profiles across different error types. A refined calling algorithm with better polymerase may improve the performance of the Ion Proton sequencing platform.

  20. VirVarSeq: a low-frequency virus variant detection pipeline for Illumina sequencing using adaptive base-calling accuracy filtering.

    PubMed

    Verbist, Bie M P; Thys, Kim; Reumers, Joke; Wetzels, Yves; Van der Borght, Koen; Talloen, Willem; Aerssens, Jeroen; Clement, Lieven; Thas, Olivier

    2015-01-01

    In virology, massively parallel sequencing (MPS) opens many opportunities for studying viral quasi-species, e.g. in HIV-1- and HCV-infected patients. This is essential for understanding pathways to resistance, which can substantially improve treatment. Although MPS platforms allow in-depth characterization of sequence variation, their measurements still involve substantial technical noise. For Illumina sequencing, single base substitutions are the main error source and impede powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores (Qs) that are useful for differentiating errors from the real low-frequency mutations. A variant calling tool, Q-cpileup, is proposed, which exploits the Qs of nucleotides in a filtering strategy to increase specificity. The tool is imbedded in an open-source pipeline, VirVarSeq, which allows variant calling starting from fastq files. Using both plasmid mixtures and clinical samples, we show that Q-cpileup is able to reduce the number of false-positive findings. The filtering strategy is adaptive and provides an optimized threshold for individual samples in each sequencing run. Additionally, linkage information is kept between single-nucleotide polymorphisms as variants are called at the codon level. This enables virologists to have an immediate biological interpretation of the reported variants with respect to their antiviral drug responses. A comparison with existing SNP caller tools reveals that calling variants at the codon level with Q-cpileup results in an outstanding sensitivity while maintaining a good specificity for variants with frequencies down to 0.5%. The VirVarSeq is available, together with a user's guide and test data, at sourceforge: http://sourceforge.net/projects/virtools/?source=directory. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Identification and validation of loss of function variants in clinical contexts.

    PubMed

    Lescai, Francesco; Marasco, Elena; Bacchelli, Chiara; Stanier, Philip; Mantovani, Vilma; Beales, Philip

    2014-01-01

    The choice of an appropriate variant calling pipeline for exome sequencing data is becoming increasingly more important in translational medicine projects and clinical contexts. Within GOSgene, which facilitates genetic analysis as part of a joint effort of the University College London and the Great Ormond Street Hospital, we aimed to optimize a variant calling pipeline suitable for our clinical context. We implemented the GATK/Queue framework and evaluated the performance of its two callers: the classical UnifiedGenotyper and the new variant discovery tool HaplotypeCaller. We performed an experimental validation of the loss-of-function (LoF) variants called by the two methods using Sequenom technology. UnifiedGenotyper showed a total validation rate of 97.6% for LoF single-nucleotide polymorphisms (SNPs) and 92.0% for insertions or deletions (INDELs), whereas HaplotypeCaller was 91.7% for SNPs and 55.9% for INDELs. We confirm that GATK/Queue is a reliable pipeline in translational medicine and clinical context. We conclude that in our working environment, UnifiedGenotyper is the caller of choice, being an accurate method, with a high validation rate of error-prone calls like LoF variants. We finally highlight the importance of experimental validation, especially for INDELs, as part of a standard pipeline in clinical environments.

  2. Halvade-RNA: Parallel variant calling from transcriptomic data using MapReduce.

    PubMed

    Decap, Dries; Reumers, Joke; Herzeel, Charlotte; Costanza, Pascal; Fostier, Jan

    2017-01-01

    Given the current cost-effectiveness of next-generation sequencing, the amount of DNA-seq and RNA-seq data generated is ever increasing. One of the primary objectives of NGS experiments is calling genetic variants. While highly accurate, most variant calling pipelines are not optimized to run efficiently on large data sets. However, as variant calling in genomic data has become common practice, several methods have been proposed to reduce runtime for DNA-seq analysis through the use of parallel computing. Determining the effectively expressed variants from transcriptomics (RNA-seq) data has only recently become possible, and as such does not yet benefit from efficiently parallelized workflows. We introduce Halvade-RNA, a parallel, multi-node RNA-seq variant calling pipeline based on the GATK Best Practices recommendations. Halvade-RNA makes use of the MapReduce programming model to create and manage parallel data streams on which multiple instances of existing tools such as STAR and GATK operate concurrently. Whereas the single-threaded processing of a typical RNA-seq sample requires ∼28h, Halvade-RNA reduces this runtime to ∼2h using a small cluster with two 20-core machines. Even on a single, multi-core workstation, Halvade-RNA can significantly reduce runtime compared to using multi-threading, thus providing for a more cost-effective processing of RNA-seq data. Halvade-RNA is written in Java and uses the Hadoop MapReduce 2.0 API. It supports a wide range of distributions of Hadoop, including Cloudera and Amazon EMR.

  3. Comprehensive benchmarking of SNV callers for highly admixed tumor data

    PubMed Central

    Bohnert, Regina; Vivas, Sonia

    2017-01-01

    Precision medicine attempts to individualize cancer therapy by matching tumor-specific genetic changes with effective targeted therapies. A crucial first step in this process is the reliable identification of cancer-relevant variants, which is considerably complicated by the impurity and heterogeneity of clinical tumor samples. We compared the impact of admixture of non-cancerous cells and low somatic allele frequencies on the sensitivity and precision of 19 state-of-the-art SNV callers. We studied both whole exome and targeted gene panel data and up to 13 distinct parameter configurations for each tool. We found vast differences among callers. Based on our comprehensive analyses we recommend joint tumor-normal calling with MuTect, EBCall or Strelka for whole exome somatic variant calling, and HaplotypeCaller or FreeBayes for whole exome germline calling. For targeted gene panel data on a single tumor sample, LoFreqStar performed best. We further found that tumor impurity and admixture had a negative impact on precision, and in particular, sensitivity in whole exome experiments. At admixture levels of 60% to 90% sometimes seen in pathological biopsies, sensitivity dropped significantly, even when variants were originally present in the tumor at 100% allele frequency. Sensitivity to low-frequency SNVs improved with targeted panel data, but whole exome data allowed more efficient identification of germline variants. Effective somatic variant calling requires high-quality pathological samples with minimal admixture, a consciously selected sequencing strategy, and the appropriate variant calling tool with settings optimized for the chosen type of data. PMID:29020110

  4. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    PubMed

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  5. Isomorphic semantic mapping of variant call format (VCF2RDF).

    PubMed

    Penha, Emanuel Diego S; Iriabho, Egiebade; Dussaq, Alex; de Oliveira, Diana Magalhães; Almeida, Jonas S

    2017-02-15

    The move of computational genomics workflows to Cloud Computing platforms is associated with a new level of integration and interoperability that challenges existing data representation formats. The Variant Calling Format (VCF) is in a particularly sensitive position in that regard, with both clinical and consumer-facing analysis tools relying on this self-contained description of genomic variation in Next Generation Sequencing (NGS) results. In this report we identify an isomorphic map between VCF and the reference Resource Description Framework. RDF is advanced by the World Wide Web Consortium (W3C) to enable representations of linked data that are both distributed and discoverable. The resulting ability to decompose VCF reports of genomic variation without loss of context addresses the need to modularize and govern NGS pipelines for Precision Medicine. Specifically, it provides the flexibility (i.e. the indexing) needed to support the wide variety of clinical scenarios and patient-facing governance where only part of the VCF data is fitting. Software libraries with a claim to be both domain-facing and consumer-facing have to pass the test of portability across the variety of devices that those consumers in fact adopt. That is, ideally the implementation should itself take place within the space defined by web technologies. Consequently, the isomorphic mapping function was implemented in JavaScript, and was tested in a variety of environments and devices, client and server side alike. These range from web browsers in mobile phones to the most popular micro service platform, NodeJS. The code is publicly available at https://github.com/ibl/VCFr , with a live deployment at: http://ibl.github.io/VCFr/ . jonas.almeida@stonybrookmedicine.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  6. Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations.

    PubMed

    Zhou, Shuangyan; Shi, Danfeng; Liu, Xuewei; Liu, Huanxiang; Yao, Xiaojun

    2016-02-24

    Recent studies uncovered a novel protective prion protein variant: V127 variant, which was reported intrinsically resistant to prion conversion and propagation. However, the structural basis of its protective effect is still unknown. To uncover the origin of the protective role of V127 variant, molecular dynamics simulations were performed to explore the influence of G127V mutation on two key processes of prion propagation: dimerization and fibril formation. The simulation results indicate V127 variant is unfavorable to form dimer by reducing the main-chain H-bond interactions. The simulations of formed fibrils consisting of β1 strand prove V127 variant will make the formed fibril become unstable and disorder. The weaker interaction energies between layers and reduced H-bonds number for V127 variant reveal this mutation is unfavorable to the formation of stable fibril. Consequently, we find V127 variant is not only unfavorable to the formation of dimer but also unfavorable to the formation of stable core and fibril, which can explain the mechanism on the protective role of V127 variant from the molecular level. Our findings can deepen the understanding of prion disease and may guide the design of peptide mimetics or small molecule to mimic the protective effect of V127 variant.

  7. Positional bias in variant calls against draft reference assemblies.

    PubMed

    Briskine, Roman V; Shimizu, Kentaro K

    2017-03-28

    Whole genome resequencing projects may implement variant calling using draft reference genomes assembled de novo from short-read libraries. Despite lower quality of such assemblies, they allowed researchers to extend a wide range of population genetic and genome-wide association analyses to non-model species. As the variant calling pipelines are complex and involve many software packages, it is important to understand inherent biases and limitations at each step of the analysis. In this article, we report a positional bias present in variant calling performed against draft reference assemblies constructed from de Bruijn or string overlap graphs. We assessed how frequently variants appeared at each position counted from ends of a contig or scaffold sequence, and discovered unexpectedly high number of variants at the positions related to the length of either k-mers or reads used for the assembly. We detected the bias in both publicly available draft assemblies from Assemblathon 2 competition as well as in the assemblies we generated from our simulated short-read data. Simulations confirmed that the bias causing variants are predominantly false positives induced by reads from spatially distant repeated sequences. The bias is particularly strong in contig assemblies. Scaffolding does not eliminate the bias but tends to mitigate it because of the changes in variants' relative positions and alterations in read alignments. The bias can be effectively reduced by filtering out the variants that reside in repetitive elements. Draft genome sequences generated by several popular assemblers appear to be susceptible to the positional bias potentially affecting many resequencing projects in non-model species. The bias is inherent to the assembly algorithms and arises from their particular handling of repeated sequences. It is recommended to reduce the bias by filtering especially if higher-quality genome assembly cannot be achieved. Our findings can help other researchers to improve the quality of their variant data sets and reduce artefactual findings in downstream analyses.

  8. SeqHBase: a big data toolset for family based sequencing data analysis.

    PubMed

    He, Min; Person, Thomas N; Hebbring, Scott J; Heinzen, Ethan; Ye, Zhan; Schrodi, Steven J; McPherson, Elizabeth W; Lin, Simon M; Peissig, Peggy L; Brilliant, Murray H; O'Rawe, Jason; Robison, Reid J; Lyon, Gholson J; Wang, Kai

    2015-04-01

    Whole-genome sequencing (WGS) and whole-exome sequencing (WES) technologies are increasingly used to identify disease-contributing mutations in human genomic studies. It can be a significant challenge to process such data, especially when a large family or cohort is sequenced. Our objective was to develop a big data toolset to efficiently manipulate genome-wide variants, functional annotations and coverage, together with conducting family based sequencing data analysis. Hadoop is a framework for reliable, scalable, distributed processing of large data sets using MapReduce programming models. Based on Hadoop and HBase, we developed SeqHBase, a big data-based toolset for analysing family based sequencing data to detect de novo, inherited homozygous, or compound heterozygous mutations that may contribute to disease manifestations. SeqHBase takes as input BAM files (for coverage at every site), variant call format (VCF) files (for variant calls) and functional annotations (for variant prioritisation). We applied SeqHBase to a 5-member nuclear family and a 10-member 3-generation family with WGS data, as well as a 4-member nuclear family with WES data. Analysis times were almost linearly scalable with number of data nodes. With 20 data nodes, SeqHBase took about 5 secs to analyse WES familial data and approximately 1 min to analyse WGS familial data. These results demonstrate SeqHBase's high efficiency and scalability, which is necessary as WGS and WES are rapidly becoming standard methods to study the genetics of familial disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Extracellular environment modulates the formation and propagation of particular amyloid structures

    PubMed Central

    Westergard, Laura; True, Heather L.

    2016-01-01

    Summary Amyloidogenic proteins, including prions, assemble into multiple forms of structurally distinct fibres. The [PSI+] prion, endogenous to the yeast Saccharomyces cerevisiae, is a dominantly inherited, epigenetic modifier of phenotypes. [PSI+] formation relies on the coexistence of another prion, [RNQ+]. Here, in order to better define the role of amyloid diversity on cellular phenotypes, we investigated how physiological and environmental changes impact the generation and propagation of diverse protein conformations from a single polypeptide. Utilizing the yeast model system, we defined extracellular factors that influence the formation of a spectrum of alternative self-propagating amyloid structures of the Sup35 protein, called [PSI+] variants. Strikingly, exposure to specific stressful environments dramatically altered the variants of [PSI+] that formed de novo. Additionally, we found that stress also influenced the association between the [PSI+] and [RNQ+] prions in a way that it superceded their typical relationship. Furthermore, changing the growth environment modified both the biochemical properties and [PSI+]-inducing capabilities of the [RNQ+] template. These data suggest that the cellular environment contributes to both the generation and the selective propagation of specific amyloid structures, providing insight into a key feature that impacts phenotypic diversity in yeast and the cross-species transmission barriers characteristic of prion diseases. PMID:24628771

  10. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.

    PubMed

    Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul

    2017-07-01

    The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.

  11. Vecuum: identification and filtration of false somatic variants caused by recombinant vector contamination.

    PubMed

    Kim, Junho; Maeng, Ju Heon; Lim, Jae Seok; Son, Hyeonju; Lee, Junehawk; Lee, Jeong Ho; Kim, Sangwoo

    2016-10-15

    Advances in sequencing technologies have remarkably lowered the detection limit of somatic variants to a low frequency. However, calling mutations at this range is still confounded by many factors including environmental contamination. Vector contamination is a continuously occurring issue and is especially problematic since vector inserts are hardly distinguishable from the sample sequences. Such inserts, which may harbor polymorphisms and engineered functional mutations, can result in calling false variants at corresponding sites. Numerous vector-screening methods have been developed, but none could handle contamination from inserts because they are focusing on vector backbone sequences alone. We developed a novel method-Vecuum-that identifies vector-originated reads and resultant false variants. Since vector inserts are generally constructed from intron-less cDNAs, Vecuum identifies vector-originated reads by inspecting the clipping patterns at exon junctions. False variant calls are further detected based on the biased distribution of mutant alleles to vector-originated reads. Tests on simulated and spike-in experimental data validated that Vecuum could detect 93% of vector contaminants and could remove up to 87% of variant-like false calls with 100% precision. Application to public sequence datasets demonstrated the utility of Vecuum in detecting false variants resulting from various types of external contamination. Java-based implementation of the method is available at http://vecuum.sourceforge.net/ CONTACT: swkim@yuhs.acSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Jannovar: a java library for exome annotation.

    PubMed

    Jäger, Marten; Wang, Kai; Bauer, Sebastian; Smedley, Damian; Krawitz, Peter; Robinson, Peter N

    2014-05-01

    Transcript-based annotation and pedigree analysis are two basic steps in the computational analysis of whole-exome sequencing experiments in genetic diagnostics and disease-gene discovery projects. Here, we present Jannovar, a stand-alone Java application as well as a Java library designed to be used in larger software frameworks for exome and genome analysis. Jannovar uses an interval tree to identify all transcripts affected by a given variant, and provides Human Genome Variation Society-compliant annotations both for variants affecting coding sequences and splice junctions as well as untranslated regions and noncoding RNA transcripts. Jannovar can also perform family-based pedigree analysis with Variant Call Format (VCF) files with data from members of a family segregating a Mendelian disorder. Using a desktop computer, Jannovar requires a few seconds to annotate a typical VCF file with exome data. Jannovar is freely available under the BSD2 license. Source code as well as the Java application and library file can be downloaded from http://compbio.charite.de (with tutorial) and https://github.com/charite/jannovar. © 2014 WILEY PERIODICALS, INC.

  13. ViVaMBC: estimating viral sequence variation in complex populations from illumina deep-sequencing data using model-based clustering.

    PubMed

    Verbist, Bie; Clement, Lieven; Reumers, Joke; Thys, Kim; Vapirev, Alexander; Talloen, Willem; Wetzels, Yves; Meys, Joris; Aerssens, Jeroen; Bijnens, Luc; Thas, Olivier

    2015-02-22

    Deep-sequencing allows for an in-depth characterization of sequence variation in complex populations. However, technology associated errors may impede a powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores which are derived from a quadruplet of intensities, one channel for each nucleotide type for Illumina sequencing. The highest intensity of the four channels determines the base that is called. Mismatch bases can often be corrected by the second best base, i.e. the base with the second highest intensity in the quadruplet. A virus variant model-based clustering method, ViVaMBC, is presented that explores quality scores and second best base calls for identifying and quantifying viral variants. ViVaMBC is optimized to call variants at the codon level (nucleotide triplets) which enables immediate biological interpretation of the variants with respect to their antiviral drug responses. Using mixtures of HCV plasmids we show that our method accurately estimates frequencies down to 0.5%. The estimates are unbiased when average coverages of 25,000 are reached. A comparison with the SNP-callers V-Phaser2, ShoRAH, and LoFreq shows that ViVaMBC has a superb sensitivity and specificity for variants with frequencies above 0.4%. Unlike the competitors, ViVaMBC reports a higher number of false-positive findings with frequencies below 0.4% which might partially originate from picking up artificial variants introduced by errors in the sample and library preparation step. ViVaMBC is the first method to call viral variants directly at the codon level. The strength of the approach lies in modeling the error probabilities based on the quality scores. Although the use of second best base calls appeared very promising in our data exploration phase, their utility was limited. They provided a slight increase in sensitivity, which however does not warrant the additional computational cost of running the offline base caller. Apparently a lot of information is already contained in the quality scores enabling the model based clustering procedure to adjust the majority of the sequencing errors. Overall the sensitivity of ViVaMBC is such that technical constraints like PCR errors start to form the bottleneck for low frequency variant detection.

  14. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders

    PubMed Central

    Lise, Stefano; Broxholme, John; Cazier, Jean-Baptiste; Rimmer, Andy; Kanapin, Alexander; Lunter, Gerton; Fiddy, Simon; Allan, Chris; Aricescu, A. Radu; Attar, Moustafa; Babbs, Christian; Becq, Jennifer; Beeson, David; Bento, Celeste; Bignell, Patricia; Blair, Edward; Buckle, Veronica J; Bull, Katherine; Cais, Ondrej; Cario, Holger; Chapel, Helen; Copley, Richard R; Cornall, Richard; Craft, Jude; Dahan, Karin; Davenport, Emma E; Dendrou, Calliope; Devuyst, Olivier; Fenwick, Aimée L; Flint, Jonathan; Fugger, Lars; Gilbert, Rodney D; Goriely, Anne; Green, Angie; Greger, Ingo H.; Grocock, Russell; Gruszczyk, Anja V; Hastings, Robert; Hatton, Edouard; Higgs, Doug; Hill, Adrian; Holmes, Chris; Howard, Malcolm; Hughes, Linda; Humburg, Peter; Johnson, David; Karpe, Fredrik; Kingsbury, Zoya; Kini, Usha; Knight, Julian C; Krohn, Jonathan; Lamble, Sarah; Langman, Craig; Lonie, Lorne; Luck, Joshua; McCarthy, Davis; McGowan, Simon J; McMullin, Mary Frances; Miller, Kerry A; Murray, Lisa; Németh, Andrea H; Nesbit, M Andrew; Nutt, David; Ormondroyd, Elizabeth; Oturai, Annette Bang; Pagnamenta, Alistair; Patel, Smita Y; Percy, Melanie; Petousi, Nayia; Piazza, Paolo; Piret, Sian E; Polanco-Echeverry, Guadalupe; Popitsch, Niko; Powrie, Fiona; Pugh, Chris; Quek, Lynn; Robbins, Peter A; Robson, Kathryn; Russo, Alexandra; Sahgal, Natasha; van Schouwenburg, Pauline A; Schuh, Anna; Silverman, Earl; Simmons, Alison; Sørensen, Per Soelberg; Sweeney, Elizabeth; Taylor, John; Thakker, Rajesh V; Tomlinson, Ian; Trebes, Amy; Twigg, Stephen RF; Uhlig, Holm H; Vyas, Paresh; Vyse, Tim; Wall, Steven A; Watkins, Hugh; Whyte, Michael P; Witty, Lorna; Wright, Ben; Yau, Chris; Buck, David; Humphray, Sean; Ratcliffe, Peter J; Bell, John I; Wilkie, Andrew OM; Bentley, David; Donnelly, Peter; McVean, Gilean

    2015-01-01

    To assess factors influencing the success of whole genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases across a broad spectrum of disorders in whom prior screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritisation. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease causing variants in 21% of cases, rising to 34% (23/68) for Mendelian disorders and 57% (8/14) in trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, though only four were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis, but also highlight many outstanding challenges. PMID:25985138

  15. Modeling and interoperability of heterogeneous genomic big data for integrative processing and querying.

    PubMed

    Masseroli, Marco; Kaitoua, Abdulrahman; Pinoli, Pietro; Ceri, Stefano

    2016-12-01

    While a huge amount of (epi)genomic data of multiple types is becoming available by using Next Generation Sequencing (NGS) technologies, the most important emerging problem is the so-called tertiary analysis, concerned with sense making, e.g., discovering how different (epi)genomic regions and their products interact and cooperate with each other. We propose a paradigm shift in tertiary analysis, based on the use of the Genomic Data Model (GDM), a simple data model which links genomic feature data to their associated experimental, biological and clinical metadata. GDM encompasses all the data formats which have been produced for feature extraction from (epi)genomic datasets. We specifically describe the mapping to GDM of SAM (Sequence Alignment/Map), VCF (Variant Call Format), NARROWPEAK (for called peaks produced by NGS ChIP-seq or DNase-seq methods), and BED (Browser Extensible Data) formats, but GDM supports as well all the formats describing experimental datasets (e.g., including copy number variations, DNA somatic mutations, or gene expressions) and annotations (e.g., regarding transcription start sites, genes, enhancers or CpG islands). We downloaded and integrated samples of all the above-mentioned data types and formats from multiple sources. The GDM is able to homogeneously describe semantically heterogeneous data and makes the ground for providing data interoperability, e.g., achieved through the GenoMetric Query Language (GMQL), a high-level, declarative query language for genomic big data. The combined use of the data model and the query language allows comprehensive processing of multiple heterogeneous data, and supports the development of domain-specific data-driven computations and bio-molecular knowledge discovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Whole exome sequencing for familial bicuspid aortic valve identifies putative variants.

    PubMed

    Martin, Lisa J; Pilipenko, Valentina; Kaufman, Kenneth M; Cripe, Linda; Kottyan, Leah C; Keddache, Mehdi; Dexheimer, Phillip; Weirauch, Matthew T; Benson, D Woodrow

    2014-10-01

    Bicuspid aortic valve (BAV) is the most common congenital cardiovascular malformation. Although highly heritable, few causal variants have been identified. The purpose of this study was to identify genetic variants underlying BAV by whole exome sequencing a multiplex BAV kindred. Whole exome sequencing was performed on 17 individuals from a single family (BAV=3; other cardiovascular malformation, 3). Postvariant calling error control metrics were established after examining the relationship between Mendelian inheritance error rate and coverage, quality score, and call rate. To determine the most effective approach to identifying susceptibility variants from among 54 674 variants passing error control metrics, we evaluated 3 variant selection strategies frequently used in whole exome sequencing studies plus extended family linkage. No putative rare, high-effect variants were identified in all affected but no unaffected individuals. Eight high-effect variants were identified by ≥2 of the commonly used selection strategies; however, these were either common in the general population (>10%) or present in the majority of the unaffected family members. However, using extended family linkage, 3 synonymous variants were identified; all 3 variants were identified by at least one other strategy. These results suggest that traditional whole exome sequencing approaches, which assume causal variants alter coding sense, may be insufficient for BAV and other complex traits. Identification of disease-associated variants is facilitated by the use of segregation within families. © 2014 American Heart Association, Inc.

  17. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller.

    PubMed

    Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun

    2017-01-03

    Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.

  18. Novel insights regarding the operational characteristics and teleological purpose of the renal Na+-K+-Cl2 cotransporter (NKCC2s) splice variants.

    PubMed

    Brunet, Geneviève M; Gagnon, Edith; Simard, Charles F; Daigle, Nikolas D; Caron, Luc; Noël, Micheline; Lefoll, Marie-Hélène; Bergeron, Marc J; Isenring, Paul

    2005-10-01

    The absorptive Na(+)-K(+)-Cl(-) cotransporter (NKCC2) is a polytopic protein that forms homooligomeric complexes in the apical membrane of the thick ascending loop of Henle (TAL). It occurs in at least four splice variants (called B, A, F, and AF) that are identical to one another except for a short region in the membrane-associated domain. Although each of these variants exhibits unique functional properties and distributions along the TAL, their teleological purpose and structural organization remain poorly defined. In the current work, we provide additional insight in these regards by showing in mouse that the administration of either furosemide or an H(2)O-rich diet, which are predicted to alter NKCC2 expression in the TAL, exerts differential effects on mRNA levels for the variants, increasing those of A (furosemide) but decreasing those of F and AF (furosemide or H(2)O). Based on a yeast two-hybrid mapping analysis, we also show that the formation of homooligomeric complexes is mediated by two self-interacting domains in the COOH terminus (residues 671 to 816 and 910 to 1098), and that these complexes could probably include more than one type of variant. Taken together, the data reported here suggest that A, F, and AF each play unique roles that are adapted to specific physiological needs, and that the accomplishment of such roles is coordinated through the splicing machinery as well as complex NKCC2-NKCC2 interactions.

  19. REDO: RNA Editing Detection in Plant Organelles Based on Variant Calling Results.

    PubMed

    Wu, Shuangyang; Liu, Wanfei; Aljohi, Hasan Awad; Alromaih, Sarah A; Alanazi, Ibrahim O; Lin, Qiang; Yu, Jun; Hu, Songnian

    2018-05-01

    RNA editing is a post-transcriptional or cotranscriptional process that changes the sequence of the precursor transcript by substitutions, insertions, or deletions. Almost all of the land plants undergo RNA editing in organelles (plastids and mitochondria). Although several software tools have been developed to identify RNA editing events, there has been a great challenge to distinguish true RNA editing events from genome variation, sequencing errors, and other factors. Here we introduce REDO, a comprehensive application tool for identifying RNA editing events in plant organelles based on variant call format files from RNA-sequencing data. REDO is a suite of Perl scripts that illustrate a bunch of attributes of RNA editing events in figures and tables. REDO can also detect RNA editing events in multiple samples simultaneously and identify the significant differential proportion of RNA editing loci. Comparing with similar tools, such as REDItools, REDO runs faster with higher accuracy, and more specificity at the cost of slightly lower sensitivity. Moreover, REDO annotates each RNA editing site in RNAs, whereas REDItools reports only possible RNA editing sites in genome, which need additional steps to obtain RNA editing profiles for RNAs. Overall, REDO can identify potential RNA editing sites easily and provide several functions such as detailed annotations, statistics, figures, and significantly differential proportion of RNA editing sites among different samples.

  20. Leapfrog variants of iterative methods for linear algebra equations

    NASA Technical Reports Server (NTRS)

    Saylor, Paul E.

    1988-01-01

    Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.

  1. Exome sequencing reveals novel genetic loci influencing obesity-related traits in Hispanic children

    USDA-ARS?s Scientific Manuscript database

    To perform whole exome sequencing in 928 Hispanic children and identify variants and genes associated with childhood obesity.Single-nucleotide variants (SNVs) were identified from Illumina whole exome sequencing data using integrated read mapping, variant calling, and an annotation pipeline (Mercury...

  2. STORMSeq: an open-source, user-friendly pipeline for processing personal genomics data in the cloud.

    PubMed

    Karczewski, Konrad J; Fernald, Guy Haskin; Martin, Alicia R; Snyder, Michael; Tatonetti, Nicholas P; Dudley, Joel T

    2014-01-01

    The increasing public availability of personal complete genome sequencing data has ushered in an era of democratized genomics. However, read mapping and variant calling software is constantly improving and individuals with personal genomic data may prefer to customize and update their variant calls. Here, we describe STORMSeq (Scalable Tools for Open-Source Read Mapping), a graphical interface cloud computing solution that does not require a parallel computing environment or extensive technical experience. This customizable and modular system performs read mapping, read cleaning, and variant calling and annotation. At present, STORMSeq costs approximately $2 and 5-10 hours to process a full exome sequence and $30 and 3-8 days to process a whole genome sequence. We provide this open-access and open-source resource as a user-friendly interface in Amazon EC2.

  3. OVAS: an open-source variant analysis suite with inheritance modelling.

    PubMed

    Mozere, Monika; Tekman, Mehmet; Kari, Jameela; Bockenhauer, Detlef; Kleta, Robert; Stanescu, Horia

    2018-02-08

    The advent of modern high-throughput genetics continually broadens the gap between the rising volume of sequencing data, and the tools required to process them. The need to pinpoint a small subset of functionally important variants has now shifted towards identifying the critical differences between normal variants and disease-causing ones. The ever-increasing reliance on cloud-based services for sequence analysis and the non-transparent methods they utilize has prompted the need for more in-situ services that can provide a safer and more accessible environment to process patient data, especially in circumstances where continuous internet usage is limited. To address these issues, we herein propose our standalone Open-source Variant Analysis Sequencing (OVAS) pipeline; consisting of three key stages of processing that pertain to the separate modes of annotation, filtering, and interpretation. Core annotation performs variant-mapping to gene-isoforms at the exon/intron level, append functional data pertaining the type of variant mutation, and determine hetero/homozygosity. An extensive inheritance-modelling module in conjunction with 11 other filtering components can be used in sequence ranging from single quality control to multi-file penetrance model specifics such as X-linked recessive or mosaicism. Depending on the type of interpretation required, additional annotation is performed to identify organ specificity through gene expression and protein domains. In the course of this paper we analysed an autosomal recessive case study. OVAS made effective use of the filtering modules to recapitulate the results of the study by identifying the prescribed compound-heterozygous disease pattern from exome-capture sequence input samples. OVAS is an offline open-source modular-driven analysis environment designed to annotate and extract useful variants from Variant Call Format (VCF) files, and process them under an inheritance context through a top-down filtering schema of swappable modules, run entirely off a live bootable medium and accessed locally through a web-browser.

  4. Clinical Validation and Implementation of a Targeted Next-Generation Sequencing Assay to Detect Somatic Variants in Non-Small Cell Lung, Melanoma, and Gastrointestinal Malignancies

    PubMed Central

    Fisher, Kevin E.; Zhang, Linsheng; Wang, Jason; Smith, Geoffrey H.; Newman, Scott; Schneider, Thomas M.; Pillai, Rathi N.; Kudchadkar, Ragini R.; Owonikoko, Taofeek K.; Ramalingam, Suresh S.; Lawson, David H.; Delman, Keith A.; El-Rayes, Bassel F.; Wilson, Malania M.; Sullivan, H. Clifford; Morrison, Annie S.; Balci, Serdar; Adsay, N. Volkan; Gal, Anthony A.; Sica, Gabriel L.; Saxe, Debra F.; Mann, Karen P.; Hill, Charles E.; Khuri, Fadlo R.; Rossi, Michael R.

    2017-01-01

    We tested and clinically validated a targeted next-generation sequencing (NGS) mutation panel using 80 formalin-fixed, paraffin-embedded (FFPE) tumor samples. Forty non-small cell lung carcinoma (NSCLC), 30 melanoma, and 30 gastrointestinal (12 colonic, 10 gastric, and 8 pancreatic adenocarcinoma) FFPE samples were selected from laboratory archives. After appropriate specimen and nucleic acid quality control, 80 NGS libraries were prepared using the Illumina TruSight tumor (TST) kit and sequenced on the Illumina MiSeq. Sequence alignment, variant calling, and sequencing quality control were performed using vendor software and laboratory-developed analysis workflows. TST generated ≥500× coverage for 98.4% of the 13,952 targeted bases. Reproducible and accurate variant calling was achieved at ≥5% variant allele frequency with 8 to 12 multiplexed samples per MiSeq flow cell. TST detected 112 variants overall, and confirmed all known single-nucleotide variants (n = 27), deletions (n = 5), insertions (n = 3), and multinucleotide variants (n = 3). TST detected at least one variant in 85.0% (68/80), and two or more variants in 36.2% (29/80), of samples. TP53 was the most frequently mutated gene in NSCLC (13 variants; 13/32 samples), gastrointestinal malignancies (15 variants; 13/25 samples), and overall (30 variants; 28/80 samples). BRAF mutations were most common in melanoma (nine variants; 9/23 samples). Clinically relevant NGS data can be obtained from routine clinical FFPE solid tumor specimens using TST, benchtop instruments, and vendor-supplied bioinformatics pipelines. PMID:26801070

  5. Chimpanzee quiet hoo variants differ according to context.

    PubMed

    Crockford, Catherine; Gruber, Thibaud; Zuberbühler, Klaus

    2018-05-01

    In comparative studies of evolution of communication, the function and use of animal quiet calls have typically been understudied, despite that these signals are presumably under selection like other vocalizations, such as alarm calls. Here, we examine vocalization diversification of chimpanzee quiet 'hoos' produced in three contexts-travel, rest and alert-and potential pressures promoting diversification. Previous playback and observational studies have suggested that the overarching function of chimpanzee hoos is to stay in contact with others, particularly bond partners. We conducted an acoustic analysis of hoos using audio recordings from wild chimpanzees ( Pan troglodytes schweinfurthii ) of Budongo Forest, Uganda. We identified three acoustically distinguishable, context-specific hoo variants. Each call variant requires specific responses from receivers to avoid breaking up the social unit. We propose that callers may achieve coordination by using acoustically distinguishable calls, advertising their own behavioural intentions. We conclude that natural selection has acted towards acoustically diversifying an inconspicuous, quiet vocalization, the chimpanzee hoo. This evolutionary process may have been favoured by the fact that signallers and recipients share the same goal, to maintain social cohesion, particularly among those who regularly cooperate, suggesting that call diversification has been favoured by the demands of cooperative activities.

  6. STORMSeq: An Open-Source, User-Friendly Pipeline for Processing Personal Genomics Data in the Cloud

    PubMed Central

    Karczewski, Konrad J.; Fernald, Guy Haskin; Martin, Alicia R.; Snyder, Michael; Tatonetti, Nicholas P.; Dudley, Joel T.

    2014-01-01

    The increasing public availability of personal complete genome sequencing data has ushered in an era of democratized genomics. However, read mapping and variant calling software is constantly improving and individuals with personal genomic data may prefer to customize and update their variant calls. Here, we describe STORMSeq (Scalable Tools for Open-Source Read Mapping), a graphical interface cloud computing solution that does not require a parallel computing environment or extensive technical experience. This customizable and modular system performs read mapping, read cleaning, and variant calling and annotation. At present, STORMSeq costs approximately $2 and 5–10 hours to process a full exome sequence and $30 and 3–8 days to process a whole genome sequence. We provide this open-access and open-source resource as a user-friendly interface in Amazon EC2. PMID:24454756

  7. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    PubMed

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  8. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    PubMed Central

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637

  9. LongISLND: in silico sequencing of lengthy and noisy datatypes

    PubMed Central

    Lau, Bayo; Mohiyuddin, Marghoob; Mu, John C.; Fang, Li Tai; Bani Asadi, Narges; Dallett, Carolina; Lam, Hugo Y. K.

    2016-01-01

    Summary: LongISLND is a software package designed to simulate sequencing data according to the characteristics of third generation, single-molecule sequencing technologies. The general software architecture is easily extendable, as demonstrated by the emulation of Pacific Biosciences (PacBio) multi-pass sequencing with P5 and P6 chemistries, producing data in FASTQ, H5, and the latest PacBio BAM format. We demonstrate its utility by downstream processing with consensus building and variant calling. Availability and Implementation: LongISLND is implemented in Java and available at http://bioinform.github.io/longislnd Contact: hugo.lam@roche.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27667791

  10. Rapid differentiation of citrus Hop stunt viroid variants by use of real-time RT-PCR and high resolution melting analysis

    USDA-ARS?s Scientific Manuscript database

    The RNA genome of Hop stunt viroid (HSVd) contains five to six nucleotides in a variable (V) domain, called the cachexia expression motif, which is associated with pathogenic and non-pathogenic variants in citrus. Current methods to differentiate HSVd variants rely on lengthy greenhouse biological i...

  11. ACTG: novel peptide mapping onto gene models.

    PubMed

    Choi, Seunghyuk; Kim, Hyunwoo; Paek, Eunok

    2017-04-15

    In many proteogenomic applications, mapping peptide sequences onto genome sequences can be very useful, because it allows us to understand origins of the gene products. Existing software tools either take the genomic position of a peptide start site as an input or assume that the peptide sequence exactly matches the coding sequence of a given gene model. In case of novel peptides resulting from genomic variations, especially structural variations such as alternative splicing, these existing tools cannot be directly applied unless users supply information about the variant, either its genomic position or its transcription model. Mapping potentially novel peptides to genome sequences, while allowing certain genomic variations, requires introducing novel gene models when aligning peptide sequences to gene structures. We have developed a new tool called ACTG (Amino aCids To Genome), which maps peptides to genome, assuming all possible single exon skipping, junction variation allowing three edit distances from the original splice sites, exon extension and frame shift. In addition, it can also consider SNVs (single nucleotide variations) during mapping phase if a user provides the VCF (variant call format) file as an input. Available at http://prix.hanyang.ac.kr/ACTG/search.jsp . eunokpaek@hanyang.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Spontaneous Formation of a Mannitol-Producing Variant of Leuconostoc pseudomesenteroides Grown in the Presence of Fructose

    PubMed Central

    Grobben, Gert J.; Peters, Sjors W. P. G.; Wisselink, H. Wouter; Weusthuis, Ruud A.; Hoefnagel, Marcel H. N.; Hugenholtz, Jeroen; Eggink, Gerrit

    2001-01-01

    We report the spontaneous formation of a stable mannitol-producing variant of Leuconostoc pseudomesenteroides. The mannitol-producing variant showed mannitol dehydrogenase activity which was absent in the parental strain. It was also able to use fructose and glucose simultaneously, whereas the parental strain showed diauxic growth with these sugars. A possible explanation of these observations is discussed. PMID:11375210

  13. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects

    PubMed Central

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB PMID:25281234

  14. CanvasDB: a local database infrastructure for analysis of targeted- and whole genome re-sequencing projects.

    PubMed

    Ameur, Adam; Bunikis, Ignas; Enroth, Stefan; Gyllensten, Ulf

    2014-01-01

    CanvasDB is an infrastructure for management and analysis of genetic variants from massively parallel sequencing (MPS) projects. The system stores SNP and indel calls in a local database, designed to handle very large datasets, to allow for rapid analysis using simple commands in R. Functional annotations are included in the system, making it suitable for direct identification of disease-causing mutations in human exome- (WES) or whole-genome sequencing (WGS) projects. The system has a built-in filtering function implemented to simultaneously take into account variant calls from all individual samples. This enables advanced comparative analysis of variant distribution between groups of samples, including detection of candidate causative mutations within family structures and genome-wide association by sequencing. In most cases, these analyses are executed within just a matter of seconds, even when there are several hundreds of samples and millions of variants in the database. We demonstrate the scalability of canvasDB by importing the individual variant calls from all 1092 individuals present in the 1000 Genomes Project into the system, over 4.4 billion SNPs and indels in total. Our results show that canvasDB makes it possible to perform advanced analyses of large-scale WGS projects on a local server. Database URL: https://github.com/UppsalaGenomeCenter/CanvasDB. © The Author(s) 2014. Published by Oxford University Press.

  15. GenPlay Multi-Genome, a tool to compare and analyze multiple human genomes in a graphical interface.

    PubMed

    Lajugie, Julien; Fourel, Nicolas; Bouhassira, Eric E

    2015-01-01

    Parallel visualization of multiple individual human genomes is a complex endeavor that is rapidly gaining importance with the increasing number of personal, phased and cancer genomes that are being generated. It requires the display of variants such as SNPs, indels and structural variants that are unique to specific genomes and the introduction of multiple overlapping gaps in the reference sequence. Here, we describe GenPlay Multi-Genome, an application specifically written to visualize and analyze multiple human genomes in parallel. GenPlay Multi-Genome is ideally suited for the comparison of allele-specific expression and functional genomic data obtained from multiple phased genomes in a graphical interface with access to multiple-track operation. It also allows the analysis of data that have been aligned to custom genomes rather than to a standard reference and can be used as a variant calling format file browser and as a tool to compare different genome assembly, such as hg19 and hg38. GenPlay is available under the GNU public license (GPL-3) from http://genplay.einstein.yu.edu. The source code is available at https://github.com/JulienLajugie/GenPlay. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. One Size Doesn't Fit All - RefEditor: Building Personalized Diploid Reference Genome to Improve Read Mapping and Genotype Calling in Next Generation Sequencing Studies

    PubMed Central

    Yuan, Shuai; Johnston, H. Richard; Zhang, Guosheng; Li, Yun; Hu, Yi-Juan; Qin, Zhaohui S.

    2015-01-01

    With rapid decline of the sequencing cost, researchers today rush to embrace whole genome sequencing (WGS), or whole exome sequencing (WES) approach as the next powerful tool for relating genetic variants to human diseases and phenotypes. A fundamental step in analyzing WGS and WES data is mapping short sequencing reads back to the reference genome. This is an important issue because incorrectly mapped reads affect the downstream variant discovery, genotype calling and association analysis. Although many read mapping algorithms have been developed, the majority of them uses the universal reference genome and do not take sequence variants into consideration. Given that genetic variants are ubiquitous, it is highly desirable if they can be factored into the read mapping procedure. In this work, we developed a novel strategy that utilizes genotypes obtained a priori to customize the universal haploid reference genome into a personalized diploid reference genome. The new strategy is implemented in a program named RefEditor. When applying RefEditor to real data, we achieved encouraging improvements in read mapping, variant discovery and genotype calling. Compared to standard approaches, RefEditor can significantly increase genotype calling consistency (from 43% to 61% at 4X coverage; from 82% to 92% at 20X coverage) and reduce Mendelian inconsistency across various sequencing depths. Because many WGS and WES studies are conducted on cohorts that have been genotyped using array-based genotyping platforms previously or concurrently, we believe the proposed strategy will be of high value in practice, which can also be applied to the scenario where multiple NGS experiments are conducted on the same cohort. The RefEditor sources are available at https://github.com/superyuan/refeditor. PMID:26267278

  17. Comparison of Ion Personal Genome Machine Platforms for the Detection of Variants in BRCA1 and BRCA2.

    PubMed

    Hwang, Sang Mee; Lee, Ki Chan; Lee, Min Seob; Park, Kyoung Un

    2018-01-01

    Transition to next generation sequencing (NGS) for BRCA1 / BRCA2 analysis in clinical laboratories is ongoing but different platforms and/or data analysis pipelines give different results resulting in difficulties in implementation. We have evaluated the Ion Personal Genome Machine (PGM) Platforms (Ion PGM, Ion PGM Dx, Thermo Fisher Scientific) for the analysis of BRCA1 /2. The results of Ion PGM with OTG-snpcaller, a pipeline based on Torrent mapping alignment program and Genome Analysis Toolkit, from 75 clinical samples and 14 reference DNA samples were compared with Sanger sequencing for BRCA1 / BRCA2 . Ten clinical samples and 14 reference DNA samples were additionally sequenced by Ion PGM Dx with Torrent Suite. Fifty types of variants including 18 pathogenic or variants of unknown significance were identified from 75 clinical samples and known variants of the reference samples were confirmed by Sanger sequencing and/or NGS. One false-negative results were present for Ion PGM/OTG-snpcaller for an indel variant misidentified as a single nucleotide variant. However, eight discordant results were present for Ion PGM Dx/Torrent Suite with both false-positive and -negative results. A 40-bp deletion, a 4-bp deletion and a 1-bp deletion variant was not called and a false-positive deletion was identified. Four other variants were misidentified as another variant. Ion PGM/OTG-snpcaller showed acceptable performance with good concordance with Sanger sequencing. However, Ion PGM Dx/Torrent Suite showed many discrepant results not suitable for use in a clinical laboratory, requiring further optimization of the data analysis for calling variants.

  18. Variations in killer whale food-associated calls produced during different prey behavioural contexts.

    PubMed

    Samarra, Filipa I P

    2015-07-01

    Killer whales produce herding calls to increase herring school density but previous studies suggested that these calls were made only when feeding upon spawning herring. Herring schools less densely when spawning compared to overwintering; therefore, producing herding calls may be advantageous only when feeding upon less dense spawning schools. To investigate if herding calls were produced across different prey behavioural contexts and whether structural variants occurred and correlated with prey behaviour, this study recorded killer whales when feeding upon spawning and overwintering herring. Herding calls were produced by whales feeding on both spawning and overwintering herring, however, calls recorded during overwintering had significantly different duration and peak frequency to those recorded during spawning. Calls recorded in herring overwintering grounds were more variable and sometimes included nonlinear phenomena. Thus, herding calls were not produced exclusively when feeding upon spawning herring, likely because the call increases feeding efficiency regardless of herring school density or behaviour. Variations in herding call structure were observed between prey behavioural contexts and did not appear to be adapted to prey characteristics. Herding call structural variants may be more likely a result of individual or group variation rather than a reflection of properties of the food source. Copyright © 2015. Published by Elsevier B.V.

  19. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    PubMed

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  20. The histone shuffle: histone chaperones in an energetic dance

    PubMed Central

    Das, Chandrima; Tyler, Jessica K.; Churchill, Mair E.A.

    2014-01-01

    Our genetic information is tightly packaged into a rather ingenious nucleoprotein complex called chromatin in a manner that enables it to be rapidly accessed during genomic processes. Formation of the nucleosome, which is the fundamental unit of chromatin, occurs via a stepwise process that is reversed to enable the disassembly of nucleosomes. Histone chaperone proteins have prominent roles in facilitating these processes as well as in replacing old histones with new canonical histones or histone variants during the process of histone exchange. Recent structural, biophysical and biochemical studies have begun to shed light on the molecular mechanisms whereby histone chaperones promote chromatin assembly, disassembly and histone exchange to facilitate DNA replication, repair and transcription. PMID:20444609

  1. LongISLND: in silico sequencing of lengthy and noisy datatypes.

    PubMed

    Lau, Bayo; Mohiyuddin, Marghoob; Mu, John C; Fang, Li Tai; Bani Asadi, Narges; Dallett, Carolina; Lam, Hugo Y K

    2016-12-15

    LongISLND is a software package designed to simulate sequencing data according to the characteristics of third generation, single-molecule sequencing technologies. The general software architecture is easily extendable, as demonstrated by the emulation of Pacific Biosciences (PacBio) multi-pass sequencing with P5 and P6 chemistries, producing data in FASTQ, H5, and the latest PacBio BAM format. We demonstrate its utility by downstream processing with consensus building and variant calling. LongISLND is implemented in Java and available at http://bioinform.github.io/longislnd CONTACT: hugo.lam@roche.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  2. Measuring missing heritability: Inferring the contribution of common variants

    PubMed Central

    Golan, David; Lander, Eric S.; Rosset, Saharon

    2014-01-01

    Genome-wide association studies (GWASs), also called common variant association studies (CVASs), have uncovered thousands of genetic variants associated with hundreds of diseases. However, the variants that reach statistical significance typically explain only a small fraction of the heritability. One explanation for the “missing heritability” is that there are many additional disease-associated common variants whose effects are too small to detect with current sample sizes. It therefore is useful to have methods to quantify the heritability due to common variation, without having to identify all causal variants. Recent studies applied restricted maximum likelihood (REML) estimation to case–control studies for diseases. Here, we show that REML considerably underestimates the fraction of heritability due to common variation in this setting. The degree of underestimation increases with the rarity of disease, the heritability of the disease, and the size of the sample. Instead, we develop a general framework for heritability estimation, called phenotype correlation–genotype correlation (PCGC) regression, which generalizes the well-known Haseman–Elston regression method. We show that PCGC regression yields unbiased estimates. Applying PCGC regression to six diseases, we estimate the proportion of the phenotypic variance due to common variants to range from 25% to 56% and the proportion of heritability due to common variants from 41% to 68% (mean 60%). These results suggest that common variants may explain at least half the heritability for many diseases. PCGC regression also is readily applicable to other settings, including analyzing extreme-phenotype studies and adjusting for covariates such as sex, age, and population structure. PMID:25422463

  3. GWASeq: targeted re-sequencing follow up to GWAS.

    PubMed

    Salomon, Matthew P; Li, Wai Lok Sibon; Edlund, Christopher K; Morrison, John; Fortini, Barbara K; Win, Aung Ko; Conti, David V; Thomas, Duncan C; Duggan, David; Buchanan, Daniel D; Jenkins, Mark A; Hopper, John L; Gallinger, Steven; Le Marchand, Loïc; Newcomb, Polly A; Casey, Graham; Marjoram, Paul

    2016-03-03

    For the last decade the conceptual framework of the Genome-Wide Association Study (GWAS) has dominated the investigation of human disease and other complex traits. While GWAS have been successful in identifying a large number of variants associated with various phenotypes, the overall amount of heritability explained by these variants remains small. This raises the question of how best to follow up on a GWAS, localize causal variants accounting for GWAS hits, and as a consequence explain more of the so-called "missing" heritability. Advances in high throughput sequencing technologies now allow for the efficient and cost-effective collection of vast amounts of fine-scale genomic data to complement GWAS. We investigate these issues using a colon cancer dataset. After QC, our data consisted of 1993 cases, 899 controls. Using marginal tests of associations, we identify 10 variants distributed among six targeted regions that are significantly associated with colorectal cancer, with eight of the variants being novel to this study. Additionally, we perform so-called 'SNP-set' tests of association and identify two sets of variants that implicate both common and rare variants in the etiology of colorectal cancer. Here we present a large-scale targeted re-sequencing resource focusing on genomic regions implicated in colorectal cancer susceptibility previously identified in several GWAS, which aims to 1) provide fine-scale targeted sequencing data for fine-mapping and 2) provide data resources to address methodological questions regarding the design of sequencing-based follow-up studies to GWAS. Additionally, we show that this strategy successfully identifies novel variants associated with colorectal cancer susceptibility and can implicate both common and rare variants.

  4. Population-Specific Use of the Same Tool-Assisted Alarm Call between Two Wild Orangutan Populations (Pongopygmaeus wurmbii) Indicates Functional Arbitrariness

    PubMed Central

    Lameira, Adriano R.; Hardus, Madeleine E.; Nouwen, Kim J. J. M.; Topelberg, Eva; Delgado, Roberto A.; Spruijt, Berry M.; Sterck, Elisabeth H. M.; Knott, Cheryl D.; Wich, Serge A.

    2013-01-01

    Arbitrariness is an elementary feature of human language, yet seldom an object of comparative inquiry. While arbitrary signals for the same function are relatively frequent between animal populations across taxa, the same signal with arbitrary functions is rare and it remains unknown whether, in parallel with human speech, it may involve call production in animals. To investigate this question, we examined a particular orangutan alarm call – the kiss-squeak – and two variants – hand and leaf kiss-squeaks. In Tuanan (Central Kalimantan, Indonesia), the acoustic frequency of unaided kiss-squeaks is negatively related to body size. The modified variants are correlated with perceived threat and are hypothesized to increase the perceived body size of the sender, as the use of a hand or leaves lowers the kiss-squeak’s acoustic frequency. We examined the use of these variants in the same context in another orangutan population of the same sub-species and with partially similar habitat at Cabang Panti (West Kalimantan, Indonesia). Identical analyses of data from this site provided similar results for unaided kiss-squeaks but dissimilar results for hand and leaf kiss-squeaks. Unaided kiss-squeaks at Cabang Panti were emitted as commonly and showed the same relationship to body size as in Tuanan. However, at Cabang Panti, hand kiss-squeaks were extremely rare, while leaf-use neither conveyed larger body size nor was related to perceived threat. These findings indicate functional discontinuity between the two sites and therefore imply functional arbitrariness of leaf kiss-squeaks. These results show for the first time the existence of animal signals involving call production with arbitrary function. Our findings are consistent with previous studies arguing that these orangutan call variants are socially learned and reconcile the role of gestures and calls within evolutionary theories based on common ancestry for speech and music. PMID:23861981

  5. Population-specific use of the same tool-assisted alarm call between two wild orangutan populations (Pongo pygmaeus wurmbii) indicates functional arbitrariness [corrected].

    PubMed

    Lameira, Adriano R; Hardus, Madeleine E; Nouwen, Kim J J M; Topelberg, Eva; Delgado, Roberto A; Spruijt, Berry M; Sterck, Elisabeth H M; Knott, Cheryl D; Wich, Serge A

    2013-01-01

    Arbitrariness is an elementary feature of human language, yet seldom an object of comparative inquiry. While arbitrary signals for the same function are relatively frequent between animal populations across taxa, the same signal with arbitrary functions is rare and it remains unknown whether, in parallel with human speech, it may involve call production in animals. To investigate this question, we examined a particular orangutan alarm call - the kiss-squeak - and two variants - hand and leaf kiss-squeaks. In Tuanan (Central Kalimantan, Indonesia), the acoustic frequency of unaided kiss-squeaks is negatively related to body size. The modified variants are correlated with perceived threat and are hypothesized to increase the perceived body size of the sender, as the use of a hand or leaves lowers the kiss-squeak's acoustic frequency. We examined the use of these variants in the same context in another orangutan population of the same sub-species and with partially similar habitat at Cabang Panti (West Kalimantan, Indonesia). Identical analyses of data from this site provided similar results for unaided kiss-squeaks but dissimilar results for hand and leaf kiss-squeaks. Unaided kiss-squeaks at Cabang Panti were emitted as commonly and showed the same relationship to body size as in Tuanan. However, at Cabang Panti, hand kiss-squeaks were extremely rare, while leaf-use neither conveyed larger body size nor was related to perceived threat. These findings indicate functional discontinuity between the two sites and therefore imply functional arbitrariness of leaf kiss-squeaks. These results show for the first time the existence of animal signals involving call production with arbitrary function. Our findings are consistent with previous studies arguing that these orangutan call variants are socially learned and reconcile the role of gestures and calls within evolutionary theories based on common ancestry for speech and music.

  6. ToTem: a tool for variant calling pipeline optimization.

    PubMed

    Tom, Nikola; Tom, Ondrej; Malcikova, Jitka; Pavlova, Sarka; Kubesova, Blanka; Rausch, Tobias; Kolarik, Miroslav; Benes, Vladimir; Bystry, Vojtech; Pospisilova, Sarka

    2018-06-26

    High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at  https://totem.software .

  7. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    PubMed Central

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  8. PERCH: A Unified Framework for Disease Gene Prioritization.

    PubMed

    Feng, Bing-Jian

    2017-03-01

    To interpret genetic variants discovered from next-generation sequencing, integration of heterogeneous information is vital for success. This article describes a framework named PERCH (Polymorphism Evaluation, Ranking, and Classification for a Heritable trait), available at http://BJFengLab.org/. It can prioritize disease genes by quantitatively unifying a new deleteriousness measure called BayesDel, an improved assessment of the biological relevance of genes to the disease, a modified linkage analysis, a novel rare-variant association test, and a converted variant call quality score. It supports data that contain various combinations of extended pedigrees, trios, and case-controls, and allows for a reduced penetrance, an elevated phenocopy rate, liability classes, and covariates. BayesDel is more accurate than PolyPhen2, SIFT, FATHMM, LRT, Mutation Taster, Mutation Assessor, PhyloP, GERP++, SiPhy, CADD, MetaLR, and MetaSVM. The overall approach is faster and more powerful than the existing quantitative method pVAAST, as shown by the simulations of challenging situations in finding the missing heritability of a complex disease. This framework can also classify variants of unknown significance (variants of uncertain significance) by quantitatively integrating allele frequencies, deleteriousness, association, and co-segregation. PERCH is a versatile tool for gene prioritization in gene discovery research and variant classification in clinical genetic testing. © 2016 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  9. Construction of a combinatorial pipeline using two somatic variant  calling  methods  for whole exome sequence data of gastric cancer.

    PubMed

    Kohmoto, Tomohiro; Masuda, Kiyoshi; Naruto, Takuya; Tange, Shoichiro; Shoda, Katsutoshi; Hamada, Junichi; Saito, Masako; Ichikawa, Daisuke; Tajima, Atsushi; Otsuji, Eigo; Imoto, Issei

    2017-01-01

    High-throughput next-generation sequencing is a powerful tool to identify the genotypic landscapes of somatic variants and therapeutic targets in various cancers including gastric cancer, forming the basis for personalized medicine in the clinical setting. Although the advent of many computational algorithms leads to higher accuracy in somatic variant calling, no standard method exists due to the limitations of each method. Here, we constructed a new pipeline. We combined two different somatic variant callers with different algorithms, Strelka and VarScan 2, and evaluated performance using whole exome sequencing data obtained from 19 Japanese cases with gastric cancer (GC); then, we characterized these tumors based on identified driver molecular alterations. More single nucleotide variants (SNVs) and small insertions/deletions were detected by Strelka and VarScan 2, respectively. SNVs detected by both tools showed higher accuracy for estimating somatic variants compared with those detected by only one of the two tools and accurately showed the mutation signature and mutations of driver genes reported for GC. Our combinatorial pipeline may have an advantage in detection of somatic mutations in GC and may be useful for further genomic characterization of Japanese patients with GC to improve the efficacy of GC treatments. J. Med. Invest. 64: 233-240, August, 2017.

  10. RAPTR-SV: a hybrid method for the detection of structural variants

    USDA-ARS?s Scientific Manuscript database

    Motivation: Identification of Structural Variants (SV) in sequence data results in a large number of false positive calls using existing software, which overburdens subsequent validation. Results: Simulations using RAPTR-SV and another software package that uses a similar algorithm for SV detection...

  11. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking.

    PubMed

    Subach, Fedor V; Subach, Oksana M; Gundorov, Illia S; Morozova, Kateryna S; Piatkevich, Kiryl D; Cuervo, Ana Maria; Verkhusha, Vladislav V

    2009-02-01

    Based on the mechanism for chromophore formation in red fluorescent proteins, we developed three mCherry-derived monomeric variants, called fluorescent timers (FTs), that change their fluorescence from the blue to red over time. These variants exhibit distinctive fast, medium and slow blue-to-red chromophore maturation rates that depend on the temperature. At 37 degrees C, the maxima of the blue fluorescence are observed at 0.25, 1.2 and 9.8 h for the purified fast-FT, medium-FT and slow-FT, respectively. The half-maxima of the red fluorescence are reached at 7.1, 3.9 and 28 h, respectively. The FTs show similar timing behavior in bacteria, insect and mammalian cells. Medium-FT allowed for tracking of the intracellular dynamics of the lysosome-associated membrane protein type 2A (LAMP-2A) and determination of its age in the targeted compartments. The results indicate that LAMP-2A transport through the plasma membrane and early or recycling endosomes to lysosomes is a major pathway for LAMP-2A trafficking.

  12. Evaluation and optimisation of indel detection workflows for ion torrent sequencing of the BRCA1 and BRCA2 genes.

    PubMed

    Yeo, Zhen Xuan; Wong, Joshua Chee Leong; Rozen, Steven G; Lee, Ann Siew Gek

    2014-06-24

    The Ion Torrent PGM is a popular benchtop sequencer that shows promise in replacing conventional Sanger sequencing as the gold standard for mutation detection. Despite the PGM's reported high accuracy in calling single nucleotide variations, it tends to generate many false positive calls in detecting insertions and deletions (indels), which may hinder its utility for clinical genetic testing. Recently, the proprietary analytical workflow for the Ion Torrent sequencer, Torrent Suite (TS), underwent a series of upgrades. We evaluated three major upgrades of TS by calling indels in the BRCA1 and BRCA2 genes. Our analysis revealed that false negative indels could be generated by TS under both default calling parameters and parameters adjusted for maximum sensitivity. However, indel calling with the same data using the open source variant callers, GATK and SAMtools showed that false negatives could be minimised with the use of appropriate bioinformatics analysis. Furthermore, we identified two variant calling measures, Quality-by-Depth (QD) and VARiation of the Width of gaps and inserts (VARW), which substantially reduced false positive indels, including non-homopolymer associated errors without compromising sensitivity. In our best case scenario that involved the TMAP aligner and SAMtools, we achieved 100% sensitivity, 99.99% specificity and 29% False Discovery Rate (FDR) in indel calling from all 23 samples, which is a good performance for mutation screening using PGM. New versions of TS, BWA and GATK have shown improvements in indel calling sensitivity and specificity over their older counterpart. However, the variant caller of TS exhibits a lower sensitivity than GATK and SAMtools. Our findings demonstrate that although indel calling from PGM sequences may appear to be noisy at first glance, proper computational indel calling analysis is able to maximize both the sensitivity and specificity at the single base level, paving the way for the usage of this technology for future clinical genetic testing.

  13. The admixture maximum likelihood test to test for association between rare variants and disease phenotypes.

    PubMed

    Tyrer, Jonathan P; Guo, Qi; Easton, Douglas F; Pharoah, Paul D P

    2013-06-06

    The development of genotyping arrays containing hundreds of thousands of rare variants across the genome and advances in high-throughput sequencing technologies have made feasible empirical genetic association studies to search for rare disease susceptibility alleles. As single variant testing is underpowered to detect associations, the development of statistical methods to combine analysis across variants - so-called "burden tests" - is an area of active research interest. We previously developed a method, the admixture maximum likelihood test, to test multiple, common variants for association with a trait of interest. We have extended this method, called the rare admixture maximum likelihood test (RAML), for the analysis of rare variants. In this paper we compare the performance of RAML with six other burden tests designed to test for association of rare variants. We used simulation testing over a range of scenarios to test the power of RAML compared to the other rare variant association testing methods. These scenarios modelled differences in effect variability, the average direction of effect and the proportion of associated variants. We evaluated the power for all the different scenarios. RAML tended to have the greatest power for most scenarios where the proportion of associated variants was small, whereas SKAT-O performed a little better for the scenarios with a higher proportion of associated variants. The RAML method makes no assumptions about the proportion of variants that are associated with the phenotype of interest or the magnitude and direction of their effect. The method is flexible and can be applied to both dichotomous and quantitative traits and allows for the inclusion of covariates in the underlying regression model. The RAML method performed well compared to the other methods over a wide range of scenarios. Generally power was moderate in most of the scenarios, underlying the need for large sample sizes in any form of association testing.

  14. A reference bacterial genome dataset generated on the MinION™ portable single-molecule nanopore sequencer.

    PubMed

    Quick, Joshua; Quinlan, Aaron R; Loman, Nicholas J

    2014-01-01

    The MinION™ is a new, portable single-molecule sequencer developed by Oxford Nanopore Technologies. It measures four inches in length and is powered from the USB 3.0 port of a laptop computer. The MinION™ measures the change in current resulting from DNA strands interacting with a charged protein nanopore. These measurements can then be used to deduce the underlying nucleotide sequence. We present a read dataset from whole-genome shotgun sequencing of the model organism Escherichia coli K-12 substr. MG1655 generated on a MinION™ device during the early-access MinION™ Access Program (MAP). Sequencing runs of the MinION™ are presented, one generated using R7 chemistry (released in July 2014) and one using R7.3 (released in September 2014). Base-called sequence data are provided to demonstrate the nature of data produced by the MinION™ platform and to encourage the development of customised methods for alignment, consensus and variant calling, de novo assembly and scaffolding. FAST5 files containing event data within the HDF5 container format are provided to assist with the development of improved base-calling methods.

  15. Analysis of the [RNQ+] Prion Reveals Stability of Amyloid Fibers as the Key Determinant of Yeast Prion Variant Propagation*

    PubMed Central

    Kalastavadi, Tejas; True, Heather L.

    2010-01-01

    Variation in pathology of human prion disease is believed to be caused, in part, by distinct conformations of aggregated protein resulting in different prion strains. Several prions also exist in yeast and maintain different self-propagating structures, referred to as prion variants. Investigation of the yeast prion [PSI+] has been instrumental in deciphering properties of prion variants and modeling the physical basis of their formation. Here, we describe the generation of specific variants of the [RNQ+] prion in yeast transformed with fibers formed in vitro in different conditions. The fibers of the Rnq1p prion-forming domain (PFD) that induce different variants in vivo have distinct biochemical properties. The physical basis of propagation of prion variants has been previously correlated to rates of aggregation and disaggregation. With [RNQ+] prion variants, we found that the prion variant does not correlate with the rate of aggregation as anticipated but does correlate with stability. Interestingly, we found that there are differences in the ability of the [RNQ+] prion variants to faithfully propagate themselves and to template the aggregation of other proteins. Incorporating the mechanism of variant formation elucidated in this study with that previously proposed for [PSI+] variants has provided a framework to separate general characteristics of prion variant properties from those specific to individual prion proteins. PMID:20442412

  16. Validation and optimization of the Ion Torrent S5 XL sequencer and Oncomine workflow for BRCA1 and BRCA2 genetic testing.

