Gorbenko del Blanco, Darya; de Graaff, Laura C G; Visser, Theo J; Hokken-Koelega, Anita C S
2013-03-01
Combined pituitary hormone deficiency (CPHD) is characterized by deficiencies of two or more anterior pituitary hormones. Its genetic cause is unknown in the majority of cases. The Hedgehog (Hh) signalling pathway has been implicated in disorders associated with pituitary development. Mutations in Sonic Hedgehog (SHH) have been described in patients with holoprosencephaly (with or without pituitary involvement). Hedgehog interacting protein (HHIP) has been associated with variations in adult height in genome wide association studies. We investigated whether mutations in these two genes of the Hh pathway, SHH and HHIP, could result in 'idiopathic' CPHD. We directly sequenced the coding regions and exon - intron boundaries of SHH and HHIP in 93 CPHD patients of the Dutch HYPOPIT study in whom mutations in the classical CPHD genes PROP1, POU1F1, HESX1, LHX3 and LHX4 had been ruled out. We compared the expression of Hh genes in Hep3B transfected cells between wild-type proteins and mutants. We identified three single-nucleotide variants (p.Ala226Thr, c.1078C>T and c.*8G>T) in SHH. The function of the latter was severely affected in our in vitro assay. In HHIP, we detected a new activating variant c.-1G>C, which increases HHIP's inhibiting function on the Hh pathway. Our results suggest involvement of the Hedgehog pathway in CPHD. We suggest that both SHH and HHIP are investigated as a second screening in CPHD, after mutations in the classical CPHD genes have been ruled out. © 2012 Blackwell Publishing Ltd.
Biomarkers in the Detection of Prostate Cancer in African Americans
2014-09-01
tissues by Taqman low density array: application to Hedgehog and Wnt pathway analysis in ovarian endome- trioid adenocarcinoma . J. Mol. Diagn. 8 : 76...2007) Hedgehog pathway expression in heterogeneous pancreatic adenocarcinoma: implications for the molecular analysis of clinically available
Nikaido, Masato; Cao, Ying; Okada, Norihiro; Hasegawa, Masami
2003-02-01
The complete mitochondrial genome of a lesser hedgehog tenrec Echinops telfairi was determined in this study. It is an endemic African insectivore that is found specifically in Madagascar. The tenrec's back is covered with hedgehog-like spines. Unlike other spiny mammals, such as spiny mice, spiny rats, spiny dormice and porcupines, lesser hedgehog tenrecs look amazingly like true hedgehogs (Erinaceidae). However, they are distinguished morphologically from hedgehogs by the absence of a jugal bone. We determined the complete sequence of the mitochondrial genome of a lesser hedgehog tenrec and analyzed the results phylogenetically to determine the relationships between the tenrec and other insectivores (moles, shrews and hedgehogs), as well as the relationships between the tenrec and endemic African mammals, classified as Afrotheria, that have recently been shown by molecular analysis to be close relatives of the tenrec. Our data confirmed the afrotherian status of the tenrec, and no direct relation was recovered between the tenrec and the hedgehog. Comparing our data with those of others, we found that within-species variations in the mitochondrial DNA of lesser hedgehog tenrecs appear to be the largest recognized to date among mammals, apart from orangutans, which might be interesting from the view point of evolutionary history of tenrecs on Madagascar.
Exome Sequencing Identifies Three Novel Candidate Genes Implicated in Intellectual Disability
Azam, Maleeha; Ayub, Humaira; Vissers, Lisenka E. L. M.; Gilissen, Christian; Ali, Syeda Hafiza Benish; Riaz, Moeen; Veltman, Joris A.; Pfundt, Rolph; van Bokhoven, Hans; Qamar, Raheel
2014-01-01
Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID. PMID:25405613
A primary cilia-dependent etiology for midline facial disorders
Brugmann, Samantha A.; Allen, Nancy C.; James, Aaron W.; Mekonnen, Zesemayat; Madan, Elena; Helms, Jill A.
2010-01-01
Human faces exhibit enormous variation. When pathological conditions are superimposed on normal variation, a nearly unbroken series of facial morphologies is produced. When viewed in full, this spectrum ranges from cyclopia and hypotelorism to hypertelorism and facial duplications. Decreased Hedgehog pathway activity causes holoprosencephaly and hypotelorism. Here, we show that excessive Hedgehog activity, caused by truncating the primary cilia on cranial neural crest cells, causes hypertelorism and frontonasal dysplasia (FND). Elimination of the intraflagellar transport protein Kif3a leads to excessive Hedgehog responsiveness in facial mesenchyme, which is accompanied by broader expression domains of Gli1, Ptc and Shh, and reduced expression domains of Gli3. Furthermore, broader domains of Gli1 expression correspond to areas of enhanced neural crest cell proliferation in the facial prominences of Kif3a conditional knockouts. Avian Talpid embryos that lack primary cilia exhibit similar molecular changes and similar facial phenotypes. Collectively, these data support our hypothesis that a severe narrowing of the facial midline and excessive expansion of the facial midline are both attributable to disruptions in Hedgehog pathway activity. These data also raise the possibility that genes encoding ciliary proteins are candidates for human conditions of hypertelorism and FNDs. PMID:20106874
Vaze, Dhananjay; Mahalik, Santosh; Rao, Katragadda L N
2012-12-01
The present case report describes two patients with a novel combination of VACTERL (vertebral, anorectal, cardiac, tracheoesophageal, renal, limb), neural tube defect and crossed renal ectopia. Though cases of VACTERL associated with crossed renal ectopia have been described, the present case report is the first to describe its combination with neural tube defect. The cases reported here are significant because central nervous system manifestations are scarce in VACTERL syndrome. The role of sonic hedgehog pathway has been proposed in VACTERL association and neural tube defects. Axial Sonic hedgehog signaling has also been implicated in the mediolateral positioning of the renal parenchyma. With this knowledge, the etiopathogenesis of this novel combination is discussed to highlight the role of sonic hedgehog signaling as a point of coherence. © 2011 The Authors. Congenital Anomalies © 2011 Japanese Teratology Society.
Clinical implications of hedgehog signaling pathway inhibitors
Liu, Hailan; Gu, Dongsheng; Xie, Jingwu
2011-01-01
Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nüsslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and Carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hh-mediated Carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications. PMID:21192841
Boyles, Justin G; Bennett, Nigel C; Mohammed, Osama B; Alagaili, Abdulaziz N
Documenting variation in thermoregulatory patterns across phylogenetically and geographically diverse taxa is key to understanding the evolution of endothermy and heterothermy in birds and mammals. We recorded body temperature (T b ) in free-ranging desert hedgehogs (Paraechinus aethiopicus) across three seasons in the deserts of Saudi Arabia. Modal T b 's (35°-36.5°C) were slightly below normal for mammals but still warmer than those of other hedgehogs. The single maximum T b recorded was 39.2°C, which is cooler than maximum T b 's recorded in most desert mammals. Desert hedgehogs commonly used torpor during winter and spring but never during summer. Torpor bouts occurred frequently but irregularly, and most lasted less than 24 h. Unlike daily heterotherms, desert hedgehogs did occasionally remain torpid for more than 24 h, including one bout of 101 h. Body temperatures during torpor were often within 2°-3°C of ambient temperature; however, we never recorded repeated bouts of long, predictable torpor punctuated by brief arousal periods similar to those common among seasonal hibernators. Thus, desert hedgehogs can be included on the ever-growing list of species that display torpor patterns intermediate to traditionally defined hibernators and daily heterotherms. Extant hedgehogs are a recent radiation within an ancient family, and the intermediate thermoregulatory pattern displayed by desert hedgehogs is unlike the deeper and more regular torpor seen in other hedgehogs, suggesting that this may be a derived-as opposed to ancestral-trait in this subfamily. We suggest that this family (Erinaceidae) and order (Eulipotyphla) may be important for understanding the evolution of thermoregulatory patterns among Laurasiatheria and mammals in general.
Heckmann, Richard A; Amin, Omar M; Halajian, Ali; El-Naggar, Atif M
2013-02-01
The morphology of Nephridiacanthus major (Bremser 1811 in Westrumb 1821) Golvan, 1962 collected from the long-eared hedgehog Hemiechinus auritus (Gmelin 1770) and the Eastern European hedgehog Erinaceus concolor Martin, 1838 (Erinaceidae) is described using SEM for the first time. This acanthocephalan was previously described from hedgehogs in Europe, Asia, and Africa. Measurements of specimens from Iran, Bulgaria, Germany, Central Asia, Morocco, and Egypt show considerable variations in the size of the trunk, proboscis, proboscis hooks and receptacle, and eggs. The SEM studies add new perspectives to its morphology. Features observed for the first time include the near terminal position and shape of the female gonopore and orifice, among others. Histopathological studies for this species are reported for the first time. Tissue sections show extensive damage near the proboscis with hemorrhaging and formation of collagenous connective tissue, compression of the intestinal mucosa, obstruction of intestinal lumen, and extensive necrosis of host epithelial tissue.
Chen, Yan; Lu, Xiaoling; Guo, Luo; Ni, Wenli; Zhang, Yanping; Zhao, Liping; Wu, Lingjie; Sun, Shan; Zhang, Shasha; Tang, Mingliang; Li, Wenyan; Chai, Renjie; Li, Huawei
2017-01-01
Hair cell (HC) loss is the major cause of permanent sensorineural hearing loss in mammals. Unlike lower vertebrates, mammalian cochlear HCs cannot regenerate spontaneously after damage, although the vestibular system does maintain limited HC regeneration capacity. Thus HC regeneration from the damaged sensory epithelium has been one of the main areas of research in the field of hearing restoration. Hedgehog signaling plays important roles during the embryonic development of the inner ear, and it is involved in progenitor cell proliferation and differentiation as well as the cell fate decision. In this study, we show that recombinant Sonic Hedgehog (Shh) protein effectively promotes sphere formation, proliferation, and differentiation of Lgr5+ progenitor cells isolated from the neonatal mouse cochlea. To further explore this, we determined the effect of Hedgehog signaling on cell proliferation and HC regeneration in cultured cochlear explant from transgenic R26-SmoM2 mice that constitutively activate Hedgehog signaling in the supporting cells of the cochlea. Without neomycin treatment, up-regulation of Hedgehog signaling did not significantly promote cell proliferation or new HC formation. However, after injury to the sensory epithelium by neomycin treatment, the over-activation of Hedgehog signaling led to significant supporting cell proliferation and HC regeneration in the cochlear epithelium explants. RNA sequencing and real-time PCR were used to compare the transcripts of the cochleae from control mice and R26-SmoM2 mice, and multiple genes involved in the proliferation and differentiation processes were identified. This study has important implications for the treatment of sensorineural hearing loss by manipulating the Hedgehog signaling pathway. PMID:29311816
Hedgehog signaling in the murine melanoma microenvironment.
Geng, Ling; Cuneo, Kyle C; Cooper, Michael K; Wang, Hong; Sekhar, Konjeti; Fu, Allie; Hallahan, Dennis E
2007-01-01
The Hedgehog intercellular signaling pathway regulates cell proliferation and differentiation. This pathway has been implicated to play a role in the pathogenesis of cancer and in embryonic blood vessel development. In the current study, Hedgehog signaling in tumor related vasculature and microenvironment was examined using human umbilical vein endothelial cells and B16F0 (murine melanoma) tumors models. Use of exogenous Sonic hedgehog (Shh) peptide significantly increased BrdU incorporation in endothelial cells in vitro by a factor of 2 (P < 0.001). The Hedgehog pathway antagonist cyclopamine effectively reduced Shh-induced proliferation to control levels. To study Hedgehog signaling in vivo a hind limb tumor model with the B16F0 cell line was used. Treatment with 25 mg/kg cyclopamine significantly attenuated BrdU incorporation in tumor cells threefold (P < 0.001), in tumor related endothelial cells threefold (P = 0.004), and delayed tumor growth by 4 days. Immunohistochemistry revealed that the Hedgehog receptor Patched was localized to the tumor stroma and that B16F0 cells expressed Shh peptide. Furthermore, mouse embryonic fibroblasts required the presence of B16F0 cells to express Patched in a co-culture assay system. These studies indicate that Shh peptide produced by melanoma cells induces Patched expression in fibroblasts. To study tumor related angiogenesis a vascular window model was used to monitor tumor vascularity. Treatment with cyclopamine significantly attenuated vascular formation by a factor of 2.5 (P < 0.001) and altered vascular morphology. Furthermore, cyclopamine reduced tumor blood vessel permeability to FITC labeled dextran while having no effect on normal blood vessels. These studies suggest that Hedgehog signaling regulates melanoma related vascular formation and function.
Hedgehog Signaling in Prostate Cancer and Its Therapeutic Implication
Gonnissen, Annelies; Isebaert, Sofie; Haustermans, Karin
2013-01-01
Activation of Hedgehog (Hh) signaling is implicated in the development and progression of several tumor types, including prostate cancer, which is still the most common non-skin malignancy and the third leading cause of cancer-related mortality in men in industrialized countries worldwide. Several studies have indicated that the Hh pathway plays a crucial role in the development as well as in the progression of this disease to more aggressive and even therapy-resistant disease states. Moreover, preclinical data have shown that inhibition of Hh signaling has the potential to reduce prostate cancer invasiveness and metastatic potential. Clinical trials investigating the benefit of Hh inhibitors in patients with prostate cancer have recently been initiated. However, acquired drug resistance has already been observed in other tumor types after long-term Hh inhibition. Therefore, combining Hh inhibitors with ionizing radiation, chemotherapy or other molecular targeted agents could represent an alternative therapeutic strategy. In this review, we will highlight the role of Hh signaling in the development and progression of prostate cancer and summarize the different therapeutic applications of Hedgehog inhibition. PMID:23880852
Matus, David Q; Magie, Craig R; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H
2008-01-15
Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand ("hedge") domain and an autocatalytic intein ("hog") domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched, and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type-specific manner in putative neural precursors. Metazoan intein-containing genes that lack a hh ligand domain have previously only been identified within nematodes. However, we have identified intein-containing genes from both Nematostella and in two newly annotated lophotrochozoan genomes. Phylogenetic analyses suggest that while nematode inteins may be derived from an ancestral true hedgehog gene, the newly identified cnidarian and lophotrochozoan inteins may be orthologous, suggesting that both true hedgehog and hint genes may have been present in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFbeta, FGF, and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria.
Matus, David Q.; Magie, Craig; Pang, Kevin; Martindale, Mark Q; Thomsen, Gerald H.
2008-01-01
Hedgehog signaling is an important component of cell-cell communication during bilaterian development, and abnormal Hedgehog signaling contributes to disease and birth defects. Hedgehog genes are composed of a ligand (“hedge”) domain and an autocatalytic intein (“hog”) domain. Hedgehog (hh) ligands bind to a conserved set of receptors and activate downstream signal transduction pathways terminating with Gli/Ci transcription factors. We have identified five intein-containing genes in the anthozoan cnidarian Nematostella vectensis, two of which (NvHh1 and NvHh2) contain definitive hedgehog ligand domains, suggesting that to date, cnidarians are the earliest branching metazoan phylum to possess definitive Hh orthologs. Expression analysis of NvHh1 and NvHh2, the receptor NvPatched and a downstream transcription factor NvGli (a Gli3/Ci ortholog) indicate that these genes may have conserved roles in planar and trans-epithelial signaling during gut and germline development, while the three remaining intein-containing genes (NvHint1,2,3) are expressed in a cell-type specific manner in putative neural precursors. Metazoan intein-containing genes that lack a ligand domain have previously only been identified within nematodes. However, phylogenetic analyses suggest that these nematode inteins may be derived from an ancestral nematode true hedgehog gene, and that the non-bilaterian intein-containing genes identified here may represent an ancestral state prior to the domain swapping events that resulted in the formation of true hedgehog genes in the cnidarian-bilaterian ancestor. Genomic surveys of N. vectensis suggest that most of the components of both protostome and deuterostome Hh signaling pathways are present in anthozoans and that some appear to have been lost in ecdysozoan lineages. Cnidarians possess many bilaterian cell-cell signaling pathways (Wnt, TGFß, FGF and Hh) that appear to act in concert to pattern tissues along the oral-aboral axis of the polyp. Cnidarians represent a diverse group of animals with a predominantly epithelial body plan, and perhaps selective pressures to pattern epithelia resulted in the ontogeny of the hedgehog pathway in the common ancestor of the Cnidaria and Bilateria. PMID:18068698
Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.
2012-01-01
Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391
Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K
2013-05-01
Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.
2013-05-01
Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less
Kerr, Christine L.; Huang, Jian; Williams, Trevor; West-Mays, Judith A.
2012-01-01
Purpose. The signaling pathways and transcriptional effectors responsible for directing mammalian lens development provide key regulatory molecules that can inform our understanding of human eye defects. The hedgehog genes encode extracellular signaling proteins responsible for patterning and tissue formation during embryogenesis. Signal transduction of this pathway is mediated through activation of the transmembrane proteins smoothened and patched, stimulating downstream signaling resulting in the activation or repression of hedgehog target genes. Hedgehog signaling is implicated in eye development, and defects in hedgehog signaling components have been shown to result in defects of the retina, iris, and lens. Methods. We assessed the consequences of constitutive hedgehog signaling in the developing mouse lens using Cre-LoxP technology to express the conditional M2 smoothened allele in the embryonic head and lens ectoderm. Results. Although initial lens development appeared normal, morphological defects were apparent by E12.5 and became more significant at later stages of embryogenesis. Altered lens morphology correlated with ectopic expression of FoxE3, which encodes a critical gene required for human and mouse lens development. Later, inappropriate expression of the epithelial marker Pax6, and as well as fiber cell markers c-maf and Prox1 also occurred, indicating a failure of appropriate lens fiber cell differentiation accompanied by altered lens cell proliferation and cell death. Conclusions. Our findings demonstrate that the ectopic activation of downstream effectors of the hedgehog signaling pathway in the mouse lens disrupts normal fiber cell differentiation by a mechanism consistent with a sustained epithelial cellular developmental program driven by FoxE3. PMID:22491411
Moreau, Nathan; Mauborgne, Annie; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette B; Villanueva, Luis; Pohl, Michel; Boucher, Yves
2017-01-01
Blood–nerve barrier disruption is pivotal in the development of neuroinflammation, peripheral sensitization, and neuropathic pain after peripheral nerve injury. Activation of toll-like receptor 4 and inactivation of Sonic Hedgehog signaling pathways within the endoneurial endothelial cells are key events, resulting in the infiltration of harmful molecules and immunocytes within the nerve parenchyma. However, we showed in a previous study that preemptive inactivation of toll-like receptor 4 signaling or sustained activation of Sonic Hedgehog signaling did not prevent the local alterations observed following peripheral nerve injury, suggesting the implication of another signaling pathway. Using a classical neuropathic pain model, the infraorbital nerve chronic constriction injury (IoN-CCI), we investigated the role of the Wnt/β-catenin pathway in chronic constriction injury-mediated blood–nerve barrier disruption and in its interactions with the toll-like receptor 4 and Sonic Hedgehog pathways. In the IoN-CCI model versus control, mRNA expression levels and/or immunochemical detection of major Wnt/Sonic Hedgehog pathway (Frizzled-7, vascular endothelial-cadherin, Patched-1 and Gli-1) and/or tight junction proteins (Claudin-1, Claudin-5, and Occludin) readouts were assessed. Vascular permeability was assessed by sodium fluorescein extravasation. IoN-CCI induced early alterations in the vascular endothelial-cadherin/β-catenin/Frizzled-7 complex, shown to participate in local blood–nerve barrier disruption via a β-catenin-dependent tight junction protein downregulation. Wnt pathway also mediated a crosstalk between toll-like receptor 4 and Sonic Hedgehog signaling within endoneurial endothelial cells. Nevertheless, preemptive inhibition of Wnt/β-catenin signaling before IoN-CCI could not prevent the downregulation of key Sonic Hedgehog pathway readouts or the disruption of the infraorbital blood–nerve barrier, suggesting that Sonic Hedgehog pathway inhibition observed following IoN-CCI is an independent event responsible for blood–nerve barrier disruption. A crosstalk between Wnt/β-catenin- and Sonic Hedgehog-mediated signaling pathways within endoneurial endothelial cells could mediate the chronic disruption of the blood–nerve barrier following IoN-CCI, resulting in increased irreversible endoneurial vascular permeability and neuropathic pain development.
Haraguchi, Ryuma; Kitazawa, Riko; Imai, Yuuki; Kitazawa, Sohei
2018-04-01
Longitudinal bone growth progresses by continuous bone replacement of epiphyseal cartilaginous tissue, known as "growth plate", produced by columnar proliferated- and differentiated-epiphyseal chondrocytes. The endochondral ossification process at the growth plate is governed by paracrine signals secreted from terminally differentiated chondrocytes (hypertrophic chondrocytes), and hedgehog signaling is one of the best known regulatory signaling pathways in this process. Here, to investigate the developmental relationship between longitudinal endochondral bone formation and osteogenic progenitors under the influence of hedgehog signaling at the growth plate, genetic lineage tracing was carried out with the use of Gli1 CreERT2 mice line to follow the fate of hedgehog-signal-responsive cells during endochondral bone formation. Gli1 CreERT2 genetically labeled cells are detected in hypertrophic chondrocytes and osteo-progenitors at the chondro-osseous junction (COJ); these progeny then commit to the osteogenic lineage in periosteum, trabecular and cortical bone along the developing longitudinal axis. Furthermore, in ageing bone, where longitudinal bone growth ceases, hedgehog-signal responsiveness and its implication in osteogenic lineage commitment is significantly weakened. These results show, for the first time, evidence of the developmental contribution of endochondral progenitors under the influence of epiphyseal chondrocyte-derived secretory signals in longitudinally growing bone. This study provides a precise outline for assessing the skeletal lineage commitment of osteo-progenitors in response to growth-plate-derived regulatory signals during endochondral bone formation.
Vismodegib Suppresses TRAIL-mediated Liver Injury in a Mouse Model of Nonalcoholic Steatohepatitis
Hirsova, Petra; Ibrahim, Samar H.; Bronk, Steven F.; Yagita, Hideo; Gores, Gregory J.
2013-01-01
Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol) diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH. PMID:23894677
Profile of vismodegib and its potential in the treatment of advanced basal cell carcinoma.
Macha, Muzafar A; Batra, Surinder K; Ganti, Apar Kishor
2013-01-01
Basal cell carcinoma (BCC) is the most common human malignancy. Recent advances in our understanding of the critical biologic pathways implicated in the development and progression of BCC have led to the development of the first molecular targeted therapy for this disease. The hedgehog pathway is mutated in virtually all patients with BCC and recent trials with vismodegib, an inhibitor of this pathway, have shown significant responses. This review will discuss the importance of the hedgehog pathway in the pathogenesis of BCC and describe in detail the pharmacology of vismodegib in relation to its activity in advanced BCC.
Profile of vismodegib and its potential in the treatment of advanced basal cell carcinoma
Macha, Muzafar A; Batra, Surinder K; Ganti, Apar Kishor
2013-01-01
Basal cell carcinoma (BCC) is the most common human malignancy. Recent advances in our understanding of the critical biologic pathways implicated in the development and progression of BCC have led to the development of the first molecular targeted therapy for this disease. The hedgehog pathway is mutated in virtually all patients with BCC and recent trials with vismodegib, an inhibitor of this pathway, have shown significant responses. This review will discuss the importance of the hedgehog pathway in the pathogenesis of BCC and describe in detail the pharmacology of vismodegib in relation to its activity in advanced BCC. PMID:23940421
Hu, Yinan; Albertson, R Craig
2014-06-10
Adaptive variation in the craniofacial skeleton is a key component of resource specialization and habitat divergence in vertebrates, but the proximate genetic mechanisms that underlie complex patterns of craniofacial variation are largely unknown. Here we demonstrate that the Hedgehog (Hh) signaling pathway mediates widespread variation across a complex functional system that affects the kinematics of lower jaw depression--the opercular four-bar linkage apparatus--among Lake Malawi cichlids. By using a combined quantitative trait locus mapping and population genetics approach, we show that allelic variation in the Hh receptor, ptch1, affects the development of distinct bony elements in the head that represent two of three movable links in this functional system. The evolutionarily derived allele is found in species that feed from the water column, and is associated with shifts in anatomy that translate to a four-bar system capable of faster jaw rotation. Alternatively, the ancestral allele is found in species that feed on attached algae, and is associated with the development of a four-bar system that predicts slower jaw movement. Experimental manipulation of the Hh pathway during cichlid development recapitulates functionally salient natural variation in craniofacial geometry. In all, these results significantly extend our understanding of the mechanisms that fine-tune the craniofacial skeletal complex during adaptation to new foraging niches.
Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N; Belkadi, Abdelmadjid; Veniaminova, Natalia A; Verhaegen, Monique E; Bichakjian, Christopher K; Ward, Nicole L; Dlugosz, Andrzej A; Wong, Sunny Y
2015-04-02
Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Peterson, Shelby C.; Eberl, Markus; Vagnozzi, Alicia N.; Belkadi, Abdelmadjid; Veniaminova, Natalia A.; Verhaegen, Monique E.; Bichakjian, Christopher K.; Ward, Nicole L.; Dlugosz, Andrzej A.; Wong, Sunny Y.
2015-01-01
SUMMARY Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well-established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as “hot spots” for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. PMID:25842978
Fan, C M; Porter, J A; Chiang, C; Chang, D T; Beachy, P A; Tessier-Lavigne, M
1995-05-05
A long-range signal encoded by the Sonic hedgehog (Shh) gene has been implicated as the ventral patterning influence from the notochord that induces sclerotome and represses dermomyotome in somite differentiation. Long-range effects of hedgehog (hh) signaling have been suggested to result either from local induction of a secondary diffusible signal or from the direct action of the highly diffusible carboxy-terminal product of HH autoproteolytic cleavage. Here we provide evidence that the long-range somite patterning effects of SHH are instead mediated by a direct action of the amino-terminal cleavage product. We also show that pharmacological manipulations to increase the activity of cyclic AMP-dependent protein kinase A can selectively antagonize the effects of the amino-terminal cleavage product. Our results support the operation of a single evolutionarily conserved signaling pathway for both local and direct long-range inductive actions of HH family members.
Craniofacial divergence and ongoing adaptation via the hedgehog pathway.
Roberts, Reade B; Hu, Yinan; Albertson, R Craig; Kocher, Thomas D
2011-08-09
Adaptive variation in craniofacial structure contributes to resource specialization and speciation, but the genetic loci that underlie craniofacial adaptation remain unknown. Here we show that alleles of the hedgehog pathway receptor Patched1 (Ptch1) gene are responsible for adaptive variation in the shape of the lower jaw both within and among genera of Lake Malawi cichlid fish. The evolutionarily derived allele of Ptch1 reduces the length of the retroarticular (RA) process of the lower jaw, a change predicted to increase speed of jaw rotation for improved suction-feeding. The alternate allele is associated with a longer RA and a more robustly mineralized jaw, typical of species that use a biting mode of feeding. Genera with the most divergent feeding morphologies are nearly fixed for different Ptch1 alleles, whereas species with intermediate morphologies still segregate variation at Ptch1. Thus, the same alleles that help to define macroevolutionary divergence among genera also contribute to microevolutionary fine-tuning of adaptive traits within some species. Variability of craniofacial morphology mediated by Ptch1 polymorphism has likely contributed to niche partitioning and ecological speciation of these fishes.
Bora-Singhal, Namrata; Perumal, Deepak; Nguyen, Jonathan; Chellappan, Srikumar
2015-07-01
Non-small cell lung cancer (NSCLC) patients have very low survival rates because the current therapeutic strategies are not fully effective. Although EGFR tyrosine kinase inhibitors are effective for NSCLC patients harboring EGFR mutations, patients invariably develop resistance to these agents. Alterations in multiple signaling cascades have been associated with the development of resistance to EGFR inhibitors. Sonic Hedgehog and associated Gli transcription factors play a major role in embryonic development and have recently been found to be reactivated in NSCLC, and elevated Gli1 levels correlate with poor prognosis. The Hedgehog pathway has been implicated in the functions of cancer stem cells, although the underlying molecular mechanisms are not clear. In this context, we demonstrate that Gli1 is a strong regulator of embryonic stem cell transcription factor Sox2. Depletion of Gli1 or inhibition of the Hedgehog signaling significantly abrogated the self-renewal of stem-like side-population cells from NSCLCs as well as vascular mimicry of such cells. Gli1 was found to transcriptionally regulate Sox2 through its promoter region, and Gli1 could be detected on the Sox2 promoter. Inhibition of Hedgehog signaling appeared to work cooperatively with EGFR inhibitors in markedly reducing the viability of NSCLC cells as well as the self-renewal of stem-like cells. Thus, our study demonstrates a cooperative functioning of the EGFR signaling and Hedgehog pathways in governing the stem-like functions of NSCLC cancer stem cells and presents a novel therapeutic strategy to combat NSCLC harboring EGFR mutations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Suppression of hedgehog signaling regulates hepatic stellate cell activation and collagen secretion.
Li, Tao; Leng, Xi-Sheng; Zhu, Ji-Ye; Wang, Gang
2015-01-01
Hepatic stellate cells (HSCs) play an important role in liver fibrosis. This study investigates the expression of hedgehog in HSC and the role of hedgehog signaling on activation and collagen secretion of HSC. Liver ex vivo perfusion with collagenase IV and density gradient centrifugation were used to isolate HSC. Expression of hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 in HSC were detected by RT-PCR. Hedgehog siRNA vectors targeting Ihh, Smo and Gli2 were constructed and transfected into HSC respectively. Suppression of hedgehog signaling were detected by SYBR Green fluorescence quantitative RT-PCR. Effects of hedgehog signaling inhibition on HSC activation and collagen I secretion were analyzed. Hedgehog signaling components Ihh, Smo, Ptc, Gli2 and Gli3 were expressed in HSC. siRNA vectors targeting Ihh, Smo and Gli2 were successfully constructed and decreased target gene expression. Suppression of hedgehog signaling significantly decreased the expression of α-SMA in HSC (P<0.01). Collagen type I secretion of HSC were also significantly decreased (P<0.01). In summary, HSC activation and collagen secretion can be regulated by hedgehog signaling. Hedgehog may play a role in the pathogenesis of liver fibrosis.
Mizuochi, Hiromi; Fujii, Katsunori; Shiohama, Tadashi; Uchikawa, Hideki; Shimojo, Naoki
2015-02-13
Hedgehog signaling is a pivotal developmental pathway that comprises hedgehog, PTCH1, SMO, and GLI proteins. Mutations in PTCH1 are responsible for Gorlin syndrome, which is characterized by developmental defects and tumorigenicity. Although the hedgehog pathway has been investigated extensively in Drosophila and mice, its functional roles have not yet been determined in human cells. In order to elucidate the mechanism by which transduction of the hedgehog signal is regulated in human tissues, we employed human fibroblasts derived from three Gorlin syndrome patients and normal controls. We investigated GLI1 transcription, downstream of hedgehog signaling, to assess native signal transduction, and then treated fibroblasts with a recombinant human hedgehog protein with or without serum deprivation. We also examined the transcriptional levels of hedgehog-related genes under these conditions. The expression of GLI1 mRNA was significantly higher in Gorlin syndrome-derived fibroblasts than in control cells. Hedgehog stimulation and nutritional deprivation synergistically enhanced GLI1 transcription levels, and this was blocked more efficiently by vismodegib, a SMO inhibitor, than by the natural compound, cyclopamine. Messenger RNA profiling revealed the increased expression of Wnt signaling and morphogenetic molecules in these fibroblasts. These results indicated that the hedgehog stimulation and nutritional deprivation synergistically activated the hedgehog signaling pathway in Gorlin syndrome fibroblasts, and this was associated with increments in the transcription levels of hedgehog-related genes such as those involved in Wnt signaling. These fibroblasts may become a significant tool for predicting the efficacies of hedgehog molecular-targeted therapies such as vismodegib. Copyright © 2015 Elsevier Inc. All rights reserved.
Gas1 extends the range of Hedgehog action by facilitating its signaling
Martinelli, David C.; Fan, Chen-Ming
2007-01-01
Cellular signaling initiated by Hedgehog binding to Patched1 has profound importance in mammalian embryogenesis, genetic disease, and cancer. Hedgehog acts as a morphogen to specify distinctive cell fates using different concentration thresholds, but our knowledge of how the concentration gradient is interpreted into the activity gradient is incomplete. The membrane protein Growth Arrest-Specific Gene 1 (GAS1) was thought to be a negative regulator of the Hedgehog concentration gradient. Here, we report unexpected genetic evidence that Gas1 positively regulates Hedgehog signaling in multiple developmental contexts, an effect particularly noticeable at regions where Hedgehog acts at low concentration. Using a combination of in vitro cell culture and in ovo electroporation assays, we demonstrate that GAS1 acts cooperatively with Patched1 for Hedgehog binding and enhances signaling activity in a cell-autonomous manner. Our data support a model in which GAS1 helps transform the Hedgehog protein gradient into the observed activity gradient. We propose that Gas1 is an evolutionarily novel, vertebrate-specific Hedgehog pathway regulator. PMID:17504940
The hedgehog/Gli signaling paradigm in prostate cancer
Chen, Mengqian; Carkner, Richard; Buttyan, Ralph
2011-01-01
Hedgehog is a ligand-activated signaling pathway that regulates Gli-mediated transcription. Although most noted for its role as an embryonic morphogen, hyperactive hedgehog also causes human skin and brain malignancies. The hedgehog-related gene anomalies found in these tumors are rarely found in prostate cancer. Yet surveys of human prostate tumors show concordance of high expression of hedgehog ligands and Gli2 that correlate with the potential for metastasis and therapy-resistant behavior. Likewise, prostate cancer cell lines express hedgehog target genes, and their growth and survival is affected by hedgehog/Gli inhibitors. To date, the preponderance of data supports the idea that prostate tumors benefit from a paracrine hedgehog microenvironment similar to the developing prostate. Uncertainty remains as to whether hedgehog’s influence in prostate cancer also includes aspects of tumor cell autocrine-like signaling. The recent findings that Gli proteins interact with the androgen receptor and affect its transcriptional output have helped to identify a novel pathway through which hedgehog/Gli might affect prostate tumor behavior and raises questions as to whether hedgehog signaling in prostate cancer cells is suitably measured by the expression of Gli target genes alone. PMID:21776292
Astrocytoma in an African hedgehog (Atelerix albiventris) suspected wobbly hedgehog syndrome.
Nakata, Makoto; Miwa, Yasutsugu; Itou, Takuya; Uchida, Kazuyuki; Nakayama, Hiroyuki; Sakai, Takeo
2011-10-01
A 28-month-old African hedgehog was referred to our hospital with progressive tetraparesis. On the first presentation, the hedgehog was suspected as having wobbly hedgehog syndrome (WHS) and the animal was treated with medication and rehabilitation. The animal died 22 days after onset. Pathological examination revealed that the animal was involved in astrocytoma between the medulla oblongata and the spinal cord (C1). This report indicates that a primary central nervous system tumor should be considered as one of the differential diagnoses for hedgehogs presenting with progressive paresis, together with WHS.
Mirzaei, Mohammad
2014-12-01
Hedgehogs are distributed in different areas of Iran. Unfortunately, clinical and parasitological studies on parasites of hedgehogs are very few. Crenosoma striatum is a common lungworm in hedgehogs. C. striatum infection can cause weight loss, dry cough, bronchitis with ulcerous reactions based on secondary bacterial infections, pulmonary damage, thickening of the tracheal wall, and pulmonary emphysema up to cardiovascular failure. In this survey, six dead hedgehogs (Hemiechinus auritus) were investigated for lungworm infection. All the six hedgehogs had C. striatum infection in their lungs.
Gorgani-Firouzjaee, Tahmineh; Pour-Reza, Behzad; Naem, Soraya; Tavassoli, Mousa
2013-01-01
Hedgehogs are small, nocturnal mammals that become popular in the world and have significant role in transmission of zoonotic agents. Some of the agents are transmitted by ticks and fleas such as rickettsial agents. For these reason, a survey on ectoparasites in European hedgehog (Erinaceus europaeus) carried out between April 2006 and December 2007 from different parts of Urmia city, west Azerbaijan, Iran. After being euthanized external surface of body of animals was precisely considered for ectoparasites, and arthropods were collected and stored in 70% ethanol solution. Out of 34 hedgehogs 23 hedgehogs (67.70%) were infested with ticks (Rhipicephalus turanicus). Fleas of the species Archaeopsylla erinacei were found on 19 hedgehogs of 34 hedgehogs (55.90%). There was no significant differences between sex of ticks (p > 0.05) but found in fleas (p < 0.05). The prevalence of infestation in sexes and the body condition of hedgehogs (small, medium and large) with ticks and fleas did not show significant differences (p > 0.05). Highest occurrence of infestation in both tick and flea was in June. Among three seasons of hedgehog collection significant differences was observed (p < 0.05). The result of our survey revealed that infestation rate in hedgehog was high. According to zoonotic importance of this ectoparasite and ability to transmission of some pathogens, more studies are needed to investigate hedgehog parasites in different parts of Iran. PMID:25653796
Madarame, Hiroo; Ogihara, Kikumi; Kimura, Moe; Nagai, Makoto; Omatsu, Tsutomu; Ochiai, Hideharu; Mizutani, Tetsyuya
2014-09-17
A pneumonia virus of mice (PVM) from an African hedgehog (Atelerix arbiventris) with suspected wobbly hedgehog syndrome (WHS) was detected and genetically characterized. The affected hedgehog had a nonsuppurative encephalitis with vacuolization of the white matter, and the brain samples yielded RNA reads highly homogeneous to PVM strain 15 (96.5% of full genomic sequence homology by analysis of next generation sequencing). PVM antigen was also detected in the brain and the lungs immunohistochemically. A PVM was strongly suggested as a causative agent of encephalitis of a hedgehog with suspected WHS. This is a first report of PVM infection in hedgehogs. Copyright © 2014 Elsevier B.V. All rights reserved.
Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology.
Singh, Nandini; Dutka, Tara; Devenney, Benjamin M; Kawasaki, Kazuhiko; Reeves, Roger H; Richtsmeier, Joan T
2015-03-01
Hedgehog (HH) signaling, and particularly signaling by sonic hedgehog (SHH), is implicated in several essential activities during morphogenesis, and its misexpression causes a number of developmental disorders in humans. In particular, a reduced mitogenic response of cerebellar granule cell precursors to SHH signaling in a mouse model for Down syndrome (DS), Ts65Dn, is substantially responsible for reduced cerebellar size. A single treatment of newborn trisomic mice with an agonist of the SHH pathway (SAG) normalizes cerebellar morphology and restores some cognitive deficits, suggesting a possible therapeutic application of SAG for treating the cognitive impairments of DS. Although the beneficial effects on the cerebellum are compelling, inappropriate activation of the HH pathway causes anomalies elsewhere in the head, particularly in the formation and patterning of the craniofacial skeleton. To determine whether an acute treatment of SAG has an effect on craniofacial morphology, we quantitatively analyzed the cranial form of adult euploid and Ts65Dn mice that were injected with either SAG or vehicle at birth. We found significant deformation of adult craniofacial shape in some animals that had received SAG at birth. The most pronounced differences between the treated and untreated mice were in the midline structures of the facial skeleton. The SAG-driven craniofacial dysmorphogenesis was dose-dependent and possibly incompletely penetrant at lower concentrations. Our findings illustrate that activation of HH signaling, even with an acute postnatal stimulation, can lead to localized dysmorphology of the skull by generating modular shape changes in the facial skeleton. These observations have important implications for translating HH-agonist-based treatments for DS. © 2015. Published by The Company of Biologists Ltd.
Boc modifies the spectrum of holoprosencephaly in the absence of Gas1 function
Seppala, Maisa; Xavier, Guilherme M.; Fan, Chen-Ming; Cobourne, Martyn T.
2014-01-01
ABSTRACT Holoprosencephaly is a heterogeneous developmental malformation of the central nervous system characterized by impaired forebrain cleavage, midline facial anomalies and wide phenotypic variation. Indeed, microforms represent the mildest manifestation, associated with facial anomalies but an intact central nervous system. In many cases, perturbations in sonic hedgehog signaling are responsible for holoprosencephaly. Here, we have elucidated the contribution of Gas1 and an additional hedgehog co-receptor, Boc during early development of the craniofacial midline, by generating single and compound mutant mice. Significantly, we find Boc has an essential role in the etiology of a unique form of lobar holoprosencephaly that only occurs in conjunction with combined loss of Gas1. Whilst Gas1−/− mice have microform holoprosencephaly characterized by a single median maxillary central incisor, cleft palate and pituitary anomalies, Boc−/− mice have a normal facial midline. However, Gas1−/−; Boc−/− mutants have lobar holoprosencephaly associated with clefting of the lip, palate and tongue, secondary to reduced sonic hedgehog transduction in the central nervous system and face. Moreover, maxillary incisor development is severely disrupted in these mice, arresting prior to cellular differentiation as a result of apoptosis in the odontogenic epithelium. Thus, Boc and Gas1 retain an essential function in these tooth germs, independent of their role in midline development of the central nervous system and face. Collectively, this phenotype demonstrates both redundancy and individual requirements for Gas1 and Boc during sonic hedgehog transduction in the craniofacial midline and suggests BOC as a potential digenic locus for lobar holoprosencephaly in human populations. PMID:25063195
Fairley, J A; Suchniak, J; Paller, A S
1999-05-01
Hedgehogs are increasingly popular pets in the United States and Europe. A number of infections may be acquired from these animals, and hedgehogs are possible hosts of parasites. However, to our knowledge there arc no previous reports of urticarial reactions to hedgehogs. We describe 3 patients who developed an acute, transient, urticarial reaction after contact with the extended spines of pet hedgehogs. One patient also developed a more prolonged reaction at the site of contact. Interestingly, all 3 patients had documented allergies to cats and/or dogs. The results of prick testing in 1 patient to an extract of hedgehog dander produced an immediate wheal-and-flare reaction. A variety of dermatologic disorders may be seen in handlers of hedgehogs. Due to the increasing popularity of these animals as pets, it is likely that these reactions will be noted more frequently by dermatologists. The presence of allergies to other pets may be predictive of hedgehog hives and further investigation of the cross reaction of various animal antigens may clarify this relationship.
Bergeron, Sadie A.; Tyurina, Oksana V.; Miller, Emily; Bagas, Andrea; Karlstrom, Rolf O.
2011-01-01
The transmembrane protein Brother of Cdo (Boc) has been implicated in Shh-mediated commissural axon guidance, and can both positively and negatively regulate Hedgehog (Hh) target gene transcription, however, little is known about in vivo requirements for Boc during vertebrate embryogenesis. The zebrafish umleitung (umlty54) mutant was identified by defects in retinotectal axon projections. Here, we show that the uml locus encodes Boc and that Boc function is cell-autonomously required for Hh-mediated neural patterning. Our phenotypic analysis suggests that Boc is required as a positive regulator of Hh signaling in the spinal cord, hypothalamus, pituitary, somites and upper jaw, but that Boc might negatively regulate Hh signals in the lower jaw. This study reveals a role for Boc in ventral CNS cells that receive high levels of Hh and uncovers previously unknown roles for Boc in vertebrate embryogenesis. PMID:21115611
Cardiomyopathy in captive African hedgehogs (Atelerix albiventris).
Raymond, J T; Garner, M M
2000-09-01
From 1994 to 1999, 16 captive African hedgehogs (Atelerix albiventris), from among 42 necropsy cases, were diagnosed with cardiomyopathy. The incidence of cardiomyopathy in this study population was 38%. Fourteen of 16 hedgehogs with cardiomyopathy were males and all hedgehogs were adult (>1 year old). Nine hedgehogs exhibited 1 or more of the following clinical signs before death: heart murmur, lethargy, icterus, moist rales, anorexia, dyspnea, dehydration, and weight loss. The remaining 7 hedgehogs died without premonitory clinical signs. Gross findings were cardiomegaly (6 cases), hepatomegaly (5 cases), pulmonary edema (5 cases), pulmonary congestion (4 cases), hydrothorax (3 cases), pulmonary infarct (1 case), renal infarcts (1 case), ascites (1 case), and 5 cases showed no changes. Histologic lesions were found mainly within the left ventricular myocardium and consisted primarily of myodegeneration, myonecrosis, atrophy, hypertrophy, and disarray of myofibers. All hedgehogs with cardiomyopathy had myocardial fibrosis, myocardial edema, or both. Other common histopathologic findings were acute and chronic passive congestion of the lungs, acute passive congestion of the liver, renal tubular necrosis, vascular thrombosis, splenic extramedullary hematopoiesis, and hepatic lipidosis. This is the first report of cardiomyopathy in African hedgehogs.
Kennedy, Emily B; Hsiung, Bor-Kai; Swift, Nathan B; Tan, Kwek-Tze
2017-11-01
Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling.
Ermilov, Alexandre N; Kumari, Archana; Li, Libo; Joiner, Ariell M; Grachtchouk, Marina A; Allen, Benjamin L; Dlugosz, Andrzej A; Mistretta, Charlotte M
2016-11-01
For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae.
Maintenance of Taste Organs Is Strictly Dependent on Epithelial Hedgehog/GLI Signaling
Mistretta, Charlotte M.
2016-01-01
For homeostasis, lingual taste papilla organs require regulation of epithelial cell survival and renewal, with sustained innervation and stromal interactions. To investigate a role for Hedgehog/GLI signaling in adult taste organs we used a panel of conditional mouse models to manipulate GLI activity within epithelial cells of the fungiform and circumvallate papillae. Hedgehog signaling suppression rapidly led to taste bud loss, papilla disruption, and decreased proliferation in domains of papilla epithelium that contribute to taste cells. Hedgehog responding cells were eliminated from the epithelium but retained in the papilla stromal core. Despite papilla disruption and loss of taste buds that are a major source of Hedgehog ligand, innervation to taste papillae was maintained, and not misdirected, even after prolonged GLI blockade. Further, vimentin-positive fibroblasts remained in the papilla core. However, retained innervation and stromal cells were not sufficient to maintain taste bud cells in the context of compromised epithelial Hedgehog signaling. Importantly taste organ disruption after GLI blockade was reversible in papillae that retained some taste bud cell remnants where reactivation of Hedgehog signaling led to regeneration of papilla epithelium and taste buds. Therefore, taste bud progenitors were either retained during epithelial GLI blockade or readily repopulated during recovery, and were poised to regenerate taste buds once Hedgehog signaling was restored, with innervation and papilla connective tissue elements in place. Our data argue that Hedgehog signaling is essential for adult tongue tissue maintenance and that taste papilla epithelial cells represent the key targets for physiologic Hedgehog-dependent regulation of taste organ homeostasis. Because disruption of GLI transcriptional activity in taste papilla epithelium is sufficient to drive taste organ loss, similar to pharmacologic Hedgehog pathway inhibition, the findings suggest that taste alterations in cancer patients using systemic Hedgehog pathway inhibitors result principally from interruption of signaling activity in taste papillae. PMID:27893742
The imidazopyridine derivative JK184 reveals dual roles for microtubules in Hedgehog signaling.
Cupido, Tommaso; Rack, Paul G; Firestone, Ari J; Hyman, Joel M; Han, Kyuho; Sinha, Surajit; Ocasio, Cory A; Chen, James K
2009-01-01
Eradicating hedgehogs: The title molecule has been previously identified as a potent inhibitor of the Hedgehog signaling pathway, which gives embryonic cells information needed to develop properly. This molecule is shown to modulate Hedgehog target gene expression by depolymerizing microtubules, thus revealing dual roles of the cytoskeleton in pathway regulation (see figure).
Hedgehog signaling regulates segment formation in the annelid Platynereis.
Dray, Nicolas; Tessmar-Raible, Kristin; Le Gouar, Martine; Vibert, Laura; Christodoulou, Foteini; Schipany, Katharina; Guillou, Aurélien; Zantke, Juliane; Snyman, Heidi; Béhague, Julien; Vervoort, Michel; Arendt, Detlev; Balavoine, Guillaume
2010-07-16
Annelids and arthropods share a similar segmented organization of the body whose evolutionary origin remains unclear. The Hedgehog signaling pathway, prominent in arthropod embryonic segment patterning, has not been shown to have a similar function outside arthropods. We show that the ligand Hedgehog, the receptor Patched, and the transcription factor Gli are all expressed in striped patterns before the morphological appearance of segments in the annelid Platynereis dumerilii. Treatments with small molecules antagonistic to Hedgehog signaling disrupt segment formation. Platynereis Hedgehog is not necessary to establish early segment patterns but is required to maintain them. The molecular similarity of segment patterning functions of the Hedgehog pathway in an annelid and in arthropods supports a common origin of segmentation in protostomes.
Control of somite patterning by Sonic hedgehog and its downstream signal response genes.
Borycki, A G; Mendham, L; Emerson, C P
1998-02-01
In the avian embryo, previous work has demonstrated that the notochord provides inductive signals to activate myoD and pax1 regulatory genes, which are expressed in the dorsal and ventral somite cells that give rise to myotomal and sclerotomal lineages. Here, we present bead implantation and antisense inhibition experiments that show that Sonic hedgehog is both a sufficient and essential notochord signal molecule for myoD and pax1 activation in somites. Furthermore, we show that genes of the Sonic hedgehog signal response pathway, specifically patched, the Sonic hedgehog receptor, and gli and gli2/4, zinc-finger transcription factors, are activated in coordination with somite formation, establishing that Sonic hedgehog response genes play a regulatory role in coordinating the response of somites to the constitutive notochord Sonic hedgehog signal. Furthermore, the expression of patched, gli and gli2/4 is differentially patterned in the somite, providing mechanisms for differentially transducing the Sonic hedgehog signal to the myotomal and sclerotomal lineages. Finally, we show that the activation of gli2/4 is controlled by the process of somite formation and signals from the surface ectoderm, whereas upregulation of patched and activation of gli is controlled by the process of somite formation and a Sonic hedgehog signal. The Sonic hedgehog signal response genes, therefore, have important functions in regulating the initiation of the Sonic hedgehog response in newly forming somites and in regulating the patterned expression of myoD and pax1 in the myotomal and sclerotomal lineages following somite formation.
Holoprosencephaly: from Homer to Hedgehog.
Ming, J E; Muenke, M
1998-03-01
Holoprosencephaly (HPE), a common developmental defect affecting the forebrain and face, is etiologically heterogeneous and exhibits wide phenotypic variation. Graded degrees of severity of the brain malformation are also reflected in the highly variable craniofacial malformations associated with HPE. In addition, individuals with microforms of HPE, who usually have normal cognition and normal brain imaging, are at risk for having children with HPE. Some obligate carriers for HPE may not have any phenotypic abnormalities. Recurrent chromosomal rearrangements in individuals with HPE suggest loci containing genes important for brain development, and abnormalities in these genes may result in HPE. Recently, Sonic Hedgehog (SHH) was the first gene identified as causing HPE in humans. Proper function of SHH depends on cholesterol modification. Other candidate genes that may be involved in HPE include components of the SHH pathway, elements involved in cholesterol metabolism, and genes expressed in the developing forebrain.
USDA-ARS?s Scientific Manuscript database
Hedgehog signaling is involved in regulation of ovarian function in Drosophila but its role in regulating mammalian ovarian folliculogenesis is less clear. Therefore, gene expression of Indian hedgehog (IHH) and its type 1 receptor, patched 1 (PTCH1), were quantified in bovine granulosa (GC) or the...
Riley, Patricia Y.
2005-01-01
Exotic pets, including hedgehogs, have become popular in recent years among pet owners, especially in North America. Such animals can carry and introduce zoonotic agents, a fact well illustrated by the recent outbreak of monkeypox in pet prairie dogs. We reviewed known and potential zoonotic diseases that could be carried and transmitted by pet hedgehogs or when rescuing and caring for wild-caught hedgehogs. PMID:15705314
Canettieri, Gianluca; Di Marcotullio, Lucia; Greco, Azzura; Coni, Sonia; Antonucci, Laura; Infante, Paola; Pietrosanti, Laura; De Smaele, Enrico; Ferretti, Elisabetta; Miele, Evelina; Pelloni, Marianna; De Simone, Giuseppina; Pedone, Emilia Maria; Gallinari, Paola; Giorgi, Alessandra; Steinkühler, Christian; Vitagliano, Luigi; Pedone, Carlo; Schinin, M Eugenià; Screpanti, Isabella; Gulino, Alberto
2010-02-01
Hedgehog signalling is crucial for development and is deregulated in several tumours, including medulloblastoma. Regulation of the transcriptional activity of Gli (glioma-associated oncogene) proteins, effectors of the Hedgehog pathway, is poorly understood. We show here that Gli1 and Gli2 are acetylated proteins and that their HDAC-mediated deacetylation promotes transcriptional activation and sustains a positive autoregulatory loop through Hedgehog-induced upregulation of HDAC1. This mechanism is turned off by HDAC1 degradation through an E3 ubiquitin ligase complex formed by Cullin3 and REN, a Gli antagonist lost in human medulloblastoma. Whereas high HDAC1 and low REN expression in neural progenitors and medulloblastomas correlates with active Hedgehog signalling, loss of HDAC activity suppresses Hedgehog-dependent growth of neural progenitors and tumour cells. Consistent with this, abrogation of Gli1 acetylation enhances cellular proliferation and transformation. These data identify an integrated HDAC- and ubiquitin-mediated circuitry, where acetylation of Gli proteins functions as an unexpected key transcriptional checkpoint of Hedgehog signalling.
Targeting Breast Cancer Recurrence via Hedgehog-mediated Sensitization of Breast Cancer Stem Cells
2011-07-01
Hedgehog -mediated Sensitization of Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: David J. Robbins, Ph.D...June 2010 – 14 June 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Breast Cancer Recurrence via Hedgehog -mediated Sensitization of...this award. Introduction The purpose of the research supported by this award is to determine if targeting the hedgehog signaling pathway in
2014-10-01
Remodeling Factor in Sonic Hedgehog -Dependent Medulloblastoma Initiation and Maintenance PRINCIPAL INVESTIGATOR: Xuanming Shi CONTRACTING...Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog -Dependent 5b. GRANT NUMBER W81XWH-12-1-0527 Medulloblastoma Initiation and Maintenance...medulloblastoma. 15. SUBJECT TERMS Medulloblastoma, Sonic Hedgehog , Chromatin remodeling, BAF complex, Brg1, mouse model of shh-subtype medulloblastoma
Hedgehog signaling regulates nociceptive sensitization.