    PubMed

    Shin, Saeam; Kim, Yoonjung; Chul Oh, Seoung; Yu, Nae; Lee, Seung-Tae; Rak Choi, Jong; Lee, Kyung-A

    2017-05-23

    In this study, we validated the analytical performance of BRCA1/2 sequencing using Ion Torrent's new bench-top sequencer with amplicon panel with optimized bioinformatics pipelines. Using 43 samples that were previously validated by Illumina's MiSeq platform and/or by Sanger sequencing/multiplex ligation-dependent probe amplification, we amplified the target with the Oncomine™ BRCA Research Assay and sequenced on Ion Torrent S5 XL (Thermo Fisher Scientific, Waltham, MA, USA). We compared two bioinformatics pipelines for optimal processing of S5 XL sequence data: the Torrent Suite with a plug-in Torrent Variant Caller (Thermo Fisher Scientific), and commercial NextGENe software (Softgenetics, State College, PA, USA). All expected 681 single nucleotide variants, 15 small indels, and three copy number variants were correctly called, except one common variant adjacent to a rare variant on the primer-binding site. The sensitivity, specificity, false positive rate, and accuracy for detection of single nucleotide variant and small indels of S5 XL sequencing were 99.85%, 100%, 0%, and 99.99% for the Torrent Variant Caller and 99.85%, 99.99%, 0.14%, and 99.99% for NextGENe, respectively. The reproducibility of variant calling was 100%, and the precision of variant frequency also showed good performance with coefficients of variation between 0.32 and 5.29%. We obtained highly accurate data through uniform and sufficient coverage depth over all target regions and through optimization of the bioinformatics pipeline. We confirmed that our platform is accurate and practical for diagnostic BRCA1/2 testing in a clinical laboratory.

  17. A dataset of multiresolution functional brain parcellations in an elderly population with no or mild cognitive impairment.

    PubMed

    Tam, Angela; Dansereau, Christian; Badhwar, AmanPreet; Orban, Pierre; Belleville, Sylvie; Chertkow, Howard; Dagher, Alain; Hanganu, Alexandru; Monchi, Oury; Rosa-Neto, Pedro; Shmuel, Amir; Breitner, John; Bellec, Pierre

    2016-12-01

    We present group eight resolutions of brain parcellations for clusters generated from resting-state functional magnetic resonance images for 99 cognitively normal elderly persons and 129 patients with mild cognitive impairment, pooled from four independent datasets. This dataset was generated as part of the following study: Common Effects of Amnestic Mild Cognitive Impairment on Resting-State Connectivity Across Four Independent Studies (Tam et al., 2015) [1]. The brain parcellations have been registered to both symmetric and asymmetric MNI brain templates and generated using a method called bootstrap analysis of stable clusters (BASC) (Bellec et al., 2010) [2]. We present two variants of these parcellations. One variant contains bihemisphereic parcels (4, 6, 12, 22, 33, 65, 111, and 208 total parcels across eight resolutions). The second variant contains spatially connected regions of interest (ROIs) that span only one hemisphere (10, 17, 30, 51, 77, 199, and 322 total ROIs across eight resolutions). We also present maps illustrating functional connectivity differences between patients and controls for four regions of interest (striatum, dorsal prefrontal cortex, middle temporal lobe, and medial frontal cortex). The brain parcels and associated statistical maps have been publicly released as 3D volumes, available in .mnc and .nii file formats on figshare and on Neurovault. Finally, the code used to generate this dataset is available on Github.

  18. VaDiR: an integrated approach to Variant Detection in RNA.

    PubMed

    Neums, Lisa; Suenaga, Seiji; Beyerlein, Peter; Anders, Sara; Koestler, Devin; Mariani, Andrea; Chien, Jeremy

    2018-02-01

    Advances in next-generation DNA sequencing technologies are now enabling detailed characterization of sequence variations in cancer genomes. With whole-genome sequencing, variations in coding and non-coding sequences can be discovered. But the cost associated with it is currently limiting its general use in research. Whole-exome sequencing is used to characterize sequence variations in coding regions, but the cost associated with capture reagents and biases in capture rate limit its full use in research. Additional limitations include uncertainty in assigning the functional significance of the mutations when these mutations are observed in the non-coding region or in genes that are not expressed in cancer tissue. We investigated the feasibility of uncovering mutations from expressed genes using RNA sequencing datasets with a method called Variant Detection in RNA(VaDiR) that integrates 3 variant callers, namely: SNPiR, RVBoost, and MuTect2. The combination of all 3 methods, which we called Tier 1 variants, produced the highest precision with true positive mutations from RNA-seq that could be validated at the DNA level. We also found that the integration of Tier 1 variants with those called by MuTect2 and SNPiR produced the highest recall with acceptable precision. Finally, we observed a higher rate of mutation discovery in genes that are expressed at higher levels. Our method, VaDiR, provides a possibility of uncovering mutations from RNA sequencing datasets that could be useful in further functional analysis. In addition, our approach allows orthogonal validation of DNA-based mutation discovery by providing complementary sequence variation analysis from paired RNA/DNA sequencing datasets.

  19. Best Practices and Joint Calling of the HumanExome BeadChip: The CHARGE Consortium

    PubMed Central

    Grove, Megan L.; Yu, Bing; Cochran, Barbara J.; Haritunians, Talin; Bis, Joshua C.; Taylor, Kent D.; Hansen, Mark; Borecki, Ingrid B.; Cupples, L. Adrienne; Fornage, Myriam; Gudnason, Vilmundur; Harris, Tamara B.; Kathiresan, Sekar; Kraaij, Robert; Launer, Lenore J.; Levy, Daniel; Liu, Yongmei; Mosley, Thomas; Peloso, Gina M.; Psaty, Bruce M.; Rich, Stephen S.; Rivadeneira, Fernando; Siscovick, David S.; Smith, Albert V.; Uitterlinden, Andre; van Duijn, Cornelia M.; Wilson, James G.; O’Donnell, Christopher J.; Rotter, Jerome I.; Boerwinkle, Eric

    2013-01-01

    Genotyping arrays are a cost effective approach when typing previously-identified genetic polymorphisms in large numbers of samples. One limitation of genotyping arrays with rare variants (e.g., minor allele frequency [MAF] <0.01) is the difficulty that automated clustering algorithms have to accurately detect and assign genotype calls. Combining intensity data from large numbers of samples may increase the ability to accurately call the genotypes of rare variants. Approximately 62,000 ethnically diverse samples from eleven Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium cohorts were genotyped with the Illumina HumanExome BeadChip across seven genotyping centers. The raw data files for the samples were assembled into a single project for joint calling. To assess the quality of the joint calling, concordance of genotypes in a subset of individuals having both exome chip and exome sequence data was analyzed. After exclusion of low performing SNPs on the exome chip and non-overlap of SNPs derived from sequence data, genotypes of 185,119 variants (11,356 were monomorphic) were compared in 530 individuals that had whole exome sequence data. A total of 98,113,070 pairs of genotypes were tested and 99.77% were concordant, 0.14% had missing data, and 0.09% were discordant. We report that joint calling allows the ability to accurately genotype rare variation using array technology when large sample sizes are available and best practices are followed. The cluster file from this experiment is available at www.chargeconsortium.com/main/exomechip. PMID:23874508

  20. Cooperative quantum-behaved particle swarm optimization with dynamic varying search areas and Lévy flight disturbance.

    PubMed

    Li, Desheng

    2014-01-01

    This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem.

  1. Core sequence of PAPf39 amyloid fibrils and mechanism of pH-dependent fibril formation: the role of monomer conformation.

    PubMed

    French, Kinsley C; Makhatadze, George I

    2012-12-21

    PAPf39, a 39-residue peptide fragment from human prostatic acidic phosphatase, has been shown to form amyloid fibrils in semen (SEVI), which increase HIV infectivity by up to 5 orders of magnitude. The sequence of the PAPf39 fibrillar core was identified using hydrogen-deuterium exchange (HDX) mass spectrometry and protease protection assays. The central and C-terminal regions are highly protected from HDX and proteolytic cleavage and, thus, are part of the fibrillar core. Conversely, the N-terminal region is unprotected from HDX and proteolytic cleavage, suggesting that it is exposed and not part of the fibrillar core. This finding was tested using two N-terminal truncated variants, PAPf39Δ1-8 and PAPf39Δ1-13. Both variants formed amyloid fibrils at neutral pH. However, these variants showed a markedly different pH dependence of fibril formation versus that of PAPf39. PAPf39 fibrils can form at pH 7.7, but not at pH 5.5 or 2.5, while both N-terminally truncated variants can form fibrils at these pH values. Thus, the N-terminal region is not necessary for fibril formation but modulates the pH dependence of PAPf39 fibril formation. PAPf39Δ1-8 and PAPf39Δ1-13 are capable of seeding PAPf39 fibril formation at neutral pH, suggesting that these variants are structurally compatible with PAPf39, yet no mixed fibril formation occurs between the truncated variants and PAPf39 at low pH. This suggests that pH affects the PAPf39 monomer conformational ensemble, which is supported by far-UV circular dichroism spectroscopy. A conceptual model describing the pH dependence of PAPf39 aggregation is proposed and provides potential biological implications.

  2. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification.

    PubMed

    Bao, Riyue; Hernandez, Kyle; Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud.

  3. Stability, Entrapment and Variant Formation of Salmonella Genomic Island 1

    PubMed Central

    Kiss, János; Nagy, Béla; Olasz, Ferenc

    2012-01-01

    Background The Salmonella genomic island 1 (SGI1) is a 42.4 kb integrative mobilizable element containing several antibiotic resistance determinants embedded in a complex integron segment In104. The numerous SGI1 variants identified so far, differ mainly in this segment and the explanations of their emergence were mostly based on comparative structure analyses. Here we provide experimental studies on the stability, entrapment and variant formation of this peculiar gene cluster originally found in S. Typhimurium. Methodology/Principal Findings Segregation and conjugation tests and various molecular techniques were used to detect the emerging SGI1 variants in Salmonella populations of 17 Salmonella enterica serovar Typhimurium DT104 isolates from Hungary. The SGI1s in these isolates proved to be fully competent in excision, conjugal transfer by the IncA/C helper plasmid R55, and integration into the E. coli chromosome. A trap vector has been constructed and successfully applied to capture the island on a plasmid. Monitoring of segregation of SGI1 indicated high stability of the island. SGI1-free segregants did not accumulate during long-term propagation, but several SGI1 variants could be obtained. Most of them appeared to be identical to SGI1-B and SGI1-C, but two new variants caused by deletions via a short-homology-dependent recombination process have also been detected. We have also noticed that the presence of the conjugation helper plasmid increased the formation of these deletion variants considerably. Conclusions/Significance Despite that excision of SGI1 from the chromosome was proven in SGI1+ Salmonella populations, its complete loss could not be observed. On the other hand, we demonstrated that several variants, among them two newly identified ones, arose with detectable frequencies in these populations in a short timescale and their formation was promoted by the helper plasmid. This reflects that IncA/C helper plasmids are not only involved in the horizontal spreading of SGI1, but may also contribute to its evolution. PMID:22384263

  4. Exploring the feasibility of using copy number variants as genetic markers through large-scale whole genome sequencing experiments

    USDA-ARS?s Scientific Manuscript database

    Copy number variants (CNV) are large scale duplications or deletions of genomic sequence that are caused by a diverse set of molecular phenomena that are distinct from single nucleotide polymorphism (SNP) formation. Due to their different mechanisms of formation, CNVs are often difficult to track us...

  5. Transpositional inactivation of gadW enhances curli production and biofilm formation in Enterohemorrhagic Escherichia coli O157:H7

    USDA-ARS?s Scientific Manuscript database

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been shown to produce variants that either express or are repressed in the expression of curli fimbriae promoting bacterial attachment, aggregation, and biofilm formation. The variant expression of curli fimbriae in some instances could result fr...

  6. affy2sv: an R package to pre-process Affymetrix CytoScan HD and 750K arrays for SNP, CNV, inversion and mosaicism calling.

    PubMed

    Hernandez-Ferrer, Carles; Quintela Garcia, Ines; Danielski, Katharina; Carracedo, Ángel; Pérez-Jurado, Luis A; González, Juan R

    2015-05-20

    The well-known Genome-Wide Association Studies (GWAS) had led to many scientific discoveries using SNP data. Even so, they were not able to explain the full heritability of complex diseases. Now, other structural variants like copy number variants or DNA inversions, either germ-line or in mosaicism events, are being studies. We present the R package affy2sv to pre-process Affymetrix CytoScan HD/750k array (also for Genome-Wide SNP 5.0/6.0 and Axiom) in structural variant studies. We illustrate the capabilities of affy2sv using two different complete pipelines on real data. The first one performing a GWAS and a mosaic alterations detection study, and the other detecting CNVs and performing an inversion calling. Both examples presented in the article show up how affy2sv can be used as part of more complex pipelines aimed to analyze Affymetrix SNP arrays data in genetic association studies, where different types of structural variants are considered.

  7. Cooperative Quantum-Behaved Particle Swarm Optimization with Dynamic Varying Search Areas and Lévy Flight Disturbance

    PubMed Central

    Li, Desheng

    2014-01-01

    This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem. PMID:24851085

  8. Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers

    PubMed Central

    Walker, Logan C; Marquart, Louise; Pearson, John F; Wiggins, George A R; O'Mara, Tracy A; Parsons, Michael T; Barrowdale, Daniel; McGuffog, Lesley; Dennis, Joe; Benitez, Javier; Slavin, Thomas P; Radice, Paolo; Frost, Debra; Godwin, Andrew K; Meindl, Alfons; Schmutzler, Rita Katharina; Isaacs, Claudine; Peshkin, Beth N; Caldes, Trinidad; Hogervorst, Frans BL; Lazaro, Conxi; Jakubowska, Anna; Montagna, Marco; Chen, Xiaoqing; Offit, Kenneth; Hulick, Peter J; Andrulis, Irene L; Lindblom, Annika; Nussbaum, Robert L; Nathanson, Katherine L; Chenevix-Trench, Georgia; Antoniou, Antonis C; Couch, Fergus J; Spurdle, Amanda B

    2017-01-01

    Genome-wide studies of patients carrying pathogenic variants (mutations) in BRCA1 or BRCA2 have reported strong associations between single-nucleotide polymorphisms (SNPs) and cancer risk. To conduct the first genome-wide association analysis of copy-number variants (CNVs) with breast or ovarian cancer risk in a cohort of 2500 BRCA1 pathogenic variant carriers, CNV discovery was performed using multiple calling algorithms and Illumina 610k SNP array data from a previously published genome-wide association study. Our analysis, which focused on functionally disruptive genomic deletions overlapping gene regions, identified a number of loci associated with risk of breast or ovarian cancer for BRCA1 pathogenic variant carriers. Despite only including putative deletions called by at least two or more algorithms, detection of selected CNVs by ancillary molecular technologies only confirmed 40% of predicted common (>1% allele frequency) variants. These include four loci that were associated (unadjusted P<0.05) with breast cancer (GTF2H2, ZNF385B, NAALADL2 and PSG5), and two loci associated with ovarian cancer (CYP2A7 and OR2A1). An interesting finding from this study was an association of a validated CNV deletion at the CYP2A7 locus (19q13.2) with decreased ovarian cancer risk (relative risk=0.50, P=0.007). Genomic analysis found this deletion coincides with a region displaying strong regulatory potential in ovarian tissue, but not in breast epithelial cells. This study highlighted the need to verify CNVs in vitro, but also provides evidence that experimentally validated CNVs (with plausible biological consequences) can modify risk of breast or ovarian cancer in BRCA1 pathogenic variant carriers. PMID:28145423

  9. Low fraction of the 222K PrP variant in the protease-resistant moiety of PrPres in heterozygous scrapie positive goats.

    PubMed

    Mazza, Maria; Guglielmetti, Chiara; Ingravalle, Francesco; Brusadore, Sonia; Langeveld, Jan P M; Ekateriniadou, Loukia V; Andréoletti, Olivier; Casalone, Cristina; Acutis, Pier Luigi

    2017-07-01

    The presence of lysine (K) at codon 222 has been associated with resistance to classical scrapie in goats, but few scrapie cases have been identified in 222Q/K animals. To investigate the contribution of the 222K variant to PrPres formation in natural and experimental Q/K scrapie cases, we applied an immunoblotting method based on the use of two different monoclonal antibodies, F99/97.6.1 and SAF84, chosen for their different affinities to 222K and 222Q PrP variants. Our finding that PrPres seems to be formed nearly totally by the 222Q variant provides evidence that the 222K PrP variant confers resistance to conversion to PrPres formation and reinforces the view that this mutation has a protective role against classical scrapie in goats.

  10. Low fraction of the 222K PrP variant in the protease-resistant moiety of PrPres in heterozygous scrapie positive goats

    PubMed Central

    Guglielmetti, Chiara; Ingravalle, Francesco; Brusadore, Sonia; Langeveld, Jan P. M.; Ekateriniadou, Loukia V.; Andréoletti, Olivier; Casalone, Cristina; Acutis, Pier Luigi

    2017-01-01

    The presence of lysine (K) at codon 222 has been associated with resistance to classical scrapie in goats, but few scrapie cases have been identified in 222Q/K animals. To investigate the contribution of the 222K variant to PrPres formation in natural and experimental Q/K scrapie cases, we applied an immunoblotting method based on the use of two different monoclonal antibodies, F99/97.6.1 and SAF84, chosen for their different affinities to 222K and 222Q PrP variants. Our finding that PrPres seems to be formed nearly totally by the 222Q variant provides evidence that the 222K PrP variant confers resistance to conversion to PrPres formation and reinforces the view that this mutation has a protective role against classical scrapie in goats. PMID:28691895

  11. Cake: a bioinformatics pipeline for the integrated analysis of somatic variants in cancer genomes

    PubMed Central

    Rashid, Mamunur; Robles-Espinoza, Carla Daniela; Rust, Alistair G.; Adams, David J.

    2013-01-01

    Summary: We have developed Cake, a bioinformatics software pipeline that integrates four publicly available somatic variant-calling algorithms to identify single nucleotide variants with higher sensitivity and accuracy than any one algorithm alone. Cake can be run on a high-performance computer cluster or used as a stand-alone application. Availabilty: Cake is open-source and is available from http://cakesomatic.sourceforge.net/ Contact: da1@sanger.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23803469

  12. Utility of NIST Whole-Genome Reference Materials for the Technical Validation of a Multigene Next-Generation Sequencing Test.

    PubMed

    Shum, Bennett O V; Henner, Ilya; Belluoccio, Daniele; Hinchcliffe, Marcus J

    2017-07-01

    The sensitivity and specificity of next-generation sequencing laboratory developed tests (LDTs) are typically determined by an analyte-specific approach. Analyte-specific validations use disease-specific controls to assess an LDT's ability to detect known pathogenic variants. Alternatively, a methods-based approach can be used for LDT technical validations. Methods-focused validations do not use disease-specific controls but use benchmark reference DNA that contains known variants (benign, variants of unknown significance, and pathogenic) to assess variant calling accuracy of a next-generation sequencing workflow. Recently, four whole-genome reference materials (RMs) from the National Institute of Standards and Technology (NIST) were released to standardize methods-based validations of next-generation sequencing panels across laboratories. We provide a practical method for using NIST RMs to validate multigene panels. We analyzed the utility of RMs in validating a novel newborn screening test that targets 70 genes, called NEO1. Despite the NIST RM variant truth set originating from multiple sequencing platforms, replicates, and library types, we discovered a 5.2% false-negative variant detection rate in the RM truth set genes that were assessed in our validation. We developed a strategy using complementary non-RM controls to demonstrate 99.6% sensitivity of the NEO1 test in detecting variants. Our findings have implications for laboratories or proficiency testing organizations using whole-genome NIST RMs for testing. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. A privacy-preserving solution for compressed storage and selective retrieval of genomic data.

    PubMed

    Huang, Zhicong; Ayday, Erman; Lin, Huang; Aiyar, Raeka S; Molyneaux, Adam; Xu, Zhenyu; Fellay, Jacques; Steinmetz, Lars M; Hubaux, Jean-Pierre

    2016-12-01

    In clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to store patients' complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compression, encryption, and selective retrieval. Here we present a privacy-preserving solution named SECRAM (Selective retrieval on Encrypted and Compressed Reference-oriented Alignment Map) for the secure storage of compressed aligned genomic data. Our solution enables selective retrieval of encrypted data and improves the efficiency of downstream analysis (e.g., variant calling). Compared with BAM, the de facto standard for storing aligned genomic data, SECRAM uses 18% less storage. Compared with CRAM, one of the most compressed nonencrypted formats (using 34% less storage than BAM), SECRAM maintains efficient compression and downstream data processing, while allowing for unprecedented levels of security in genomic data storage. Compared with previous work, the distinguishing features of SECRAM are that (1) it is position-based instead of read-based, and (2) it allows random querying of a subregion from a BAM-like file in an encrypted form. Our method thus offers a space-saving, privacy-preserving, and effective solution for the storage of clinical genomic data. © 2016 Huang et al.; Published by Cold Spring Harbor Laboratory Press.

  14. A privacy-preserving solution for compressed storage and selective retrieval of genomic data

    PubMed Central

    Huang, Zhicong; Ayday, Erman; Lin, Huang; Aiyar, Raeka S.; Molyneaux, Adam; Xu, Zhenyu; Hubaux, Jean-Pierre

    2016-01-01

    In clinical genomics, the continuous evolution of bioinformatic algorithms and sequencing platforms makes it beneficial to store patients’ complete aligned genomic data in addition to variant calls relative to a reference sequence. Due to the large size of human genome sequence data files (varying from 30 GB to 200 GB depending on coverage), two major challenges facing genomics laboratories are the costs of storage and the efficiency of the initial data processing. In addition, privacy of genomic data is becoming an increasingly serious concern, yet no standard data storage solutions exist that enable compression, encryption, and selective retrieval. Here we present a privacy-preserving solution named SECRAM (Selective retrieval on Encrypted and Compressed Reference-oriented Alignment Map) for the secure storage of compressed aligned genomic data. Our solution enables selective retrieval of encrypted data and improves the efficiency of downstream analysis (e.g., variant calling). Compared with BAM, the de facto standard for storing aligned genomic data, SECRAM uses 18% less storage. Compared with CRAM, one of the most compressed nonencrypted formats (using 34% less storage than BAM), SECRAM maintains efficient compression and downstream data processing, while allowing for unprecedented levels of security in genomic data storage. Compared with previous work, the distinguishing features of SECRAM are that (1) it is position-based instead of read-based, and (2) it allows random querying of a subregion from a BAM-like file in an encrypted form. Our method thus offers a space-saving, privacy-preserving, and effective solution for the storage of clinical genomic data. PMID:27789525

  15. QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles.

    PubMed

    Van der Borght, Koen; Thys, Kim; Wetzels, Yves; Clement, Lieven; Verbist, Bie; Reumers, Joke; van Vlijmen, Herman; Aerssens, Jeroen

    2015-11-10

    Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth ("deep sequencing"), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.net/projects/qqsnv), a logistic regression classifier model developed for the Illumina sequencing platforms that uses the quantiles of the quality scores, to distinguish true single nucleotide variants from sequencing errors based on the estimated SNV probability. To train the model, we created a dataset of an in silico mixture of five HIV-1 plasmids. Testing of our method in comparison to the existing methods LoFreq, ShoRAH, and V-Phaser 2 was performed on two HIV and four HCV plasmid mixture datasets and one influenza H1N1 clinical dataset. For default application of QQ-SNV, variants were called using a SNV probability cutoff of 0.5 (QQ-SNV(D)). To improve the sensitivity we used a SNV probability cutoff of 0.0001 (QQ-SNV(HS)). To also increase specificity, SNVs called were overruled when their frequency was below the 80(th) percentile calculated on the distribution of error frequencies (QQ-SNV(HS-P80)). When comparing QQ-SNV versus the other methods on the plasmid mixture test sets, QQ-SNV(D) performed similarly to the existing approaches. QQ-SNV(HS) was more sensitive on all test sets but with more false positives. QQ-SNV(HS-P80) was found to be the most accurate method over all test sets by balancing sensitivity and specificity. When applied to a paired-end HCV sequencing study, with lowest spiked-in true frequency of 0.5%, QQ-SNV(HS-P80) revealed a sensitivity of 100% (vs. 40-60% for the existing methods) and a specificity of 100% (vs. 98.0-99.7% for the existing methods). In addition, QQ-SNV required the least overall computation time to process the test sets. Finally, when testing on a clinical sample, four putative true variants with frequency below 0.5% were consistently detected by QQ-SNV(HS-P80) from different generations of Illumina sequencers. We developed and successfully evaluated a novel method, called QQ-SNV, for highly efficient single nucleotide variant calling on Illumina deep sequencing virology data.

  16. Liver myofibroblasts of murine origins express mesothelin: Identification of novel rat mesothelin splice variants*

    PubMed Central

    G. Lavoie, Elise; Dranoff, Jonathan A.

    2017-01-01

    Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrβ, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and cellular distribution in transfected COS7 fibroblasts. We conclude that mesothelin is a marker of activated murine liver myofibroblasts. Mesothelin gene expression and regulation may be critical in liver myofibroblasts functions and fibrosis progression. PMID:28898276

  17. NMNAT1 variants cause cone and cone-rod dystrophy.

    PubMed

    Nash, Benjamin M; Symes, Richard; Goel, Himanshu; Dinger, Marcel E; Bennetts, Bruce; Grigg, John R; Jamieson, Robyn V

    2018-03-01

    Cone and cone-rod dystrophies (CD and CRD, respectively) are degenerative retinal diseases that predominantly affect the cone photoreceptors. The underlying disease gene is not known in approximately 75% of autosomal recessive cases. Variants in NMNAT1 cause a severe, early-onset retinal dystrophy called Leber congenital amaurosis (LCA). We report two patients where clinical phenotyping indicated diagnoses of CD and CRD, respectively. NMNAT1 variants were identified, with Case 1 showing an extremely rare homozygous variant c.[271G > A] p.(Glu91Lys) and Case 2 compound heterozygous variants c.[53 A > G];[769G > A] p.(Asn18Ser);(Glu257Lys). The detailed variant analysis, in combination with the observation of an associated macular atrophy phenotype, indicated that these variants were disease-causing. This report demonstrates that the variants in NMNAT1 may cause CD or CRD associated with macular atrophy. Genetic investigations of the patients with CD or CRD should include NMNAT1 in the genes examined.

  18. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification

    PubMed Central

    Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud. PMID:26271043

  19. Regulatory changes raise troubling questions for genomic testing.

    PubMed

    Evans, Barbara J; Dorschner, Michael O; Burke, Wylie; Jarvik, Gail P

    2014-11-01

    By 6 October 2014, many laboratories in the United States must begin honoring new individual data access rights created by recent changes to federal privacy and laboratory regulations. These access rights are more expansive than has been widely understood and pose complex challenges for genomic testing laboratories. This article analyzes regulatory texts and guidances to explore which laboratories are affected. It offers the first published analysis of which parts of the vast trove of data generated during next-generation sequencing will be accessible to patients and research subjects. Persons tested at affected laboratories seemingly will have access, upon request, to uninterpreted gene variant information contained in their stored variant call format, binary alignment/map, and FASTQ files. A defect in the regulations will subject some non-CLIA-regulated research laboratories to these new access requirements unless the Department of Health and Human Services takes swift action to avert this apparently unintended consequence. More broadly, all affected laboratories face a long list of daunting operational, business, compliance, and bioethical issues as they adapt to this change and to the Food and Drug Administration's recently announced plan to publish draft guidance outlining a new oversight framework for lab-developed tests.

  20. Clinical Variant Classification: A Comparison of Public Databases and a Commercial Testing Laboratory.

    PubMed

    Gradishar, William; Johnson, KariAnne; Brown, Krystal; Mundt, Erin; Manley, Susan

    2017-07-01

    There is a growing move to consult public databases following receipt of a genetic test result from a clinical laboratory; however, the well-documented limitations of these databases call into question how often clinicians will encounter discordant variant classifications that may introduce uncertainty into patient management. Here, we evaluate discordance in BRCA1 and BRCA2 variant classifications between a single commercial testing laboratory and a public database commonly consulted in clinical practice. BRCA1 and BRCA2 variant classifications were obtained from ClinVar and compared with the classifications from a reference laboratory. Full concordance and discordance were determined for variants whose ClinVar entries were of the same pathogenicity (pathogenic, benign, or uncertain). Variants with conflicting ClinVar classifications were considered partially concordant if ≥1 of the listed classifications agreed with the reference laboratory classification. Four thousand two hundred and fifty unique BRCA1 and BRCA2 variants were available for analysis. Overall, 73.2% of classifications were fully concordant and 12.3% were partially concordant. The remaining 14.5% of variants had discordant classifications, most of which had a definitive classification (pathogenic or benign) from the reference laboratory compared with an uncertain classification in ClinVar (14.0%). Here, we show that discrepant classifications between a public database and single reference laboratory potentially account for 26.7% of variants in BRCA1 and BRCA2 . The time and expertise required of clinicians to research these discordant classifications call into question the practicality of checking all test results against a database and suggest that discordant classifications should be interpreted with these limitations in mind. With the increasing use of clinical genetic testing for hereditary cancer risk, accurate variant classification is vital to ensuring appropriate medical management. There is a growing move to consult public databases following receipt of a genetic test result from a clinical laboratory; however, we show that up to 26.7% of variants in BRCA1 and BRCA2 have discordant classifications between ClinVar and a reference laboratory. The findings presented in this paper serve as a note of caution regarding the utility of database consultation. © AlphaMed Press 2017.

  1. Genovar: a detection and visualization tool for genomic variants.

    PubMed

    Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung

    2012-05-08

    Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.

  2. Rare genetic variants and the risk of cancer.

    PubMed

    Bodmer, Walter; Tomlinson, Ian

    2010-06-01

    There are good reasons to expect that common genetic variants do not explain all of the inherited risk of the common cancers, not least of these being the relatively low proportion of familial relative risk that common cancer SNPs currently explain. One promising source of the unexplained risk is rare, low-penetrance genetic variants, a class that ranges from low-frequency polymorphisms (allele frequency < 5%) through subpolymorphic variants (frequency 0.1-1.0%) to very low frequency or 'private' variants with frequencies of 0.1% or less. Examples of rare cancer variants include breast cancer susceptibility loci CHEK2, BRIP1 and PALB2. There are considerable challenges associated with the discovery and testing of rare predisposition alleles, many of which are illustrated by the issues associated with variants of unknown significance in the Mendelian cancer predisposition genes. However, whilst cost constraints remain, the technological barriers to rare variant discovery and large-scale genotyping no longer exist. If each individual carries many disease-causing rare variants, the so-called missing heritability of cancer might largely be explained. Whether or not rare variants do end up filling the heritability gap, it is imperative to look for them along side common variants.

  3. Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing.

    PubMed

    Artomov, Mykyta; Stratigos, Alexander J; Kim, Ivana; Kumar, Raj; Lauss, Martin; Reddy, Bobby Y; Miao, Benchun; Daniela Robles-Espinoza, Carla; Sankar, Aravind; Njauw, Ching-Ni; Shannon, Kristen; Gragoudas, Evangelos S; Marie Lane, Anne; Iyer, Vivek; Newton-Bishop, Julia A; Timothy Bishop, D; Holland, Elizabeth A; Mann, Graham J; Singh, Tarjinder; Daly, Mark J; Tsao, Hensin

    2017-12-01

    Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10-6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10-4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10-4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10-5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and implicate EBF3 as a possible CM predisposition gene.

  4. Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing

    PubMed Central

    Artomov, Mykyta; Stratigos, Alexander J; Kim, Ivana; Kumar, Raj; Lauss, Martin; Reddy, Bobby Y; Miao, Benchun; Daniela Robles-Espinoza, Carla; Sankar, Aravind; Njauw, Ching-Ni; Shannon, Kristen; Gragoudas, Evangelos S; Marie Lane, Anne; Iyer, Vivek; Newton-Bishop, Julia A; Timothy Bishop, D; Holland, Elizabeth A; Mann, Graham J; Singh, Tarjinder; Daly, Mark J; Tsao, Hensin

    2017-01-01

    Abstract Background Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Methods Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Results Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10‐6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10‐4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10‐4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10‐5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. Conclusions The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and implicate EBF3 as a possible CM predisposition gene. PMID:29522175

  5. a Variant of Lsd-Slam Capable of Processing High-Speed Low-Framerate Monocular Datasets

    NASA Astrophysics Data System (ADS)

    Schmid, S.; Fritsch, D.

    2017-11-01

    We develop a new variant of LSD-SLAM, called C-LSD-SLAM, which is capable of performing monocular tracking and mapping in high-speed low-framerate situations such as those of the KITTI datasets. The methods used here are robust against the influence of erronously triangulated points near the epipolar direction, which otherwise causes tracking divergence.

  6. The hidden genomic landscape of acute myeloid leukemia: subclonal structure revealed by undetected mutations

    PubMed Central

    Bodini, Margherita; Ronchini, Chiara; Giacò, Luciano; Russo, Anna; Melloni, Giorgio E. M.; Luzi, Lucilla; Sardella, Domenico; Volorio, Sara; Hasan, Syed K.; Ottone, Tiziana; Lavorgna, Serena; Lo-Coco, Francesco; Candoni, Anna; Fanin, Renato; Toffoletti, Eleonora; Iacobucci, Ilaria; Martinelli, Giovanni; Cignetti, Alessandro; Tarella, Corrado; Bernard, Loris; Pelicci, Pier Giuseppe

    2015-01-01

    The analyses carried out using 2 different bioinformatics pipelines (SomaticSniper and MuTect) on the same set of genomic data from 133 acute myeloid leukemia (AML) patients, sequenced inside the Cancer Genome Atlas project, gave discrepant results. We subsequently tested these 2 variant-calling pipelines on 20 leukemia samples from our series (19 primary AMLs and 1 secondary AML). By validating many of the predicted somatic variants (variant allele frequencies ranging from 100% to 5%), we observed significantly different calling efficiencies. In particular, despite relatively high specificity, sensitivity was poor in both pipelines resulting in a high rate of false negatives. Our findings raise the possibility that landscapes of AML genomes might be more complex than previously reported and characterized by the presence of hundreds of genes mutated at low variant allele frequency, suggesting that the application of genome sequencing to the clinic requires a careful and critical evaluation. We think that improvements in technology and workflow standardization, through the generation of clear experimental and bioinformatics guidelines, are fundamental to translate the use of next-generation sequencing from research to the clinic and to transform genomic information into better diagnosis and outcomes for the patient. PMID:25499761

  7. pyAmpli: an amplicon-based variant filter pipeline for targeted resequencing data.

    PubMed

    Beyens, Matthias; Boeckx, Nele; Van Camp, Guy; Op de Beeck, Ken; Vandeweyer, Geert

    2017-12-14

    Haloplex targeted resequencing is a popular method to analyze both germline and somatic variants in gene panels. However, involved wet-lab procedures may introduce false positives that need to be considered in subsequent data-analysis. No variant filtering rationale addressing amplicon enrichment related systematic errors, in the form of an all-in-one package, exists to our knowledge. We present pyAmpli, a platform independent parallelized Python package that implements an amplicon-based germline and somatic variant filtering strategy for Haloplex data. pyAmpli can filter variants for systematic errors by user pre-defined criteria. We show that pyAmpli significantly increases specificity, without reducing sensitivity, essential for reporting true positive clinical relevant mutations in gene panel data. pyAmpli is an easy-to-use software tool which increases the true positive variant call rate in targeted resequencing data. It specifically reduces errors related to PCR-based enrichment of targeted regions.

  8. Genetic variants involved in gallstone formation and capsaicin metabolism, and the risk of gallbladder cancer in Chilean women

    PubMed Central

    Báez, Sergio; Tsuchiya, Yasuo; Calvo, Alfonso; Pruyas, Martha; Nakamura, Kazutoshi; Kiyohara, Chikako; Oyama, Mari; Yamamoto, Masaharu

    2010-01-01

    AIM: To determine the effects of genetic variants associated with gallstone formation and capsaicin (a pungent component of chili pepper) metabolism on the risk of gallbladder cancer (GBC). METHODS: A total of 57 patients with GBC, 119 patients with gallstones, and 70 controls were enrolled in this study. DNA was extracted from their blood or paraffin block sample using standard commercial kits. The statuses of the genetic variants were assayed using Taqman® SNP Genotyping Assays or Custom Taqman® SNP Genotyping Assays. RESULTS: The non-ancestral T/T genotype of apolipoprotein B rs693 polymorphism was associated with a decreased risk of GBC (OR: 0.14, 95% CI: 0.03-0.63). The T/T genotype of cholesteryl ester transfer protein (CETP) rs708272 polymorphism was associated with an increased risk of GBC (OR: 5.04, 95% CI: 1.43-17.8). CONCLUSION: Genetic variants involved in gallstone formation such as the apolipoprotein B rs693 and CETP rs708272 polymorphisms may be related to the risk of developing GBC in Chilean women. PMID:20082485

  9. Wild yeast harbor a variety of distinct amyloid structures with strong prion-inducing capabilities

    PubMed Central

    Westergard, Laura; True, Heather L.

    2014-01-01

    Summary Variation in amyloid structures profoundly influences a wide array of pathological phenotypes in mammalian protein conformation disorders and dominantly inherited phenotypes in yeast. Here, we describe, for the first time, naturally occurring, self-propagating, structural variants of a prion protein isolated from wild strains of the yeast Saccharomyces cerevisiae. Variants of the [RNQ+] prion propagating in a variety of wild yeast differ biochemically, in their intracellular distributions, and in their ability to promote formation of the [PSI+] prion. [PSI+] is an epigenetic regulator of cellular phenotype and adaptability. Strikingly, we find that most natural [RNQ+] variants induced [PSI+] at high frequencies and the majority of [PSI+] variants elicited strong cellular phenotypes. We hypothesize that the presence of an efficient [RNQ+] template primes the cell for [PSI+] formation in order to induce [PSI+] in conditions where it would be advantageous. These studies utilize naturally occurring structural variants to expand our understanding of the consequences of diverse prion conformations on cellular phenotypes. PMID:24673812

  10. Proposal for the nomenclature of human plasminogen (PLG) polymorphism.

    PubMed

    Skoda, U; Bertrams, J; Dykes, D; Eiberg, H; Hobart, M; Hummel, K; Kühnl, P; Mauff, G; Nakamura, S; Nishimukai, H

    1986-01-01

    Since its discovery, human plasminogen (PLG) polymorphism has received widespread acceptance in population genetics and forensic haematology. Due to the large number of variant alleles described, a PLG reference typing and Plasminogen Symposium was held, at which a nomenclature proposal was inaugurated. The technology of comparing PLG variants was based on isoelectric focusing and subsequent detection by caseinolytic overlay and 'Western' blotting. Typing results permitted comparison of so far described variant designations and resulted in a new nomenclature proposal for PLG polymorphism. It is recommended that the two most common alleles found in all investigated races be called: PLG*A (previously also PLG*1) and PLG*B (previously also PLG*2), the known variants with acidic pI: PLG*A1 to *A3, intermediate variants: PLG*M1 to *M5, PLG*M5 being functionally inactive, and basic variants: PLG*B1 to *B3. For future classification of newly discovered variants, samples should be compared at any of the laboratories participating in the reference typing.

  11. In-depth comparison of somatic point mutation callers based on different tumor next-generation sequencing depth data

    NASA Astrophysics Data System (ADS)

    Cai, Lei; Yuan, Wei; Zhang, Zhou; He, Lin; Chou, Kuo-Chen

    2016-11-01

    Four popular somatic single nucleotide variant (SNV) calling methods (Varscan, SomaticSniper, Strelka and MuTect2) were carefully evaluated on the real whole exome sequencing (WES, depth of ~50X) and ultra-deep targeted sequencing (UDT-Seq, depth of ~370X) data. The four tools returned poor consensus on candidates (only 20% of calls were with multiple hits by the callers). For both WES and UDT-Seq, MuTect2 and Strelka obtained the largest proportion of COSMIC entries as well as the lowest rate of dbSNP presence and high-alternative-alleles-in-control calls, demonstrating their superior sensitivity and accuracy. Combining different callers does increase reliability of candidates, but narrows the list down to very limited range of tumor read depth and variant allele frequency. Calling SNV on UDT-Seq data, which were of much higher read-depth, discovered additional true-positive variations, despite an even more tremendous growth in false positive predictions. Our findings not only provide valuable benchmark for state-of-the-art SNV calling methods, but also shed light on the access to more accurate SNV identification in the future.

  12. OTG-snpcaller: An Optimized Pipeline Based on TMAP and GATK for SNP Calling from Ion Torrent Data

    PubMed Central

    Huang, Wenpan; Xi, Feng; Lin, Lin; Zhi, Qihuan; Zhang, Wenwei; Tang, Y. Tom; Geng, Chunyu; Lu, Zhiyuan; Xu, Xun

    2014-01-01

    Because the new Proton platform from Life Technologies produced markedly different data from those of the Illumina platform, the conventional Illumina data analysis pipeline could not be used directly. We developed an optimized SNP calling method using TMAP and GATK (OTG-snpcaller). This method combined our own optimized processes, Remove Duplicates According to AS Tag (RDAST) and Alignment Optimize Structure (AOS), together with TMAP and GATK, to call SNPs from Proton data. We sequenced four sets of exomes captured by Agilent SureSelect and NimbleGen SeqCap EZ Kit, using Life Technology’s Ion Proton sequencer. Then we applied OTG-snpcaller and compared our results with the results from Torrent Variants Caller. The results indicated that OTG-snpcaller can reduce both false positive and false negative rates. Moreover, we compared our results with Illumina results generated by GATK best practices, and we found that the results of these two platforms were comparable. The good performance in variant calling using GATK best practices can be primarily attributed to the high quality of the Illumina sequences. PMID:24824529

  13. OTG-snpcaller: an optimized pipeline based on TMAP and GATK for SNP calling from ion torrent data.

    PubMed

    Zhu, Pengyuan; He, Lingyu; Li, Yaqiao; Huang, Wenpan; Xi, Feng; Lin, Lin; Zhi, Qihuan; Zhang, Wenwei; Tang, Y Tom; Geng, Chunyu; Lu, Zhiyuan; Xu, Xun

    2014-01-01

    Because the new Proton platform from Life Technologies produced markedly different data from those of the Illumina platform, the conventional Illumina data analysis pipeline could not be used directly. We developed an optimized SNP calling method using TMAP and GATK (OTG-snpcaller). This method combined our own optimized processes, Remove Duplicates According to AS Tag (RDAST) and Alignment Optimize Structure (AOS), together with TMAP and GATK, to call SNPs from Proton data. We sequenced four sets of exomes captured by Agilent SureSelect and NimbleGen SeqCap EZ Kit, using Life Technology's Ion Proton sequencer. Then we applied OTG-snpcaller and compared our results with the results from Torrent Variants Caller. The results indicated that OTG-snpcaller can reduce both false positive and false negative rates. Moreover, we compared our results with Illumina results generated by GATK best practices, and we found that the results of these two platforms were comparable. The good performance in variant calling using GATK best practices can be primarily attributed to the high quality of the Illumina sequences.

  14. Studying medical communication with video vignettes: a randomized study on how variations in video-vignette introduction format and camera focus influence analogue patients' engagement.

    PubMed

    Visser, Leonie N C; Bol, Nadine; Hillen, Marij A; Verdam, Mathilde G E; de Haes, Hanneke C J M; van Weert, Julia C M; Smets, Ellen M A

    2018-01-19

    Video vignettes are used to test the effects of physicians' communication on patient outcomes. Methodological choices in video-vignette development may have far-stretching consequences for participants' engagement with the video, and thus the ecological validity of this design. To supplement the scant evidence in this field, this study tested how variations in video-vignette introduction format and camera focus influence participants' engagement with a video vignette showing a bad news consultation. Introduction format (A = audiovisual vs. B = written) and camera focus (1 = the physician only, 2 = the physician and the patient at neutral moments alternately, 3 = the physician and the patient at emotional moments alternately) were varied in a randomized 2 × 3 between-subjects design. One hundred eighty-one students were randomly assigned to watch one of the six resulting video-vignette conditions as so-called analogue patients, i.e., they were instructed to imagine themselves being in the video patient's situation. Four dimensions of self-reported engagement were assessed retrospectively. Emotional engagement was additionally measured by recording participants' electrodermal and cardiovascular activity continuously while watching. Analyses of variance were used to test the effects of introduction format, camera focus and their interaction. The audiovisual introduction induced a stronger blood pressure response during watching the introduction (p = 0.048, [Formula: see text]= 0.05) and the consultation part of the vignette (p = 0.051, [Formula: see text]= 0.05), when compared to the written introduction. With respect to camera focus, results revealed that the variant focusing on the patient at emotional moments evoked a higher level of electrodermal activity (p = 0.003, [Formula: see text]= 0.06), when compared to the other two variants. Furthermore, an interaction effect was shown on self-reported emotional engagement (p = 0.045, [Formula: see text]= 0.04): the physician-only variant resulted in lower emotional engagement if the vignette was preceded by the audiovisual introduction. No effects were shown on the other dimensions of self-reported engagement. Our findings imply that using an audiovisual introduction combined with alternating camera focus depicting patient's emotions results in the highest levels of emotional engagement in analogue patients. This evidence can inform methodological decisions during the development of video vignettes, and thereby enhance the ecological validity of future video-vignettes studies.

  15. Dynamical thresholding of pancake models: a promising variant of the HDM picture

    NASA Astrophysics Data System (ADS)

    Buchert, Thomas

    Variants of pancake models are considered which allow for the construction of a phenomenological link to the galaxy formation process. A control parameter space is introduced which defines different scenarios of galaxy formation. The sensibility of statistical measures of the small-scale structure with respect to this parameter freedom is demonstrated. This property of the galaxy formation model, together with the consequences of enlarging the box size of the simulation to a `fair sample scale', form the basis of arguments to support the possible revival of the standard `Hot-Dark-Matter' model.

  16. Towards Clinical Molecular Diagnosis of Inherited Cardiac Conditions: A Comparison of Bench-Top Genome DNA Sequencers

    PubMed Central

    Wilkinson, Samuel L.; John, Shibu; Walsh, Roddy; Novotny, Tomas; Valaskova, Iveta; Gupta, Manu; Game, Laurence; Barton, Paul J R.; Cook, Stuart A.; Ware, James S.

    2013-01-01

    Background Molecular genetic testing is recommended for diagnosis of inherited cardiac disease, to guide prognosis and treatment, but access is often limited by cost and availability. Recently introduced high-throughput bench-top DNA sequencing platforms have the potential to overcome these limitations. Methodology/Principal Findings We evaluated two next-generation sequencing (NGS) platforms for molecular diagnostics. The protein-coding regions of six genes associated with inherited arrhythmia syndromes were amplified from 15 human samples using parallelised multiplex PCR (Access Array, Fluidigm), and sequenced on the MiSeq (Illumina) and Ion Torrent PGM (Life Technologies). Overall, 97.9% of the target was sequenced adequately for variant calling on the MiSeq, and 96.8% on the Ion Torrent PGM. Regions missed tended to be of high GC-content, and most were problematic for both platforms. Variant calling was assessed using 107 variants detected using Sanger sequencing: within adequately sequenced regions, variant calling on both platforms was highly accurate (Sensitivity: MiSeq 100%, PGM 99.1%. Positive predictive value: MiSeq 95.9%, PGM 95.5%). At the time of the study the Ion Torrent PGM had a lower capital cost and individual runs were cheaper and faster. The MiSeq had a higher capacity (requiring fewer runs), with reduced hands-on time and simpler laboratory workflows. Both provide significant cost and time savings over conventional methods, even allowing for adjunct Sanger sequencing to validate findings and sequence exons missed by NGS. Conclusions/Significance MiSeq and Ion Torrent PGM both provide accurate variant detection as part of a PCR-based molecular diagnostic workflow, and provide alternative platforms for molecular diagnosis of inherited cardiac conditions. Though there were performance differences at this throughput, platforms differed primarily in terms of cost, scalability, protocol stability and ease of use. Compared with current molecular genetic diagnostic tests for inherited cardiac arrhythmias, these NGS approaches are faster, less expensive, and yet more comprehensive. PMID:23861798

  17. Double hazards of ischemia and reperfusion arrhythmias in a patient with variant angina pectoris.

    PubMed

    Xu, Mingzhu; Yang, Xiangjun

    2015-01-01

    Variant angina pectoris, also called Prinzmetal's angina, is a syndrome caused by vasospasms of the coronary arteries. It can lead to myocardial infarction, ventricular arrhythmias, atrioventricular block and even sudden cardiac death. We report the case of a 53 year-old male patient with recurrent episodes of chest pain and arrhythmias in the course of related variant angina pectoris. It is likely that the reperfusion following myocardial ischemia was responsible for the ventricular fibrillation while the ST-segment returned to the baseline. This case showed that potential lethal arrhythmias could arise due to variant angina pectoris. It also indicated that ventricular fibrillation could be self-terminated. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Sanger Confirmation Is Required to Achieve Optimal Sensitivity and Specificity in Next-Generation Sequencing Panel Testing.

    PubMed

    Mu, Wenbo; Lu, Hsiao-Mei; Chen, Jefferey; Li, Shuwei; Elliott, Aaron M

    2016-11-01

    Next-generation sequencing (NGS) has rapidly replaced Sanger sequencing as the method of choice for diagnostic gene-panel testing. For hereditary-cancer testing, the technical sensitivity and specificity of the assay are paramount as clinicians use results to make important clinical management and treatment decisions. There is significant debate within the diagnostics community regarding the necessity of confirming NGS variant calls by Sanger sequencing, considering that numerous laboratories report having 100% specificity from the NGS data alone. Here we report our results from 20,000 hereditary-cancer NGS panels spanning 47 genes, in which all 7845 nonpolymorphic variants were Sanger- sequenced. Of these, 98.7% were concordant between NGS and Sanger sequencing and 1.3% were identified as NGS false-positives, located mainly in complex genomic regions (A/T-rich regions, G/C-rich regions, homopolymer stretches, and pseudogene regions). Simulating a false-positive rate of zero by adjusting the variant-calling quality-score thresholds decreased the sensitivity of the assay from 100% to 97.8%, resulting in the missed detection of 176 Sanger-confirmed variants, the majority in complex genomic regions (n = 114) and mosaic mutations (n = 7). The data illustrate the importance of setting quality thresholds for panel testing only after thousands of samples have been processed and the necessity of Sanger confirmation of NGS variants to maintain the highest possible sensitivity. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Candidate Cancer Allele cDNA Collection | Office of Cancer Genomics

    Cancer.gov

    CTD2 researchers at the Broad Institute/DFCI have developed a collection of plasmids including mutant alleles found in sequencing studies of cancer. It includes somatic variants found in lung adenocarcinoma and across other cancer types. The clones enable researchers to characterize the function of the cancer variants in a high throughput experiments. These plasmids are collectively called the “Broad Target Accelerator Plasmid Collections”.

  20. SNPitty: An Intuitive Web Application for Interactive B-Allele Frequency and Copy Number Visualization of Next-Generation Sequencing Data.

    PubMed

    van Riet, Job; Krol, Niels M G; Atmodimedjo, Peggy N; Brosens, Erwin; van IJcken, Wilfred F J; Jansen, Maurice P H M; Martens, John W M; Looijenga, Leendert H; Jenster, Guido; Dubbink, Hendrikus J; Dinjens, Winand N M; van de Werken, Harmen J G

    2018-03-01

    Exploration and visualization of next-generation sequencing data are crucial for clinical diagnostics. Software allowing simultaneous visualization of multiple regions of interest coupled with dynamic heuristic filtering of genetic aberrations is, however, lacking. Therefore, the authors developed the web application SNPitty that allows interactive visualization and interrogation of variant call format files by using B-allele frequencies of single-nucleotide polymorphisms and single-nucleotide variants, coverage metrics, and copy numbers analysis results. SNPitty displays variant alleles and allelic imbalances with a focus on loss of heterozygosity and copy number variation using genome-wide heterozygous markers and somatic mutations. In addition, SNPitty is capable of generating predefined reports that summarize and highlight disease-specific targets of interest. SNPitty was validated for diagnostic interpretation of somatic events by showcasing a serial dilution series of glioma tissue. Additionally, SNPitty is demonstrated in four cancer-related scenarios encountered in daily clinical practice and on whole-exome sequencing data of peripheral blood from a Down syndrome patient. SNPitty allows detection of loss of heterozygosity, chromosomal and gene amplifications, homozygous or heterozygous deletions, somatic mutations, or any combination thereof in regions or genes of interest. Furthermore, SNPitty can be used to distinguish molecular relationships between multiple tumors from a single patient. On the basis of these data, the authors demonstrate that SNPitty is robust and user friendly in a wide range of diagnostic scenarios. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. CoVaCS: a consensus variant calling system.

    PubMed

    Chiara, Matteo; Gioiosa, Silvia; Chillemi, Giovanni; D'Antonio, Mattia; Flati, Tiziano; Picardi, Ernesto; Zambelli, Federico; Horner, David Stephen; Pesole, Graziano; Castrignanò, Tiziana

    2018-02-05

    The advent and ongoing development of next generation sequencing technologies (NGS) has led to a rapid increase in the rate of human genome re-sequencing data, paving the way for personalized genomics and precision medicine. The body of genome resequencing data is progressively increasing underlining the need for accurate and time-effective bioinformatics systems for genotyping - a crucial prerequisite for identification of candidate causal mutations in diagnostic screens. Here we present CoVaCS, a fully automated, highly accurate system with a web based graphical interface for genotyping and variant annotation. Extensive tests on a gold standard benchmark data-set -the NA12878 Illumina platinum genome- confirm that call-sets based on our consensus strategy are completely in line with those attained by similar command line based approaches, and far more accurate than call-sets from any individual tool. Importantly our system exhibits better sensitivity and higher specificity than equivalent commercial software. CoVaCS offers optimized pipelines integrating state of the art tools for variant calling and annotation for whole genome sequencing (WGS), whole-exome sequencing (WES) and target-gene sequencing (TGS) data. The system is currently hosted at Cineca, and offers the speed of a HPC computing facility, a crucial consideration when large numbers of samples must be analysed. Importantly, all the analyses are performed automatically allowing high reproducibility of the results. As such, we believe that CoVaCS can be a valuable tool for the analysis of human genome resequencing studies. CoVaCS is available at: https://bioinformatics.cineca.it/covacs .

  2. SeqReporter: automating next-generation sequencing result interpretation and reporting workflow in a clinical laboratory.

    PubMed

    Roy, Somak; Durso, Mary Beth; Wald, Abigail; Nikiforov, Yuri E; Nikiforova, Marina N

    2014-01-01

    A wide repertoire of bioinformatics applications exist for next-generation sequencing data analysis; however, certain requirements of the clinical molecular laboratory limit their use: i) comprehensive report generation, ii) compatibility with existing laboratory information systems and computer operating system, iii) knowledgebase development, iv) quality management, and v) data security. SeqReporter is a web-based application developed using ASP.NET framework version 4.0. The client-side was designed using HTML5, CSS3, and Javascript. The server-side processing (VB.NET) relied on interaction with a customized SQL server 2008 R2 database. Overall, 104 cases (1062 variant calls) were analyzed by SeqReporter. Each variant call was classified into one of five report levels: i) known clinical significance, ii) uncertain clinical significance, iii) pending pathologists' review, iv) synonymous and deep intronic, and v) platform and panel-specific sequence errors. SeqReporter correctly annotated and classified 99.9% (859 of 860) of sequence variants, including 68.7% synonymous single-nucleotide variants, 28.3% nonsynonymous single-nucleotide variants, 1.7% insertions, and 1.3% deletions. One variant of potential clinical significance was re-classified after pathologist review. Laboratory information system-compatible clinical reports were generated automatically. SeqReporter also facilitated quality management activities. SeqReporter is an example of a customized and well-designed informatics solution to optimize and automate the downstream analysis of clinical next-generation sequencing data. We propose it as a model that may envisage the development of a comprehensive clinical informatics solution. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  3. Hypervirulence and hypermucoviscosity: Two different but complementary Klebsiella spp. phenotypes?

    PubMed Central

    Catalán-Nájera, Juan Carlos; Garza-Ramos, Ulises; Barrios-Camacho, Humberto

    2017-01-01

    ABSTRACT Since the hypermucoviscous variants of Klebsiella pneumoniae were first reported, many cases of primary liver abscesses and other invasive infections caused by this pathogen have been described worldwide. Hypermucoviscosity is a phenotypic feature characterized by the formation of a viscous filament ≥5 mm when a bacterial colony is stretched by a bacteriological loop; this is the so-called positive string test. Hypermucoviscosity appears to be associated with this unusual and aggressive type of infection, and therefore, the causal strains are considered hypervirulent. Since these first reports, the terms hypermucoviscosity and hypervirulence have often been used synonymously. However, new evidence has suggested that hypermucoviscosity and hypervirulence are 2 different phenotypes that should not be used synonymously. Moreover, it is important to establish that a negative string test is insufficient in determining whether a strain is or is not hypervirulent. On the other hand, hypervirulence- and hypermucoviscosity-associated genes must be identified, considering that these phenotypes correspond to 2 different phenomena, regardless of whether they can act in synergy under certain circumstances. Therefore, it is essential to quickly identify the genetic determinants behind the hypervirulent phenotype to develop effective methodologies that can diagnose in a prompt and effective way these hypervirulent variants of K. pneumoniae. PMID:28402698

  4. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers.

    PubMed

    Quail, Michael A; Smith, Miriam; Coupland, Paul; Otto, Thomas D; Harris, Simon R; Connor, Thomas R; Bertoni, Anna; Swerdlow, Harold P; Gu, Yong

    2012-07-24

    Next generation sequencing (NGS) technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent's PGM, Pacific Biosciences' RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.

  5. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly

    PubMed Central

    Do, Hongdo; Molania, Ramyar

    2017-01-01

    The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis. PMID:29097403

  6. Different disease-causing mutations in transthyretin trigger the same conformational conversion.

    PubMed

    Steward, Robert E; Armen, Roger S; Daggett, Valerie

    2008-03-01

    Transthyretin (TTR)-containing amyloid fibrils are deposited in cardiac tissue as a natural consequence of aging. A large number of inherited mutations lead to amyloid diseases by accelerating TTR deposition in other organs. Amyloid formation is preceded by a disruption of the quaternary structure of TTR and conformational changes in the monomer. To study conformational changes preceding the formation of amyloid, we performed molecular dynamics simulations of the wild-type monomer, amyloidogenic variants (V30M, L55P, V122I) and a protective variant (T119M) at neutral and low pH. At low pH, the D strand dissociated from the beta-sheet to expose the A strand, consistent with experimental studies. In amyloidogenic variants and in the wild-type at low pH, there was a conformational change in the beta-sheets into alpha-sheet via peptide bond flips that was not observed at neutral pH in the wild-type monomer. The same residues participated in conversion in each amyloidogenic variant simulation, originating in the G strand between residues 106 and 109, with accelerated conversion at low pH. The T119M protective variant changed the local conformation of the H strand and suppressed the conversion observed in amyloidogenic variants.

  7. Constructing linkage maps in the genomics era with MapDisto 2.0.

    PubMed

    Heffelfinger, Christopher; Fragoso, Christopher A; Lorieux, Mathias

    2017-07-15

    Genotyping by sequencing (GBS) generates datasets that are challenging to handle by current genetic mapping software with graphical interface. Geneticists need new user-friendly computer programs that can analyze GBS data on desktop computers. This requires improvements in computation efficiency, both in terms of speed and use of random-access memory (RAM). MapDisto v.2.0 is a user-friendly computer program for construction of genetic linkage maps. It includes several new major features: (i) handling of very large genotyping datasets like the ones generated by GBS; (ii) direct importation and conversion of Variant Call Format (VCF) files; (iii) detection of linkage, i.e. construction of linkage groups in case of segregation distortion; (iv) data imputation on VCF files using a new approach, called LB-Impute. Features i to iv operate through inclusion of new Java modules that are used transparently by MapDisto; (v) QTL detection via a new R/qtl graphical interface. The program is available free of charge at mapdisto.free.fr. mapdisto@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Genetic Analysis of Human Chymotrypsin-Like Elastases 3A and 3B (CELA3A and CELA3B) to Assess the Role of Complex Formation between Proelastases and Procarboxypeptidases in Chronic Pancreatitis.

    PubMed

    Párniczky, Andrea; Hegyi, Eszter; Tóth, Anna Zsófia; Szücs, Ákos; Szentesi, Andrea; Vincze, Áron; Izbéki, Ferenc; Németh, Balázs Csaba; Hegyi, Péter; Sahin-Tóth, Miklós

    2016-12-20

    Human chymotrypsin-like elastases 3A and 3B (CELA3A and CELA3B) are the products of gene duplication and share 92% identity in their primary structure. CELA3B forms stable complexes with procarboxypeptidases A1 and A2 whereas CELA3A binds poorly due to the evolutionary substitution of Ala241 with Gly in exon 7. Since position 241 is polymorphic both in CELA3A (p.G241A) and CELA3B (p.A241G), genetic analysis can directly assess whether individual variability in complex formation might alter risk for chronic pancreatitis. Here we sequenced exon 7 of CELA3A and CELA3B in a cohort of 225 subjects with chronic pancreatitis (120 alcoholic and 105 non-alcoholic) and 300 controls of Hungarian origin. Allele frequencies were 2.5% for CELA3A p.G241A and 1.5% for CELA3B p.A241G in controls, and no significant difference was observed in patients. Additionally, we identified six synonymous variants, two missense variants, a gene conversion event and ten variants in the flanking intronic regions. Variant c.643-7G>T in CELA3B showed an association with alcoholic chronic pancreatitis with a small protective effect (OR = 0.59, 95% CI = 0.39-0.89, p = 0.01). Functional analysis of missense variants revealed no major defects in secretion or activity. We conclude that variants affecting amino-acid position 241 in CELA3A and CELA3B are not associated with chronic pancreatitis, indicating that changes in complex formation between proelastases and procarboxypeptidases do not alter pancreatitis risk.

  9. VarioML framework for comprehensive variation data representation and exchange.

    PubMed

    Byrne, Myles; Fokkema, Ivo Fac; Lancaster, Owen; Adamusiak, Tomasz; Ahonen-Bishopp, Anni; Atlan, David; Béroud, Christophe; Cornell, Michael; Dalgleish, Raymond; Devereau, Andrew; Patrinos, George P; Swertz, Morris A; Taschner, Peter Em; Thorisson, Gudmundur A; Vihinen, Mauno; Brookes, Anthony J; Muilu, Juha

    2012-10-03

    Sharing of data about variation and the associated phenotypes is a critical need, yet variant information can be arbitrarily complex, making a single standard vocabulary elusive and re-formatting difficult. Complex standards have proven too time-consuming to implement. The GEN2PHEN project addressed these difficulties by developing a comprehensive data model for capturing biomedical observations, Observ-OM, and building the VarioML format around it. VarioML pairs a simplified open specification for describing variants, with a toolkit for adapting the specification into one's own research workflow. Straightforward variant data can be captured, federated, and exchanged with no overhead; more complex data can be described, without loss of compatibility. The open specification enables push-button submission to gene variant databases (LSDBs) e.g., the Leiden Open Variation Database, using the Cafe Variome data publishing service, while VarioML bidirectionally transforms data between XML and web-application code formats, opening up new possibilities for open source web applications building on shared data. A Java implementation toolkit makes VarioML easily integrated into biomedical applications. VarioML is designed primarily for LSDB data submission and transfer scenarios, but can also be used as a standard variation data format for JSON and XML document databases and user interface components. VarioML is a set of tools and practices improving the availability, quality, and comprehensibility of human variation information. It enables researchers, diagnostic laboratories, and clinics to share that information with ease, clarity, and without ambiguity.

  10. VarioML framework for comprehensive variation data representation and exchange

    PubMed Central

    2012-01-01

    Background Sharing of data about variation and the associated phenotypes is a critical need, yet variant information can be arbitrarily complex, making a single standard vocabulary elusive and re-formatting difficult. Complex standards have proven too time-consuming to implement. Results The GEN2PHEN project addressed these difficulties by developing a comprehensive data model for capturing biomedical observations, Observ-OM, and building the VarioML format around it. VarioML pairs a simplified open specification for describing variants, with a toolkit for adapting the specification into one's own research workflow. Straightforward variant data can be captured, federated, and exchanged with no overhead; more complex data can be described, without loss of compatibility. The open specification enables push-button submission to gene variant databases (LSDBs) e.g., the Leiden Open Variation Database, using the Cafe Variome data publishing service, while VarioML bidirectionally transforms data between XML and web-application code formats, opening up new possibilities for open source web applications building on shared data. A Java implementation toolkit makes VarioML easily integrated into biomedical applications. VarioML is designed primarily for LSDB data submission and transfer scenarios, but can also be used as a standard variation data format for JSON and XML document databases and user interface components. Conclusions VarioML is a set of tools and practices improving the availability, quality, and comprehensibility of human variation information. It enables researchers, diagnostic laboratories, and clinics to share that information with ease, clarity, and without ambiguity. PMID:23031277

  11. Deletion mapping of the Aequorea victoria green fluorescent protein.

    PubMed

    Dopf, J; Horiagon, T M

    1996-01-01

    Aequorea victoria green fluorescent protein (GFP) is a promising fluorescent marker which is active in a diverse array of prokaryotic and eukaryotic organisms. A key feature underlying the versatility of GFP is its capacity to undergo heterocyclic chromophore formation by cyclization of a tripeptide present in its primary sequence and thereby acquiring fluorescent activity in a variety of intracellular environments. In order to define further the primary structure requirements for chromophore formation and fluorescence in GFP, a series of N- and C-terminal GFP deletion variant expression vectors were created using the polymerase chain reaction. Scanning spectrofluorometric analyses of crude soluble protein extracts derived from eleven GFP expression constructs revealed that amino acid (aa) residues 2-232, of a total of 238 aa in the native protein, were required for the characteristic emission and absorption spectra of native GFP. Heterocyclic chromophore formation was assayed by comparing the absorption spectrum of GFP deletion variants over the 300-500-nm range to the absorption spectra of full-length GFP and GFP deletion variants missing the chromophore substrate domain from the primary sequence. GFP deletion variants lacking fluorescent activity showed no evidence of heterocyclic ring structure formation when the soluble extracts of their bacterial expression hosts were studied at pH 7.9. These observations suggest that the primary structure requirements for the fluorescent activity of GFP are relatively extensive and are compatible with the view that much of the primary structure serves an autocatalytic function.

  12. Role of Cystathionine β-Lyase in Catabolism of Amino Acids to Sulfur Volatiles by Genetic Variants of Lactobacillus helveticus CNRZ 32▿

    PubMed Central

    Lee, Won-Jae; Banavara, Dattatreya S.; Hughes, Joanne E.; Christiansen, Jason K.; Steele, James L.; Broadbent, Jeffery R.; Rankin, Scott A.

    2007-01-01

    Catabolism of sulfur-containing amino acids plays an important role in the development of cheese flavor. During ripening, cystathionine β-lyase (CBL) is believed to contribute to the formation of volatile sulfur compounds (VSCs) such as methanethiol and dimethyl disulfide. However, the role of CBL in the generation of VSCs from the catabolism of specific sulfur-containing amino acids is not well characterized. The objective of this study was to investigate the role of CBL in VSC formation by Lactobacillus helveticus CNRZ 32 using genetic variants of L. helveticus CNRZ 32 including the CBL-null mutant, complementation of the CBL-null mutant, and the CBL overexpression mutant. The formation of VSCs from methionine, cystathionine, and cysteine was determined in a model system using gas chromatography-mass spectrometry with solid-phase microextraction. With methionine as a substrate, CBL overexpression resulted in higher VSC production than that of wild-type L. helveticus CNRZ 32 or the CBL-null mutant. However, there were no differences in VSC production between the wild type and the CBL-null mutant. With cystathionine, methanethiol production was detected from the CBL overexpression variant and complementation of the CBL-null mutant, implying that CBL may be involved in the conversion of cystathionine to methanethiol. With cysteine, no differences in VSC formation were observed between the wild type and genetic variants, indicating that CBL does not contribute to the conversion of cysteine. PMID:17337535

  13. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part II. Characteristic interface structures between habit plane variants

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Okunishi, E.; Nishiura, T.; Kawano, H.; Inamura, T.; S., Ii; Hara, T.

    2012-06-01

    Four characteristic interface microstructures between habit plane variants (HPVs) in the self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by scanning transmission electron microscopy (STEM). The straight interface of a ? B19‧ type I twin is present at interface I. The relaxation of the transformation strain at interface II is achieved by a volume reduction of the minor correspondence variants (CVs) in the relevant habit plane variants (HPVs). The relaxation of the transformation strain at interface III is mainly due to the formation of a ? B19‧ type I twin between the two major CVs. Subsequently, local strain around the tips of the minor CVs perpendicular to the interface is released by the formation of micro-twins with the ⟨011⟩B19‧ type II and/or ? B19‧ type I relation. The major and minor CVs in each HPV are alternately connected through fine variants with the ? B19‧ type I twin relation parallel to interface IV. The results are compared with macroscopic observations and the predictions of PTMC analysis.

  14. Growth of L1{sub 0}-ordered crystal in FePt and FePd thin films on MgO(001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futamoto, Masaaki, E-mail: futamoto@elect.chuo-u.ac.jp; Nakamura, Masahiro; Ohtake, Mitsuru

    2016-08-15

    Formation of L1{sub 0}-oredered structure from disordered A1 phase has been investigated for FePt and FePd films on MgO(001) substrates employing a two-step method consisting of low temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. L1{sub 0}-(001) variant crystal with the c-axis perpendicular to the substrate grows preferentially in FePd films whereas L1{sub 0}-(100), (010) variants tend to be mixed with the L1{sub 0}-(001) variant in FePt films. The structure analysis by X-ray diffraction indicates that a difference in A1 lattice strain is the influential factor that determines the resulting L1{sub 0}-variant structure in ordered thinmore » films. Misfit dislocations and anti-phase boundaries are observed in high-resolution transmission electron micrographs of 10 nm-thick Fe(Pt, Pd) film consisting of L1{sub 0}-(001) variants which are formed through atomic diffusion at 600 °C in a laterally strained FePt/PeFd epitaxial thin film. Based on the experimental results, a nucleation and growth model for explaining L1{sub 0}-variant formation is proposed, which suggests a possibility in tailoring the L1{sub 0} variant structure in ordered magnetic thin films by controlling the alloy composition, the layer structure, and the substrate material.« less

  15. Pseudomonas biofilm matrix composition and niche biology

    PubMed Central

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  16. Aldimine Formation Reaction, the First Step of the Maillard Early-phase Reaction, Might be Enhanced in Variant Hemoglobin, Hb Himeji.

    PubMed

    Koga, Masafumi; Inada, Shinya; Shimizu, Sayoko; Hatazaki, Masahiro; Umayahara, Yutaka; Nishihara, Eijun

    2015-01-01

    Hb Himeji (β140Ala→Asp) is known as a variant hemoglobin in which glycation is enhanced and HbA1c measured by immunoassay shows a high value. The phenomenon of enhanced glycation in Hb Himeji is based on the fact that the glycation product of variant hemoglobin (HbX1c) shows a higher value than HbA1c. In this study, we investigated whether aldimine formation reaction, the first step of the Maillard early-phase reaction, is enhanced in Hb Himeji in vitro. Three non-diabetic subjects with Hb Himeji and four non-diabetic subjects without variant hemoglobin were enrolled. In order to examine aldimine formation reaction, whole blood cells were incubated with 500 mg/dl of glucose at 37°C for 1 hour and were analyzed by high-performance liquid chromatography. Both HbA1c and HbX1c were not increased in this condition. After incubation with glucose, labile HbA1c (LA1c) fraction increased in the controls (1.1±0.3%). In subjects with Hb Himeji increases in the labile HbX1c (LX1c) fraction as well as the LA1c fraction were observed, and the degree of increase in the LX1c fraction was significantly higher than that of the LA1c fraction (1.8±0.1% vs. 0.5±0.2%, P<0.01). We have shown for the first time that aldimine (LX1c) formation reaction might be enhanced in Hb Himeji in vitro. The 140th amino acid in β chain of hemoglobin is suggested to be involved in aldimine formation reaction. © 2015 by the Association of Clinical Scientists, Inc.

  17. Performance comparison of SNP detection tools with illumina exome sequencing data—an assessment using both family pedigree information and sample-matched SNP array data

    PubMed Central

    Yi, Ming; Zhao, Yongmei; Jia, Li; He, Mei; Kebebew, Electron; Stephens, Robert M.

    2014-01-01

    To apply exome-seq-derived variants in the clinical setting, there is an urgent need to identify the best variant caller(s) from a large collection of available options. We have used an Illumina exome-seq dataset as a benchmark, with two validation scenarios—family pedigree information and SNP array data for the same samples, permitting global high-throughput cross-validation, to evaluate the quality of SNP calls derived from several popular variant discovery tools from both the open-source and commercial communities using a set of designated quality metrics. To the best of our knowledge, this is the first large-scale performance comparison of exome-seq variant discovery tools using high-throughput validation with both Mendelian inheritance checking and SNP array data, which allows us to gain insights into the accuracy of SNP calling through such high-throughput validation in an unprecedented way, whereas the previously reported comparison studies have only assessed concordance of these tools without directly assessing the quality of the derived SNPs. More importantly, the main purpose of our study was to establish a reusable procedure that applies high-throughput validation to compare the quality of SNP discovery tools with a focus on exome-seq, which can be used to compare any forthcoming tool(s) of interest. PMID:24831545

  18. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches.

    PubMed

    Guidugli, Lucia; Shimelis, Hermela; Masica, David L; Pankratz, Vernon S; Lipton, Gary B; Singh, Namit; Hu, Chunling; Monteiro, Alvaro N A; Lindor, Noralane M; Goldgar, David E; Karchin, Rachel; Iversen, Edwin S; Couch, Fergus J

    2018-01-17

    Many variants of uncertain significance (VUS) have been identified in BRCA2 through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined. We conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity. Among 139 variants evaluated, 54 had ≥99% probability of pathogenicity, and 73 had ≥95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly (p < 0.05) over-predicted pathogenic variants. We subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, we used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay. Together, the results show that systematic functional assays in combination with in silico predictors of pathogenicity provide robust tools for clinical annotation of BRCA2 VUS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. GARFIELD-NGS: Genomic vARiants FIltering by dEep Learning moDels in NGS.

    PubMed

    Ravasio, Viola; Ritelli, Marco; Legati, Andrea; Giacopuzzi, Edoardo

    2018-04-14

    Exome sequencing approach is extensively used in research and diagnostic laboratories to discover pathological variants and study genetic architecture of human diseases. However, a significant proportion of identified genetic variants are actually false positive calls, and this pose serious challenges for variants interpretation. Here, we propose a new tool named GARFIELD-NGS (Genomic vARiants FIltering by dEep Learning moDels in NGS), which rely on deep learning models to dissect false and true variants in exome sequencing experiments performed with Illumina or ION platforms. GARFIELD-NGS showed strong performances for both SNP and INDEL variants (AUC 0.71 - 0.98) and outperformed established hard filters. The method is robust also at low coverage down to 30X and can be applied on data generated with the recent Illumina two-colour chemistry. GARFIELD-NGS processes standard VCF file and produces a regular VCF output. Thus, it can be easily integrated in existing analysis pipeline, allowing application of different thresholds based on desired level of sensitivity and specificity. GARFIELD-NGS available at https://github.com/gedoardo83/GARFIELD-NGS. edoardo.giacopuzzi@unibs.it. Supplementary data are available at Bioinformatics online.

  20. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data.

    PubMed

    Jun, Goo; Wing, Mary Kate; Abecasis, Gonçalo R; Kang, Hyun Min

    2015-06-01

    The analysis of next-generation sequencing data is computationally and statistically challenging because of the massive volume of data and imperfect data quality. We present GotCloud, a pipeline for efficiently detecting and genotyping high-quality variants from large-scale sequencing data. GotCloud automates sequence alignment, sample-level quality control, variant calling, filtering of likely artifacts using machine-learning techniques, and genotype refinement using haplotype information. The pipeline can process thousands of samples in parallel and requires less computational resources than current alternatives. Experiments with whole-genome and exome-targeted sequence data generated by the 1000 Genomes Project show that the pipeline provides effective filtering against false positive variants and high power to detect true variants. Our pipeline has already contributed to variant detection and genotyping in several large-scale sequencing projects, including the 1000 Genomes Project and the NHLBI Exome Sequencing Project. We hope it will now prove useful to many medical sequencing studies. © 2015 Jun et al.; Published by Cold Spring Harbor Laboratory Press.

  1. From days to hours: reporting clinically actionable variants from whole genome sequencing.

    PubMed

    Middha, Sumit; Baheti, Saurabh; Hart, Steven N; Kocher, Jean-Pierre A

    2014-01-01

    As the cost of whole genome sequencing (WGS) decreases, clinical laboratories will be looking at broadly adopting this technology to screen for variants of clinical significance. To fully leverage this technology in a clinical setting, results need to be reported quickly, as the turnaround rate could potentially impact patient care. The latest sequencers can sequence a whole human genome in about 24 hours. However, depending on the computing infrastructure available, the processing of data can take several days, with the majority of computing time devoted to aligning reads to genomics regions that are to date not clinically interpretable. In an attempt to accelerate the reporting of clinically actionable variants, we have investigated the utility of a multi-step alignment algorithm focused on aligning reads and calling variants in genomic regions of clinical relevance prior to processing the remaining reads on the whole genome. This iterative workflow significantly accelerates the reporting of clinically actionable variants with no loss of accuracy when compared to genotypes obtained with the OMNI SNP platform or to variants detected with a standard workflow that combines Novoalign and GATK.

  2. Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias

    PubMed Central

    2012-01-01

    Background High-density genotyping arrays that measure hybridization of genomic DNA fragments to allele-specific oligonucleotide probes are widely used to genotype single nucleotide polymorphisms (SNPs) in genetic studies, including human genome-wide association studies. Hybridization intensities are converted to genotype calls by clustering algorithms that assign each sample to a genotype class at each SNP. Data for SNP probes that do not conform to the expected pattern of clustering are often discarded, contributing to ascertainment bias and resulting in lost information - as much as 50% in a recent genome-wide association study in dogs. Results We identified atypical patterns of hybridization intensities that were highly reproducible and demonstrated that these patterns represent genetic variants that were not accounted for in the design of the array platform. We characterized variable intensity oligonucleotide (VINO) probes that display such patterns and are found in all hybridization-based genotyping platforms, including those developed for human, dog, cattle, and mouse. When recognized and properly interpreted, VINOs recovered a substantial fraction of discarded probes and counteracted SNP ascertainment bias. We developed software (MouseDivGeno) that identifies VINOs and improves the accuracy of genotype calling. MouseDivGeno produced highly concordant genotype calls when compared with other methods but it uniquely identified more than 786000 VINOs in 351 mouse samples. We used whole-genome sequence from 14 mouse strains to confirm the presence of novel variants explaining 28000 VINOs in those strains. We also identified VINOs in human HapMap 3 samples, many of which were specific to an African population. Incorporating VINOs in phylogenetic analyses substantially improved the accuracy of a Mus species tree and local haplotype assignment in laboratory mouse strains. Conclusion The problems of ascertainment bias and missing information due to genotyping errors are widely recognized as limiting factors in genetic studies. We have conducted the first formal analysis of the effect of novel variants on genotyping arrays, and we have shown that these variants account for a large portion of miscalled and uncalled genotypes. Genetic studies will benefit from substantial improvements in the accuracy of their results by incorporating VINOs in their analyses. PMID:22260749

  3. BIOLOGICAL STUDIES OF THE TUBERCLE BACILLUS : II. A NEW CONCEPTION OF THE PATHOLOGY OF EXPERIMENTAL AVIAN TUBERCULOSIS WITH SPECIAL REFERENCE TO THE DISEASE PRODUCED BY DISSOCIATED VARIANTS.

    PubMed

    Winn, W A; Petroff, S A

    1933-01-31

    In the preceding pages we have presented evidence which we believe furnishes new light on the disease process in avian tuberculosis. From a well known strain of avian tubercle bacillus, A(1), four variants have been dissociated, each manifesting distinct colony topography and physical and chemical characteristics. From these studies we have learned that the variants are sometimes unstable, not only in vitro but also in vivo, and that this characteristic is one of the prominent factors influencing both the advancement and retrogression of the disease. The four variants remain fairly stable in vitro provided they are cultivated on proper culture media. About 80 per cent smooth S and flat smooth F.S. colonies will develop true to type on egg media; and rough R and the chromogenic Ch when cultivated on gycerine agar media, in about the same percentage. An early non-specific eosinophilia followed inoculation, no matter which variant was used. This usually subsided by the 18th hour. The early stages of tubercle formation produced by all the variants appeared similar. First there appeared an aggregation of eosinophiles and their ingested bacilli within the tissues and then followed replacement by large mononuclear cells which wandered in and phagocyted both eosinophiles and bacilli. After the formation of tubercles composed only of large mononuclear cells, certain differences between the virulent and avirulent variants became apparent. There was also a direct relationship between the dosage and the extent of the disease. In our experience from 0.16 to 0.25 mg. gave the most uniform results. If S variant was used, the early non-specific eosinophilia was followed by a second rise which continued to ascend, running parallel with the total leucocyte count. There was a slow increase of monocytes and a corresponding decrease of lymphocytes. The microscopic lesions, 2 weeks after inoculation, were composed of irregularly shaped clumps of necrosing large mononuclear cells. The margins were clear-cut and bordered by few or no lymphocytic cells. By the 3rd and 4th weeks eosinophiles began to migrate into the centers of the tubercles and abscess formation became evident. Death usually occurred after 5 or 6 weeks, although this varied with the dosage. The appearance of the lesions suggested an acute "toxic" nature, as manifested (1) by marked enlargement of the spleen and liver, (2) by the short fatal course of the disease, which never became very extensive, (3) by the presence of few organisms within the tubercles, (4) by destruction of reticulum and (5) by the marked response of the blood leucocytes. After inoculation with F.S. variant the early non-specific eosinophilia disappeared, returning again at the terminal stage, 5 to 6 weeks later. The number of eosinophiles then ascended sharply, accompanied by a marked leucocytosis which continued until death. During this eosinophilia a monocytosis occurred and lymphocytes fell away rapidly. During the 2nd week, clumps of closely packed large mononuclear cells containing masses of phagocyted bacilli were seen. In the 3rd and 4th weeks there appeared a prominent peripheral zone of hyalin, collagenous-like material associated with an increased reticulum formation which apparently walled off the lesion. The bacilli within the tubercle multiplied rapidly, it seemed as though they were more resistant to destruction than the S organisms, perhaps due to their higher lipin content. As a result of their rapid increase, progression of the tubercle continued, with necrosis and abscess formation, accompanied by the dissemination of the organisms both locally and distantly to new uninvolved tissue. Wide extension of the disease followed due to the increase in numbers of bacilli, terminating with death usually during the 5th and 6th weeks. The manifestations of "toxin" damage shown in S disease were not so marked until the approach of the end-stage. We interpret the type of lesion produced by the F.S. variant as a foreign body tubercle to distinguish it from the acute "toxic" nature of the S. A quantitative chemical determination showed that this organism contained 20.14 per cent lipin whereas in the S variant it was only 15.03 per cent. Following inoculation with R variant the initial eosinophilia returned to normal within 24 hours. There was then an increase of both lymphocytes and monocytes, the latter exceeding the former for a time. Later, usually after the 2nd month, the lymphocytes again became predominant over the monocytes, approaching the normal base line. Eosinophiles failed to react. This blood picture indicated a successful resistance against the infecting organisms, and was supported by the pathological findings. None of the chickens of this group died during the period of study (79 days) although infecting doses of 0.25 mg. were used. Necropsies on four chickens revealed no macroscopic evidence of disease approximately 11 weeks after inoculation. Microscopic lesions were present in the spleen and liver of some cases. In chickens inoculated 11 weeks previously these tubercles consisted only of very small, discrete clumps of degenerating mononuclear cells often surrounded by a border of lymphocytes. Necrosis, abscess formation or caseation was not found. Their small size and appearance was evidence of their retrogressive character. Isolated giant cells were rarely seen. It was impossible to find bacilli within these tubercles. In one instance it was possible to show complete innocuousness of this organism in the tissues, as far as producing recognizable tuberculous lesions. Reticulum played little part in the development of the lesion and it was neither increased or destroyed. Following inoculation with the chromogenic Ch variant the initial eosinophilia declined by the 24th or 42nd hour count and from then on remained low. The lymphocytes showed little decrease. A prominent monocytosis of prolonged character usually occurred during the 3rd to 6th weeks and was then displaced by a return of the lymphocytes. By the end of the period of observation the differential count had closely approached the normal values. Again the blood picture was truly representative of the relatively benign character of the lesions. The tubercle formation, even after 93 days' duration of the disease, remained limited to small clumps of two or three large mononuclear cells showing some degeneration. Lymphocytic cells were usually present within and about the lesion. There was never any evidence of abscess formation or actual necrosis. Bacilli could not be found within these tubercles. The reticulum in relation to the lesion showed neither increase nor destruction. None of the chickens died though a dose of 0.5 mg. was used. In three chickens infected with S variant, the blood picture did not follow the pattern set by the others similarly inoculated. Either a high monocytosis replaced the usual eosinophilia, or there was a marked recession of the total leucocyte count followed by a return of lymphocytes towards normal percentage. The blood picture indicated the conversion of an acute process into a subacute or chronic affair. These chickens survived for 78, 79 and 110 days, respectively. An explanation for this occurred to us later when cultures recovered from them, instead of consisting of S colonies, showed the topography of the intermediate type, closely resembling the F.S. type. Evidently this was due to a reversion; i.e., a loss of virulence of the organism occurring within the animal body. At necropsy the spleen and liver were somewhat enlarged and contained prominent, discrete yellow nodules resembling small shot in their size and shape, which, in one case could be lifted from the tissue by the point of the knife. Microscopically, they possessed small centers of caseation surrounded by numerous giant cells and large mononuclear cells with a thick border of lymphocytic cells. This tubercle formation could not be classified in any special group as it was too sharply circumscribed and walled off by lymphocytic cells to be considered as truly malignant in nature as the S type of lesion. Even the younger tubercles in these cases, which consisted of clumped epithelioid cells with prominent lymphocytic cell borders, could not be called acute or "toxic" in character. At present we make only limited deductions from our observations. In the bacterial dissociation phenomenon we have at least a new line of investigation, and different variants of tubercle bacilli must be taken into consideration when planning new tuberculosis studies. With the stabilization of the human type variants, experiments such as reported here may bring about the proper clinical interpretation, of the course of human tuberculosis.

  4. Pichia pastoris Mut(S) strains are prone to misincorporation of O-methyl-L-homoserine at methionine residues when methanol is used as the sole carbon source.

    PubMed

    Schotte, Peter; Dewerte, Isabelle; De Groeve, Manu; De Keyser, Saskia; De Brabandere, Veronique; Stanssens, Patrick

    2016-06-07

    Over the last few decades the methylotrophic yeast Pichia pastoris has become a popular host for a wide range of products such as vaccines and therapeutic proteins. Several P. pastoris engineered strains and mutants have been developed to improve the performance of the expression system. Yield and quality of a recombinant product are important parameters to monitor during the host selection and development process but little information is published regarding quality differences of a product produced by different P. pastoris strains. We compared titer and quality of several Nanobodies(®) produced in wild type and Mut(S) strains. Titer in fed-batch fermentation was comparable between all strains for each Nanobody but a significant difference in quality was observed. Nanobodies expressed in Mut(S) strains contained a product variant with a Δ-16 Da mass difference that was not observed in wild type strains. This variant showed substitution of methionine residues due to misincorporation of O-methyl-L-homoserine, also called methoxine. Methoxine is likely synthesized by the enzymatic action of O-acetyl homoserine sulfhydrylase and we confirmed that Nanobodies produced in the corresponding knock-out strain contained no methoxine variants. We could show the incorporation of methoxine during biosynthesis by its addition to the culture medium. We showed that misincorporation of methoxine occurs particularly in P. pastoris Mut(S) strains. This reduction in product quality could outweigh the advantages of using Mut strains, such as lower oxygen and methanol demand, heat formation and in some cases improved expression. Methoxine incorporation in recombinant proteins is likely to occur when an excess of methanol is present during fermentation but can be avoided when the methanol feed rate protocol is carefully designed.

  5. 77 FR 43237 - Genome in a Bottle Consortium-Work Plan Review Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... in human whole genome variant calls. A principal motivation for this consortium is to enable... principal motivation for this consortium is to enable science-based regulatory oversight of clinical...

  6. Projection methods for line radiative transfer in spherical media.

    NASA Astrophysics Data System (ADS)

    Anusha, L. S.; Nagendra, K. N.

    An efficient numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is presented for the solution of radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These methods are based on projections on the subspaces of the n dimensional Euclidean space mathbb {R}n called Krylov subspaces. The methods are shown to be faster in terms of convergence rate compared to the contemporary iterative methods such as Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR).

  7. Neprilysin Inhibits Coagulation through Proteolytic Inactivation of Fibrinogen

    PubMed Central

    Burrell, Matthew; Henderson, Simon J.; Ravnefjord, Anna; Schweikart, Fritz; Fowler, Susan B.; Witt, Susanne; Hansson, Kenny M.; Webster, Carl I.

    2016-01-01

    Neprilysin (NEP) is an endogenous protease that degrades a wide range of peptides including amyloid beta (Aβ), the main pathological component of Alzheimer’s disease (AD). We have engineered NEP as a potential therapeutic for AD but found in pre-clinical safety testing that this variant increased prothrombin time (PT) and activated partial thromboplastin time (APTT). The objective of the current study was to investigate the effect of wild type NEP and the engineered variant on coagulation and define the mechanism by which this effect is mediated. PT and APTT were measured in cynomolgus monkeys and rats dosed with a human serum albumin fusion with an engineered variant of NEP (HSA-NEPv) as well as in control plasma spiked with wild type or variant enzyme. The coagulation factor targeted by NEP was determined using in vitro prothrombinase, calibrated automated thrombogram (CAT) and fibrin formation assays as well as N-terminal sequencing of fibrinogen treated with the enzyme. We demonstrate that HSA-NEP wild type and HSA-NEPv unexpectedly impaired coagulation, increasing PT and APTT in plasma samples and abolishing fibrin formation from fibrinogen. This effect was mediated through cleavage of the N-termini of the Aα- and Bβ-chains of fibrinogen thereby significantly impairing initiation of fibrin formation by thrombin. Fibrinogen has therefore been identified for the first time as a substrate for NEP wild type suggesting that the enzyme may have a role in regulating fibrin formation. Reductions in NEP levels observed in AD and cerebral amyloid angiopathy may contribute to neurovascular degeneration observed in these conditions. PMID:27437944

  8. Whole exome sequencing in an Italian family with isolated maxillary canine agenesis and canine eruption anomalies.

    PubMed

    Barbato, Ersilia; Traversa, Alice; Guarnieri, Rosanna; Giovannetti, Agnese; Genovesi, Maria Luce; Magliozzi, Maria Rosa; Paolacci, Stefano; Ciolfi, Andrea; Pizzi, Simone; Di Giorgio, Roberto; Tartaglia, Marco; Pizzuti, Antonio; Caputo, Viviana

    2018-07-01

    The aim of this study was the clinical and molecular characterization of a family segregating a trait consisting of a phenotype specifically involving the maxillary canines, including agenesis, impaction and ectopic eruption, characterized by incomplete penetrance and variable expressivity. Clinical standardized assessment of 14 family members and a whole-exome sequencing (WES) of three affected subjects were performed. WES data analyses (sequence alignment, variant calling, annotation and prioritization) were carried out using an in-house implemented pipeline. Variant filtering retained coding and splice-site high quality private and rare variants. Variant prioritization was performed taking into account both the disruptive impact and the biological relevance of individual variants and genes. Sanger sequencing was performed to validate the variants of interest and to carry out segregation analysis. Prioritization of variants "by function" allowed the identification of multiple variants contributing to the trait, including two concomitant heterozygous variants in EDARADD (c.308C>T, p.Ser103Phe) and COL5A1 (c.1588G>A, p.Gly530Ser), specifically associated with a more severe phenotype (i.e. canine agenesis). Differently, heterozygous variants in genes encoding proteins with a role in the WNT pathway were shared by subjects showing a phenotype of impacted/ectopic erupted canines. This study characterized the genetic contribution underlying a complex trait consisting of isolated canine anomalies in a medium-sized family, highlighting the role of WNT and EDA cell signaling pathways in tooth development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.

    PubMed

    Saunders, Christopher T; Wong, Wendy S W; Swamy, Sajani; Becq, Jennifer; Murray, Lisa J; Cheetham, R Keira

    2012-07-15

    Whole genome and exome sequencing of matched tumor-normal sample pairs is becoming routine in cancer research. The consequent increased demand for somatic variant analysis of paired samples requires methods specialized to model this problem so as to sensitively call variants at any practical level of tumor impurity. We describe Strelka, a method for somatic SNV and small indel detection from sequencing data of matched tumor-normal samples. The method uses a novel Bayesian approach which represents continuous allele frequencies for both tumor and normal samples, while leveraging the expected genotype structure of the normal. This is achieved by representing the normal sample as a mixture of germline variation with noise, and representing the tumor sample as a mixture of the normal sample with somatic variation. A natural consequence of the model structure is that sensitivity can be maintained at high tumor impurity without requiring purity estimates. We demonstrate that the method has superior accuracy and sensitivity on impure samples compared with approaches based on either diploid genotype likelihoods or general allele-frequency tests. The Strelka workflow source code is available at ftp://strelka@ftp.illumina.com/. csaunders@illumina.com

  10. Mutations in the pH-Sensing G-protein-Coupled Receptor GPR68 Cause Amelogenesis Imperfecta.

    PubMed

    Parry, David A; Smith, Claire E L; El-Sayed, Walid; Poulter, James A; Shore, Roger C; Logan, Clare V; Mogi, Chihiro; Sato, Koichi; Okajima, Fumikazu; Harada, Akihiro; Zhang, Hong; Koruyucu, Mine; Seymen, Figen; Hu, Jan C-C; Simmer, James P; Ahmed, Mushtaq; Jafri, Hussain; Johnson, Colin A; Inglehearn, Chris F; Mighell, Alan J

    2016-10-06

    Amelogenesis is the process of dental enamel formation, leading to the deposition of the hardest tissue in the human body. This process requires the intricate regulation of ion transport and controlled changes to the pH of the developing enamel matrix. The means by which the enamel organ regulates pH during amelogenesis is largely unknown. We identified rare homozygous variants in GPR68 in three families with amelogenesis imperfecta, a genetically and phenotypically heterogeneous group of inherited conditions associated with abnormal enamel formation. Each of these homozygous variants (a large in-frame deletion, a frameshift deletion, and a missense variant) were predicted to result in loss of function. GPR68 encodes a proton-sensing G-protein-coupled receptor with sensitivity in the pH range that occurs in the developing enamel matrix during amelogenesis. Immunohistochemistry of rat mandibles confirmed localization of GPR68 in the enamel organ at all stages of amelogenesis. Our data identify a role for GPR68 as a proton sensor that is required for proper enamel formation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. A hydrophobic patch surrounding Trp154 in human neuroserpin controls the helix F dynamics with implications in inhibition and aggregation

    NASA Astrophysics Data System (ADS)

    Ali, Mohammad Farhan; Kaushik, Abhinav; Kapil, Charu; Gupta, Dinesh; Jairajpuri, Mohamad Aman

    2017-02-01

    Neuroserpin (NS) mediated inhibition of tissue-type plasminogen activator (tPA) is important for brain development, synapse formation and memory. Aberrations in helix F and β-sheet A movement during inhibition can directly lead to epilepsy or dementia. Conserved W154 residue in a hydrophobic patch between helix F and β-sheet A is ideally placed to control their movement during inhibition. Molecular Dynamics (MD) simulation on wild type (WT) NS and its two variants (W154A and W154P) demonstrated partial deformation in helix F and conformational differences in strands 1A and 2A only in W154P. A fluorescence and Circular Dichroism (CD) analysis with purified W154 variants revealed a significant red-shift and an increase in α-helical content in W154P as compared to W154A and WT NS. Kinetics of tPA inhibition showed a decline in association rates (ka) for W154A as compared to WT NS with indication of complex formation. Appearance of cleaved without complex formation in W154P indicates that the variant acts as substrate due to conformational misfolding around helix F. Both the variants however showed increased rate of aggregation as compared to WT NS. The hydrophobic patch identified in this study may have importance in helix F dynamics of NS.

  12. Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.

    PubMed

    Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard

    2017-04-01

    To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.

  13. Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants.

    PubMed

    Kuhn, Alexandre; Ong, Yao Min; Quake, Stephen R; Burkholder, William F

    2015-07-08

    Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed. We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate. This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.

  14. Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data.

    PubMed

    Huang, Yi-Fei; Gulko, Brad; Siepel, Adam

    2017-04-01

    Many genetic variants that influence phenotypes of interest are located outside of protein-coding genes, yet existing methods for identifying such variants have poor predictive power. Here we introduce a new computational method, called LINSIGHT, that substantially improves the prediction of noncoding nucleotide sites at which mutations are likely to have deleterious fitness consequences, and which, therefore, are likely to be phenotypically important. LINSIGHT combines a generalized linear model for functional genomic data with a probabilistic model of molecular evolution. The method is fast and highly scalable, enabling it to exploit the 'big data' available in modern genomics. We show that LINSIGHT outperforms the best available methods in identifying human noncoding variants associated with inherited diseases. In addition, we apply LINSIGHT to an atlas of human enhancers and show that the fitness consequences at enhancers depend on cell type, tissue specificity, and constraints at associated promoters.

  15. Population-based rare variant detection via pooled exome or custom hybridization capture with or without individual indexing.

    PubMed

    Ramos, Enrique; Levinson, Benjamin T; Chasnoff, Sara; Hughes, Andrew; Young, Andrew L; Thornton, Katherine; Li, Allie; Vallania, Francesco L M; Province, Michael; Druley, Todd E

    2012-12-06

    Rare genetic variation in the human population is a major source of pathophysiological variability and has been implicated in a host of complex phenotypes and diseases. Finding disease-related genes harboring disparate functional rare variants requires sequencing of many individuals across many genomic regions and comparing against unaffected cohorts. However, despite persistent declines in sequencing costs, population-based rare variant detection across large genomic target regions remains cost prohibitive for most investigators. In addition, DNA samples are often precious and hybridization methods typically require large amounts of input DNA. Pooled sample DNA sequencing is a cost and time-efficient strategy for surveying populations of individuals for rare variants. We set out to 1) create a scalable, multiplexing method for custom capture with or without individual DNA indexing that was amenable to low amounts of input DNA and 2) expand the functionality of the SPLINTER algorithm for calling substitutions, insertions and deletions across either candidate genes or the entire exome by integrating the variant calling algorithm with the dynamic programming aligner, Novoalign. We report methodology for pooled hybridization capture with pre-enrichment, indexed multiplexing of up to 48 individuals or non-indexed pooled sequencing of up to 92 individuals with as little as 70 ng of DNA per person. Modified solid phase reversible immobilization bead purification strategies enable no sample transfers from sonication in 96-well plates through adapter ligation, resulting in 50% less library preparation reagent consumption. Custom Y-shaped adapters containing novel 7 base pair index sequences with a Hamming distance of ≥2 were directly ligated onto fragmented source DNA eliminating the need for PCR to incorporate indexes, and was followed by a custom blocking strategy using a single oligonucleotide regardless of index sequence. These results were obtained aligning raw reads against the entire genome using Novoalign followed by variant calling of non-indexed pools using SPLINTER or SAMtools for indexed samples. With these pipelines, we find sensitivity and specificity of 99.4% and 99.7% for pooled exome sequencing. Sensitivity, and to a lesser degree specificity, proved to be a function of coverage. For rare variants (≤2% minor allele frequency), we achieved sensitivity and specificity of ≥94.9% and ≥99.99% for custom capture of 2.5 Mb in multiplexed libraries of 22-48 individuals with only ≥5-fold coverage/chromosome, but these parameters improved to ≥98.7 and 100% with 20-fold coverage/chromosome. This highly scalable methodology enables accurate rare variant detection, with or without individual DNA sample indexing, while reducing the amount of required source DNA and total costs through less hybridization reagent consumption, multi-sample sonication in a standard PCR plate, multiplexed pre-enrichment pooling with a single hybridization and lesser sequencing coverage required to obtain high sensitivity.

  16. SG-ADVISER mtDNA: a web server for mitochondrial DNA annotation with data from 200 samples of a healthy aging cohort.

    PubMed

    Rueda, Manuel; Torkamani, Ali

    2017-08-18

    Whole genome and exome sequencing usually include reads containing mitochondrial DNA (mtDNA). Yet, state-of-the-art pipelines and services for human nuclear genome variant calling and annotation do not handle mitochondrial genome data appropriately. As a consequence, any researcher desiring to add mtDNA variant analysis to their investigations is forced to explore the literature for mtDNA pipelines, evaluate them, and implement their own instance of the desired tool. This task is far from trivial, and can be prohibitive for non-bioinformaticians. We have developed SG-ADVISER mtDNA, a web server to facilitate the analysis and interpretation of mtDNA genomic data coming from next generation sequencing (NGS) experiments. The server was built in the context of our SG-ADVISER framework and on top of the MtoolBox platform (Calabrese et al., Bioinformatics 30(21):3115-3117, 2014), and includes most of its functionalities (i.e., assembly of mitochondrial genomes, heteroplasmic fractions, haplogroup assignment, functional and prioritization analysis of mitochondrial variants) as well as a back-end and a front-end interface. The server has been tested with unpublished data from 200 individuals of a healthy aging cohort (Erikson et al., Cell 165(4):1002-1011, 2016) and their data is made publicly available here along with a preliminary analysis of the variants. We observed that individuals over ~90 years old carried low levels of heteroplasmic variants in their genomes. SG-ADVISER mtDNA is a fast and functional tool that allows for variant calling and annotation of human mtDNA data coming from NGS experiments. The server was built with simplicity in mind, and builds on our own experience in interpreting mtDNA variants in the context of sudden death and rare diseases. Our objective is to provide an interface for non-bioinformaticians aiming to acquire (or contrast) mtDNA annotations via MToolBox. SG-ADVISER web server is freely available to all users at https://genomics.scripps.edu/mtdna .

  17. Structural variants of yeast prions show conformer-specific requirements for chaperone activity

    PubMed Central

    Stein, Kevin C.; True, Heather L.

    2016-01-01

    Summary Molecular chaperones monitor protein homeostasis and defend against the misfolding and aggregation of proteins that is associated with protein conformational disorders. In these diseases, a variety of different aggregate structures can form. These are called prion strains, or variants, in prion diseases, and cause variation in disease pathogenesis. Here, we use variants of the yeast prions [RNQ+] and [PSI+] to explore the interactions of chaperones with distinct aggregate structures. We found that prion variants show striking variation in their relationship with Hsp40s. Specifically, the yeast Hsp40 Sis1, and its human ortholog Hdj1, had differential capacities to process prion variants, suggesting that Hsp40 selectivity has likely changed through evolution. We further show that such selectivity involves different domains of Sis1, with some prion conformers having a greater dependence on particular Hsp40 domains. Moreover, [PSI+] variants were more sensitive to certain alterations in Hsp70 activity as compared to [RNQ+] variants. Collectively, our data indicate that distinct chaperone machinery is required, or has differential capacity, to process different aggregate structures. Elucidating the intricacies of chaperone-client interactions, and how these are altered by particular client structures, will be crucial to understanding how this system can go awry in disease and contribute to pathological variation. PMID:25060529

  18. Evaluating the quality of Marfan genotype-phenotype correlations in existing FBN1 databases.

    PubMed

    Groth, Kristian A; Von Kodolitsch, Yskert; Kutsche, Kerstin; Gaustadnes, Mette; Thorsen, Kasper; Andersen, Niels H; Gravholt, Claus H

    2017-07-01

    Genetic FBN1 testing is pivotal for confirming the clinical diagnosis of Marfan syndrome. In an effort to evaluate variant causality, FBN1 databases are often used. We evaluated the current databases regarding FBN1 variants and validated associated phenotype records with a new Marfan syndrome geno-phenotyping tool called the Marfan score. We evaluated four databases (UMD-FBN1, ClinVar, the Human Gene Mutation Database (HGMD), and Uniprot) containing 2,250 FBN1 variants supported by 4,904 records presented in 307 references. The Marfan score calculated for phenotype data from the records quantified variant associations with Marfan syndrome phenotype. We calculated a Marfan score for 1,283 variants, of which we confirmed the database diagnosis of Marfan syndrome in 77.1%. This represented only 35.8% of the total registered variants; 18.5-33.3% (UMD-FBN1 versus HGMD) of variants associated with Marfan syndrome in the databases could not be confirmed by the recorded phenotype. FBN1 databases can be imprecise and incomplete. Data should be used with caution when evaluating FBN1 variants. At present, the UMD-FBN1 database seems to be the biggest and best curated; therefore, it is the most comprehensive database. However, the need for better genotype-phenotype curated databases is evident, and we hereby present such a database.Genet Med advance online publication 01 December 2016.

  19. A genetic variant of NLRP1 gene is associated with asbestos body burden in patients with malignant pleural mesothelioma.

    PubMed

    Crovella, S; Moura, R R; Cappellani, S; Celsi, F; Trevisan, E; Schneider, M; Brollo, A; Nicastro, E M; Vita, F; Finotto, L; Zabucchi, G; Borelli, V

    2018-01-01

    The presence of asbestos bodies (ABs) in lung parenchyma is considered a histopathologic hallmark of past exposure to asbestos fibers, of which there was a population of longer fibers. The mechanisms underlying AB formation are complex, involving inflammatory responses and iron (Fe) metabolism. Thus, the responsiveness to AB formation is variable, with some individuals appearing to be poor AB formers. The aim of this study was to disclose the possible role of genetic variants of genes encoding inflammasome and iron metabolism proteins in the ability to form ABs in a population of 81 individuals from North East Italy, who died after having developed malignant pleural mesothelioma (MPM). This study included 86 genetic variants distributed in 10 genes involved in Fe metabolism and 7 genetic variants in two genes encoding for inflammasome molecules. Genotypes/haplotypes were compared according to the number of lung ABs. Data showed that the NLRP1 rs12150220 missense variant (H155L) was significantly correlated with numbers of ABs in MPM patients. Specifically, a low number of ABs was detected in individuals carrying the NLRP1 rs12150220 A/T genotype. Our findings suggest that the NLRP1 inflammasome might contribute in the development of lung ABs. It is postulated that the NLRP1 missense variant may be considered as one of the possible host genetic factors contributing to individual variability in coating efficiency, which needs to be taken when assessing occupational exposure to asbestos.

  20. Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma.

    PubMed

    Wrzeszczynski, Kazimierz O; Frank, Mayu O; Koyama, Takahiko; Rhrissorrakrai, Kahn; Robine, Nicolas; Utro, Filippo; Emde, Anne-Katrin; Chen, Bo-Juen; Arora, Kanika; Shah, Minita; Vacic, Vladimir; Norel, Raquel; Bilal, Erhan; Bergmann, Ewa A; Moore Vogel, Julia L; Bruce, Jeffrey N; Lassman, Andrew B; Canoll, Peter; Grommes, Christian; Harvey, Steve; Parida, Laxmi; Michelini, Vanessa V; Zody, Michael C; Jobanputra, Vaidehi; Royyuru, Ajay K; Darnell, Robert B

    2017-08-01

    To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs. More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts. The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible. NCT02725684.

  1. Field of view advantage of conjugate adaptive optics in microscopy applications

    PubMed Central

    Mertz, Jerome; Paudel, Hari; Bifano, Thomas G.

    2015-01-01

    The imaging performance of an optical microscope can be degraded by sample-induced aberrations. A general strategy to undo the effect of these aberrations is to apply wavefront correction with a deformable mirror (DM). In most cases the DM is placed conjugate to the microscope pupil, called pupil adaptive optics (AO). When the aberrations are spatially variant an alternative configuration involves placing the DM conjugate to the main source of aberrations, called conjugate AO. We provide a theoretical and experimental comparison of both configurations for the simplified case where spatially variant aberrations are produced by a well defined phase screen. We pay particular attention to the resulting correction field of view (FOV). Conjugate AO is found to provide a significant FOV advantage. While this result is well known in the astronomy community, our goal here is to recast it specifically for the optical microscopy community. PMID:25967343

  2. HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server.

    PubMed

    Hardison, Ross C; Chui, David H K; Giardine, Belinda; Riemer, Cathy; Patrinos, George P; Anagnou, Nicholas; Miller, Webb; Wajcman, Henri

    2002-03-01

    We have constructed a relational database of hemoglobin variants and thalassemia mutations, called HbVar, which can be accessed on the web at http://globin.cse.psu.edu. Extensive information is recorded for each variant and mutation, including a description of the variant and associated pathology, hematology, electrophoretic mobility, methods of isolation, stability information, ethnic occurrence, structure studies, functional studies, and references. The initial information was derived from books by Dr. Titus Huisman and colleagues [Huisman et al., 1996, 1997, 1998]. The current database is updated regularly with the addition of new data and corrections to previous data. Queries can be formulated based on fields in the database. Tables of common categories of variants, such as all those involving the alpha1-globin gene (HBA1) or all those that result in high oxygen affinity, are maintained by automated queries on the database. Users can formulate more precise queries, such as identifying "all beta-globin variants associated with instability and found in Scottish populations." This new database should be useful for clinical diagnosis as well as in fundamental studies of hemoglobin biochemistry, globin gene regulation, and human sequence variation at these loci. Copyright 2002 Wiley-Liss, Inc.

  3. Integrated sequence analysis pipeline provides one-stop solution for identifying disease-causing mutations.

    PubMed

    Hu, Hao; Wienker, Thomas F; Musante, Luciana; Kalscheuer, Vera M; Kahrizi, Kimia; Najmabadi, Hossein; Ropers, H Hilger

    2014-12-01

    Next-generation sequencing has greatly accelerated the search for disease-causing defects, but even for experts the data analysis can be a major challenge. To facilitate the data processing in a clinical setting, we have developed a novel medical resequencing analysis pipeline (MERAP). MERAP assesses the quality of sequencing, and has optimized capacity for calling variants, including single-nucleotide variants, insertions and deletions, copy-number variation, and other structural variants. MERAP identifies polymorphic and known causal variants by filtering against public domain databases, and flags nonsynonymous and splice-site changes. MERAP uses a logistic model to estimate the causal likelihood of a given missense variant. MERAP considers the relevant information such as phenotype and interaction with known disease-causing genes. MERAP compares favorably with GATK, one of the widely used tools, because of its higher sensitivity for detecting indels, its easy installation, and its economical use of computational resources. Upon testing more than 1,200 individuals with mutations in known and novel disease genes, MERAP proved highly reliable, as illustrated here for five families with disease-causing variants. We believe that the clinical implementation of MERAP will expedite the diagnostic process of many disease-causing defects. © 2014 WILEY PERIODICALS, INC.

  4. Canine parvovirus: the worldwide occurrence of antigenic variants.

    PubMed

    Miranda, Carla; Thompson, Gertrude

    2016-09-01

    The most important enteric virus infecting canids is canine parvovirus type 2 (CPV-2). CPV is the aetiologic agent of a contagious disease, mainly characterized by clinical gastroenteritis signs in younger dogs. CPV-2 emerged as a new virus in the late 1970s, which could infect domestic dogs, and became distributed in the global dog population within 2 years. A few years later, the virus's original type was replaced by a new genetic and antigenic variant, called CPV-2a. Around 1984 and 2000, virus variants with the single change to Asp or Glu in the VP2 residue 426 were detected (sometimes termed CPV-2b and -2c). The genetic and antigenic changes in the variants have also been correlated with changes in their host range; in particular, in the ability to replicate in cats and also host range differences in canine and other tissue culture cells. CPV-2 variants have been circulating among wild carnivores and have been well-documented in several countries around the world. Here, we have reviewed and summarized the current information about the worldwide distribution and evolution of CPV-2 variants since they emerged, as well as the host ranges they are associated with.

  5. Searching for missing heritability: Designing rare variant association studies

    PubMed Central

    Zuk, Or; Schaffner, Stephen F.; Samocha, Kaitlin; Do, Ron; Hechter, Eliana; Kathiresan, Sekar; Daly, Mark J.; Neale, Benjamin M.; Sunyaev, Shamil R.; Lander, Eric S.

    2014-01-01

    Genetic studies have revealed thousands of loci predisposing to hundreds of human diseases and traits, revealing important biological pathways and defining novel therapeutic hypotheses. However, the genes discovered to date typically explain less than half of the apparent heritability. Because efforts have largely focused on common genetic variants, one hypothesis is that much of the missing heritability is due to rare genetic variants. Studies of common variants are typically referred to as genomewide association studies, whereas studies of rare variants are often simply called sequencing studies. Because they are actually closely related, we use the terms common variant association study (CVAS) and rare variant association study (RVAS). In this paper, we outline the similarities and differences between RVAS and CVAS and describe a conceptual framework for the design of RVAS. We apply the framework to address key questions about the sample sizes needed to detect association, the relative merits of testing disruptive alleles vs. missense alleles, frequency thresholds for filtering alleles, the value of predictors of the functional impact of missense alleles, the potential utility of isolated populations, the value of gene-set analysis, and the utility of de novo mutations. The optimal design depends critically on the selection coefficient against deleterious alleles and thus varies across genes. The analysis shows that common variant and rare variant studies require similarly large sample collections. In particular, a well-powered RVAS should involve discovery sets with at least 25,000 cases, together with a substantial replication set. PMID:24443550

  6. Three New Alpha1-Antitrypsin Deficiency Variants Help to Define a C-Terminal Region Regulating Conformational Change and Polymerization

    PubMed Central

    Fra, Anna M.; Gooptu, Bibek; Ferrarotti, Ilaria; Miranda, Elena; Scabini, Roberta; Ronzoni, Riccardo; Benini, Federica; Corda, Luciano; Medicina, Daniela; Luisetti, Maurizio; Schiaffonati, Luisa

    2012-01-01

    Alpha1-antitrypsin (AAT) deficiency is a hereditary disorder associated with reduced AAT plasma levels, predisposing adults to pulmonary emphysema. The most common genetic AAT variants found in patients are the mildly deficient S and the severely deficient Z alleles, but several other pathogenic rare alleles have been reported. While the plasma AAT deficiency is a common trait of the disease, only a few AAT variants, including the prototypic Z AAT and some rare variants, form cytotoxic polymers in the endoplasmic reticulum of hepatocytes and predispose to liver disease. Here we report the identification of three new rare AAT variants associated to reduced plasma levels and characterize their molecular behaviour in cellular models. The variants, called Mpisa (Lys259Ile), Etaurisano (Lys368Glu) and Yorzinuovi (Pro391His), showed reduced secretion compared to control M AAT, and accumulated to different extents in the cells as ordered polymeric structures resembling those formed by the Z variant. Structural analysis of the mutations showed that they may facilitate polymerization both by loosening ‘latch’ interactions constraining the AAT reactive loop and through effects on core packing. In conclusion, the new AAT deficiency variants, besides increasing the risk of lung disease, may predispose to liver disease, particularly if associated with the common Z variant. The new mutations cluster structurally, thus defining a region of the AAT molecule critical for regulating its conformational state. PMID:22723858

  7. Replication and inclusion body characteristics of two Lymantria dispar nuclear polyhedrosis virus plaque variants

    Treesearch

    James M. Slavicek; Carita Lanner-Herrera; Nancy Hayes-Plazolles; Mary Ellen Kelly; Martha Fikes

    1991-01-01

    Propagation of Autographa californica nuclear polyhedrosis virus in cell culture results in the generation of a mutant virus, termed few polyhedra. This plaque variant is characterized by a high budded virus titer, the formation of few polyhedral inclusion bodies (PIBs), and the production of PIBs exhibiting a low potency against its natural host....

  8. Isolation of a baculovirus variant that exhibits enhanced polyhedra production stability during serial passage in cell culture

    Treesearch

    James M. Slavicek; Melissa J. Mercer; Mary Ellen Kelly; Nancy Hayes-Plazolles

    1996-01-01

    The formation of few polyhedra mutants during serial propagation of baculoviruses in cell culture encumbers commercial scale production in this system. A Lymantria dispar nuclear polyhedrosis virus (LdMNPV) variant (isolate A21-MPV) has been isolated and the traits of budded virus (BV) production, synthesis of polyhedra, the...

  9. Is IGSF1 involved in human pituitary tumor formation?

    PubMed

    Faucz, Fabio R; Horvath, Anelia D; Azevedo, Monalisa F; Levy, Isaac; Bak, Beata; Wang, Ying; Xekouki, Paraskevi; Szarek, Eva; Gourgari, Evgenia; Manning, Allison D; de Alexandre, Rodrigo Bertollo; Saloustros, Emmanouil; Trivellin, Giampaolo; Lodish, Maya; Hofman, Paul; Anderson, Yvonne C; Holdaway, Ian; Oldfield, Edward; Chittiboina, Prashant; Nesterova, Maria; Biermasz, Nienke R; Wit, Jan M; Bernard, Daniel J; Stratakis, Constantine A

    2015-02-01

    IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males. In this study, we tested the hypothesis that IGSF1 is involved in the development of pituitary tumors, especially those that produce growth hormone (GH). IGSF1 was sequenced in 21 patients with gigantism or acromegaly and 92 healthy individuals. Expression studies with a candidate pathogenic IGSF1 variant were carried out in transfected cells and immunohistochemistry for IGSF1 was performed in the sections of GH-producing adenomas, familial somatomammotroph hyperplasia, and in normal pituitary. We identified the sequence variant p.N604T, which in silico analysis suggested could affect IGSF1 function, in two male patients and one female with somatomammotroph hyperplasia from the same family. Of 60 female controls, two carried the same variant and seven were heterozygous for other variants. Immunohistochemistry showed increased IGSF1 staining in the GH-producing tumor from the patient with the IGSF1 p.N604T variant compared with a GH-producing adenoma from a patient negative for any IGSF1 variants and with normal control pituitary tissue. The IGSF1 gene appears polymorphic in the general population. A potentially pathogenic variant identified in the germline of three patients with gigantism from the same family (segregating with the disease) was also detected in two healthy female controls. Variations in IGSF1 expression in pituitary tissue in patients with or without IGSF1 germline mutations point to the need for further studies of IGSF1 action in pituitary adenoma formation. © 2015 Society for Endocrinology.

  10. Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: a proposed framework.

    PubMed

    Glusman, Gustavo; Rose, Peter W; Prlić, Andreas; Dougherty, Jennifer; Duarte, José M; Hoffman, Andrew S; Barton, Geoffrey J; Bendixen, Emøke; Bergquist, Timothy; Bock, Christian; Brunk, Elizabeth; Buljan, Marija; Burley, Stephen K; Cai, Binghuang; Carter, Hannah; Gao, JianJiong; Godzik, Adam; Heuer, Michael; Hicks, Michael; Hrabe, Thomas; Karchin, Rachel; Leman, Julia Koehler; Lane, Lydie; Masica, David L; Mooney, Sean D; Moult, John; Omenn, Gilbert S; Pearl, Frances; Pejaver, Vikas; Reynolds, Sheila M; Rokem, Ariel; Schwede, Torsten; Song, Sicheng; Tilgner, Hagen; Valasatava, Yana; Zhang, Yang; Deutsch, Eric W

    2017-12-18

    The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods.

  11. Is IGSF1 involved in human pituitary tumor formation?

    PubMed Central

    Faucz, Fabio R.; Horvath, Anelia D.; Azevedo, Monalisa F.; Levy, Isaac; Bak, Beata; Wang, Ying; Xekouki, Paraskevi; Szarek, Eva; Gourgari, Evgenia; Manning, Allison D.; de Alexandre, Rodrigo Bertollo; Saloustros, Emmanouil; Trivellin, Giampaolo; Lodish, Maya; Hofman, Paul; Anderson, Yvonne C; Holdaway, Ian; Oldfield, Edward; Chittiboina, Prashant; Nesterova, Maria; Biermasz, Nienke R.; Wit, Jan M.; Bernard, Daniel J.; Stratakis, Constantine A.

    2014-01-01

    IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males. In this study we tested the hypothesis that IGSF1 is involved in the development of pituitary tumors, especially those that produce growth hormone (GH). IGSF1 was sequenced in 21 patients with gigantism or acromegaly and 92 healthy individuals. Expression studies with a candidate pathogenic IGSF1 variant were carried out in transfected cells and immunohistochemistry for IGSF1 was performed in sections from GH-producing adenomas, familial somatomammotroph hyperplasia and in normal pituitary. In two male patients, and in one female, with somatomammotroph hyperplasia from the same family, we identified the sequence variant p.N604T, which in silico analysis suggested could affect IGSF1 function. Of 60 female controls, two carried the same variant, and seven were heterozygous for other variants. Immunohistochemistry showed increase IGSF1 staining in the GH-producing tumor from the patient with the IGSF1 p.N604T variant compared to a GH-producing adenoma from a patient negative for any IGSF1 variants and to normal control pituitary tissue. The IGSF1 gene appears polymorphic in the general population. A potentially pathogenic variant identified in the germline of three patients with gigantism from the same family (segregating with the disease) was also detected in two healthy female controls. Variations in IGSF1 expression in pituitary tissue in patients with or without IGSF1 germline mutations point to the need for further studies of IGSF1 action in pituitary adenoma formation. PMID:25527509

  12. A family of splice variants of CstF-64 expressed in vertebrate nervous systems

    PubMed Central

    Shankarling, Ganesh S; Coates, Penelope W; Dass, Brinda; MacDonald, Clinton C

    2009-01-01

    Background Alternative splicing and polyadenylation are important mechanisms for creating the proteomic diversity necessary for the nervous system to fulfill its specialized functions. The contribution of alternative splicing to proteomic diversity in the nervous system has been well documented, whereas the role of alternative polyadenylation in this process is less well understood. Since the CstF-64 polyadenylation protein is known to be an important regulator of tissue-specific polyadenylation, we examined its expression in brain and other organs. Results We discovered several closely related splice variants of CstF-64 – collectively called βCstF-64 – that could potentially contribute to proteomic diversity in the nervous system. The βCstF-64 splice variants are found predominantly in the brains of several vertebrate species including mice and humans. The major βCstF-64 variant mRNA is generated by inclusion of two alternate exons (that we call exons 8.1 and 8.2) found between exons 8 and 9 of the CstF-64 gene, and contains an additional 147 nucleotides, encoding 49 additional amino acids. Some variants of βCstF-64 contain only the first alternate exon (exon 8.1) while other variants contain both alternate exons (8.1 and 8.2). In mice, the predominant form of βCstF-64 also contains a deletion of 78 nucleotides from exon 9, although that variant is not seen in any other species examined, including rats. Immunoblot and 2D-PAGE analyses of mouse nuclear extracts indicate that a protein corresponding to βCstF-64 is expressed in brain at approximately equal levels to CstF-64. Since βCstF-64 splice variant family members were found in the brains of all vertebrate species examined (including turtles and fish), this suggests that βCstF-64 has an evolutionarily conserved function in these animals. βCstF-64 was present in both pre- and post-natal mice and in different regions of the nervous system, suggesting an important role for βCstF-64 in neural gene expression throughout development. Finally, experiments in representative cell lines suggest that βCstF-64 is expressed in neurons but not glia. Conclusion This is the first report of a family of splice variants encoding a key polyadenylation protein that is expressed in a nervous system-specific manner. We propose that βCstF-64 contributes to proteomic diversity by regulating alternative polyadenylation of neural mRNAs. PMID:19284619

  13. A Comparison of Variant Calling Pipelines Using Genome in a Bottle as a Reference

    PubMed Central

    2015-01-01

    High-throughput sequencing, especially of exomes, is a popular diagnostic tool, but it is difficult to determine which tools are the best at analyzing this data. In this study, we use the NIST Genome in a Bottle results as a novel resource for validation of our exome analysis pipeline. We use six different aligners and five different variant callers to determine which pipeline, of the 30 total, performs the best on a human exome that was used to help generate the list of variants detected by the Genome in a Bottle Consortium. Of these 30 pipelines, we found that Novoalign in conjunction with GATK UnifiedGenotyper exhibited the highest sensitivity while maintaining a low number of false positives for SNVs. However, it is apparent that indels are still difficult for any pipeline to handle with none of the tools achieving an average sensitivity higher than 33% or a Positive Predictive Value (PPV) higher than 53%. Lastly, as expected, it was found that aligners can play as vital a role in variant detection as variant callers themselves. PMID:26539496

  14. Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks

    PubMed Central

    Decker, Brennan; Allen, Jamie; Luccarini, Craig; Pooley, Karen A; Shah, Mitul; Bolla, Manjeet K; Wang, Qin; Ahmed, Shahana; Baynes, Caroline; Conroy, Don M; Brown, Judith; Luben, Robert; Ostrander, Elaine A; Pharoah, Paul DP; Dunning, Alison M; Easton, Douglas F

    2017-01-01

    Background Breast cancer (BC) is the most common malignancy in women and has a major heritable component. The risks associated with most rare susceptibility variants are not well estimated. To better characterise the contribution of variants in ATM, CHEK2, PALB2 and XRCC2, we sequenced their coding regions in 13 087 BC cases and 5488 controls from East Anglia, UK. Methods Gene coding regions were enriched via PCR, sequenced, variant called and filtered for quality. ORs for BC risk were estimated separately for carriers of truncating variants and of rare missense variants, which were further subdivided by functional domain and pathogenicity as predicted by four in silico algorithms. Results Truncating variants in PALB2 (OR=4.69, 95% CI 2.27 to 9.68), ATM (OR=3.26; 95% CI 1.82 to 6.46) and CHEK2 (OR=3.11; 95% CI 2.15 to 4.69), but not XRCC2 (OR=0.94; 95% CI 0.26 to 4.19) were associated with increased BC risk. Truncating variants in ATM and CHEK2 were more strongly associated with risk of oestrogen receptor (ER)-positive than ER-negative disease, while those in PALB2 were associated with similar risks for both subtypes. There was also some evidence that missense variants in ATM, CHEK2 and PALB2 may contribute to BC risk, but larger studies are necessary to quantify the magnitude of this effect. Conclusions Truncating variants in PALB2 are associated with a higher risk of BC than those in ATM or CHEK2. A substantial risk of BC due to truncating XRCC2 variants can be excluded. PMID:28779002

  15. Generating finite cyclic and dihedral groups using sequential insertion systems with interactions

    NASA Astrophysics Data System (ADS)

    Fong, Wan Heng; Sarmin, Nor Haniza; Turaev, Sherzod; Yosman, Ahmad Firdaus

    2017-04-01

    The operation of insertion has been studied extensively throughout the years for its impact in many areas of theoretical computer science such as DNA computing. First introduced as a generalization of the concatenation operation, many variants of insertion have been introduced, each with their own computational properties. In this paper, we introduce a new variant that enables the generation of some special types of groups called sequential insertion systems with interactions. We show that these new systems are able to generate all finite cyclic and dihedral groups.

  16. VLITL is a major cross-β-sheet signal for fibrinogen Aα-chain frameshift variants

    PubMed Central

    Garnier, Cyrille; Briki, Fatma; Le Pogamp, Patrick; Dogan, Ahmet; Rioux-Leclercq, Nathalie; Goude, Renan; Beugnet, Caroline; Martin, Laurent; Delpech, Marc; Bridoux, Frank; Grateau, Gilles; Doucet, Jean

    2017-01-01

    The first case of hereditary fibrinogen Aα-chain amyloidosis was recognized >20 years ago, but disease mechanisms still remain unknown. Here we report detailed clinical and proteomics studies of a French kindred with a novel amyloidogenic fibrinogen Aα-chain frameshift variant, Phe521Leufs, causing a severe familial form of renal amyloidosis. Next, we focused our investigations to elucidate the molecular basis that render this Aα-chain variant amyloidogenic. We show that a 49-mer peptide derived from the C-terminal part of the Phe521Leufs chain is deposited as fibrils in the patient’s kidneys, establishing that only a small portion of Phe521Leufs directly contributes to amyloid formation in vivo. In silico analysis indicated that this 49-mer Aα-chain peptide contained a motif (VLITL), with a high intrinsic propensity for β-aggregation at residues 44 to 48 of human renal fibrils. To experimentally verify the amyloid propensity of VLITL, we generated synthetic Phe521Leufs-derived peptides and compared their capacity for fibril formation in vitro with that of their VLITL-deleted counterparts. We show that VLITL forms typical amyloid fibrils in vitro and is a major signal for cross-β-sheet self-association of the 49-mer Phe521Leufs peptide identified in vivo, whereas its absence abrogates fibril formation. This study provides compelling evidence that VLITL confers amyloidogenic properties to Aα-chain frameshift variants, yielding a previously unknown molecular basis for the pathogenesis of Aα-chain amyloidosis. PMID:29089309

  17. A short review of variants calling for single-cell-sequencing data with applications.

    PubMed

    Wei, Zhuohui; Shu, Chang; Zhang, Changsheng; Huang, Jingying; Cai, Hongmin

    2017-11-01

    The field of single-cell sequencing is fleetly expanding, and many techniques have been developed in the past decade. With this technology, biologists can study not only the heterogeneity between two adjacent cells in the same tissue or organ, but also the evolutionary relationships and degenerative processes in a single cell. Calling variants is the main purpose in analyzing single cell sequencing (SCS) data. Currently, some popular methods used for bulk-cell-sequencing data analysis are tailored directly to be applied in dealing with SCS data. However, SCS requires an extra step of genome amplification to accumulate enough quantity for satisfying sequencing needs. The amplification yields large biases and thus raises challenge for using the bulk-cell-sequencing methods. In order to provide guidance for the development of specialized analyzed methods as well as using currently developed tools for SNS, this paper aims to bridge the gap. In this paper, we firstly introduced two popular genome amplification methods and compared their capabilities. Then we introduced a few popular models for calling single-nucleotide polymorphisms and copy-number variations. Finally, break-through applications of SNS were summarized to demonstrate its potential in researching cell evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms.