Babcock, Daniel T; Shi, Shanping; Jo, Juyeon; Shaw, Michael; Gutstein, Howard B; Galko, Michael J
2011-09-27
Nociceptive sensitization is a tissue damage response whereby sensory neurons near damaged tissue enhance their responsiveness to external stimuli. This sensitization manifests as allodynia (aversive withdrawal to previously nonnoxious stimuli) and/or hyperalgesia (exaggerated responsiveness to noxious stimuli). Although some factors mediating nociceptive sensitization are known, inadequacies of current analgesic drugs have prompted a search for additional targets. Here we use a Drosophila model of thermal nociceptive sensitization to show that Hedgehog (Hh) signaling is required for both thermal allodynia and hyperalgesia following ultraviolet irradiation (UV)-induced tissue damage. Sensitization does not appear to result from developmental changes in the differentiation or arborization of nociceptive sensory neurons. Genetic analysis shows that Hh signaling acts in parallel to tumor necrosis factor (TNF) signaling to mediate allodynia and that distinct transient receptor potential (TRP) channels mediate allodynia and hyperalgesia downstream of these pathways. We also demonstrate a role for Hh in analgesic signaling in mammals. Intrathecal or peripheral administration of cyclopamine (CP), a specific inhibitor of Sonic Hedgehog signaling, blocked the development of analgesic tolerance to morphine (MS) or morphine antinociception in standard assays of inflammatory pain in rats and synergistically augmented and sustained morphine analgesia in assays of neuropathic pain. We demonstrate a novel physiological role for Hh signaling, which has not previously been implicated in nociception. Our results also identify new potential therapeutic targets for pain treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lucas, Cândida; Ferreira, Célia; Cazzanelli, Giulia; Franco-Duarte, Ricardo; Tulha, Joana
2016-01-01
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information. PMID:29615596
Primary Cilia and Mammalian Hedgehog Signaling
Bangs, Fiona; Anderson, Kathryn V.
2017-01-01
It has been a decade since it was discovered that primary cilia have an essential role in Hedgehog signaling in mammals. This discovery came from screens in the mouse that identified a set of genes that are required for both normal Hedgehog signaling and for the formation of primary cilia. Since then, dozens of mouse mutations have been identified that disrupt cilia in a variety of ways and have complex effects on Hedgehog signaling. Here we summarize the genetic and developmental studies used to deduce how Hedgehog signal transduction is linked to cilia and the complex effects that perturbation of cilia structure can have on Hh signaling. We conclude by describing the current status of our understanding of the cell-type specific regulation of ciliogenesis and how that determines the ability of cells to respond to Hedgehog ligands. PMID:27881449
Acute Lung Injury: Making the Injured Lung Perform Better and Rebuilding Healthy Lungs
2014-04-01
A. Derivation Lung Mesenchymal Lineages from the Fetal Mesothelium Requires Hedgehog Signaling for Mesothelial Cell Entry. Development 140:4398-4405...mesothelial cell entry into the developing lung are largely unknown. The importance of the hedgehog (Hh) signaling pathway in mesenchymal...et al., 1997; Weaver et al., 2003; Polizio et al., 2011; Yoo et al., 2011). Mammals express three Hh ligands: Indian hedgehog (IHH), desert hedgehog
Horne, Gillian A; Copland, Mhairi
2017-05-01
Self-renewal is considered a defining property of stem cells. Self-renewal is essential in embryogenesis and normal tissue repair and homeostasis. However, in cancer, self-renewal pathways, e.g. WNT, NOTCH, Hedgehog and BMP, frequently become de-regulated in stem cells, or more mature progenitor cells acquire self-renewal properties, resulting in abnormal tissue growth and tumorigenesis. Areas covered: This review considers the conserved embryonic self-renewal pathways, including WNT, NOTCH, Hedgehog and BMP. The article describes recent advances in our understanding of these pathways in leukemia and, more specifically, leukemia stem cells (LSC), how these pathways cross-talk and interact with the LSC microenvironment, and discusses the clinical implications and potential therapeutic strategies, both in preclinical and in clinical trials for hematological malignancies. Expert opinion: The conserved embryonic self-renewal pathways are frequently de-regulated in cancer stem cells (CSC), including LSCs. There is significant cross-talk between self-renewal pathways, and their downstream targets, and the microenvironment. Effective targeting of these pathways is challenging due to cross-talk, and importantly, because these pathways are important for normal stem cells as well as CSC, adverse effects on normal tissues may mean a therapeutic window cannot be identified. Nonetheless, several agents targeting these pathways are currently in clinical trials in hematological malignancies.
Cryptosporidium erinacei and C. parvum in a group of overwintering hedgehogs.
Hofmannová, Lada; Hauptman, Karel; Huclová, Kristýna; Květoňová, Dana; Sak, Bohumil; Kváč, Martin
2016-10-01
This study describes cryptosporidiosis in an overwintering group of 15 European hedgehogs (Erinaceus europaeus), comprising 3 adults and 12 juveniles. Four juvenile hedgehogs were hospitalised with anorexia, malodorous diarrhoea and dehydration. Immediate parasitological examinations revealed the presence of Cryptosporidium sp. in these animals and also in 5 other juveniles. All hedgehogs were coproscopically monitored for 4 months over the winter season. Shedding of Cryptosporidium oocysts persisted from 6 to 70 days. Repeated shedding of Cryptosporidium oocysts occurred in 3 animals after 4 months subsequent to the first outbreak. Clinical signs were observed only at the beginning of the outbreak (apathy, anorexia, general weakness, mild dehydration, and malodorous faeces with changed consistence - soft/diarrhoea) in the 4 hospitalised juveniles. Overall 11 hedgehogs were Cryptosporidium-positive, both microscopically and by PCR methods. Sequence analyses of SSU rRNA and gp60 genes revealed the presence of C. parvum IIdA18G1 subtype in all positive hedgehogs. Moreover, 3 hedgehogs had a mixed infection of the zoonotic C. parvum and C. erinacei XIIIaA19R13 subtype. Cryptosporidium infections can be rapidly spread among debilitated animals and the positive hedgehogs released back into the wild can be a source of the infection for individuals weakened after hibernation. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mammary gland tumors in captive African hedgehogs.
Raymond, J T; Gerner, M
2000-04-01
From December 1995 to July 1999, eight mammary gland tumors were diagnosed in eight adult captive female African hedgehogs (Atelerix albiventris). The tumors presented as single or multiple subcutaneous masses along the cranial or caudal abdomen that varied in size for each hedgehog. Histologically, seven of eight (88%) mammary gland tumors were malignant. Tumors were classified as solid (4 cases), tubular (2 cases), and papillary (2 cases). Seven tumors had infiltrated into the surrounding stroma and three tumors had histologic evidence of neoplastic vascular invasion. Three hedgehogs had concurrent neoplasms. These are believed to be the first reported cases of mammary gland tumors in African hedgehogs.
Goz, Yaşar; Yilmaz, Ali Bilgin; Aydin, Abdulalim; Dicle, Yalçın
2016-01-01
Background: Ixodid ticks (Acari: İxodidae) and fleas (Siphonaptera) are the major vectors of pathogens threatening animals and human healths. The aim of our study was to detect the infestation rates of East Hedgehogs (Erinaceus concolor) with ticks and fleas in Van Province, eastern region of Turkey. Methods: We examined fleas and ticks infestation patterns in 21 hedgehogs, collected from three suburbs with the greater of number gardens. In order to estimate flea and tick infestation of hedgehogs, we immobilized the ectoparasites by treatment the body with a insecticide trichlorphon (Neguvon®-Bayer). Results: On the hedgehogs, 60 ixodid ticks and 125 fleas were detected. All of the ixodid ticks were Rhipicephalus turanicus and all of the fleas were Archaeopsylla erinacei. Infestation rate for ticks and fleas was detected 66.66 % and 100 %, respectively. Conclusion: We detected ticks (R. turanicus) and fleas (A. erinacei) in hedgehogs at fairly high rates. Since many ticks and fleas species may harbor on hedgehogs and transmit some tick-borne and flea-borne patogens, this results are the important in terms of veterinary and public health. PMID:27047971
Robert C. Sivinski
2007-01-01
During the summer of 1992, a natural wildfire burned 250 acres of juniper savanna on Rawhide Ridge in the Guadalupe Mountains of southeastern New Mexico. This fire burned through the center of a Kuenzler's hedgehog cactus population. This threatened cactus is locally sympatric with the more abundant nylon hedgehog cactus, which has similar growth form and stature...
2013-10-01
Remodeling Factor in Sonic Hedgehog -Dependent Medulloblastoma Initiation and Maintenance PRINCIPAL INVESTIGATOR: Xuanming Shi CONTRACTING...5a. CONTRACT NUMBER W81XWH-12-1-0527 Function of Brg1 Chromatin Remodeling Factor in Sonic Hedgehog -Dependent 5b. GRANT NUMBER W81XWH-12-1...drug development and therapy of pediatric brain tumor and other Shh- dependent tumors. 15. SUBJECT TERMS Medulloblastoma, Sonic Hedgehog , Chromatin
Intestinal lymphosarcoma in captive African hedgehogs.
Raymond, J T; Clarke, K A; Schafer, K A
1998-10-01
Two captive adult female African hedgehogs (Atelerix albiventris) had inappetance and bloody diarrhea for several days prior to death. Both hedgehogs had ulceration of the small intestine and hepatic lipidosis. Histopathology revealed small intestinal lymphosarcoma with metastasis to the liver. Extracellular particles that had characteristics of retroviruses were observed associated with the surface of some neoplastic lymphoid cells by transmission electron microscopy. These are the first reported cases of intestinal lymphosarcoma in African hedgehogs.
Du, Shao Jun; Devoto, Stephen H.; Westerfield, Monte; Moon, Randall T.
1997-01-01
We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells. PMID:9314535
Hedgehog Signaling in Pancreatic Fibrosis and Cancer
Bai, Yongyu; Bai, Yongheng; Dong, Jiaojiao; Li, Qiang; Jin, Yuepeng; Chen, Bicheng; Zhou, Mengtao
2016-01-01
Abstract The hedgehog signaling pathway was first discovered in the 1980s. It is a stem cell-related pathway that plays a crucial role in embryonic development, tissue regeneration, and organogenesis. Aberrant activation of hedgehog signaling leads to pathological consequences, including a variety of human tumors such as pancreatic cancer. Multiple lines of evidence indicate that blockade of this pathway with several small-molecule inhibitors can inhibit the development of pancreatic neoplasm. In addition, activated hedgehog signaling has been reported to be involved in fibrogenesis in many tissues, including the pancreas. Therefore, new therapeutic targets based on hedgehog signaling have attracted a great deal of attention to alleviate pancreatic diseases. In this review, we briefly discuss the recent advances in hedgehog signaling in pancreatic fibrogenesis and carcinogenesis and highlight new insights on their potential relationship with respect to the development of novel targeted therapies. PMID:26962810
Sarcoptes scabiei on hedgehogs in New Zealand.
Kriechbaum, Caroline; Pomroy, William; Gedye, Kristene
2018-03-01
European hedgehogs (Erinaceus europaeus) were introduced into New Zealand from Britain during the period from 1869 to the early 1900s. The only mite found on New Zealand hedgehogs in early studies was Caparinia tripilis, with Sarcoptes scabiei first being reported in 1996. The aim of this study was to investigate the prevalence of Sarcoptes infestation on hedgehogs in New Zealand, the number of mites found and the degree of mange observed. Dead hedgehogs were collected from veterinary clinics, rescue centres, members of the public and from road-kill. Twenty-one (55.3%) of the animals examined had visible skin lesions. Both Caparinia and Sarcoptes mites were identified on microscopic examination with Sarcoptes the most common, being found on over 70% of animals examined (n = 38). The numbers of mites recovered after brushing the head and body ranged from 1 to 5659 (median = 341 mites) with only six animals (22.2%) having fewer than 10 Sarcoptes mites found. Caparinia mites were seen on fewer animals and generally in very low numbers. These findings indicate a change in the mite populations on hedgehogs in New Zealand and that infected animals develop the debilitating hyperkeratotic form of sarcoptic mange without an accompanying hypersensitivity response limiting numbers of mites. Analysis of the cox 1 gene of Sarcoptes from two hedgehogs showed close alignment to sequences derived from a pig with one and from a dog with the second. More work needs to be undertaken to identify the source(s) of the Sarcoptes found on hedgehogs in New Zealand and whether other mammalian hosts may be infected from contact with hedgehogs.
Kim, Kyu-Rim; Ahn, Kyu-Sung; Oh, Dae-Sung; Shin, Sung-Shik
2012-08-07
The efficacy and safety of a combination formulation of 10% imidacloprid + 1.0% moxidectin spot-on (Advocate® for Cats, Bayer Animal Health GmbH, Leverkusen, Germany) was tested in 40 African pygmy hedgehogs (Atelerix albiventris) naturally infested with Caparinia tripilis. The optimal dosage level of the combination for hedgehogs was determined by assigning 20 hedgehogs into three treatment groups (0.1, 0.4 and 1.6 ml/Kg b.w.), and one untreated control group of 5 hedgehogs each. Twenty naturally infested hedgehogs were then randomly assigned to either treatment or control group with 10 animals each, and the number of live mites was counted from 13 body regions on day 0, 3, 9, 16, and 30 after single treatment at the dosage level of 0.1 ml/Kg. Before the chemotherapy, the highest density of mite was observed in external ear canals followed by the dorsal and the lowest in the ventral regions of the body surface. The dosage level of 0.1 ml/Kg, which corresponded to the recommended dosage level for cats, containing 10 mg imidacloprid and 1 mg moxidectin was also the optimal dosage level for hedgehogs. No hedgehogs in the treatment group showed live mites from day 3 post treatment. Side effects such as ataxia, depression, nausea, and weight fluctuation were not observed during the whole period of study. This report suggests that a combination formulation of 0.1 ml/Kg of 10% imidacloprid + 1% moxidectin spot-on for cats is also useful for the control of Caparinia tripilis infestation in hedgehogs.
Cigna, Natacha; Farrokhi Moshai, Elika; Brayer, Stéphanie; Marchal-Somme, Joëlle; Wémeau-Stervinou, Lidwine; Fabre, Aurélie; Mal, Hervé; Lesèche, Guy; Dehoux, Monique; Soler, Paul; Crestani, Bruno; Mailleux, Arnaud A
2012-12-01
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown cause. Key signaling developmental pathways are aberrantly expressed in IPF. The hedgehog pathway plays a key role during fetal lung development and may be involved in lung fibrogenesis. We determined the expression pattern of several Sonic hedgehog (SHH) pathway members in normal and IPF human lung biopsies and primary fibroblasts. The effect of hedgehog pathway inhibition was assayed by lung fibroblast proliferation and differentiation with and without transforming growth factor (TGF)-β1. We showed that the hedgehog pathway was reactivated in the IPF lung. Importantly, we deciphered the cross talk between the hedgehog and TGF-β pathway in human lung fibroblasts. TGF-β1 modulated the expression of key components of the hedgehog pathway independent of Smoothened, the obligatory signal transducer of the pathway. Smoothened was required for TGF-β1-induced myofibroblastic differentiation of control fibroblasts, but differentiation of IPF fibroblasts was partially resistant to Smoothened inhibition. Furthermore, functional hedgehog pathway machinery from the primary cilium, as well as GLI-dependent transcription in the nucleus, was required for the TGF-β1 effects on normal and IPF fibroblasts during myofibroblastic differentiation. These data identify the GLI transcription factors as potential therapeutic targets in lung fibrosis. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Disseminated histoplasmosis in an African pygmy hedgehog.
Snider, Timothy A; Joyner, Priscilla H; Clinkenbeard, Kenneth D
2008-01-01
A 2-year-old captive-bred sexually intact female African pygmy hedgehog (Atelerix albiventris) was evaluated because of vague signs of illness including inappetence, weakness, lethargy, and weight loss over a 20-day period. Abnormalities detected via initial clinicopathologic analyses included anemia, thrombocytopenia, leukopenia, hypoproteinemia, and hypoglycemia. Results of a fecal flotation test were negative. Three weeks after the initial evaluation, splenomegaly was detected via palpation and ultrasonography. The hedgehog was treated with broad-spectrum antibacterial agents, resulting in an initially favorable response. Fenbendazole was also administered against possible occult parasitic infestation. After 3 weeks of illness, the hedgehog's condition had worsened and supportive care and administration of additional antibacterial agents were instituted. The hedgehog died, and pathologic examinations revealed severe splenomegaly; granulomatous infiltrates were evident in multiple organs, and Histoplasma capsulatum yeasts were detected intralesionally. Histoplasmosis can develop in a wide range of mammalian species. African pygmy hedgehogs are becoming increasingly popular as exotic pets, and vague signs of illness and splenomegaly are often attributed to hemolymphatic malignancies, which are somewhat common in this species. Practitioners should be aware that similar clinical signs may be associated with histoplasmosis in these animals. Although the hedgehog of this report was confined indoors, it originated from an area where histoplasmosis was endemic; this indicates that the disease should be included as a differential diagnosis for hedgehogs that develop vague signs of illness and are known to originate from such geographic regions.
Sugiyama, Y; Sasajima, J; Mizukami, Y; Koizumi, K; Kawamoto, T; Ono, Y; Karasaki, H; Tanabe, H; Fujiya, M; Kohgo, Y
2016-06-01
The hedgehog pathway is known to promote proliferation of pancreatic ductal adenocarcinoma (PDA) and has been shown to restrain tumor progression. To understand how hedgehog causes these effects, we sought to carefully examine protein expression of hedgehog signaling components during different tumor stages. Genetically engineered mice, Pdx1-Cre;LSL-KrasG12D and Pdx1-Cre;LSL-KrasG12D;p53lox/+, were utilized to model distinct phases of tumorigenesis, pancreatic intraepithelial neoplasm (PanIN) and PDA. Human pancreatic specimens of intraductal papillary mucinous neoplasm (IPMN) and PDA were also employed. PanIN and IPMN lesions highly express Sonic Hedgehog, at a level that is slightly higher than that observed in PDA. GLI2 protein is also expressed in both PanIN/IPMN and PDA. Although there was no difference in the nuclear staining, the cytoplasmic GLI2 level in PDA was modest in comparison to that in PanIN/IPMN. Hedgehog interacting protein was strongly expressed in the precursors, whereas the level in PDA was significantly attenuated. There were no differences in expression of Patched1 at early and late stages. Finally, a strong correlation between Sonic Hedgehog and GLI2 staining was found in both human and murine pancreatic tumors. The results indicate that the GLI2 protein level could serve as a feasible marker of ligand-dependent hedgehog activation in pancreatic neoplasms.
Trichophyton erinacei in pet hedgehogs in Spain: Occurrence and revision of its taxonomic status.
Abarca, M L; Castellá, G; Martorell, J; Cabañes, F J
2017-02-01
Hedgehogs have increased in popularity as pets in Spain but there are no data of infection rates of this exotic animal with dermatophytes in our country. During the period of 2008-2011 a total of 20 pet hedgehogs (19 African pygmy hedgehogs and 1 Egyptian long-eared hedgehog) suspected of having dermatophytoses were studied. This is the first survey of the occurrence of T. erinacei in household hedgehogs in Spain. The T. erinacei infection rate was 50% (9 out of 19 African pygmy hedgehogs, and the one Egyptian long-eared hedgehog surveyed). Morphological identification of the isolates was confirmed by molecular analysis. All the strains had the same ITS sequence and showed 100% sequence similarity to T. erinacei type strain CBS 511.73 (AB 105793). The Spanish isolates were confirmed as T. erinacei urease positive. On the basis of ITS sequences, T. erinacei is a species close to but separate from the taxa included in the A. benhamiae complex. Review of the current literature on DNA-based methods for identification of species included in this complex has highlighted the urgent need to reach a consensus in species circumscription and classification system accepted by all mycologists. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cortes, Mauricio; Liu, Sarah Y.; Kwan, Wanda; Alexa, Kristen; Goessling, Wolfram; North, Trista E.
2015-01-01
Summary Hematopoietic stem and progenitor cells (HSPCs) are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh) and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3) modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification. PMID:26365513
Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.
2013-01-01
Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001
Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica
2013-01-01
Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411
Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia
Huang, Peng; Schier, Alexander F.
2009-01-01
Summary Cilia have been implicated in Hedgehog (Hh) and Wnt signaling in mouse but not in Drosophila. To determine whether the role of cilia is conserved in zebrafish, we generated maternal-zygotic (MZ) oval (ovl; ift88) mutants that lack all cilia. MZovl mutants display normal canonical and non-canonical Wnt signaling but show defects in Hh signaling. As in mouse, zebrafish cilia are required to mediate the activities of Hh, Ptc, Smo and PKA. However, in contrast to mouse Ift88 mutants, which show a dramatic reduction in Hh signaling, zebrafish MZovl mutants display dampened, but expanded, Hh pathway activity. This activity is largely due to gli1, the expression of which is fully dependent on Hh signaling in mouse but not in zebrafish. These results reveal a conserved requirement for cilia in transducing the activity of upstream regulators of Hh signaling but distinct phenotypic effects due to differential regulation and differing roles of transcriptional mediators. PMID:19700616
Franco, Heather L; Yao, Humphrey H-C
2012-01-01
The chromosome status of the mammalian embryo initiates a multistage process of sexual development in which the bipotential reproductive system establishes itself as either male or female. These events are governed by intricate cell-cell and interorgan communication that is regulated by multiple signaling pathways. The hedgehog signaling pathway was originally identified for its key role in the development of Drosophila, but is now recognized as a critical developmental regulator in many species, including humans. In addition to its developmental roles, the hedgehog signaling pathway also modulates adult organ function, and misregulation of this pathway often leads to diseases, such as cancer. The hedgehog signaling pathway acts through its morphogenetic ligands that signal from ligand-producing cells to target cells over a specified distance. The target cells then respond in a graded manner based on the concentration of the ligands that they are exposed to. Through this unique mechanism of action, the hedgehog signaling pathway elicits cell fate determination, epithelial-mesenchymal interactions, and cellular homeostasis. Here, we review current findings on the roles of hedgehog signaling in the sexually dimorphic development of the reproductive organs with an emphasis on mammals and comparative evidence in other species.
NASA Astrophysics Data System (ADS)
Hitzenberger, Manuel; Schuster, Daniela; Hofer, Thomas S.
2017-10-01
Erroneous activation of the Hedgehog pathway has been linked to a great amount of cancerous diseases and therefore a large number of studies aiming at its inhibition have been carried out. One leverage point for novel therapeutic strategies targeting the proteins involved, is the prevention of complex formation between the extracellular signaling protein Sonic Hedgehog and the transmembrane protein Patched 1. In 2009 robotnikinin, a small molecule capable of binding to and inhibiting the activity of Sonic Hedgehog has been identified, however in the absence of X-ray structures of the Sonic Hedgehog-robotnikinin complex, the binding mode of this inhibitor remains unknown. In order to aid with the identification of novel Sonic Hedgehog inhibitors, the presented investigation elucidates the binding mode of robotnikinin by performing an extensive docking study, including subsequent molecular mechanical as well as quantum mechanical/molecular mechanical molecular dynamics simulations. The attained configurations enabled the identification of a number of key protein-ligand interactions, aiding complex formation and providing stabilizing contributions to the binding of the ligand. The predicted structure of the Sonic Hedgehog-robotnikinin complex is provided via a PDB file as supplementary material and can be used for further reference.
Kurita, Satoshi; Mott, Justin L; Cazanave, Sophie C; Fingas, Christian D; Guicciardi, Maria E; Bronk, Steve F; Roberts, Lewis R; Fernandez-Zapico, Martin E; Gores, Gregory J
2011-03-31
TRAIL is a promising therapeutic agent for human malignancies. TRAIL often requires mitochondrial dysfunction, referred to as the Type II death receptor pathway, to promote cytotoxicity. However, numerous malignant cells are TRAIL resistant due to inhibition of this mitochondrial pathway. Using cholangiocarcinoma cells as a model of TRAIL resistance, we found that Hedgehog signaling blockade sensitized these cancer cells to TRAIL cytotoxicity independent of mitochondrial dysfunction, referred to as Type I death receptor signaling. This switch in TRAIL requirement from Type II to Type I death receptor signaling was demonstrated by the lack of functional dependence on Bid/Bim and Bax/Bak, proapoptotic components of the mitochondrial pathway. Hedgehog signaling modulated expression of X-linked inhibitor of apoptosis (XIAP), which serves to repress the Type I death receptor pathway. siRNA targeted knockdown of XIAP mimics sensitization to mitochondria-independent TRAIL killing achieved by Hedgehog inhibition. Regulation of XIAP expression by Hedgehog signaling is mediated by the glioma-associated oncogene 2 (GLI2), a downstream transcription factor of Hedgehog. In conclusion, these data provide additional mechanisms modulating cell death by TRAIL and suggest Hedgehog inhibition as a therapeutic approach for TRAIL-resistant neoplasms.
Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.
Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto
2014-06-18
Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.
Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole
2014-01-01
Background Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans. PMID:24941877
2012-01-01
Background The efficacy and safety of a combination formulation of 10% imidacloprid + 1.0% moxidectin spot-on (Advocate® for Cats, Bayer Animal Health GmbH, Leverkusen, Germany) was tested in 40 African pygmy hedgehogs (Atelerix albiventris) naturally infested with Caparinia tripilis. Methods The optimal dosage level of the combination for hedgehogs was determined by assigning 20 hedgehogs into three treatment groups (0.1, 0.4 and 1.6 ml/Kg b.w.), and one untreated control group of 5 hedgehogs each. Twenty naturally infested hedgehogs were then randomly assigned to either treatment or control group with 10 animals each, and the number of live mites was counted from 13 body regions on day 0, 3, 9, 16, and 30 after single treatment at the dosage level of 0.1 ml/Kg. Results Before the chemotherapy, the highest density of mite was observed in external ear canals followed by the dorsal and the lowest in the ventral regions of the body surface. The dosage level of 0.1 ml/Kg, which corresponded to the recommended dosage level for cats, containing 10 mg imidacloprid and 1 mg moxidectin was also the optimal dosage level for hedgehogs. No hedgehogs in the treatment group showed live mites from day 3 post treatment. Side effects such as ataxia, depression, nausea, and weight fluctuation were not observed during the whole period of study. Conclusions This report suggests that a combination formulation of 0.1 ml/Kg of 10% imidacloprid + 1% moxidectin spot-on for cats is also useful for the control of Caparinia tripilis infestation in hedgehogs. PMID:22871121
Martínez-Jiménez, David; Garner, Bridget; Coutermarsh-Ott, Sheryl; Burrell, Caitlin; Clark, Sabrina; Nabity, Mary; Díaz-Delgado, Josué; Rodrigues-Hoffmann, Aline; Zaks, Karen; Proença, Laila; Divers, Stephen; Saba, Corey; Cazzini, Paola
2017-03-01
Neoplasia is usually encountered in the African pygmy hedgehog at a mean age of 3.5 y, and malignancy is common. Myelogenous leukemias are rarely reported in hedgehogs. We describe 3 cases of eosinophilic leukemia in adult, middle-aged (mean age: 2.3 y) hedgehogs, for which prognosis appears grave. In 1 case, attempted treatment was unsuccessful, and in all 3 cases, the disease course was rapid and all died soon after diagnosis. Blood smear evaluation, along with complete blood count, was critical in making the diagnosis in all cases. Luna stain was validated and used to better visualize eosinophils in cytologic and histologic sections. Electron microscopy confirmed the presence of specific granules in hedgehog eosinophils.