    PubMed

    Puritz, Jonathan B; Hollenbeck, Christopher M; Gold, John R

    2014-01-01

    Restriction-site associated DNA sequencing (RADseq) has become a powerful and useful approach for population genomics. Currently, no software exists that utilizes both paired-end reads from RADseq data to efficiently produce population-informative variant calls, especially for non-model organisms with large effective population sizes and high levels of genetic polymorphism. dDocent is an analysis pipeline with a user-friendly, command-line interface designed to process individually barcoded RADseq data (with double cut sites) into informative SNPs/Indels for population-level analyses. The pipeline, written in BASH, uses data reduction techniques and other stand-alone software packages to perform quality trimming and adapter removal, de novo assembly of RAD loci, read mapping, SNP and Indel calling, and baseline data filtering. Double-digest RAD data from population pairings of three different marine fishes were used to compare dDocent with Stacks, the first generally available, widely used pipeline for analysis of RADseq data. dDocent consistently identified more SNPs shared across greater numbers of individuals and with higher levels of coverage. This is due to the fact that dDocent quality trims instead of filtering, incorporates both forward and reverse reads (including reads with INDEL polymorphisms) in assembly, mapping, and SNP calling. The pipeline and a comprehensive user guide can be found at http://dDocent.wordpress.com.

  19. dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms

    PubMed Central

    Hollenbeck, Christopher M.; Gold, John R.

    2014-01-01

    Restriction-site associated DNA sequencing (RADseq) has become a powerful and useful approach for population genomics. Currently, no software exists that utilizes both paired-end reads from RADseq data to efficiently produce population-informative variant calls, especially for non-model organisms with large effective population sizes and high levels of genetic polymorphism. dDocent is an analysis pipeline with a user-friendly, command-line interface designed to process individually barcoded RADseq data (with double cut sites) into informative SNPs/Indels for population-level analyses. The pipeline, written in BASH, uses data reduction techniques and other stand-alone software packages to perform quality trimming and adapter removal, de novo assembly of RAD loci, read mapping, SNP and Indel calling, and baseline data filtering. Double-digest RAD data from population pairings of three different marine fishes were used to compare dDocent with Stacks, the first generally available, widely used pipeline for analysis of RADseq data. dDocent consistently identified more SNPs shared across greater numbers of individuals and with higher levels of coverage. This is due to the fact that dDocent quality trims instead of filtering, incorporates both forward and reverse reads (including reads with INDEL polymorphisms) in assembly, mapping, and SNP calling. The pipeline and a comprehensive user guide can be found at http://dDocent.wordpress.com. PMID:24949246

  20. A Likelihood-Based Framework for Association Analysis of Allele-Specific Copy Numbers.

    PubMed

    Hu, Y J; Lin, D Y; Sun, W; Zeng, D

    2014-10-01

    Copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) co-exist throughout the human genome and jointly contribute to phenotypic variations. Thus, it is desirable to consider both types of variants, as characterized by allele-specific copy numbers (ASCNs), in association studies of complex human diseases. Current SNP genotyping technologies capture the CNV and SNP information simultaneously via fluorescent intensity measurements. The common practice of calling ASCNs from the intensity measurements and then using the ASCN calls in downstream association analysis has important limitations. First, the association tests are prone to false-positive findings when differential measurement errors between cases and controls arise from differences in DNA quality or handling. Second, the uncertainties in the ASCN calls are ignored. We present a general framework for the integrated analysis of CNVs and SNPs, including the analysis of total copy numbers as a special case. Our approach combines the ASCN calling and the association analysis into a single step while allowing for differential measurement errors. We construct likelihood functions that properly account for case-control sampling and measurement errors. We establish the asymptotic properties of the maximum likelihood estimators and develop EM algorithms to implement the corresponding inference procedures. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to a genome-wide association study of schizophrenia. Extensions to next-generation sequencing data are discussed.

  1. Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis

    PubMed Central

    Patel, Kevin M.; Strong, Alanna; Tohyama, Junichiro; Jin, Xueting; Morales, Carlos R.; Billheimer, Jeffery; Millar, John; Kruth, Howard; Rader, Daniel J.

    2015-01-01

    Rationale Non-coding gene variants at the SORT1 locus are strongly associated with LDL-C levels as well as with coronary artery disease (CAD). SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apoB-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown. Objective To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis. Methods and Results We crossed Sort1−/− mice onto a ‘humanized’ Apobec1−/−; hAPOB Tg background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. In order to test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1−/−;LDLR−/− or Sort1+/+;LDLR−/− bone marrow into Ldlr−/− mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or LPS-induced cytokine release in vivo. In contrast, sortilin deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation. Conclusions Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development. PMID:25593281

  2. RcsB contributes to the distinct stress fitness between Escherichia coli O157:H7 curli variants of 1993 hamburger-associated outbreak strains

    USDA-ARS?s Scientific Manuscript database

    Curli are adhesive fimbriae of Enterobactericaeae and are involved in surface attachment, cell aggregation and biofilm formation. We previously reported that natural curli variants of E. coli O157:H7 (EcO157) displayed distinct acid resistance; however, this difference was not linked to the curli fi...

  3. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities.

    PubMed

    Zeng, Zhenshun; Guo, Xing-Pan; Li, Baiyuan; Wang, Pengxia; Cai, Xingsheng; Tian, Xinpeng; Zhang, Si; Yang, Jin-Long; Wang, Xiaoxue

    2015-12-01

    Pseudoalteromonas is widespread in various marine environments, and most strains can affect invertebrate larval settlement and metamorphosis by forming biofilms. However, the impact and the molecular basis of population diversification occurring in Pseudoalteromonas biofilms are poorly understood. Here, we show that morphological diversification is prevalent in Pseudoalteromonas species during biofilm formation. Two types of genetic variants, wrinkled (frequency of 12±5%) and translucent (frequency of 5±3%), were found in Pseudoalteromonas lipolytica biofilms. The inducing activities of biofilms formed by the two variants on larval settlement and metamorphosis of the mussel Mytilus coruscus were significantly decreased, suggesting strong antifouling activities. Using whole-genome re-sequencing combined with genetic manipulation, two genes were identified to be responsible for the morphology alternations. A nonsense mutation in AT00_08765 led to a wrinkled morphology due to the overproduction of cellulose, whereas a point mutation in AT00_17125 led to a translucent morphology via a reduction in capsular polysaccharide production. Taken together, the results suggest that the microbial behavior on larval settlement and metamorphosis in marine environment could be affected by the self-generated variants generated during the formation of marine biofilms, thereby rendering potential application in biocontrol of marine biofouling.

  4. TotalReCaller: improved accuracy and performance via integrated alignment and base-calling.

    PubMed

    Menges, Fabian; Narzisi, Giuseppe; Mishra, Bud

    2011-09-01

    Currently, re-sequencing approaches use multiple modules serially to interpret raw sequencing data from next-generation sequencing platforms, while remaining oblivious to the genomic information until the final alignment step. Such approaches fail to exploit the full information from both raw sequencing data and the reference genome that can yield better quality sequence reads, SNP-calls, variant detection, as well as an alignment at the best possible location in the reference genome. Thus, there is a need for novel reference-guided bioinformatics algorithms for interpreting analog signals representing sequences of the bases ({A, C, G, T}), while simultaneously aligning possible sequence reads to a source reference genome whenever available. Here, we propose a new base-calling algorithm, TotalReCaller, to achieve improved performance. A linear error model for the raw intensity data and Burrows-Wheeler transform (BWT) based alignment are combined utilizing a Bayesian score function, which is then globally optimized over all possible genomic locations using an efficient branch-and-bound approach. The algorithm has been implemented in soft- and hardware [field-programmable gate array (FPGA)] to achieve real-time performance. Empirical results on real high-throughput Illumina data were used to evaluate TotalReCaller's performance relative to its peers-Bustard, BayesCall, Ibis and Rolexa-based on several criteria, particularly those important in clinical and scientific applications. Namely, it was evaluated for (i) its base-calling speed and throughput, (ii) its read accuracy and (iii) its specificity and sensitivity in variant calling. A software implementation of TotalReCaller as well as additional information, is available at: http://bioinformatics.nyu.edu/wordpress/projects/totalrecaller/ fabian.menges@nyu.edu.

  5. ADRA2B Deletion Variant Influences Time-Dependent Effects of Pre-Learning Stress on Long-Term Memory

    PubMed Central

    Zoladz, Phillip R.; Dailey, Alison M.; Nagle, Hannah E.; Fiely, Miranda K.; Mosley, Brianne E.; Brown, Callie M.; Duffy, Tessa J.; Scharf, Amanda R.; Earley, McKenna B.; Rorabaugh, Boyd R.

    2017-01-01

    Extensive work over the past few decades has shown that certain genetic variations interact with life events to confer increased susceptibility for the development of psychological disorders. The deletion variant of the ADRA2B gene, which has been associated with enhanced emotional memory and heightened amygdala responses to emotional stimuli, might confer increased susceptibility for the development of post-traumatic stress disorder (PTSD) or related phenotypes by increasing the likelihood of traumatic memory formation. Thus, we examined whether this genetic variant would predict stress effects on learning and memory in a non-clinical sample. Two hundred and thirty-five individuals were exposed to the socially evaluated cold pressor test or a control condition immediately or 30 min prior to learning a list of words that varied in emotional valence and arousal level. Participants’ memory for the words was tested immediately (recall) and 24 h after learning (recall and recognition), and saliva samples were collected to genotype participants for the ADRA2B deletion variant. Results showed that stress administered immediately before learning selectively enhanced long-term recall in deletion carriers. Stress administered 30 min before learning impaired recognition memory in male deletion carriers, while enhancing recognition memory in female deletion carriers. These findings provide additional evidence to support the idea that ADRA2B deletion variant carriers retain a sensitized stress response system, which results in amplified effects of stress on learning and memory. The accumulating evidence regarding this genetic variant implicates it as a susceptibility factor for traumatic memory formation and PTSD-related phenotypes. PMID:28254464

  6. A de novo variant in the ASPRV1 gene in a dog with ichthyosis.

    PubMed

    Bauer, Anina; Waluk, Dominik P; Galichet, Arnaud; Timm, Katrin; Jagannathan, Vidhya; Sayar, Beyza S; Wiener, Dominique J; Dietschi, Elisabeth; Müller, Eliane J; Roosje, Petra; Welle, Monika M; Leeb, Tosso

    2017-03-01

    Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.

  7. Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants?

    PubMed

    Lovelock, Paul K; Spurdle, Amanda B; Mok, Myth T S; Farrugia, Daniel J; Lakhani, Sunil R; Healey, Sue; Arnold, Stephen; Buchanan, Daniel; Couch, Fergus J; Henderson, Beric R; Goldgar, David E; Tavtigian, Sean V; Chenevix-Trench, Georgia; Brown, Melissa A

    2007-01-01

    Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. These data highlight the need for a range of functional studies to be performed in order to identify variants with partially compromised function. The results also raise the possibility that A1708V and R1699Q may be associated with a low or moderate risk of cancer. While data pooling strategies may provide more information for multifactorial analysis to improve the interpretation of the clinical significance of these variants, it is likely that the development of current multifactorial likelihood approaches and the consideration of alternative statistical approaches will be needed to determine whether these individually rare variants do confer a low or moderate risk of breast cancer.

  8. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing.

    PubMed

    Pritchard, Colin C; Smith, Christina; Salipante, Stephen J; Lee, Ming K; Thornton, Anne M; Nord, Alex S; Gulden, Cassandra; Kupfer, Sonia S; Swisher, Elizabeth M; Bennett, Robin L; Novetsky, Akiva P; Jarvik, Gail P; Olopade, Olufunmilayo I; Goodfellow, Paul J; King, Mary-Claire; Tait, Jonathan F; Walsh, Tom

    2012-07-01

    Lynch syndrome (hereditary nonpolyposis colon cancer) and adenomatous polyposis syndromes frequently have overlapping clinical features. Current approaches for molecular genetic testing are often stepwise, taking a best-candidate gene approach with testing of additional genes if initial results are negative. We report a comprehensive assay called ColoSeq that detects all classes of mutations in Lynch and polyposis syndrome genes using targeted capture and massively parallel next-generation sequencing on the Illumina HiSeq2000 instrument. In blinded specimens and colon cancer cell lines with defined mutations, ColoSeq correctly identified 28/28 (100%) pathogenic mutations in MLH1, MSH2, MSH6, PMS2, EPCAM, APC, and MUTYH, including single nucleotide variants (SNVs), small insertions and deletions, and large copy number variants. There was 100% reproducibility of detection mutation between independent runs. The assay correctly identified 222 of 224 heterozygous SNVs (99.4%) in HapMap samples, demonstrating high sensitivity of calling all variants across each captured gene. Average coverage was greater than 320 reads per base pair when the maximum of 96 index samples with barcodes were pooled. In a specificity study of 19 control patients without cancer from different ethnic backgrounds, we did not find any pathogenic mutations but detected two variants of uncertain significance. ColoSeq offers a powerful, cost-effective means of genetic testing for Lynch and polyposis syndromes that eliminates the need for stepwise testing and multiple follow-up clinical visits. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  9. Reducing false-positive incidental findings with ensemble genotyping and logistic regression based variant filtering methods.

    PubMed

    Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choe, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B; Gupta, Neha; Kohane, Isaac S; Green, Robert C; Kong, Sek Won

    2014-08-01

    As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false-positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here, we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false-negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous single nucleotide variants (SNVs); 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery in NA12878, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and an ensemble genotyping would be essential to minimize false-positive DNM candidates. © 2014 WILEY PERIODICALS, INC.

  10. Nonsense variant in COL7A1 causes recessive dystrophic epidermolysis bullosa in Central Asian Shepherd dogs.

    PubMed

    Niskanen, Julia; Dillard, Kati; Arumilli, Meharji; Salmela, Elina; Anttila, Marjukka; Lohi, Hannes; Hytönen, Marjo K

    2017-01-01

    A rare hereditary mechanobullous disorder called epidermolysis bullosa (EB) causes blistering in the skin and the mucosal membranes. To date, nineteen EB-related genes have been discovered in human and other species. We describe here a novel EB variant in dogs. Two newborn littermates of Central Asian Shepherd dogs with severe signs of skin blistering were brought to a veterinary clinic and euthanized due to poor prognosis. In post-mortem examination, the puppies were shown to have findings in the skin and the mucosal membranes characteristic of EB. A whole-genome sequencing of one of the affected puppies was performed to identify the genetic cause. The resequencing data were filtered under a recessive model against variants from 31 other dog genomes, revealing a homozygous case-specific nonsense variant in one of the known EB-causing genes, COL7A1 (c.4579C>T, p.R1527*). The variant results in a premature stop codon and likely absence of the functional protein in the basement membrane of the skin in the affected dogs. This was confirmed by immunohistochemistry using a COL7A1 antibody. Additional screening of the variant indicated full penetrance and breed specificity at ~28% carrier frequency. In summary, this study reveals a novel COL7A1 variant causing recessive dystrophic EB and provides a genetic test for the eradication of the disease from the breed.

  11. Three Dimensional Visualization of GOES Cloud Data Using Octress

    DTIC Science & Technology

    1993-06-01

    structure for CAD of integrated circuits that can subdivide the cubes into more complex polyhedrons . Medical imaging is also taking advantage of the...CIGOES 501 FORMAT(A) CALL OPENDBCPARAM’, ISTATRM) IF (ISTATRM .NE. 0) CALL FRIMERRC Error opening database .’, "+ ISTATRM) CALL OLDIMAGE(1, CIGOES, STATUS...image name (no .ext):’ ACCEPT 501, CIGOES 501 FORMAT(A) CALL OPENDB(’PARAM’, ISTATRM) IF (ISTATRM .NE. 0) CALL FRIMERRC Error opening database

  12. A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein

    PubMed Central

    Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.

    2011-01-01

    A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594

  13. Clinical polyomavirus BK variants with agnogene deletion are non-functional but rescued by trans-complementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer

    High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectiousmore » progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.« less

  14. Epigenetic control of transposon transcription and mobility in Arabidopsis.

    PubMed

    Bucher, Etienne; Reinders, Jon; Mirouze, Marie

    2012-11-01

    The mobility of genetic elements called transposable elements (TEs) was discovered half a century ago by Barbara McClintock. Although she had recognized them as chromosomal controlling elements, for much of the consequent time TEs were primarily considered as parasites of the host genome. However the recent explosion of discoveries in the fields of genomics and epigenetics have unambiguously shown the importance of TEs in genome function and evolution. Bursts of endogenous TEs have been reported in plants with epigenetic misregulation, revealing the molecular mechanisms underlying their control. We review here the different steps in TE invasion of the host genome involving epigenetic control and environmental stress responses. As TEs propagate in plant genomes and attract epigenetic marks, their neo-insertions can lead to the formation of new, heritable epigenetic variants (epialleles) of genes in their vicinity and impact on host gene regulatory networks. The epigenetic interplay between TE and genes thus plays a crucial role in the TE-host co-evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. HTSeq--a Python framework to work with high-throughput sequencing data.

    PubMed

    Anders, Simon; Pyl, Paul Theodor; Huber, Wolfgang

    2015-01-15

    A large choice of tools exists for many standard tasks in the analysis of high-throughput sequencing (HTS) data. However, once a project deviates from standard workflows, custom scripts are needed. We present HTSeq, a Python library to facilitate the rapid development of such scripts. HTSeq offers parsers for many common data formats in HTS projects, as well as classes to represent data, such as genomic coordinates, sequences, sequencing reads, alignments, gene model information and variant calls, and provides data structures that allow for querying via genomic coordinates. We also present htseq-count, a tool developed with HTSeq that preprocesses RNA-Seq data for differential expression analysis by counting the overlap of reads with genes. HTSeq is released as an open-source software under the GNU General Public Licence and available from http://www-huber.embl.de/HTSeq or from the Python Package Index at https://pypi.python.org/pypi/HTSeq. © The Author 2014. Published by Oxford University Press.

  16. Isotopic Clues to Mars Crust-Atmosphere Interactions

    NASA Image and Video Library

    2016-09-29

    Chemistry that takes place in the surface material on Mars can explain why particular xenon (Xe) and krypton (Kr) isotopes are more abundant in the Martian atmosphere than expected. The isotopes -- variants that have different numbers of neutrons -- are formed in the loose rocks and material that make up the regolith -- the surface layer down to solid rock. The chemistry begins when cosmic rays penetrate into the surface material. If the cosmic rays strike an atom of barium (Ba), the barium can lose one or more of its neutrons (n0). Atoms of xenon can pick up some of those neutrons – a process called neutron capture – to form the isotopes xenon-124 and xenon-126. In the same way, atoms of bromine (Br) can lose some of their neutrons to krypton, leading to the formation of krypton-80 and krypton-82 isotopes. These isotopes can enter the atmosphere when the regolith is disturbed by impacts and abrasion, allowing gas to escape. http://photojournal.jpl.nasa.gov/catalog/PIA20847

  17. Renin-Angiotensin System Gene Variants and Type 2 Diabetes Mellitus: Influence of Angiotensinogen

    PubMed Central

    Joyce-Tan, Siew Mei; Zain, Shamsul Mohd; Abdul Sattar, Munavvar Zubaid; Abdullah, Nor Azizan

    2016-01-01

    Genome-wide association studies (GWAS) have been successfully used to call for variants associated with diseases including type 2 diabetes mellitus (T2DM). However, some variants are not included in the GWAS to avoid penalty in multiple hypothetic testing. Thus, candidate gene approach is still useful even at GWAS era. This study attempted to assess whether genetic variations in the renin-angiotensin system (RAS) and their gene interactions are associated with T2DM risk. We genotyped 290 T2DM patients and 267 controls using three genes of the RAS, namely, angiotensin converting enzyme (ACE), angiotensinogen (AGT), and angiotensin II type 1 receptor (AGTR1). There were significant differences in allele frequencies between cases and controls for AGT variants (P = 0.05) but not for ACE and AGTR1. Haplotype TCG of the AGT was associated with increased risk of T2DM (OR 1.92, 95% CI 1.15–3.20, permuted P = 0.012); however, no evidence of significant gene-gene interactions was seen. Nonetheless, our analysis revealed that the associations of the AGT variants with T2DM were independently associated. Thus, this study suggests that genetic variants of the RAS can modestly influence the T2DM risk. PMID:26682227

  18. Leveraging long read sequencing from a single individual to provide a comprehensive resource for benchmarking variant calling methods

    PubMed Central

    Mu, John C.; Tootoonchi Afshar, Pegah; Mohiyuddin, Marghoob; Chen, Xi; Li, Jian; Bani Asadi, Narges; Gerstein, Mark B.; Wong, Wing H.; Lam, Hugo Y. K.

    2015-01-01

    A high-confidence, comprehensive human variant set is critical in assessing accuracy of sequencing algorithms, which are crucial in precision medicine based on high-throughput sequencing. Although recent works have attempted to provide such a resource, they still do not encompass all major types of variants including structural variants (SVs). Thus, we leveraged the massive high-quality Sanger sequences from the HuRef genome to construct by far the most comprehensive gold set of a single individual, which was cross validated with deep Illumina sequencing, population datasets, and well-established algorithms. It was a necessary effort to completely reanalyze the HuRef genome as its previously published variants were mostly reported five years ago, suffering from compatibility, organization, and accuracy issues that prevent their direct use in benchmarking. Our extensive analysis and validation resulted in a gold set with high specificity and sensitivity. In contrast to the current gold sets of the NA12878 or HS1011 genomes, our gold set is the first that includes small variants, deletion SVs and insertion SVs up to a hundred thousand base-pairs. We demonstrate the utility of our HuRef gold set to benchmark several published SV detection tools. PMID:26412485

  19. Description and analysis of genetic variants in French hereditary breast and ovarian cancer families recorded in the UMD-BRCA1/BRCA2 databases.

    PubMed

    Caputo, Sandrine; Benboudjema, Louisa; Sinilnikova, Olga; Rouleau, Etienne; Béroud, Christophe; Lidereau, Rosette

    2012-01-01

    BRCA1 and BRCA2 are the two main genes responsible for predisposition to breast and ovarian cancers, as a result of protein-inactivating monoallelic mutations. It remains to be established whether many of the variants identified in these two genes, so-called unclassified/unknown variants (UVs), contribute to the disease phenotype or are simply neutral variants (or polymorphisms). Given the clinical importance of establishing their status, a nationwide effort to annotate these UVs was launched by laboratories belonging to the French GGC consortium (Groupe Génétique et Cancer), leading to the creation of the UMD-BRCA1/BRCA2 databases (http://www.umd.be/BRCA1/ and http://www.umd.be/BRCA2/). These databases have been endorsed by the French National Cancer Institute (INCa) and are designed to collect all variants detected in France, whether causal, neutral or UV. They differ from other BRCA databases in that they contain co-occurrence data for all variants. Using these data, the GGC French consortium has been able to classify certain UVs also contained in other databases. In this article, we report some novel UVs not contained in the BIC database and explore their impact in cancer predisposition based on a structural approach.

  20. Gene variant linked to lung cancer risk

    Cancer.gov

    A variation of the gene NFKB1, called rs4648127, is associated with an estimated 44 percent reduction in lung cancer risk. When this information, derived from samples obtained as part of a large NCI-sponsored prevention clinical trial, was compared with d

  1. Construction Strategies for Multiscale Personality Inventories

    ERIC Educational Resources Information Center

    Burisch, Matthias

    1978-01-01

    Sets of inventory scales were constructed from a common item pool, using variants of what are here called the Inductive, Deductive, and External strategies. Peer ratings for 21 traits served as criteria. Very little variation in validity was attributable to construction strategies. (Author/CTM)

  2. SiRen: Leveraging Similar Regions for Efficient and Accurate Variant Calling

    DTIC Science & Technology

    2015-05-30

    Cloudera, EMC2, Ericsson, Facebook, Guavus, HP, Huawei, Informatica , Intel, Microsoft, NetApp, Pivotal, Samsung, Schlumberger, Splunk, Virdata and VMware...EMC2, Ericsson, Facebook, Guavus, HP, Huawei, Informatica , Intel, Microsoft, NetApp, Pivotal, Samsung, Schlumberger, Splunk, Virdata and VMware

  3. Weakly Nonlinear Analysis of Vortex Formation in a Dissipative Variant of the Gross--Pitaevskii Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzou, J. C.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-05-10

    For a dissipative variant of the two-dimensional Gross--Pitaevskii equation with a parabolic trap under rotation, we study a symmetry breaking process that leads to the formation of vortices. The first symmetry breaking leads to the formation of many small vortices distributed uniformly near the Thomas$-$Fermi radius. The instability occurs as a result of a linear instability of a vortex-free steady state as the rotation is increased above a critical threshold. We focus on the second subsequent symmetry breaking, which occurs in the weakly nonlinear regime. At slightly above threshold, we derive a one-dimensional amplitude equation that describes the slow evolutionmore » of the envelope of the initial instability. Here, we show that the mechanism responsible for initiating vortex formation is a modulational instability of the amplitude equation. We also illustrate the role of dissipation in the symmetry breaking process. All analyses are confirmed by detailed numerical computations« less

  4. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech.

    PubMed

    Worthey, Elizabeth A; Raca, Gordana; Laffin, Jennifer J; Wilk, Brandon M; Harris, Jeremy M; Jakielski, Kathy J; Dimmock, David P; Strand, Edythe A; Shriberg, Lawrence D

    2013-10-02

    Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker's speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX). A total of 8 (80%) of the 10 participants had clinically reportable variants in one or two of the six genes, with variants in ATP13A4, KIAA0319 and CNTNAP2 being the most prevalent. Similar to the results reported in emerging WES studies of other complex neurodevelopmental disorders, our findings from this first WES study of CAS are interpreted as support for heterogeneous genetic origins of this pediatric motor speech disorder with multiple genes, pathways and complex interactions. We also submit that our findings illustrate the potential use of WES for both gene identification and case-by-case clinical diagnostics in pediatric motor speech disorders.

  5. The emergence of superstructural order in insulin amyloid fibrils upon multiple rounds of self-seeding

    NASA Astrophysics Data System (ADS)

    Surmacz-Chwedoruk, Weronika; Babenko, Viktoria; Dec, Robert; Szymczak, Piotr; Dzwolak, Wojciech

    2016-08-01

    Typically, elongation of an amyloid fibril entails passing conformational details of the mother seed to daughter generations of fibrils with high fidelity. There are, however, several factors that can potentially prevent such transgenerational structural imprinting from perpetuating, for example heterogeneity of mother seeds or so-called conformational switching. Here, we examine phenotypic persistence of bovine insulin amyloid ([BI]) upon multiple rounds of self-seeding under quiescent conditions. According to infrared spectroscopy, with the following passages of homologous seeding, daughter fibrils gradually depart from the mother seed’s spectral characteristics. We note that this transgenerational structural drift in [BI] amyloid leads toward fibrils with infrared, chiroptical, and morphological traits similar to those of the superstructural variant of fibrils which normally forms upon strong agitation of insulin solutions. However, in contrast to agitation-induced insulin amyloid, the superstructural assemblies of daughter fibrils isolated through self-seeding are sonication-resistant. Our results suggest that formation of single amyloid fibrils is not a dead-end of the amyloidogenic self-assembly. Instead, the process appears to continue toward the self-assembly of higher-order structures although on longer time-scales. From this perspective, the fast agitation-induced aggregation of insulin appears to be a shortcut to amyloid superstructures whose formation under quiescent conditions is slow.

  6. Clinical detection of deletion structural variants in whole-genome sequences

    PubMed Central

    Noll, Aaron C; Miller, Neil A; Smith, Laurie D; Yoo, Byunggil; Fiedler, Stephanie; Cooley, Linda D; Willig, Laurel K; Petrikin, Josh E; Cakici, Julie; Lesko, John; Newton, Angela; Detherage, Kali; Thiffault, Isabelle; Saunders, Carol J; Farrow, Emily G; Kingsmore, Stephen F

    2016-01-01

    Optimal management of acutely ill infants with monogenetic diseases requires rapid identification of causative haplotypes. Whole-genome sequencing (WGS) has been shown to identify pathogenic nucleotide variants in such infants. Deletion structural variants (DSVs, >50 nt) are implicated in many genetic diseases, and tools have been designed to identify DSVs using short-read WGS. Optimisation and integration of these tools into a WGS pipeline could improve diagnostic sensitivity and specificity of WGS. In addition, it may improve turnaround time when compared with current CNV assays, enhancing utility in acute settings. Here we describe DSV detection methods for use in WGS for rapid diagnosis in acutely ill infants: SKALD (Screening Konsensus and Annotation of Large Deletions) combines calls from two tools (Breakdancer and GenomeStrip) with calibrated filters and clinical interpretation rules. In four WGS runs, the average analytic precision (positive predictive value) of SKALD was 78%, and recall (sensitivity) was 27%, when compared with validated reference DSV calls. When retrospectively applied to a cohort of 36 families with acutely ill infants SKALD identified causative DSVs in two. The first was heterozygous deletion of exons 1–3 of MMP21 in trans with a heterozygous frame-shift deletion in two siblings with transposition of the great arteries and heterotaxy. In a newborn female with dysmorphic features, ventricular septal defect and persistent pulmonary hypertension, SKALD identified the breakpoints of a heterozygous, de novo 1p36.32p36.13 deletion. In summary, consensus DSV calling, implemented in an 8-h computational pipeline with parameterised filtering, has the potential to increase the diagnostic yield of WGS in acutely ill neonates and discover novel disease genes. PMID:29263817

  7. KinView: A visual comparative sequence analysis tool for integrated kinome research

    PubMed Central

    McSkimming, Daniel Ian; Dastgheib, Shima; Baffi, Timothy R.; Byrne, Dominic P.; Ferries, Samantha; Scott, Steven Thomas; Newton, Alexandra C.; Eyers, Claire E.; Kochut, Krzysztof J.; Eyers, Patrick A.

    2017-01-01

    Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to investigate relationships between protein sequence, structure, function, evolutionary history, and patterns of disease-associated variants. However, their widespread application in systems biology research is currently hindered by the lack of user-friendly tools to simultaneously visualize, manipulate and query the information conceptualized in large sequence alignments, and the challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-translational modifications, which are often stored in heterogeneous data sources and formats. Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a profile or consensus alignment in an ontological format. Subsets of the alignment are easily selected through the SPARQL Protocol and RDF Query Language for downstream statistical analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive integrative visualization that places eukaryotic protein kinase cancer variants in the context of natural sequence variation and experimentally determined post-translational modifications, which play central roles in the regulation of cellular signaling pathways. Using KinView, we identified differential phosphorylation patterns between tyrosine and serine/threonine kinases in the activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show how KinView can be used as a comparative tool to identify differences and similarities in natural variation, cancer variants and post-translational modifications between kinase groups, families and subfamilies. Based on KinView comparisons, we identify and experimentally characterize a regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 loop. To further demonstrate the application of KinView in hypothesis generation and testing, we formulate and validate a hypothesis explaining a novel predicted loss-of-function variant (D523NPKCβ) in the regulatory spine of PKCβ, a recently identified tumor suppressor kinase. KinView provides a novel, extensible interface for performing comparative analyses between subsets of kinases and for integrating multiple types of residue specific annotations in user friendly formats. PMID:27731453

  8. A Python package for parsing, validating, mapping and formatting sequence variants using HGVS nomenclature.

    PubMed

    Hart, Reece K; Rico, Rudolph; Hare, Emily; Garcia, John; Westbrook, Jody; Fusaro, Vincent A

    2015-01-15

    Biological sequence variants are commonly represented in scientific literature, clinical reports and databases of variation using the mutation nomenclature guidelines endorsed by the Human Genome Variation Society (HGVS). Despite the widespread use of the standard, no freely available and comprehensive programming libraries are available. Here we report an open-source and easy-to-use Python library that facilitates the parsing, manipulation, formatting and validation of variants according to the HGVS specification. The current implementation focuses on the subset of the HGVS recommendations that precisely describe sequence-level variation relevant to the application of high-throughput sequencing to clinical diagnostics. The package is released under the Apache 2.0 open-source license. Source code, documentation and issue tracking are available at http://bitbucket.org/hgvs/hgvs/. Python packages are available at PyPI (https://pypi.python.org/pypi/hgvs). Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  9. A Python package for parsing, validating, mapping and formatting sequence variants using HGVS nomenclature

    PubMed Central

    Hart, Reece K.; Rico, Rudolph; Hare, Emily; Garcia, John; Westbrook, Jody; Fusaro, Vincent A.

    2015-01-01

    Summary: Biological sequence variants are commonly represented in scientific literature, clinical reports and databases of variation using the mutation nomenclature guidelines endorsed by the Human Genome Variation Society (HGVS). Despite the widespread use of the standard, no freely available and comprehensive programming libraries are available. Here we report an open-source and easy-to-use Python library that facilitates the parsing, manipulation, formatting and validation of variants according to the HGVS specification. The current implementation focuses on the subset of the HGVS recommendations that precisely describe sequence-level variation relevant to the application of high-throughput sequencing to clinical diagnostics. Availability and implementation: The package is released under the Apache 2.0 open-source license. Source code, documentation and issue tracking are available at http://bitbucket.org/hgvs/hgvs/. Python packages are available at PyPI (https://pypi.python.org/pypi/hgvs). Contact: reecehart@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25273102

  10. Genomic Insight into Mechanisms of Reversion of Antibiotic Resistance in Multidrug Resistant Mycobacterium tuberculosis Induced by a Nanomolecular Iodine-Containing Complex FS-1.

    PubMed

    Ilin, Aleksandr I; Kulmanov, Murat E; Korotetskiy, Ilya S; Islamov, Rinat A; Akhmetova, Gulshara K; Lankina, Marina V; Reva, Oleg N

    2017-01-01

    Drug induced reversion of antibiotic resistance is a promising way to combat multidrug resistant infections. However, lacking knowledge of mechanisms of drug resistance reversion impedes employing this approach in medicinal therapies. Induction of antibiotic resistance reversion by a new anti-tuberculosis drug FS-1 has been reported. FS-1 was used in this work in combination with standard anti-tuberculosis antibiotics in an experiment on laboratory guinea pigs infected with an extensively drug resistant (XDR) strain Mycobacterium tuberculosis SCAID 187.0. During the experimental trial, genetic changes in the population were analyzed by sequencing of M. tuberculosis isolates followed by variant calling. In total 11 isolates obtained from different groups of infected animals at different stages of disease development and treatment were sequenced. It was found that despite the selective pressure of antibiotics, FS-1 caused a counter-selection of drug resistant variants that speeded up the recovery of the infected animals from XDR tuberculosis. Drug resistance mutations reported in the genome of the initial strain remained intact in more sensitive isolates obtained in this experiment. Variant calling in the sequenced genomes revealed that the drug resistance reversion could be associated with a general increase in genetic heterogeneity of the population of M. tuberculosis . Accumulation of mutations in PpsA and PpsE subunits of phenolpthiocerol polyketide synthase was observed in the isolates treated with FS-1 that may indicate an increase of persisting variants in the population. It was hypothesized that FS-1 caused an active counter-selection of drug resistant variants from the population by aggravating the cumulated fitness cost of the drug resistance mutations. Action of FS-1 on drug resistant bacteria exemplified the theoretically predicted induced synergy mechanism of drug resistance reversion. An experimental model to study the drug resistance reversion phenomenon is hereby introduced.

  11. Turboprop: improved PROPELLER imaging.

    PubMed

    Pipe, James G; Zwart, Nicholas

    2006-02-01

    A variant of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI, called turboprop, is introduced. This method employs an oscillating readout gradient during each spin echo of the echo train to collect more lines of data per echo train, which reduces the minimum scan time, motion-related artifact, and specific absorption rate (SAR) while increasing sampling efficiency. It can be applied to conventional fast spin-echo (FSE) imaging; however, this article emphasizes its application in diffusion-weighted imaging (DWI). The method is described and compared with conventional PROPELLER imaging, and clinical images collected with this PROPELLER variant are shown. Copyright 2006 Wiley-Liss, Inc.

  12. The Hemoglobin E Thalassemias

    PubMed Central

    Fucharoen, Suthat; Weatherall, David J.

    2012-01-01

    Hemoglobin E (HbE) is an extremely common structural hemoglobin variant that occurs at high frequencies throughout many Asian countries. It is a β-hemoglobin variant, which is produced at a slightly reduced rate and hence has the phenotype of a mild form of β thalassemia. Its interactions with different forms of α thalassemia result in a wide variety of clinical disorders, whereas its coinheritance with β thalassemia, a condition called hemoglobin E β thalassemia, is by far the most common severe form of β thalassemia in Asia and, globally, comprises approximately 50% of the clinically severe β-thalassemia disorders. PMID:22908199

  13. Information for People Treated with Human Growth Hormone (Summary)

    MedlinePlus

    ... from pituitary hGH treatment have been found. “Mad Cow” Disease “Mad cow” disease in cattle is the same kind of disease as CJD ... who ate beef from animals infected with mad cow disease got a form of CJD called variant ...

  14. FaStore - a space-saving solution for raw sequencing data.

    PubMed

    Roguski, Lukasz; Ochoa, Idoia; Hernaez, Mikel; Deorowicz, Sebastian

    2018-03-29

    The affordability of DNA sequencing has led to the generation of unprecedented volumes of raw sequencing data. These data must be stored, processed, and transmitted, which poses significant challenges. To facilitate this effort, we introduce FaStore, a specialized compressor for FASTQ files. FaStore does not use any reference sequences for compression, and permits the user to choose from several lossy modes to improve the overall compression ratio, depending on the specific needs. FaStore in the lossless mode achieves a significant improvement in compression ratio with respect to previously proposed algorithms. We perform an analysis on the effect that the different lossy modes have on variant calling, the most widely used application for clinical decision making, especially important in the era of precision medicine. We show that lossy compression can offer significant compression gains, while preserving the essential genomic information and without affecting the variant calling performance. FaStore can be downloaded from https://github.com/refresh-bio/FaStore. sebastian.deorowicz@polsl.pl. Supplementary data are available at Bioinformatics online.

  15. Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma

    PubMed Central

    Wrzeszczynski, Kazimierz O.; Frank, Mayu O.; Koyama, Takahiko; Rhrissorrakrai, Kahn; Robine, Nicolas; Utro, Filippo; Emde, Anne-Katrin; Chen, Bo-Juen; Arora, Kanika; Shah, Minita; Vacic, Vladimir; Norel, Raquel; Bilal, Erhan; Bergmann, Ewa A.; Moore Vogel, Julia L.; Bruce, Jeffrey N.; Lassman, Andrew B.; Canoll, Peter; Grommes, Christian; Harvey, Steve; Parida, Laxmi; Michelini, Vanessa V.; Zody, Michael C.; Jobanputra, Vaidehi; Royyuru, Ajay K.

    2017-01-01

    Objective: To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. Methods: Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs. Results: More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts. Conclusions: The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible. ClinicalTrials.gov identifier: NCT02725684. PMID:28740869

  16. FAVR (Filtering and Annotation of Variants that are Rare): methods to facilitate the analysis of rare germline genetic variants from massively parallel sequencing datasets

    PubMed Central

    2013-01-01

    Background Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. Results FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software tools. Conclusions FAVR is a platform-agnostic suite of methods that significantly enhances the analysis of large volumes of sequencing data for the study of rare genetic variants and their influence on phenotypes. PMID:23441864

  17. Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines.

    PubMed

    Binder, Zev A; Wilson, Kelli M; Salmasi, Vafi; Orr, Brent A; Eberhart, Charles G; Siu, I-Mei; Lim, Michael; Weingart, Jon D; Quinones-Hinojosa, Alfredo; Bettegowda, Chetan; Kassam, Amin B; Olivi, Alessandro; Brem, Henry; Riggins, Gregory J; Gallia, Gary L

    2016-01-01

    Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants. Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling. Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors. We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.

  18. DaMold: A data-mining platform for variant annotation and visualization in molecular diagnostics research.

    PubMed

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2017-07-01

    Next-generation sequencing (NGS) has become a powerful and efficient tool for routine mutation screening in clinical research. As each NGS test yields hundreds of variants, the current challenge is to meaningfully interpret the data and select potential candidates. Analyzing each variant while manually investigating several relevant databases to collect specific information is a cumbersome and time-consuming process, and it requires expertise and familiarity with these databases. Thus, a tool that can seamlessly annotate variants with clinically relevant databases under one common interface would be of great help for variant annotation, cross-referencing, and visualization. This tool would allow variants to be processed in an automated and high-throughput manner and facilitate the investigation of variants in several genome browsers. Several analysis tools are available for raw sequencing-read processing and variant identification, but an automated variant filtering, annotation, cross-referencing, and visualization tool is still lacking. To fulfill these requirements, we developed DaMold, a Web-based, user-friendly tool that can filter and annotate variants and can access and compile information from 37 resources. It is easy to use, provides flexible input options, and accepts variants from NGS and Sanger sequencing as well as hotspots in VCF and BED formats. DaMold is available as an online application at http://damold.platomics.com/index.html, and as a Docker container and virtual machine at https://sourceforge.net/projects/damold/. © 2017 Wiley Periodicals, Inc.

  19. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.

    PubMed

    Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth

    2015-09-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.

  20. Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots

    PubMed Central

    Baker, Christopher L.; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M.; Paigen, Kenneth

    2015-01-01

    Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9 +/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. PMID:26368021

  1. Divergence of a stereotyped call in northern resident killer whales.

    PubMed

    Grebner, Dawn M; Parks, Susan E; Bradley, David L; Miksis-Olds, Jennifer L; Capone, Dean E; Ford, John K B

    2011-02-01

    Northern resident killer whale pods (Orcinus orca) have distinctive stereotyped pulsed call repertoires that can be used to distinguish groups acoustically. Repertoires are generally stable, with the same call types comprising the repertoire of a given pod over a period of years to decades. Previous studies have shown that some discrete pulsed calls can be subdivided into variants or subtypes. This study suggests that new stereotyped calls may result from the gradual modification of existing call types through subtypes. Vocalizations of individuals and small groups of killer whales were collected using a bottom-mounted hydrophone array in Johnstone Strait, British Columbia in 2006 and 2007. Discriminant analysis of slope variations of a predominant call type, N4, revealed the presence of four distinct call subtypes. Similar to previous studies, there was a divergence of the N4 call between members of different matrilines of the same pod. However, this study reveals that individual killer whales produced multiple subtypes of the N4 call, indicating that divergence in the N4 call is not the result of individual differences, but rather may indicate the gradual evolution of a new stereotyped call.

  2. DoEstRare: A statistical test to identify local enrichments in rare genomic variants associated with disease.

    PubMed

    Persyn, Elodie; Karakachoff, Matilde; Le Scouarnec, Solena; Le Clézio, Camille; Campion, Dominique; Consortium, French Exome; Schott, Jean-Jacques; Redon, Richard; Bellanger, Lise; Dina, Christian

    2017-01-01

    Next-generation sequencing technologies made it possible to assay the effect of rare variants on complex diseases. As an extension of the "common disease-common variant" paradigm, rare variant studies are necessary to get a more complete insight into the genetic architecture of human traits. Association studies of these rare variations show new challenges in terms of statistical analysis. Due to their low frequency, rare variants must be tested by groups. This approach is then hindered by the fact that an unknown proportion of the variants could be neutral. The risk level of a rare variation may be determined by its impact but also by its position in the protein sequence. More generally, the molecular mechanisms underlying the disease architecture may involve specific protein domains or inter-genic regulatory regions. While a large variety of methods are optimizing functionality weights for each single marker, few evaluate variant position differences between cases and controls. Here, we propose a test called DoEstRare, which aims to simultaneously detect clusters of disease risk variants and global allele frequency differences in genomic regions. This test estimates, for cases and controls, variant position densities in the genetic region by a kernel method, weighted by a function of allele frequencies. We compared DoEstRare with previously published strategies through simulation studies as well as re-analysis of real datasets. Based on simulation under various scenarios, DoEstRare was the sole to consistently show highest performance, in terms of type I error and power both when variants were clustered or not. DoEstRare was also applied to Brugada syndrome and early-onset Alzheimer's disease data and provided complementary results to other existing tests. DoEstRare, by integrating variant position information, gives new opportunities to explain disease susceptibility. DoEstRare is implemented in a user-friendly R package.

  3. Rare, protein-truncating variants in ATM, CHEK2 and PALB2, but not XRCC2, are associated with increased breast cancer risks.

    PubMed

    Decker, Brennan; Allen, Jamie; Luccarini, Craig; Pooley, Karen A; Shah, Mitul; Bolla, Manjeet K; Wang, Qin; Ahmed, Shahana; Baynes, Caroline; Conroy, Don M; Brown, Judith; Luben, Robert; Ostrander, Elaine A; Pharoah, Paul Dp; Dunning, Alison M; Easton, Douglas F

    2017-11-01

    Breast cancer (BC) is the most common malignancy in women and has a major heritable component. The risks associated with most rare susceptibility variants are not well estimated. To better characterise the contribution of variants in ATM , CHEK2 , PALB2 and XRCC2 , we sequenced their coding regions in 13 087 BC cases and 5488 controls from East Anglia, UK. Gene coding regions were enriched via PCR, sequenced, variant called and filtered for quality. ORs for BC risk were estimated separately for carriers of truncating variants and of rare missense variants, which were further subdivided by functional domain and pathogenicity as predicted by four in silico algorithms. Truncating variants in PALB2 (OR=4.69, 95% CI 2.27 to 9.68), ATM (OR=3.26; 95% CI 1.82 to 6.46) and CHEK2 (OR=3.11; 95% CI 2.15 to 4.69), but not XRCC2 (OR=0.94; 95% CI 0.26 to 4.19) were associated with increased BC risk. Truncating variants in ATM and CHEK2 were more strongly associated with risk of oestrogen receptor (ER)-positive than ER-negative disease, while those in PALB2 were associated with similar risks for both subtypes. There was also some evidence that missense variants in ATM , CHEK2 and PALB2 may contribute to BC risk, but larger studies are necessary to quantify the magnitude of this effect. Truncating variants in PALB2 are associated with a higher risk of BC than those in ATM or CHEK2 . A substantial risk of BC due to truncating XRCC2 variants can be excluded. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Characterization of Alzheimer's Protective and Causative Amyloid-beta Variants Using a Combination of Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Das, Payel; Chakraborty, Srirupa; Chacko, Anita; Murray, Brian; Belfort, Georges

    The aggregation of amyloid-beta (A β) peptides plays a crucial role in the etiology of Alzheimer's disease (AD). Recently, it has been reported that an A2T mutation in A β can protect from AD. Interestingly, an A2V mutation has been also found to offer protection against AD in the heterozygous state. Structural characterization of these natural A β variants thus offers an intriguing approach to understand the molecular mechanism of AD. Toward this goal, we have characterized the conformational landscapes of the intrinsically disordered WT, A2V, and A2T A β1-42 variant monomers and dimers by using extensive atomistic molecular dynamics (MD) simulations. Simulations reveal markedly different secondary and tertiary structure at the central and C-terminal hydrophobic regions of the peptide, which play a crucial role in A β aggregation and related toxicity. For example, an enhanced double β-hairpin formation was observed in A2V monomer. In contrast, the A2T mutation enhances disorder of the conformational ensemble due to formation of atypical long-range interactions. These structural insights obtained from simulations allow understanding of the differential aggregation, oligomer morphology, and LTP inhibition of the variants observed in the experiments and offer a path toward designing and testing aggregation inhibitors.

  5. Development of atherosclerotic-moyamoya syndrome with genetic variant of RNF213 p.R4810K and p.T1727M: A case report.

    PubMed

    Liu, Ying; Wu, Xueying; Fan, Zhaoyang; Cheng, Jingdan; Zhong, Lele; Lin, Yongzhong; Qu, Xiaofeng

    2018-05-01

    We report a rare case of atherosclerotic-moyamoya syndrome (A-MMS) in an adult female with genetic variant of both ring finger 213 (RNF213) p.R4810K and p.T1727M. A 46-year-old previously healthy, right-handed woman displayed transient slurred speech, which started to worsen four years ago. Initial magnetic resonance angiography (MRA) revealed stenosis in left middle cerebral artery (MCA), bilateral anterior cerebral artery (ACA), and left posterior cerebral artery (PCA). The patient subsequently underwent catheter angiography, which confirmed the formation of moyamoya vessels, with Suzuki's angiographic staging of grade-3 on the left side. Although the patient had been on both anti-platelet and statin therapy at the time, a follow-up examination showed further exacerbation of left MCA stenosis, along with enhanced moyamoya vessel formation. On black-blood imaging using DANTE-SPACE, there were eccentric, evolving lesions in the left MCA. We next screened for potential genetic variants, using genomic DNA samples isolated from both the patient and her immediate family members. The results showed that the patient, along with her mother, sister, and brother, possessed the heterozygous variant of the RNF213 gene, including c.14429G > A (p.R4810K) and c.5180C > T (p.T1727M). The patient's daughter did not have the variant. Collectively, we present a unique case of A-MMS with genetic variant of RNF213 p.R4810K and p.T1727M, manifesting as progression. Based on the family tree, these two mutations are on the same RNF213 haplotype. Whether atherosclerosis is the cause of A-MMS or it further exacerbates the injury of MMD to the A-MMS patients with RNF213 gene variant is a question to be investigated. Copyright © 2018. Published by Elsevier B.V.

  6. Outbreak-associated Vibrio cholerae genotypes with identical pulsotypes, Malaysia, 2009.

    PubMed

    Teh, Cindy Shuan Ju; Suhaili, Zarizal; Lim, King Ting; Khamaruddin, Muhamad Afif; Yahya, Fariha; Sajili, Mohd Hailmi; Yeo, Chew Chieng; Thong, Kwai Lin

    2012-07-01

    A cholera outbreak in Terengganu, Malaysia, in November 2009 was caused by 2 El Tor Vibrio cholerae variants resistant to typical antimicrobial drugs. Evidence of replacement of treatable V. cholerae infection in the region with antimicrobial-resistant strains calls for increased surveillance and prevention measures.

  7. Improved Multiplex Ligation-dependent Probe Amplification (i-MLPA) for rapid copy number variant (CNV) detection.

    PubMed

    Saxena, Sonal; Gowdhaman, Kavitha; Kkani, Poornima; Vennapusa, Bhavyasri; Rama Subramanian, Chellamuthu; Ganesh Kumar, S; Mohan, Kommu Naga

    2015-10-23

    In Multiplex Ligation-dependent Probe Amplification (MLPA), copy number variants (CNVs) for specific genes are identified after normalization of the amounts of PCR products from ligated reference probes hybridized to genomic regions that are ideally free from normal variation. However, we observed ambiguous calls for two reference probes in an investigation of the human 15q11.2 region by MLPA among 20 controls, due to the presence of single nucleotide polymorphisms (SNPs) in the probe-binding regions. Further in silico analysis revealed that 18 out of 19 reference probes hybridize to regions subject to variation, underlining the requirement for designing new reference probes against variation-free regions. An improved MLPA (i-MLPA) method was developed by generating a new set of reference probes to reduce the chances of ambiguous calls and new reagents that reduce hybridization times to 30 min from 16h to obtain MLPA ratio data within 6h. Using i-MLPA, we screened 240 schizophrenia patients for CNVs in 15q11.2 region. Three deletions and two duplications were identified among the 240 schizophrenia patients. No variation was observed for the new reference probes. Taken together, i-MLPA procedure helps obtaining non-ambiguous CNV calls within 6h without compromising accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. An Integrated Tool to Study MHC Region: Accurate SNV Detection and HLA Genes Typing in Human MHC Region Using Targeted High-Throughput Sequencing

    PubMed Central

    Liu, Xiao; Xu, Yinyin; Liang, Dequan; Gao, Peng; Sun, Yepeng; Gifford, Benjamin; D’Ascenzo, Mark; Liu, Xiaomin; Tellier, Laurent C. A. M.; Yang, Fang; Tong, Xin; Chen, Dan; Zheng, Jing; Li, Weiyang; Richmond, Todd; Xu, Xun; Wang, Jun; Li, Yingrui

    2013-01-01

    The major histocompatibility complex (MHC) is one of the most variable and gene-dense regions of the human genome. Most studies of the MHC, and associated regions, focus on minor variants and HLA typing, many of which have been demonstrated to be associated with human disease susceptibility and metabolic pathways. However, the detection of variants in the MHC region, and diagnostic HLA typing, still lacks a coherent, standardized, cost effective and high coverage protocol of clinical quality and reliability. In this paper, we presented such a method for the accurate detection of minor variants and HLA types in the human MHC region, using high-throughput, high-coverage sequencing of target regions. A probe set was designed to template upon the 8 annotated human MHC haplotypes, and to encompass the 5 megabases (Mb) of the extended MHC region. We deployed our probes upon three, genetically diverse human samples for probe set evaluation, and sequencing data show that ∼97% of the MHC region, and over 99% of the genes in MHC region, are covered with sufficient depth and good evenness. 98% of genotypes called by this capture sequencing prove consistent with established HapMap genotypes. We have concurrently developed a one-step pipeline for calling any HLA type referenced in the IMGT/HLA database from this target capture sequencing data, which shows over 96% typing accuracy when deployed at 4 digital resolution. This cost-effective and highly accurate approach for variant detection and HLA typing in the MHC region may lend further insight into immune-mediated diseases studies, and may find clinical utility in transplantation medicine research. This one-step pipeline is released for general evaluation and use by the scientific community. PMID:23894464

  9. Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants?

    PubMed Central

    Lovelock, Paul K; Spurdle, Amanda B; Mok, Myth TS; Farrugia, Daniel J; Lakhani, Sunil R; Healey, Sue; Arnold, Stephen; Buchanan, Daniel; Investigators, kConFab; Couch, Fergus J; Henderson, Beric R; Goldgar, David E; Tavtigian, Sean V; Chenevix-Trench, Georgia; Brown, Melissa A

    2007-01-01

    Introduction Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. Methods We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. Results Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. Conclusion These data highlight the need for a range of functional studies to be performed in order to identify variants with partially compromised function. The results also raise the possibility that A1708V and R1699Q may be associated with a low or moderate risk of cancer. While data pooling strategies may provide more information for multifactorial analysis to improve the interpretation of the clinical significance of these variants, it is likely that the development of current multifactorial likelihood approaches and the consideration of alternative statistical approaches will be needed to determine whether these individually rare variants do confer a low or moderate risk of breast cancer. PMID:18036263

  10. Rett syndrome diagnostic criteria: lessons from the Natural History Study.

    PubMed

    Percy, Alan K; Neul, Jeffrey L; Glaze, Daniel G; Motil, Kathleen J; Skinner, Steven A; Khwaja, Omar; Lee, Hye-Seung; Lane, Jane B; Barrish, Judy O; Annese, Fran; McNair, Lauren; Graham, Joy; Barnes, Katherine

    2010-12-01

    Analysis of 819 participants enrolled in the Rett syndrome (RTT) Natural History Study validates recently revised diagnostic criteria. 765 females fulfilled 2002 consensus criteria for classic (653/85.4%) or variant (112/14.6%) RTT. All participants classified as classic RTT fulfilled each revised main criterion; supportive criteria were not uniformly present. All variant RTT participants met at least 3 of 6 main criteria in the 2002, 2 of 4 main criteria in the current format, and 5 of 11 supportive criteria in both. This analysis underscores the critical role of main criteria for classic RTT; variant RTT requires both main and supportive criteria.

  11. Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes

    PubMed Central

    Alamo, Lorenzo; Ware, James S; Pinto, Antonio; Gillilan, Richard E; Seidman, Jonathan G; Seidman, Christine E; Padrón, Raúl

    2017-01-01

    Cardiac β-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent relaxation and energetic deficits that characterize HCM. During relaxation, pairs of myosins form interacting-heads motif (IHM) structures that with other sarcomere proteins establish an energy-saving, super-relaxed (SRX) state. Using a human β-cardiac myosin IHM quasi-atomic model, we defined interactions sites between adjacent myosin heads and associated protein partners, and then analyzed rare variants from 6112 HCM and 1315 DCM patients and 33,370 ExAC controls. HCM variants, 72% that changed electrostatic charges, disproportionately altered IHM interaction residues (expected 23%; HCM 54%, p=2.6×10−19; DCM 26%, p=0.66; controls 20%, p=0.23). HCM variant locations predict impaired IHM formation and stability, and attenuation of the SRX state - accounting for altered contractility, reduced diastolic relaxation, and increased energy consumption, that fully characterizes HCM pathogenesis. DOI: http://dx.doi.org/10.7554/eLife.24634.001 PMID:28606303

  12. Reducing false positive incidental findings with ensemble genotyping and logistic regression-based variant filtering methods

    PubMed Central

    Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choi, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B.; Gupta, Neha; Kohane, Isaac S.; Green, Robert C.; Kong, Sek Won

    2014-01-01

    As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous SNVs; 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and ensemble genotyping would be essential to minimize false positive DNM candidates. PMID:24829188

  13. Kernel-Based Measure of Variable Importance for Genetic Association Studies.

    PubMed

    Gallego, Vicente; Luz Calle, M; Oller, Ramon

    2017-06-17

    The identification of genetic variants that are associated with disease risk is an important goal of genetic association studies. Standard approaches perform univariate analysis where each genetic variant, usually Single Nucleotide Polymorphisms (SNPs), is tested for association with disease status. Though many genetic variants have been identified and validated so far using this univariate approach, for most complex diseases a large part of their genetic component is still unknown, the so called missing heritability. We propose a Kernel-based measure of variable importance (KVI) that provides the contribution of a SNP, or a group of SNPs, to the joint genetic effect of a set of genetic variants. KVI can be used for ranking genetic markers individually, sets of markers that form blocks of linkage disequilibrium or sets of genetic variants that lie in a gene or a genetic pathway. We prove that, unlike the univariate analysis, KVI captures the relationship with other genetic variants in the analysis, even when measured at the individual level for each genetic variable separately. This is specially relevant and powerful for detecting genetic interactions. We illustrate the results with data from an Alzheimer's disease study and show through simulations that the rankings based on KVI improve those rankings based on two measures of importance provided by the Random Forest. We also prove with a simulation study that KVI is very powerful for detecting genetic interactions.

  14. Mandatory pooling as a supplement to risk-adjusted capitation payments in a competitive health insurance market.

    PubMed

    Van Barneveld, E M; Lamers, L M; van Vliet, R C; van de Ven, W P

    1998-07-01

    Risk-adjusted capitation payments (RACPs) to competing health insurers are an essential element of market-oriented health care reforms in many countries. RACPs based on demographic variables only are insufficient, because they leave ample room for cream skimming. However, the implementation of improved RACPs does not appear to be straightforward. A solution might be to supplement imperfect RACPs with a form of mandatory pooling that reduces the incentives for cream skimming. In a previous paper it was concluded that high-risk pooling (HRP), is a promising supplement to RACPs. The purpose of this paper is to compare HRP with two other main variants of mandatory pooling. These variants are called excess-of-loss (EOL) and proportional pooling (PP). Each variant includes ex post compensations to insurers for some members which depend to various degrees on actually incurred costs. Therefore, these pooling variants reduce the incentives for cream skimming which are inherent in imperfect RACPs, but they also reduce the incentives for efficiency and cost containment. As a rough measure of the latter incentives we use the percentage of total costs for which an insurer is at risk. This paper analyzes which of the three main pooling variants yields the greatest reduction of incentives for cream skimming given such a percentage. The results show that HRP is the most effective of the three pooling variants.

  15. Mate call as reward: Acoustic communication signals can acquire positive reinforcing values during adulthood in female zebra finches (Taeniopygia guttata).

    PubMed

    Hernandez, Alexandra M; Perez, Emilie C; Mulard, Hervé; Mathevon, Nicolas; Vignal, Clémentine

    2016-02-01

    Social stimuli can have rewarding properties and promote learning. In birds, conspecific vocalizations like song can act as a reinforcer, and specific song variants can acquire particular rewarding values during early life exposure. Here we ask if, during adulthood, an acoustic signal simpler and shorter than song can become a reward for a female songbird because of its particular social value. Using an operant choice apparatus, we showed that female zebra finches display a preferential response toward their mate's calls. This reinforcing value of mate's calls could be involved in the maintenance of the monogamous pair-bond of the zebra finch. (c) 2016 APA, all rights reserved).

  16. Somatic Point Mutation Calling in Low Cellularity Tumors

    PubMed Central

    Kassahn, Karin S.; Holmes, Oliver; Nones, Katia; Patch, Ann-Marie; Miller, David K.; Christ, Angelika N.; Harliwong, Ivon; Bruxner, Timothy J.; Xu, Qinying; Anderson, Matthew; Wood, Scott; Leonard, Conrad; Taylor, Darrin; Newell, Felicity; Song, Sarah; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Steptoe, Anita; Pajic, Marina; Cowley, Mark J.; Pinese, Mark; Chang, David K.; Gill, Anthony J.; Johns, Amber L.; Wu, Jianmin; Wilson, Peter J.; Fink, Lynn; Biankin, Andrew V.; Waddell, Nicola; Grimmond, Sean M.; Pearson, John V.

    2013-01-01

    Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform. PMID:24250782

  17. STUDIES ON WHOOPING COUGH

    PubMed Central

    Shibley, Gerald S.; Hoelscher, Helena

    1934-01-01

    The more important criteria for identification of the S form of H. pertussis and for its differentiation from R variants are presented in summary fashion in Table IV. The differences as indicated in detail in the foregoing sections and as shown briefly in this tabulation are so clear-cut that they call for little, if any, further comment. Of all the differential characteristics, the morphological, the serological, and the cataphoretic seem to be the most distinctive, and of these, the cataphoretic, in our hands, has been the most conclusive. It would appear from the foregoing results that all recently isolated strains, provided that they are grown upon suitable media, fall into a single uniform serological type. This is true whether the strains are isolated from cases of whooping cough in Europe or in any part of this country. It is also apparent that when they are subcultured upon laboratory media deficient in fresh blood, dissociation occurs with the appearance of morphologically, culturally, and antigenically different variants. In keeping with the current classification of bacterial variants, we feel that the uniform recently isolated strain should be designated the S form and the laboratory variants the R form of H. pertussis. Whether the R variants fall into sharply defined phases as pointed out by Leslie and Gardner, remains to be confirmed. Lawson and the writer have never noted their "Phase II" and Toomey (21) is in agreement with us that sharply defined, mutually exclusive subvarieties of R variants probably do not exist. We are undertaking further studies of this somewhat mooted point. Dawson, as a result of detailed studies concerned with the dissociation of pneumococci (22) and of streptococci (23) has shown that these organisms have three variant forms and he proposes that the terminology currently employed for pneumococcal variants be changed to conform with the terms used in the description of corresponding variants of other bacterial species. The first form, encapsulated, at present called S, he designates mucoid (M); the second, at present R, he calls smooth (S); and the third, a new and distinct, grossly rough variant which he describes for the first time,l he would call rough (R). Hadley (24) has found that most organisms show these three chief colony forms. From conversation with Dr. Dawson, it seemed that our S which is encapsulated and has a moist mucoid colony has the character of his M form. Whether the subvarieties of R variants (III and IV of Leslie and Gardner, A and B of Mishulow) correspond to his S and R, remains to be seen. For the time being it has seemed more practical to use the terms S and R as generally employed. As we study H. pertussis variants further, it is possible that these three chief colony forms, constituting the usual pattern for other bacterial species, may emerge as well defined types. The finding that H. pertussis when first isolated is a single specific serological type, in S form, and that this antigenic phase may be maintained by suitable cultural management has certain definite implications. One bears upon further transmission experiments directed toward the establishing of the etiological relationship of the organism to whooping cough. Working with monkeys, Sauer (25) produced suggestive manifestations of the disease in 8 out of 76 attempts. It is very probable that his failures may be laid to the use of R forms as inoculum. Criticism directed against the conclusiveness of the occasional successful transmission experiment (Sauer (25), Rich et al. (26), MacDonald and MacDonald (27)) with freshly isolated H. pertussis put forward by those entertaining the combined H. pertussis and filtrable virus theory is being met in the experiments already reported upon (4) and still being carried out in this laboratory, by subculturing the theoretically pathogenic S form long enough to preclude the presence of virus. A second implication of importance related to the preparation of H. pertussis vaccines. Madsen (28), Sauer (29), and Frawley (30), the last worker using Krueger's specially prepared H. pertussis vaccine (31), have recently reported favorably regarding protection against whooping cough by means of suitably prepared vaccines. Sauer following the lead of Madsen insists upon the use of freshly isolated organisms; Krueger's special vaccine is made from similar strains. The ready identification of the S form of H. pertussis and the practicability of its maintenance brought out above puts the preparation of antigenically effective vaccines upon a sound basis. In cooperation with Dr. J. A. Doull of the Department of Hygiene and Bacteriology and Dr. H. J. Gerstenberger of the Department of Pediatrics, we have begun a carefully controlled study of the prophylactic value of H. pertussis vaccines made from organisms shown to be in the S form according to the criteria outlined above. By the same token, the therapeutic value of H. pertussis vaccine in active cases of the disease can be determined only after carefully controlled studies have been carried out with such antigenically effective preparations. PMID:19870311

  18. The UCSC genome browser and associated tools

    PubMed Central

    Haussler, David; Kent, W. James

    2013-01-01

    The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting. PMID:22908213

  19. The UCSC genome browser and associated tools.

    PubMed

    Kuhn, Robert M; Haussler, David; Kent, W James

    2013-03-01

    The UCSC Genome Browser (http://genome.ucsc.edu) is a graphical viewer for genomic data now in its 13th year. Since the early days of the Human Genome Project, it has presented an integrated view of genomic data of many kinds. Now home to assemblies for 58 organisms, the Browser presents visualization of annotations mapped to genomic coordinates. The ability to juxtapose annotations of many types facilitates inquiry-driven data mining. Gene predictions, mRNA alignments, epigenomic data from the ENCODE project, conservation scores from vertebrate whole-genome alignments and variation data may be viewed at any scale from a single base to an entire chromosome. The Browser also includes many other widely used tools, including BLAT, which is useful for alignments from high-throughput sequencing experiments. Private data uploaded as Custom Tracks and Data Hubs in many formats may be displayed alongside the rich compendium of precomputed data in the UCSC database. The Table Browser is a full-featured graphical interface, which allows querying, filtering and intersection of data tables. The Saved Session feature allows users to store and share customized views, enhancing the utility of the system for organizing multiple trains of thought. Binary Alignment/Map (BAM), Variant Call Format and the Personal Genome Single Nucleotide Polymorphisms (SNPs) data formats are useful for visualizing a large sequencing experiment (whole-genome or whole-exome), where the differences between the data set and the reference assembly may be displayed graphically. Support for high-throughput sequencing extends to compact, indexed data formats, such as BAM, bigBed and bigWig, allowing rapid visualization of large datasets from RNA-seq and ChIP-seq experiments via local hosting.

  20. Outbreak-associated Vibrio cholerae Genotypes with Identical Pulsotypes, Malaysia, 2009

    PubMed Central

    Teh, Cindy Shuan Ju; Suhaili, Zarizal; Lim, King Ting; Khamaruddin, Muhamad Afif; Yahya, Fariha; Sajili, Mohd Hailmi; Yeo, Chew Chieng

    2012-01-01

    A cholera outbreak in Terengganu, Malaysia, in November 2009 was caused by 2 El Tor Vibrio cholerae variants resistant to typical antimicrobial drugs. Evidence of replacement of treatable V. cholerae infection in the region with antimicrobial-resistant strains calls for increased surveillance and prevention measures. PMID:22709679

  1. 78 FR 9787 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A300 B4-600, B4-600R, and F4-600R series airplanes, and Model A300 C4-605R Variant F airplanes (collectively called Model A300- 600 series airplanes); and Airbus [[Page 9788

  2. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE

    USDA-ARS?s Scientific Manuscript database

    We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE (“Assessing Changes to Exons”) converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detect...

  3. Economic Risk Analysis of Agricultural Tillage Systems Using the SMART Stochastic Efficiency Software Package

    USDA-ARS?s Scientific Manuscript database

    Recently, a variant of stochastic dominance called stochastic efficiency with respect to a function (SERF) has been developed and applied. Unlike traditional stochastic dominance approaches, SERF uses the concept of certainty equivalents (CEs) to rank a set of risk-efficient alternatives instead of...

  4. 78 FR 47674 - Genome in a Bottle Consortium-Progress and Planning Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... quantitative performance metrics for confidence in variant calling. These standards and quantitative..., reproducible research and regulated applications in the clinic. On April 13, 2012, NIST convened the workshop... consortium. No proprietary information will be shared as part of the consortium, and all research results...

  5. Dissecting the roles of the androgen receptor in prostate cancer from molecular perspectives.

    PubMed

    Hu, Jieping; Wang, Gongxian; Sun, Ting

    2017-05-01

    Androgen receptor plays a pivotal role in prostate cancer progression, and androgen deprivation therapy to intercept androgen receptor signal pathway is an indispensable treatment for most advanced prostate cancer patients to delay cancer progression. However, the emerging of castration-resistant prostate cancer reminds us the alteration of androgen receptor, which includes androgen receptor mutation, the formation of androgen receptor variants, and androgen receptor distribution in cancer cells. In this review, we introduce the process of androgen receptor and also its variants' formation, translocation, and function alteration by protein modification or interaction with other pathways. We dissect the roles of androgen receptor in prostate cancer from molecular perspective to provide clues for battling prostate cancer, especially castration-resistant prostate cancer.

  6. Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants.

    PubMed

    Soni, Sangeeta; Tyagi, Chetna; Grover, Abhinav; Goswami, Shyamal K

    2014-07-11

    SG2NA is a member of the striatin sub-family of WD-40 repeat proteins. Striatin family members have been associated with diverse physiological functions. SG2NA has also been shown to have roles in cell cycle progression, signal transduction etc. They have been known to interact with a number of proteins including Caveolin and Calmodulin and also propagate the formation of a multimeric protein unit called striatin-interacting phosphatase and kinase. As a pre-requisite for such interaction ability, these proteins are known to be unstable and primarily disordered in their arrangement. Earlier we had identified that it has multiple isoforms (namely 35, 78, 87 kDa based on its molecular weight) which are generated by alternative splicing. However, detailed structural information of SG2NA is still eluding the researchers. This study was aimed towards three-dimensional molecular modeling and characterization of SG2NA protein and its isoforms. One structure out of five was selected for each variant having the least value for C score. Out of these, m35 kDa with a C score value of -3.21 was the most poorly determined structure in comparison to m78 kDa and m87 kDa variants with C scores of -1.16 and -1.97 respectively. Further evaluation resulted in about 61.6% residues of m35 kDa, 76.6% residues of m78 kDa and 72.1% residues of m87 kDa falling in the favorable regions of Ramchandran Plot. Molecular dynamics simulations were also carried out to obtain biologically relevant structural models and compared with previous atomic coordinates. N-terminal region of all variants was found to be highly disordered. This study provides first-hand detailed information to understand the structural conformation of SG2NA protein variants (m35 kDa, m78 kDa and m87 kDa). The WD-40 repeat domain was found to constitute antiparallel strands of β-sheets arranged circularly. This study elucidates the crucial structural features of SG2NA proteins which are involved in various protein-protein interactions and also reveals the extent of disorder present in the SG2NA structure crucial for excessive interaction and multimeric protein complexes. The study also potentiates the role of computational approaches for preliminary examination of unknown proteins in the absence of experimental information.

  7. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel.

    PubMed

    Huang, Jie; Howie, Bryan; McCarthy, Shane; Memari, Yasin; Walter, Klaudia; Min, Josine L; Danecek, Petr; Malerba, Giovanni; Trabetti, Elisabetta; Zheng, Hou-Feng; Gambaro, Giovanni; Richards, J Brent; Durbin, Richard; Timpson, Nicholas J; Marchini, Jonathan; Soranzo, Nicole

    2015-09-14

    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamrin, Mohd Izzuddin Mohd; Turaev, Sherzod; Sembok, Tengku Mohd Tengku

    There are tremendous works in biotechnology especially in area of DNA molecules. The computer society is attempting to develop smaller computing devices through computational models which are based on the operations performed on the DNA molecules. A Watson-Crick automaton, a theoretical model for DNA based computation, has two reading heads, and works on double-stranded sequences of the input related by a complementarity relation similar with the Watson-Crick complementarity of DNA nucleotides. Over the time, several variants of Watson-Crick automata have been introduced and investigated. However, they cannot be used as suitable DNA based computational models for molecular stochastic processes andmore » fuzzy processes that are related to important practical problems such as molecular parsing, gene disease detection, and food authentication. In this paper we define new variants of Watson-Crick automata, called weighted Watson-Crick automata, developing theoretical models for molecular stochastic and fuzzy processes. We define weighted Watson-Crick automata adapting weight restriction mechanisms associated with formal grammars and automata. We also study the generative capacities of weighted Watson-Crick automata, including probabilistic and fuzzy variants. We show that weighted variants of Watson-Crick automata increase their generative power.« less

  9. Identification of pathogen genomic variants through an integrated pipeline

    PubMed Central

    2014-01-01

    Background Whole-genome sequencing represents a powerful experimental tool for pathogen research. We present methods for the analysis of small eukaryotic genomes, including a streamlined system (called Platypus) for finding single nucleotide and copy number variants as well as recombination events. Results We have validated our pipeline using four sets of Plasmodium falciparum drug resistant data containing 26 clones from 3D7 and Dd2 background strains, identifying an average of 11 single nucleotide variants per clone. We also identify 8 copy number variants with contributions to resistance, and report for the first time that all analyzed amplification events are in tandem. Conclusions The Platypus pipeline provides malaria researchers with a powerful tool to analyze short read sequencing data. It provides an accurate way to detect SNVs using known software packages, and a novel methodology for detection of CNVs, though it does not currently support detection of small indels. We have validated that the pipeline detects known SNVs in a variety of samples while filtering out spurious data. We bundle the methods into a freely available package. PMID:24589256

  10. Weighted Watson-Crick automata

    NASA Astrophysics Data System (ADS)

    Tamrin, Mohd Izzuddin Mohd; Turaev, Sherzod; Sembok, Tengku Mohd Tengku

    2014-07-01

    There are tremendous works in biotechnology especially in area of DNA molecules. The computer society is attempting to develop smaller computing devices through computational models which are based on the operations performed on the DNA molecules. A Watson-Crick automaton, a theoretical model for DNA based computation, has two reading heads, and works on double-stranded sequences of the input related by a complementarity relation similar with the Watson-Crick complementarity of DNA nucleotides. Over the time, several variants of Watson-Crick automata have been introduced and investigated. However, they cannot be used as suitable DNA based computational models for molecular stochastic processes and fuzzy processes that are related to important practical problems such as molecular parsing, gene disease detection, and food authentication. In this paper we define new variants of Watson-Crick automata, called weighted Watson-Crick automata, developing theoretical models for molecular stochastic and fuzzy processes. We define weighted Watson-Crick automata adapting weight restriction mechanisms associated with formal grammars and automata. We also study the generative capacities of weighted Watson-Crick automata, including probabilistic and fuzzy variants. We show that weighted variants of Watson-Crick automata increase their generative power.

  11. Ecological estimation of the possible variants new Ukrainian shipping way between the Danube and the Black Sea

    NASA Astrophysics Data System (ADS)

    Berlinsky, N.

    2007-05-01

    The better way or optimal variant means economic advisability of organization and using the way and the same time minimization of anthropogenic press. The first problem's factor is - all kinds' variants cross the area of the Danube Biosphere Reserve. The next factor is - all kinds of variants need dredging works in the sea shallow water so called bar's zone for marine entrance channel. As for natural factors there are also two. The first one is a long term delta evolution and the second is the process of water discharge redistribution. If the human influence to the first factor is still limited the second factor's influence can be unlimited - it is easy to do by jetty or dams construction. At present there are nine possible variants of the DWW: Variant 1. It is an artificial canal built as an ameliorative at 80-s between the Danube and Sasik liman. It provokes the water discharge redistribution up on 16.6% from the Danube run off (from the total Q=3000 m3/c for 54 km), hydrological regime in Ukrainian delta and ecological conditions will be sharply worsened. This project supposed a giant dredging works. Variant 2. The Project of engineer P.S. Chekhovich (1904). The length of the canal is 10 km. (The problems are: it is an artificial canal, needs the bridge, cross the wetlands area, redistribute water discharge from the Danube). Variant 3. Solomonov branch - Zhebryany bay modern Project by engineer V.P. Zizak (2000), The problems are: it is an artificial canal also, but with locks, needs the bridge, to cross the wetlands area, the water discharge redistribution from the Danube up on 2.27% (from the total Q=3000 m3/c for 54 km). The length of the canal is 9 km. Two last variants have orientation from Solomonov arm to Zhebriany bay. The other variants of DWW linked with Ochakovsky and Starostambulsky arms systems. Ochakosky system is dying off system from geological point of view. There are two arms which can be examined for DWW - Prorva arm and Potapovo arm. Besides, Ochakovska system needs dykes along both of shores but its construction may have strong influence on ecosystem. The second variant in this system is Potapovo DWW. So, all problems with dyke constructions are continuing besides this DWW passes through the one of the Strict Protection UNESCO zone in Biosphere Reserve, so call iadro. For fundamental reconstruction of Ochakovska system it is necessary to redistribute water discharge in the inner delta. It means to construct the dam in Starostambulsky system and redistribute water to Ochakovska system. In this case ecological situation in Starostambulsky system will be catastrophic. Hydrology regime modification influences the animal and plant kingdom. In the Starostambulsy mouth there is also the Strict Protection UNESCO zone in Biosphere Reserve. All kinds of alternative variants of DWW are dangerous for ecological condition of Chilia delta because considerable part of fresh water will be withdrawn from Ukrainian part of delta (upper 20 km) and it will provoke degradation of living condition for water plants and animals in the delta and Biosphere reserve including. The other Projects are directly linked with strong influence on the zones under strict protection (UNESCO) in the Danube Biosphere reserve. So, safest project is Bystryy DWW, because its conditions created by nature itself and don't need additional artificial constructions. Ukrainian DWW in Starostambulsky arm can be the reason of ecological and economic problems for Romanian side (silting of Sulina DWW).

  12. Dandy Walker Variant and Bipolar I Disorder with Graphomania

    PubMed Central

    Karakaş Uğurlu, Görkem; Çakmak, Selcen

    2014-01-01

    Cerebellum is known to play an important role in coordination and motor functions. In some resent studies it is also considered to be involved in modulation of mood, cognition and psychiatric disorders. Dandy Walker Malformation is a congenital malformation that is characterized by hypoplasia or aplasia of the cerebellar vermis, cystic dilatation of the fourth ventricle and enlargement of the posterior fossa. When the volume of posterior fossa is normal, the malformation is called Dandy Walker Variant. Case is a 32 year old male with a 12 year history of Bipolar I Disorder presented with manic and depresive symptoms, including dysphoric and depressive affect, anhedonia, suicidal thoughts and behaviours, thoughts of fear about future, overtalkativeness and graphomania, increased energy, irregular sleep, loss of appetite, increased immersion in projects, irritability, agressive behavior, impulsivity. Cranial Magnetic Resonance Imaging was compatible to the morphological features of Dandy Walker Variant. PMID:25110509

  13. AmpliVar: mutation detection in high-throughput sequence from amplicon-based libraries.

    PubMed

    Hsu, Arthur L; Kondrashova, Olga; Lunke, Sebastian; Love, Clare J; Meldrum, Cliff; Marquis-Nicholson, Renate; Corboy, Greg; Pham, Kym; Wakefield, Matthew; Waring, Paul M; Taylor, Graham R

    2015-04-01

    Conventional means of identifying variants in high-throughput sequencing align each read against a reference sequence, and then call variants at each position. Here, we demonstrate an orthogonal means of identifying sequence variation by grouping the reads as amplicons prior to any alignment. We used AmpliVar to make key-value hashes of sequence reads and group reads as individual amplicons using a table of flanking sequences. Low-abundance reads were removed according to a selectable threshold, and reads above this threshold were aligned as groups, rather than as individual reads, permitting the use of sensitive alignment tools. We show that this approach is more sensitive, more specific, and more computationally efficient than comparable methods for the analysis of amplicon-based high-throughput sequencing data. The method can be extended to enable alignment-free confirmation of variants seen in hybridization capture target-enrichment data. © 2015 WILEY PERIODICALS, INC.

  14. Cortical tremor: a variant of cortical reflex myoclonus.

    PubMed

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  15. Representation Use and Strategy Choice in Physics Problem Solving

    ERIC Educational Resources Information Center

    De Cock, Mieke

    2012-01-01

    In this paper, we examine student success on three variants of a test item given in different representational formats (verbal, pictorial, and graphical), with an isomorphic problem statement. We confirm results from recent papers where it is mentioned that physics students' problem-solving competence can vary with representational format and that…

  16. Receptor homodimerization plays a critical role in a novel dominant negative P2RY12 variant identified in a family with severe bleeding.

    PubMed

    Mundell, S J; Rabbolini, D; Gabrielli, S; Chen, Q; Aungraheeta, R; Hutchinson, J L; Kilo, T; Mackay, J; Ward, C M; Stevenson, W; Morel-Kopp, M-C

    2018-01-01

    Essentials Three dominant variants for the autosomal recessive bleeding disorder type-8 have been described. To date, there has been no phenotype/genotype correlation explaining their dominant transmission. Proline plays an important role in P2Y12R ligand binding and signaling defects. P2Y12R homodimer formation is critical for the receptor function and signaling. Background Although inherited platelet disorders are still underdiagnosed worldwide, advances in molecular techniques are improving disease diagnosis and patient management. Objective To identify and characterize the mechanism underlying the bleeding phenotype in a Caucasian family with an autosomal dominant P2RY12 variant. Methods Full blood counts, platelet aggregometry, flow cytometry and western blotting were performed before next-generation sequencing (NGS). Detailed molecular analysis of the identified variant of the P2Y12 receptor (P2Y12R) was subsequently performed in mammalian cells overexpressing receptor constructs. Results All three referred individuals had markedly impaired ADP-induced platelet aggregation with primary wave only, despite normal total and surface P2Y12R expression. By NGS, a single P2RY12:c.G794C substitution (p.R265P) was identified in all affected individuals, and this was confirmed by Sanger sequencing. Mammalian cell experiments with the R265P-P2Y12R variant showed normal receptor surface expression versus wild-type (WT) P2Y12R. Agonist-stimulated R265P-P2Y12R function (both signaling and surface receptor loss) was reduced versus WT P2Y12R. Critically, R265P-P2Y12R acted in a dominant negative manner, with agonist-stimulated WT P2Y12R activity being reduced by variant coexpression, suggesting dramatic loss of WT homodimers. Importantly, platelet P2RY12 cDNA cloning and sequencing in two affected individuals also revealed three-fold mutant mRNA overexpression, decreasing even further the likelihood of WT homodimer formation. R265 located within extracellular loop 3 (EL3) is one of four residues that are important for receptor functional integrity, maintaining the binding pocket conformation and allowing rotation following ligand binding. Conclusion This novel dominant negative variant confirms the important role of R265 in EL3 in the functional integrity of P2Y12R, and suggests that pathologic heterodimer formation may underlie this family bleeding phenotype. © 2017 International Society on Thrombosis and Haemostasis.

  17. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis

    PubMed Central

    Kenna, Kevin P; van Doormaal, Perry T C; Dekker, Annelot M; Ticozzi, Nicola; Kenna, Brendan J; Diekstra, Frank P; van Rheenen, Wouter; van Eijk, Kristel R; Jones, Ashley R; Keagle, Pamela; Shatunov, Aleksey; Sproviero, William; Smith, Bradley N; van Es, Michael A; Topp, Simon D; Kenna, Aoife; Miller, Jack W; Fallini, Claudia; Tiloca, Cinzia; McLaughlin, Russell L; Vance, Caroline; Troakes, Claire; Colombrita, Claudia; Mora, Gabriele; Calvo, Andrea; Verde, Federico; Al-Sarraj, Safa; King, Andrew; Calini, Daniela; de Belleroche, Jacqueline; Baas, Frank; van der Kooi, Anneke J; de Visser, Marianne; Asbroek, Anneloor L M A ten; Sapp, Peter C; McKenna-Yasek, Diane; Polak, Meraida; Asress, Seneshaw; Muñoz-Blanco, José Luis; Strom, Tim M; Meitinger, Thomas; Morrison, Karen E; Lauria, Giuseppe; Williams, Kelly L; Leigh, P Nigel; Nicholson, Garth A; Blair, Ian P; Leblond, Claire S; Dion, Patrick A; Rouleau, Guy A; Pall, Hardev; Shaw, Pamela J; Turner, Martin R; Talbot, Kevin; Taroni, Franco; Boylan, Kevin B; Van Blitterswijk, Marka; Rademakers, Rosa; Esteban-Pérez, Jesús; García-Redondo, Alberto; Van Damme, Phillip; Robberecht, Wim; Chio, Adriano; Gellera, Cinzia; Drepper, Carsten; Sendtner, Michael; Ratti, Antonia; Glass, Jonathan D; Mora, Jesús S; Basak, Nazli A; Hardiman, Orla; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Brown, Robert H; Al-Chalabi, Ammar; Silani, Vincenzo; Shaw, Christopher E; van den Berg, Leonard H; Veldink, Jan H; Landers, John E

    2017-01-01

    To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology. PMID:27455347

  18. Laboratory complex for simulation of navigation signals of pseudosatellites

    NASA Astrophysics Data System (ADS)

    Ratushniak, V. N.; Gladyshev, A. B.; Sokolovskiy, A. V.; Mikhov, E. D.

    2018-05-01

    In the article, features of the organization, structure and questions of formation of navigation signals of pseudosatellites of the short - range navigation system based on the hardware-software complex National Instruments are considered. A software model that performs the formation and management of a pseudo-random sequence of a navigation signal and the formation and management of the format transmitted pseudosatellite navigation information is presented. The variant of constructing the transmitting equipment of the pseudosatellite base stations is provided.

  19. Atypical face shape and genomic structural variants in epilepsy

    PubMed Central

    Chinthapalli, Krishna; Bartolini, Emanuele; Novy, Jan; Suttie, Michael; Marini, Carla; Falchi, Melania; Fox, Zoe; Clayton, Lisa M. S.; Sander, Josemir W.; Guerrini, Renzo; Depondt, Chantal; Hennekam, Raoul; Hammond, Peter

    2012-01-01

    Many pathogenic structural variants of the human genome are known to cause facial dysmorphism. During the past decade, pathogenic structural variants have also been found to be an important class of genetic risk factor for epilepsy. In other fields, face shape has been assessed objectively using 3D stereophotogrammetry and dense surface models. We hypothesized that computer-based analysis of 3D face images would detect subtle facial abnormality in people with epilepsy who carry pathogenic structural variants as determined by chromosome microarray. In 118 children and adults attending three European epilepsy clinics, we used an objective measure called Face Shape Difference to show that those with pathogenic structural variants have a significantly more atypical face shape than those without such variants. This is true when analysing the whole face, or the periorbital region or the perinasal region alone. We then tested the predictive accuracy of our measure in a second group of 63 patients. Using a minimum threshold to detect face shape abnormalities with pathogenic structural variants, we found high sensitivity (4/5, 80% for whole face; 3/5, 60% for periorbital and perinasal regions) and specificity (45/58, 78% for whole face and perinasal regions; 40/58, 69% for periorbital region). We show that the results do not seem to be affected by facial injury, facial expression, intellectual disability, drug history or demographic differences. Finally, we use bioinformatics tools to explore relationships between facial shape and gene expression within the developing forebrain. Stereophotogrammetry and dense surface models are powerful, objective, non-contact methods of detecting relevant face shape abnormalities. We demonstrate that they are useful in identifying atypical face shape in adults or children with structural variants, and they may give insights into the molecular genetics of facial development. PMID:22975390

  20. Comparison of Constitutional and Replication Stress-Induced Genome Structural Variation by SNP Array and Mate-Pair Sequencing

    PubMed Central

    Arlt, Martin F.; Ozdemir, Alev Cagla; Birkeland, Shanda R.; Lyons, Robert H.; Glover, Thomas W.; Wilson, Thomas E.

    2011-01-01

    Copy-number variants (CNVs) are a major source of genetic variation in human health and disease. Previous studies have implicated replication stress as a causative factor in CNV formation. However, existing data are technically limited in the quality of comparisons that can be made between human CNVs and experimentally induced variants. Here, we used two high-resolution strategies—single nucleotide polymorphism (SNP) arrays and mate-pair sequencing—to compare CNVs that occur constitutionally to those that arise following aphidicolin-induced DNA replication stress in the same human cells. Although the optimized methods provided complementary information, sequencing was more sensitive to small variants and provided superior structural descriptions. The majority of constitutional and all aphidicolin-induced CNVs appear to be formed via homology-independent mechanisms, while aphidicolin-induced CNVs were of a larger median size than constitutional events even when mate-pair data were considered. Aphidicolin thus appears to stimulate formation of CNVs that closely resemble human pathogenic CNVs and the subset of larger nonhomologous constitutional CNVs. PMID:21212237

  1. A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants.

    PubMed

    Maçon, Anthony L B; Kim, Taek B; Valliant, Esther M; Goetschius, Kathryn; Brow, Richard K; Day, Delbert E; Hoppe, Alexander; Boccaccini, Aldo R; Kim, Ill Yong; Ohtsuki, Chikara; Kokubo, Tadashi; Osaka, Akiyoshi; Vallet-Regí, Maria; Arcos, Daniel; Fraile, Leandro; Salinas, Antonio J; Teixeira, Alexandra V; Vueva, Yuliya; Almeida, Rui M; Miola, Marta; Vitale-Brovarone, Chiara; Verné, Enrica; Höland, Wolfram; Jones, Julian R

    2015-02-01

    The aim of this study was to propose and validate a new unified method for testing dissolution rates of bioactive glasses and their variants, and the formation of calcium phosphate layer formation on their surface, which is an indicator of bioactivity. At present, comparison in the literature is difficult as many groups use different testing protocols. An ISO standard covers the use of simulated body fluid on standard shape materials but it does not take into account that bioactive glasses can have very different specific surface areas, as for glass powders. Validation of the proposed modified test was through round robin testing and comparison to the ISO standard where appropriate. The proposed test uses fixed mass per solution volume ratio and agitated solution. The round robin study showed differences in hydroxyapatite nucleation on glasses of different composition and between glasses of the same composition but different particle size. The results were reproducible between research facilities. Researchers should use this method when testing new glasses, or their variants, to enable comparison between the literature in the future.

  2. [THE FACTORS OF THE PROGRESSION OF METABOLIC DISORDERS IN THE PANCREAS IN PATIENTS WITH ASSOCIATED CLINICAL VARIANTS OF THE CHRONIC PANCREATITIS AND TYPE 2 DIABETES MELLITUS].

    PubMed

    Zhuravlyova, L V; Shekhovtsova, Y O

    2015-01-01

    The purpose of the present study was to determine the causal factors of the progression of metabolic disorders in pancreatic tissue and their relationships in patients with assotiated clinical variants of chronic pancreatitis (CP) and type 2 diabetes mellitus (T2DM). The study involved of 76 patients with CP and T2DM. The causes of progression of metabolic disorders in the pancreas in patients with associated clinical variants of CP and T2DM has been analyzed. The most significant of them were insulin resistance and abdominal obesity, which promotes early formation of the metabolic syndrome and the activation of fibrogenesis and steatosis in the pancreas and is caused by dyslipidemia, impaired glucose metabolism and the development of systemic inflammation and imbalance of adipocytokines. The relationships between adipocytokines, body weight and individual components of the metabolic syndrome in patients with CP and T2DM suggests the involvement of these hormones of adipose tissue in the formation of the metabolic syndrome and its components.

  3. Stereotypic and complex phrase types provide structural evidence for a multi-message display in humpback whales (Megaptera novaeangliae).

    PubMed

    Murray, Anita; Dunlop, Rebecca A; Noad, Michael J; Goldizen, Anne W

    2018-02-01

    Male humpback whales produce a mating display called "song." Behavioral studies indicate song has inter- and/or intra-sexual functionality, suggesting song may be a multi-message display. Multi-message displays often include stereotypic components that convey group membership for mate attraction and/or male-male interactions, and complex components that convey individual quality for courtship. Humpback whale song contains sounds ("units") arranged into sequences ("phrases"). Repetitions of a specific phrase create a "theme." Within a theme, imperfect phrase repetitions ("phrase variants") create variability among phrases of the same type ("phrase type"). The hypothesis that song contains stereotypic and complex phrase types, structural characteristics consistent with a multi-message display, is investigated using recordings of 17 east Australian males (8:2004, 9:2011). Phrase types are categorized as stereotypic or complex using number of unit types, number of phrase variants, and the proportion of phrases that is unique to an individual versus shared amongst males. Unit types are determined using self-organizing maps. Phrase variants are determined by Levenshtein distances between phrases. Stereotypic phrase types have smaller numbers of unit types and shared phrase variants. Complex phrase types have larger numbers of unit types and unique phrase variants. This study supports the hypothesis that song could be a multi-message display.

  4. ERASE-Seq: Leveraging replicate measurements to enhance ultralow frequency variant detection in NGS data

    PubMed Central

    Kamps-Hughes, Nick; McUsic, Andrew; Kurihara, Laurie; Harkins, Timothy T.; Pal, Prithwish; Ray, Claire

    2018-01-01

    The accurate detection of ultralow allele frequency variants in DNA samples is of interest in both research and medical settings, particularly in liquid biopsies where cancer mutational status is monitored from circulating DNA. Next-generation sequencing (NGS) technologies employing molecular barcoding have shown promise but significant sensitivity and specificity improvements are still needed to detect mutations in a majority of patients before the metastatic stage. To address this we present analytical validation data for ERASE-Seq (Elimination of Recurrent Artifacts and Stochastic Errors), a method for accurate and sensitive detection of ultralow frequency DNA variants in NGS data. ERASE-Seq differs from previous methods by creating a robust statistical framework to utilize technical replicates in conjunction with background error modeling, providing a 10 to 100-fold reduction in false positive rates compared to published molecular barcoding methods. ERASE-Seq was tested using spiked human DNA mixtures with clinically realistic DNA input quantities to detect SNVs and indels between 0.05% and 1% allele frequency, the range commonly found in liquid biopsy samples. Variants were detected with greater than 90% sensitivity and a false positive rate below 0.1 calls per 10,000 possible variants. The approach represents a significant performance improvement compared to molecular barcoding methods and does not require changing molecular reagents. PMID:29630678

  5. SvABA: genome-wide detection of structural variants and indels by local assembly.

    PubMed

    Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah F; O'Rourke, Ryan; Sharpe, Ted; Stewart, Chip; Schumacher, Steve; Li, Yilong; Weischenfeldt, Joachim; Yao, Xiaotong; Nusbaum, Chad; Campbell, Peter; Getz, Gad; Meyerson, Matthew; Zhang, Cheng-Zhong; Imielinski, Marcin; Beroukhim, Rameen

    2018-04-01

    Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA's performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs. © 2018 Wala et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Validation of a next-generation sequencing assay for clinical molecular oncology.

    PubMed

    Cottrell, Catherine E; Al-Kateb, Hussam; Bredemeyer, Andrew J; Duncavage, Eric J; Spencer, David H; Abel, Haley J; Lockwood, Christina M; Hagemann, Ian S; O'Guin, Stephanie M; Burcea, Lauren C; Sawyer, Christopher S; Oschwald, Dayna M; Stratman, Jennifer L; Sher, Dorie A; Johnson, Mark R; Brown, Justin T; Cliften, Paul F; George, Bijoy; McIntosh, Leslie D; Shrivastava, Savita; Nguyen, Tudung T; Payton, Jacqueline E; Watson, Mark A; Crosby, Seth D; Head, Richard D; Mitra, Robi D; Nagarajan, Rakesh; Kulkarni, Shashikant; Seibert, Karen; Virgin, Herbert W; Milbrandt, Jeffrey; Pfeifer, John D

    2014-01-01

    Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci. We present clinical validation of the assay and a detailed framework for design and validation of similar clinical assays. Deep sequencing of 78 tumor specimens (≥ 1000× average unique coverage across the capture region) achieved high sensitivity for detecting somatic variants at low allele fraction (AF). Validation revealed sensitivities and specificities of 100% for detection of single-nucleotide variants (SNVs) within coding regions, compared with SNP array sequence data (95% CI = 83.4-100.0 for sensitivity and 94.2-100.0 for specificity) or whole-genome sequencing (95% CI = 89.1-100.0 for sensitivity and 99.9-100.0 for specificity) of HapMap samples. Sensitivity for detecting variants at an observed 10% AF was 100% (95% CI = 93.2-100.0) in HapMap mixes. Analysis of 15 masked specimens harboring clinically reported variants yielded concordant calls for 13/13 variants at AF of ≥ 15%. The WUCaMP assay is a robust and sensitive method to detect somatic variants of clinical significance in molecular oncology laboratories, with reduced time and cost of genetic analysis allowing for strategic patient management. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Defects in the acid phosphatase ACPT cause recessive hypoplastic amelogenesis imperfecta.

    PubMed

    Smith, Claire El; Whitehouse, Laura LE; Poulter, James A; Brookes, Steven J; Day, Peter F; Soldani, Francesca; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2017-08-01

    We identified two homozygous missense variants (c.428C>T, p.(T143M) and c.746C>T, p.(P249L)) in ACPT, the gene encoding acid phosphatase, testicular, which segregates with hypoplastic amelogenesis imperfecta in two unrelated families. ACPT is reported to play a role in odontoblast differentiation and mineralisation by supplying phosphate during dentine formation. Analysis by computerised tomography and scanning electron microscopy of a primary molar tooth from an individual homozygous for the c.746C>T variant revealed an enamel layer that was hypoplastic, but mineralised with prismatic architecture. These findings implicate variants in ACPT as a cause of early failure of amelogenesis during the secretory phase.

  8. DNA variant databases improve test accuracy and phenotype prediction in Alport syndrome.

    PubMed

    Savige, Judy; Ars, Elisabet; Cotton, Richard G H; Crockett, David; Dagher, Hayat; Deltas, Constantinos; Ding, Jie; Flinter, Frances; Pont-Kingdon, Genevieve; Smaoui, Nizar; Torra, Roser; Storey, Helen

    2014-06-01

    X-linked Alport syndrome is a form of progressive renal failure caused by pathogenic variants in the COL4A5 gene. More than 700 variants have been described and a further 400 are estimated to be known to individual laboratories but are unpublished. The major genetic testing laboratories for X-linked Alport syndrome worldwide have established a Web-based database for published and unpublished COL4A5 variants ( https://grenada.lumc.nl/LOVD2/COL4A/home.php?select_db=COL4A5 ). This conforms with the recommendations of the Human Variome Project: it uses the Leiden Open Variation Database (LOVD) format, describes variants according to the human reference sequence with standardized nomenclature, indicates likely pathogenicity and associated clinical features, and credits the submitting laboratory. The database includes non-pathogenic and recurrent variants, and is linked to another COL4A5 mutation database and relevant bioinformatics sites. Access is free. Increasing the number of COL4A5 variants in the public domain helps patients, diagnostic laboratories, clinicians, and researchers. The database improves the accuracy and efficiency of genetic testing because its variants are already categorized for pathogenicity. The description of further COL4A5 variants and clinical associations will improve our ability to predict phenotype and our understanding of collagen IV biochemistry. The database for X-linked Alport syndrome represents a model for databases in other inherited renal diseases.

  9. Expression of the prospective mesoderm genes twist, snail, and mef2 in penaeid shrimp.

    PubMed

    Wei, Jiankai; Glaves, Richard Samuel Elliot; Sellars, Melony J; Xiang, Jianhai; Hertzler, Philip L

    2016-07-01

    In penaeid shrimp, mesoderm forms from two sources: naupliar mesoderm founder cells, which invaginate during gastrulation, and posterior mesodermal stem cells called mesoteloblasts, which undergo characteristic teloblastic divisions. The primordial mesoteloblast descends from the ventral mesendoblast, which arrests in cell division at the 32-cell stage and ingresses with its sister dorsal mesendoblast prior to naupliar mesoderm invagination. The naupliar mesoderm forms the muscles of the naupliar appendages (first and second antennae and mandibles), while the mesoteloblasts form the mesoderm, including the muscles, of subsequently formed posterior segments. To better understand the mechanism of mesoderm and muscle formation in penaeid shrimp, twist, snail, and mef2 cDNAs were identified from transcriptomes of Penaeus vannamei, P. japonicus, P. chinensis, and P. monodon. A single Twist ortholog was found, with strong inferred amino acid conservation across all three species. Multiple Snail protein variants were detected, which clustered in a phylogenetic tree with other decapod crustacean Snail sequences. Two closely-related mef2 variants were found in P. vannamei. The developmental mRNA expression of these genes was studied by qPCR in P. vannamei embryos, larvae, and postlarvae. Expression of Pv-twist and Pv-snail began during the limb bud stage and continued through larval stages to the postlarva. Surprisingly, Pv-mef2 expression was found in all stages from the zygote to the postlarva, with the highest expression in the limb bud and protozoeal stages. The results add comparative data on the development of anterior and posterior mesoderm in malacostracan crustaceans, and should stimulate further studies on mesoderm and muscle development in penaeid shrimp.

  10. Spliceman2: a computational web server that predicts defects in pre-mRNA splicing.

    PubMed

    Cygan, Kamil Jan; Sanford, Clayton Hendrick; Fairbrother, William Guy

    2017-09-15

    Most pre-mRNA transcripts in eukaryotic cells must undergo splicing to remove introns and join exons, and splicing elements present a large mutational target for disease-causing mutations. Splicing elements are strongly position dependent with respect to the transcript annotations. In 2012, we presented Spliceman, an online tool that used positional dependence to predict how likely distant mutations around annotated splice sites were to disrupt splicing. Here, we present an improved version of the previous tool that will be more useful for predicting the likelihood of splicing mutations. We have added industry-standard input options (i.e. Spliceman now accepts variant call format files), which allow much larger inputs than previously available. The tool also can visualize the locations-within exons and introns-of sequence variants to be analyzed and the predicted effects on splicing of the pre-mRNA transcript. In addition, Spliceman2 integrates with RNAcompete motif libraries to provide a prediction of which trans -acting factors binding sites are disrupted/created and links out to the UCSC genome browser. In summary, the new features in Spliceman2 will allow scientists and physicians to better understand the effects of single nucleotide variations on splicing. Freely available on the web at http://fairbrother.biomed.brown.edu/spliceman2 . Website implemented in PHP framework-Laravel 5, PostgreSQL, Apache, and Perl, with all major browsers supported. william_fairbrother@brown.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.

    PubMed Central

    Leddy, M B; Phipps, D W; Ridgway, H F

    1995-01-01

    Pseudomonas putida 54g grew on mineral salts with toluene and exhibited catechol-2,3-dioxygenase (C23O) activity, indicating a meta pathway. After 10 to 15 days on toluene, nondegrading (Tol-) variants approached nearly 10% of total CFU. Auxotrophs were not detected among variants, suggesting selective loss of catabolic function(s). Variant formation was substrate dependent, since Tol- cells were observed on neither ethylbenzene, glucose, nor peptone-based media nor when toluene catabolism was suppressed by glucose. Unlike wild-type cells, variants did not grow on gasoline, toluene, benzene, ethylbenzene, benzoate, or catechol, suggesting loss of meta pathway function. Catabolic and C23O activities were restored to variants via transfer of a 78-mDa TOL-like plasmid from a wild-type Tol+ donor. Tests for reversion of variants to Tol+ were uniformly negative, suggesting possible delection or excision of catabolic genes. Deletions were confirmed in some variants by failure to hybridize with a DNA probe specific for the xylE gene encoding C23O. Cells grown on benzoate remained Tol+ but were C23O- and contained a plasmid of reduced size or were plasmid free, suggesting an alternate chromosomal catabolic pathway, also defective in variants. Cells exposed to benzyl alcohol, the initial oxidation product of toluene, accumulated > 13% variants in 5 days, even when cell division was repressed by nitrogen deprivation to abrogate selection processes. No variants formed in identical ethylbenzene-exposed controls. The results suggest that benzyl alcohol mediates irreversible defects in both a plasmid-associated meta pathway and an alternate chromosomal pathway. PMID:7642499

  12. Disease-associated variants in different categories of disease located in distinct regulatory elements.

    PubMed

    Ma, Meng; Ru, Ying; Chuang, Ling-Shiang; Hsu, Nai-Yun; Shi, Li-Song; Hakenberg, Jörg; Cheng, Wei-Yi; Uzilov, Andrew; Ding, Wei; Glicksberg, Benjamin S; Chen, Rong

    2015-01-01

    The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are located within over 50% coding exon regions. Transcription promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472, 239, and 72 disease variants per one million base pairs, respectively. Disease-associated variants in different disease categories are preferentially located in particular regulatory elements. These results will be useful for an overall understanding about the differences among the pathogenic mechanisms of various disease-associated variants.

  13. Disease-associated variants in different categories of disease located in distinct regulatory elements

    PubMed Central

    2015-01-01

    Background The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. Results In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are located within over 50% coding exon regions. Transcription promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472, 239, and 72 disease variants per one million base pairs, respectively. Conclusions Disease-associated variants in different disease categories are preferentially located in particular regulatory elements. These results will be useful for an overall understanding about the differences among the pathogenic mechanisms of various disease-associated variants. PMID:26110593

  14. The addictive brain: all roads lead to dopamine.

    PubMed

    Blum, Kenneth; Chen, Amanda L C; Giordano, John; Borsten, Joan; Chen, Thomas J H; Hauser, Mary; Simpatico, Thomas; Femino, John; Braverman, Eric R; Barh, Debmalya

    2012-01-01

    This article will touch on theories, scientific research and conjecture about the evolutionary genetics of the brain function and the impact of genetic variants called polymorphisms on drug-seeking behavior. It will cover the neurological basis of pleasure-seeking and addiction, which affects multitudes in a global atmosphere where people are seeking "pleasure states".

  15. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses.

    PubMed

    Golosova, Olga; Henderson, Ross; Vaskin, Yuriy; Gabrielian, Andrei; Grekhov, German; Nagarajan, Vijayaraj; Oler, Andrew J; Quiñones, Mariam; Hurt, Darrell; Fursov, Mikhail; Huyen, Yentram

    2014-01-01

    The advent of Next Generation Sequencing (NGS) technologies has opened new possibilities for researchers. However, the more biology becomes a data-intensive field, the more biologists have to learn how to process and analyze NGS data with complex computational tools. Even with the availability of common pipeline specifications, it is often a time-consuming and cumbersome task for a bench scientist to install and configure the pipeline tools. We believe that a unified, desktop and biologist-friendly front end to NGS data analysis tools will substantially improve productivity in this field. Here we present NGS pipelines "Variant Calling with SAMtools", "Tuxedo Pipeline for RNA-seq Data Analysis" and "Cistrome Pipeline for ChIP-seq Data Analysis" integrated into the Unipro UGENE desktop toolkit. We describe the available UGENE infrastructure that helps researchers run these pipelines on different datasets, store and investigate the results and re-run the pipelines with the same parameters. These pipeline tools are included in the UGENE NGS package. Individual blocks of these pipelines are also available for expert users to create their own advanced workflows.

  16. The Pseudomonas aeruginosa Magnesium Transporter MgtE Inhibits Transcription of the Type III Secretion System▿ †

    PubMed Central

    Anderson, Gregory G.; Yahr, Timothy L.; Lovewell, Rustin R.; O'Toole, George A.

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative magnesium transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for magnesium transport could still complement the cytotoxicity effect. Thus, the magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes. PMID:20028803

  17. The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system.

    PubMed

    Anderson, Gregory G; Yahr, Timothy L; Lovewell, Rustin R; O'Toole, George A

    2010-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes life-long pneumonia in individuals with cystic fibrosis (CF). These long-term infections are maintained by bacterial biofilm formation in the CF lung. We have recently developed a model of P. aeruginosa biofilm formation on cultured CF airway epithelial cells. Using this model, we discovered that mutation of a putative magnesium transporter gene, called mgtE, led to increased cytotoxicity of P. aeruginosa toward epithelial cells. This altered toxicity appeared to be dependent upon expression of the type III secretion system (T3SS). In this study, we found that mutation of mgtE results in increased T3SS gene transcription. Through epistasis analyses, we discovered that MgtE influences the ExsE-ExsC-ExsD-ExsA gene regulatory system of T3SS by either directly or indirectly inhibiting ExsA activity. While variations in calcium levels modulate T3SS gene expression in P. aeruginosa, we found that addition of exogenous magnesium did not inhibit T3SS activity. Furthermore, mgtE variants that were defective for magnesium transport could still complement the cytotoxicity effect. Thus, the magnesium transport function of MgtE does not fully explain the regulatory effects of MgtE on cytotoxicity. Overall, our results indicate that MgtE modulates expression of T3SS genes.

  18. Exome Sequencing Analysis Reveals Variants in Primary Immunodeficiency Genes in Patients With Very Early Onset Inflammatory Bowel Disease

    PubMed Central

    Kelsen, Judith R.; Dawany, Noor; Moran, Christopher J.; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S.; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F.; Daly, Mark; Sullivan, Kathleen E.; Baldassano, Robert N.; Devoto, Marcella

    2016-01-01

    Background & Aims Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed ≤5 y of age, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Methods Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (ages 3 weeks to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by post-processing and variant calling. Following functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency <0.1%, and scaled combined annotation dependent depletion scores ≤10. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n=45) or adult-onset Crohn's disease (n=20) and healthy individuals (controls, n=145) were obtained from the University of Kiel, Germany and used as control groups. Results Four-hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling > 1 Mbp of coding sequence, were selected from the whole exome data. Our analysis revealed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. Conclusions In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the identification of previously unidentified IBD-associated variants. PMID:26193622

  19. Two Variants in SLC24A5 Are Associated with “Tiger-Eye” Iris Pigmentation in Puerto Rican Paso Fino Horses

    PubMed Central

    Mack, Maura; Kowalski, Elizabeth; Grahn, Robert; Bras, Dineli; Penedo, Maria Cecilia T.; Bellone, Rebecca

    2017-01-01

    A unique eye color, called tiger-eye, segregates in the Puerto Rican Paso Fino (PRPF) horse breed and is characterized by a bright yellow, amber, or orange iris. Pedigree analysis identified a simple autosomal recessive mode of inheritance for this trait. A genome-wide association study (GWAS) with 24 individuals identified a locus on ECA 1 reaching genome-wide significance (Pcorrected = 1.32 × 10−5). This ECA1 locus harbors the candidate gene, Solute Carrier Family 24 (Sodium/Potassium/Calcium Exchanger), Member 5 (SLC24A5), with known roles in pigmentation in humans, mice, and zebrafish. Humans with compound heterozygous mutations in SLC24A5 have oculocutaneous albinism (OCA) type 6 (OCA6), which is characterized by dilute skin, hair, and eye pigmentation, as well as ocular anomalies. Twenty tiger-eye horses were homozygous for a nonsynonymous mutation in exon 2 (p.Phe91Tyr) of SLC24A5 (called here Tiger-eye 1), which is predicted to be deleterious to protein function. Additionally, eight of the remaining 12 tiger-eye horses heterozygous for the p.Phe91Tyr variant were also heterozygous for a 628 bp deletion encompassing all of exon 7 of SLC24A5 (c.875-340_1081+82del), which we will call here the Tiger-eye 2 allele. None of the 122 brown-eyed horses were homozygous for either tiger-eye-associated allele or were compound heterozygotes. Further, neither variant was detected in 196 horses from four related breeds not known to have the tiger-eye phenotype. Here, we propose that two mutations in SLC24A5 affect iris pigmentation in tiger-eye PRPF horses. Further, unlike OCA6 in humans, the Tiger-eye 1 mutation in its homozygous state or as a compound heterozygote (Tiger-eye 1/Tiger-eye 2) does not appear to cause ocular anomalies or a change in coat color in the PRPF horse. PMID:28655738

  20. Fundamentals and techniques of nonimaging optics research

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J.

    1987-07-01

    Nonimaging Optics differs from conventional approaches in its relaxation of unnecessary constraints on energy transport imposed by the traditional methods for optimizing image formation and its use of more broadly based analytical techniques such as phase space representations of energy flow, radiative transfer analysis, thermodynamic arguments, etc. Based on these means, techniques for designing optical elements which approach and in some cases attain the maximum concentration permitted by the Second Law of Thermodynamics were developed. The most widely known of these devices are the family of Compound Parabolic Concentrators (CPC's) and their variants and the so called Flow-Line or trumpet concentrator derived from the geometric vector flux formalism developed under this program. Applications of these and other such ideal or near-ideal devices permits increases of typically a factor of four (though in some cases as much as an order of magnitude) in the concentration above that possible with conventional means. Present efforts can be classed into two main areas: (1) classical geometrical nonimaging optics, and (2) logical extensions of nonimaging concepts to the physical optics domain.

  1. Fundamentals and techniques of nonimaging optics research at the University of Chicago

    NASA Astrophysics Data System (ADS)

    Winston, R.; Ogallagher, J.

    1986-11-01

    Nonimaging Optics differs from conventional approaches in its relaxation of unnecessary constraints on energy transport imposed by the traditional methods for optimizing image formation and its use of more broadly based analytical techniques such as phase space representations of energy flow, radiative transfer analysis, thermodynamic arguments, etc. Based on these means, techniques for designing optical elements which approach and in some cases attain the maximum concentration permitted by the Second Law of Thermodynamics were developed. The most widely known of these devices are the family of Compound Parabolic Concentrators (CPC's) and their variants and the so called Flow-Line concentrator derived from the geometric vector flux formalism developed under this program. Applications of these and other such ideal or near-ideal devices permits increases of typically a factor of four (though in some cases as much as an order of magnitude) in the concentration above that possible with conventional means. In the most recent phase, our efforts can be classed into two main areas; (a) ''classical'' geometrical nonimaging optics; and (b) logical extensions of nonimaging concepts to the physical optics domain.

  2. HomSI: a homozygous stretch identifier from next-generation sequencing data.

    PubMed

    Görmez, Zeliha; Bakir-Gungor, Burcu; Sagiroglu, Mahmut Samil

    2014-02-01

    In consanguineous families, as a result of inheriting the same genomic segments through both parents, the individuals have stretches of their genomes that are homozygous. This situation leads to the prevalence of recessive diseases among the members of these families. Homozygosity mapping is based on this observation, and in consanguineous families, several recessive disease genes have been discovered with the help of this technique. The researchers typically use single nucleotide polymorphism arrays to determine the homozygous regions and then search for the disease gene by sequencing the genes within this candidate disease loci. Recently, the advent of next-generation sequencing enables the concurrent identification of homozygous regions and the detection of mutations relevant for diagnosis, using data from a single sequencing experiment. In this respect, we have developed a novel tool that identifies homozygous regions using deep sequence data. Using *.vcf (variant call format) files as an input file, our program identifies the majority of homozygous regions found by microarray single nucleotide polymorphism genotype data. HomSI software is freely available at www.igbam.bilgem.tubitak.gov.tr/softwares/HomSI, with an online manual.

  3. [How often is breast fibroadenomatosis asymptomatic?].

    PubMed

    Li, L A; Martyniuk, V V; Neĭshtadt, E L

    1999-01-01

    The results of clinico-morphological examinations of 386 women having no complains of discomfort in the mammary glands are presented. Methods of palpation, mammography and morphological investigation have detected fibroadenomatosis without subjective symptoms of the disease in 38%, 67% and 78% of the patients correspondingly. This variant of the disease is called asymptomatic since the woman can not notice it and so it is out of the field of attention of oncologists. High incidence of asymptomatic fibroadenomatosis requires a revision of the current assessment of it as a disease because it does not take into account a variant of the disease when the patient has no complains of painful indurations in the mammary glands.

  4. A Note on Alternating Minimization Algorithm for the Matrix Completion Problem

    DOE PAGES

    Gamarnik, David; Misra, Sidhant

    2016-06-06

    Here, we consider the problem of reconstructing a low-rank matrix from a subset of its entries and analyze two variants of the so-called alternating minimization algorithm, which has been proposed in the past.We establish that when the underlying matrix has rank one, has positive bounded entries, and the graph underlying the revealed entries has diameter which is logarithmic in the size of the matrix, both algorithms succeed in reconstructing the matrix approximately in polynomial time starting from an arbitrary initialization.We further provide simulation results which suggest that the second variant which is based on the message passing type updates performsmore » significantly better.« less

  5. Space-variant filtering for correction of wavefront curvature effects in spotlight-mode SAR imagery formed via polar formatting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakowatz, C.V. Jr.; Wahl, D.E.; Thompson, P.A.

    1996-12-31

    Wavefront curvature defocus effects can occur in spotlight-mode SAR imagery when reconstructed via the well-known polar formatting algorithm (PFA) under certain scenarios that include imaging at close range, use of very low center frequency, and/or imaging of very large scenes. The range migration algorithm (RMA), also known as seismic migration, was developed to accommodate these wavefront curvature effects. However, the along-track upsampling of the phase history data required of the original version of range migration can in certain instances represent a major computational burden. A more recent version of migration processing, the Frequency Domain Replication and Downsampling (FReD) algorithm, obviatesmore » the need to upsample, and is accordingly more efficient. In this paper the authors demonstrate that the combination of traditional polar formatting with appropriate space-variant post-filtering for refocus can be as efficient or even more efficient than FReD under some imaging conditions, as demonstrated by the computer-simulated results in this paper. The post-filter can be pre-calculated from a theoretical derivation of the curvature effect. The conclusion is that the new polar formatting with post filtering algorithm (PF2) should be considered as a viable candidate for a spotlight-mode image formation processor when curvature effects are present.« less

  6. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor.

    PubMed

    Błasiak, Ewa; Łukasiewicz, Sylwia; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2017-04-01

    The human dopamine D2 receptor gene has three polymorphic variants that alter its amino acid sequence: alanine substitution by valine in position 96 (V96A), proline substitution by serine in position 310 (P310S) and serine substitution by cysteine in position 311 (S311C). Their functional role has never been the object of extensive studies, even though there is some evidence that their occurrence correlates with schizophrenia. The HEK293 cell line was transfected with dopamine D1 and D2 receptors (or genetic variants of the D2 receptor), coupled to fluorescent proteins which allowed us to measure the extent of dimerization of these receptors, using a highly advanced biophysical approach (FLIM-FRET). Additionally, Fluoro-4 AM was used to examine changes in the level of calcium release after ligand stimulation of cells expressing different combinations of dopamine receptors. Using FLIM-FRET experiments we have shown that in HEK 293 expressing dopamine receptors, polymorphic mutations in the D2 receptor play a role in dimmer formation with the dopamine D1 receptor. The association level of dopamine receptors is affected by ligand administration, with variable effects depending on polymorphic variant of the D2 dopamine receptor. We have found that the level of heteromer formation is reflected by calcium ion release after ligand stimulation and have observed variations of this effect dependent on the polymorphic variant and the ligand. The data presented in this paper support the hypothesis on the role of calcium signaling regulated by the D1-D2 heteromer which may be of relevance for schizophrenia etiology. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation.

    PubMed

    Yamanaka, Yuki; Winardhi, Ricksen S; Yamauchi, Erika; Nishiyama, So-Ichiro; Sowa, Yoshiyuki; Yan, Jie; Kawagishi, Ikuro; Ishihama, Akira; Yamamoto, Kaneyoshi

    2018-06-15

    The bacterial nucleoid-associated protein H-NS is a DNA-binding protein, playing a major role in gene regulation. To regulate transcription, H-NS silences genes, including horizontally acquired foreign genes. Escherichia coli H-NS is 137 residues long and consists of two discrete and independent structural domains: an N-terminal oligomerization domain and a C-terminal DNA-binding domain, joined by a flexible linker. The N-terminal oligomerization domain is composed of two dimerization sites, dimerization sites 1 and 2, which are both required for H-NS oligomerization, but the exact role of dimerization site 2 in gene silencing is unclear. To this end, we constructed a whole set of single amino acid substitution variants spanning residues 2 to 137. Using a well-characterized H-NS target, the slp promoter of the glutamic acid-dependent acid resistance (GAD) cluster promoters, we screened for any variants defective in gene silencing. Focusing on the function of dimerization site 2, we analyzed four variants, I70C/I70A and L75C/L75A, which all could actively bind DNA but are defective in gene silencing. Atomic force microscopy analysis of DNA-H-NS complexes revealed that all of these four variants formed condensed complexes on DNA, whereas WT H-NS formed rigid and extended nucleoprotein filaments, a conformation required for gene silencing. Single-molecule stretching experiments confirmed that the four variants had lost the ability to form stiffened filaments. We conclude that dimerization site 2 of H-NS plays a key role in the formation of rigid H-NS nucleoprotein filament structures required for gene silencing. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Study on the crystallographic orientation relationship and formation mechanism of reversed austenite in economical Cr12 super martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Dong; Li, Shaohong; Li, Jun

    Effect of carbides and crystallographic orientation relationship on the formation mechanism of reversed austenite of economical Cr12 super martensitic stainless steel (SMSS) has been investigated mainly by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). The results indicate that the M{sub 23}C{sub 6} precipitation and the formation of the reversed austenite have the interaction effect during tempering process in SMSS. The reversed austenite forms intensively at the sub-block boundary and the lath boundary within a misorientation range of 0–60°. M{sub 23}C{sub 6} has the same crystallographic orientation relationship with reversed austenite. There are two different kinds of formation modesmore » for reversed austenite. One is a nondiffusional shear reversion; the other is a diffusion transformation. Both are strictly limited by crystallographic orientation relationship. The austenite variants are limited to two kinds within one packet and five kinds within one prior austenite grain. - Highlights: • Reversed austenite forms at martensite boundaries with misorientation of 0–60° • M{sub 23}C{sub 6} precipitation and reversed austenite formation have the interaction effect. • Two austenite variants with different orientations can be formed inside a packet. • Two reversed austenite formation modes: shear reversion; diffusion transformation.« less

  9. Active Brownian agents with concentration-dependent chemotactic sensitivity.

    PubMed

    Meyer, Marcel; Schimansky-Geier, Lutz; Romanczuk, Pawel

    2014-02-01

    We study a biologically motivated model of overdamped, autochemotactic Brownian agents with concentration-dependent chemotactic sensitivity. The agents in our model move stochastically and produce a chemical ligand at their current position. The ligand concentration obeys a reaction-diffusion equation and acts as a chemoattractant for the agents, which bias their motion towards higher concentrations of the dynamically altered chemical field. We explore the impact of concentration-dependent response to chemoattractant gradients on large-scale pattern formation, by deriving a coarse-grained macroscopic description of the individual-based model, and compare the conditions for emergence of inhomogeneous solutions for different variants of the chemotactic sensitivity. We focus primarily on the so-called receptor-law sensitivity, which models a nonlinear decrease of chemotactic sensitivity with increasing ligand concentration. Our results reveal qualitative differences between the receptor law, the constant chemotactic response, and the so-called log law, with respect to stability of the homogeneous solution, as well as the emergence of different patterns (labyrinthine structures, clusters, and bubbles) via spinodal decomposition or nucleation. We discuss two limiting cases, where the model can be reduced to the dynamics of single species: (I) the agent density governed by a density-dependent effective diffusion coefficient and (II) the ligand field with an effective bistable, time-dependent reaction rate. In the end, we turn to single clusters of agents, studying domain growth and determining mean characteristics of the stationary inhomogeneous state. Analytical results are confirmed and extended by large-scale GPU simulations of the individual based model.

  10. Oncogenic potential diverge among human papillomavirus type 16 natural variants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sichero, Laura, E-mail: lsichero@gmail.com; Department of Virology, Ludwig Institute for Cancer Research, Sao Paulo 01323-903; Simao Sobrinho, Joao

    2012-10-10

    We compared E6/E7 protein properties of three different HPV-16 variants: AA, E-P and E-350G. Primary human foreskin keratinocytes (PHFK) were transduced with HPV-16 E6 and E7 and evaluated for proliferation and ability to grow in soft agar. E-P infected keratinocytes presented the lowest efficiency in colony formation. AA and E-350G keratinocytes attained higher capacity for in vitro transformation. We observed similar degradation of TP53 among HPV-16 variants. Furthermore, we accessed the expression profile in early (p5) and late passage (p30) transduced cells of 84 genes commonly involved in carcinogenesis. Most differences could be attributed to HPV-16 E6/E7 expression. In particular,more » we detected different expression of ITGA2 and CHEK2 in keratinocytes infected with AA and AA/E-350G late passage cells, respectively, and higher expression of MAP2K1 in E-350G transduced keratinocytes. Our results indicate differences among HPV-16 variants that could explain, at least in part, differences in oncogenic potential attributed to these variants.« less

  11. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    PubMed

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Quantitative trait nucleotide analysis using Bayesian model selection.

    PubMed

    Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D

    2005-10-01

    Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.

  13. Molecular diagnosis of populational variants of Anthonomus grandis (Coleoptera: Curculionidae) in North America.

    PubMed

    Barr, Norman; Ruiz-Arce, Raul; Obregón, Oscar; De Leon, Rosita; Foster, Nelson; Reuter, Chris; Boratynski, Theodore; Vacek, Don

    2013-02-01

    The utility of the cytochrome oxidase I (COI) DNA sequence used for DNA barcoding and a Sequence Characterized Amplified Region for diagnosing boll weevil, Anthonomus grandis Boheman, variants was evaluated. Maximum likelihood analysis of COI DNA sequences from 154 weevils collected from the United States and Mexico supports previous evidence for limited gene flow between weevil populations on wild cotton and commercial cotton in northern Mexico and southern United States. The wild cotton populations represent a variant of the species called the thurberia weevil, which is not regarded as a significant pest. The 31 boll weevil COI haplotypes observed in the study form two distinct haplogroups (A and B) that are supported by five fixed nucleotide differences and a phylogenetic analysis. Although wild and commercial cotton populations are closely associated with specific haplogroups, there is not a fixed difference between the thurberia weevil variant and other populations. The Sequence Characterized Amplified Region marker generated a larger number of inconclusive results than the COI gene but also supported evidence of shared genotypes between wild and commercial cotton weevil populations. These methods provide additional markers that can assist in the identification of pest weevil populations but not definitively diagnose samples.

  14. Enhancing the Predictive Power of Mutations in the C-Terminus of the KCNQ1-Encoded Kv7.1 Voltage-Gated Potassium Channel.

    PubMed

    Kapplinger, Jamie D; Tseng, Andrew S; Salisbury, Benjamin A; Tester, David J; Callis, Thomas E; Alders, Marielle; Wilde, Arthur A M; Ackerman, Michael J

    2015-04-01

    Despite the overrepresentation of Kv7.1 mutations among patients with a robust diagnosis of long QT syndrome (LQTS), a background rate of innocuous Kv7.1 missense variants observed in healthy controls creates ambiguity in the interpretation of LQTS genetic test results. A recent study showed that the probability of pathogenicity for rare missense mutations depends in part on the topological location of the variant in Kv7.1's various structure-function domains. Since the Kv7.1's C-terminus accounts for nearly 50 % of the overall protein and nearly 50 % of the overall background rate of rare variants falls within the C-terminus, further enhancement in mutation calling may provide guidance in distinguishing pathogenic long QT syndrome type 1 (LQT1)-causing mutations from rare non-disease-causing variants in the Kv7.1's C-terminus. Therefore, we have used conservation analysis and a large case-control study to generate topology-based estimative predictive values to aid in interpretation, identifying three regions of high conservation within the Kv7.1's C-terminus which have a high probability of LQT1 pathogenicity.

  15. Amplicon-based semiconductor sequencing of human exomes: performance evaluation and optimization strategies.

    PubMed

    Damiati, E; Borsani, G; Giacopuzzi, Edoardo

    2016-05-01

    The Ion Proton platform allows to perform whole exome sequencing (WES) at low cost, providing rapid turnaround time and great flexibility. Products for WES on Ion Proton system include the AmpliSeq Exome kit and the recently introduced HiQ sequencing chemistry. Here, we used gold standard variants from GIAB consortium to assess the performances in variants identification, characterize the erroneous calls and develop a filtering strategy to reduce false positives. The AmpliSeq Exome kit captures a large fraction of bases (>94 %) in human CDS, ClinVar genes and ACMG genes, but with 2,041 (7 %), 449 (13 %) and 11 (19 %) genes not fully represented, respectively. Overall, 515 protein coding genes contain hard-to-sequence regions, including 90 genes from ClinVar. Performance in variants detection was maximum at mean coverage >120×, while at 90× and 70× we measured a loss of variants of 3.2 and 4.5 %, respectively. WES using HiQ chemistry showed ~71/97.5 % sensitivity, ~37/2 % FDR and ~0.66/0.98 F1 score for indels and SNPs, respectively. The proposed low, medium or high-stringency filters reduced the amount of false positives by 10.2, 21.2 and 40.4 % for indels and 21.2, 41.9 and 68.2 % for SNP, respectively. Amplicon-based WES on Ion Proton platform using HiQ chemistry emerged as a competitive approach, with improved accuracy in variants identification. False-positive variants remain an issue for the Ion Torrent technology, but our filtering strategy can be applied to reduce erroneous variants.