Catecholaminergic and serotoninergic fibres innervate the ventricular system of the hedgehog CNS.
Michaloudi, H C; Papadopoulos, G C
1996-01-01
Immunocytochemistry with antisera against serotonin (5-HT), dopamine (DA) and noradrenaline (NA) was used to detect monoaminergic (MA) fibres in the ventricular system of the hedgehog Erinaceus europaeus. Light microscopic examination of immunocytochemically stained sections revealed that the ventricular system of the hedgehog is unique among mammals in that the choroid plexuses receive CA axons and that the supraependyma and subependyma of the cerebral ventricles and the spinal central canal are innervated both by serotoninergic and catecholaminergic (CA) fibres. Supraependymal 5-HT axons were generally more abundant and created at places a large number of interconnected basket-like structures, whereas CA fibres were usually directed towards the ventricular lumen. In the lateral ventricles, CA fibres were more numerous in the ependyma lining grey matter, whereas a higher 5-HT innervation density was observed in the area between the corpus callosum and the caudate nucleus or the septum. In the 3rd ventricle, the ependyma of its dorsal part exhibited a higher 5-HT and NA innervation density, whereas DA fibres were preferentially distributed in the ventral half of the basal region. The ependyma lining the cerebral aqueduct displayed a higher MA innervation density in its ventral part. The ependymal wall of the 4th ventricle exhibited an extremely dense 5-HT innervation, mainly in the floor of the ventricle, relatively fewer NA fibres and only sparse DA ones. Few NA and relatively more 5-HT fibres were detected in the ependyma of the central canal. Finally, the circumventricular organs were unevenly innervated by the 3 types of MA fibres. The extensive monoaminergic innervation of the hedgehog ventricular system described here probably reflects a transitory evolutionary stage in the phylogeny of the MA systems with presently unknown functional implications. Images Fig. 1 Fig. 2 Figs 3-8 Figs 9-14 Figs 15-20 PMID:8886949
Li, Xiaojie; Jie, Qiang; Zhang, Hongyang; Zhao, Yantao; Lin, Yangjing; Du, Junjie; Shi, Jun; Wang, Long; Guo, Kai; Li, Yong; Wang, Chunhui; Gao, Bo; Huang, Qiang; Liu, Jian; Yang, Liu; Luo, Zhuojing
2016-11-01
Postmenopausal osteoporosis is a worldwide health problem and is characterized by increased and activated osteoclasts. However, the mechanism by which osteoclasts are dysregulated in postmenopausal osteoporosis is not fully understood. In this study, we found that the Hedgehog-Gli pathway was upregulated in postmenopausal osteoporotic osteoclasts and that 17β-estradiol both inhibited osteoclastogenesis and induced osteoclast apoptosis by downregulating Hedgehog-Gli signaling. Furthermore, we demonstrated that the Hedgehog-Gli pathway was negatively regulated by MEK/ERK signaling and that this effect was Sonic Hedgehog (SHH)-dependent and was partially blocked by an anti-SHH antibody. Moreover, we found that the stimulatory effect of Hedgehog signaling on osteoclastogenesis and the inhibitory effect on osteoclast apoptosis were dependent on the Gli family of transcription factors. The pathways and molecules that contribute to the regulation of osteoclastogenesis and apoptosis represent potential new strategies for designing molecular drugs for the treatment of postmenopausal osteoporosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paulo, Sabrina Soares; Fernandes-Rosa, Fábio L; Turatti, Wendy; Coeli-Lacchini, Fernanda Borchers; Martinelli, Carlos E; Nakiri, Guilherme S; Moreira, Ayrton C; Santos, Antônio C; de Castro, Margaret; Antonini, Sonir R
2015-04-01
Sonic Hedgehog (SHH) and GLI2, an obligatory mediator of SHH signal transduction, are holoprosencephaly (HPE)-associated genes essential in pituitary formation. GLI2 variants have been found in patients with congenital hypopituitarism without complex midline cerebral defects (MCD). However, data on the occurrence of SHH mutations in these patients are limited. We screened for SHH and GLI2 mutations or copy number variations (CNV) in patients with congenital hypopituitarism without MCD or with variable degrees of MCD. Detailed data on clinical, laboratory and neuroimaging findings of 115 patients presenting with congenital hypopituitarism without MCD, septo-optic dysplasia or HPE were analysed. The SHH and GLI2 genes were directly sequenced, and the presence of gene CNV was analysed by multiplex ligation-dependent probe amplification (MLPA). Anterior pituitary deficiency was found in 74% and 53% of patients with SOD or HPE, respectively. Diabetes insipidus was common in patients with HPE (47%) but infrequent in patients with congenital hypopituitarism or SOD (7% and 8%, respectively). A single heterozygous nonsense SHH mutation (p.Tyr175Ter) was found in a patient presenting with hypopituitarism and alobar HPE. No other SHH mutations or CNV were found. Nine GLI2 variations (8 missense and 1 frameshift) including a homozygous and a compound heterozygous variation were found in patients with congenital hypopituitarism or SOD, but not in HPE patients. No GLI2 CNV were found. SHH mutations or copy number variations are not a common cause of congenital hypopituitarism in patients without complex midline cerebral defects. GLI2 variants are found in some patients with congenital hypopituitarism without complex midline cerebral defects or septo-optic dysplasia. However, functional analyses of these variants are needed to strengthen genotype-phenotype relationship. © 2014 John Wiley & Sons Ltd.
Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer.
Hwang, Rosa F; Moore, Todd T; Hattersley, Maureen Mertens; Scarpitti, Meghan; Yang, Bin; Devereaux, Erik; Ramachandran, Vijaya; Arumugam, Thiruvengadam; Ji, Baoan; Logsdon, Craig D; Brown, Jeffrey L; Godin, Robert
2012-09-01
The Hedgehog (Hh) pathway has emerged as an important pathway in multiple tumor types and is thought to be dependent on a paracrine signaling mechanism. The purpose of this study was to determine the role of pancreatic cancer-associated fibroblasts (human pancreatic stellate cells, HPSCs) in Hh signaling. In addition, we evaluated the efficacy of a novel Hh antagonist, AZD8542, on tumor progression with an emphasis on the role of the stroma compartment. Expression of Hh pathway members and activation of the Hh pathway were analyzed in both HPSCs and pancreatic cancer cells. We tested the effects of Smoothened (SMO) inhibition with AZD8542 on tumor growth in vivo using an orthotopic model of pancreatic cancer containing varying amounts of stroma. HPSCs expressed high levels of SMO receptor and low levels of Hh ligands, whereas cancer cells showed the converse expression pattern. HPSC proliferation was stimulated by Sonic Hedgehog with upregulation of downstream GLI1 mRNA. These effects were abrogated by AZD8542 treatment. In an orthotopic model of pancreatic cancer, AZD8542 inhibited tumor growth only when HPSCs were present, implicating a paracrine signaling mechanism dependent on stroma. Further evidence of paracrine signaling of the Hh pathway in prostate and colon cancer models is provided, demonstrating the broader applicability of our findings. Based on the use of our novel human-derived pancreatic cancer stellate cells, our results suggest that Hh-targeted therapies primarily affect the tumor-associated stroma, rather than the epithelial compartment.
ERIC Educational Resources Information Center
Barbieri, Richard
2011-01-01
Jim Collins's "Good to Great" has attained near-scriptural status in organizations, including nonprofits, which Collins says constitute a third of his readers. The pivot point in "Good to Great" is the Hedgehog Concept. The "Hedgehog Concept" (HC), this author claims, is dangerous for schools because it distorts the nature of education. As Collins…
Spontaneous neoplasia in four captive greater hedgehog tenrecs (Setifer setosus).
Khoii, Mina K; Howerth, Elizabeth W; Burns, Roy B; Carmichael, K Paige; Gyimesi, Zoltan S
2008-09-01
Little information is available about diseases and pathology of species within the family Tenrecidae, including the greater hedgehog tenrec (Setifer setosus), a Madagascan insectivore. This report summarizes necropsy and histopathologic findings of neoplasia in four captive greater hedgehog tenrecs. Although only four animals are included in this report, neoplasia seems to be a common and significant source of morbidity and mortality in greater hedgehog tenrecs. Types of neoplasia identified include a thyroid follicular-solid carcinoma, two urinary bladder transitional cell carcinomas, uterine endometrial polyps, and multicentric B-cell lymphoma. Due to small sample size, no etiology could be determined, but genetics, viral infection, pesticide treatment, nutrition, or other environmental factors might contribute to the development of neoplasia in this species. This is the first report of neoplasia in greater hedgehog tenrecs.
Ramos-Vara, J A
2001-09-01
Three soft tissue tumors from 2 female hedgehogs were examined microscopically and immunohistochemically. Two tumors involved haired skin and the third one was vaginal. Microscopically, the cutaneous tumors had features of malignant peripheral nerve sheath tumor (MPNST), whereas the vaginal tumor was classified only as a spindle cell sarcoma. Immunohistochemically, all 3 tumors were strongly positive for vimentin and strongly to moderately positive for CD10 and neuron-specific enolase but did not stain with antibody to S100 protein, an antigen typically present in human MPNST The cutaneous tumor from hedgehog no. 1 was examined ultrastructurally and the neoplastic cells resembled fibroblasts. Hedgehog no. 1 was euthanized at the time of the biopsy. The outcome of the other hedgehog was unknown.
Gambassi, Silvia; Geminiani, Michela; Thorpe, Stephen D; Bernardini, Giulia; Millucci, Lia; Braconi, Daniela; Orlandini, Maurizio; Thompson, Clare L; Petricci, Elena; Manetti, Fabrizio; Taddei, Maurizio; Knight, Martin M; Santucci, Annalisa
2017-11-01
Alkaptonuria (AKU) is an ultra-rare genetic disease, in which the accumulation of a toxic metabolite, homogentisic acid (HGA) leads to the systemic development of ochronotic aggregates. These aggregates cause severe complications mainly at the level of joints with extensive degradation of the articular cartilage. Primary cilia have been demonstrated to play an essential role in development and the maintenance of articular cartilage homeostasis, through their involvement in mechanosignaling and Hedgehog signaling pathways. Hedgehog signaling has been demonstrated to be activated in osteoarthritis (OA) and to drive cartilage degeneration in vivo. The numerous similarities between OA and AKU suggest that primary cilia Hedgehog signaling may also be altered in AKU. Thus, we characterized an AKU cellular model in which healthy chondrocytes were treated with HGA (66 µM) to replicate AKU cartilage pathology. We investigated the degree of activation of the Hedgehog signaling pathway and how treatment with inhibitors of the receptor Smoothened (Smo) influenced Hedgehog activation and primary cilia structure. The results obtained in this work provide a further step in the comprehension of the pathophysiological features of AKU, suggesting a potential therapeutic approach to modulate AKU cartilage degradation processes through manipulation of the Hedgehog pathway. © 2016 Wiley Periodicals, Inc.
Handeland, K.; Refsum, T.; Johansen, B. S.; Holstad, G.; Knutsen, G.; Solberg, I.; Schulze, J.; Kapperud, G.
2002-01-01
Faecal carriage of salmonella was investigated in 320 hedgehogs from Moss municipality in south-eastern Norway, Askøy, Bergen and Os municipalities in central-western Norway, and five municipalities in south-western and central Norway. The sampling in Moss was carried out 1 year after a human outbreak of salmonellosis, whereas the sampling in Askøy, Bergen and Os was carried out during a human outbreak. Both outbreaks were caused by Salmonella Typhimurium 4,5,12:i:1,2. No salmonella were detected in the hedgehogs from south-western (0/115) and central (0/24) Norway. Thirty-nine percent (39/99) of the animals sampled on Jeløy, and 41% (34/82) of those from Askøy, Bergen and Os, carried S. Typhimurium 4,5,12:i:1,2. The PFGE profile of isolates from hedgehogs and human beings were identical within each of the two outbreak areas. A significantly higher carrier rate of S. Typhimurium occurred among hedgehogs sampled at feeding places, compared to those caught elsewhere. The salmonella-infected hedgehog populations most likely constituted the primary source of infection during both of the human disease outbreaks, and the Norwegian hedgehog is suggested as a reservoir host of S. Typhimurium 4,5,12:i:1,2. PMID:12113498
Aberrant Epithelial-Mesenchymal Hedgehog Signaling Characterizes Barrett's Metaplasia
Wang, David H.; Clemons, Nicholas J.; Miyashita, Tomoharu; Dupuy, Adam J.; Zhang, Wei; Szczepny, Anette; Corcoran-Schwartz, Ian M.; Wilburn, Daniel L.; Montgomery, Elizabeth A.; Wang, Jean S.; Jenkins, Nancy A.; Copeland, Neal A.; Harmon, John W.; Phillips, Wayne A.; Watkins, D. Neil
2010-01-01
Background & Aims The molecular mechanism underlying epithelial metaplasia in Barrett's esophagus remains unknown. Recognizing that Hedgehog signaling is required for early esophageal development, we sought to determine if the Hedgehog pathway is reactivated in Barrett's esophagus, and if genes downstream of the pathway could promote columnar differentiation of esophageal epithelium. Methods Immunohistochemistry, immunofluorescence, and quantitative real-time PCR were used to analyze clinical specimens, human esophageal cell lines, and mouse esophagi. Human esophageal squamous epithelial (HET-1A) and adenocarcinoma (OE33) cells were subjected to acid treatment and used in transfection experiments. Swiss Webster mice were used in a surgical model of bile reflux injury. An in vivo transplant culture system was created using esophageal epithelium from Sonic hedgehog transgenic mice. Results Marked upregulation of Hedgehog ligand expression, which can be induced by acid or bile exposure, occurs frequently in Barrett's epithelium and is associated with stromal expression of the Hedgehog target genes PTCH1 and BMP4. BMP4 signaling induces expression of SOX9, an intestinal crypt transcription factor, which is highly expressed in Barrett's epithelium. We further show that expression of DMBT1, the human homologue of the columnar cell factor Hensin, occurs in Barrett's epithelium and is induced by SOX9. Finally, transgenic expression of Sonic hedgehog in mouse esophageal epithelium induces expression of stromal Bmp4, epithelial Sox9 and columnar cytokeratins. Conclusions Epithelial Hedgehog ligand expression may contribute to the initiation of Barrett's esophagus through induction of stromal BMP4, which triggers reprogramming of esophageal epithelium in favor of a columnar phenotype. PMID:20138038
Rennert, Christiane; Eplinius, Franziska; Hofmann, Ute; Johänning, Janina; Rolfs, Franziska; Schmidt-Heck, Wolfgang; Guthke, Reinhardt; Gebhardt, Rolf; Ricken, Albert M; Matz-Soja, Madlen
2017-11-01
The Hedgehog signaling pathway is known to be involved in embryogenesis, tissue remodeling, and carcinogenesis. Because of its involvement in carcinogenesis, it seems an interesting target for cancer therapy. Indeed, Sonidegib, an approved inhibitor of the Hedgehog receptor Smoothened (Smo), is highly active against diverse carcinomas, but its use is also reported to be associated with several systemic side effects. Our former work in adult mice demonstrated hepatic Hedgehog signaling to play a key role in the insulin-like growth factor axis and lipid metabolism. The current work using mice with an embryonic and hepatocyte-specific Smo deletion describes an adverse impact of the hepatic Hedgehog pathway on female fertility. In female SAC-KO mice, we detected androgenization characterized by a 3.3-fold increase in testosterone at 12 weeks of age based on an impressive induction of steroidogenic gene expression in hepatocytes, but not in the classic steroidogenic organs (ovary and adrenal gland). Along with the elevated level of testosterone, the female SAC-KO mice showed infertility characterized by juvenile reproductive organs and acyclicity. The endocrine and reproductive alterations resembled polycystic ovarian syndrome and could be confirmed in a second mouse model with conditional deletion of Smo at 8 weeks of age after an extended period of 8 months. We conclude that the down-regulation of hepatic Hedgehog signaling leads to an impaired hormonal balance by the induction of steroidogenesis in the liver. These effects of Hedgehog signaling inhibition should be considered when using Hedgehog inhibitors as anti-cancer drugs.
Unilateral proptosis and orbital cellulitis in eight African hedgehogs (Atelerix albiventris).
Wheler, C L; Grahn, B H; Pocknell, A M
2001-06-01
Eight African hedgehogs (Atelerix albiventris) were presented with unilateral proptosis. Six animals presented specifically for an ocular problem, whereas two had concurrent neurologic disease. Enucleation and light microscopic examination of tissues was performed in five animals, and euthanasia followed by complete postmortem examination was performed in three animals. Histopathologic findings in all hedgehogs included orbital cellulitis, panophthalmitis, and corneal ulceration, with perforation in seven of eight eyes. The etiology of the orbital cellulitis was not determined, but it appeared to precede proptosis. Orbits in hedgehogs are shallow and the palpebral fissures are large, which may predispose them to proptosis, similar to brachycephalic dogs. This clinical presentation was seen in 15% (8/54) of African hedgehogs presented to the Western College of Veterinary Medicine over a 2-yr period from January 1995 to December 1996 and warrants further investigation.
[Hedgehog fungi in a dermatological office in Munich : Case reports and review].
Kargl, A; Kosse, B; Uhrlaß, S; Koch, D; Krüger, C; Eckert, K; Nenoff, P
2018-02-12
Patient 1: After contact to a central European hedgehog (Erinaceus europaeus), a 50-year-old female with atopy developed erythrosquamous tinea manus on the thumb and thenar eminence of the right hand. The patient had previously been scalded by hot steam at the affected site. The zoophilic dermatophyte Trichophyton erinacei could be cultured from the hedgehog as well as from scrapings from the woman's skin. Antifungal treatment of the hedgehog was initiated using 2 weekly cycles of itraconazole solution (0.1 ml/kg body weight, BW). In addition, every other day enilconazole solution was used for topical treatment. The patient was treated with ciclopirox olamine cream and oral terbinafine 250 mg daily for 2 weeks, which led to healing of the Tinea manus .Patient 2: An 18-year-old woman presented for emergency consultation with rimmed, papulous, vesicular and erosive crusted skin lesions of the index finger, and an erythematous dry scaling round lesion on the thigh. The patient worked at an animal care facility, specifically caring for hedgehogs. One of the hedgehogs suffered from a substantial loss of spines. Fungal cultures from skin scrapings of both lesions yielded T. erinacei. Treatment with ciclopirox olamine cream and oral terbinafine 250 mg for 14 days was initiated which led to healing of the lesions. Identification of all three T. erinacei isolates from both patients and from the hedgehog was confirmed by sequencing of the internal transcribed spacer (ITS) region of the ribosomal DNA, and of the translation elongation factor (TEF)-1-alpha gene. Using ITS sequencing discrimination between T. erinacei strains from European and from African hedgehogs is possible. T. erinacei should be considered a so-called emerging pathogen. In Germany the zoophilic dermatophyte T. erinacei should be taken into account as causative agent of dermatomycoses in humans after contact to hedgehogs.
Acinic cell carcinoma in an African pygmy hedgehog (Atelerix albiventris).
Fukuzawa, Ryuji; Fukuzawa, Kazuhiro; Abe, Hitoshi; Nagai, Toshihiro; Kameyama, Kaori
2004-01-01
A male African pygmy hedgehog (Atelerix albiventris), estimated to be 3 years old, presented with exophthalmos and fixed abduction of the right eye. Radiographic examination revealed a retrobulbar tumor in the right orbital cavity. The mass was surgically resected but recurred 3 months later and the hedgehog died. There was no gross or microscopic evidence of salivary or lacrimal gland involvement of the tumor at surgery or at necropsy. The histopathologic, immunohistochemical, and ultrastructural findings were those of acinic cell carcinoma, the origin of which was unknown. This is the first known case of acinic cell carcinoma in an African hedgehog.
Hedgehogs and Foxes at the Crossroads: Leadership and Diversity at the University of California
ERIC Educational Resources Information Center
González, Cristina
2011-01-01
Following Clark Kerr's distinction between hedgehogs, or visionary leaders who know "one big thing," and foxes, or shrewd leaders who know "many things," this paper studies Kerr, an archetypical hedgehog, and David Gardner, a quintessential fox, as models for these two types of leaders. The paper also analyzes the hedgehog…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katayama, Seiichi; Ashizawa, Koji; Gohma, Hiroshi
2006-12-15
The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17{alpha}-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ER{alpha}-selective agonist), diarylpropionitrile (DPN, an ER{beta}-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE inmore » the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ER{alpha}-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ER{beta}-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.« less
Loss of pericyte smoothened activity in mice with genetic deficiency of leptin.
Xie, Guanhua; Swiderska-Syn, Marzena; Jewell, Mark L; Machado, Mariana Verdelho; Michelotti, Gregory A; Premont, Richard T; Diehl, Anna Mae
2017-04-20
Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage.
Hedgehog signaling is required at multiple stages of zebrafish tooth development.
Jackman, William R; Yoo, James J; Stock, David W
2010-11-30
The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.
Spontaneous tumours in captive African hedgehogs (Atelerix albiventris): a retrospective study.
Raymond, J T; Garner, M M
2001-01-01
Forty tumours were diagnosed in 35 (53%) of 66 captive African hedgehogs documented at Northwest ZooPath (NZP) between 1994 and 1999. Three hedgehogs had more than one type of tumour and the remaining 32 had a single type. Of the 35 hedgehogs with tumours, 14 were female, 11 were male, and 10 were of unknown gender; 21 were from zoological parks and 14 were privately owned. Twenty of the hedgehogs with tumours were adult (>1 year old) with a median age of 3.5 years (range 2-5.5 years); 15, of unreported age, were classified as adult. Thirty-four (85%) of the 40 tumours were classified as malignant and six (15%) as benign. The integumentary, haemolymphatic, digestive and endocrine systems were common sites for tumours. The most common tumours were mammary gland adenocarcinoma, lympho-sarcoma and oral squamous cell carcinoma. Copyright Harcourt Publishers Ltd.
2014-01-08
Prostate Cancer, Castration Resistant Disease, Hedgehog Signaling, Smoothened, Gli, Cyclopamine, Androgen Signaling, Androgen Biosynthesis, Androgen...role of Hedgehog /Gli Signaling in generating the androgen-independent growth phenotype of castration resistant prostate cancer and will test the ability...of drugs that target Hedgehog /Gli as a means to suppress the androgen independent growth behavior associated with castration resistant prostate
Bexton, Steve; Nelson, Helen
2016-12-01
Dermatophytosis caused by Trichophyton erinacei is a common scaling and crusting skin disease affecting European hedgehogs (Erinaceus europaeus) admitted to wildlife rescue centres. The application of topical therapy can be challenging because wild hedgehogs are subject to stress and often roll into a ball when handled. Systemic antifungal therapy is more convenient but has not been evaluated in this species. To compare the efficacy of oral itraconazole versus oral terbinafine for the treatment of dermatophytosis affecting hedgehogs. A treatment trial was undertaken in a wildlife hospital involving 165 hedgehogs with naturally occurring dermatophytosis. Animals were randomly divided into two groups and treated with either itraconazole or terbinafine orally for 28 days. The therapeutic efficacy was evaluated after 14 and 28 days by mycological culture and clinical dermatological lesion scores. Both drugs were well tolerated and clinically effective. After 14 and 28 days of treatment, the respective mycological cure rate was 36.6% and 65.9% for the itraconazole-treated group and 92.8% and 98.8% for the terbinafine-treated group. Itraconazole and terbinafine were both effective for the treatment of dermatophytosis affecting hedgehogs; however, terbinafine was more effective. © 2016 ESVD and ACVD.
Völker, Iris; Schwarze, Iris; Brezina, Tina E; Köstlinger, Saskia; Hewicker-Trautwein, Marion
2016-10-12
An 8-month-old, male African hedgehog clinically displayed a wobbly walk, anuria, inappetence and apathy, whereupon the suspected diagnosis wobbly hedgehog syndrome was made. After exacerbation, the hedgehog was euthanized. Histologically, a tumour mainly consisting of medium-sized, oval tumour cells and a smaller number of spindeloid cells was found in the cerebrum. The tumour contained neuropil islets and extracellular myxoid material. Immunohistochemically, the tumour cells expressed oligodendroglial (neurite outgrowth inhibitor, Nogo-A; oligodendrocyte transcription factor, Olig-2) and neuronal (neuron-specific enolase, NSE; microtubule-associated protein-2a, MAP-2a; synaptophysin) cell markers. Based on these findings, an oligodendroglioma with neuronal differentiation was diagnosed. Such a brain tumour has to date not been reported for African hedgehogs. At necropsy, a severely filled and dilated urinary bladder was observed, which was presumably caused by a central blockade of the micturition centre in the brain. In the case of neurological symptoms in young hedgehogs, a primary brain tumour should, as in adults, be considered as a differential diagnosis. As further differentials, inflammatory-infectious (rabies, herpes, baylisascariosis), degenerative (cardiomyopathy, intervertebral-disc disease), traumatic, alimentary (vitamin-B deficiency) and metabolic-toxic (heat-cold-torpor, hepatic encephalopathy) triggers have to be considered.
Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei
2013-01-01
Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration. PMID:23211596
A Screen for Modifiers of Hedgehog Signaling in Drosophila melanogaster Identifies swm and mts
Casso, David J.; Liu, Songmei; Iwaki, D. David; Ogden, Stacey K.; Kornberg, Thomas B.
2008-01-01
Signaling by Hedgehog (Hh) proteins shapes most tissues and organs in both vertebrates and invertebrates, and its misregulation has been implicated in many human diseases. Although components of the signaling pathway have been identified, key aspects of the signaling mechanism and downstream targets remain to be elucidated. We performed an enhancer/suppressor screen in Drosophila to identify novel components of the pathway and identified 26 autosomal regions that modify a phenotypic readout of Hh signaling. Three of the regions include genes that contribute constituents to the pathway—patched, engrailed, and hh. One of the other regions includes the gene microtubule star (mts) that encodes a subunit of protein phosphatase 2A. We show that mts is necessary for full activation of Hh signaling. A second region includes the gene second mitotic wave missing (swm). swm is recessive lethal and is predicted to encode an evolutionarily conserved protein with RNA binding and Zn+ finger domains. Characterization of newly isolated alleles indicates that swm is a negative regulator of Hh signaling and is essential for cell polarity. PMID:18245841
Brown, Alexander S.; Epstein, Douglas J.
2011-01-01
In mouse embryos lacking sonic hedgehog (Shh), dorsoventral polarity within the otic vesicle is disrupted. Consequently, ventral otic derivatives, including the cochlear duct and saccule, fail to form, and dorsal otic derivatives, including the semicircular canals, endolymphatic duct and utricle, are malformed or absent. Since inner ear patterning and morphogenesis are heavily dependent on extracellular signals derived from tissues that are also compromised by the loss of Shh, the extent to which Shh signaling acts directly on the inner ear for its development is unclear. To address this question, we generated embryos in which smoothened (Smo), an essential transducer of Hedgehog (Hh) signaling, was conditionally inactivated in the otic epithelium (Smoecko). Ventral otic derivatives failed to form in Smoecko embryos, whereas vestibular structures developed properly. Consistent with these findings, we demonstrate that ventral, but not dorsal, otic identity is directly dependent on Hh. The role of Hh in cochlear-vestibular ganglion (cvg) formation is more complex, as both direct and indirect signaling mechanisms are implicated. Our data suggest that the loss of cvg neurons in Shh–/– animals is due, in part, to an increase in Wnt responsiveness in the otic vesicle, resulting in the ectopic expression of Tbx1 in the neurogenic domain and subsequent repression of Ngn1 transcription. A mitogenic role for Shh in cvg progenitor proliferation was also revealed in our analysis of Smoecko embryos. Taken together, these data contribute to a better understanding of the intrinsic and extrinsic signaling properties of Shh during inner ear development. PMID:21831920
Chapouly, Candice; Yao, Qinyu; Vandierdonck, Soizic; Larrieu-Lahargue, Frederic; Mariani, John N; Gadeau, Alain-Pierre; Renault, Marie-Ange
2016-02-01
Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Rautio, Anni; Kunnasranta, Mervi; Valtonen, Anu; Ikonen, Mirva; Hyvärinen, Heikki; Holopainen, Ismo J; Kukkonen, Jussi V K
2010-11-01
Many insectivores have been shown to be sensitive to heavy metals and therefore suitable for biomonitoring purposes. In Finland, the hibernation period of the European hedgehog (Erinaceus europaeus) is long, and during hibernation the stress caused by environmental toxins may be crucial. Concentrations of cadmium (Cd), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), arsenic (As), and selenium (Se) were measured in a population of hedgehogs in the town of Joensuu in eastern Finland during the summers of 2004 and 2005. The analyzed tissues were kidney, liver, hair, and spine. The sampled hedgehogs (n = 65) were mainly road-killed animals. As expected, the concentrations of heavy metals were low because the hedgehogs were living in a comparatively unpolluted area. Significant increases with age were found in Cd concentrations (kidney, liver, and spine) and some essential elements (Se in spine, kidney, and liver; Mo in kidney and liver; Cu in spine; Fe in liver; and Mn in spine). Age accumulation and correlations between Se and Cd and between Mo and Cd may indicate the protective roles of Se and Mo against Cd toxicity in hedgehogs, in which Cd is already at comparatively low concentrations. Sex had no significant effect on concentrations of the elements studied. In conclusion, age is an important parameter to be taken into account when studying heavy-metal concentrations in hedgehogs and other insectivores.
Intestinal plasmacytoma in an African hedgehog.
Ramos-Vara, J A; Miller, M A; Craft, D
1998-04-01
A 3-yr-old male African hedgehog (Atelerix albiventris) had anorexia and weight loss for 1 wk before its death. The colon and mesocolon were diffusely infiltrated by a neoplastic proliferation of round cells with plasmacytoid features. A diagnosis of intestinal plasmacytoma was made and confirmed by electron microscopy. No other organs appeared to be affected. This is the first description of intestinal plasmacytoma in a hedgehog.
Weishaupt, Julia; Kolb-Mäurer, Annette; Lempert, Sigrid; Nenoff, Pietro; Uhrlaß, Silke; Hamm, Henning; Goebeler, Matthias
2014-02-01
The unusual case of a 29-year-old woman with tinea manus caused by infection due to Trichophyton erinacei is described. The patient presented with marked erosive inflammation of the entire fifth finger of her right hand. Mycological and genomic diagnostics resulted in identification of T. erinacei as the responsible pathogen, which had been transmitted by a domestic African pygmy hedgehog, Atelerix albiventris. Upon prolonged treatment with topical and systemic antifungal agents skin lesions slowly resolved. This case illustrates that the increasingly popular keeping of extraordinary pets such as hedgehogs may bear the risk of infections with uncommon dermatophytes. © 2013 Blackwell Verlag GmbH.
WHEN AND WHY DO HEDGEHOGS AND FOXES DIFFER?
Keil, Frank C
2010-01-01
Philip E. Tetlock's finding that "hedgehog" experts (those with one big theory) are worse predictors than "foxes" (those with multiple, less comprehensive theories) offers fertile ground for future research. Are experts as likely to exhibit hedgehog- or fox-like tendencies in areas that call for explanatory, diagnostic, and skill-based expertise-as they did when Tetlock called on experts to make predictions? Do particular domains of expertise curtail or encourage different styles of expertise? Can we trace these different styles to childhood? Finally, can we nudge hedgehogs to be more like foxes? Current research can only grope at the answers to these questions, but they are essential to gauging the health of expert political judgment.
Schüz, A; Demianenko, G P
1995-01-01
Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.
Pfäffle, M; Petney, T; Elgas, M; Skuballa, J; Taraschewski, H
2009-04-01
Although there is an increasing understanding of the role of parasites in their host dynamics, accurate, quantitative estimates of parasite caused morbidity in wild animals are rare. Here, we examine the possible impact of 2 tick species (Ixodes ricinus, I. hexagonus) on the condition of the European hedgehog (Erinaceus europaeus). For this, we tested for correlations between blood parameters of 36 adult hedgehogs from an experimental population enclosed in a natural habitat and their tick infestation over a period of 8 months (March-October 2007). We found correlations between the tick infestation and the concentration of red blood cells, haemoglobin, haematocrit, MCH, MCHC, thrombocytes, lymphocytes and neutrophils. These results indicate that ticks can induce anaemia in the hedgehog. The peripheral blood characteristics and the erythrocyte indices characterize this anaemia as haemorrhagic and regenerative. During the course of our study the hedgehogs of our population showed below normal mortality but morbidity was found to be high resulting from the blood loss caused by the feeding activity of the ticks.
Wozniak-Biel, Anna; Janeczek, Maciej; Janus, Izabela; Nowak, Marcin
2015-07-04
Neoplastic lesions of the mammary gland, lymph nodes, or oral cavity in African pygmy hedgehogs (Atelerix albiventris) are common in captive animals. Chemotherapy and radiotherapy protocols have not yet been established for the African pygmy hedgehog. Thus, surgical resection is the current treatment of choice in this species. A 5-year-old male African pygmy hedgehog showed multiple erythematous, round small tumors located in the oral cavity, on both sides of maxilla. The treatment of choice was surgical resection of tumors using a surgical knife under general anesthesia. Excised neoplastic lesions were diagnosed as peripheral odontogenic fibroma by histopathology. Six months after surgery relapse of tumors in the oral cavity was not observed. The treatment adopted in this case report is safe for the patient and provides the best solution for mild proliferative lesions of the oral cavity. To our knowledge this is the first report of surgical resection of oral tumors (peripheral odontogenic fibroma) in the African pygmy hedgehog.
Immunoprevention of Basal Cell Carcinomas with Recombinant Hedgehog-interacting Protein
Vogt, Annika; Chuang, Pao-Tien; Hebert, Jennifer; Hwang, Jimmy; Lu, Ying; Kopelovich, Levy; Athar, Mohammad; Bickers, David R.; Epstein, Ervin H.
2004-01-01
Basal cell carcinomas (BCCs) are driven by abnormal hedgehog signaling and highly overexpress several hedgehog target genes. We report here our use of one of these target genes, hedgehog-interacting protein (Hip1), as a tumor-associated antigen for immunoprevention of BCCs in Ptch1+/− mice treated with ionizing radiation. Hip1 mRNA is expressed in adult mouse tissues at levels considerably lower than those in BCCs. Immunization with either of two large recombinant Hip1 polypeptides was well tolerated in Ptch1+/− mice, induced B and T cell responses detectable by enzyme-linked immunosorbent assay, Western blot, delayed type hypersensitivity, and enzyme-linked immunospot assay, and reduced the number of BCCs by 42% (P < 0.001) and 32% (P < 0.01), respectively. We conclude that immunization with proteins specifically up-regulated by hedgehog signaling may hold promise as a preventive option for patients such as those with the basal cell nevus syndrome who are destined to develop large numbers of BCCs. PMID:15024045
Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor
Meier, William R.; Ding, Qing-Ping; Kreyssig, Andreas; ...
2018-02-09
Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in most Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagation vectors, (π,0) and (0,π). Consequently, three different types of magnetic order are possible. Of these, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni-doped and Co-doped CaKFe 4As 4 based on thermodynamic, transport, structural and local magneticmore » probes combined with symmetry analysis. The exotic SVC phase is stabilized by the reduced symmetry of the CaKFe 4As 4 structure. Thus, our results suggest that the possible magnetic ground states in FeSCs have very similar energies, providing an enlarged configuration space for magnetic fluctuations to promote high-temperature superconductivity.« less
Hedgehog spin-vortex crystal stabilized in a hole-doped iron-based superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, William R.; Ding, Qing-Ping; Kreyssig, Andreas
Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in most Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagation vectors, (π,0) and (0,π). Consequently, three different types of magnetic order are possible. Of these, only stripe-type spin-density wave (SSDW) and spin-charge-density wave (SCDW) orders have been observed. A realization of the proposed spin-vortex crystal (SVC) order is noticeably absent. We report a magnetic phase consistent with the hedgehog variation of SVC order in Ni-doped and Co-doped CaKFe 4As 4 based on thermodynamic, transport, structural and local magneticmore » probes combined with symmetry analysis. The exotic SVC phase is stabilized by the reduced symmetry of the CaKFe 4As 4 structure. Thus, our results suggest that the possible magnetic ground states in FeSCs have very similar energies, providing an enlarged configuration space for magnetic fluctuations to promote high-temperature superconductivity.« less
Assessing a Drosophila Metastasis Model in Mouse and Human Breast Cancer
2009-05-01
review that presents our work as a new approach to breast cancer therapeutics. We have also written a clinical trial using the NCI/CTEP hedgehog ...inhibitor, GDC-0449, in patients with locally advanced breast cancer. (See Appendix 1 for CTEP/NCI letter of intent). We identified hedgehog ...characterized steroidal alkaloid and inhibitor of Hedgehog pathway signaling. Jervine is chemically related to Cyclopamine, and both act through suppression of
Characterization and Targeting of the Aldehyde Dehydrogenase Subpopulation in Ovarian Cancer
2012-07-01
Targeting the Hedgehog pathway reverses taxane resistance in ovarian cancer. Proceedings of the 42 nd Annual Society of Gynecologic Oncologists...Meeting, 2011. Steg AD, Ziebarth AA, Katre A, Landen CN Jr. Targeting hedgehog reverses taxane resistance by Gli-dependent and independent mechanisms in...pathways ( Hedgehog , Notch, TGF-b, and Wnt). Select genes of interest were validated as important targets using siRNA-mediated downregulation. Results
The Tumor Suppressor Actions of the Vitamin D Receptor in Skin
2014-10-01
induced tumor formation. In previous studies we determined that the hedgehog (HH) and wnt/β-catenin pathways were activated in the skin of VDR null...SUBJECT TERMS epidermal tumors, keratinocytes, vitamin D receptor, sonic hedgehog , β-catenin, UVB 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...epidermal tumor formation by blocking the β-catenin and hedgehog pathways, key pathways in keratinocyte proliferation that if left unchecked lead to
On the Nature of Expansion of Paget’s Disease of Bone
2012-10-01
signaling pathway. Gene expression normalized to normal adjacent bone samples. 5 Global expression analysis revealed genes downstream of the Hedgehog ... Hedgehog (Hh) signaling pathway (Figure 5). Again, as in the TLR signaling pathway, specific elements of the Hh signaling pathway showed increased...mutations upregulated expression of genes in the Hedgehog signaling pathway. 7. Discovery that an osteoblastic cell line (PSV10) derived from a PDB
2012-07-01
13. SUPPLEMENTARY NOTES 14. ABSTRACT The project studies the role of Hedgehog /Gli signaling in generating the androgen growth-independent...behavior of castration resistant prostate cancer and will test the ability of drugs that target Hedgehog or Gli as a means to suppress this behavior...advanced prostate cancer. The ultimate goal of the project is to define the mechanisms by which Hedgehog signaling molecules support aggressive
Targeting Extracellular Matrix Glycoproteins in Metastases for Tumor-Initiating Cell Therapy
2016-04-01
effects of OPN-targeting system carrying a hedgehog pathway inhibitor (month 3-12) (not completed) What was accomplished under these goals? Major...Preparation of prostaspheres 4 • objective 2: Evaluate the therapeutic effects of OPN-targeting system carrying a hedgehog pathway inhibitor...encapsulate a hedgehog pathway inhibitor cyclopamine (CP), and the data are as follows: Average diameter (nm) PDI Zeta potential (mV) Blank LN, no OPN
Liu, Chiung-Hui; Lan, Chyn-Tair; Chou, Jui-Feng; Tseng, To-Jung; Liao, Wen-Chieh
2017-09-10
Abnormal expression of chondroitin sulfate has been found in many types of cancer, while its biological functions in hepatocellular carcinoma (HCC) progression remain uninvestigated. Here, we report that chondroitin sulfate synthase 1 (CHSY1), the enzyme that mediates the polymerization step of chondroitin sulfate, is a critical mediator of malignant character in HCC that acts via modulating the activity of the hedgehog signaling. CHSY1 was up-regulated frequently in HCC where these events were associated with worse histologic grade and poor survival. Enforced expression of CHSY1 was sufficient to enhance cell growth, migration, invasion, and epithelial-mesenchymal transition, whereas silencing of CHSY1 suppressed these malignant phenotypes. Mechanistic investigations revealed that the increase of cell surface chondroitin sulfate by CHSY1 promoted sonic hedgehog binding and signaling. Inhibiting hedgehog pathway with vismodegib decreased CHSY1-induced migration, invasion, and lung metastasis of HCC cells, establishing the critical role of hedgehog signaling in mediating the effects of CHSY1 expression. Together, our results indicate that CHSY1 overexpression in HCC contributes to the malignant behaviors in cancer cells, we provide novel insights into the significance of chondroitin sulfate in hedgehog signaling and HCC pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Hai, Bo; Zhao, Qingguo; Qin, Lizheng; Rangaraj, Dharanipathy; Gutti, Veera R; Liu, Fei
2016-05-01
Irreversible hypofunction of salivary glands is common in head and neck cancer survivors treated with radiotherapy and can only be temporarily relieved with current treatments. We found in an inducible sonic hedgehog (Shh) transgenic mouse model that transient activation of the Hedgehog pathway after irradiation rescued salivary gland function in males by preserving salivary stem/progenitor cells and parasympathetic innervation. To translate these findings into feasible clinical application, we evaluated the effects of Shh gene transfer to salivary glands of wild-type mice on irradiation-induced hyposalivation. Shh or control GFP gene was delivered by noninvasive retrograde ductal instillation of corresponding adenoviral vectors. In both male and female mice, Shh gene delivery efficiently activated Hedgehog/Gli signaling, and significantly improved stimulated saliva secretion and preserved saliva-producing acinar cells after irradiation. In addition to preserving parasympathetic innervation through induction of neurotrophic factors, Shh gene delivery also alleviated the irradiation damage of the microvasculature, likely via inducing angiogenic factors, but did not expand the progeny of cells responsive to Hedgehog/Gli signaling. These data indicate that transient activation of the Hedgehog pathway by gene delivery is promising to rescue salivary function after irradiation in both sexes, and the Hedgehog/Gli pathway may function mainly in cell nonautonomous manners to achieve the rescue effect.
Bai, Yongheng; Wu, Cunzao; Hong, Weilong; Zhang, Xing; Liu, Leping; Chen, Bicheng
2017-07-01
Sedum sarmentosum Bunge (SSBE) is a perennial plant widely distributed in Asian countries, and its extract is traditionally used for the treatment of certain inflammatory diseases. Our previous studies demonstrated that SSBE has marked renal anti‑fibrotic effects. However, the underlying molecular mechanisms remain to be fully elucidated. The present study identified that SSBE exerts its inhibitory effect on the myofibroblast phenotype and renal fibrosis via the hedgehog signaling pathway in vivo and in vitro. In rats with unilateral ureteral obstruction (UUO), SSBE administration reduced kidney injury and alleviated interstitial fibrosis by decreasing the levels of transforming growth factor (TGF)‑β1 and its receptor, and inhibiting excessive accumulation of extracellular matrix (ECM) components, including type I and III collagens. In addition, SSBE suppressed the expression of proliferating cell nuclear antigen, and this anti‑proliferative activity was associated with downregulation of hedgehog signaling activity in SSBE‑treated UUO kidneys. In cultured renal tubular epithelial cells (RTECs), recombinant TGF‑β1 activated hedgehog signaling, and resulted in induction of the myofibroblast phenotype. SSBE treatment inhibited the activation of hedgehog signaling and partially reversed the fibrotic phenotype in TGF‑β1‑treated RTECs. Similarly, aristolochic acid‑mediated upregulated activity of hedgehog signaling was reduced by SSBE treatment, and thereby led to the abolishment of excessive ECM accumulation. Therefore, these findings suggested that SSBE attenuates the myofibroblast phenotype and renal fibrosis via suppressing the hedgehog signaling pathway, and may facilitate the development of treatments for kidney fibrosis.
Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4.
Astorga, Jeanette; Carlsson, Peter
2007-10-01
The first vasculature of the developing vertebrate embryo forms by assembly of endothelial cells into simple tubes from clusters of mesodermal angioblasts. Maturation of this vasculature involves remodeling, pruning and investment with mural cells. Hedgehog proteins are part of the instructive endodermal signal that triggers the assembly of the first primitive vessels in the mesoderm. We used a combination of genetic and in vitro culture methods to investigate the role of hedgehogs and their targets in murine extraembryonic vasculogenesis. We show that Bmps, in particular Bmp4, are crucial for vascular tube formation, that Bmp4 expression in extraembryonic tissues requires the forkhead transcription factor Foxf1 and that the role of hedgehog proteins in this process is to activate Foxf1 expression in the mesoderm. We show in the allantois that genetic disruption of hedgehog signaling (Smo(-/-)) has no effect on Foxf1 expression, and neither Bmp4 expression nor vasculogenesis are disturbed. By contrast, targeted inactivation of Foxf1 leads to loss of allantoic Bmp4 and vasculature. In vitro, the avascular Foxf1(-/-) phenotype can be rescued by exogenous Bmp4, and vasculogenesis in wild-type tissue can be blocked by the Bmp antagonist noggin. Hedgehogs are required for activation of Foxf1, Bmp4 expression and vasculogenesis in the yolk sac. However, vasculogenesis in Smo(-/-) yolk sacs can be rescued by exogenous Bmp4, consistent with the notion that the role of hedgehog signaling in primary vascular tube formation is as an activator of Bmp4, via Foxf1.
Corynebacterial pneumonia in an African hedgehog.
Raymond, J T; Williams, C; Wu, C C
1998-04-01
A 3-mo-old, male African hedgehog (Atelerix albiventris) was anorectic and lethargic for a period of 3 days prior to death. Necropys revealed lungs that were diffusely firm, dark red, and dorsally adhered by fibrinous tags to the pericardial sac. Histopathology revealed necrosuppurative bronchopneumonia with pulmonary abscesses and suppurative pericarditis and myocarditis. A Corynebacterium sp. was isolated from the lungs. We believe this is the first reported case of corynebacterial pneumonia in an African hedgehog.
Chylous ascites in a hedgehog (Atelerix albiventris).
Roh, Yoon-Seok; Kim, Eun-Ju; Cho, Ara; Kim, Min-Su; Cho, Ho-Seong; Lim, Chae Woong; Kim, Bumseok
2014-12-01
An African pygmy hedgehog (Atelerix albiventris) was diagnosed as chylous ascites with biliary cirrhosis. Abdomenocentesis revealed a milky fluid with a 324 mg/dl triglyceride level. On serum biochemical examination, the hedgehog had hypoalbuminemia, hypoglycemia, and high blood urea nitrogen. There was no cytologic or genomic evidence of infection, and a blood culture was negative. Histopathologic examination revealed a liver with proliferative bile ducts that were often surrounded by prominent septa of fibrous connective tissue. In the area of ductular reaction, proliferative cells positive for CD66, an embryogenic antigen of epithelial cells, were revealed. The potential association between chylous ascites and liver cirrhosis is undetermined but could be an aspect of future study. This is the first description of chylous ascites in a hedgehog.
Bassuk, Alexander G.; Muthuswamy, Lakshmi B.; Boland, Riley; Smith, Tiffany L.; Hulstrand, Alissa M.; Northrup, Hope; Hakeman, Matthew; Dierdorff, Jason M.; Yung, Christina K.; Long, Abby; Brouillette, Rachel B.; Au, Kit Sing; Gurnett, Christina; Houston, Douglas W.; Cornell, Robert A.; Manak, J. Robert
2013-01-01
Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development. PMID:23223018
Matsuda, Ryo; Hosono, Chie; Saigo, Kaoru; Samakovlis, Christos
2015-01-01
The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. PMID:25615601
Lee, Jiwoon; Willer, Jason R; Willer, Gregory B; Smith, Kierann; Gregg, Ronald G; Gross, Jeffrey M
2008-07-01
In this study, we have characterized the ocular defects in the recessive zebrafish mutant blowout that presents with a variably penetrant coloboma phenotype. blowout mutants develop unilateral or bilateral colobomas and as a result, the retina and retinal pigmented epithelium are not contained within the optic cup. Colobomas result from defects in optic stalk morphogenesis whereby the optic stalk extends into the retina and impedes the lateral edges of the choroid fissure from meeting and fusing. The expression domain of the proximal optic vesicle marker pax2a is expanded in blowout at the expense of the distal optic vesicle marker pax6, suggesting that the initial patterning of the optic vesicle into proximal and distal territories is disrupted in blowout. Later aspects of distal optic cup formation (i.e. retina development) are normal in blowout mutants, however. Positional cloning of blowout identified a nonsense mutation in patched1, a negative regulator of the Hedgehog pathway, as the underlying cause of the blowout phenotype. Expanded domains of expression of the Hedgehog target genes patched1 and patched2 were observed in blowout, consistent with a loss of Patched1 function and upregulation of Hedgehog pathway activity. Moreover, colobomas in blowout could be suppressed by pharmacologically inhibiting the Hedgehog pathway with cyclopamine, and maximal rescue occurred when embryos were exposed to cyclopamine between 5.5 and 13 hours post-fertilization. These observations highlight the critical role that Hedgehog pathway activity plays in mediating patterning of the proximal/distal axis of the optic vesicle during the early phases of eye development and they provide genetic confirmation for the integral role that patched1-mediated negative regulation of Hedgehog signaling plays during vertebrate eye development.
Lee, Jiwoon; Willer, Jason R.; Willer, Gregory B.; Smith, Kierann; Gregg, Ronald G.; Gross, Jeffrey M.
2008-01-01
In this study we have characterized the ocular defects in the recessive zebrafish mutant blowout that presents with a variably penetrant coloboma phenotype. blowout mutants develop unilateral or bilateral colobomas and as a result, the retina and retinal pigmented epithelium are not contained within the optic cup. Colobomas result from defects in optic stalk morphogenesis whereby the optic stalk extends into the retina and impedes the lateral edges of the choroid fissure from meeting and fusing. The expression domain of the proximal optic vesicle marker pax2a is expanded in blowout at the expense of the distal optic vesicle marker pax6, suggesting that the initial patterning of the optic vesicle into proximal and distal territories is disrupted in blowout. Later aspects of distal optic cup formation (i.e. retina development) are normal in blowout mutants, however. Positional cloning of blowout identified a nonsense mutation in patched1, a negative regulator of the Hedgehog pathway, as the underlying cause of the blowout phenotype. Expanded domains of expression of the Hedgehog target genes patched1 and patched2 were observed in blowout, consistent with a loss of Patched1 function and upregulation of Hedgehog pathway activity. Moreover, colobomas in blowout could be suppressed by pharmacologically inhibiting the Hedgehog pathway with cyclopamine, and maximal rescue occurred when embryos were exposed to cyclopamine between 5.5 and 13 hours post fertilization. These observations highlight the critical role that Hedgehog pathway activity plays in mediating patterning of the proximal/distal axis of the optic vesicle during the early phases of eye development and they provide genetic confirmation for the integral role that patched1-mediated negative regulation of Hedgehog signaling plays during vertebrate eye development. PMID:18479681
D'Havé, Helga; Scheirs, Jan; Mubiana, Valentine Kayawe; Verhagen, Ron; Blust, Ronny; De Coen, Wim
2005-09-01
Conventional metal exposure assessment in terrestrial mammals is generally based on organ analyses of sacrificed animals. Few studies on mammals use nondestructive methodologies despite the growing ethical concern over the use of destructive sampling. Nondestructive methods involve minimal stress to populations and permit successive biomonitoring of the same populations and individuals. In the present study we assessed metal exposure of hedgehogs (Erinaceus europaeus) by investigating relationships between concentrations of metals (Ag, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) and As in soil samples and in hair and spines of hedgehogs. Samples were collected in seven study sites along a metal pollution gradient, characterized by decreasing total soil Ag, As, Cd, Cu, Ni, and Pb concentrations with increasing distance from a nonferrous metallurgic factory. For a number of elements, soil contamination was related both to distance to the smelter and to habitat. Soil concentrations were positively related to levels in hair and spines for Ag, As, Cd, and Pb and thus to hedgehog exposure. Metal concentrations in soil did not relate to metal concentrations in hair and spines for essential elements (e.g., Cu, Fe, Mn, Ni, and Zn), except Co in hair and soil. Our results demonstrate that, at least for nonessential elements, concentrations in soils can be used to predict contamination of these elements in hedgehogs or vice versa. Furthermore, hedgehog exposure increased toward the smelter and was higher for hedgehogs foraging in grasslands than for animals foraging in the forest. Moreover, we believe that hair and spines are promising tools in terrestrial wildlife exposure assessment studies of metals and As.
Peripheral Nerve Repair and Prevention of Neuroma Formation
2014-09-01
Magee1), ADRB3, β arrestin, Patched 1 (Ptch1) and 2, desert hedgehog (Dhh), smoothen (Smo), Src kinase, and UCP1. (Months 6-36) c. We will also use the...antibody. Figure 9. Representative photomicrographs of desert hedgehog staining in perineurial fibroblasts. A.) C57/BL6 mouse nerve was isolated 3...days after BMP2 induction stained with desert hedgehog (red) and NF (green). P. perineurium; E. endoneurium. Note that the mouse nerve, unlike the
Role of p53 in cdk Inhibitor VMY-1-103-Induced Apoptosis in Prostate Cancer
2012-09-01
trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog /GLI pathway. J Clin Invest. 2011 Jan 4;121(1):148- 60...subclassified the tumors based on gene expression patterns and chromosomal abnormalities.4-6 Dysregulation of Hedgehog (Hh) signaling, defined as the c3...Eberhart CG. Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am J Pathol 2007; 170:347-55; PMID:17200206; DOI:10.2353/ajpath
Liu, Xu-You; He, Ya-Jun; Yang, Qi-Hong; Huang, Wei; Liu, Zhi-He; Ye, Guo-Rong; Tang, Shao-Hui; Shu, Jian-Chang
2015-01-01
Autophagy is an evolutionarily conserved biological process that is activated in response to stress. Increasing evidence indicate that dysregulated miRNAs significantly contribute to autophagy and are thus implicated in various pathological conditions, including hepatic fibrosis. MiR-148a, a member of the miR-148/152 family, has been found to be downregulated in hepatic fibrosis and human hepatocellular carcinoma. However, the role of miR-148a in the development of hepatic fibrosis remains largely unknown. In this study, we describe the epigenetic regulation of miR-148a and its impact on autophagy in hepatic stellate cells (HSCs), exploring new targets of miR-148a. We found that miR-148a expression was significantly increased under starvation-induced conditions in LX-2 and T-6 cells. In addition, dual-luciferase reporter assays showed that miR-148a suppressed target gene expression by directly interacting with the 3’-untranslated regions (3’-UTRs) of growth arrest-specific gene 1 (Gas1) transcripts. Intriguingly, Gas1, which encodes a Hedgehog surface binding receptor and facilitates the Hedgehog (Hh) signaling pathway, inhibited autophagosome synthesis. Furthermore, we demonstrated a novel function for miR-148a as a potent inducer of autophagy in HSCs. Overexpressing of miR-148a increased autophagic activity, which inhibited proliferation and promoted apoptosis in HSCs. In conclusion, these data support a novel role for miR-148a as a key regulator of autophagy through the Hh signaling pathway, making miR-148a a potential candidate for the development of novel therapeutic strategies. PMID:26609469
Mesenchymal stem cells induce epithelial proliferation within the inflamed stomach.