  16. Limited Variation in BK Virus T-Cell Epitopes Revealed by Next-Generation Sequencing

    PubMed Central

    Sahoo, Malaya K.; Tan, Susanna K.; Chen, Sharon F.; Kapusinszky, Beatrix; Concepcion, Katherine R.; Kjelson, Lynn; Mallempati, Kalyan; Farina, Heidi M.; Fernández-Viña, Marcelo; Tyan, Dolly; Grimm, Paul C.; Anderson, Matthew W.; Concepcion, Waldo

    2015-01-01

    BK virus (BKV) infection causing end-organ disease remains a formidable challenge to the hematopoietic cell transplant (HCT) and kidney transplant fields. As BKV-specific treatments are limited, immunologic-based therapies may be a promising and novel therapeutic option for transplant recipients with persistent BKV infection. Here, we describe a whole-genome, deep-sequencing methodology and bioinformatics pipeline that identify BKV variants across the genome and at BKV-specific HLA-A2-, HLA-B0702-, and HLA-B08-restricted CD8 T-cell epitopes. BKV whole genomes were amplified using long-range PCR with four inverse primer sets, and fragmentation libraries were sequenced on the Ion Torrent Personal Genome Machine (PGM). An error model and variant-calling algorithm were developed to accurately identify rare variants. A total of 65 samples from 18 pediatric HCT and kidney recipients with quantifiable BKV DNAemia underwent whole-genome sequencing. Limited genetic variation was observed. The median number of amino acid variants identified per sample was 8 (range, 2 to 37; interquartile range, 10), with the majority of variants (77%) detected at a frequency of <5%. When normalized for length, there was no statistical difference in the median number of variants across all genes. Similarly, the predominant virus population within samples harbored T-cell epitopes similar to the reference BKV strain that was matched for the BKV genotype. Despite the conservation of epitopes, low-level variants in T-cell epitopes were detected in 77.7% (14/18) of patients. Understanding epitope variation across the whole genome provides insight into the virus-immune interface and may help guide the development of protocols for novel immunologic-based therapies. PMID:26202116

  17. Genetic variation and dopamine D2 receptor availability: a systematic review and meta-analysis of human in vivo molecular imaging studies.

    PubMed

    Gluskin, B S; Mickey, B J

    2016-03-01

    The D2 dopamine receptor mediates neuropsychiatric symptoms and is a target of pharmacotherapy. Inter-individual variation of D2 receptor density is thought to influence disease risk and pharmacological response. Numerous molecular imaging studies have tested whether common genetic variants influence D2 receptor binding potential (BP) in humans, but demonstration of robust effects has been limited by small sample sizes. We performed a systematic search of published human in vivo molecular imaging studies to estimate effect sizes of common genetic variants on striatal D2 receptor BP. We identified 21 studies examining 19 variants in 11 genes. The most commonly studied variant was a single-nucleotide polymorphism in ANKK1 (rs1800497, Glu713Lys, also called 'Taq1A'). Fixed- and random-effects meta-analyses of this variant (5 studies, 194 subjects total) revealed that striatal BP was significantly and robustly lower among carriers of the minor allele (Lys713) relative to major allele homozygotes. The weighted standardized mean difference was -0.57 under the fixed-effect model (95% confidence interval=(-0.87, -0.27), P=0.0002). The normal relationship between rs1800497 and BP was not apparent among subjects with neuropsychiatric diseases. Significant associations with baseline striatal D2 receptor BP have been reported for four DRD2 variants (rs1079597, rs1076560, rs6277 and rs1799732) and a PER2 repeat polymorphism, but none have yet been tested in more than two independent samples. Our findings resolve apparent discrepancies in the literature and establish that rs1800497 robustly influences striatal D2 receptor availability. This genetic variant is likely to contribute to important individual differences in human striatal function, neuropsychiatric disease risk and pharmacological response.

  18. A statistical method for the detection of variants from next-generation resequencing of DNA pools.

    PubMed

    Bansal, Vikas

    2010-06-15

    Next-generation sequencing technologies have enabled the sequencing of several human genomes in their entirety. However, the routine resequencing of complete genomes remains infeasible. The massive capacity of next-generation sequencers can be harnessed for sequencing specific genomic regions in hundreds to thousands of individuals. Sequencing-based association studies are currently limited by the low level of multiplexing offered by sequencing platforms. Pooled sequencing represents a cost-effective approach for studying rare variants in large populations. To utilize the power of DNA pooling, it is important to accurately identify sequence variants from pooled sequencing data. Detection of rare variants from pooled sequencing represents a different challenge than detection of variants from individual sequencing. We describe a novel statistical approach, CRISP [Comprehensive Read analysis for Identification of Single Nucleotide Polymorphisms (SNPs) from Pooled sequencing] that is able to identify both rare and common variants by using two approaches: (i) comparing the distribution of allele counts across multiple pools using contingency tables and (ii) evaluating the probability of observing multiple non-reference base calls due to sequencing errors alone. Information about the distribution of reads between the forward and reverse strands and the size of the pools is also incorporated within this framework to filter out false variants. Validation of CRISP on two separate pooled sequencing datasets generated using the Illumina Genome Analyzer demonstrates that it can detect 80-85% of SNPs identified using individual sequencing while achieving a low false discovery rate (3-5%). Comparison with previous methods for pooled SNP detection demonstrates the significantly lower false positive and false negative rates for CRISP. Implementation of this method is available at http://polymorphism.scripps.edu/~vbansal/software/CRISP/.

  19. High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic.

    PubMed

    Sealfon, Rachel; Gire, Stephen; Ellis, Crystal; Calderwood, Stephen; Qadri, Firdausi; Hensley, Lisa; Kellis, Manolis; Ryan, Edward T; LaRocque, Regina C; Harris, Jason B; Sabeti, Pardis C

    2012-09-11

    Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x); four of the seven isolates were previously sequenced. Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961), 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.

  20. Three novel GJB2 (connexin 26) variants associated with autosomal dominant syndromic and nonsyndromic hearing loss.

    PubMed

    DeMille, Desiree; Carlston, Colleen M; Tam, Oliver H; Palumbos, Janice C; Stalker, Heather J; Mao, Rong; Zori, Roberto T; Viskochil, David H; Park, Albert H; Carey, John C

    2018-04-01

    Connexin 26 (Cx26), encoded by the GJB2 gene, is a key protein involved in the formation of gap junctions in epithelial organs including the inner ear and palmoplantar epidermis. Pathogenic variants in GJB2 are responsible for approximately 50% of inherited sensorineural deafness. The majority of these variants are associated with autosomal recessive inheritance; however, rare reports of dominantly co-segregating variants have been published. Since we began offering GJB2 testing in 2003, only about 2% of detected GJB2 variants from our laboratory have been classified as dominant. Here we report three novel dominant GJB2 variants (p.Thr55Ala, p.Gln57_Pro58delinsHisSer, and p.Trp44Gly); two associated with syndromic sensorineural hearing loss and one with nonsyndromic hearing loss. In the kindred with the p.Thr55Ala variant, the proband and his father present with only leukonychia as a cutaneous finding of their syndromic hearing loss. This phenotype has been previously documented in conjunction with palmoplantar hyperkeratosis, but isolated leukonychia is a novel finding likely associated with the unique threonine to alanine change at codon 55 (other variants at this codon have been reported in cases of nonsyndromic hearing loss). This report contributes to the short list of GJB2 variants associated with autosomal dominant hearing loss, highlights the variability of skin and nail findings associated with such cases, and illustrates the occurrence of both syndromic and nonsyndromic presentations with changes in the same gene. © 2018 Wiley Periodicals, Inc.

  1. MSeqDR mvTool: A mitochondrial DNA Web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion.

    PubMed

    Shen, Lishuang; Attimonelli, Marcella; Bai, Renkui; Lott, Marie T; Wallace, Douglas C; Falk, Marni J; Gai, Xiaowu

    2018-06-01

    Accurate mitochondrial DNA (mtDNA) variant annotation is essential for the clinical diagnosis of diverse human diseases. Substantial challenges to this process include the inconsistency in mtDNA nomenclatures, the existence of multiple reference genomes, and a lack of reference population frequency data. Clinicians need a simple bioinformatics tool that is user-friendly, and bioinformaticians need a powerful informatics resource for programmatic usage. Here, we report the development and functionality of the MSeqDR mtDNA Variant Tool set (mvTool), a one-stop mtDNA variant annotation and analysis Web service. mvTool is built upon the MSeqDR infrastructure (https://mseqdr.org), with contributions of expert curated data from MITOMAP (https://www.mitomap.org) and HmtDB (https://www.hmtdb.uniba.it/hmdb). mvTool supports all mtDNA nomenclatures, converts variants to standard rCRS- and HGVS-based nomenclatures, and annotates novel mtDNA variants. Besides generic annotations from dbNSFP and Variant Effect Predictor (VEP), mvTool provides allele frequencies in more than 47,000 germline mitogenomes, and disease and pathogenicity classifications from MSeqDR, Mitomap, HmtDB and ClinVar (Landrum et al., 2013). mvTools also provides mtDNA somatic variants annotations. "mvTool API" is implemented for programmatic access using inputs in VCF, HGVS, or classical mtDNA variant nomenclatures. The results are reported as hyperlinked html tables, JSON, Excel, and VCF formats. MSeqDR mvTool is freely accessible at https://mseqdr.org/mvtool.php. © 2018 Wiley Periodicals, Inc.

  2. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger.

    PubMed

    Sauer, J; Christensen, T; Frandsen, T P; Mirgorodskaya, E; McGuire, K A; Driguez, H; Roepstorff, P; Sigurskjold, B W; Svensson, B

    2001-08-07

    Several variants of glucoamylase 1 (GA1) from Aspergillus niger were created in which the highly O-glycosylated peptide (aa 468--508) connecting the (alpha/alpha)(6)-barrel catalytic domain and the starch binding domain was substituted at the gene level by equivalent segments of glucoamylases from Hormoconis resinae, Humicola grisea, and Rhizopus oryzae encoding 5, 19, and 36 amino acid residues. Variants were constructed in which the H. resinae linker was elongated by proline-rich sequences as this linker itself apparently was too short to allow formation of the corresponding protein variant. Size and isoelectric point of GA1 variants reflected differences in linker length, posttranslational modification, and net charge. While calculated polypeptide chain molecular masses for wild-type GA1, a nonnatural proline-rich linker variant, H. grisea, and R. oryzae linker variants were 65,784, 63,777, 63,912, and 65,614 Da, respectively, MALDI-TOF-MS gave values of 82,042, 73,800, 73,413, and 90,793 Da, respectively, where the latter value could partly be explained by an N-glycosylation site introduced near the linker C-terminus. The k(cat) and K(m) for hydrolysis of maltooligodextrins and soluble starch, and the rate of hydrolysis of barley starch granules were essentially the same for the variants as for wild-type GA1. beta-Cyclodextrin, acarbose, and two heterobidentate inhibitors were found by isothermal titration calorimetry to bind to the catalytic and starch binding domains of the linker variants, indicating that the function of the active site and the starch binding site was maintained. The stability of GA1 linker variants toward GdnHCl and heat, however, was reduced compared to wild-type.

  3. On a model for the Navier-Stokes equations using magnetization variables

    NASA Astrophysics Data System (ADS)

    Pooley, Benjamin C.

    2018-04-01

    It is known that in a classical setting, the Navier-Stokes equations can be reformulated in terms of so-called magnetization variables w that satisfy Our main focus is the proof of global well-posedness in H 1 / 2 for a new variant of (1), where Pw is replaced by w in the second nonlinear term:

  4. Phase field simulations of autocatalytic formation of alpha lamellar colonies in Ti-6Al-4V

    DOE PAGES

    Radhakrishnan, Bala; Gorti, Sarma; Babu, Suresh Sudharsanam

    2016-09-13

    Here, we present phase field simulations incorporating energy contributions due to thermodynamics, and anisotropic interfacial and strain energies, to demonstrate the nucleation and growth of multiple variants of alpha from beta in Ti-6Al-4V under isothermal conditions. The simulations focused on the effect of thermodynamic driving force and nucleation rate on the morphology of the transformed alpha assuming that the partitioning of V between beta and alpha is negligible for short isothermal holds. The results indicate that a high nucleation rate favors the formation of the basket-weave structure. However, at a lower nucleation rate the simulations show the intragranular nucleation ofmore » a colony structure by an autocatalytic nucleation mechanism adjacent to a pre-existing alpha variant. New side-plates of the same variant appear to nucleate progressively and grow to form the colony. The isothermal simulation results are used to offer a possible explanation for the transition from a largely basket weave structure to a colony structure inside narrow layer bands occurring during continuous heating and cooling conditions encountered during laser additive manufacturing of Ti-6Al-4V.« less

  5. Detonation Synthesis of Alpha-Variant Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym

    2017-06-01

    A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.

  6. Rare variants in RTEL1 are associated with familial interstitial pneumonia.

    PubMed

    Cogan, Joy D; Kropski, Jonathan A; Zhao, Min; Mitchell, Daphne B; Rives, Lynette; Markin, Cheryl; Garnett, Errine T; Montgomery, Keri H; Mason, Wendi R; McKean, David F; Powers, Julia; Murphy, Elissa; Olson, Lana M; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R; Lancaster, Lisa H; Steele, Mark P; Brown, Kevin K; Schwarz, Marvin I; Fingerlin, Tasha E; Schwartz, David A; Lawson, William E; Loyd, James E; Zhao, Zhongming; Phillips, John A; Blackwell, Timothy S

    2015-03-15

    Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis.

  7. Human Apolipoprotein A-I Natural Variants: Molecular Mechanisms Underlying Amyloidogenic Propensity

    PubMed Central

    Ramella, Nahuel A.; Schinella, Guillermo R.; Ferreira, Sergio T.; Prieto, Eduardo D.; Vela, María E.; Ríos, José Luis

    2012-01-01

    Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15 single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg, associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe atherosclerosis. Results showed that both variants share common structural properties including decreased stability compared to Wt apoA-I and a more flexible structure that gives rise to formation of partially folded states. Interestingly, however, distinct features appear to determine their pathogenic mechanisms. ApoA-ILys107-0 has an increased propensity to aggregate at physiological pH and in a pro-inflammatory microenvironment than Wt apoA-I, whereas apoA-IGly26Arg elicited macrophage activation, thus stimulating local chronic inflammation. Our results strongly suggest that some natural mutations in apoA-I variants elicit protein tendency to aggregate, but in addition the specific interaction of different variants with macrophages may contribute to cellular stress and toxicity in hereditary amyloidosis. PMID:22952757

  8. Engineering an ATP-dependent D-Ala:D-Ala ligase for synthesizing amino acid amides from amino acids.

    PubMed

    Miki, Yuta; Okazaki, Seiji; Asano, Yasuhisa

    2017-05-01

    We successfully engineered a new enzyme that catalyzes the formation of D-Ala amide (D-AlaNH 2 ) from D-Ala by modifying ATP-dependent D-Ala:D-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of D-Ala-D-Ala from two molecules of D-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second D-Ala of D-Ala-D-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for D-AlaNH 2 production. The S293E variant, which was selected as the best enzyme for D-AlaNH 2 production, exhibited an optimal activity at pH 9.0 and 40 °C for D-AlaNH 2 production. The apparent K m values of this variant for D-Ala and NH 3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of D-AlaNH 2 from 10 and 50 mM D-Ala and 3 M NH 4 Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.

  9. Substrate Binding Protein DppA1 of ABC Transporter DppBCDF Increases Biofilm Formation in Pseudomonas aeruginosa by Inhibiting Pf5 Prophage Lysis

    PubMed Central

    Lee, Yunho; Song, Sooyeon; Sheng, Lili; Zhu, Lei; Kim, Jun-Seob; Wood, Thomas K.

    2018-01-01

    Filamentous phage impact biofilm development, stress tolerance, virulence, biofilm dispersal, and colony variants. Previously, we identified 137 Pseudomonas aeruginosa PA14 mutants with more than threefold enhanced and 88 mutants with more than 10-fold reduced biofilm formation by screening 5850 transposon mutants (PLoS Pathogens 5: e1000483, 2009). Here, we characterized the function of one of these 225 mutations, dppA1 (PA14_58350), in regard to biofilm formation. DppA1 is a substrate-binding protein (SBP) involved in peptide utilization via the DppBCDF ABC transporter system. We show that compared to the wild-type strain, inactivating dppA1 led to 68-fold less biofilm formation in a static model and abolished biofilm formation in flow cells. Moreover, the dppA1 mutant had a delay in swarming and produced 20-fold less small-colony variants, and both biofilm formation and swarming were complemented by producing DppA1. A whole-transcriptome analysis showed that only 10 bacteriophage Pf5 genes were significantly induced in the biofilm cells of the dppA1 mutant compared to the wild-type strain, and inactivation of dppA1 resulted in a 600-fold increase in Pf5 excision and a million-fold increase in phage production. As expected, inactivating Pf5 genes PA0720 and PA0723 increased biofilm formation substantially. Inactivation of DppA1 also reduced growth (due to cell lysis). Hence, DppA1 increases biofilm formation by repressing Pf5 prophage. PMID:29416528

  10. Analysis of Rare, Exonic Variation amongst Subjects with Autism Spectrum Disorders and Population Controls

    PubMed Central

    Liu, Li; Sabo, Aniko; Neale, Benjamin M.; Nagaswamy, Uma; Stevens, Christine; Lim, Elaine; Bodea, Corneliu A.; Muzny, Donna; Reid, Jeffrey G.; Banks, Eric; Coon, Hillary; DePristo, Mark; Dinh, Huyen; Fennel, Tim; Flannick, Jason; Gabriel, Stacey; Garimella, Kiran; Gross, Shannon; Hawes, Alicia; Lewis, Lora; Makarov, Vladimir; Maguire, Jared; Newsham, Irene; Poplin, Ryan; Ripke, Stephan; Shakir, Khalid; Samocha, Kaitlin E.; Wu, Yuanqing; Boerwinkle, Eric; Buxbaum, Joseph D.; Cook, Edwin H.; Devlin, Bernie; Schellenberg, Gerard D.; Sutcliffe, James S.; Daly, Mark J.; Gibbs, Richard A.; Roeder, Kathryn

    2013-01-01

    We report on results from whole-exome sequencing (WES) of 1,039 subjects diagnosed with autism spectrum disorders (ASD) and 870 controls selected from the NIMH repository to be of similar ancestry to cases. The WES data came from two centers using different methods to produce sequence and to call variants from it. Therefore, an initial goal was to ensure the distribution of rare variation was similar for data from different centers. This proved straightforward by filtering called variants by fraction of missing data, read depth, and balance of alternative to reference reads. Results were evaluated using seven samples sequenced at both centers and by results from the association study. Next we addressed how the data and/or results from the centers should be combined. Gene-based analyses of association was an obvious choice, but should statistics for association be combined across centers (meta-analysis) or should data be combined and then analyzed (mega-analysis)? Because of the nature of many gene-based tests, we showed by theory and simulations that mega-analysis has better power than meta-analysis. Finally, before analyzing the data for association, we explored the impact of population structure on rare variant analysis in these data. Like other recent studies, we found evidence that population structure can confound case-control studies by the clustering of rare variants in ancestry space; yet, unlike some recent studies, for these data we found that principal component-based analyses were sufficient to control for ancestry and produce test statistics with appropriate distributions. After using a variety of gene-based tests and both meta- and mega-analysis, we found no new risk genes for ASD in this sample. Our results suggest that standard gene-based tests will require much larger samples of cases and controls before being effective for gene discovery, even for a disorder like ASD. PMID:23593035

  11. Detection of influenza antigenic variants directly from clinical samples using polyclonal antibody based proximity ligation assays

    PubMed Central

    Martin, Brigitte E.; Jia, Kun; Sun, Hailiang; Ye, Jianqiang; Hall, Crystal; Ware, Daphne; Wan, Xiu-Feng

    2016-01-01

    Identification of antigenic variants is the key to a successful influenza vaccination program. The empirical serological methods to determine influenza antigenic properties require viral propagation. Here a novel quantitative PCR-based antigenic characterization method using polyclonal antibody and proximity ligation assays, or so-called polyPLA, was developed and validated. This method can detect a viral titer that is less than 1000 TCID50/mL. Not only can this method differentiate between different HA subtypes of influenza viruses but also effectively identify antigenic drift events within the same HA subtype of influenza viruses. Applications in H3N2 seasonal influenza data showed that the results from this novel method are consistent with those from the conventional serological assays. This method is not limited to the detection of antigenic variants in influenza but also other pathogens. It has the potential to be applied through a large-scale platform in disease surveillance requiring minimal biosafety and directly using clinical samples. PMID:25546251

  12. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain

    PubMed Central

    Deverman, Benjamin E.; Pravdo, Piers L.; Simpson, Bryan P.; Kumar, Sripriya Ravindra; Chan, Ken Y.; Banerjee, Abhik; Wu, Wei-Li; Yang, Bin; Huber, Nina; Pasca, Sergiu P.; Gradinaru, Viviana

    2015-01-01

    Recombinant adeno-associated viruses (rAAVs) are commonly used vehicles for in vivo gene transfer1-6. However, the tropism repertoire of naturally occurring AAVs is limited, prompting a search for novel AAV capsids with desired characteristics7-13. Here we describe a capsid selection method, called Cre-recombination-based AAV targeted evolution (CREATE), that enables the development of AAV capsids that more efficiently transduce defined Cre-expressing cell populations in vivo. We use CREATE to generate AAV variants that efficiently and widely transduce the adult mouse central nervous system (CNS) after intravenous injection. One variant, AAV-PHP.B, transfers genes throughout the CNS with an efficiency that is at least 40-fold greater than that of the current standard, AAV914-17, and transduces the majority of astrocytes and neurons across multiple CNS regions. In vitro, it transduces human neurons and astrocytes more efficiently than does AAV9, demonstrating the potential of CREATE to produce customized AAV vectors for biomedical applications. PMID:26829320

  13. Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls

    PubMed Central

    Miller, Allison J.; Matasci, Naim; Schwaninger, Heidi; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Simon, Charles; Buckler, Edward S.; Myles, Sean

    2013-01-01

    Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general implications for addressing ascertainment bias in array-enabled phylogeny reconstruction. PMID:24236035

  14. Structure-based design of combinatorial mutagenesis libraries

    PubMed Central

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-01-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called “Structure-based Optimization of Combinatorial Mutagenesis” (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. PMID:25611189

  15. Structure-based design of combinatorial mutagenesis libraries.

    PubMed

    Verma, Deeptak; Grigoryan, Gevorg; Bailey-Kellogg, Chris

    2015-05-01

    The development of protein variants with improved properties (thermostability, binding affinity, catalytic activity, etc.) has greatly benefited from the application of high-throughput screens evaluating large, diverse combinatorial libraries. At the same time, since only a very limited portion of sequence space can be experimentally constructed and tested, an attractive possibility is to use computational protein design to focus libraries on a productive portion of the space. We present a general-purpose method, called "Structure-based Optimization of Combinatorial Mutagenesis" (SOCoM), which can optimize arbitrarily large combinatorial mutagenesis libraries directly based on structural energies of their constituents. SOCoM chooses both positions and substitutions, employing a combinatorial optimization framework based on library-averaged energy potentials in order to avoid explicitly modeling every variant in every possible library. In case study applications to green fluorescent protein, β-lactamase, and lipase A, SOCoM optimizes relatively small, focused libraries whose variants achieve energies comparable to or better than previous library design efforts, as well as larger libraries (previously not designable by structure-based methods) whose variants cover greater diversity while still maintaining substantially better energies than would be achieved by representative random library approaches. By allowing the creation of large-scale combinatorial libraries based on structural calculations, SOCoM promises to increase the scope of applicability of computational protein design and improve the hit rate of discovering beneficial variants. While designs presented here focus on variant stability (predicted by total energy), SOCoM can readily incorporate other structure-based assessments, such as the energy gap between alternative conformational or bound states. © 2015 The Protein Society.

  16. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants.

    PubMed

    Pierce, Brandon L; Ahsan, Habibul; Vanderweele, Tyler J

    2011-06-01

    Mendelian Randomization (MR) studies assess the causality of an exposure-disease association using genetic determinants [i.e. instrumental variables (IVs)] of the exposure. Power and IV strength requirements for MR studies using multiple genetic variants have not been explored. We simulated cohort data sets consisting of a normally distributed disease trait, a normally distributed exposure, which affects this trait and a biallelic genetic variant that affects the exposure. We estimated power to detect an effect of exposure on disease for varying allele frequencies, effect sizes and samples sizes (using two-stage least squares regression on 10,000 data sets-Stage 1 is a regression of exposure on the variant. Stage 2 is a regression of disease on the fitted exposure). Similar analyses were conducted using multiple genetic variants (5, 10, 20) as independent or combined IVs. We assessed IV strength using the first-stage F statistic. Simulations of realistic scenarios indicate that MR studies will require large (n > 1000), often very large (n > 10,000), sample sizes. In many cases, so-called 'weak IV' problems arise when using multiple variants as independent IVs (even with as few as five), resulting in biased effect estimates. Combining genetic factors into fewer IVs results in modest power decreases, but alleviates weak IV problems. Ideal methods for combining genetic factors depend upon knowledge of the genetic architecture underlying the exposure. The feasibility of well-powered, unbiased MR studies will depend upon the amount of variance in the exposure that can be explained by known genetic factors and the 'strength' of the IV set derived from these genetic factors.

  17. Heteropolymerization of S, I, and Z α1-antitrypsin and liver cirrhosis

    PubMed Central

    Mahadeva, Ravi; Chang, Wun-Shaing W.; Dafforn, Timothy R.; Oakley, Diana J.; Foreman, Richard C.; Calvin, Jacqueline; Wight, Derek G.D.; Lomas, David A.

    1999-01-01

    The association between Z α1-antitrypsin deficiency and juvenile cirrhosis is well-recognized, and there is now convincing evidence that the hepatic inclusions are the result of entangled polymers of mutant Z α1-antitrypsin. Four percent of the northern European Caucasian population are heterozygotes for the Z variant, but even more common is S α1-antitrypsin, which is found in up to 28% of southern Europeans. The S variant is known to have an increased susceptibility to polymerization, although this is marginal compared with the more conformationally unstable Z variant. There has been speculation that the two may interact to produce cirrhosis, but this has never been demonstrated experimentally. This hypothesis was raised again by the observation reported here of a mixed heterozygote for Z α1-antitrypsin and another conformationally unstable variant (I α1-antitrypsin; 39Arg→Cys) identified in a 34-year-old man with cirrhosis related to α1-antitrypsin deficiency. The conformational stability of the I variant has been characterized, and we have used fluorescence resonance energy transfer to demonstrate the formation of heteropolymers between S and Z α1-antitrypsin. Taken together, these results indicate that not only may mixed variants form heteropolymers, but that this can causally lead to the development of cirrhosis. PMID:10194472

  18. Neuroligin 2 nonsense variant associated with anxiety, autism, intellectual disability, hyperphagia, and obesity.

    PubMed

    Parente, Daniel J; Garriga, Caryn; Baskin, Berivan; Douglas, Ganka; Cho, Megan T; Araujo, Gabriel C; Shinawi, Marwan

    2017-01-01

    Neuroligins are post-synaptic, cellular adhesion molecules implicated in synaptic formation and function. NLGN2 is strongly linked to inhibitory, GABAergic signaling and is crucial for maintaining the excitation-inhibition balance in the brain. Disruption of the excitation-inhibition balance is associated with neuropsychiatric disease. In animal models, altered NLGN2 expression causes anxiety, developmental delay, motor discoordination, social impairment, aggression, and sensory processing defects. In humans, mutations in NLGN3 and NLGN4 are linked to autism and schizophrenia; NLGN2 missense variants are implicated in schizophrenia. Copy number variants encompassing NLGN2 on 17p13.1 are associated with autism, intellectual disability, metabolic syndrome, diabetes, and dysmorphic features, but an isolated NLGN2 nonsense variant has not yet been described in humans. Here, we describe a 15-year-old male with severe anxiety, obsessive-compulsive behaviors, developmental delay, autism, obesity, macrocephaly, and some dysmorphic features. Exome sequencing identified a heterozygous, de novo, c.441C>A p.(Tyr147Ter) variant in NLGN2 that is predicted to cause loss of normal protein function. This is the first report of an NLGN2 nonsense variant in humans, adding to the accumulating evidence that links synaptic proteins with a spectrum of neurodevelopmental phenotypes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Functional Analysis of Somatic Mutations in Lung Cancer

    DTIC Science & Technology

    2015-10-01

    antibody cetuximab [11]. Finally, we have developed novel single cell sequencing approaches to uncover EGFR mutational variants in glioblastoma and their...assessed which mutations are epistatic to EGFR or capable of initiating xenograft tumor formation in vivo. Using eVIP, we identified 69% of mutations...analyzed as impactful whereas 31% appear functionally neutral. A subset of the impactful mutations induce xenograft tumor formation in mice and/or

  20. Rural School as a Resource for the Intellectual and Labour Potential Formation of the Rural Society

    ERIC Educational Resources Information Center

    Nasibullov, Ramis R.; Korshunova, Olga V.; Arshabekov, Nurgali R.

    2016-01-01

    The relevance of the research problem is reasoned by the need to create conceptual grounds of life organization variants in the rural school as a resource of intellectual and labor potential formation of rural society taking into account the socio-economic realities of Russia's development in the beginning of the twenty-first century, as well as…

  1. A rationally designed six-residue swap generates comparability in the aggregation behavior of α-synuclein and β-synuclein.

    PubMed

    Roodveldt, Cintia; Andersson, August; De Genst, Erwin J; Labrador-Garrido, Adahir; Buell, Alexander K; Dobson, Christopher M; Tartaglia, Gian Gaetano; Vendruscolo, Michele

    2012-11-06

    The aggregation process of α-synuclein, a protein closely associated with Parkinson's disease, is highly sensitive to sequence variations. It is therefore of great importance to understand the factors that define the aggregation propensity of specific mutational variants as well as their toxic behavior in the cellular environment. In this context, we investigated the extent to which the aggregation behavior of α-synuclein can be altered to resemble that of β-synuclein, an aggregation-resistant homologue of α-synuclein not associated with disease, by swapping residues between the two proteins. Because of the vast number of possible swaps, we have applied a rational design procedure to single out a mutational variant, called α2β, in which two short stretches of the sequence in the NAC region have been replaced in α-synuclein from β-synuclein. We find not only that the aggregation rate of α2β is close to that of β-synuclein, being much lower than that of α-synuclein, but also that α2β effectively changes the cellular toxicity of α-synuclein to a value similar to that of β-synuclein upon exposure of SH-SY5Y cells to preformed oligomers. Remarkably, control experiments on the corresponding mutational variant of β-synuclein, called β2α, confirmed that the mutations that we have identified also shift the aggregation behavior of this protein toward that of α-synuclein. These results demonstrate that it is becoming possible to control in quantitative detail the sequence code that defines the aggregation behavior and toxicity of α-synuclein.

  2. PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions

    PubMed Central

    Brezovský, Jan

    2016-01-01

    An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools’ predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations. To enable comprehensive evaluation of variants, the predictions are complemented with annotations from eight databases. The web server is freely available to the community at http://loschmidt.chemi.muni.cz/predictsnp2. PMID:27224906

  3. PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions.

    PubMed

    Bendl, Jaroslav; Musil, Miloš; Štourač, Jan; Zendulka, Jaroslav; Damborský, Jiří; Brezovský, Jan

    2016-05-01

    An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools' predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations. To enable comprehensive evaluation of variants, the predictions are complemented with annotations from eight databases. The web server is freely available to the community at http://loschmidt.chemi.muni.cz/predictsnp2.

  4. Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation.

    PubMed

    Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael

    2014-12-22

    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Variant terminology. [for aerospace information systems

    NASA Technical Reports Server (NTRS)

    Buchan, Ronald L.

    1991-01-01

    A system called Variant Terminology Switching (VTS) is set forth that is intended to provide computer-assisted spellings for terms that have American and British versions. VTS is based on the use of brackets, parentheses, and other symbols in conjunction with letters that distinguish American and British spellings. The symbols are used in the systems as indicators of actions such as deleting, adding, and replacing letters as well as replacing entire words and concepts. The system is shown to be useful for the intended purpose and also for the recognition of misspellings and for the standardization of computerized input/output. The VTS system is of interest to the development of international retrieval systems for aerospace and other technical databases that enhance the use by the global scientific community.

  6. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    PubMed

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mutations in the BAF-Complex Subunit DPF2 Are Associated with Coffin-Siris Syndrome.

    PubMed

    Vasileiou, Georgia; Vergarajauregui, Silvia; Endele, Sabine; Popp, Bernt; Büttner, Christian; Ekici, Arif B; Gerard, Marion; Bramswig, Nuria C; Albrecht, Beate; Clayton-Smith, Jill; Morton, Jenny; Tomkins, Susan; Low, Karen; Weber, Astrid; Wenzel, Maren; Altmüller, Janine; Li, Yun; Wollnik, Bernd; Hoganson, George; Plona, Maria-Renée; Cho, Megan T; Thiel, Christian T; Lüdecke, Hermann-Josef; Strom, Tim M; Calpena, Eduardo; Wilkie, Andrew O M; Wieczorek, Dagmar; Engel, Felix B; Reis, André

    2018-03-01

    Variants affecting the function of different subunits of the BAF chromatin-remodelling complex lead to various neurodevelopmental syndromes, including Coffin-Siris syndrome. Furthermore, variants in proteins containing PHD fingers, motifs recognizing specific histone tail modifications, have been associated with several neurological and developmental-delay disorders. Here, we report eight heterozygous de novo variants (one frameshift, two splice site, and five missense) in the gene encoding the BAF complex subunit double plant homeodomain finger 2 (DPF2). Affected individuals share common clinical features described in individuals with Coffin-Siris syndrome, including coarse facial features, global developmental delay, intellectual disability, speech impairment, and hypoplasia of fingernails and toenails. All variants occur within the highly conserved PHD1 and PHD2 motifs. Moreover, missense variants are situated close to zinc binding sites and are predicted to disrupt these sites. Pull-down assays of recombinant proteins and histone peptides revealed that a subset of the identified missense variants abolish or impaire DPF2 binding to unmodified and modified H3 histone tails. These results suggest an impairment of PHD finger structural integrity and cohesion and most likely an aberrant recognition of histone modifications. Furthermore, the overexpression of these variants in HEK293 and COS7 cell lines was associated with the formation of nuclear aggregates and the recruitment of both wild-type DPF2 and BRG1 to these aggregates. Expression analysis of truncating variants found in the affected individuals indicated that the aberrant transcripts escape nonsense-mediated decay. Altogether, we provide compelling evidence that de novo variants in DPF2 cause Coffin-Siris syndrome and propose a dominant-negative mechanism of pathogenicity. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. [Periorbital edema as the initial symptom of lupus erythematosus profundus. Case report and discussion of the literature].

    PubMed

    Franke, W; Kuhn, A; Megahed, M; Krutmann, J; Ruzicka, T; Lehmann, P

    1999-12-01

    Periorbital edema may occur initially or in the course of a wide variety of diseases. One of these diseases is lupus panniculitis, a variant of lupus erythematosus, characterized by firm subcutaneous nodules that may ulcerate with subsequent scar formation. We present a case of lupus panniculitis in which the periorbital edema was the initial manifestation. Knowledge about the differential diagnostic possibilities of periorbital edema as well as the different variants of cutaneous lupus erythematosus is important to reach the correct diagnosis.

  9. Towards universal potentials for (H2)2 and isotopic variants: post-Born-Oppenheimer contributions.

    PubMed

    Diniz, Leonardo G; Mohallem, José R

    2008-06-07

    Adiabatic corrections are evaluated for the interaction of two hydrogen molecules (H(2))(2) and isotopic variants. Their contribution to the cluster formation amount up to 10% of the interaction energy. Added to the best ab initio Born-Oppenheimer isotropic potential, they correct especially its short range repulsive part. Calculations of second virial coefficients are improved in general, with an impressive agreement with experiments for gaseous D(2) in a large range of temperatures. The potentials are available in both analytical and numerical forms.

  10. Role of H1 Linker Histones in Mammalian Development and Stem Cell Differentiation

    PubMed Central

    Pan, Chenyi; Fan, Yuhong

    2016-01-01

    H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome. PMID:26689747

  11. Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability.

    PubMed

    Ansar, Muhammad; Jan, Abid; Santos-Cortez, Regie Lyn P; Wang, Xin; Suliman, Muhammad; Acharya, Anushree; Habib, Rabia; Abbe, Izoduwa; Ali, Ghazanfar; Lee, Kwanghyuk; Smith, Joshua D; Nickerson, Deborah A; Shendure, Jay; Bamshad, Michael J; Ahmad, Wasim; Leal, Suzanne M

    2016-08-01

    Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the β-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia.

  12. Isopach and structure contour maps of the Burro Canyon(?) Formation in the Chama-El Vado Area, Chama Basin, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1983-01-01

    In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation. 

  13. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature

    DOE PAGES

    Yu, Qin; Jiang, Yanyao; Wang, Jian

    2015-04-07

    Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of T iC jT j type. T iC i+1T i+1 (or T iC i–1T i–1) variants are observed more frequently than T iC i+2T i+2 (or T iC i–2T i–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.

  14. Correspondence Effects for Objects with Opposing Left and Right Protrusions

    ERIC Educational Resources Information Center

    Cho, Dongbin; Proctor, Robert W.

    2011-01-01

    Choice reactions to a property of an object stimulus are often faster when the location of a graspable part of the object corresponds with the location of a keypress response than when it does not, a phenomenon called the object-based Simon effect. Experiments 1-3 examined this effect for variants of teapot stimuli that were oriented to the left…

  15. The Emergence of the Allophonic Perception of Unfamiliar Speech Sounds: The Effects of Contextual Distribution and Phonetic Naturalness

    ERIC Educational Resources Information Center

    Noguchi, Masaki; Hudson Kam, Carla L.

    2018-01-01

    In human languages, different speech sounds can be contextual variants of a single phoneme, called allophones. Learning which sounds are allophones is an integral part of the acquisition of phonemes. Whether given sounds are separate phonemes or allophones in a listener's language affects speech perception. Listeners tend to be less sensitive to…

  16. 77 FR 24367 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A300 B4-2C, B4-103, and B4-203 airplanes; Model A300 B4- 600, B4-600R, and F4-600R series airplanes, and Model C4-605R Variant F airplanes (collectively called A300-600 series airplanes); and Model...

  17. Problem-Based Learning across the Curriculum: Exploring the Efficacy of a Cross-Curricular Application of Preparation for Future Learning

    ERIC Educational Resources Information Center

    Swan, Karen; Vahey, Philip; van 't Hooft, Mark; Kratcoski, Annette; Rafanan, Ken; Stanford, Tina; Yarnall, Louise; Cook, Dale

    2013-01-01

    The research reported in this paper explores the applicability and efficacy of a variant of problem-based learning, the Preparation for Future Learning (PFL) approach, to teaching and learning within the context of a cross-curricular, middle school data literacy unit called "Thinking with Data" (TWD). A quasi-experimental design was used…

  18. Structure-function analyses unravel distinct effects of allosteric inhibitors of HIV-1 integrase on viral maturation and integration.

    PubMed

    Bonnard, Damien; Le Rouzic, Erwann; Eiler, Sylvia; Amadori, Céline; Orlov, Igor; Bruneau, Jean-Michel; Brias, Julie; Barbion, Julien; Chevreuil, Francis; Spehner, Danièle; Chasset, Sophie; Ledoussal, Benoit; Moreau, François; Saïb, Ali; Klaholz, Bruno P; Emiliani, Stéphane; Ruff, Marc; Zamborlini, Alessia; Benarous, Richard

    2018-04-20

    Recently, a new class of HIV-1 integrase (IN) inhibitors with a dual mode of action, called IN-LEDGF/p75 allosteric inhibitors (INLAIs), was described. Designed to interfere with the IN-LEDGF/p75 interaction during viral integration, unexpectedly, their major impact was on virus maturation. This activity has been linked to induction of aberrant IN multimerization, whereas inhibition of the IN-LEDGF/p75 interaction accounts for weaker antiretroviral effect at integration. Because these dual activities result from INLAI binding to IN at a single binding site, we expected that these activities co-evolved together, driven by the affinity for IN. Using an original INLAI, MUT-A, and its activity on an Ala-125 (A125) IN variant, we found that these two activities on A125-IN can be fully dissociated: MUT-A-induced IN multimerization and the formation of eccentric condensates in viral particles, which are responsible for inhibition of virus maturation, were lost, whereas inhibition of the IN-LEDGF/p75 interaction and consequently integration was fully retained. Hence, the mere binding of INLAI to A125 IN is insufficient to promote the conformational changes of IN required for aberrant multimerization. By analyzing the X-ray structures of MUT-A bound to the IN catalytic core domain (CCD) with or without the Ala-125 polymorphism, we discovered that the loss of IN multimerization is due to stabilization of the A125-IN variant CCD dimer, highlighting the importance of the CCD dimerization energy for IN multimerization. Our study reveals that affinity for the LEDGF/p75-binding pocket is not sufficient to induce INLAI-dependent IN multimerization and the associated inhibition of viral maturation. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A role for catalase-peroxidase large loop 2 revealed by deletion mutagenesis: control of active site water and ferric enzyme reactivity.

    PubMed

    Kudalkar, Shalley N; Njuma, Olive J; Li, Yongjiang; Muldowney, Michelle; Fuanta, N Rene; Goodwin, Douglas C

    2015-03-03

    Catalase-peroxidases (KatGs), the only catalase-active members of their superfamily, all possess a 35-residue interhelical loop called large loop 2 (LL2). It is essential for catalase activity, but little is known about its contribution to KatG function. LL2 shows weak sequence conservation; however, its length is nearly identical across KatGs, and its apex invariably makes contact with the KatG-unique C-terminal domain. We used site-directed and deletion mutagenesis to interrogate the role of LL2 and its interaction with the C-terminal domain in KatG structure and catalysis. Single and double substitutions of the LL2 apex had little impact on the active site heme [by magnetic circular dichroism or electron paramagnetic resonance (EPR)] and activity (catalase or peroxidase). Conversely, deletion of a single amino acid from the LL2 apex reduced catalase activity by 80%. Deletion of two or more apex amino acids or all of LL2 diminished catalase activity by 300-fold. Peroxide-dependent but not electron donor-dependent kcat/KM values for deletion variant peroxidase activity were reduced 20-200-fold, and kon for cyanide binding diminished by 3 orders of magnitude. EPR spectra for deletion variants were all consistent with an increase in the level of pentacoordinate high-spin heme at the expense of hexacoordinate high-spin states. Together, these data suggest a shift in the distribution of active site waters, altering the reactivity of the ferric state, toward, among other things, compound I formation. These results identify the importance of LL2 length conservation for maintaining an intersubunit interaction that is essential for an active site water distribution that facilitates KatG catalytic activity.

  20. Effect of Inactivating Mutations on Peptide Conformational Ensembles: The Plant Polypeptide Hormone Systemin.

    PubMed

    Chowdhury, Saikat Dutta; Sarkar, Aditya K; Lahiri, Ansuman

    2016-07-25

    As part of their basal immune mechanism against insect/herbivore attacks, plants have evolved systemic response mechanisms. Such a systemic wound response in tomato was found to involve an 18 amino acid polypeptide called systemin, the first polypeptide hormone to be discovered in plants. Systematic alanine scanning and deletion studies showed differential modulation in its activity, particularly a major loss of function due to alanine substitution at positions 13 and 17 and less extentive loss of function due to substitution at position 12. We have studied the conformational ensembles of wild-type systemin along with its 17 variants by carrying out a total of 5.76 μs of replica-exchange molecular dynamics simulation in an implicit solvent environment. In our simulations, wild-type systemin showed a lack of α-helical and β-sheet structures, in conformity with earlier circular dichroism and NMR data. On the other hand, two regions containing diproline segments showed a tendency to adopt polyproline II structures. Examination of conformational ensembles of the 17 variants revealed a change in the population distributions, suggesting a less flexible structure for alanine substitutions at positions 12 and 13 but not for position 17. Combined with the experimental observations that positions 1-14 of systemin are important for the formation of the peptide-receptor complex, this leads to the hypothesis that loss of conformational flexibility may play a role in the loss of activity of systemin due to the P12A and P13A substitutions, while T17A deactivation probably occurs for a different reason, most likely the loss of the threonine phosphorylation site. We also indicate possible structural reasons why the substitution of the prolines at positions 12 and 13 leads to a loss of conformational freedom in the peptide.

  1. VARiD: a variation detection framework for color-space and letter-space platforms.

    PubMed

    Dalca, Adrian V; Rumble, Stephen M; Levy, Samuel; Brudno, Michael

    2010-06-15

    High-throughput sequencing (HTS) technologies are transforming the study of genomic variation. The various HTS technologies have different sequencing biases and error rates, and while most HTS technologies sequence the residues of the genome directly, generating base calls for each position, the Applied Biosystem's SOLiD platform generates dibase-coded (color space) sequences. While combining data from the various platforms should increase the accuracy of variation detection, to date there are only a few tools that can identify variants from color space data, and none that can analyze color space and regular (letter space) data together. We present VARiD--a probabilistic method for variation detection from both letter- and color-space reads simultaneously. VARiD is based on a hidden Markov model and uses the forward-backward algorithm to accurately identify heterozygous, homozygous and tri-allelic SNPs, as well as micro-indels. Our analysis shows that VARiD performs better than the AB SOLiD toolset at detecting variants from color-space data alone, and improves the calls dramatically when letter- and color-space reads are combined. The toolset is freely available at http://compbio.cs.utoronto.ca/varid.

  2. Robustness of Massively Parallel Sequencing Platforms

    PubMed Central

    Kavak, Pınar; Yüksel, Bayram; Aksu, Soner; Kulekci, M. Oguzhan; Güngör, Tunga; Hach, Faraz; Şahinalp, S. Cenk; Alkan, Can; Sağıroğlu, Mahmut Şamil

    2015-01-01

    The improvements in high throughput sequencing technologies (HTS) made clinical sequencing projects such as ClinSeq and Genomics England feasible. Although there are significant improvements in accuracy and reproducibility of HTS based analyses, the usability of these types of data for diagnostic and prognostic applications necessitates a near perfect data generation. To assess the usability of a widely used HTS platform for accurate and reproducible clinical applications in terms of robustness, we generated whole genome shotgun (WGS) sequence data from the genomes of two human individuals in two different genome sequencing centers. After analyzing the data to characterize SNPs and indels using the same tools (BWA, SAMtools, and GATK), we observed significant number of discrepancies in the call sets. As expected, the most of the disagreements between the call sets were found within genomic regions containing common repeats and segmental duplications, albeit only a small fraction of the discordant variants were within the exons and other functionally relevant regions such as promoters. We conclude that although HTS platforms are sufficiently powerful for providing data for first-pass clinical tests, the variant predictions still need to be confirmed using orthogonal methods before using in clinical applications. PMID:26382624

  3. Systemic lupus erythematosus in a patient with Noonan syndrome-like disorder with loose anagen hair 1: More than a chance association.

    PubMed

    Uehara, Tomoko; Hosogaya, Naoki; Matsuo, Nobutake; Kosaki, Kenjiro

    2018-05-07

    Systemic lupus erythematosus (SLE) has been reported among patients with RASopathy. Five patients have been reported: three with SHOC2 variants, one with a PTPN11 variant, and one with a KRAS variant. SHOC2 variant might represent a relatively common predisposing factor for SLE among the RASopathy genes. However, the clinical details were only reported for two patients, while information on the remaining patient appeared only in a tabular format with minimal clinical description. Here, we report a patient with a SHOC2 variant and SLE. The proband was a 28-year-old male patient with intellectual disabilities, a short stature, dysmorphic facial features, and thin hair. He developed hypertrophic cardiomyopathy and afebrile generalized seizures at the ages of 7 and 18 years, respectively. At the age of 24 years, he presented with a 3-day history of intermittent fever accompanied by right chest pain and a malar butterfly rash. He fulfilled both the American College of Rheumatology (ACR) criteria and the Systemic Lupus International Collaborating Clinics (SLICC) criteria for SLE and was successfully treated with prednisolone. Medical exome sequencing identified a de novo SHOC2 variant (c.4A > G, p.S2G). The present report of a second patient who fulfills both the ACR criteria and the SLICC criteria of SLE. We suggest that the association between SHOC2 variant and SLE represents more than a chance association. In the event of fever of unknown origin in patients with constitutional SHOC2 pathogenic variant, SLE should be suspected. © 2018 Wiley Periodicals, Inc.

  4. Diverse Functional Properties of Wilson Disease ATP7B Variants

    PubMed Central

    Huster, Dominik; Kühne, Angelika; Bhattacharjee, Ashima; Raines, Lily; Jantsch, Vanessa; Noe, Johannes; Schirrmeister, Wiebke; Sommerer, Ines; Sabri, Osama; Berr, Frieder; Mössner, Joachim; Stieger, Bruno; Caca, Karel; Lutsenko, Svetlana

    2012-01-01

    BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper (64Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein’s transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype–phenotype correlation and mechanisms of disease pathogenesis. PMID:22240481

  5. Fragmentation Data Analysis. I. Computer Program for Mass and Number Distributions and Effects of Errors on Mass Distributions

    DTIC Science & Technology

    1974-11-01

    PR(20)aPO(20)#NNC20)aNCC2S)DFOW(28)a 3FOM(90)*SOM(2@)iSOW(20) CALL IFILECI&SIIFRAGS) CALL OFILE(2a5HMENTS) I FORMAT(2A5) 2 FORMAT( F6 *0) 3 FORMAT...Department of National Defence (2 copies) The Director, Defence Scientific Information & Documentation Centre, India Director, Defence Research (entre, Ministry of Derence, Malaysia i; 4 * 4

  6. [On the text of Ihon Yamai-no-Soshi].

    PubMed

    Hayashi, Yoshiro

    2002-03-01

    There are about fifteen variant texts of Yamai-no-Soshi (Ihon Yamai-no-Soshi), which is considered to have been originally compiled in the late Heian period (latter half of the twelfth century). However, few discussions have ever addressed the work's bibliography, formation or text in detail. In this study, the formation and text critique of Ihon Yamai-no-Soshi are considered. It is found that the variant texts can be divided into two categories, short and long, the former describing mainly the ten-kyo cases typical of ancient Japan before the Kamakura period, and the latter including the atypical and vulgar cases of the Edo period which were added later. For part of the texts, the corresponding source texts were found through the bibliographic research. This study highlights the value of Ihon Yamai-no-Soshi as a reference text for the historical study of psychiatry.

  7. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease.

    PubMed

    Kelsen, Judith R; Dawany, Noor; Moran, Christopher J; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F; Daly, Mark; Sullivan, Kathleen E; Baldassano, Robert N; Devoto, Marcella

    2015-11-01

    Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the identification of previously unidentified IBD-associated variants. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array.

    PubMed

    Unterseer, Sandra; Bauer, Eva; Haberer, Georg; Seidel, Michael; Knaak, Carsten; Ouzunova, Milena; Meitinger, Thomas; Strom, Tim M; Fries, Ruedi; Pausch, Hubert; Bertani, Christofer; Davassi, Alessandro; Mayer, Klaus Fx; Schön, Chris-Carolin

    2014-09-29

    High density genotyping data are indispensable for genomic analyses of complex traits in animal and crop species. Maize is one of the most important crop plants worldwide, however a high density SNP genotyping array for analysis of its large and highly dynamic genome was not available so far. We developed a high density maize SNP array composed of 616,201 variants (SNPs and small indels). Initially, 57 M variants were discovered by sequencing 30 representative temperate maize lines and then stringently filtered for sequence quality scores and predicted conversion performance on the array resulting in the selection of 1.2 M polymorphic variants assayed on two screening arrays. To identify high-confidence variants, 285 DNA samples from a broad genetic diversity panel of worldwide maize lines including the samples used for sequencing, important founder lines for European maize breeding, hybrids, and proprietary samples with European, US, semi-tropical, and tropical origin were used for experimental validation. We selected 616 k variants according to their performance during validation, support of genotype calls through sequencing data, and physical distribution for further analysis and for the design of the commercially available Affymetrix® Axiom® Maize Genotyping Array. This array is composed of 609,442 SNPs and 6,759 indels. Among these are 116,224 variants in coding regions and 45,655 SNPs of the Illumina® MaizeSNP50 BeadChip for study comparison. In a subset of 45,974 variants, apart from the target SNP additional off-target variants are detected, which show only a minor bias towards intermediate allele frequencies. We performed principal coordinate and admixture analyses to determine the ability of the array to detect and resolve population structure and investigated the extent of LD within a worldwide validation panel. The high density Affymetrix® Axiom® Maize Genotyping Array is optimized for European and American temperate maize and was developed based on a diverse sample panel by applying stringent quality filter criteria to ensure its suitability for a broad range of applications. With 600 k variants it is the largest currently publically available genotyping array in crop species.

  9. Rare Variants in RTEL1 Are Associated with Familial Interstitial Pneumonia

    PubMed Central

    Cogan, Joy D.; Zhao, Min; Mitchell, Daphne B.; Rives, Lynette; Markin, Cheryl; Garnett, Errine T.; Montgomery, Keri H.; Mason, Wendi R.; McKean, David F.; Powers, Julia; Murphy, Elissa; Olson, Lana M.; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R.; Lancaster, Lisa H.; Steele, Mark P.; Brown, Kevin K.; Schwarz, Marvin I.; Fingerlin, Tasha E.; Schwartz, David A.; Lawson, William E.; Loyd, James E.; Zhao, Zhongming; Phillips, John A.; Blackwell, Timothy S.

    2015-01-01

    Rationale: Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. Objectives: To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Methods: Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. Measurements and Main Results: We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (<10% for age) in peripheral blood mononuclear cells and increased T-circle formation, suggesting impaired RTEL1 function. Conclusions: Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis. PMID:25607374

  10. An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome.

    PubMed

    Ribeiro, Antonio; Golicz, Agnieszka; Hackett, Christine Anne; Milne, Iain; Stephen, Gordon; Marshall, David; Flavell, Andrew J; Bayer, Micha

    2015-11-11

    Single Nucleotide Polymorphisms (SNPs) are widely used molecular markers, and their use has increased massively since the inception of Next Generation Sequencing (NGS) technologies, which allow detection of large numbers of SNPs at low cost. However, both NGS data and their analysis are error-prone, which can lead to the generation of false positive (FP) SNPs. We explored the relationship between FP SNPs and seven factors involved in mapping-based variant calling - quality of the reference sequence, read length, choice of mapper and variant caller, mapping stringency and filtering of SNPs by read mapping quality and read depth. This resulted in 576 possible factor level combinations. We used error- and variant-free simulated reads to ensure that every SNP found was indeed a false positive. The variation in the number of FP SNPs generated ranged from 0 to 36,621 for the 120 million base pairs (Mbp) genome. All of the experimental factors tested had statistically significant effects on the number of FP SNPs generated and there was a considerable amount of interaction between the different factors. Using a fragmented reference sequence led to a dramatic increase in the number of FP SNPs generated, as did relaxed read mapping and a lack of SNP filtering. The choice of reference assembler, mapper and variant caller also significantly affected the outcome. The effect of read length was more complex and suggests a possible interaction between mapping specificity and the potential for contributing more false positives as read length increases. The choice of tools and parameters involved in variant calling can have a dramatic effect on the number of FP SNPs produced, with particularly poor combinations of software and/or parameter settings yielding tens of thousands in this experiment. Between-factor interactions make simple recommendations difficult for a SNP discovery pipeline but the quality of the reference sequence is clearly of paramount importance. Our findings are also a stark reminder that it can be unwise to use the relaxed mismatch settings provided as defaults by some read mappers when reads are being mapped to a relatively unfinished reference sequence from e.g. a non-model organism in its early stages of genomic exploration.

  11. Kernel-based Linux emulation for Plan 9.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnich, Ronald G.

    2010-09-01

    CNKemu is a kernel-based system for the 9k variant of the Plan 9 kernel. It is designed to provide transparent binary support for programs compiled for IBM's Compute Node Kernel (CNK) on the Blue Gene series of supercomputers. This support allows users to build applications with the standard Blue Gene toolchain, including C++ and Fortran compilers. While the CNK is not Linux, IBM designed the CNK so that the user interface has much in common with the Linux 2.0 system call interface. The Plan 9 CNK emulator hence provides the foundation of kernel-based Linux system call support on Plan 9.more » In this paper we discuss cnkemu's implementation and some of its more interesting features, such as the ability to easily intermix Plan 9 and Linux system calls.« less

  12. Increased Sensitivity of Diagnostic Mutation Detection by Re-analysis Incorporating Local Reassembly of Sequence Reads.

    PubMed

    Watson, Christopher M; Camm, Nick; Crinnion, Laura A; Clokie, Samuel; Robinson, Rachel L; Adlard, Julian; Charlton, Ruth; Markham, Alexander F; Carr, Ian M; Bonthron, David T

    2017-12-01

    Diagnostic genetic testing programmes based on next-generation DNA sequencing have resulted in the accrual of large datasets of targeted raw sequence data. Most diagnostic laboratories process these data through an automated variant-calling pipeline. Validation of the chosen analytical methods typically depends on confirming the detection of known sequence variants. Despite improvements in short-read alignment methods, current pipelines are known to be comparatively poor at detecting large insertion/deletion mutations. We performed clinical validation of a local reassembly tool, ABRA (assembly-based realigner), through retrospective reanalysis of a cohort of more than 2000 hereditary cancer cases. ABRA enabled detection of a 96-bp deletion, 4-bp insertion mutation in PMS2 that had been initially identified using a comparative read-depth approach. We applied an updated pipeline incorporating ABRA to the entire cohort of 2000 cases and identified one previously undetected pathogenic variant, a 23-bp duplication in PTEN. We demonstrate the effect of read length on the ability to detect insertion/deletion variants by comparing HiSeq2500 (2 × 101-bp) and NextSeq500 (2 × 151-bp) sequence data for a range of variants and thereby show that the limitations of shorter read lengths can be mitigated using appropriate informatics tools. This work highlights the need for ongoing development of diagnostic pipelines to maximize test sensitivity. We also draw attention to the large differences in computational infrastructure required to perform day-to-day versus large-scale reprocessing tasks.

  13. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders.

    PubMed

    Mercati, O; Huguet, G; Danckaert, A; André-Leroux, G; Maruani, A; Bellinzoni, M; Rolland, T; Gouder, L; Mathieu, A; Buratti, J; Amsellem, F; Benabou, M; Van-Gils, J; Beggiato, A; Konyukh, M; Bourgeois, J-P; Gazzellone, M J; Yuen, R K C; Walker, S; Delépine, M; Boland, A; Régnault, B; Francois, M; Van Den Abbeele, T; Mosca-Boidron, A L; Faivre, L; Shimoda, Y; Watanabe, K; Bonneau, D; Rastam, M; Leboyer, M; Scherer, S W; Gillberg, C; Delorme, R; Cloëz-Tayarani, I; Bourgeron, T

    2017-04-01

    Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6 W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6 P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.

  14. Double Hits in Schizophrenia.

    PubMed

    Vorstman, Jacob A S; Olde Loohuis, Loes M; Kahn, René S; Ophoff, Roel A

    2018-05-14

    The co-occurrence of a Copy Number Variant (CNV) and a functional variant on the other allele may be a relevant genetic mechanism in schizophrenia. We hypothesized that the cumulative burden of such double hits - in particular those composed of a deletion and a coding single nucleotide variation (SNV) - is increased in patients with schizophrenia.We combined CNV data with coding variants data in 795 patients with schizophrenia and 474 controls. To limit false CNV-detection, only CNVs called only by two algorithms we included. CNV-affected genes were subsequently examined for coding SNVs, which we termed "CNV-SNVs". Correcting for total queried sequence, we assessed the CNV-SNV-burden and the combined predicted deleterious effect. We estimated p-values by permutation of the phenotype.We detected 105 CNV-SNVs; 67 in duplicated and 38 in deleted genic sequence. While the difference in CNV-SNVs rates was not significant, the combined deleteriousness inferred by CNV-SNVs in deleted sequence was almost fourfold higher in cases compared to controls (nominal p = 0.009). This effect may be driven by a higher number of CNV-SNVs and/or by a higher degree of predicted deleteriousness of CNV-SNVs. No such effect was observed for duplications.We provide early evidence that deletions co-occurring with a functional variant may be relevant, albeit of modest impact, for the genetic etiology of schizophrenia. Large-scale consortium studies are required to validate our findings. Sequence-based analyses would provide the best resolution for detection of CNVs as well as coding variants genome-wide.

  15. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk

    PubMed Central

    Curtin, Karen; Rajamanickam, Venkatesh; Jayabalan, David; Atanackovic, Djordje; Rajkumar, S. Vincent; Kumar, Shaji; Slager, Susan; Galia, Perrine; Demangel, Delphine; Salama, Mohamed; Joseph, Vijai; Lipkin, Steven M.; Dumontet, Charles; Vachon, Celine M.

    2018-01-01

    The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance–a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits. PMID:29389935

  16. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk.

    PubMed

    Waller, Rosalie G; Darlington, Todd M; Wei, Xiaomu; Madsen, Michael J; Thomas, Alun; Curtin, Karen; Coon, Hilary; Rajamanickam, Venkatesh; Musinsky, Justin; Jayabalan, David; Atanackovic, Djordje; Rajkumar, S Vincent; Kumar, Shaji; Slager, Susan; Middha, Mridu; Galia, Perrine; Demangel, Delphine; Salama, Mohamed; Joseph, Vijai; McKay, James; Offit, Kenneth; Klein, Robert J; Lipkin, Steven M; Dumontet, Charles; Vachon, Celine M; Camp, Nicola J

    2018-02-01

    The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance-a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.

  17. Use of a series of chemostat cultures to isolate 'improved' variants of the Quorn mycoprotein fungus, Fusarium graminearum A3/5.

    PubMed

    Wiebe, M G; Robson, G D; Oliver, S G; Trinci, A P

    1994-11-01

    Variants (designated A23-S and A24-S) of the Quorn myco-protein fungus, Fusarium graminearum A3/5 were isolated from a series of glucose-limited cultures grown at a dilution rate of 0.18 h-1 for a combined total of 109 d. These variants had unchanged mycelial morphologies but, when grown in mixed culture with the parental strain (A3/5) in glucose-limited chemostat culture at 0.18 h-1, A23-S and A24-S had selection coefficients of 0.013 and 0.017 h-1, respectively, and supplanted A3/5. When a monoculture of A23-S was grown in a glucose-limited culture at a dilution rate of 0.18 h-1, the appearance of highly branched (so-called colonial) mutants was delayed compared with their appearance in chemostat cultures of the parental strain. Furthermore, when a monoculture of A24-S was grown in glucose-limited culture at 0.18 h-1, the appearance of colonial mutants was delayed even further. Thus, it is possible to isolate advantageous (relative to A3/5) variants of F. graminearum A3/5 which have unchanged mycelial morphologies, but in which the appearance of colonial mutants is delayed.

  18. A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes

    PubMed Central

    Hansen, Maren F; Neckmann, Ulrike; Lavik, Liss A S; Vold, Trine; Gilde, Bodil; Toft, Ragnhild K; Sjursen, Wenche

    2014-01-01

    The purpose of this study was to develop a massive parallel sequencing (MPS) workflow for diagnostic analysis of mismatch repair (MMR) genes using the GS Junior system (Roche). A pathogenic variant in one of four MMR genes, (MLH1, PMS2, MSH6, and MSH2), is the cause of Lynch Syndrome (LS), which mainly predispose to colorectal cancer. We used an amplicon-based sequencing method allowing specific and preferential amplification of the MMR genes including PMS2, of which several pseudogenes exist. The amplicons were pooled at different ratios to obtain coverage uniformity and maximize the throughput of a single-GS Junior run. In total, 60 previously identified and distinct variants (substitutions and indels), were sequenced by MPS and successfully detected. The heterozygote detection range was from 19% to 63% and dependent on sequence context and coverage. We were able to distinguish between false-positive and true-positive calls in homopolymeric regions by cross-sample comparison and evaluation of flow signal distributions. In addition, we filtered variants according to a predefined status, which facilitated variant annotation. Our study shows that implementation of MPS in routine diagnostics of LS can accelerate sample throughput and reduce costs without compromising sensitivity, compared to Sanger sequencing. PMID:24689082

  19. Online "iDentity" Formation and the High School Theatre Trip

    ERIC Educational Resources Information Center

    Richardson, John M.

    2016-01-01

    Over the years that I have taken secondary school students to the theatre, the the digital revolution has moved through schools, classrooms, and even theatres, calling into question my goal of contributing positively to students' identity formation through exposure to live plays. Responding to calls to examine the ways in which young people's…

  20. SNV-PPILP: refined SNV calling for tumor data using perfect phylogenies and ILP.

    PubMed

    van Rens, Karen E; Mäkinen, Veli; Tomescu, Alexandru I

    2015-04-01

    Recent studies sequenced tumor samples from the same progenitor at different development stages and showed that by taking into account the phylogeny of this development, single-nucleotide variant (SNV) calling can be improved. Accurate SNV calls can better reveal early-stage tumors, identify mechanisms of cancer progression or help in drug targeting. We present SNV-PPILP, a fast and easy to use tool for refining GATK's Unified Genotyper SNV calls, for multiple samples assumed to form a phylogeny. We tested SNV-PPILP on simulated data, with a varying number of samples, SNVs, read coverage and violations of the perfect phylogeny assumption. We always match or improve the accuracy of GATK, with a significant improvement on low read coverage. SNV-PPILP, available at cs.helsinki.fi/gsa/snv-ppilp/, is written in Python and requires the free ILP solver lp_solve. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance... Public Safety Pool for highway call box systems subject to the following requirements: (1) Call box...) above the ground, the natural formation, or the existing man-made structure (other than an antenna...

  2. 47 CFR 90.241 - Radio call box operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Safety Pool for operation of radio call boxes to be used by the public to request fire, police, ambulance... Public Safety Pool for highway call box systems subject to the following requirements: (1) Call box...) above the ground, the natural formation, or the existing man-made structure (other than an antenna...