Donnelly, Jessica M; Engevik, Amy; Feng, Rui; Xiao, Chang; Boivin, Gregory P; Li, Jing; Houghton, JeanMarie; Zavros, Yana
2014-06-15
Bone marrow-derived mesenchymal stem cells (MSCs) sustain cancer cells by creating a microenvironment favorable for tumor growth. In particular, MSCs have been implicated in gastric cancer development. There is extensive evidence suggesting that Hedgehog signaling regulates tumor growth. However, very little is known regarding the precise roles of Hedgehog signaling and MSCs in tumor development within the stomach. The current study tests that hypothesis that Sonic Hedgehog (Shh), secreted from MSCs, provides a proliferative stimulus for the gastric epithelium in the presence of inflammation. Red fluorescent protein-expressing MSCs transformed in vitro (stMSCs) were transduced with lentiviral constructs containing a vector control (stMSC(vect)) or short hairpin RNA (shRNA) targeting the Shh gene (stMSC(ShhKO)). Gastric submucosal transplantation of wild-type MSCs (wtMSCs), wild-type MSCs overexpressing Shh (wtMSC(Shh)), stMSC(vect), or stMSC(ShhKO) cells in C57BL/6 control (BL/6) or gastrin-deficient (GKO) mice was performed and mice analyzed 30 and 60 days posttransplantation. Compared with BL/6 mice transplanted with wtMSC(Shh) and stMSC(vect) cells, inflamed GKO mice developed aggressive gastric tumors. Tumor development was not observed in mouse stomachs transplanted with wtMSC or stMSC(ShhKO) cells. Compared with stMSC(ShhKO)-transplanted mice, within the inflamed GKO mouse stomach, Shh-expressing stMSC(vect)- and wtMSC(Shh)-induced proliferation of CD44-positive cells. CD44-positive cells clustered in gland-like structures within the tumor stroma and were positive for Patched (Ptch) expression. We conclude that Shh, secreted from MSCs, provides a proliferative stimulus for the gastric epithelium that is associated with tumor development, a response that is sustained by chronic inflammation. Copyright © 2014 the American Physiological Society.
Mesenchymal stem cells induce epithelial proliferation within the inflamed stomach
Donnelly, Jessica M.; Engevik, Amy; Feng, Rui; Xiao, Chang; Boivin, Gregory P.; Li, Jing; Houghton, JeanMarie
2014-01-01
Bone marrow-derived mesenchymal stem cells (MSCs) sustain cancer cells by creating a microenvironment favorable for tumor growth. In particular, MSCs have been implicated in gastric cancer development. There is extensive evidence suggesting that Hedgehog signaling regulates tumor growth. However, very little is known regarding the precise roles of Hedgehog signaling and MSCs in tumor development within the stomach. The current study tests that hypothesis that Sonic Hedgehog (Shh), secreted from MSCs, provides a proliferative stimulus for the gastric epithelium in the presence of inflammation. Red fluorescent protein-expressing MSCs transformed in vitro (stMSCs) were transduced with lentiviral constructs containing a vector control (stMSCvect) or short hairpin RNA (shRNA) targeting the Shh gene (stMSCShhKO). Gastric submucosal transplantation of wild-type MSCs (wtMSCs), wild-type MSCs overexpressing Shh (wtMSCShh), stMSCvect, or stMSCShhKO cells in C57BL/6 control (BL/6) or gastrin-deficient (GKO) mice was performed and mice analyzed 30 and 60 days posttransplantation. Compared with BL/6 mice transplanted with wtMSCShh and stMSCvect cells, inflamed GKO mice developed aggressive gastric tumors. Tumor development was not observed in mouse stomachs transplanted with wtMSC or stMSCShhKO cells. Compared with stMSCShhKO-transplanted mice, within the inflamed GKO mouse stomach, Shh-expressing stMSCvect- and wtMSCShh-induced proliferation of CD44-positive cells. CD44-positive cells clustered in gland-like structures within the tumor stroma and were positive for Patched (Ptch) expression. We conclude that Shh, secreted from MSCs, provides a proliferative stimulus for the gastric epithelium that is associated with tumor development, a response that is sustained by chronic inflammation. PMID:24789207
Loss of Pin1 Suppresses Hedgehog-Driven Medulloblastoma Tumorigenesis.
Xu, Tao; Zhang, Honglai; Park, Sung-Soo; Venneti, Sriram; Kuick, Rork; Ha, Kimberly; Michael, Lowell Evan; Santi, Mariarita; Uchida, Chiyoko; Uchida, Takafumi; Srinivasan, Ashok; Olson, James M; Dlugosz, Andrzej A; Camelo-Piragua, Sandra; Rual, Jean-François
2017-03-01
Medulloblastoma is the most common malignant brain tumor in children. Therapeutic approaches to medulloblastoma (combination of surgery, radiotherapy, and chemotherapy) have led to significant improvements, but these are achieved at a high cost to quality of life. Alternative therapeutic approaches are needed. Genetic mutations leading to the activation of the Hedgehog pathway drive tumorigenesis in ~30% of medulloblastoma. In a yeast two-hybrid proteomic screen, we discovered a novel interaction between GLI1, a key transcription factor for the mediation of Hedgehog signals, and PIN1, a peptidylprolyl cis/trans isomerase that regulates the postphosphorylation fate of its targets. The GLI1/PIN1 interaction was validated by reciprocal pulldowns using epitope-tagged proteins in HEK293T cells as well as by co-immunoprecipiations of the endogenous proteins in a medulloblastoma cell line. Our results support a molecular model in which PIN1 promotes GLI1 protein abundance, thus contributing to the positive regulation of Hedgehog signals. Most importantly, in vivo functional analyses of Pin1 in the GFAP-tTA;TRE-SmoA1 mouse model of Hedgehog-driven medulloblastoma demonstrate that the loss of Pin1 impairs tumor development and dramatically increases survival. In summary, the discovery of the GLI1/PIN1 interaction uncovers PIN1 as a novel therapeutic target in Hedgehog-driven medulloblastoma tumorigenesis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
D'Havé, Helga; Scheirs, Jan; Mubiana, Valentine Kayawe; Verhagen, Ron; Blust, Ronny; De Coen, Wim
2006-08-01
The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 < r < 0.85). Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 < r < 0.62). Hair Ag, As, Fe and Zn and spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 < r < 0.45). The regression models presented here may be used to predict metal and As concentrations in internal tissues of hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs.
GLI1, a master regulator of the hallmark of pancreatic cancer.
Kasai, Kenji
2016-12-01
Hedgehog signaling is highly conserved across species and governs proper embryonic development. Germline gene mutations that reduce this signaling activity cause a variety of developmental abnormalities such as holoprosencephaly, while those that enhance Hedgehog signaling activity induce a tumor-predisposition condition Nevoid basal cell carcinoma syndrome. Furthermore, dysregulated activation of Hedgehog signaling has been recognized in various sporadic malignancies, including pancreatic adenocarcinoma. Pancreatic adenocarcinoma develops through a multistep carcinogenesis starting with oncogenic mutation of the KRAS gene. During this process, precancerous or cancer cells secrete Hedgehog ligand proteins to promote characteristic desmoplastic stroma around the cells, which in turn activates the expression of the downstream transcription factor GLI1 inside the cells. The quantitative and spatiotemporal dysregulation of GLI1 subsequently leads to the expression of transcriptional target genes of GLI1 that govern the hallmark of malignant properties. Here, after a brief introductory outline, a perspective is offered of Hedgehog signaling with a special focus on the role of GLI1 in pancreatic carcinogenesis. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.
Ectoparasites infestation of free-ranging hedgehog (Etelerix algirus) in north western Libya
Hosni, M.M.; Maghrbi, A.A. El
2014-01-01
The aim of this study was to assess the prevalence of ectoparasites in hedgehogs (Etelerix algirus) in north western region of Libya. Seventy hedgehogs were sampled, and 39 (55.7%) were infested with external parasites. A total of 44 ticks, 491 fleas were collected from the infested hedgehogs and four species of ectoparasites were identified, one mite (Sarcoptes scabiei), one tick (Rhipicephalus appendiculatus) and two fleas (Xenopsylla cheopis and Ctenocephalides canis). For ectoparasites, 10/39 (25.6%) were infested by S. scabiei, 8/39 (20.5%) by Rh. appendiculatus and 11/39 (28.2%) by fleas. The prevalence of mixed infestation with S. scabiei and C. canis was 3(7.7%), Rh. appendiculatus and C. canis was 2 (5.1%) and infestation by two species of fleas was 5 (12.8%). The overall mixed infestation was 10 (25.6%). We concluded that the hedgehogs may play an important role in spreading external parasites and transmission of diseases from one region to another and from wildlife animals to domestic animals and human. PMID:26623333
Done, Lisa B; Deem, Sharon L; Fiorello, Christine V
2007-12-01
A 5-yr-old female African hedgehog (Ateleris albiventris) presented with hematuria. Vulvar culture results revealed a 4+ growth of Enterococcus sp. and gamma-Streptococcus sp. susceptible to trimethoprim sulfa and enrofloxacin. Ultrasound evaluation of the abdomen revealed an unidentifiable tubular structure in the region of the reproductive tract. An exploratory laparotomy and ovariohysterectomy were performed. Pathologic studies of the uterus showed a uterine spindle cell tumor, uterine endometrial polyp, uterine adenomyosis, and a possible acute infarct resulting in uterine wall necrosis. Hematuria did not reoccur, and the hedgehog lived for another 19 mo until she died from an oral squamous cell carcinoma. To date, this is the first report of a uterine spindle cell tumor in an African hedgehog.
Vulnerability of Normal Human Mammary Epithelial Cells to Oncogenic Transformation
2012-04-01
Hatzimasoura, E, Garbe, JC, Stampfer, MR, Koh, J, Beach, DH (2010). Primary cilium dependent and independent Hedgehog signaling inhibits p16INK4A. Mol...e8697 Molecular Cell ArticlePrimary Cilium-Dependent and -Independent Hedgehog Signaling Inhibits p16INK4A Cleo L. Bishop,1,* Ann-Marie H. Bergin,1,4...genome-wide siRNA analysis of p16INK4a (p16) modulators, we identify the Hedgehog (Hh) pathway component SUFU and formally demonstrate that Hh signaling
Vallefuoco, Rosario; Pignon, Charly; Furst, Anna; Personne, Lauriane; Courreau, Jean-Francois; Moissonnier, Pierre
2013-06-01
A free-ranging adult female hedgehog (Erinaceus europaeus) was presented injured, presumably from vehicular trauma. Clinical and radiographic examination under general anesthesia revealed a lateral elbow luxation. Closed reduction was unsuccessful, so a surgical approach with circumferential suture prostheses was used to stabilize the elbow. Neither perioperative nor postoperative complications were recorded. The hedgehog regained good range of motion of the elbow and was fully able to run and to roll into a ball.
Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells
2014-10-01
Res 62:4736-45, (2002). PMC: 12183433. 14. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1...Among these interacting pathways are BMI-1, OCT3/4, Hedgehog (Hh), Wnt/β-catenin, Notch signaling, Hox gene family, PTEN/Akt pathway, efflux...cancer, and cancer stem cells. Nature 414, 105-111 (2001). 50. Liu, S., et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and
Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells
2014-10-01
G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human...1, OCT3/4, Hedgehog (Hh), Wnt/β-catenin, Notch signaling, Hox gene family, PTEN/Akt pathway, efflux transporters such as ABCG markers of self...105-111 (2001). 50. Liu, S., et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer
Raymond, J T; White, M R
1999-06-01
From fiscal years 1992 through 1996, 14 African hedgehog (Atelerix albiventris) cases were submitted to the Animal Disease Diagnostic Laboratory at Purdue University. The most common diagnoses were splenic extramedullary hematopoiesis (91%), hepatic lipidosis (50%), renal disease (50%), and neoplastic disease (29%). Other less frequent necropsy findings were myocarditis (21%), colitis (14%), bacterial septicemia (14%), and pneumonia (14%). The data indicate that splenic extramedullary hematopoiesis, hepatic lipidosis, renal disease, and neoplasms are frequent postmortem findings in hedgehogs.
Role of GSK-3β in the Osteogenic Differentiation of Palatal Mesenchyme
Sorkin, Michael; James, Aaron W.; Liu, Karen J.; Quarto, Natalina; Longaker, Michael T.
2011-01-01
Introduction The function of Glycogen Synthase Kinases 3β (GSK-3β) has previously been shown to be necessary for normal secondary palate development. Using GSK-3ß null mouse embryos, we examine the potential coordinate roles of Wnt and Hedgehog signaling on palatal ossification. Methods Palates were harvested from GSK-3β, embryonic days 15.0–18.5 (e15.0–e18.5), and e15.5 Indian Hedgehog (Ihh) null embryos, and their wild-type littermates. The phenotype of GSK-3β null embryos was analyzed with skeletal whole mount and pentachrome stains. Spatiotemporal regulation of osteogenic gene expression, in addition to Wnt and Hedgehog signaling activity, were examined in vivo on GSK-3β and Ihh +/+ and −/− e15.5 embryos using in situ hybridization and immunohistochemistry. To corroborate these results, expression of the same molecular targets were assessed by qRT-PCR of e15.5 palates, or e13.5 palate cultures treated with both Wnt and Hedgehog agonists and anatagonists. Results GSK-3β null embryos displayed a 48 percent decrease (*p<0.05) in palatine bone formation compared to wild-type littermates. GSK-3β null embryos also exhibited decreased osteogenic gene expression that was associated with increased Wnt and decreased Hedgehog signaling. e13.5 palate culture studies demonstrated that Wnt signaling negatively regulates both osteogenic gene expression and Hedgehog signaling activity, while inhibition of Wnt signaling augments both osteogenic gene expression and Hedgehog signaling activity. In addition, no differences in Wnt signaling activity were noted in Ihh null embryos, suggesting that canonical Wnt may be upstream of Hedgehog in secondary palate development. Lastly, we found that GSK-3β −/− palate cultures were “rescued” with the Wnt inhibitor, Dkk-1. Conclusions Here, we identify a critical role for GSK-3β in palatogenesis through its direct regulation of canonical Wnt signaling. These findings shed light on critical developmental pathways involved in palatogenesis and may lead to novel molecular targets to prevent cleft palate formation. PMID:22022457
Liu, Chuanliang; Hu, Qiongqiong; Jing, Jia; Zhang, Yun; Jin, Jing; Zhang, Liulei; Mu, Lili; Liu, Yumei; Sun, Bo; Zhang, Tongshuai; Kong, Qingfei; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Liu, Xijun; Zhao, Wei; Wang, Jinghua; Feng, Tao; Li, Hulun
2017-09-01
Regulator of G protein signaling 5 (RGS5) acts as a GTPase-activating protein (GAP) for the Gαi subunit and negatively regulates G protein-coupled receptor signaling. However, its presence and function in postmitotic differentiated primary neurons remains largely uncharacterized. During neural development, sonic hedgehog (Shh) signaling is involved in cell signaling pathways via Gαi activity. In particular, Shh signaling is essential for embryonic neural tube patterning, which has been implicated in neuronal polarization involving neurite outgrowth. Here, we examined whether RGS5 regulates Shh signaling in neurons. RGS5 transcripts were found to be expressed in cortical neurons and their expression gradually declined in a time-dependent manner in culture system. When an adenovirus expressing RGS5 was introduced into an in vitro cell culture model of cortical neurons, RGS5 overexpression significantly reduced neurite outgrowth and FM4-64 uptake, while cAMP-PKA signaling was also affected. These findings suggest that RGS5 inhibits Shh function during neurite outgrowth and the presynaptic terminals of primary cortical neurons mature via modulation of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.
Moreira, Andrés; Troyo, Adriana; Calderón-Arguedas, Olger
2013-01-01
The African hedgehog is one of the newly imported exotic pets which have been observed with increasing regularity in veterinary clinics in Costa Rica. Despite their popularity, information about their diseases is scarce. Within skin diseases of hedgehogs, mange caused by Caparinia spp. is a common diagnosis in other countries. Two adult African hedgehogs, one male and one female, were brought to a private clinic in Heredia, Costa Rica, with chronic pruritic dermatitis, scabs, nearly complete loss of spines, lethargy, dehydration, and weight loss. During physical exam, deposits of dry seborrhea were taken and processed for diagnosis. Microscopic examination revealed psoroptid mites identified as Caparinia tripilis. This is the first report of the presence of Caparinia tripilis in Costa Rica and, to the authors' knowledge, the rest of Central America.
Fluralaner as a single dose oral treatment for Caparinia tripilis in a pygmy African hedgehog.
Romero, Camilo; Sheinberg Waisburd, Galia; Pineda, Jocelyn; Heredia, Rafael; Yarto, Enrique; Cordero, Alberto M
2017-12-01
African pygmy hedgehogs (Atelerix albiventris) are popular pets belonging to the Erinaceidae family of spined mammals. Amongst the most common skin diseases occurring in this species is infestation caused by the mite Caparinia spp. Due to their skin anatomy and spiny coat, detection of skin lesions in these hedgehogs can be difficult. This may result in delays in seeking medical care, which may lead to secondary bacterial infection and self-inflicted trauma. Multiple therapies have been used in the treatment of this skin condition including ivermectin, amitraz, fipronil and selamectin. A drug which could be administered as a single oral dose would be advantageous to these pets and their owners. To evaluate the effect of a single oral dose (15 mg/kg) of fluralaner on Caparinia tripilis infestation in the African pygmy hedgehog. A 10-month-old African pygmy hedgehog weighing 184 g. Response to treatment was monitored by dermatological examination and superficial skin scrapings repeated at 7, 14, 21, 30, 60, 90 and 120 days following fluralaner administration. On Day 7 after treatment, adult mites were observed exhibiting normal movement. On Day 14, only dead mites were observed. No life stages of the mites were found after Day 21. A single oral dose at 15 mg/kg of fluralaner was effective within 21 days after treatment for capariniasis in this case. Further studies are required to evaluate the drug's safety and toxicology in hedgehogs, and to confirm efficacy. © 2017 ESVD and ACVD.
Voutouri, Chrysovalantis; Kalli, Maria; Pirentis, Athanassios P.; Stylianopoulos, Triantafyllos
2017-01-01
Targeting the rich extracellular matrix of desmoplastic tumors has been successfully shown to normalize collagen and hyaluronan levels and re-engineer intratumoral mechanical forces, improving tumor perfusion and chemotherapy. As far as targeting the abundant cancer-associated fibroblasts (CAFs) in desmoplastic tumors is concerned, while both pharmacologic inhibition of the sonic-hedgehog pathway and genetic depletion of fibroblasts have been employed in pancreatic cancers, the results between the two methods have been contradictory. In this study, we employed vismodegib to inhibit the sonic-hedgehog pathway with the aim to i) elucidate the mechanism of how CAFs depletion improves drug delivery, ii) extent and evaluate the potential use of sonic-hedgehog inhibitors to breast cancers, and iii) investigate whether sonic-hedgehog inhibition improves not only chemotherapy, but also the efficacy of the most commonly used breast cancer nanomedicines, namely Abraxane® and Doxil®. We found that treatment with vismodegib normalizes the tumor microenvironment by reducing the proliferative CAFs and in cases the levels of collagen and hyaluronan. These modulations re-engineered the solid and fluid stresses in the tumors, improving blood vessel functionality. As a result, the delivery and efficacy of chemotherapy was improved in two models of pancreatic cancer. Additionally, vismodegib treatment significantly improved the efficacy of both Abraxane and Doxil in xenograft breast tumors. Our results suggest the use of vismodegib, and sonic hedgehog inhibitors in general, to enhance cancer chemo- and nanotherapy. PMID:28662901
The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.
Glazer, Andrew M; Wilkinson, Alex W; Backer, Chelsea B; Lapan, Sylvain W; Gutzman, Jennifer H; Cheeseman, Iain M; Reddien, Peter W
2010-01-01
Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates.
Ding, Q. P.; Meier, W. R.; Bohmer, A. E.; ...
2017-12-29
Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by 75As nuclear magnetic resonance study on single-crystalline CaK(Fe 0:951Ni0:049) 4As 4. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the c axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature T N ~ 52 K. The nuclear spin-lattice relaxation rate 1/T 1 shows a distinct decrease below T c ~ 10 K, providing alsomore » unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/T 1 data, the hedgehog SVC-type spin correlations are found to be enhanced below T ~ 150 K in the paramagnetic state. Furthermore, these results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.« less
Sharma, Shweta; Kaur, Avileen; Sharma, Saurabh
2018-04-01
The present study was been designed to investigate the role and pharmacological potential of hedgehog in oestrogen-deficient rat heart. Oestrogen deficiency was produced in female Wistar rats by the surgical removal of both ovaries and these animals were used four weeks later. Isolated rat heart was subjected to 30 min ischaemia followed by 120 min of reperfusion (I/R). The heart was subjected to pharmacological preconditioning with the hedgehog agonist purmorphamine (1μM) and GDC-0449, a hedgehog antagonist, in the last episode of reperfusion before I/R. Myocardial infarction was assessed in terms of the increase in lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), myeloperoxidase (MPO) level and infarct size (triphenyltetrazolium chloride staining). Immunohistochemistry analysis was done for the assessment of tumour necrosis factor (TNF)-α level in cardiac tissue. eNOS expression was estimated by rt-PCR. Pharmacological preconditioning with purmorphamine significantly attenuated I/R-induced myocardial infarction, TNF-α, MPO level and release of LDH and CK-MB compared to the I/R control group. However, GDC-0449 prevented the ameliorative preconditioning effect of estradiol. It may be concluded that the hedgehog agonist purmorphamine prevents the ovariectomised heart from ischaemic reperfusion injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Q. P.; Meier, W. R.; Bohmer, A. E.
Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by 75As nuclear magnetic resonance study on single-crystalline CaK(Fe 0:951Ni0:049) 4As 4. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the c axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature T N ~ 52 K. The nuclear spin-lattice relaxation rate 1/T 1 shows a distinct decrease below T c ~ 10 K, providing alsomore » unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/T 1 data, the hedgehog SVC-type spin correlations are found to be enhanced below T ~ 150 K in the paramagnetic state. Furthermore, these results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.« less
Cryptosporidium erinacei n. sp. (Apicomplexa: Cryptosporidiidae) in hedgehogs.
Kváč, Martin; Hofmannová, Lada; Hlásková, Lenka; Květoňová, Dana; Vítovec, Jiří; McEvoy, John; Sak, Bohumil
2014-03-17
The morphological, biological, and molecular characteristics of Cryptosporidium hedgehog genotype are described, and the species name Cryptosporidium erinacei n. sp. is proposed to reflect its specificity for hedgehogs under natural and experimental conditions. Oocysts of C. erinacei are morphologically indistinguishable from Cryptosporidium parvum, measuring 4.5-5.8 μm (mean=4.9 μm) × 4.0-4.8 μm (mean=4.4 μm) with a length to width ratio of 1.13 (1.02-1.35) (n=100). Oocysts of C. erinacei obtained from a naturally infected European hedgehog (Erinaceus europaeus) were infectious for naïve 8-week-old four-toed hedgehogs (Atelerix albiventris); the prepatent period was 4-5 days post infection (DPI) and the patent period was longer than 20 days. C. erinacei was not infectious for 8-week-old SCID and BALB/c mice (Mus musculus), Mongolian gerbils (Meriones unguiculatus), or golden hamsters (Mesocricetus auratus). Phylogenetic analyses based on small subunit rRNA, 60 kDa glycoprotein, actin, Cryptosporidium oocyst wall protein, thrombospondin-related adhesive protein of Cryptosporidium-1, and heat shock protein 70 gene sequences revealed that C. erinacei is genetically distinct from previously described Cryptosporidium species. Copyright © 2014 Elsevier B.V. All rights reserved.
Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P.
2003-01-01
Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching. PMID:12569124
Chuang, Pao-Tien; Kawcak, T'Nay; McMahon, Andrew P
2003-02-01
Hedgehog (Hh) signaling plays a major role in multiple aspects of embryonic development. A key issue is how negative regulation of Hh signaling might contribute to generating differential responses over tens of cell diameters. In cells that respond to Hh, two proteins that are up-regulated are Patched1 (Ptch1), the Hh receptor, a general target in both invertebrate and vertebrate organisms, and Hip1, a Hh-binding protein that is vertebrate specific. To address the developmental role of Hip1 in the context of Hh signaling, we generated Hip1 mutants in the mouse. Loss of Hip1 function results in specific defects in two Hh target issues, the lung, a target of Sonic hedgehog (Shh) signaling, and the endochondral skeleton, a target of Indian hedgehog (Ihh) signaling. Hh signaling was up-regulated in Hip1 mutants, substantiating Hip1's general role in negatively regulating Hh signaling. Our studies focused on Hip1 in the lung. Here, a dynamic interaction between Hh and fibroblast growth factor (Fgf) signaling, modulated at least in part by Hip1, controls early lung branching.
The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer
2013-07-01
cyclin D1 (Wnt target) and Bcl-2 (Sonic Hedgehog -SHH target). The novel finding in presented in the 2nd annual report was that regulation of Bcl-2... hedgehog (SHH) pathway that is very well know to regulate Bcl-2. For this purpose we determined the expression level of Bcl-2 in BMI1- overexpressing and...2006; 15: 217-27. 16. Hegde GV, Munger CM, Emanuel K, Joshi AD, Greiner TC, Weisenburger DD, Vose JM, et al. Targeting of sonic hedgehog -GLI signaling
Competing signals drive telencephalon diversity.
Sylvester, J B; Rich, C A; Yi, C; Peres, J N; Houart, C; Streelman, J T
2013-01-01
The telencephalon is the most complex brain region, controlling communication, emotion, movement and memory. Its adult derivatives develop from the dorsal pallium and ventral subpallium. Despite knowledge of genes required in these territories, we do not understand how evolution has shaped telencephalon diversity. Here, using rock- and sand-dwelling cichlid fishes from Lake Malawi, we demonstrate that differences in strength and timing of opposing Hedgehog and Wingless signals establish evolutionary divergence in dorsal-ventral telencephalon patterning. Rock dwellers exhibit early, extensive Hedgehog activity in the ventral forebrain resulting in expression of foxg1 before dorsal Wingless signals, and a larger subpallium. Sand dwellers show rapid deployment of Wingless, later foxg1 expression and a larger pallium. Manipulation of the Hedgehog and Wingless pathways in cichlid and zebrafish embryos is sufficient to mimic differences between rock- versus sand-dweller brains. Our data suggest that competing ventral Hedgehog and dorsal Wingless signals mediate evolutionary diversification of the telencephalon.