  3. The V122I cardiomyopathy variant of transthyretin increases the velocity of rate-limiting tetramer dissociation, resulting in accelerated amyloidosis

    PubMed Central

    Jiang, Xin; Buxbaum, Joel N.; Kelly, Jeffery W.

    2001-01-01

    The transthyretin (TTR) amyloid diseases are of keen interest, because there are >80 mutations that cause, and a few mutations that suppress, disease. The V122I variant is the most common amyloidogenic mutation worldwide, producing familial amyloidotic cardiomyopathy primarily in individuals of African descent. The substitution shifts the tetramer-folded monomer equilibrium toward monomer (lowers tetramer stability) and lowers the kinetic barrier associated with rate-limiting tetramer dissociation (pH 7; relative to wild-type TTR) required for amyloid fibril formation. Fibril formation is also accelerated because the folded monomer resulting from the tetramer-folded monomer equilibrium rapidly undergoes partial denaturation and self-assembles into amyloid (in vitro) when subjected to a mild denaturation stress (e.g., pH 4.8). Incorporation of the V122I mutation into a folded monomeric variant of transthyretin reveals that this mutation does not destabilize the tertiary structure or alter the rate of amyloidogenesis relative to the wild-type monomer. The increase in the velocity of rate-limiting tetramer dissociation coupled with the lowered tetramer stability (increasing the mol fraction of folded monomer present at equilibrium) may explain why V122I confers an apparent absolute anatomic risk for cardiac amyloid deposition. PMID:11752443

  4. Cube texture formation during the early stages of recrystallization of Al-1%wt.Mn and AA1050 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Miszczyk, M. M.; Paul, H.

    2015-08-01

    The cube texture formation during primary recrystallization was analysed in plane strain deformed samples of a commercial AA1050 alloy and an Al-1%wt.Mn model alloy single crystal of the Goss{110}<001> orientation. The textures were measured with the use of X-ray diffraction and scanning electron microscopy equipped with an electron backscattered diffraction facility. After recrystallization of the Al-1%wt.Mn single crystal, the texture of the recrystallized grains was dominated by four variants of the S{123}<634> orientation. The cube grains were only sporadically detected by the SEM/EBSD system. Nevertheless, an increased density of <111> poles corresponding to the cube orientation was observed. The latter was connected with the superposition of four variants of the S{123}<634> orientation. This indicates that the cube texture after the recrystallization was a ‘compromise texture’. In the case of the recrystallized AA1050 alloy, the strong cube texture results from both the increased density of the particular <111> poles of the four variants of the S orientation and the ∼40°(∼< 111>)-type rotation. The first mechanism transforms the Sdef-oriented areas into Srex ones, whereas the second the near S-oriented, as-deformed areas into near cube-oriented grains.

  5. IMPACT: a whole-exome sequencing analysis pipeline for integrating molecular profiles with actionable therapeutics in clinical samples

    PubMed Central

    Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti

    2016-01-01

    Objective Currently, there is a disconnect between finding a patient’s relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. Methods and materials The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. Results IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. Conclusion IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine. IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. PMID:27026619

  6. Functional Characterization of Rare RAB12 Variants and Their Role in Musician's and Other Dystonias.

    PubMed

    Hebert, Eva; Borngräber, Friederike; Schmidt, Alexander; Rakovic, Aleksandar; Brænne, Ingrid; Weissbach, Anne; Hampf, Jennie; Vollstedt, Eva-Juliane; Größer, Leopold; Schaake, Susen; Müller, Michaela; Manzoor, Humera; Jabusch, Hans-Christian; Alvarez-Fischer, Daniel; Kasten, Meike; Kostic, Vladimir S; Gasser, Thomas; Zeuner, Kirsten E; Kim, Han-Joon; Jeon, Beomseok; Bauer, Peter; Altenmüller, Eckart; Klein, Christine; Lohmann, Katja

    2017-10-18

    Mutations in RAB (member of the Ras superfamily) genes are increasingly recognized as cause of a variety of disorders including neurological conditions. While musician's dystonia (MD) and writer's dystonia (WD) are task-specific movement disorders, other dystonias persistently affect postures as in cervical dystonia. Little is known about the underlying etiology. Next-generation sequencing revealed a rare missense variant (c.586A>G; p.Ile196Val) in RAB12 in two of three MD/WD families. Next, we tested 916 additional dystonia patients; 512 Parkinson's disease patients; and 461 healthy controls for RAB12 variants and identified 10 additional carriers of rare missense changes among dystonia patients (1.1%) but only one carrier in non-dystonic individuals (0.1%; p = 0.005). The detected variants among index patients comprised p.Ile196Val ( n = 6); p.Ala174Thr ( n = 3); p.Gly13Asp; p.Ala148Thr; and p.Arg181Gln in patients with MD; cervical dystonia; or WD. Two relatives of MD patients with WD also carried p.Ile196Val. The two variants identified in MD patients (p.Ile196Val; p.Gly13Asp) were characterized on endogenous levels in patient-derived fibroblasts and in two RAB12-overexpressing cell models. The ability to hydrolyze guanosine triphosphate (GTP), so called GTPase activity, was increased in mutants compared to wildtype. Furthermore, subcellular distribution of RAB12 in mutants was altered in fibroblasts. Soluble Transferrin receptor 1 levels were reduced in the blood of all three tested p.Ile196Val carriers. In conclusion, we demonstrate an enrichment of missense changes among dystonia patients. Functional characterization revealed altered enzyme activity and lysosomal distribution in mutants suggesting a contribution of RAB12 variants to MD and other dystonias.

  7. GTRAC: fast retrieval from compressed collections of genomic variants

    PubMed Central

    Tatwawadi, Kedar; Hernaez, Mikel; Ochoa, Idoia; Weissman, Tsachy

    2016-01-01

    Motivation: The dramatic decrease in the cost of sequencing has resulted in the generation of huge amounts of genomic data, as evidenced by projects such as the UK10K and the Million Veteran Project, with the number of sequenced genomes ranging in the order of 10 K to 1 M. Due to the large redundancies among genomic sequences of individuals from the same species, most of the medical research deals with the variants in the sequences as compared with a reference sequence, rather than with the complete genomic sequences. Consequently, millions of genomes represented as variants are stored in databases. These databases are constantly updated and queried to extract information such as the common variants among individuals or groups of individuals. Previous algorithms for compression of this type of databases lack efficient random access capabilities, rendering querying the database for particular variants and/or individuals extremely inefficient, to the point where compression is often relinquished altogether. Results: We present a new algorithm for this task, called GTRAC, that achieves significant compression ratios while allowing fast random access over the compressed database. For example, GTRAC is able to compress a Homo sapiens dataset containing 1092 samples in 1.1 GB (compression ratio of 160), while allowing for decompression of specific samples in less than a second and decompression of specific variants in 17 ms. GTRAC uses and adapts techniques from information theory, such as a specialized Lempel-Ziv compressor, and tailored succinct data structures. Availability and Implementation: The GTRAC algorithm is available for download at: https://github.com/kedartatwawadi/GTRAC Contact: kedart@stanford.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27587665

  8. GTRAC: fast retrieval from compressed collections of genomic variants.

    PubMed

    Tatwawadi, Kedar; Hernaez, Mikel; Ochoa, Idoia; Weissman, Tsachy

    2016-09-01

    The dramatic decrease in the cost of sequencing has resulted in the generation of huge amounts of genomic data, as evidenced by projects such as the UK10K and the Million Veteran Project, with the number of sequenced genomes ranging in the order of 10 K to 1 M. Due to the large redundancies among genomic sequences of individuals from the same species, most of the medical research deals with the variants in the sequences as compared with a reference sequence, rather than with the complete genomic sequences. Consequently, millions of genomes represented as variants are stored in databases. These databases are constantly updated and queried to extract information such as the common variants among individuals or groups of individuals. Previous algorithms for compression of this type of databases lack efficient random access capabilities, rendering querying the database for particular variants and/or individuals extremely inefficient, to the point where compression is often relinquished altogether. We present a new algorithm for this task, called GTRAC, that achieves significant compression ratios while allowing fast random access over the compressed database. For example, GTRAC is able to compress a Homo sapiens dataset containing 1092 samples in 1.1 GB (compression ratio of 160), while allowing for decompression of specific samples in less than a second and decompression of specific variants in 17 ms. GTRAC uses and adapts techniques from information theory, such as a specialized Lempel-Ziv compressor, and tailored succinct data structures. The GTRAC algorithm is available for download at: https://github.com/kedartatwawadi/GTRAC CONTACT: : kedart@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE

    PubMed Central

    Majoros, William H.; Campbell, Michael S.; Holt, Carson; DeNardo, Erin K.; Ware, Doreen; Allen, Andrew S.; Yandell, Mark; Reddy, Timothy E.

    2017-01-01

    Abstract Motivation: The accurate interpretation of genetic variants is critical for characterizing genotype–phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. Results: We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE (‘Assessing Changes to Exons’) converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. Availability and Implementation: ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE Contact: myandell@genetics.utah.edu or tim.reddy@duke.edu Supplementary information: Supplementary information is available at Bioinformatics online. PMID:28011790

  10. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE.

    PubMed

    Majoros, William H; Campbell, Michael S; Holt, Carson; DeNardo, Erin K; Ware, Doreen; Allen, Andrew S; Yandell, Mark; Reddy, Timothy E

    2017-05-15

    The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE. myandell@genetics.utah.edu or tim.reddy@duke.edu. Supplementary information is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. A hetero-micro-seeding strategy for readily crystallizing closely related protein variants.

    PubMed

    Islam, Mohammad M; Kuroda, Yutaka

    2017-11-04

    Protein crystallization remains difficult to rationalize and screening for optimal crystallization conditions is a tedious and time consuming procedure. Here, we report a hetero-micro-seeding strategy for producing high resolution crystals of closely related protein variants, where micro crystals from a readily crystallized variant are used as seeds to develop crystals of other variants less amenable to crystallization. We applied this strategy to Bovine Pancreatic Trypsin Inhibitor (BPTI) variants, which would not crystallize using standard crystallization practice. Out of six variants in our analysis, only one called BPTI-[5,55]A14G formed well behaving crystals; and the remaining five (A14GA38G, A14GA38V, A14GA38L, A14GA38I, and A14GA38K) could be crystallized only using micro-seeds from the BPTI-[5,55]A14G crystal. All hetero-seeded crystals diffracted at high resolution with minimum mosaicity, retaining the same space group and cell dimension. Moreover, hetero-micro-seeding did not introduce any biases into the mutant's structure toward the seed structure, as demonstrated by A14GA38I structures solved using micro-seeds from A14GA38G, A14GA38L and A14GA38I. Though hetero-micro-seeding is a simple and almost naïve strategy, this is the first direct demonstration of its workability. We believe that hetero-micro-seeding, which is contrasting with the popular idea that crystallization requires highly purified proteins, could contribute a new tool for rapidly solving protein structures in mutational analysis studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. IMPACT: a whole-exome sequencing analysis pipeline for integrating molecular profiles with actionable therapeutics in clinical samples.

    PubMed

    Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti; Robinson, William A; Tan, Aik Choon

    2016-07-01

    Currently, there is a disconnect between finding a patient's relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine.IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The insulin-sensitivity sulphonylurea receptor variant is associated with thyrotoxic paralysis.

    PubMed

    Rolim, Ana Luiza R; Lindsey, Susan C; Kunii, Ilda S; Crispim, Felipe; Moisés, Regina Célia M S; Maciel, Rui M B; Dias-da-Silva, Magnus R

    2014-10-01

    Thyrotoxicosis is the most common cause of the acquired flaccid muscle paralysis in adults called thyrotoxic periodic paralysis (TPP) and is characterised by transient hypokalaemia and hypophosphataemia under high thyroid hormone levels that is frequently precipitated by carbohydrate load. The sulphonylurea receptor 1 (SUR1 (ABCC8)) is an essential regulatory subunit of the β-cell ATP-sensitive K(+) channel that controls insulin secretion after feeding. Additionally, the SUR1 Ala1369Ser variant appears to be associated with insulin sensitivity. We examined the ABCC8 gene at the single nucleotide level using PCR-restriction fragment length polymorphism (RFLP) analysis to determine its allelic variant frequency and calculated the frequency of the Ala1369Ser C-allele variant in a cohort of 36 Brazilian TPP patients in comparison with 32 controls presenting with thyrotoxicosis without paralysis (TWP). We verified that the frequency of the alanine 1369 C-allele was significantly higher in TPP patients than in TWP patients (61.1 vs 34.4%, odds ratio (OR)=3.42, P=0.039) and was significantly more common than the minor allele frequency observed in the general population from the 1000 Genomes database (61.1 vs 29.0%, OR=4.87, P<0.005). Additionally, the C-allele frequency was similar between TWP patients and the general population (34.4 vs 29%, OR=1.42, P=0.325). We have demonstrated that SUR1 alanine 1369 variant is associated with allelic susceptibility to TPP. We suggest that the hyperinsulinaemia that is observed in TPP may be linked to the ATP-sensitive K(+)/SUR1 alanine variant and, therefore, contribute to the major feedforward precipitating factors in the pathophysiology of TPP. © 2014 Society for Endocrinology.

  14. Isopach and structure contour maps of the Burro Canyon(?) Formation in the Mesa Golondrina and Mesa de los Viejos areas, Chama Basin, New Mexico

    USGS Publications Warehouse

    Ridgley, Jennie L.

    1983-01-01

    In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation. 

  15. Functional significance of rare neuroligin 1 variants found in autism

    PubMed Central

    Nakanishi, Moe; Nomura, Jun; Ji, Xiao; Tamada, Kota; Arai, Takashi; Takahashi, Eiki; Bućan, Maja

    2017-01-01

    Genetic mutations contribute to the etiology of autism spectrum disorder (ASD), a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3), a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1) is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L) missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders. PMID:28841651

  16. Functional significance of rare neuroligin 1 variants found in autism.

    PubMed

    Nakanishi, Moe; Nomura, Jun; Ji, Xiao; Tamada, Kota; Arai, Takashi; Takahashi, Eiki; Bućan, Maja; Takumi, Toru

    2017-08-01

    Genetic mutations contribute to the etiology of autism spectrum disorder (ASD), a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3), a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1) is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L) missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders.

  17. Acoustic features of male baboon loud calls: Influences of context, age, and individuality

    NASA Astrophysics Data System (ADS)

    Fischer, Julia; Hammerschmidt, Kurt; Cheney, Dorothy L.; Seyfarth, Robert M.

    2002-03-01

    The acoustic structure of loud calls (``wahoos'') recorded from free-ranging male baboons (Papio cynocephalus ursinus) in the Moremi Game Reserve, Botswana, was examined for differences between and within contexts, using calls given in response to predators (alarm wahoos), during male contests (contest wahoos), and when a male had become separated from the group (contact wahoos). Calls were recorded from adolescent, subadult, and adult males. In addition, male alarm calls were compared with those recorded from females. Despite their superficial acoustic similarity, the analysis revealed a number of significant differences between alarm, contest, and contact wahoos. Contest wahoos are given at a much higher rate, exhibit lower frequency characteristics, have a longer ``hoo'' duration, and a relatively louder ``hoo'' portion than alarm wahoos. Contact wahoos are acoustically similar to contest wahoos, but are given at a much lower rate. Both alarm and contest wahoos also exhibit significant differences among individuals. Some of the acoustic features that vary in relation to age and sex presumably reflect differences in body size, whereas others are possibly related to male stamina and endurance. The finding that calls serving markedly different functions constitute variants of the same general call type suggests that the vocal production in nonhuman primates is evolutionarily constrained.

  18. Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy

    PubMed Central

    Nair, Umesh; Malhotra, Sony; Meyer, Esther; Trump, Natalie; Gazina, Elena V.; Papandreou, Apostolos; Ngoh, Adeline; Ackermann, Sally; Ambegaonkar, Gautam; Appleton, Richard; Desurkar, Archana; Eltze, Christin; Kneen, Rachel; Kumar, Ajith V.; Lascelles, Karine; Montgomery, Tara; Ramesh, Venkateswaran; Samanta, Rajib; Scott, Richard H.; Tan, Jeen; Whitehouse, William; Poduri, Annapurna; Scheffer, Ingrid E.; Chong, W.K. “Kling”; Cross, J. Helen; Topf, Maya; Petrou, Steven

    2018-01-01

    Objective To characterize the phenotypic spectrum, molecular genetic findings, and functional consequences of pathogenic variants in early-onset KCNT1 epilepsy. Methods We identified a cohort of 31 patients with epilepsy of infancy with migrating focal seizures (EIMFS) and screened for variants in KCNT1 using direct Sanger sequencing, a multiple-gene next-generation sequencing panel, and whole-exome sequencing. Additional patients with non-EIMFS early-onset epilepsy in whom we identified KCNT1 variants on local diagnostic multiple gene panel testing were also included. When possible, we performed homology modeling to predict the putative effects of variants on protein structure and function. We undertook electrophysiologic assessment of mutant KCNT1 channels in a xenopus oocyte model system. Results We identified pathogenic variants in KCNT1 in 12 patients, 4 of which are novel. Most variants occurred de novo. Ten patients had a clinical diagnosis of EIMFS, and the other 2 presented with early-onset severe nocturnal frontal lobe seizures. Three patients had a trial of quinidine with good clinical response in 1 patient. Computational modeling analysis implicates abnormal pore function (F346L) and impaired tetramer formation (F502V) as putative disease mechanisms. All evaluated KCNT1 variants resulted in marked gain of function with significantly increased channel amplitude and variable blockade by quinidine. Conclusions Gain-of-function KCNT1 pathogenic variants cause a spectrum of severe focal epilepsies with onset in early infancy. Currently, genotype-phenotype correlations are unclear, although clinical outcome is poor for the majority of cases. Further elucidation of disease mechanisms may facilitate the development of targeted treatments, much needed for this pharmacoresistant genetic epilepsy. PMID:29196579

  19. Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency.

    PubMed

    Cornelius, Nanna; Frerman, Frank E; Corydon, Thomas J; Palmfeldt, Johan; Bross, Peter; Gregersen, Niels; Olsen, Rikke K J

    2012-08-01

    Riboflavin-responsive forms of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) have been known for years, but with presumed defects in the formation of the flavin adenine dinucleotide (FAD) co-factor rather than genetic defects of electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). It was only recently established that a number of RR-MADD patients carry genetic defects in ETF-QO and that the well-documented clinical efficacy of riboflavin treatment may be based on a chaperone effect that can compensate for inherited folding defects of ETF-QO. In the present study, we investigate the molecular mechanisms and the genotype-phenotype relationships for the riboflavin responsiveness in MADD, using a human HEK-293 cell expression system. We studied the influence of riboflavin and temperature on the steady-state level and the activity of variant ETF-QO proteins identified in patients with RR-MADD, or non- and partially responsive MADD. Our results showed that variant ETF-QO proteins associated with non- and partially responsive MADD caused severe misfolding of ETF-QO variant proteins when cultured in media with supplemented concentrations of riboflavin. In contrast, variant ETF-QO proteins associated with RR-MADD caused milder folding defects when cultured at the same conditions. Decreased thermal stability of the variants showed that FAD does not completely correct the structural defects induced by the variation. This may cause leakage of electrons and increased reactive oxygen species, as reflected by increased amounts of cellular peroxide production in HEK-293 cells expressing the variant ETF-QO proteins. Finally, we found indications of prolonged association of variant ETF-QO protein with the Hsp60 chaperonin in the mitochondrial matrix, supporting indications of folding defects in the variant ETF-QO proteins.

  20. [Analysis of bacterial small-colony variants isolated from clinical specimens].

    PubMed

    Matsumoto, Takehisa

    2014-07-01

    There is a slow-growing subpopulation of bacteria with distinctive phenotypic and pathogenic traits called bacterial small-colony variants (SCVs). Phenotypically, SCVs show a slow growth rate, atypical colony morphology, and unusual biochemical characteristics. SCV strains often grow on blood agar or Drigalski agar as non-pigmented or pinpoint pigmented colonies, and key biochemical tests for them are often non-reactive. This review describes analyses of hemin-dependent Escherichia coli SCV and Staphylococcus aureus thymidine-dependent SCVs based on our case reports. Because SCVs exhibit fastidious growth characteristics, clinical microbiologists may easily miss or misidentify them in the clinical laboratory. Therefore, we must elucidate the cause of SCVs, and improve laboratory methods for the identification and assessment of the susceptibility of SCVs in the clinical laboratory.

  1. Multiple crack detection in 3D using a stable XFEM and global optimization

    NASA Astrophysics Data System (ADS)

    Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.

    2018-02-01

    A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.

  2. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Cancer.gov

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  3. A spatially-variant deconvolution method based on total variation for optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Almasganj, Mohammad; Adabi, Saba; Fatemizadeh, Emad; Xu, Qiuyun; Sadeghi, Hamid; Daveluy, Steven; Nasiriavanaki, Mohammadreza

    2017-03-01

    Optical Coherence Tomography (OCT) has a great potential to elicit clinically useful information from tissues due to its high axial and transversal resolution. In practice, an OCT setup cannot reach to its theoretical resolution due to imperfections of its components, which make its images blurry. The blurriness is different alongside regions of image; thus, they cannot be modeled by a unique point spread function (PSF). In this paper, we investigate the use of solid phantoms to estimate the PSF of each sub-region of imaging system. We then utilize Lucy-Richardson, Hybr and total variation (TV) based iterative deconvolution methods for mitigating occurred spatially variant blurriness. It is shown that the TV based method will suppress the so-called speckle noise in OCT images better than the two other approaches. The performance of proposed algorithm is tested on various samples, including several skin tissues besides the test image blurred with synthetic PSF-map, demonstrating qualitatively and quantitatively the advantage of TV based deconvolution method using spatially-variant PSF for enhancing image quality.

  4. L1-associated genomic regions are deleted in somatic cells of the healthy human brain.

    PubMed

    Erwin, Jennifer A; Paquola, Apuã C M; Singer, Tatjana; Gallina, Iryna; Novotny, Mark; Quayle, Carolina; Bedrosian, Tracy A; Alves, Francisco I A; Butcher, Cheyenne R; Herdy, Joseph R; Sarkar, Anindita; Lasken, Roger S; Muotri, Alysson R; Gage, Fred H

    2016-12-01

    The healthy human brain is a mosaic of varied genomes. Long interspersed element-1 (LINE-1 or L1) retrotransposition is known to create mosaicism by inserting L1 sequences into new locations of somatic cell genomes. Using a machine learning-based, single-cell sequencing approach, we discovered that somatic L1-associated variants (SLAVs) are composed of two classes: L1 retrotransposition insertions and retrotransposition-independent L1-associated variants. We demonstrate that a subset of SLAVs comprises somatic deletions generated by L1 endonuclease cutting activity. Retrotransposition-independent rearrangements in inherited L1s resulted in the deletion of proximal genomic regions. These rearrangements were resolved by microhomology-mediated repair, which suggests that L1-associated genomic regions are hotspots for somatic copy number variants in the brain and therefore a heritable genetic contributor to somatic mosaicism. We demonstrate that SLAVs are present in crucial neural genes, such as DLG2 (also called PSD93), and affect 44-63% of cells of the cells in the healthy brain.

  5. ICO amplicon NGS data analysis: a Web tool for variant detection in common high-risk hereditary cancer genes analyzed by amplicon GS Junior next-generation sequencing.

    PubMed

    Lopez-Doriga, Adriana; Feliubadaló, Lídia; Menéndez, Mireia; Lopez-Doriga, Sergio; Morón-Duran, Francisco D; del Valle, Jesús; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Campos, Olga; Gómez, Carolina; Pineda, Marta; González, Sara; Moreno, Victor; Capellá, Gabriel; Lázaro, Conxi

    2014-03-01

    Next-generation sequencing (NGS) has revolutionized genomic research and is set to have a major impact on genetic diagnostics thanks to the advent of benchtop sequencers and flexible kits for targeted libraries. Among the main hurdles in NGS are the difficulty of performing bioinformatic analysis of the huge volume of data generated and the high number of false positive calls that could be obtained, depending on the NGS technology and the analysis pipeline. Here, we present the development of a free and user-friendly Web data analysis tool that detects and filters sequence variants, provides coverage information, and allows the user to customize some basic parameters. The tool has been developed to provide accurate genetic analysis of targeted sequencing of common high-risk hereditary cancer genes using amplicon libraries run in a GS Junior System. The Web resource is linked to our own mutation database, to assist in the clinical classification of identified variants. We believe that this tool will greatly facilitate the use of the NGS approach in routine laboratories.

  6. Reference genotype and exome data from an Australian Aboriginal population for health-based research

    PubMed Central

    Tang, Dave; Anderson, Denise; Francis, Richard W.; Syn, Genevieve; Jamieson, Sarra E.; Lassmann, Timo; Blackwell, Jenefer M.

    2016-01-01

    Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians. PMID:27070114

  7. Reference genotype and exome data from an Australian Aboriginal population for health-based research.

    PubMed

    Tang, Dave; Anderson, Denise; Francis, Richard W; Syn, Genevieve; Jamieson, Sarra E; Lassmann, Timo; Blackwell, Jenefer M

    2016-04-12

    Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians.

  8. Integrating common and rare genetic variation in diverse human populations.

    PubMed

    Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Dermitzakis, Emmanouil; Schaffner, Stephen F; Yu, Fuli; Peltonen, Leena; Dermitzakis, Emmanouil; Bonnen, Penelope E; Altshuler, David M; Gibbs, Richard A; de Bakker, Paul I W; Deloukas, Panos; Gabriel, Stacey B; Gwilliam, Rhian; Hunt, Sarah; Inouye, Michael; Jia, Xiaoming; Palotie, Aarno; Parkin, Melissa; Whittaker, Pamela; Yu, Fuli; Chang, Kyle; Hawes, Alicia; Lewis, Lora R; Ren, Yanru; Wheeler, David; Gibbs, Richard A; Muzny, Donna Marie; Barnes, Chris; Darvishi, Katayoon; Hurles, Matthew; Korn, Joshua M; Kristiansson, Kati; Lee, Charles; McCarrol, Steven A; Nemesh, James; Dermitzakis, Emmanouil; Keinan, Alon; Montgomery, Stephen B; Pollack, Samuela; Price, Alkes L; Soranzo, Nicole; Bonnen, Penelope E; Gibbs, Richard A; Gonzaga-Jauregui, Claudia; Keinan, Alon; Price, Alkes L; Yu, Fuli; Anttila, Verneri; Brodeur, Wendy; Daly, Mark J; Leslie, Stephen; McVean, Gil; Moutsianas, Loukas; Nguyen, Huy; Schaffner, Stephen F; Zhang, Qingrun; Ghori, Mohammed J R; McGinnis, Ralph; McLaren, William; Pollack, Samuela; Price, Alkes L; Schaffner, Stephen F; Takeuchi, Fumihiko; Grossman, Sharon R; Shlyakhter, Ilya; Hostetter, Elizabeth B; Sabeti, Pardis C; Adebamowo, Clement A; Foster, Morris W; Gordon, Deborah R; Licinio, Julio; Manca, Maria Cristina; Marshall, Patricia A; Matsuda, Ichiro; Ngare, Duncan; Wang, Vivian Ota; Reddy, Deepa; Rotimi, Charles N; Royal, Charmaine D; Sharp, Richard R; Zeng, Changqing; Brooks, Lisa D; McEwen, Jean E

    2010-09-02

    Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of

  9. [The forensic medical assessment of the results of a study of laryngeal injuries in blunt trauma to the neck].

    PubMed

    Svetlakov, A V; Korenev, S A; Akishin, A N

    1997-01-01

    Presents the methodological principles and succession of examination of the basic formations of the larynx in cases with blunt injuries of the neck. Describes variants of anatomic structure of the sublingual bone and laryngeal cartilages influencing the morphology of injuries thereof. Offers differential diagnostic criteria of various mechanisms of fractures of the basic formations and recommendations on medical criminological assessment of laryngeal injuries.

  10. Comparison of illumina and 454 deep sequencing in participants failing raltegravir-based antiretroviral therapy.

    PubMed

    Li, Jonathan Z; Chapman, Brad; Charlebois, Patrick; Hofmann, Oliver; Weiner, Brian; Porter, Alyssa J; Samuel, Reshmi; Vardhanabhuti, Saran; Zheng, Lu; Eron, Joseph; Taiwo, Babafemi; Zody, Michael C; Henn, Matthew R; Kuritzkes, Daniel R; Hide, Winston; Wilson, Cara C; Berzins, Baiba I; Acosta, Edward P; Bastow, Barbara; Kim, Peter S; Read, Sarah W; Janik, Jennifer; Meres, Debra S; Lederman, Michael M; Mong-Kryspin, Lori; Shaw, Karl E; Zimmerman, Louis G; Leavitt, Randi; De La Rosa, Guy; Jennings, Amy

    2014-01-01

    The impact of raltegravir-resistant HIV-1 minority variants (MVs) on raltegravir treatment failure is unknown. Illumina sequencing offers greater throughput than 454, but sequence analysis tools for viral sequencing are needed. We evaluated Illumina and 454 for the detection of HIV-1 raltegravir-resistant MVs. A5262 was a single-arm study of raltegravir and darunavir/ritonavir in treatment-naïve patients. Pre-treatment plasma was obtained from 5 participants with raltegravir resistance at the time of virologic failure. A control library was created by pooling integrase clones at predefined proportions. Multiplexed sequencing was performed with Illumina and 454 platforms at comparable costs. Illumina sequence analysis was performed with the novel snp-assess tool and 454 sequencing was analyzed with V-Phaser. Illumina sequencing resulted in significantly higher sequence coverage and a 0.095% limit of detection. Illumina accurately detected all MVs in the control library at ≥0.5% and 7/10 MVs expected at 0.1%. 454 sequencing failed to detect any MVs at 0.1% with 5 false positive calls. For MVs detected in the patient samples by both 454 and Illumina, the correlation in the detected variant frequencies was high (R2 = 0.92, P<0.001). Illumina sequencing detected 2.4-fold greater nucleotide MVs and 2.9-fold greater amino acid MVs compared to 454. The only raltegravir-resistant MV detected was an E138K mutation in one participant by Illumina sequencing, but not by 454. In participants of A5262 with raltegravir resistance at virologic failure, baseline raltegravir-resistant MVs were rarely detected. At comparable costs to 454 sequencing, Illumina demonstrated greater depth of coverage, increased sensitivity for detecting HIV MVs, and fewer false positive variant calls.

  11. Structure and function of neonatal social communication in a genetic mouse model of autism.

    PubMed

    Takahashi, T; Okabe, S; Broin, P Ó; Nishi, A; Ye, K; Beckert, M V; Izumi, T; Machida, A; Kang, G; Abe, S; Pena, J L; Golden, A; Kikusui, T; Hiroi, N

    2016-09-01

    A critical step toward understanding autism spectrum disorder (ASD) is to identify both genetic and environmental risk factors. A number of rare copy number variants (CNVs) have emerged as robust genetic risk factors for ASD, but not all CNV carriers exhibit ASD and the severity of ASD symptoms varies among CNV carriers. Although evidence exists that various environmental factors modulate symptomatic severity, the precise mechanisms by which these factors determine the ultimate severity of ASD are still poorly understood. Here, using a mouse heterozygous for Tbx1 (a gene encoded in 22q11.2 CNV), we demonstrate that a genetically triggered neonatal phenotype in vocalization generates a negative environmental loop in pup-mother social communication. Wild-type pups used individually diverse sequences of simple and complicated call types, but heterozygous pups used individually invariable call sequences with less complicated call types. When played back, representative wild-type call sequences elicited maternal approach, but heterozygous call sequences were ineffective. When the representative wild-type call sequences were randomized, they were ineffective in eliciting vigorous maternal approach behavior. These data demonstrate that an ASD risk gene alters the neonatal call sequence of its carriers and this pup phenotype in turn diminishes maternal care through atypical social communication. Thus, an ASD risk gene induces, through atypical neonatal call sequences, less than optimal maternal care as a negative neonatal environmental factor.

  12. Structure and function of neonatal social communication in a genetic mouse model of autism

    PubMed Central

    Takahashi, Tomohisa; Okabe, Shota; Ó Broin, Pilib; Nishi, Akira; Ye, Kenny; Beckert, Michael V.; Izumi, Takeshi; Machida, Akihiro; Kang, Gina; Abe, Seiji; Pena, Jose L.; Golden, Aaron; Kikusui, Takefumi; Hiroi, Noboru

    2015-01-01

    A critical step toward understanding autism spectrum disorder (ASD) is to identify both genetic and environmental risk factors. A number of rare copy number variants (CNVs) have emerged as robust genetic risk factors for ASD, but not all CNV carriers exhibit ASD and the severity of ASD symptoms varies among CNV carriers. Although evidence exists that various environmental factors modulate symptomatic severity, the precise mechanisms by which these factors determine the ultimate severity of ASD are still poorly understood. Here, using a mouse heterozygous for Tbx1 (a gene encoded in 22q11.2 CNV), we demonstrate that a genetically-triggered neonatal phenotype in vocalization generates a negative environmental loop in pup-mother social communication. Wild-type pups used individually diverse sequences of simple and complicated call types, but heterozygous pups used individually invariable call sequences with less complicated call types. When played back, representative wild-type call sequences elicited maternal approach, but heterozygous call sequences were ineffective. When the representative wild-type call sequences were randomized, they were ineffective in eliciting vigorous maternal approach behavior. These data demonstrate that an ASD risk gene alters the neonatal call sequence of its carriers and this pup phenotype in turn diminishes maternal care through atypical social communication. Thus, an ASD risk gene induces, through atypical neonatal call sequences, less than optimal maternal care as a negative neonatal environmental factor. PMID:26666205

  13. Hotspot mutation panel testing reveals clonal evolution in a study of 265 paired primary and metastatic tumors.

    PubMed

    Goswami, Rashmi S; Patel, Keyur P; Singh, Rajesh R; Meric-Bernstam, Funda; Kopetz, E Scott; Subbiah, Vivek; Alvarez, Ricardo H; Davies, Michael A; Jabbar, Kausar J; Roy-Chowdhuri, Sinchita; Lazar, Alexander J; Medeiros, L Jeffrey; Broaddus, Russell R; Luthra, Rajyalakshmi; Routbort, Mark J

    2015-06-01

    We used a clinical next-generation sequencing (NGS) hotspot mutation panel to investigate clonal evolution in paired primary and metastatic tumors. A total of 265 primary and metastatic tumor pairs were sequenced using a 46-gene cancer mutation panel capable of detecting one or more single-nucleotide variants as well as small insertions/deletions. Mutations were tabulated together with tumor type and percentage, mutational variant frequency, time interval between onset of primary tumor and metastasis, and neoadjuvant therapy status. Of note, 227 of 265 (85.7%) tumor metastasis pairs showed identical mutation calls. Of the tumor pairs with identical mutation calls, 160 (60.4%) possessed defining somatic mutation signatures and 67 (25.3%) did not exhibit any somatic mutations. There were 38 (14.3%) cases that showed at least one novel mutation call between the primary and metastasis. Metastases were almost two times more likely to show novel mutations (n = 20, 7.5%) than primary tumors (n = 12, 4.5%). TP53 was the most common additionally mutated gene in metastatic lesions, followed by PIK3CA and SMAD4. PIK3CA mutations were more often associated with metastasis in colon carcinoma samples. Clinical NGS hotspot panels can be useful in analyzing clonal evolution within tumors as well as in determining subclonal mutations that can expand in future metastases. PIK3CA, SMAD4, and TP53 are most often involved in clonal divergence, providing potential targets that may help guide the clinical management of tumor progression or metastases. ©2015 American Association for Cancer Research.

  14. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort

    PubMed Central

    Avgan, Nesli; Sutherland, Heidi G.; Spriggens, Lauren K.; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M.; Shum, David H. K.; Griffiths, Lyn R.

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory (p-value = 0.003) in a small cohort (n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale—Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism (p-value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF, and its anti-sense transcript BDNF-AS, in long-term visual memory performance. PMID:28304362

  15. BDNF Variants May Modulate Long-Term Visual Memory Performance in a Healthy Cohort.

    PubMed

    Avgan, Nesli; Sutherland, Heidi G; Spriggens, Lauren K; Yu, Chieh; Ibrahim, Omar; Bellis, Claire; Haupt, Larisa M; Shum, David H K; Griffiths, Lyn R

    2017-03-17

    Brain-derived neurotrophic factor (BDNF) is involved in numerous cognitive functions including learning and memory. BDNF plays an important role in synaptic plasticity in humans and rats with BDNF shown to be essential for the formation of long-term memories. We previously identified a significant association between the BDNF Val66Met polymorphism (rs6265) and long-term visual memory ( p -value = 0.003) in a small cohort ( n = 181) comprised of healthy individuals who had been phenotyped for various aspects of memory function. In this study, we have extended the cohort to 597 individuals and examined multiple genetic variants across both the BDNF and BDNF-AS genes for association with visual memory performance as assessed by the Wechsler Memory Scale-Fourth Edition subtests Visual Reproduction I and II (VR I and II). VR I assesses immediate visual memory, whereas VR II assesses long-term visual memory. Genetic association analyses were performed for 34 single nucleotide polymorphisms genotyped on Illumina OmniExpress BeadChip arrays with the immediate and long-term visual memory phenotypes. While none of the BDNF and BDNF-AS variants were shown to be significant for immediate visual memory, we found 10 variants (including the Val66Met polymorphism ( p -value = 0.006)) that were nominally associated, and three variants (two variants in BDNF and one variant in the BDNF-AS locus) that were significantly associated with long-term visual memory. Our data therefore suggests a potential role for BDNF , and its anti-sense transcript BDNF-AS , in long-term visual memory performance.

  16. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  17. Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability

    PubMed Central

    Ansar, Muhammad; Jan, Abid; Santos-Cortez, Regie Lyn P; Wang, Xin; Suliman, Muhammad; Acharya, Anushree; Habib, Rabia; Abbe, Izoduwa; Ali, Ghazanfar; Lee, Kwanghyuk; Smith, Joshua D; Bamshad, Michael J; Shendure, Jay; Nickerson, Deborah A; Abecasis, Gonçalo R; Anderson, Peter; Annable, Marcus; Beightol, Mallory; Browning, Brian L; Buckingham, Kati J; Chen, Christina; Chin, Jennifer; Chong, Jessica X; Cooper, Gregory M; Davis, Colleen; Felker, Lindsay; Frazar, Christopher; Hanna, David; He, Zongxiao; Jain, Preti; Jarvik, Gail P; Johanson, Eric; Jun, Goo; Kircher, Martin; Kolar, Tom; Leal, Suzanne M; Luksic, Daniel; McMillin, Margaret J; McGee, Sean; Munson, Brenton; O'Roak, Brian J; Paeper, Bryan; Patterson, Karynne; Phillips, Eric; Pijoan, Jessica; Poel, Christa; Robertson, Peggy D; Santos-Cortez, Regie Lyn P; Shaffer, Tristan; Shephard, Cindy; Siegel, Deborah L; Smith, Joshua D; Staples, Jeffrey C; Tabor, Holly K; Tackett, Monica; Wang, Gao T; Yi, Qian; Nickerson, Deborah A; Shendure, Jay; Bamshad, Michael J; Ahmad, Wasim; Leal, Suzanne M

    2016-01-01

    Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the β-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia. PMID:26695873

  18. Archimedes' principle for characterisation of recombinant whole cell biocatalysts.

    PubMed

    Schmitt, Steven; Walser, Marcel; Rehmann, Michael; Oesterle, Sabine; Panke, Sven; Held, Martin

    2018-02-14

    The ability of whole cells to catalyse multistep reactions, often yielding synthetically demanding compounds later used by industrial biotech or pharma, makes them an indispensable tool of synthetic chemistry. The complex reaction network employed by cellular catalysts and the still only moderate predictive power of modelling approaches leaves this tool challenging to engineer. Frequently, large libraries of semi-rationally generated variants are sampled in high-throughput mode in order to then identify improved catalysts. We present a method for space- and time-efficient processing of very large libraries (10 7 ) of recombinant cellular catalysts, in which the phenotypic characterisation and the isolation of positive variants for the entire library is done within one minute in a single, highly parallelized operation. Specifically, product formation in nanolitre-sized cultivation vessels is sensed and translated into the formation of catalase as a reporter protein. Exposure to hydrogen peroxide leads to oxygen gas formation and thus to a density shift of the cultivation vessel. Exploiting Archimedes' principle, this density shift and the resulting upward buoyancy force can be used for batch-wise library sampling. We demonstrate the potential of the method for both, screening and selection protocols, and envision a wide applicability of the system for biosensor-based assays.

  19. Lower frequency of TLR9 variant associated with protection from breast cancer among African Americans

    PubMed Central

    Tuomela, Johanna M.; Forero-Torres, Andres; Desmond, Renee; Vuopala, Katri S.; Harris, Kevin W.; Merner, Nancy D.

    2017-01-01

    Introduction Toll-like receptor 9 (TLR9) is an innate immune system DNA-receptor that regulates tumor invasion and immunity in vitro. Low tumor TLR9 expression has been associated with poor survival in Caucasian patients with triple negative breast cancer (TNBC). African American (AA) patients with TNBC have worse prognosis than Caucasians but whether this is due to differences in tumor biology remains controversial. We studied the prognostic significance of tumor Toll like receptor-9 (TLR9) protein expression among African American (AA) triple negative breast cancer (TNBC) patients. Germline TLR9 variants in European Americans (EAs) and AAs were investigated, to determine their contribution to AA breast cancer risk. Methods TLR9 expression was studied with immunohistochemistry in archival tumors. Exome Variant Server and The Cancer Genome Atlas were used to determine the genetic variation in the general EA and AA populations, and AA breast cancer cases. Minor allele frequencies (MAFs) were compared between EAs (n = 4300), AAs (n = 2203), and/or AA breast cancer cases (n = 131). Results Thirty-two TLR9 variants had a statistically significant MAF difference between general EAs and AAs. Twenty-one of them affect a CpG site. Rs352140, a variant previously associated with protection from breast cancer, is more common in EAs than AAs (p = 2.20E-16). EAs had more synonymous alleles, while AAs had more rare coding alleles. Similar analyses comparing AA breast cancer cases with AA controls did not reveal any variant class differences; however, three previously unreported TLR9 variants were associated with late onset breast cancer. Although not statistically significant, rs352140 was observed less frequently in AA cases compared to controls. Tumor TLR9 protein expression was not associated with prognosis. Conclusions Tumor TLR9 expression is not associated with prognosis in AA TNBC. Significant differences were detected in TLR9 variant MAFs between EAs and AAs. They may affect TLR9 expression and function. Rs352140, which may protect from breast cancer, is 1.6 X more common among EAs. These findings call for a detailed analysis of the contribution of TLR9 to breast cancer pathophysiology and health disparities. PMID:28886076

  20. Deep whole-genome sequencing of 90 Han Chinese genomes.

    PubMed

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency < 5%), including 5 813 503 single nucleotide polymorphisms, 1 169 199 InDels, and 17 927 structural variants. Using deep sequencing data, we have built a greatly expanded spectrum of genetic variation for the Han Chinese genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000 Genomes Project, as well as to other human genome projects. © The Authors 2017. Published by Oxford University Press.

  1. Lower frequency of TLR9 variant associated with protection from breast cancer among African Americans.

    PubMed

    Chandler, Madison R; Keene, Kimberly S; Tuomela, Johanna M; Forero-Torres, Andres; Desmond, Renee; Vuopala, Katri S; Harris, Kevin W; Merner, Nancy D; Selander, Katri S

    2017-01-01

    Toll-like receptor 9 (TLR9) is an innate immune system DNA-receptor that regulates tumor invasion and immunity in vitro. Low tumor TLR9 expression has been associated with poor survival in Caucasian patients with triple negative breast cancer (TNBC). African American (AA) patients with TNBC have worse prognosis than Caucasians but whether this is due to differences in tumor biology remains controversial. We studied the prognostic significance of tumor Toll like receptor-9 (TLR9) protein expression among African American (AA) triple negative breast cancer (TNBC) patients. Germline TLR9 variants in European Americans (EAs) and AAs were investigated, to determine their contribution to AA breast cancer risk. TLR9 expression was studied with immunohistochemistry in archival tumors. Exome Variant Server and The Cancer Genome Atlas were used to determine the genetic variation in the general EA and AA populations, and AA breast cancer cases. Minor allele frequencies (MAFs) were compared between EAs (n = 4300), AAs (n = 2203), and/or AA breast cancer cases (n = 131). Thirty-two TLR9 variants had a statistically significant MAF difference between general EAs and AAs. Twenty-one of them affect a CpG site. Rs352140, a variant previously associated with protection from breast cancer, is more common in EAs than AAs (p = 2.20E-16). EAs had more synonymous alleles, while AAs had more rare coding alleles. Similar analyses comparing AA breast cancer cases with AA controls did not reveal any variant class differences; however, three previously unreported TLR9 variants were associated with late onset breast cancer. Although not statistically significant, rs352140 was observed less frequently in AA cases compared to controls. Tumor TLR9 protein expression was not associated with prognosis. Tumor TLR9 expression is not associated with prognosis in AA TNBC. Significant differences were detected in TLR9 variant MAFs between EAs and AAs. They may affect TLR9 expression and function. Rs352140, which may protect from breast cancer, is 1.6 X more common among EAs. These findings call for a detailed analysis of the contribution of TLR9 to breast cancer pathophysiology and health disparities.

  2. VariantSpark: population scale clustering of genotype information.

    PubMed

    O'Brien, Aidan R; Saunders, Neil F W; Guo, Yi; Buske, Fabian A; Scott, Rodney J; Bauer, Denis C

    2015-12-10

    Genomic information is increasingly used in medical practice giving rise to the need for efficient analysis methodology able to cope with thousands of individuals and millions of variants. The widely used Hadoop MapReduce architecture and associated machine learning library, Mahout, provide the means for tackling computationally challenging tasks. However, many genomic analyses do not fit the Map-Reduce paradigm. We therefore utilise the recently developed SPARK engine, along with its associated machine learning library, MLlib, which offers more flexibility in the parallelisation of population-scale bioinformatics tasks. The resulting tool, VARIANTSPARK provides an interface from MLlib to the standard variant format (VCF), offers seamless genome-wide sampling of variants and provides a pipeline for visualising results. To demonstrate the capabilities of VARIANTSPARK, we clustered more than 3,000 individuals with 80 Million variants each to determine the population structure in the dataset. VARIANTSPARK is 80 % faster than the SPARK-based genome clustering approach, ADAM, the comparable implementation using Hadoop/Mahout, as well as ADMIXTURE, a commonly used tool for determining individual ancestries. It is over 90 % faster than traditional implementations using R and Python. The benefits of speed, resource consumption and scalability enables VARIANTSPARK to open up the usage of advanced, efficient machine learning algorithms to genomic data.

  3. Norovirus-like VP1 particles exhibit isolate dependent stability profiles

    NASA Astrophysics Data System (ADS)

    Pogan, Ronja; Schneider, Carola; Reimer, Rudolph; Hansman, Grant; Uetrecht, Charlotte

    2018-02-01

    Noroviruses are the main cause of viral gastroenteritis with new variants emerging frequently. There are three norovirus genogroups infecting humans. These genogroups are divided based on the sequence of their major capsid protein, which is able to form virus-like particles (VLPs) when expressed recombinantly. VLPs of the prototypical GI.1 Norwalk virus are known to disassemble into specific capsid protein oligomers upon alkaline treatment. Here, native mass spectrometry and electron microscopy on variants of GI.1 and of GII.17 were performed, revealing differences in terms of stability between these groups. Beyond that, these experiments indicate differences even between variants within a genotype. The capsid stability was monitored in different ammonium acetate solutions varying both in ionic strength and pH. The investigated GI.1 West Chester isolate showed comparable disassembly profiles to the previously studied GI.1 Norwalk virus isolate. However, differences were observed with the West Chester being more sensitive to alkaline pH. In stark contrast to that, capsids of the variant belonging to the currently prevalent genogroup GII were stable in all tested conditions. Both variants formed smaller capsid particles already at neutral pH. Certain amino acid substitutions in the S domain of West Chester relative to the Norwalk virus potentially result in the formation of these T  =  1 capsids.

  4. Lessons for livestock genomics from genome and transcriptome sequencing in cattle and other mammals.

    PubMed

    Taylor, Jeremy F; Whitacre, Lynsey K; Hoff, Jesse L; Tizioto, Polyana C; Kim, JaeWoo; Decker, Jared E; Schnabel, Robert D

    2016-08-17

    Decreasing sequencing costs and development of new protocols for characterizing global methylation, gene expression patterns and regulatory regions have stimulated the generation of large livestock datasets. Here, we discuss experiences in the analysis of whole-genome and transcriptome sequence data. We analyzed whole-genome sequence (WGS) data from 132 individuals from five canid species (Canis familiaris, C. latrans, C. dingo, C. aureus and C. lupus) and 61 breeds, three bison (Bison bison), 64 water buffalo (Bubalus bubalis) and 297 bovines from 17 breeds. By individual, data vary in extent of reference genome depth of coverage from 4.9X to 64.0X. We have also analyzed RNA-seq data for 580 samples representing 159 Bos taurus and Rattus norvegicus animals and 98 tissues. By aligning reads to a reference assembly and calling variants, we assessed effects of average depth of coverage on the actual coverage and on the number of called variants. We examined the identity of unmapped reads by assembling them and querying produced contigs against the non-redundant nucleic acids database. By imputing high-density single nucleotide polymorphism data on 4010 US registered Angus animals to WGS using Run4 of the 1000 Bull Genomes Project and assessing the accuracy of imputation, we identified misassembled reference sequence regions. We estimate that a 24X depth of coverage is required to achieve 99.5 % coverage of the reference assembly and identify 95 % of the variants within an individual's genome. Genomes sequenced to low average coverage (e.g., <10X) may fail to cover 10 % of the reference genome and identify <75 % of variants. About 10 % of genomic DNA or transcriptome sequence reads fail to align to the reference assembly. These reads include loci missing from the reference assembly and misassembled genes and interesting symbionts, commensal and pathogenic organisms. Assembly errors and a lack of annotation of functional elements significantly limit the utility of the current draft livestock reference assemblies. The Functional Annotation of Animal Genomes initiative seeks to annotate functional elements, while a 70X Pac-Bio assembly for cow is underway and may result in a significantly improved reference assembly.

  5. Interplay of Filaggrin Loss-of-Function Variants, Allergic Sensitization, and Eczema in a Longitudinal Study Covering Infancy to 18 Years of Age

    PubMed Central

    Ziyab, Ali H.; Karmaus, Wilfried; Yousefi, Mitra; Ewart, Susan; Schauberger, Eric; Holloway, John W.; Zhang, Hongmei; Arshad, Syed Hasan

    2012-01-01

    Background Immune specific genes as well as genes regulating the formation of skin barrier are major determinants for eczema manifestation. There is a debate as to whether allergic sensitization and filaggrin gene (FLG) variants lead to eczema or FLG variants and eczema increase the risk of allergic sensitization. To investigate the time-order between eczema and allergic sensitization with respect to FLG variants, data from a large prospective study covering infancy to late adolescence were analyzed. Methodology/Principal Findings Repeated measurements of eczema and allergic sensitization (documented by skin prick tests) at ages 1, 2, 4, 10, and 18 years were ascertained in the Isle of Wight birth cohort (n = 1,456). Three transition periods were analyzed: age 1-or-2 to 4, 4 to 10, and 10 to 18 years. FLG variants were genotyped in 1,150 participants. Over the three transition periods, in temporal sequence analyses of initially eczema-free participants, the combined effect of FLG variants and allergic sensitization showed a 2.92-fold (95% CI: 1.47–5.77) increased risk ratio (RR) of eczema in subsequent examinations. This overall risk was more pronounced at a younger age (transition period 1-or-2 to 4, RR = 6.47, 95% CI: 1.96–21.33). In contrast, FLG variants in combination with eczema showed a weaker, but significant, risk ratio for subsequent allergic sensitization only up to 10 years of age. Conclusions/Significance Taking the time order into account, this prospective study demonstrates for the first time, that a combination of FLG variants and allergic sensitization increased the risk of eczema in subsequent years. Also FLG variants interacted with eczema and increased the risk of subsequent allergic sensitization, which, was limited to the younger age. Hence, early restoration of defective skin barrier could prevent allergic sensitization and subsequently reduce the risk of eczema development. PMID:22403702

  6. Bayesian reconstruction of transmission within outbreaks using genomic variants.

    PubMed

    De Maio, Nicola; Worby, Colin J; Wilson, Daniel J; Stoesser, Nicole

    2018-04-01

    Pathogen genome sequencing can reveal details of transmission histories and is a powerful tool in the fight against infectious disease. In particular, within-host pathogen genomic variants identified through heterozygous nucleotide base calls are a potential source of information to identify linked cases and infer direction and time of transmission. However, using such data effectively to model disease transmission presents a number of challenges, including differentiating genuine variants from those observed due to sequencing error, as well as the specification of a realistic model for within-host pathogen population dynamics. Here we propose a new Bayesian approach to transmission inference, BadTrIP (BAyesian epiDemiological TRansmission Inference from Polymorphisms), that explicitly models evolution of pathogen populations in an outbreak, transmission (including transmission bottlenecks), and sequencing error. BadTrIP enables the inference of host-to-host transmission from pathogen sequencing data and epidemiological data. By assuming that genomic variants are unlinked, our method does not require the computationally intensive and unreliable reconstruction of individual haplotypes. Using simulations we show that BadTrIP is robust in most scenarios and can accurately infer transmission events by efficiently combining information from genetic and epidemiological sources; thanks to its realistic model of pathogen evolution and the inclusion of epidemiological data, BadTrIP is also more accurate than existing approaches. BadTrIP is distributed as an open source package (https://bitbucket.org/nicofmay/badtrip) for the phylogenetic software BEAST2. We apply our method to reconstruct transmission history at the early stages of the 2014 Ebola outbreak, showcasing the power of within-host genomic variants to reconstruct transmission events.

  7. Polymerization-Defective Fibrinogen Variant gammaD364A Binds Knob “A” Peptide Mimic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowley,S.; Merenbloom, B.; Heroux, A.

    2008-01-01

    Fibrin polymerization is supported in part by interactions called 'A:a'. Crystallographic studies revealed ?364Asp is part of hole 'a' that interacts with knob 'A' peptide mimic, GPRP. Biochemical studies have shown ?364Asp is critical to polymerization, as polymerization of variants ?D364A, ?D364H, and ?D364V is exceptionally impaired. To understand the molecular basis for the aberrant function, we solved the crystal structure of fragment D from ?D364A. Surprisingly, the structure (rfD-?D364A+GP) showed near normal 'A:a' interactions with GPRP bound to hole 'a' and no change in the overall structure of ?D364A. Of note, inspection of the structure showed negative electrostatic potentialmore » inside hole 'a' was diminished by this substitution. We examined GPRP binding to the ?364Asp variants in solution by plasmin protection assay. We found no protection of either ?D364H or ?D364V but partial protection of ?D364A, indicating the peptide does not bind to either ?D364H or ?D364V and binds more weakly than normal to ?D364A. We also examined protection by calcium and found all variants were indistinguishable from normal, suggesting the global structures of the variants are not markedly different from normal. Our data imply that ?364Asp per se is not required for knob 'A' binding to hole 'a'; rather, this residue's negative charge has a critical role in the electrostatic interactions that facilitate the important first step in fibrin polymerization.« less

  8. SNIF-ACT: A Cognitive Model of User Navigation on the World Wide Web

    DTIC Science & Technology

    2007-01-03

    opinions of others on a particular topic or problems. Obviously, our model was not able to answer these questions directly, and more research is... Research Center 3333 Coyote Hill Rd Palo Alto, CA 94304, USA Manuscript submitted to Human-Computer Interaction Date: Jan 03, 2007...models. Rational analysis is a variant form of an approach called methodological adaptationism that has also shaped research programs in behavioral

  9. Soldier’s Load and the Multifunctional Utility/Logistics and Equipment-Transport

    DTIC Science & Technology

    2010-06-11

    Utility/Logistics Equipment-Countermine and an armed reconnaissance variant called the Armed Robotic Vehicle-Assault (Light). All three Lockheed...mission and requires various levels of human- robot interaction (National Institute of Standards and Technology 2004, 14). Teleoperation. A mode of...use of robots as an act of cowardice, especially in cultures which hold in high esteem the nobility of sacrificing oneself for a higher purpose (Singer

  10. Behavioral Consequences of Kainic Acid Lesions and Fetal Transplants of the Striatum

    DTIC Science & Technology

    1984-06-12

    Selected sections were also stained with cresyl violet in order to facilitate the visualization of neuronal cytology and morphology. All sections...tendency to mutism and depression with frequent suicidal ideation (Bruyn, 1973). The Westphal variant of HD, also called the rigid-hypokinetic...1978). In situ injections of kainic acid: A new method for selectively lesioning neuronal cell bodies while sparing axons of passage. Journal of

  11. Case for diagnosis*

    PubMed Central

    Fernandes, Iolanda Conde; Sanches, Madalena; Alves, Rosário; Selores, Manuela

    2012-01-01

    We report a clinical case of a rare variant of pemphigus - pemphigus herpetiformis - which combines the clinical features of dermatitis herpetiformis with the immunological findings of pemphigus. Due to its atypical presentation, it is frequently misdiagnosed as dermatitis herpetiformis. It is basically characterized by the herpetiform pattern of skin lesions, severe pruritus and by the presence of eosinophilic spongiosis confirmed on histopathology. We call attention to the excellent response to dapsone. PMID:23197221

  12. 76 FR 6581 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R Variant F Airplanes (Collectively Called A300-600 Series Airplanes) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... design review against explosion risks. During improvement of the protection of fuel pump wiring against...

  13. 76 FR 27242 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R Variant F Airplanes (Collectively Called A300-600 Series Airplanes) AGENCY: Federal Aviation... required to conduct a design review against explosion risks. During improvement of the protection of fuel...

  14. Are special read alignment strategies necessary and cost-effective when handling sequencing reads from patient-derived tumor xenografts?

    PubMed

    Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y

    2014-12-23

    Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.

  15. Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data

    PubMed Central

    Kosugi, Shunichi; Natsume, Satoshi; Yoshida, Kentaro; MacLean, Daniel; Cano, Liliana; Kamoun, Sophien; Terauchi, Ryohei

    2013-01-01

    Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/. PMID:24116042

  16. Asymmetrical Fc Engineering Greatly Enhances Antibody-dependent Cellular Cytotoxicity (ADCC) Effector Function and Stability of the Modified Antibodies*

    PubMed Central

    Liu, Zhi; Gunasekaran, Kannan; Wang, Wei; Razinkov, Vladimir; Sekirov, Laura; Leng, Esther; Sweet, Heather; Foltz, Ian; Howard, Monique; Rousseau, Anne-Marie; Kozlosky, Carl; Fanslow, William; Yan, Wei

    2014-01-01

    Antibody-dependent cellular cytotoxicity (ADCC) is mediated through the engagement of the Fc segment of antibodies with Fcγ receptors (FcγRs) on immune cells upon binding of tumor or viral antigen. The co-crystal structure of FcγRIII in complex with Fc revealed that Fc binds to FcγRIII asymmetrically with two Fc chains contacting separate regions of the FcγRIII by utilizing different residues. To fully explore this asymmetrical nature of the Fc-FcγR interaction, we screened more than 9,000 individual clones in Fc heterodimer format in which different mutations were introduced at the same position of two Fc chains using a high throughput competition AlphaLISA® assay. To this end, we have identified a panel of novel Fc variants with significant binding improvement to FcγRIIIA (both Phe-158 and Val-158 allotypes), increased ADCC activity in vitro, and strong tumor growth inhibition in mice xenograft human tumor models. Compared with previously identified Fc variants in conventional IgG format, Fc heterodimers with asymmetrical mutations can achieve similar or superior potency in ADCC-mediated tumor cell killing and demonstrate improved stability in the CH2 domain. Fc heterodimers also allow more selectivity toward activating FcγRIIA than inhibitory FcγRIIB. Afucosylation of Fc variants further increases the affinity of Fc to FcγRIIIA, leading to much higher ADCC activity. The discovery of these Fc variants will potentially open up new opportunities of building the next generation of therapeutic antibodies with enhanced ADCC effector function for the treatment of cancers and infectious diseases. PMID:24311787

  17. Degradome Products of the Matricellular Protein CCN1 as Modulators of Pathological Angiogenesis in the Retina*

    PubMed Central

    Choi, Jinok; Lin, Ann; Shrier, Eric; Lau, Lester F.; Grant, Maria B.; Chaqour, Brahim

    2013-01-01

    CCN1 is a matricellular protein involved in normal vascular development and tissue repair. CCN1 exhibits cell- and context-dependent activities that are reflective of its tetramodular structure phylogenetically linked to four domains found in various matrix proteins. Here, we show that vitreal fluids from patients with proliferative diabetic retinopathy (PDR) were enriched with a two-module form of CCN1 comprising completely or partially the insulin-like growth factor-binding protein (IGFBP) and von Willebrand factor type C (vWC) domains. The two- and three-module forms comprising, in addition to IGFBP and vWC, the thrombospondin type 1 (TSP1) repeats are CCN1 degradome products by matrix metalloproteinase-2 and -14. The functional significance of CCN1 and its truncated variants was determined in the mouse model of oxygen-induced retinopathy, which simulates neovascular growth associated with PDR and assesses treatment outcomes. In this model, lentivirus-mediated expression of either CCN1 or the IGFBP-vWC-TSP1 form reduced ischemia-induced neovascularization, whereas ectopic expression of the IGFBP-vWC variant exacerbated pathological angiogenesis. The IGFBP-vWC form has potent proangiogenic properties promoting retinal endothelial cell growth, migration, and three-dimensional tubular structure formation, whereas the IGFBP-vWC-TSP1 variant suppressed cell growth and angiogenic gene expression. Both IGFBP-vWC and IGFBP-vWC-TSP1 forms exhibited predictable variations of their domain folding that enhanced their functional potential. These data provide new insights into the formation and activities of CCN1-truncated variants and raise the predictive value of the form containing completely or partially the IGFBP and vWC domains as a surrogate marker of CCN1 activity in PDR distinguishing pathological from physiological angiogenesis. PMID:23798676

  18. Influence of a heptad repeat stutter on the pH-dependent conformational behavior of the central coiled-coil from influenza hemagglutinin HA2.

    PubMed

    Higgins, Chelsea D; Malashkevich, Vladimir N; Almo, Steven C; Lai, Jonathan R

    2014-09-01

    The coiled-coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled-coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a "stutter," a deviation of the idealized heptad repeat that is found in the central coiled-coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter-containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled-coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH-dependent coiled-coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled-coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH-dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2. © 2014 Wiley Periodicals, Inc.

  19. [The phenomenon of antigenic defectiveness in naturally circulating strains of the tick-borne encephalitis virus and its possible connection to seronegative forms of the disease].

    PubMed

    Pogodina, V V; Bochkova, N G; Dzhivanian, T I; Levina, L S; Karganova, G G; Riasova, R A; Sergeeva, V A; Lashkevich, V A

    1992-01-01

    Ten strains of tick-borne encephalitis (TBE) virus isolated from single specimens of I. persulcatus ticks were studied. The strains were divided into antigenically complete (AC) and antigenically defective (AD), depending on the presence or absence of some virus antigens in concentrated virus preparations, characteristics in rocket immune electrophoresis (RIEP), rate and intensity of humoral immune response in monkeys and rabbits, and plaque size in SPEV cell culture. The AC-strain markers include high activities of precipitating, hemagglutinating (HA), and complement-fixing (CF) antigens, formation of precipitates moving in rocket shape towards anode and cathode in RIEP, rapid development of antihemagglutinins and virus-neutralizing antibodies, large plaques (3-5 mm). The AD variants are characterized by the lack of HA and precipitating activity, low titres of CF antigen, slow and poor immune response, the lack of cathode precipitate "rocket", very small plaques. The antigenic defectiveness is transitory and shows in early passages; after 10-11 passages in SPEV cell cultures or in white mice, transformation AD----AC occurs. A transformed strain is neutralized, like standard TBE strains, by blood sera of a typical patient with poliomyelitis-like form of TBE. Examinations of blood sera from the population of an endemic zone (Yaroslavl Province) and 67 TBE patients (Kurgan Province) demonstrated the association of AC and AD variants with the formation of immune portion of the population and TBE etiology. Cases of the disease confirmed by seroconversion in HI with commercial diagnosticum are associated with AC variants, whereas AD variants are associated with those TBE cases which are difficult to diagnose using the commercial diagnosticum.

  20. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    PubMed

    Samson, Mark; Jow, Margaret M; Wong, Catherine C L; Fitzpatrick, Colin; Aslanian, Aaron; Saucedo, Israel; Estrada, Rodrigo; Ito, Takashi; Park, Sung-kyu Robin; Yates, John R; Chu, Diana S

    2014-10-01

    In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  1. Isolation and characterization of Lactobacillus helveticus DSM 20075 variants with improved autolytic capacity.

    PubMed

    Spus, Maciej; Liu, Hua; Wels, Michiel; Abee, Tjakko; Smid, Eddy J

    2017-01-16

    Lactobacillus helveticus is widely used in dairy fermentations and produces a range of enzymes, which upon cell lysis can be released into the cheese matrix and impact degradation of proteins, peptides and lipids. In our study we set out to explore the potential of Lb. helveticus DSM 20075 for increased autolytic capacity triggered by conditions such as low pH and high salt concentrations encountered in cheese environments. Lb. helveticus DSM 20075 was subjected to varied incubation temperatures (ranging from 37 to 50°C). High-temperature incubation (in the range of 45 to 50°C) allowed us to obtain a collection of six variant strains (V45-V50), which in comparison to the wild-type strain, showed higher growth rates at elevated temperatures (42°C-45°C). Moreover, variant strain V50 showed a 4-fold higher, in comparison to wild type, autolytic capacity in cheese-like conditions. Next, strain V50 was used as an adjunct in lab-scale cheese making trials to measure its impact on aroma formation during ripening. Specifically, in cheeses made with strain V50, the relative abundance of benzaldehyde increased 3-fold compared to cheeses made with the wild-type strain. Analysis of the genome sequence of strain V50 revealed multiple mutations in comparison to the wild-type strain DSM 20075 including a mutation found in a gene coding for a metal ion transporter, which can potentially be linked to intracellular accumulation of Mn 2+ and benzaldehyde formation. The approach of high-temperature incubation can be applied in dairy industry for the selection of (adjunct) cultures targeted at accelerated cheese ripening and aroma formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein

    PubMed Central

    Augustin, Peter; Toplak, Marina; Fuchs, Katharina; Gerstmann, Eva Christine; Prassl, Ruth; Winkler, Andreas; Macheroux, Peter

    2018-01-01

    The heterodimeric human (h) electron-transferring flavoprotein (ETF) transfers electrons from at least 13 different flavin dehydrogenases to the mitochondrial respiratory chain through a non-covalently bound FAD cofactor. Here, we describe the discovery of an irreversible and pH-dependent oxidation of the 8α-methyl group to 8-formyl-FAD (8f-FAD), which represents a unique chemical modification of a flavin cofactor in the human flavoproteome. Furthermore, a set of hETF variants revealed that several conserved amino acid residues in the FAD-binding pocket of electron-transferring flavoproteins are required for the conversion to the formyl group. Two of the variants generated in our study, namely αR249C and αT266M, cause glutaric aciduria type II, a severe inherited disease. Both of the variants showed impaired formation of 8f-FAD shedding new light on the potential molecular cause of disease development. Interestingly, the conversion of FAD to 8f-FAD yields a very stable flavin semiquinone that exhibited slightly lower rates of electron transfer in an artificial assay system than hETF containing FAD. In contrast, the formation of 8f-FAD enhanced the affinity to human dimethylglycine dehydrogenase 5-fold, indicating that formation of 8f-FAD modulates the interaction of hETF with client enzymes in the mitochondrial matrix. Thus, we hypothesize that the FAD cofactor bound to hETF is subject to oxidation in the alkaline (pH 8) environment of the mitochondrial matrix, which may modulate electron transport between client dehydrogenases and the respiratory chain. This discovery challenges the current concepts of electron transfer processes in mitochondria. PMID:29301933

  3. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors.

    PubMed

    Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois

    We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials. 1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted.

  4. Characterisation of the novel deleterious RAD51C p.Arg312Trp variant and prioritisation criteria for functional analysis of RAD51C missense changes.

    PubMed

    Gayarre, Javier; Martín-Gimeno, Paloma; Osorio, Ana; Paumard, Beatriz; Barroso, Alicia; Fernández, Victoria; de la Hoya, Miguel; Rojo, Alejandro; Caldés, Trinidad; Palacios, José; Urioste, Miguel; Benítez, Javier; García, María J

    2017-09-26

    Despite a high prevalence of deleterious missense variants, most studies of RAD51C ovarian cancer susceptibility gene only provide in silico pathogenicity predictions of missense changes. We identified a novel deleterious RAD51C missense variant (p.Arg312Trp) in a high-risk family, and propose a criteria to prioritise RAD51C missense changes qualifying for functional analysis. To evaluate pathogenicity of p.Arg312Trp variant we used sequence homology, loss of heterozygosity (LOH) and segregation analysis, and a comprehensive functional characterisation. To define a functional-analysis prioritisation criteria, we used outputs for the known functionally confirmed deleterious and benign RAD51C missense changes from nine pathogenicity prediction algorithms. The p.Arg312Trp variant failed to correct mitomycin and olaparib hypersensitivity and to complement abnormal RAD51C foci formation according to functional assays, which altogether with LOH and segregation data demonstrated deleteriousness. Prioritisation criteria were based on the number of predictors providing a deleterious output, with a minimum of 5 to qualify for testing and a PredictProtein score greater than 33 to assign high-priority indication. Our study points to a non-negligible number of RAD51C missense variants likely to impair protein function, provides a guideline to prioritise and encourage their selection for functional analysis and anticipates that reference laboratories should have available resources to conduct such assays.

  5. HDF-EOS 2 and HDF-EOS 5 Compatibility Library

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Bane, Bob; Yang, Jingli

    2008-01-01

    The HDF-EOS 2 and HDF-EOS 5 Compatibility Library contains C-language functions that provide uniform access to HDF-EOS 2 and HDF-EOS 5 files through one set of application programming interface (API) calls. ("HDFEOS 2" and "HDF-EOS 5" are defined in the immediately preceding article.) Without this library, differences between the APIs of HDF-EOS 2 and HDF-EOS 5 would necessitate writing of different programs to cover HDF-EOS 2 and HDF-EOS 5. The API associated with this library is denoted "he25." For nearly every HDF-EOS 5 API call, there is a corresponding he25 API call. If a file in question is in the HDF-EOS 5 format, the code reverts to the corresponding HDF-EOS 5 call; if the file is in the HDF-EOS 2 format, the code translates the arguments to HDF-EOS 2 equivalents (if necessary), calls the HDFEOS 2 call, and retranslates the results back to HDF-EOS 5 (if necessary).

  6. Theoretical foundations of spatially-variant mathematical morphology part ii: gray-level images.

    PubMed

    Bouaynaya, Nidhal; Schonfeld, Dan

    2008-05-01

    In this paper, we develop a spatially-variant (SV) mathematical morphology theory for gray-level signals and images in the Euclidean space. The proposed theory preserves the geometrical concept of the structuring function, which provides the foundation of classical morphology and is essential in signal and image processing applications. We define the basic SV gray-level morphological operators (i.e., SV gray-level erosion, dilation, opening, and closing) and investigate their properties. We demonstrate the ubiquity of SV gray-level morphological systems by deriving a kernel representation for a large class of systems, called V-systems, in terms of the basic SV graylevel morphological operators. A V-system is defined to be a gray-level operator, which is invariant under gray-level (vertical) translations. Particular attention is focused on the class of SV flat gray-level operators. The kernel representation for increasing V-systems is a generalization of Maragos' kernel representation for increasing and translation-invariant function-processing systems. A representation of V-systems in terms of their kernel elements is established for increasing and upper-semi-continuous V-systems. This representation unifies a large class of spatially-variant linear and non-linear systems under the same mathematical framework. Finally, simulation results show the potential power of the general theory of gray-level spatially-variant mathematical morphology in several image analysis and computer vision applications.

  7. Next-generation sequencing meets genetic diagnostics: development of a comprehensive workflow for the analysis of BRCA1 and BRCA2 genes

    PubMed Central

    Feliubadaló, Lídia; Lopez-Doriga, Adriana; Castellsagué, Ester; del Valle, Jesús; Menéndez, Mireia; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Gómez, Carolina; Campos, Olga; Pineda, Marta; González, Sara; Moreno, Victor; Brunet, Joan; Blanco, Ignacio; Serra, Eduard; Capellá, Gabriel; Lázaro, Conxi

    2013-01-01

    Next-generation sequencing (NGS) is changing genetic diagnosis due to its huge sequencing capacity and cost-effectiveness. The aim of this study was to develop an NGS-based workflow for routine diagnostics for hereditary breast and ovarian cancer syndrome (HBOCS), to improve genetic testing for BRCA1 and BRCA2. A NGS-based workflow was designed using BRCA MASTR kit amplicon libraries followed by GS Junior pyrosequencing. Data analysis combined Variant Identification Pipeline freely available software and ad hoc R scripts, including a cascade of filters to generate coverage and variant calling reports. A BRCA homopolymer assay was performed in parallel. A research scheme was designed in two parts. A Training Set of 28 DNA samples containing 23 unique pathogenic mutations and 213 other variants (33 unique) was used. The workflow was validated in a set of 14 samples from HBOCS families in parallel with the current diagnostic workflow (Validation Set). The NGS-based workflow developed permitted the identification of all pathogenic mutations and genetic variants, including those located in or close to homopolymers. The use of NGS for detecting copy-number alterations was also investigated. The workflow meets the sensitivity and specificity requirements for the genetic diagnosis of HBOCS and improves on the cost-effectiveness of current approaches. PMID:23249957

  8. An Organismal CNV Mutator Phenotype Restricted to Early Human Development.

    PubMed

    Liu, Pengfei; Yuan, Bo; Carvalho, Claudia M B; Wuster, Arthur; Walter, Klaudia; Zhang, Ling; Gambin, Tomasz; Chong, Zechen; Campbell, Ian M; Coban Akdemir, Zeynep; Gelowani, Violet; Writzl, Karin; Bacino, Carlos A; Lindsay, Sarah J; Withers, Marjorie; Gonzaga-Jauregui, Claudia; Wiszniewska, Joanna; Scull, Jennifer; Stankiewicz, Paweł; Jhangiani, Shalini N; Muzny, Donna M; Zhang, Feng; Chen, Ken; Gibbs, Richard A; Rautenstrauss, Bernd; Cheung, Sau Wai; Smith, Janice; Breman, Amy; Shaw, Chad A; Patel, Ankita; Hurles, Matthew E; Lupski, James R

    2017-02-23

    De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. High-density lipoprotein-like particle formation of Synuclein variants.

    PubMed

    Eichmann, Cédric; Kumari, Pratibha; Riek, Roland

    2017-01-01

    α-Synuclein (α-Syn) is an intrinsically disordered protein in solution whose fibrillar aggregates are the hallmark of Parkinson's disease (PD). Although the specific function of α-Syn is still unclear, its high structural plasticity is key for the interactions of α-Syn with biological membranes. Recently, it has been observed that α-Syn is able to form high-density lipoprotein-like (HDL-like) particles that are reminiscent of self-assembling phospholipid bilayer nanodiscs. Here, we extended our preparation method for the production of α-Syn lipoprotein particles to the β- and γ-Syn variants, and the PD-related familial α-Syn mutants. We show that all human Syns can form stable and homogeneous populations of HDL-like particles with distinct morphologies. Our results characterize the impact of the individual Syns on the formation capacity of these particles and indicate that Syn HDL-like particles are neither causing toxicity nor a toxicity-related loss of α-Syn in PD. © 2016 Federation of European Biochemical Societies.

  10. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples.

    PubMed

    Ciarlo, Eleonora; Massone, Sara; Penna, Ilaria; Nizzari, Mario; Gigoni, Arianna; Dieci, Giorgio; Russo, Claudio; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo

    2013-03-01

    Recent studies indicated that sortilin-related receptor 1 (SORL1) is a risk gene for late-onset Alzheimer's disease (AD), although its role in the aetiology and/or progression of this disorder is not fully understood. Here, we report the finding of a non-coding (nc) RNA (hereafter referred to as 51A) that maps in antisense configuration to intron 1 of the SORL1 gene. 51A expression drives a splicing shift of SORL1 from the synthesis of the canonical long protein variant A to an alternatively spliced protein form. This process, resulting in a decreased synthesis of SORL1 variant A, is associated with impaired processing of amyloid precursor protein (APP), leading to increased Aβ formation. Interestingly, we found that 51A is expressed in human brains, being frequently upregulated in cerebral cortices from individuals with Alzheimer's disease. Altogether, these findings document a novel ncRNA-dependent regulatory pathway that might have relevant implications in neurodegeneration.

  11. The XBabelPhish MAGE-ML and XML translator.

    PubMed

    Maier, Don; Wymore, Farrell; Sherlock, Gavin; Ball, Catherine A

    2008-01-18

    MAGE-ML has been promoted as a standard format for describing microarray experiments and the data they produce. Two characteristics of the MAGE-ML format compromise its use as a universal standard: First, MAGE-ML files are exceptionally large - too large to be easily read by most people, and often too large to be read by most software programs. Second, the MAGE-ML standard permits many ways of representing the same information. As a result, different producers of MAGE-ML create different documents describing the same experiment and its data. Recognizing all the variants is an unwieldy software engineering task, resulting in software packages that can read and process MAGE-ML from some, but not all producers. This Tower of MAGE-ML Babel bars the unencumbered exchange of microarray experiment descriptions couched in MAGE-ML. We have developed XBabelPhish - an XQuery-based technology for translating one MAGE-ML variant into another. XBabelPhish's use is not restricted to translating MAGE-ML documents. It can transform XML files independent of their DTD, XML schema, or semantic content. Moreover, it is designed to work on very large (> 200 Mb.) files, which are common in the world of MAGE-ML. XBabelPhish provides a way to inter-translate MAGE-ML variants for improved interchange of microarray experiment information. More generally, it can be used to transform most XML files, including very large ones that exceed the capacity of most XML tools.

  12. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  13. PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries.

    PubMed

    Jones, Alicia M; Atkinson, Joshua T; Silberg, Jonathan J

    2017-01-01

    Rearrangements that alter the order of a protein's sequence are used in the lab to study protein folding, improve activity, and build molecular switches. One of the simplest ways to rearrange a protein sequence is through random circular permutation, where native protein termini are linked together and new termini are created elsewhere through random backbone fission. Transposase mutagenesis has emerged as a simple way to generate libraries encoding different circularly permuted variants of proteins. With this approach, a synthetic transposon (called a permuteposon) is randomly inserted throughout a circularized gene to generate vectors that express different permuted variants of a protein. In this chapter, we outline the protocol for constructing combinatorial libraries of circularly permuted proteins using transposase mutagenesis, and we describe the different permuteposons that have been developed to facilitate library construction.

  14. 47 CFR 80.121 - Public coast stations using telegraphy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... use the ship station selective calling number (5 digits) and its assigned coast station identification number (4 digits). Calls to ship stations must employ the following format: Ship station selective call number, repeated twice; “DE”, sent once; and coast station identification number, repeated twice. When...

  15. 47 CFR 80.121 - Public coast stations using telegraphy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... use the ship station selective calling number (5 digits) and its assigned coast station identification number (4 digits). Calls to ship stations must employ the following format: Ship station selective call number, repeated twice; “DE”, sent once; and coast station identification number, repeated twice. When...

  16. 47 CFR 80.121 - Public coast stations using telegraphy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... use the ship station selective calling number (5 digits) and its assigned coast station identification number (4 digits). Calls to ship stations must employ the following format: Ship station selective call number, repeated twice; “DE”, sent once; and coast station identification number, repeated twice. When...

  17. 47 CFR 80.121 - Public coast stations using telegraphy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... use the ship station selective calling number (5 digits) and its assigned coast station identification number (4 digits). Calls to ship stations must employ the following format: Ship station selective call number, repeated twice; “DE”, sent once; and coast station identification number, repeated twice. When...

  18. The Ensembl REST API: Ensembl Data for Any Language.

    PubMed

    Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R S; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul

    2015-01-01

    We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. © The Author 2014. Published by Oxford University Press.

  19. Discovery of genetic variants of the kinases that activate tenofovir among individuals in the United States, Thailand, and South Africa: HPTN067.

    PubMed

    Figueroa, Dominique B; Tillotson, Joseph; Li, Maoji; Piwowar-Manning, Estelle; Hendrix, Craig W; Holtz, Timothy H; Bokoch, Kevin; Bekker, Linda-Gail; van Griensven, Frits; Mannheimer, Sharon; Hughes, James P; Grant, Robert M; Bumpus, Namandjé N

    2018-01-01

    Tenofovir (TFV), a nucleotide reverse transcriptase inhibitor, requires two phosphorylation steps to form a competitive inhibitor of HIV reverse transcriptase. Adenylate kinase 2 (AK2) has been previously demonstrated to phosphorylate tenofovir to tenofovir-monophosphate, while creatine kinase, muscle (CKM), pyruvate kinase, muscle (PKM) and pyruvate kinase, liver and red blood cell (PKLR) each have been found to phosphorylate tenofovir-monophosphate to the pharmacologically active tenofovir-diphosphate. In the present study, genomic DNA isolated from dried blood spots collected from 505 participants from Bangkok, Thailand; Cape Town, South Africa; and New York City, USA were examined for variants in AK2, CKM, PKM, and PKLR using next-generation sequencing. The bioinformatics tools SIFT and PolyPhen predicted that 19 of the 505 individuals (3.7% frequency) carried variants in at least one kinase that would result in a decrease or loss of enzymatic activity. To functionally test these predictions, AK2 and AK2 variants were expressed in and purified from E. coli, followed by investigation of their activities towards tenofovir. Interestingly, we found that purified AK2 had the ability to phosphorylate tenofovir-monophosphate to tenofovir-diphosphate in addition to phosphorylating tenofovir to tenofovir-monophosphate. Further, four of the six AK2 variants predicted to result in a loss or decrease of enzyme function exhibited a ≥30% decrease in activity towards tenofovir in our in vitro assays. Of note, an AK2 K28R variant resulted in a 72% and 81% decrease in the formation of tenofovir-monophosphate and tenofovir-diphosphate, respectively. These data suggest that there are naturally occurring genetic variants that could potentially impact TFV activation.

  20. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines.

    PubMed

    Ellrott, Kyle; Bailey, Matthew H; Saksena, Gordon; Covington, Kyle R; Kandoth, Cyriac; Stewart, Chip; Hess, Julian; Ma, Singer; Chiotti, Kami E; McLellan, Michael; Sofia, Heidi J; Hutter, Carolyn; Getz, Gad; Wheeler, David; Ding, Li

    2018-03-28

    The Cancer Genome Atlas (TCGA) cancer genomics dataset includes over 10,000 tumor-normal exome pairs across 33 different cancer types, in total >400 TB of raw data files requiring analysis. Here we describe the Multi-Center Mutation Calling in Multiple Cancers project, our effort to generate a comprehensive encyclopedia of somatic mutation calls for the TCGA data to enable robust cross-tumor-type analyses. Our approach accounts for variance and batch effects introduced by the rapid advancement of DNA extraction, hybridization-capture, sequencing, and analysis methods over time. We present best practices for applying an ensemble of seven mutation-calling algorithms with scoring and artifact filtering. The dataset created by this analysis includes 3.5 million somatic variants and forms the basis for PanCan Atlas papers. The results have been made available to the research community along with the methods used to generate them. This project is the result of collaboration from a number of institutes and demonstrates how team science drives extremely large genomics projects. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Genotyping in the cloud with Crossbow.

    PubMed

    Gurtowski, James; Schatz, Michael C; Langmead, Ben

    2012-09-01

    Crossbow is a scalable, portable, and automatic cloud computing tool for identifying SNPs from high-coverage, short-read resequencing data. It is built on Apache Hadoop, an implementation of the MapReduce software framework. Hadoop allows Crossbow to distribute read alignment and SNP calling subtasks over a cluster of commodity computers. Two robust tools, Bowtie and SOAPsnp, implement the fundamental alignment and variant calling operations respectively, and have demonstrated capabilities within Crossbow of analyzing approximately one billion short reads per hour on a commodity Hadoop cluster with 320 cores. Through protocol examples, this unit will demonstrate the use of Crossbow for identifying variations in three different operating modes: on a Hadoop cluster, on a single computer, and on the Amazon Elastic MapReduce cloud computing service.

  2. 76 FR 28914 - Airworthiness Directives; Airbus Model A300 B4-600, B4-600R, and F4-600R Series Airplanes, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... of the rudder system design. Rudder pedal sensitivity on Model A300-600 and A310 series airplanes is... B4-600, B4-600R, and F4-600R Series Airplanes, and Model C4-605R Variant F Airplanes (Collectively Called A300-600 Series Airplanes); and Model A310 Series Airplanes AGENCY: Federal Aviation...

  3. A Centered Projective Algorithm for Linear Programming

    DTIC Science & Technology

    1988-02-01

    zx/l to (PA Karmarkar’s algorithm iterates this procedure. An alternative method, the so-called affine variant (first proposed by Dikin [6] in 1967...trajectories, II. Legendre transform coordinates . central trajectories," manuscripts, to appear in Transactions of the American [6] I.I. Dikin ...34Iterative solution of problems of linear and quadratic programming," Soviet Mathematics Dokladv 8 (1967), 674-675. [7] I.I. Dikin , "On the speed of an

  4. Csub60/Collapsed Carbon Nanotube Hybrids: A Variant of Peapods (Open Access)

    DTIC Science & Technology

    2015-01-02

    fullerenes , collapsed carbon nanotubes, silocrystals Hybrid nanostructures are of great interest due to thepotential for engineering new materials with...tunable physical and chemical properties. An example is the so-called nanotube “peapod” first described by Smith et al.,1 where fullerene C60 molecules...an interesting derivative of CNTs. It has been theoretically shown that CNTs are prone to collapse into a nearly flat, ribbon- like configuration if

  5. Littoral Combat Ship: Additional Testing and Improved Weight Management Needed Prior to Further Investments

    DTIC Science & Technology

    2014-07-01

    monohull design with a steel hull and aluminum superstructure, while the Austal USA Independence variant (LCS 2 and other even- Background Seaframe...including Singapore; Malaysia ; Brunei; and Indonesia. The ship also conducted some real-world operations as directed by the 7th Fleet, such as...requirements for service life allowances already fall short of the growth margins called for under Navy and industry recommended practice.21 Table 8: Navy

  6. SigB is a dominant regulator of virulence in Staphylococcus aureus small-colony variants.

    PubMed

    Mitchell, Gabriel; Fugère, Alexandre; Pépin Gaudreau, Karine; Brouillette, Eric; Frost, Eric H; Cantin, André M; Malouin, François

    2013-01-01

    Staphylococcus aureus small-colony variants (SCVs) are persistent pathogenic bacteria characterized by slow growth and, for many of these strains, an increased ability to form biofilms and to persist within host cells. The virulence-associated gene expression profile of SCVs clearly differs from that of prototypical strains and is often influenced by SigB rather than by the agr system. One objective of this work was to confirm the role of SigB in the control of the expression of virulence factors involved in biofilm formation and intracellular persistence of SCVs. This study shows that extracellular proteins are involved in the formation of biofilm by three SCV strains, which, additionally, have a low biofilm-dispersing activity. It was determined that SigB activity modulates biofilm formation by strain SCV CF07-S and is dominant over that of the agr system without being solely responsible for the repression of proteolytic activity. On the other hand, the expression of fnbA and the control of nuclease activity contributed to the SigB-dependent formation of biofilm of this SCV strain. SigB was also required for the replication of CF07-S within epithelial cells and may be involved in the colonization of lungs by SCVs in a mouse infection model. This study methodically investigated SigB activity and associated mechanisms in the various aspects of SCV pathogenesis. Results confirm that SigB activity importantly influences the production of virulence factors, biofilm formation and intracellular persistence for some clinical SCV strains.

  7. A Genome Wide Study of Copy Number Variation Associated with Nasopharyngeal Carcinoma in Malaysian Chinese Identifies CNVs at 11q14.3 and 6p21.3 as Candidate Loci.

    PubMed

    Low, Joyce Siew Yong; Chin, Yoon Ming; Mushiroda, Taisei; Kubo, Michiaki; Govindasamy, Gopala Krishnan; Pua, Kin Choo; Yap, Yoke Yeow; Yap, Lee Fah; Subramaniam, Selva Kumar; Ong, Cheng Ai; Tan, Tee Yong; Khoo, Alan Soo Beng; Ng, Ching Ching

    2016-01-01

    Nasopharyngeal carcinoma (NPC) is a neoplasm of the epithelial lining of the nasopharynx. Despite various reports linking genomic variants to NPC predisposition, very few reports were done on copy number variations (CNV). CNV is an inherent structural variation that has been found to be involved in cancer predisposition. A discovery cohort of Malaysian Chinese descent (NPC patients, n = 140; Healthy controls, n = 256) were genotyped using Illumina® HumanOmniExpress BeadChip. PennCNV and cnvPartition calling algorithms were applied for CNV calling. Taqman CNV assays and digital PCR were used to validate CNV calls and replicate candidate copy number variant region (CNVR) associations in a follow-up Malaysian Chinese (NPC cases, n = 465; and Healthy controls, n = 677) and Malay cohort (NPC cases, n = 114; Healthy controls, n = 124). Six putative CNVRs overlapping GRM5, MICA/HCP5/HCG26, LILRB3/LILRA6, DPY19L2, RNase3/RNase2 and GOLPH3 genes were jointly identified by PennCNV and cnvPartition. CNVs overlapping GRM5 and MICA/HCP5/HCG26 were subjected to further validation by Taqman CNV assays and digital PCR. Combined analysis in Malaysian Chinese cohort revealed a strong association at CNVR on chromosome 11q14.3 (Pcombined = 1.54x10-5; odds ratio (OR) = 7.27; 95% CI = 2.96-17.88) overlapping GRM5 and a suggestive association at CNVR on chromosome 6p21.3 (Pcombined = 1.29x10-3; OR = 4.21; 95% CI = 1.75-10.11) overlapping MICA/HCP5/HCG26 genes. Our results demonstrated the association of CNVs towards NPC susceptibility, implicating a possible role of CNVs in NPC development.

  8. Optimized Next-Generation Sequencing Genotype-Haplotype Calling for Genome Variability Analysis

    PubMed Central

    Navarro, Javier; Nevado, Bruno; Hernández, Porfidio; Vera, Gonzalo; Ramos-Onsins, Sebastián E

    2017-01-01

    The accurate estimation of nucleotide variability using next-generation sequencing data is challenged by the high number of sequencing errors produced by new sequencing technologies, especially for nonmodel species, where reference sequences may not be available and the read depth may be low due to limited budgets. The most popular single-nucleotide polymorphism (SNP) callers are designed to obtain a high SNP recovery and low false discovery rate but are not designed to account appropriately the frequency of the variants. Instead, algorithms designed to account for the frequency of SNPs give precise results for estimating the levels and the patterns of variability. These algorithms are focused on the unbiased estimation of the variability and not on the high recovery of SNPs. Here, we implemented a fast and optimized parallel algorithm that includes the method developed by Roesti et al and Lynch, which estimates the genotype of each individual at each site, considering the possibility to call both bases from the genotype, a single one or none. This algorithm does not consider the reference and therefore is independent of biases related to the reference nucleotide specified. The pipeline starts from a BAM file converted to pileup or mpileup format and the software outputs a FASTA file. The new program not only reduces the running times but also, given the improved use of resources, it allows its usage with smaller computers and large parallel computers, expanding its benefits to a wider range of researchers. The output file can be analyzed using software for population genetics analysis, such as the R library PopGenome, the software VariScan, and the program mstatspop for analysis considering positions with missing data. PMID:28894353

  9. Genome Editing a Mouse Locus Encoding a Variant Histone, H3.3B, to Report on its Expression in Live Animals

    PubMed Central

    Wen, Duancheng; Noh, Kyung-Min; Goldberg, Aaron D.; Allis, C. David; Rosenwaks, Zev; Rafii, Shahin; Banaszynski, Laura A.

    2018-01-01

    Summary Chromatin remodeling via incorporation of histone variants plays a key role in the regulation of embryonic development. The histone variant H3.3 has been associated with a number of early events including formation of the paternal pronucleus upon fertilization. The small number of amino acid differences between H3.3 and its canonical counterparts (H3.1 and H3.2) has limited studies of the developmental significance of H3.3 deposition into chromatin due to difficulties in distinguishing the H3 isoforms. To this end, we used zinc-finger nuclease (ZFN) mediated gene editing to introduce a small C-terminal hemagglutinin (HA) tag to the endogenous H3.3B locus in mouse embryonic stem cells (ESCs), along with an internal ribosome entry site (IRES) and a separately translated fluorescent reporter of expression. This system will allow detection of expression driven by the reporter in cells, animals, and embryos, and will facilitate investigation of differential roles of paternal and maternal H3.3 protein during embryogenesis that would not be possible using variant-specific antibodies. Further, the ability to monitor endogenous H3.3 protein in various cell lineages will enhance our understanding of the dynamics of this histone variant over the course of development. genesis PMID:25262655

  10. Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA).

    PubMed

    Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A

    2015-02-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.

  11. Fast Parallel MR Image Reconstruction via B1-based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA)

    PubMed Central

    Noll, Douglas C.; Fessler, Jeffrey A.

    2014-01-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484

  12. New genes emerging for colorectal cancer predisposition.

    PubMed

    Esteban-Jurado, Clara; Garre, Pilar; Vila, Maria; Lozano, Juan José; Pristoupilova, Anna; Beltrán, Sergi; Abulí, Anna; Muñoz, Jenifer; Balaguer, Francesc; Ocaña, Teresa; Castells, Antoni; Piqué, Josep M; Carracedo, Angel; Ruiz-Ponte, Clara; Bessa, Xavier; Andreu, Montserrat; Bujanda, Luis; Caldés, Trinidad; Castellví-Bel, Sergi

    2014-02-28

    Colorectal cancer (CRC) is one of the most frequent neoplasms and an important cause of mortality in the developed world. This cancer is caused by both genetic and environmental factors although 35% of the variation in CRC susceptibility involves inherited genetic differences. Mendelian syndromes account for about 5% of the total burden of CRC, with Lynch syndrome and familial adenomatous polyposis the most common forms. Excluding hereditary forms, there is an important fraction of CRC cases that present familial aggregation for the disease with an unknown germline genetic cause. CRC can be also considered as a complex disease taking into account the common disease-commom variant hypothesis with a polygenic model of inheritance where the genetic components of common complex diseases correspond mostly to variants of low/moderate effect. So far, 30 common, low-penetrance susceptibility variants have been identified for CRC. Recently, new sequencing technologies including exome- and whole-genome sequencing have permitted to add a new approach to facilitate the identification of new genes responsible for human disease predisposition. By using whole-genome sequencing, germline mutations in the POLE and POLD1 genes have been found to be responsible for a new form of CRC genetic predisposition called polymerase proofreading-associated polyposis.

  13. Efficient and secure outsourcing of genomic data storage.

    PubMed

    Sousa, João Sá; Lefebvre, Cédric; Huang, Zhicong; Raisaro, Jean Louis; Aguilar-Melchor, Carlos; Killijian, Marc-Olivier; Hubaux, Jean-Pierre

    2017-07-26

    Cloud computing is becoming the preferred solution for efficiently dealing with the increasing amount of genomic data. Yet, outsourcing storage and processing sensitive information, such as genomic data, comes with important concerns related to privacy and security. This calls for new sophisticated techniques that ensure data protection from untrusted cloud providers and that still enable researchers to obtain useful information. We present a novel privacy-preserving algorithm for fully outsourcing the storage of large genomic data files to a public cloud and enabling researchers to efficiently search for variants of interest. In order to protect data and query confidentiality from possible leakage, our solution exploits optimal encoding for genomic variants and combines it with homomorphic encryption and private information retrieval. Our proposed algorithm is implemented in C++ and was evaluated on real data as part of the 2016 iDash Genome Privacy-Protection Challenge. Results show that our solution outperforms the state-of-the-art solutions and enables researchers to search over millions of encrypted variants in a few seconds. As opposed to prior beliefs that sophisticated privacy-enhancing technologies (PETs) are unpractical for real operational settings, our solution demonstrates that, in the case of genomic data, PETs are very efficient enablers.

  14. Hybrid & El Tor variant biotypes of Vibrio cholerae O1 in Thailand

    PubMed Central

    Na-Ubol, M.; Srimanote, P.; Chongsa-nguan, M.; Indrawattana, N.; Sookrung, N.; Tapchaisri, P.; Yamazaki, S.; Bodhidatta, L.; Eampokalap, B.; Kurazono, H.; Hayashi, H.; Nair, G.B.; Takeda, Y.; Chaicumpa, W.

    2011-01-01

    Background & objectives: El Tor Vibrio cholerae O1 carrying ctxBC trait, so-called El Tor variant that causes more severe symptoms than the prototype El Tor strain, first detected in Bangladesh was later shown to have emerged in India in 1992. Subsequently, similar V. cholerae strains were isolated in other countries in Asia and Africa. Thus, it was of interest to investigate the characteristics of V. cholerae O1 strains isolated chronologically (from 1986 to 2009) in Thailand. Methods: A total of 330 V. cholerae O1 Thailand strains from hospitalized patients with cholera isolated during 1986 to 2009 were subjected to conventional biotyping i.e., susceptibility to polymyxin B, chicken erythrocyte agglutination (CCA) and Voges-Proskauer (VP) test. The presence of ctxA, ctxB, zot, ace, toxR, tcpAC, tcpAE, hlyAC and hlyAE were examined by PCR. Mismatch amplification mutation assay (MAMA) - and conventional- PCRs were used for differentiating ctxB and rstR alleles. Results: All 330 strains carried the El Tor virulence gene signature. Among these, 266 strains were typical El Tor (resistant to 50 units of polymyxin B and positive for CCA and VP test) while 64 had mixed classical and El Tor phenotypes (hybrid biotype). Combined MAMA-PCR and the conventional biotyping methods revealed that 36 strains of 1986-1992 were either typical El Tor, hybrid, El Tor variant or unclassified biotype. The hybrid strains were present during 1986-2004. El Tor variant strains were found in 1992, the same year when the typical El Tor strains disappeared. All 294 strains of 1993-2009 carried ctxBC ; 237 were El Tor variant and 57 were hybrid. Interpretation & conclusions: In Thailand, hybrid V. cholerae O1 (mixed biotypes), was found since 1986. Circulating strains, however, are predominantly El Tor variant (El Tor biotype with ctxBC). PMID:21537091

  15. Functional Characterization of Rare RAB12 Variants and Their Role in Musician’s and Other Dystonias

    PubMed Central

    Hebert, Eva; Borngräber, Friederike; Schmidt, Alexander; Rakovic, Aleksandar; Brænne, Ingrid; Weissbach, Anne; Hampf, Jennie; Vollstedt, Eva-Juliane; Größer, Leopold; Schaake, Susen; Müller, Michaela; Manzoor, Humera; Jabusch, Hans-Christian; Alvarez-Fischer, Daniel; Kasten, Meike; Kostic, Vladimir S.; Gasser, Thomas; Zeuner, Kirsten E.; Kim, Han-Joon; Jeon, Beomseok; Bauer, Peter; Altenmüller, Eckart; Klein, Christine; Lohmann, Katja

    2017-01-01

    Mutations in RAB (member of the Ras superfamily) genes are increasingly recognized as cause of a variety of disorders including neurological conditions. While musician’s dystonia (MD) and writer’s dystonia (WD) are task-specific movement disorders, other dystonias persistently affect postures as in cervical dystonia. Little is known about the underlying etiology. Next-generation sequencing revealed a rare missense variant (c.586A>G; p.Ile196Val) in RAB12 in two of three MD/WD families. Next, we tested 916 additional dystonia patients; 512 Parkinson’s disease patients; and 461 healthy controls for RAB12 variants and identified 10 additional carriers of rare missense changes among dystonia patients (1.1%) but only one carrier in non-dystonic individuals (0.1%; p = 0.005). The detected variants among index patients comprised p.Ile196Val (n = 6); p.Ala174Thr (n = 3); p.Gly13Asp; p.Ala148Thr; and p.Arg181Gln in patients with MD; cervical dystonia; or WD. Two relatives of MD patients with WD also carried p.Ile196Val. The two variants identified in MD patients (p.Ile196Val; p.Gly13Asp) were characterized on endogenous levels in patient-derived fibroblasts and in two RAB12-overexpressing cell models. The ability to hydrolyze guanosine triphosphate (GTP), so called GTPase activity, was increased in mutants compared to wildtype. Furthermore, subcellular distribution of RAB12 in mutants was altered in fibroblasts. Soluble Transferrin receptor 1 levels were reduced in the blood of all three tested p.Ile196Val carriers. In conclusion, we demonstrate an enrichment of missense changes among dystonia patients. Functional characterization revealed altered enzyme activity and lysosomal distribution in mutants suggesting a contribution of RAB12 variants to MD and other dystonias. PMID:29057844

  16. Detection of genetic variants between different Polish Landrace and Puławska pigs by means of RNA-seq analysis.

    PubMed

    Piórkowska, K; Żukowski, K; Ropka-Molik, K; Tyra, M

    2018-06-01

    Variant calling analysis based on RNA sequencing data provides information about gene variants. RNA-seq is cheaper and faster than is DNA sequencing. However, it requires individual hard filters during data processing due to post-transcriptional modifications such as splicing and RNA editing. In the present study, RNA-seq transcriptome data on two Polish pig breeds (Puławska, PUL, n = 8, and Polish Landrace, PL, n = 8) were included. The pig breeds are significantly different with regard to meat qualities such as texture, water exudation, growth traits and fat content in carcasses. A total of 2451 significant mutations were identified by a chi square tests, and functional analysis was carried out using Panther, KEGG and Kobas. Interesting missense gene variants and mutations located in regulatory regions were found in a few genes related to fatty acid metabolism and lipid storage such as ACSL5, ALDH3A2, FADS1, SCD, PLA2G12A and ATGL. A validation of mutational influences on pig traits was performed for ALDH3A2, ATGL, PLA2G12A and MYOM1 variants using association analysis including 215 pigs of the PL and PUL breeds. The ALDH3A2ENSSSCT00000019636.2:c.470T>C polymorphism was found to affect the weight of the ham and loin eye area. In turn, an ENSSSCT00000004091.2:c.2836G>A MYOM1 mutation, which could be implicated in myofibrillar network organisation, had an effect on meatiness and loin texture parameters. The study aimed to estimate the usefulness of RNA-seq results for a purpose other than differentially expressed gene analysis. The analysis performed indicated interesting gene variants that could be used in the future as markers during selection. © 2018 Stichting International Foundation for Animal Genetics.

  17. Conception, pregnancy, and birth experiences of male and gender variant gestational parents: it's how we could have a family.

    PubMed

    Ellis, Simon Adriane; Wojnar, Danuta M; Pettinato, Maria

    2015-01-01

    Like members of any other population, transgender and gender variant people--individuals whose gender identity varies from the traditional norm or from the sex they were assigned at birth--often seek parenthood. Little is known about the decision making and experiences of these individuals, including male-identified and gender-variant natal females who wish to achieve parenthood by carrying a pregnancy. This pilot qualitative study used grounded theory methodology to explore the conception, pregnancy, and birth experiences of this population of parents. A grounded theory methodology was used to guide data collection and analysis. Eight male-identified or gender-variant gestational parents participated in the study. Data collection included individual 60-minute to 90-minute interviews conducted by recorded online video calls, as well as a self-administered online demographic survey. Data were collected from September 2011 through May 2012. Data saturation was achieved at 6 interviews, after which 2 more interviews were conducted. The interviews were transcribed verbatim, and a constant comparative method was used to analyze the interview transcripts. Loneliness was the overarching theme that permeated participants' experiences, social interactions, and emotional responses during every stage of achieving biologic parenthood. Within this context of loneliness, participants described complex internal and external processes of navigating identity. Navigating identity encapsulated 2 subthemes: undergoing internal struggles and engaging with the external world. The preconception period was identified as participants' time of greatest distress and least involvement with health care. The findings of this study suggest that culturally-sensitive preconception counseling could be beneficial for transgender and gender-variant individuals. The grounded theory produced by this pilot investigation also provides insights that will be useful to health care providers and others working with male-identified and gender-variant prospective parents. © 2014 by the American College of Nurse-Midwives.

  18. Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies.

    PubMed

    Wu, Jiaxin; Li, Yanda; Jiang, Rui

    2014-03-01

    Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing data, due to such facts as the large number of sequenced variants, the presence of non-negligible fraction of pathogenic rare variants or de novo mutations, and the limited size of affected and normal populations. Indeed, prevalent applications of exome sequencing have been appealing for an effective computational method for identifying causative nonsynonymous SNVs from a large number of sequenced variants. Here, we propose a bioinformatics approach called SPRING (Snv PRioritization via the INtegration of Genomic data) for identifying pathogenic nonsynonymous SNVs for a given query disease. Based on six functional effect scores calculated by existing methods (SIFT, PolyPhen2, LRT, MutationTaster, GERP and PhyloP) and five association scores derived from a variety of genomic data sources (gene ontology, protein-protein interactions, protein sequences, protein domain annotations and gene pathway annotations), SPRING calculates the statistical significance that an SNV is causative for a query disease and hence provides a means of prioritizing candidate SNVs. With a series of comprehensive validation experiments, we demonstrate that SPRING is valid for diseases whose genetic bases are either partly known or completely unknown and effective for diseases with a variety of inheritance styles. In applications of our method to real exome sequencing data sets, we show the capability of SPRING in detecting causative de novo mutations for autism, epileptic encephalopathies and intellectual disability. We further provide an online service, the standalone software and genome-wide predictions of causative SNVs for 5,080 diseases at http://bioinfo.au.tsinghua.edu.cn/spring.

  19. Evaluation of three read-depth based CNV detection tools using whole-exome sequencing data.

    PubMed

    Yao, Ruen; Zhang, Cheng; Yu, Tingting; Li, Niu; Hu, Xuyun; Wang, Xiumin; Wang, Jian; Shen, Yiping

    2017-01-01

    Whole exome sequencing (WES) has been widely accepted as a robust and cost-effective approach for clinical genetic testing of small sequence variants. Detection of copy number variants (CNV) within WES data have become possible through the development of various algorithms and software programs that utilize read-depth as the main information. The aim of this study was to evaluate three commonly used, WES read-depth based CNV detection programs using high-resolution chromosomal microarray analysis (CMA) as a standard. Paired CMA and WES data were acquired for 45 samples. A total of 219 CNVs (size ranged from 2.3 kb - 35 mb) identified on three CMA platforms (Affymetrix, Agilent and Illumina) were used as standards. CNVs were called from WES data using XHMM, CoNIFER, and CNVnator with modified settings. All three software packages detected an elevated proportion of small variants (< 20 kb) compared to CMA. XHMM and CoNIFER had poor detection sensitivity (22.2 and 14.6%), which correlated with the number of capturing probes involved. CNVnator detected most variants and had better sensitivity (87.7%); however, suffered from an overwhelming detection of small CNVs below 20 kb, which required further confirmation. Size estimation of variants was exaggerated by CNVnator and understated by XHMM and CoNIFER. Low concordances of CNV, detected by three different read-depth based programs, indicate the immature status of WES-based CNV detection. Low sensitivity and uncertain specificity of WES-based CNV detection in comparison with CMA based CNV detection suggests that CMA will continue to play an important role in detecting clinical grade CNV in the NGS era, which is largely based on WES.

  20. Targeted next generation sequencing of the entire vitamin D receptor gene reveals polymorphisms correlated with vitamin D deficiency among older Filipino women with and without fragility fracture.

    PubMed

    Zumaraga, Mark Pretzel; Medina, Paul Julius; Recto, Juan Miguel; Abrahan, Lauro; Azurin, Edelyn; Tanchoco, Celeste C; Jimeno, Cecilia A; Palmes-Saloma, Cynthia

    2017-03-01

    This study aimed to discover genetic variants in the entire 101 kB vitamin D receptor (VDR) gene for vitamin D deficiency in a group of postmenopausal Filipino women using targeted next generation sequencing (TNGS) approach in a case-control study design. A total of 50 women with and without osteoporotic fracture seen at the Philippine Orthopedic Center were included. Blood samples were collected for determination of serum vitamin D, calcium, phosphorus, glucose, blood urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase and as primary source for targeted VDR gene sequencing using the Ion Torrent Personal Genome Machine. The variant calling was based on the GATK best practice workflow and annotated using Annovar tool. A total of 1496 unique variants in the whole 101-kb VDR gene were identified. Novel sequence variations not registered in the dbSNP database were found among cases and controls at a rate of 23.1% and 16.6% of total discovered variants, respectively. One disease-associated enhancer showed statistically significant association to low serum 25-hydroxy vitamin D levels (Pearson chi-square P-value=0.009). The transcription factor binding site prediction program PROMO predicted the disruption of three transcription factor binding sites in this enhancer region. These findings show the power of TNGS in identifying sequence variations in a very large gene and the surprising results obtained in this study greatly expand the catalog of known VDR sequence variants that may represent an important clue in the emergence of vitamin D deficiency. Such information will also provide the additional guidance necessary toward a personalized nutritional advice to reach sufficient vitamin D status. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Genetic compendium of 1511 human brains available through the UK Medical Research Council Brain Banks Network Resource.

    PubMed

    Keogh, Michael J; Wei, Wei; Wilson, Ian; Coxhead, Jon; Ryan, Sarah; Rollinson, Sara; Griffin, Helen; Kurzawa-Akanbi, Marzena; Santibanez-Koref, Mauro; Talbot, Kevin; Turner, Martin R; McKenzie, Chris-Anne; Troakes, Claire; Attems, Johannes; Smith, Colin; Al Sarraj, Safa; Morris, Chris M; Ansorge, Olaf; Pickering-Brown, Stuart; Ironside, James W; Chinnery, Patrick F

    2017-01-01

    Given the central role of genetic factors in the pathogenesis of common neurodegenerative disorders, it is critical that mechanistic studies in human tissue are interpreted in a genetically enlightened context. To address this, we performed exome sequencing and copy number variant analysis on 1511 frozen human brains with a diagnosis of Alzheimer's disease (AD, n = 289), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS, n = 252), Creutzfeldt-Jakob disease (CJD, n = 239), Parkinson's disease (PD, n = 39), dementia with Lewy bodies (DLB, n = 58), other neurodegenerative, vascular, or neurogenetic disorders (n = 266), and controls with no significant neuropathology (n = 368). Genomic DNA was extracted from brain tissue in all cases before exome sequencing (Illumina Nextera 62 Mb capture) with variants called by FreeBayes; copy number variant (CNV) analysis (Illumina HumanOmniExpress-12 BeadChip); C9orf72 repeat expansion detection; and APOE genotyping. Established or likely pathogenic heterozygous, compound heterozygous, or homozygous variants, together with the C9orf72 hexanucleotide repeat expansions and a copy number gain of APP, were found in 61 brains. In addition to known risk alleles in 349 brains (23.9% of 1461 undergoing exome sequencing), we saw an association between rare variants in GRN and DLB. Rare CNVs were found in <1.5% of brains, including copy number gains of PRPH that were overrepresented in AD. Clinical, pathological, and genetic data are available, enabling the retrieval of specific frozen brains through the UK Medical Research Council Brain Banks Network. This allows direct access to pathological and control human brain tissue based on an individual's genetic architecture, thus enabling the functional validation of known genetic risk factors and potentially pathogenic alleles identified in future studies. © 2017 Keogh et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Pathway-based discovery of genetic interactions in breast cancer

    PubMed Central

    Xu, Zack Z.; Boone, Charles; Lange, Carol A.

    2017-01-01

    Breast cancer is the second largest cause of cancer death among U.S. women and the leading cause of cancer death among women worldwide. Genome-wide association studies (GWAS) have identified several genetic variants associated with susceptibility to breast cancer, but these still explain less than half of the estimated genetic contribution to the disease. Combinations of variants (i.e. genetic interactions) may play an important role in breast cancer susceptibility. However, due to a lack of statistical power, the current tests for genetic interactions from GWAS data mainly leverage prior knowledge to focus on small sets of genes or SNPs that are known to have an association with breast cancer. Thus, many genetic interactions, particularly among novel variants, remain understudied. Reverse-genetic interaction screens in model organisms have shown that genetic interactions frequently cluster into highly structured motifs, where members of the same pathway share similar patterns of genetic interactions. Based on this key observation, we recently developed a method called BridGE to search for such structured motifs in genetic networks derived from GWAS studies and identify pathway-level genetic interactions in human populations. We applied BridGE to six independent breast cancer cohorts and identified significant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed a high confidence consensus set of genetic interactions with support in multiple cohorts. The discovered interactions implicated the glutathione conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as major modifiers of breast cancer risk. Notably, while many of the pathways identified by BridGE show clear relevance to breast cancer, variants in these pathways had not been previously discovered by traditional single variant association tests, or single pathway enrichment analysis that does not consider SNP-SNP interactions. PMID:28957314

  3. [Genetic factors in myocardial infarction].

    PubMed

    Hara, Masahiko; Sakata, Yasuhiko; Sato, Hiroshi

    2013-02-01

    One of the main mechanisms of acute myocardial infarction (AMI) is plaque rupture or erosion followed by intraluminal thrombus formation and occlusion of the coronary arteries. Thus far, many underlying conditions or environmental factors, such as hypertension, diabetes, dyslipidemia, smoking or obesity, as well as a family history of coronary artery diseases have been identified as risks for the onset of AMI. These risks suggest that AMI occurs due to interactions between underlying conditions and multiple genetic susceptibilities. For this reason, many target gene-disease association studies have been performed with the recent introduction of genome-wide association studies (GWAS) that have further revealed new genetic susceptibilities for AMI. GWAS is a way to examine many common genetic variants in different individuals to see if any variant is associated with a trait in a case-control fashion, and typically focuses on associations between single-nucleotide polymorphisms (SNP) and traits. SNP on chromosome 9p21 is one of the robust susceptibility variants for AMI which has been identified by many GWAS. In this review, we overview the methodology of GWAS, introduce genetic variants identified by GWAS as those with susceptibility for AMI, and describe the foresight of using GWAS to investigate genetic susceptibility to AMI.

  4. G908R NOD2 variant in a family with sarcoidosis.

    PubMed

    Besnard, Valérie; Calender, Alain; Bouvry, Diane; Pacheco, Yves; Chapelon-Abric, Catherine; Jeny, Florence; Nunes, Hilario; Planès, Carole; Valeyre, Dominique

    2018-03-20

    Sarcoidosis is a systemic disease characterized by the formation of immune granulomas in various organs, mainly the lungs and the lymphatic system. Exaggerated granulomatous reaction might be triggered in response to unidentified antigens in individuals with genetic susceptibility. The present study aimed to determine the genetic variants implicated in a familial case of sarcoidosis. Sarcoidosis presentation and history, NOD2 profile, NF-κB and cytokine production in blood monocytes/macrophages were evaluated in individuals from a family with late appearance of sarcoidosis. In the present study, we report a case of familial sarcoidosis with typical thoracic sarcoidosis and carrying the NOD2 2722G > C variant. This variant is associated with the presence of three additional SNPs for the IL17RA, KALRN and EPHA2 genes, which discriminate patients expressing the disease from others. Despite a decrease in NF-κB activity, IL-8 and TNF-A mRNA levels were increased at baseline and in stimulated conditions. Combination of polymorphisms in the NOD2, IL17RA, EPHA2 and KALRN genes could play a significant role in the development of sarcoidosis by maintaining a chronic pro-inflammatory status in macrophages.

  5. MAT1A variants modulate the effect of dietary fatty acids on plasma homocysteine concentrations and DNA damage

    USDA-ARS?s Scientific Manuscript database

    Dietary n-3 polyunsaturated fatty acids (PUFA) are associated with decreased plasma homocysteine (Hcy), an important biomarker for cardiovascular disease. Methionine adenosyltransferase (MAT1A) is an enzyme involved in formation of form S-adenosylmethionine during methionine metabolism. The objectiv...

  6. Tibetan-English Dictionary with Supplement.

    ERIC Educational Resources Information Center

    Buck, Stuart H.

    The format of this Tibetan-English dictionary includes the following: (1) after the Tibetan word or phrase, variant spellings are noted in parentheses; (2) irregular past, future, or imperative forms of the verb are also given in parentheses; (3) English definitions are separated into categories by semicolons; (4) verbal forms in English are…

  7. [Adaptogenic potentialities of dynamic magnetotherapy in the treatment and prevention of ENT pathology in ailing children].

    PubMed

    Bolotova, N V; Grinkevich, A V; Grishchenko, T P; Raĭgorodskiĭ, Iu M; Tupkin, V D

    2007-01-01

    Efficacy of dynamic magnetotherapy (in transcranial and adrenal variants) for treatment of ENT pathology and prevention of its exacerbations is demonstrated in 126 ailing children. Mechanism of action of this magnetotherapy is due to formation of adequate adaptation reactions raising resistance to pathogens.

  8. Impaired thromboxane receptor dimerization reduces signaling efficiency: A potential mechanism for reduced platelet function in vivo.

    PubMed

    Capra, Valérie; Mauri, Mario; Guzzi, Francesca; Busnelli, Marta; Accomazzo, Maria Rosa; Gaussem, Pascale; Nisar, Shaista P; Mundell, Stuart J; Parenti, Marco; Rovati, G Enrico

    2017-01-15

    Thromboxane A 2 is a potent mediator of inflammation and platelet aggregation exerting its effects through the activation of a G protein-coupled receptor (GPCR), termed TP. Although the existence of dimers/oligomers in Class A GPCRs is widely accepted, their functional significance still remains controversial. Recently, we have shown that TPα and TPβ homo-/hetero-dimers interact through an interface of residues in transmembrane domain 1 (TM1) whose disruption impairs dimer formation. Here, biochemical and pharmacological characterization of this dimer deficient mutant (DDM) in living cells indicates a significant impairment in its response to agonists. Interestingly, two single loss-of-function TPα variants, namely W29C and N42S recently identified in two heterozygous patients affected by bleeding disorders, match some of the residues mutated in our DDM. These two naturally occurring variants display a reduced potency to TP agonists and are characterized by impaired dimer formation in transfected HEK-293T cells. These findings provide proofs that lack of homo-dimer formation is a crucial process for reduced TPα function in vivo, and might represent one molecular mechanism through which platelet TPα receptor dysfunction affects the patient(s) carrying these mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Serine Hydroxymethyltransferase ShrA (PA2444) Controls Rugose Small-Colony Variant Formation in Pseudomonas aeruginosa

    PubMed Central

    Pu, Mingming; Sheng, Lili; Song, Sooyeon; Gong, Ting; Wood, Thomas K.

    2018-01-01

    Pseudomonas aeruginosa causes many biofilm infections, and the rugose small-colony variants (RSCVs) of this bacterium are important for infection. We found here that inactivation of PA2444, which we determined to be a serine hydroxymethyltransferase (SHMT), leads to the RSCV phenotype of P. aeruginosa PA14. In addition, loss of PA2444 increases biofilm formation by two orders of magnitude, increases exopolysaccharide by 45-fold, and abolishes swarming. The RSCV phenotype is related to higher cyclic diguanylate concentrations due to increased activity of the Wsp chemosensory system, including diguanylate cyclase WspR. By characterizing the PA2444 enzyme in vitro, we determined the physiological function of PA2444 protein by relating it to S-adenosylmethionine (SAM) concentrations and methylation of a membrane bound methyl-accepting chemotaxis protein WspA. A whole transcriptome analysis also revealed PA2444 is related to the redox state of the cells, and the altered redox state was demonstrated by an increase in the intracellular NADH/NAD+ ratio. Hence, we provide a mechanism for how an enzyme of central metabolism controls the community behavior of the bacterium, and suggest the PA2444 protein should be named ShrA for serine hydroxymethyltransferase related to rugose colony formation. PMID:29535691

  10. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors

    PubMed Central

    Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois

    2016-01-01

    ABSTRACT We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted. PMID:27559765

  11. [Individual Types Reactivity of EEG Oscillations in Effective Heart Rhythm Biofeedback Parameters in Adolescents and Young People in the North].

    PubMed

    Krivonogova, E V; Poskotinova, L V; Demin, D B

    2015-01-01

    A single session of heart rate variability (HRV) biofeedback in apparently healthy young people and adolescents aged 14-17 years in order to increase vagal effects on heart rhythm and also electroencephalograms were carried out. Different variants of EEG spectral power during the successful HRV biofeedback session were identified. In the case of I variant of EEG activity the increase of power spectrum of alpha-, betal-, theta-components takes place in all parts of the brain. In the case of II variant of EEG activity the reduction of power spectrum of alpha-, betal-, theta-activity in all parts of the brain was observed. I and II variants of EEG activity cause more intensive regime of cortical-subcortical interactions. During the III variant of EEG activity the successful biofeedback is accompanied by increase of alpha activity in the central, front and anteriofrontal brain parts and so indicates the formation of thalamocortical relations of neural network in order to optimize the vegetal regulation of heart function. There was an increase in alpha- and beta1-activity in the parietal, central, frontal and temporal brain parts during the IV variant of EEG activity and so that it provides the relief of neural networks communication for information processing. As a result of V variance of EEG activity there was the increase of power spectrum of theta activity in the central and frontal parts of both cerebral hemispheres, so it was associated with the cortical-hippocampal interactions to achieve a successful biofeedback.

  12. DNA Methylation Patterns in Normal Tissue Correlate more Strongly with Breast Cancer Status than Copy-Number Variants.

    PubMed

    Gao, Yang; Widschwendter, Martin; Teschendorff, Andrew E

    2018-05-04

    Normal tissue at risk of neoplastic transformation is characterized by somatic mutations, copy-number variation and DNA methylation changes. It is unclear however, which type of alteration may be more informative of cancer risk. We analyzed genome-wide DNA methylation and copy-number calls from the same DNA assay in a cohort of healthy breast samples and age-matched normal samples collected adjacent to breast cancer. Using statistical methods to adjust for cell type heterogeneity, we show that DNA methylation changes can discriminate normal-adjacent from normal samples better than somatic copy-number variants. We validate this important finding in an independent dataset. These results suggest that DNA methylation alterations in the normal cell of origin may offer better cancer risk prediction and early detection markers than copy-number changes. Copyright © 2018. Published by Elsevier B.V.

  13. HPV Genotyping of Modified General Primer-Amplicons Is More Analytically Sensitive and Specific by Sequencing than by Hybridization

    PubMed Central

    Meisal, Roger; Rounge, Trine Ballestad; Christiansen, Irene Kraus; Eieland, Alexander Kirkeby; Worren, Merete Molton; Molden, Tor Faksvaag; Kommedal, Øyvind; Hovig, Eivind; Leegaard, Truls Michael

    2017-01-01

    Sensitive and specific genotyping of human papillomaviruses (HPVs) is important for population-based surveillance of carcinogenic HPV types and for monitoring vaccine effectiveness. Here we compare HPV genotyping by Next Generation Sequencing (NGS) to an established DNA hybridization method. In DNA isolated from urine, the overall analytical sensitivity of NGS was found to be 22% higher than that of hybridization. NGS was also found to be the most specific method and expanded the detection repertoire beyond the 37 types of the DNA hybridization assay. Furthermore, NGS provided an increased resolution by identifying genetic variants of individual HPV types. The same Modified General Primers (MGP)-amplicon was used in both methods. The NGS method is described in detail to facilitate implementation in the clinical microbiology laboratory and includes suggestions for new standards for detection and calling of types and variants with improved resolution. PMID:28045981

  14. HPV Genotyping of Modified General Primer-Amplicons Is More Analytically Sensitive and Specific by Sequencing than by Hybridization.

    PubMed

    Meisal, Roger; Rounge, Trine Ballestad; Christiansen, Irene Kraus; Eieland, Alexander Kirkeby; Worren, Merete Molton; Molden, Tor Faksvaag; Kommedal, Øyvind; Hovig, Eivind; Leegaard, Truls Michael; Ambur, Ole Herman

    2017-01-01

    Sensitive and specific genotyping of human papillomaviruses (HPVs) is important for population-based surveillance of carcinogenic HPV types and for monitoring vaccine effectiveness. Here we compare HPV genotyping by Next Generation Sequencing (NGS) to an established DNA hybridization method. In DNA isolated from urine, the overall analytical sensitivity of NGS was found to be 22% higher than that of hybridization. NGS was also found to be the most specific method and expanded the detection repertoire beyond the 37 types of the DNA hybridization assay. Furthermore, NGS provided an increased resolution by identifying genetic variants of individual HPV types. The same Modified General Primers (MGP)-amplicon was used in both methods. The NGS method is described in detail to facilitate implementation in the clinical microbiology laboratory and includes suggestions for new standards for detection and calling of types and variants with improved resolution.

  15. Cemento-ossifying Fibroma Of Paranasal Sinus Presenting Acutely As Orbital Cellulitis.

    PubMed

    Khanna, Maneesh; Buddhavarapu, Shanker Rao; Hussain, Sheik Akbar; Amir, Emran

    2009-01-01

    Fibro-osseous lesions of the face and paranasal sinuses are relatively uncommon. These lesions have overlapping clinical, radiologic and pathologic features causing difficulty in diagnosis. Neoplastic fibro-osseous paranasal sinus lesions can be benign or malignant. The benign fibro-osseous lesions described are: ossifying fibroma (and its histologic variants) and fibrous dysplasia. The variants of ossifying fibroma differ in the nature of calcified material (i.e. cementum versus bone), in the location of the lesion (oral versus paranasal sinus or orbital), other morphologic variations (presence of psammomatoid concretions) and biologic behavior (aggressive versus stable). Presence of cementum or bone classifies the lesion as cementifying fibroma or ossifying fibroma respectively while lesions with mixture of both cementum and bone are called cemento-ossifying fibroma. We describe a case of a young adult male with cemento-ossifying fibroma of paranasal sinus presenting acutely as left orbital cellulitis with proptosis.

  16. Cemento-ossifying Fibroma Of Paranasal Sinus Presenting Acutely As Orbital Cellulitis

    PubMed Central

    Khanna, Maneesh; Buddhavarapu, Shanker Rao; Hussain, Sheik Akbar; Amir, Emran

    2009-01-01

    Fibro-osseous lesions of the face and paranasal sinuses are relatively uncommon. These lesions have overlapping clinical, radiologic and pathologic features causing difficulty in diagnosis. Neoplastic fibro-osseous paranasal sinus lesions can be benign or malignant. The benign fibro-osseous lesions described are: ossifying fibroma (and its histologic variants) and fibrous dysplasia. The variants of ossifying fibroma differ in the nature of calcified material (i.e. cementum versus bone), in the location of the lesion (oral versus paranasal sinus or orbital), other morphologic variations (presence of psammomatoid concretions) and biologic behavior (aggressive versus stable). Presence of cementum or bone classifies the lesion as cementifying fibroma or ossifying fibroma respectively while lesions with mixture of both cementum and bone are called cemento-ossifying fibroma. We describe a case of a young adult male with cemento-ossifying fibroma of paranasal sinus presenting acutely as left orbital cellulitis with proptosis. PMID:22470655

  17. The Piancatelli reaction and its variants: recent applications to high added-value chemicals and biomass valorization.

    PubMed

    Verrier, Charlie; Moebs-Sanchez, Sylvie; Queneau, Yves; Popowycz, Florence

    2018-01-31

    The Piancatelli reaction, also called the Piancatelli rearrangement, consists in the direct conversion of furfuryl alcohols to cyclopentenone derivatives through a furan ring opening-electrocyclization process. Discovered in the late 70's, this reaction has been scarcely used for more than 40 years but recently has been the focus of particular interest from the scientific community and an increasing number of publications on the topic have emerged in the last few years. The first part of this review provides an overview of the recent achievements in classical Piancatelli reactions, discussing reaction conditions and catalytic systems, whereas the second part focuses on the variants recently developed, including the use of new nucleophiles in the process. Finally, the third part of this review deals with the recent application of this transformation to the production of commodity chemicals from renewable carbon feedstocks based on sugar-derived furanic platforms.

  18. A new variant of Petri net controlled grammars

    NASA Astrophysics Data System (ADS)

    Jan, Nurhidaya Mohamad; Turaev, Sherzod; Fong, Wan Heng; Sarmin, Nor Haniza

    2015-10-01

    A Petri net controlled grammar is a Petri net with respect to a context-free grammar where the successful derivations of the grammar can be simulated using the occurrence sequences of the net. In this paper, we introduce a new variant of Petri net controlled grammars, called a place-labeled Petri net controlled grammar, which is a context-free grammar equipped with a Petri net and a function which maps places of the net to productions of the grammar. The language consists of all terminal strings that can be obtained by parallelly applying multisets of the rules which are the images of the sets of the input places of transitions in a successful occurrence sequence of the Petri net. We study the effect of the different labeling strategies to the computational power and establish lower and upper bounds for the generative capacity of place-labeled Petri net controlled grammars.

  19. Computational strategies in the dynamic simulation of constrained flexible MBS

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Xie, M.

    1993-01-01

    This research focuses on the computational dynamics of flexible constrained multibody systems. At first a recursive mapping formulation of the kinematical expressions in a minimum dimension as well as the matrix representation of the equations of motion are presented. The method employs Kane's equation, FEM, and concepts of continuum mechanics. The generalized active forces are extended to include the effects of high temperature conditions, such as creep, thermal stress, and elastic-plastic deformation. The time variant constraint relations for rolling/contact conditions between two flexible bodies are also studied. The constraints for validation of MBS simulation of gear meshing contact using a modified Timoshenko beam theory are also presented. The last part deals with minimization of vibration/deformation of the elastic beam in multibody systems making use of time variant boundary conditions. The above methodologies and computational procedures developed are being implemented in a program called DYAMUS.

  20. Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression

    PubMed Central

    Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander

    2016-01-01

    By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143

Top