Novel Hedgehog pathway targets against basal cell carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Jean Y.; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA; So, P.-L.
2007-11-01
The Hedgehog signaling pathway plays a key role in directing growth and patterning during embryonic development and is required in vertebrates for the normal development of many structures, including the neural tube, axial skeleton, skin, and hair. Aberrant activation of the Hedgehog (Hh) pathway in adult tissue is associated with the development of basal cell carcinoma (BCC), medulloblastoma, and a subset of pancreatic, gastrointestinal, and other cancers. This review will provide an overview of what is known about the mechanisms by which activation of Hedgehog signaling leads to the development of BCCs and will review two recent papers suggesting thatmore » agents that modulate sterol levels might influence the Hh pathway. Thus, sterols may be a new therapeutic target for the treatment of BCCs, and readily available agents such as statins (HMG-CoA reductase inhibitors) or vitamin D might be helpful in reducing BCC incidence.« less
Hedgehog signaling regulates gene expression in planarian glia.
Wang, Irving E; Lapan, Sylvain W; Scimone, M Lucila; Clandinin, Thomas R; Reddien, Peter W
2016-09-09
Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh ) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc) , which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1 ) and calamari (cali ), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh + neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako
In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition andmore » activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.« less
Lu, Jiang; Lu, Kehuan; Li, Dongsheng
2012-01-01
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. PMID:25624789
Digging a hole under Hedgehog: downstream inhibition as an emerging anticancer strategy.
Di Magno, Laura; Coni, Sonia; Di Marcotullio, Lucia; Canettieri, Gianluca
2015-08-01
Hedgehog signaling is a key regulator of development and stem cell fate and its aberrant activation is a leading cause of a number of tumors. Activating germline or somatic mutations of genes encoding Hh pathway components are found in Basal Cell Carcinoma (BCC) and Medulloblastoma (MB). Ligand-dependent Hedgehog hyperactivation, due to autocrine or paracrine mechanisms, is also observed in a large number of malignancies of the breast, colon, skin, bladder, pancreas and other tissues. The key tumorigenic role of Hedgehog has prompted effort aimed at identifying inhibitors of this signaling. To date, only the antagonists of the membrane transducer Smo have been approved for therapy or are under clinical trials in patients with BCC and MB linked to Ptch or Smo mutations. Despite the good initial response, patients treated with Smo antagonists have eventually developed resistance due to the occurrence of compensating mechanisms. Furthermore, Smo antagonists are not effective in tumors where the Hedgehog hyperactivation is due to mutations of pathway components downstream of Smo, or in case of non-canonical, Smo-independent activation of the Gli transcription factors. For all these reasons, the research of Hh inhibitors acting downstream of Smo is becoming an area of intensive investigation. In this review we illustrate the progresses made in the identification of effective Hedgehog inhibitors and their application in cancer, with a special emphasis on the newly identified downstream inhibitors. We describe in detail the Gli inhibitors and illustrate their mode of action and applications in experimental and/or clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.
The gross anatomy of the male reproductive system of the European hedgehog (Erinaceus Europaeus).
Akbari, G; Babaei, M; Kianifard, D; Mohebi, D
2018-01-01
Hedgehogs are small spiny-coated insectivores. Due to their low body weight, calm character, and easy maintenance, they are kept as pets. It is therefore worthwhile to care about hedgehogs' health problems and to provide pet owners with information about their reproduction. Moreover, it is necessary to be familiar with their anatomy so as to satisfy the need to improve nutrition and medical care, even surgery. This study was carried out on five adult male European hedgehogs euthanased in a chloroform chamber. The European hedgehog's oval testes are invisible in inguinal region because they have no true scrotal sac. The testes are located in the craniocaudal direction with dorsolateral epididymal attachments. The vesicular glands, the European hedgehog's largest accessory sex glands, are lobulated structures containing dorsomedial and ventrolateral parts on each side. The prostate is an oval gland with right and left lobes. The paired bulbourethral glands are laid on the ischiocavernosus muscle. Histologically the vesicular, prostate gland ducts and ductus deferens as well as urethra separately were discharged in a diverticlum at the level of the pelvic urethra end. A sigmoid flexure exists in the proximal part of shaft body of the penis. There are two retractor penile muscles. In dorsal end of the penile glans, there is a small urethral process with two nail- -like, needle-shaped structures. They are on both sides of the urethral process. Furthermore, there are two intromittent sacs (Sacculus urethralis) in the ventral part of the end of the penis. (Folia Morphol 2018; 77, 1: 36-43).
Progenitor Cell Fate Decisions in Mammary Tumorigenesis
2013-03-01
31.8 NM_134032 Homeo box 82 Hoxb2 18.0 BC011063 HomeoboxAS Hoxa5 17.1 AW105779 Lactate dehydrogenase D Ldbd 14.6 AV367068 Desert hedgehog Dhh 13.8...Fgfrl 689 NM_009704 AmpbiJeplin Areg 663 AV304616 Sonic hedgehog Shh 44.6 NM_D10446 Forklad box A2 Foxa2 42.6 NM_007!’i54 Bone morphogenetic protein...111.5 AV304616 Sonic hedgehog Shb 104.9 NM....010446 Fo!thead box A2 Foxa2 81.7 NM_007SS4 Bone morphogenetic protein 4 Bmp4 69.4 NM_008010 Fibroblast
Mobilization of Neural Precursors in the Circulating Blood of Patients with Multiple Sclerosis
2013-09-01
Bongarzone ER. Expression of sonic hedgehog targeted genes in peripheral blood mononuclear cells of patients with multiple sclerosis. Society for...Print Program#/Poster#: 322.13 Presentation Title: Expression of sonic hedgehog targeted genes in peripheral blood mononuclear cells of patients with...analyses. Gene array hybridization showed up regulation of various components of the Sonic hedgehog (Shh) pathway including, Olig1 and Olig2. Taken
Cryptosporidial infection in a captive European hedgehog (Erinaceus europaeus).
Meredith, Anna Louise; Milne, Elspeth Mary
2009-12-01
An adult female hedgehog (Erinaceus europaeus) developed hemorrhagic diarrhea and was euthanized after failure to respond to treatment. At postmortem examination, the gastrointestinal tract was distended with clear fluid. Histopathologic examination of the jejunum and ileum revealed numerous small, round, pale basophilic organisms typical of cryptosporidia on the luminal surface of the enterocytes and free in the crypts. In addition, there was severe villus atrophy in the ileum. It was thought that an underlying chronic systemic disease had predisposed the hedgehog to cryptosporidiosis by immunosuppression. This report appears to be the first detailed description of cryptosporidiosis in this species.
Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish
Zardoya, Rafael; Abouheif, Ehab; Meyer, Axel
1996-01-01
The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established. PMID:8917540
Radiological investigations of the hedgehog (Erinaceus concolor) appendicular skeleton.
Hashemi, Mohammad; Javadi, Shahram; Hadian, Mojtaba; Pourreza, Behzad; Behfar, Mahdi
2009-03-01
The normal radiographic anatomy of the healthy hedgehog can help to identify anatomic features unique to the hedgehog while comparing it with other small mammals, such as the dog and cat. Radiographic examination is a method that can play an important role in the diagnosis of a wide variety of skeletal diseases. Seven (2 males, 5 females) free-living hedgehogs (Erinaceus concolor) from the Urmia region of Iran were selected for this study. Lateral and craniocaudal radiographs from the front and hind limbs were obtained. The radiographs from these hedgehogs were compared with the normal canine and feline skeletal radiographic anatomy. On the forelimb radiographs, the clavicle was observed as a complete bone connected to the scapula and manubrium. There are three and five carpal bones in the proximal and distal rows, respectively, as in the dog and cat. The pelvis has a larger obturator foramen when compared with the dog and cat. In the lateral view, the pubis and ischium are relatively larger than in the dog and cat and have a more ventral position. The tarsal bones are similar to those of the dog and cat. The number of phalanges and sesamoid bones in the forelimb and hindlimb are likewise similar to those found in the dog and cat.
Zardoya, R; Abouheif, E; Meyer, A
1996-11-12
The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established.
Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer
2015-10-01
research proposed here will provide a novel insight into previously unexplored cross-talking that occurs between hedgehog -signalling and DNA...methyltransferases in prostate cancer to facilitate tumour growth and survival. Specific aims: (1) Correlate expression pattern of components of the hedgehog
Morphological study of the European hedgehog (Erinaceus europaeus) tongue by SEM and LM.
Akbari, Ghasem; Babaei, Mohammad; Hassanzadeh, Belal
2018-03-01
The hedgehog tongue is a tactile and taste organ which carries out various functions. Detailed functional and morphological studies are required to clearly define the relationship of the hedgehog tongue with taste, food palatability, mastication and swallowing of food, as well as the production of sounds. The aim of this study was to determine the relationship between the morphological characteristics of the European hedgehog tongue and the lifestyle of this animal, as well as to compare findings with the results of studies on other vertebrates. Gross and micro-anatomical light and scanning electron microscopy studies revealed that the hedgehog tongue could be divided in three areas, namely the apex, body and root. A keratinized stratified squamous epithelium, which was smooth on the ventral surface but bore four types of papillae on the dorsal surface, lined the tongue. Three types of these papillae were found to have gustatory functions and to express their activity in close relation with the salivary glands. These simple conical filiform papillae were situated caudally and distributed one after the other without a break. The dome-shaped fungiform papillae on the apex, with the highest distribution rate on the apex edge, were small, but those on the body and root were large. The three circular vallate papillae were arranged in a triangular shape. The foliate papillae with a few tiny projections, found in a shallow furrow, were situated between the root and the body. Most of the nerve fibers observed in different sections of the tongue tissue were of the unmyelinated type, confirming that the main task of the hedgehog tongue was its gustatory function.
O'Hara, William A; Azar, Walid J; Behringer, Richard R; Renfree, Marilyn B; Pask, Andrew J
2011-12-01
Desert hedgehog (DHH) belongs to the hedgehog gene family that act as secreted intercellular signal transducers. DHH is an essential morphogen for normal testicular development and function in both mice and humans but is not present in the avian lineage. Like other hedgehog proteins, DHH signals through the patched (PTCH) receptors 1 and 2. Here we examine the expression and protein distribution of DHH, PTCH1 and PTCH2 in the developing testes of a marsupial mammal (the tammar wallaby) to determine whether DHH signalling is a conserved factor in gonadal development in all therian mammals. DHH, PTCH1 and PTCH2 were present in the marsupial genome and highly conserved with their eutherian orthologues. Phylogenetic analyses indicate that DHH has recently evolved and is a mammal-specific hedgehog orthologue. The marsupial PTCH2 receptor had an additional exon (exon 21a) not annotated in eutherian PTCH2 proteins. Interestingly we found evidence of this exon in humans and show that its translation would result in a truncated protein with functions similar to PTCH1. We also show that DHH expression was not restricted to the testes during gonadal development (as in mice), but was also expressed in the developing ovary. Expression of DHH, PTCH1 and PTCH2 in the adult tammar testis and ovary was consistent with findings in the adult mouse. These data suggest that there is a highly conserved role for DHH signalling in the differentiation and function of the mammalian testis and that DHH may be necessary for marsupial ovarian development. The receptors PTCH1 and PTCH2 are highly conserved mediators of hedgehog signalling in both the developing and adult marsupial gonads. Together these findings indicate DHH is an essential therian mammal-specific morphogen in gonadal development and gametogenesis.
Marumoto, Ariane; Milani, Renato; da Silva, Rodrigo A; da Costa Fernandes, Célio Junior; Granjeiro, José Mauro; Ferreira, Carmen V; Peppelenbosch, Maikel P; Zambuzzi, Willian F
2017-10-01
The reciprocal and adaptive interactions between cells and substrates governing morphological transitions in the osteoblast compartment remain largely obscure. Here we show that osteoblast cultured in basement membrane matrix (Matrigel™) exhibits significant morphological changes after ten days of culture, and we decided to exploit this situation to investigate the molecular mechanisms responsible for guiding osteoblast morphological transitions. As almost all aspects of cellular physiology are under control of kinases, we generated more or less comprehensive cellular kinome profiles employing PepChip peptide arrays that contain over 1000 consensus substrates of kinase peptide. The results obtained were used to construct interactomes, and these revealed an important role for FoxO in mediating morphological changes of osteoblast, which was validated by Western blot technology when FoxO was significantly up-expressed in response to Matrigel™. As FoxO is a critical protein in canonical hedgehog signalling, we decided to explore the possible involvement of hedgehog signalling during osteoblast morphological changes. It appeared that osteoblast culture in Matrigel™ stimulates release of a substantial amounts Shh while concomitantly inducing upregulation of the expression of the bona fide hedgehog target genes Gli-1 and Patched. Functional confirmation of the relevance of these results for osteoblast morphological transitions came from experiments in which Shh hedgehog signalling was inhibited using the well-established pathway inhibitor cyclopamine (Cyc). In the presence of Cyc, culture of osteoblasts in Matrigel™ is not capable of inducing morphological changes but appears to provoke a proliferative response as evident from the upregulation of Cyclin D3 and cdk4. The most straightforward interpretation of our results is that hedgehog signalling is both necessary and sufficient for membrane matrix-based morphological transitions. Copyright © 2017 Elsevier Inc. All rights reserved.
Holloway, Ryan W; Bogachev, Oleg; Bharadwaj, Alamelu G; McCluskey, Greg D; Majdalawieh, Amin F; Zhang, Lei; Ro, Hyo-Sung
2012-11-09
Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1(TG)) mice, and the onset of ductal hyperplasia was accelerated in AEBP1(TG) mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1(TG) bone marrow cells into non-transgenic (AEBP1(NT)) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1(TG) mammary macrophages and epithelium. Shh expression was induced in AEBP1(TG) macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1(TG) mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1(TG) peritoneal macrophages. The conditioned AEBP1(TG) macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1(TG) macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis.
Holloway, Ryan W.; Bogachev, Oleg; Bharadwaj, Alamelu G.; McCluskey, Greg D.; Majdalawieh, Amin F.; Zhang, Lei; Ro, Hyo-Sung
2012-01-01
Disruption of mammary stromal-epithelial communication leads to aberrant mammary gland development and induces mammary tumorigenesis. Macrophages have been implicated in carcinogenesis primarily by creating an inflammatory microenvironment, which promotes growth of the adjacent epithelial cells. Adipocyte enhancer-binding protein 1 (AEBP1), a novel proinflammatory mediator, promotes macrophage inflammatory responsiveness by inducing NF-κB activity, which has been implicated in tumor cell growth and survival by aberrant sonic hedgehog (Shh) expression. Here, we show that stromal macrophage AEBP1 overexpression results in precocious alveologenesis in the virgin AEBP1 transgenic (AEBP1TG) mice, and the onset of ductal hyperplasia was accelerated in AEBP1TG mice fed a high fat diet, which induces endogenous AEBP1 expression. Transplantation of AEBP1TG bone marrow cells into non-transgenic (AEBP1NT) mice resulted in alveolar hyperplasia with up-regulation of NF-κB activity and TNFα expression as displayed in the AEBP1TG mammary macrophages and epithelium. Shh expression was induced in AEBP1TG macrophages and RAW264.7 macrophages overexpressing AEBP1. The Shh target genes Gli1 and Bmi1 expression was induced in the AEBP1TG mammary epithelium and HC11 mammary epithelial cells co-cultured with AEBP1TG peritoneal macrophages. The conditioned AEBP1TG macrophage culture media promoted NF-κB activity and survival signal, Akt activation, in HC11 cells, whereas such effects were abolished by TNFα neutralizing antibody treatment. Furthermore, HC11 cells displayed enhanced proliferation in response to AEBP1TG macrophages and their conditioned media. Our findings highlight the role of AEBP1 in the signaling pathways regulating the cross-talk between mammary epithelium and stroma that could predispose the mammary tissue to tumorigenesis. PMID:22995915
Aval, Sedigheh Fekri; Lotfi, Hajie; Sheervalilou, Roghayeh; Zarghami, Nosratollah
2017-07-01
Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets. Copyright © 2017. Published by Elsevier Masson SAS.
Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma
Monje, Michelle; Mitra, Siddhartha S.; Freret, Morgan E.; Raveh, Tal B.; Kim, James; Masek, Marilyn; Attema, Joanne L.; Haddix, Terri; Edwards, Michael S. B.; Fisher, Paul G.; Weissman, Irving L.; Rowitch, David H.; Vogel, Hannes; Wong, Albert J.; Beachy, Philip A.
2011-01-01
Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive tumors of childhood that are almost universally fatal. Our understanding of this devastating cancer is limited by a dearth of available tissue for study and by the lack of a faithful animal model. Intriguingly, DIPGs are restricted to the ventral pons and occur during a narrow window of middle childhood, suggesting dysregulation of a postnatal neurodevelopmental process. Here, we report the identification of a previously undescribed population of immunophenotypic neural precursor cells in the human and murine brainstem whose temporal and spatial distributions correlate closely with the incidence of DIPG and highlight a candidate cell of origin. Using early postmortem DIPG tumor tissue, we have established in vitro and xenograft models and find that the Hedgehog (Hh) signaling pathway implicated in many developmental and oncogenic processes is active in DIPG tumor cells. Modulation of Hh pathway activity has functional consequences for DIPG self-renewal capacity in neurosphere culture. The Hh pathway also appears to be active in normal ventral pontine precursor-like cells of the mouse, and unregulated pathway activity results in hypertrophy of the ventral pons. Together, these findings provide a foundation for understanding the cellular and molecular origins of DIPG, and suggest that the Hh pathway represents a potential therapeutic target in this devastating pediatric tumor. PMID:21368213
Endoparasites of Wild Mammals Sheltered in Wildlife Hospitals and Rehabilitation Centres in Greece
Liatis, Theophanes K.; Monastiridis, Antonios A.; Birlis, Panagiotis; Prousali, Sophia; Diakou, Anastasia
2017-01-01
Wildlife parasitic diseases represent an important field of investigation as they may have a significant impact on wild animals’ health and fitness, and may also have zoonotic implications. This study aimed to investigate the occurrence of endoparasites in wild mammals admitted to wildlife hospitals and rehabilitation centres in Greece. Sixty-five animals belonging to 17 species and originated from various areas of continental and insular Greece were included in the survey. The most numerous animal species examined were hedgehogs (n = 19), red foxes (n = 16), and European roe deer (n = 6). Faecal samples were collected individually and examined by floatation and sedimentation method. Parasites were found in 46 (70.7%) of the animals. Most parasites found in canids, felids, and ruminants are of great relevance to the domestic animals’ health and some of them are also of zoonotic importance. To the best of the author’s knowledge, this is the first report of endoparasites in hedgehogs, roe deers, fallow deers, badgers, and bats, and the first report of the pulmonary nematode Troglostrongylus brevior in a wild cat in Greece. The significance of the parasites found in each animal species in regard to their health and their relevance to domestic animals and human health is discussed. PMID:29326954
Nagase, Takashi; Nagase, Miki; Yoshimura, Kotaro; Fujita, Toshiro; Koshima, Isao
2005-06-01
Embryonic morphogenesis of vascular and nervous systems is tightly coordinated, and recent studies revealed that some neurogenetic factors such as Sonic hedgehog (Shh) also exhibit angiogenetic potential. Vascularization within the developing mouse neural tube depends on vessel sprouting from the surrounding vascular plexus. Previous studies implicated possible roles of VEGF/Flk-1 and Angiopoietin-1(Ang-1)/Tie-2 signaling as candidate molecules functioning in this process. Examining gene expressions of these factors at embryonic day (E) 9.5 and 10.5, we unexpectedly found that both VEGF and Ang-1 were expressed in the motor neurons in the ventral neural tube. The motor neurons were indeed located in the close vicinity of the infiltrating vessels, suggesting involvement of motor neurons in the sprouting. To substantiate this possibility, we inhibited induction of the motor neurons in the cultured mouse embryos by cyclopamine, a Shh signaling blocker. The vessel sprouting was dramatically impaired by inhibition of Shh signaling, together with nearly complete loss of the motor neurons. Expression of Ang-1, but not VEGF, within the neural tube was remarkably reduced in the cyclopamine treated embryos. These results suggest that the neural tube angiogenesis is dependent on Shh signaling, and mediated, at least in part, by the Ang-1 positive motor neurons.
Sonic Hedgehog Signaling in Thyroid Cancer
Xu, Xiulong; Lu, Yurong; Li, Yi; Prinz, Richard A.
2017-01-01
Thyroid cancer is the most common malignancy of the endocrine system. The initiation of thyroid cancer is often triggered by a genetic mutation in the phosphortidylinositol-3 kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathway, such as RAS and BRAF, or by the rearrangement of growth factor receptor tyrosine kinase genes such as RET/PTC. The sonic hedgehog (Shh) pathway is evolutionarily conserved and plays an important role in the embryonic development of normal tissues and organs. Gene mutations in the Shh pathway are involved in basal cell carcinomas (BCC). Activation of the Shh pathway due to overexpression of the genes encoding the components of this pathway stimulates the growth and spread of a wide range of cancer types. The Shh pathway also plays an important role in cancer stem cell (CSC) self-renewal. GDC-0449 and LDE-225, two inhibitors of this pathway, have been approved for treating BCC and are being tested as a single agent or in combination with other drugs for treating various other cancers. Here, we review the recent findings on activation of the Shh pathway in thyroid cancer and its role in maintaining thyroid CSC self-renewal. We also summarize the recent developments on crosstalk of the Shh pathway with the MAPK and PI3K oncogenic pathways, and its implications for combination therapy. PMID:29163356
Tolani, Bhairavi; Hoang, Ngoc T.; Acevedo, Luis A.; Leprieur, Etienne Giroux; Li, Hui; He, Biao; Jablons, David M.
2018-01-01
The Sonic Hedgehog (Shh) signaling pathway has been implicated in the development and tumor progression of a number of human cancers. Using synthetic peptide mimics to mount an immune response, we generated a mouse mAb to the carboxy (C)-terminus of the Shh protein and characterized its preclinical antitumor effects. In vitro screening guided selection of the best candidate for mAb scale-up production and therapeutic development. C-term anti-Shh, Ab 1C11-2G4 was selected based on ELISA screens, Western blotting, and flow cytometric analyses. Purified Ab 1C11-2G4 was shown to recognize and bind both Shh peptide mimics and cell surface Shh. Administration of Ab 1C11-2G4 not only reduced cell viability in 7 cancer cell lines but also significantly inhibitted tumor growth in a xenograft model of A549 lung cancer cells. Ex vivo analyses of xenograft tumors revealed a reduction in Shh signal transduction and apoptosis in 2G4-treated mice. Collectively, our results provide early demonstration of the antitumor utility of antibodies specific for the C-terminal region of Shh, and support continued development to evaluate their potential efficacy in cancers in which Shh activity is elevated. PMID:29581846
Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer
2015-10-01
research proposed here will provide a novel insight into previously unexplored cross-talking that occurs between hedgehog -signalling and DNA... hedgehog signaling pathway, DNMTs and CpG methylation loci profiles in different stages of prostate. (2) Characterize mechanism(s) of Gli regulation of
Hedgehog signaling regulates gene expression in planarian glia
Wang, Irving E; Lapan, Sylvain W; Scimone, M Lucila; Clandinin, Thomas R; Reddien, Peter W
2016-01-01
Hedgehog signaling is critical for vertebrate central nervous system (CNS) development, but its role in CNS biology in other organisms is poorly characterized. In the planarian Schmidtea mediterranea, hedgehog (hh) is expressed in medial cephalic ganglia neurons, suggesting a possible role in CNS maintenance or regeneration. We performed RNA sequencing of planarian brain tissue following RNAi of hh and patched (ptc), which encodes the Hh receptor. Two misregulated genes, intermediate filament-1 (if-1) and calamari (cali), were expressed in a previously unidentified non-neural CNS cell type. These cells expressed orthologs of astrocyte-associated genes involved in neurotransmitter uptake and metabolism, and extended processes enveloping regions of high synapse concentration. We propose that these cells are planarian glia. Planarian glia were distributed broadly, but only expressed if-1 and cali in the neuropil near hh+ neurons. Planarian glia and their regulation by Hedgehog signaling present a novel tractable system for dissection of glia biology. DOI: http://dx.doi.org/10.7554/eLife.16996.001 PMID:27612382
Topological spin-hedgehog crystals of a chiral magnet as engineered with magnetic anisotropy
NASA Astrophysics Data System (ADS)
Kanazawa, N.; White, J. S.; Rønnow, H. M.; Dewhurst, C. D.; Morikawa, D.; Shibata, K.; Arima, T.; Kagawa, F.; Tsukazaki, A.; Kozuka, Y.; Ichikawa, M.; Kawasaki, M.; Tokura, Y.
2017-12-01
We report the engineering of spin-hedgehog crystals in thin films of the chiral magnet MnGe by tailoring the magnetic anisotropy. As evidenced by neutron scattering on films with different thicknesses and by varying a magnetic field, we can realize continuously deformable spin-hedgehog crystals, each of which is described as a superposition state of a different set of three spin spirals (a triple-q state). The directions of the three propagation vectors q vary systematically, gathering from the three orthogonal 〈100 〉 directions towards the film normal as the strength of the uniaxial magnetic anisotropy and/or the magnetic field applied along the film normal increase. The formation of triple-q states coincides with the onset of topological Hall signals, that are ascribed to skew scattering by an emergent magnetic field originating in the nontrivial topology of spin hedgehogs. These findings highlight how nanoengineering of chiral magnets makes possible the rational design of unique topological spin textures.
Döpke, C; Fehr, M; Thiele, A; Pohlenz, J; Wohlsein, P
2007-07-01
Mammary tumour samples (11 surgical and five post-mortem) from 16 adult European hedgehogs submitted between 1980 and 2004 were examined. Histologically, the tumours were classified as simple tubulo-papillary carcinomas with local invasive growth. In six cases, tumour cell emboli were present in blood vessels or lymphatic vessels, or both. However, metastasis to regional lymph nodes was found only in one hedgehog. Malignant neoplastic epithelial cells were immunolabelled by antibodies specific for various cytokeratins (CKs), including CK1-8, 10, 13-16, 19 and 20. CK expression did not differ from that in normal mammary gland tissue. CK20 was expressed in the mammary tissue of hedgehogs, in contrast to that of dogs and cats; CK7 immunolabelling, however, which commonly occurs in mammary epithelial cells, was negative. CK20 expression, together with the lack of CK7 as determined by a protein-specific antibody, represented an important difference from the CK profile shown by mammary epithelial cells of other mammalian species, including the dog and cat.
Matute, Alonso Reyes; Bernal, Adriana Mendez; Lezama, José Ramírez; Guadalupe, Manzano Pech Linaloe; Antonio, Galicia Avalos Marco
2014-09-01
A sebaceous carcinoma was diagnosed, together with a mammary carcinoma, in an adult African hedgehog (Atelerix albiventris). The first neoplasm was located in the subcutaneous tissue of the neck and extended towards the axillary area of the chest. The second was located in the subcutaneous left caudal abdominal region. The purpose of this paper is to report the histopathologic and ultrastructural features of these neoplasms. Although there is little information about diseases affecting this species, it is known that neoplastic disorders are fairly common in African hedgehogs. The mammary carcinoma is considered to be the most common neoplasm in these animals; however, the presentation of sebaceous carcinoma is rare. In hedgehogs, the simultaneous presence of two neoplasms is common, which is why special attention should be paid to the presentation of other tumors during the early detection of a neoplastic process as this will greatly facilitate the optimal treatment and improve the long-term prognosis of affected animals.
Hoseini, Seyed Mohammad; Youssefi, Mohammad Reza; Mousapour, Aliasghar; Dozouri, Rohollah; Eshkevari, Shahab Ramezanpour; Nikzad, Mohammad; Nikzad, Reza; Omidzahir, Shila
2014-06-01
Crenosoma striatum is a species of parasitic nematodes from the family Crenosomatidae responsible for pathologic lung lesions in the hedgehog (Erinaceus europaeus). Infection with C. striatum can cause weight loss, dry cough, and bronchitis. In the present study, hedgehogs killed by road accidents, or trapped and found dead on farms in different parts of Mazandaran province (Iran), were transferred to the laboratory. After dissection, parasite samples collected from the lung were placed into 70% alcohol. After clarification with lactophenol and subsequent staining, the nematodes were identified as C. striatum according to previously published guidelines. For histopathologic examination, lung samples were collected. The tissues were fixed and following routine processing, sections were stained with hematoxylin and eosin. Microscopic diagnoses included hyperemia, eosinophilic bronchointerstitial pneumonia, thickening of the interstitium, and eosinophilic microabscesses in bronchial airways. Eosinophilic pneumonia was characterized by eosinophil and other mononuclear leukocyte infiltration within the lung interstitium. Crenosoma striatum can lead to mortality in hedgehogs.
Morphometrics of foramen magnum in African four-toed hedgehog (Atelerix albiventris).
Girgiri, I; Olopade, J O; Yahaya, A
The purpose of this study was to examine the morphometry of the foramen magnum of African four-toed hedgehog (Atelerix albiventris) in Maiduguri. Fourteen hedgehog skulls (7 male and 7 female each) were used for this study. The overall mean value of foramen magnum height and width were 0.51 ± 0.05 cm and 0.64 ± 0.04 cm while occipital condylar and interparacondylar widths were 1.00 ± 0.12 cm and 1.62 ± 0.07 cm, respectively. There was no significant difference between the two sexes. The foramen magnum index was 83.4 ± 5.51 cm in males and was significantly higher than 76.3 ± 6.37 cm observed in females. The presences of dorsal notches (occipital dysplasia) were observed, that were of three distinct types. It is envisaged, that the study will provide a valuable database on the anatomy of foramen magnum of hedgehogs in Nigeria for morphological, neurological, zooarchaeological, and comparative anatomical studies.
Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition
Tang, Yujie; Gholamin, Sharareh; Schubert, Simone; Willardson, Minde I.; Lee, Alex; Bandopadhayay, Pratiti; Bergthold, Guillame; Masoud, Sabran; Nguyen, Brian; Vue, Nujsaubnusi; Balansay, Brianna; Yu, Furong; Oh, Sekyung; Woo, Pamelyn; Chen, Spenser; Ponnuswami, Anitha; Monje, Michelle; Atwood, Scott X.; Whitson, Ramon J.; Mitra, Siddhartha; Cheshier, Samuel H.; Qi, Jun; Beroukhim, Rameen; Tang, Jean Y.; Wechsler-Reya, Rob; Oro, Anthony E.; Link, Brian A.; Bradner, James E.; Cho, Yoon-Jae
2014-01-01
Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. PMID:24973920
Gál, Janos; Landauer, Krisztina; Palade, Elena Alina; Ivaskevics, Katalin; Rusvai, Miklós; Demeter, Zoltán
2009-03-01
The authors describe a squamous cell carcinoma arising from the ear canal of a Long-eared Hedgehog (Hemiechinus auritus). No metastasis could be identified elsewhere in the animal. Due to the irritation caused by the tumorous proliferation the animal constantly scratched the affected area, which led to secondary bacterial infection of the middle ear accompanied by the stagnation of an increased volume of local secretions. Using routine haematoxylin and eosin and immunohistochemical staining techniques, the tumour was identified as a squamous cell carcinoma. This work constitutes the first description of such a tumour in a Long-eared Hedgehog.
The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer
Li, Yiwei; Wang, Zhiwei; Kong, Dejuan
2010-01-01
Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3′-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies. PMID:20711635
Gravitational black-holes-hedgehogs and two degenerate vacua of the Universe
NASA Astrophysics Data System (ADS)
Sidharth, B. G.; Das, C. R.; Laperashvili, L. V.; Nielsen, H. B.
In the present paper, assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the existence of the two degenerate vacua of the Universe: the first Electroweak (EW) vacuum at v1 ≈ 246GeV — “true vacuum”, and the second Planck scale “false vacuum” at v2 ˜ 1018 GeV. In these vacua, we investigated different topological defects. The main aim of this paper is an investigation of the black-hole-hedgehogs configurations as defects of the false vacuum. In the framework of the f(R) gravity, described by the Gravi-Weak unification model, we considered a black-hole solution, which corresponds to a “hedgehog” — global monopole, that has been “swallowed” by the black-hole with mass core MBH ˜ 1018GeV and radius δ ˜ 10‑21GeV‑1. Considering the results of the hedgehog lattice theory in the framework of the SU(2) Yang-Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehogs confinement phase (Tc ˜ 1018GeV). This result gave us the possibility to conclude that the SM shows a new physics with contributions of the SU(2)-triplet Higgs bosons at the scale ˜10TeV. Theory predicts the stability of the EW-vacuum and the accuracy of the MPP.
Integument Mycobiota of Wild European Hedgehogs (Erinaceus europaeus) from Catalonia, Spain.
Molina-López, R A; Adelantado, C; Arosemena, E L; Obón, E; Darwich, L; Calvo, M A
2012-01-01
There are some reports about the risk of manipulating wild hedgehogs since they can be reservoirs of potential zoonotic agents like dermatophytes. The aim of this study was to describe the integument mycobiota, with special attention to dermatophytes of wild European hedgehogs. Samples from spines and fur were cultured separately in Sabouraud dextrose agar (SDA) with antibiotic and dermatophyte test medium (DTM) plates. Nineteen different fungal genera were isolated from 91 cultures of 102 hedgehogs. The most prevalent genera were Cladosporium (79.1%), Penicillium (74.7%), Alternaria (64.8%), and Rhizopus (63.7%). A lower prevalence of Aspergillus (P = 0,035; χ (2) = 8,633) and Arthrinium (P = 0,043; χ (2) = 8,173) was isolated during the spring time and higher frequencies of Fusarium (P = 0,015; χ (2) = 10,533) during the autumn. The prevalence of Acremonium was significantly higher in young animals (70%, 26/37) than in adults (30%, 11/37) (P = 0,019; χ (2) = 5,915). Moreover, the majority of the saprophytic species that grew at the SDA culture were also detected at the DTM. Finally, no cases of ringworm were diagnosed and no dermatophytes spp. were isolated. Concluding, this study provides the first description of fungal mycobiota of the integument of wild European hedgehogs in Spain, showing a large number of saprophytic species and the absence of dermatophytes.
Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.
Caminero, A A; Machín, C; Sanchez-Toscano, F
1992-02-01
A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences.
Integument Mycobiota of Wild European Hedgehogs (Erinaceus europaeus) from Catalonia, Spain
Molina-López, R. A.; Adelantado, C.; Arosemena, E. L.; Obón, E.; Darwich, L.; Calvo, M. A.
2012-01-01
There are some reports about the risk of manipulating wild hedgehogs since they can be reservoirs of potential zoonotic agents like dermatophytes. The aim of this study was to describe the integument mycobiota, with special attention to dermatophytes of wild European hedgehogs. Samples from spines and fur were cultured separately in Sabouraud dextrose agar (SDA) with antibiotic and dermatophyte test medium (DTM) plates. Nineteen different fungal genera were isolated from 91 cultures of 102 hedgehogs. The most prevalent genera were Cladosporium (79.1%), Penicillium (74.7%), Alternaria (64.8%), and Rhizopus (63.7%). A lower prevalence of Aspergillus (P = 0,035; χ 2 = 8,633) and Arthrinium (P = 0,043; χ 2 = 8,173) was isolated during the spring time and higher frequencies of Fusarium (P = 0,015; χ 2 = 10,533) during the autumn. The prevalence of Acremonium was significantly higher in young animals (70%, 26/37) than in adults (30%, 11/37) (P = 0,019; χ 2 = 5,915). Moreover, the majority of the saprophytic species that grew at the SDA culture were also detected at the DTM. Finally, no cases of ringworm were diagnosed and no dermatophytes spp. were isolated. Concluding, this study provides the first description of fungal mycobiota of the integument of wild European hedgehogs in Spain, showing a large number of saprophytic species and the absence of dermatophytes. PMID:23762757
USDA-ARS?s Scientific Manuscript database
Cyclopamine was isolated from Veratrum californicum and identified as the teratogen responsible for severe craniofacial birth defects including cyclops in the offspring of sheep grazing on mountain ranges in central Idaho. More recently, cyclopamine was found to inhibit the hedgehog (Hh) signaling ...
Quentin, J C; Seguignes, M
1979-01-01
The Gongylonematid Nematode parasite of the Tunisian hedge-hog has been identified as Gongylonema mucronatum Seurat, 1916. The infective larva has been obtained from Locusta migratoria as intermediate host. The larval characters of this Gongylonema link it to the species G. pulchrum.
Physiological Challenges of Bone Repair
2012-12-01
expression, in general, followed the same pattern in both groups, but significantly, lower levels of mRNA for Indian Hedgehog (ihh) and BMP-2 were detected in...the fracture calluses of the older rats. Indian Hedgehog is thought to be involved in chondrogenesis and bone repair, whereas BMP-2 stimulates bone
Endometrial polyps in 2 African pygmy hedgehogs
2005-01-01
Abstract Reports of spontaneously occurring endometrial polyps in animals are rare and have only involved a few species. This report is intended to advise veterinarians that older African pygmy hedgehogs may develop endometrial polyps and that these lesions can be a cause of bloody vaginal discharge, sometimes interpreted as hematuria. PMID:16048013
Cui, Xian-Wei; Xiao, Wen; Ji, Chen-Bo; Tian, Ai-Ying; Zhang, Jie; Zhang, Shuang-Quan
2012-05-01
Here we describe the identification of the hedgehog Erinaceus europaeus homologue of a proliferation-inducing ligand (APRIL) of the TNF family (designated heAPRIL). Hedgehog APRIL contains two cysteine residues (Cys(196) and Cys(211)), a furin protease cleavage site and a conserved putative N-glycosylation site (Asn(124)). Real-time quantitative PCR (qPCR) analysis revealed that heAPRIL could be detected in various tissues. MTT assays and flow cytometric analysis revealed that Nus-hesAPRIL and hesAPRIL could promote the survival/proliferation of splenic B cells. Laser scanning confocal microscopy analysis showed GFP-hesAPRIL could successfully bind to the APRIL receptors of lymphocytes.
Human germline hedgehog pathway mutations predispose to fatty liver.
Guillen-Sacoto, Maria J; Martinez, Ariel F; Abe, Yu; Kruszka, Paul; Weiss, Karin; Everson, Joshua L; Bataller, Ramon; Kleiner, David E; Ward, Jerrold M; Sulik, Kathleen K; Lipinski, Robert J; Solomon, Benjamin D; Muenke, Maximilian
2017-10-01
Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2 +/- ) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2 +/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2 +/- mice exposed to a high-fat diet. Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous buildup (scar tissue) and inflammation of the liver tissue. For the first time patients with holoprosencephaly, a disease caused by SHH signaling mutations, are shown to have increased liver steatosis independent of obesity. This observation was recapitulated in a mouse model of attenuated SHH signaling that also showed increased liver steatosis but with decreased fibrosis and inflammation. While SHH inhibition is associated with a good NAFLD prognosis, this increase in liver fat accumulation in the context of SHH signaling inhibition must be studied prospectively to evaluate its long-term effects, especially in individuals with Western-type dietary habits. Published by Elsevier B.V.
Learning to Play: A "Hedgehog Concept" for Physical Education
ERIC Educational Resources Information Center
Johnson, Tyler
2014-01-01
What is physical education and why does it exist? Despite its relatively long and storied history, consensus about the main purpose of physical education remains minimal. This article explores three questions, developed by Jim Collins in his best-selling book Good to Great, to help organizations identify a hedgehog concept, or primary reason for…
Probing HER2-PUMA and EGFR-PUMA Crosstalks in Aggressive Breast Cancer
2012-09-01
phosphorylation on PUMA properties. REPORTABLE OUTCOMES Peer-reviewed publications: Carpenter, RL. and Lo, H.-W. Hedgehog Pathway and GLI1 Isoforms in...Carpenter R, Lo HW. Hedgehog Pathway and GLI1 Isoforms in Human Cancer. Discovery Medicine 13. 2012. 7. Han W, Lo H-W. Landscape of EGFR signaling
Yap1 as a New Therapeutic Target in Neurofibromatosis Type 2
2013-09-01
Hedgehog and Notch has particularly contributed to the understanding and treatment of cancer1. A more recently discovered signalling cascade is the...Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8, 97–106 (2011). 2. Zhao, B., Lei, Q. Y. & Guan, K. L. The Hippo-YAP pathway: new
Spinal osteosarcoma in a hedgehog with pedal self-mutilation.
Rhody, Jeffrey L; Schiller, Chris A
2006-09-01
An African pygmy hedgehog (Atelerix albiventris) was diagnosed with osteosarcoma of vertebral origin with compression of the spinal cord and spinal nerves. The only presenting sign was a self-mutilation of rear feet. Additional diagnoses included a well-differentiated splenic hemangiosarcoma, an undifferentiated sarcoma of the ascending colon, and membranoproliferative glomerulonephritis.
Helmer, P J
2000-06-01
A 4-year-old African hedgehog (Atelerix albiventris) was examined for weight loss and hematochezia, and was subsequently diagnosed with gastrointestinal lymphosarcoma. Abnormal hematological findings included marked leukocytosis with lymphocytosis and atypical circulating lymphocytes. This report represents the first documentation of hemogram abnormalities associated with gastrointestinal lymphosarcoma in this species.
Malignant mast cell tumor in an African hedgehog (Atelerix albiventris).
Raymond, J T; White, M R; Janovitz, E B
1997-01-01
In November 1995, a malignant mast cell tumor (mastocytoma) was diagnosed in an adult African hedgehog (Atelerix albiventris) from a zoological park (West Lafayette, Indiana, USA). The primary mast cell tumor presented as a firm subcutaneous mass along the ventrum of the neck. Metastasis to the right submandibular lymph node occurred.
Choi, Kyung-Suk; Harfe, Brian D.
2011-01-01
The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a “wrapper” around the notochord to constrain these cells along the vertebral column. PMID:21606373
Choi, Kyung-Suk; Harfe, Brian D
2011-06-07
The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a "wrapper" around the notochord to constrain these cells along the vertebral column.
Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery
NASA Astrophysics Data System (ADS)
Wang, Fei; Yang, Jun; NuLi, Yanna; Wang, Jiulin
2011-05-01
Hedgehog-like LiCoPO4 with hierarchical microstructures is first synthesized via a simple solvothermal process in water-benzyl alcohol mixed solvent at 200 °C. Morphology and crystalline structure of the samples are characterized by scanning electron microscope, transmission electron microscopy and X-ray diffraction. The hedgehog-like LiCoPO4 microstructures in the size of about 5-8 μm are composed of large numbers of nanorods in diameter of ca. 40 nm and length of ca. 1 μm, which are coated with a carbon layer of ca. 8 nm in thickness by in situ carbonization of glucose during the solvothermal reaction. As a 5 V positive electrode material for rechargeable lithium battery, the hedgehog-like LiCoPO4 delivers an initial discharge capacity of 136 mAh g-1 at 0.1 C rate and retains its 91% after 50 cycles, showing much better electrochemical performances than sub-micrometer LiCoPO4 synthesized by conventional high-temperature solid-state reaction.
Sonic hedgehog signaling in kidney fibrosis: a master communicator.
Zhou, Dong; Tan, Roderick J; Liu, Youhua
2016-09-01
The hedgehog signaling cascade is an evolutionarily conserved pathway that regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis. As the best studied member of three hedgehog ligands, sonic hedgehog (Shh) is known to be associated with kidney development and tissue repair after various insults. Recent studies uncover an intrinsic link between dysregulated Shh signaling and renal fibrogenesis. In various types of chronic kidney disease (CKD), Shh is upregulated specifically in renal tubular epithelium but targets interstitial fibroblasts, thereby mediating a dynamic epithelial- mesenchymal communication (EMC). Tubule-derived Shh acts as a growth factor for interstitial fibroblasts and controls a hierarchy of fibrosis-related genes, which lead to the excessive deposition of extracellular matrix in renal interstitium. In this review, we recapitulate the principle of Shh signaling, its activation and regulation in a variety of kidney diseases. We also discuss the potential mechanisms by which Shh promotes renal fibrosis and assess the efficacy of blocking this signaling in preclinical settings. Continuing these lines of investigations will provide novel opportunities for designing effective therapies to improve CKD prognosis in patients.
Sonic hedgehog signaling in kidney fibrosis: a master communicator
Zhou, Dong; Tan, Roderick J.; Liu, Youhua
2017-01-01
The hedgehog signaling cascade is an evolutionarily conserved pathway that regulates multiple aspects of embryonic development and plays a decisive role in tissue homeostasis. As the best studied member of three hedgehog ligands, sonic hedgehog (Shh) is known to be associated with kidney development and tissue repair after various insults. Recent studies uncover an intrinsic link between dysregulated Shh signaling and renal fibrogenesis. In various types of chronic kidney disease (CKD), Shh is upregulated specifically in renal tubular epithelium but targets interstitial fibroblasts, thereby mediating a dynamic epithelial-mesenchymal communication (EMC). Tubule-derived Shh acts as a growth factor for interstitial fibroblasts and controls a hierarchy of fibrosis-related genes, which lead to the excessive deposition of extracellular matrix in renal interstitium. In this review, we recapitulate the principle of Shh signaling, its activation and regulation in a variety of kidney diseases. We also discuss the potential mechanisms by which Shh promotes renal fibrosis and assess the efficacy of blocking this signaling in preclinical settings. Continuing these lines of investigations will provide novel opportunities for designing effective therapies to improve CKD prognosis in patients. PMID:27333788
Katagiri, Tomohiro; Kobayashi, Minoru; Yoshimura, Michio; Morinibu, Akiyo; Itasaka, Satoshi; Hiraoka, Masahiro; Harada, Hiroshi
2018-01-01
Hypoxic and stroma-rich microenvironments, characteristic features of pancreatic cancers, are strongly associated with a poor prognosis. However, whether and how hypoxia increases stromal compartments remain largely unknown. Here, we investigated the potential importance of a master regulator of the cellular adaptive response to hypoxia, hypoxia-inducible factor-1 (HIF-1), in the formation of stroma-rich microenvironments of pancreatic tumors. We found that pancreatic cancer cells secreted more Sonic hedgehog protein (SHH) under hypoxia by upregulating its expression and efficiency of secretion in a HIF-1-dependent manner. Recombinant SHH, which was confirmed to activate the hedgehog signaling pathway, accelerated the growth of fibroblasts in a dose-dependent manner. The SHH protein secreted from pancreatic cancer cells under hypoxic conditions promoted the growth of fibroblasts by stimulating their Sonic hedgehog signaling pathway. These results suggest that the increased secretion of SHH by HIF-1 is potentially responsible for the formation of detrimental and stroma-rich microenvironments in pancreatic cancers, therefore providing a rational basis to target it in cancer therapy. PMID:29535824
Cytoarchitectonic and quantitative Golgi study of the hedgehog supraoptic nucleus.
Caminero, A A; Machín, C; Sanchez-Toscano, F
1992-01-01
A cytoarchitectural study was made of the supraoptic nucleus (SON) of the hedgehog with special attention to the quantitative comparison of its main neuronal types. The main purposes were (1) to relate the characteristics of this nucleus in the hedgehog (a primitive mammalian insectivorous brain) with those in the SONs of more evolutionarily advanced species; (2) to identify quantitatively the dendritic fields of the main neuronal types in the hedgehog SON and to study their synaptic connectivity. From a descriptive standpoint, 3 neuronal types were found with respect to the number of dendritic stems arising from the neuronal soma: bipolar neurons (48%), multipolar neurons (45.5%) and monopolar neurons (6.5%). Within the multipolar type 2 subtypes could be distinguished, taking into account the number of dendritic spines: (a) with few spines (93%) and (b) very spiny (7%). These results indicate that the hedgehog SON is similar to that in other species except for the very spiny neurons, the significance of which is discussed. In order to characterise the main types more satisfactorily (bipolar and multipolars with few spines) we undertook a quantitative Golgi study of their dendritic fields. Although the patterns of the dendritic field are similar in both neuronal types, the differences in the location of their connectivity can reflect functional changes and alterations in relation to the synaptic afferences. Images Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:1452481
Lin, Neng-Yu; Distler, Alfiya; Beyer, Christian; Philipi-Schöbinger, Ariella; Breda, Silvia; Dees, Clara; Stock, Michael; Tomcik, Michal; Niemeier, Andreas; Dell'Accio, Francesco; Gelse, Kolja; Mattson, Mark P; Schett, Georg; Distler, Jörg Hw
2016-11-01
Notch ligands and receptors have recently been shown to be differentially expressed in osteoarthritis (OA). We aim to further elucidate the functional role of Notch signalling in OA using Notch1 antisense transgenic (Notch1 AS) mice. Notch and hedgehog signalling were analysed by real-time PCR and immunohistochemistry. Notch-1 AS mice were employed as a model of impaired Notch signalling in vivo. Experimental OA was induced by destabilisation of the medial meniscus (DMM). The extent of cartilage destruction and osteophyte formation was analysed by safranin-O staining with subsequent assessment of the Osteoarthritis Research Society International (OARSI) and Mankin scores and µCT scanning. Collagen X staining was used as a marker of chondrocyte hypertrophy. The role of hairy/enhancer of split 1 (Hes-1) was investigated with knockdown and overexpression experiments. Notch signalling was activated in human and murine OA with increased expression of Jagged1, Notch-1, accumulation of the Notch intracellular domain 1 and increased transcription of Hes-1. Notch1 AS mice showed exacerbated OA with increases in OARSI scores, osteophyte formation, increased subchondral bone plate density, collagen X and osteocalcin expression and elevated levels of Epas1 and ADAM-TS5 mRNA. Inhibition of the Notch pathway induced activation of hedgehog signalling with induction of Gli-1 and Gli-2 and increased transcription of hedgehog target genes. The regulatory effects of Notch signalling on Gli-expression were mimicked by Hes-1. Inhibition of Notch signalling activates hedgehog signalling, enhances chondrocyte hypertrophy and exacerbates experimental OA including osteophyte formation. These data suggest that the activation of the Notch pathway may limit aberrant hedgehog signalling in OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Preliminary report on the reproductive biology of the threatened Chisos Mountain hedgehog cactus
Bonnie B. Amos; Christos Vassiliou
2001-01-01
The Chisos Mountain hedgehog cactus (Echinocereus chisoensis, Cactaceae) is a narrow endemic restricted to an approximately 100 square mile area in Big Bend National Park, Texas. It was listed as threatened in 1987 as Echinocereus chisoensis var. chisoensis. An investigation of the reproductive biology and pollination ecology conducted in 1999 and 2000 revealed the...
Therapeutic Roles of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells
2013-10-01
KW, Suri P, Wicha MS. Hedgehog signaling and Bmi-1 regulate self- renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063-71...ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS. Hedgehog signaling and bmi-1 regulate self-renewal of normal and malignant human mammary stem cells
Cutaneous squamous cell carcinoma in an African pygmy hedgehog (Atelerix albiventris).
Couture, Émilie L; Langlois, Isabelle; Santamaria-Bouvier, Ariane; Benoit-Biancamano, Marie-Odile
2015-12-01
A cutaneous mass was surgically excised in a 4-year-old African pygmy hedgehog (Atelerix albiventris). A squamous cell carcinoma was diagnosed based on histopathological examination and local recurrence following excision is strongly suspected. To the authors' knowledge, this is the first well-documented report of a cutaneous squamous cell carcinoma in this species.
Preclinical Studies of Induced Pluripotent Stem Cell-Derived Astrocyte Transplantation in ALS
2013-10-01
followed by caudalization and ventralization using retinoic acid and sonic hedgehog , respectively (Fig. 1A). By day 15 of differentiation, neural...μg/ml, Sigma-Aldrich), were added. At day 7, rhBDNF (10 ng/ml, R&D) and sonic hedgehog (SHH-C, 200 ng/ml, Invitrogen) were added. At day 10
Dissecting the Role of Hedgehog Pathway in Murine Gonadal Development
ERIC Educational Resources Information Center
Barsoum, Ivraym Boshra
2009-01-01
Hedgehog (Hh) signaling pathway is one of the universal pathways involved in animal development. This dissertation focuses on Hh role in the mammalian gonad development, which is a central part of mammalian sexual development and identity. The central dogma of mammalian sex development is that genetic sex determines the gonadal sex, which in turn…
Helmer, P J
2000-01-01
A 4-year-old African hedgehog (Atelerix albiventris) was examined for weight loss and hematochezia, and was subsequently diagnosed with gastrointestinal lymphosarcoma. Abnormal hematological findings included marked leukocytosis with lymphocytosis and atypical circulating lymphocytes. This report represents the first documentation of hemogram abnormalities associated with gastrointestinal lymphosarcoma in this species. PMID:10857034
Cutaneous squamous cell carcinoma in an African pygmy hedgehog (Atelerix albiventris)
Couture, Émilie L.; Langlois, Isabelle; Santamaria-Bouvier, Ariane; Benoit-Biancamano, Marie-Odile
2015-01-01
A cutaneous mass was surgically excised in a 4-year-old African pygmy hedgehog (Atelerix albiventris). A squamous cell carcinoma was diagnosed based on histopathological examination and local recurrence following excision is strongly suspected. To the authors’ knowledge, this is the first well-documented report of a cutaneous squamous cell carcinoma in this species. PMID:26663924
WHEN AND WHY DO HEDGEHOGS AND FOXES DIFFER?
Keil, Frank C.
2011-01-01
Philip E. Tetlock’s finding that “hedgehog” experts (those with one big theory) are worse predictors than “foxes” (those with multiple, less comprehensive theories) offers fertile ground for future research. Are experts as likely to exhibit hedgehog- or fox-like tendencies in areas that call for explanatory, diagnostic, and skill-based expertise—as they did when Tetlock called on experts to make predictions? Do particular domains of expertise curtail or encourage different styles of expertise? Can we trace these different styles to childhood? Finally, can we nudge hedgehogs to be more like foxes? Current research can only grope at the answers to these questions, but they are essential to gauging the health of expert political judgment. PMID:21698070
Fatal herpes simplex infection in a pygmy African hedgehog (Atelerix albiventris).
Allison, N; Chang, T C; Steele, K E; Hilliard, J K
2002-01-01
An adult pygmy African hedgehog developed acute posterior paresis attributed to a prolapsed intervertebral disc diagnosed by C-T scan. Corticosteroid therapy resulted in prompt resolution of the ataxia, but 2 weeks later the animal became anorexic and died. Macroscopically, the liver was stippled with punctate off-white foci which were confirmed microscopically to be foci of necrosis. Numerous hepatocytes contained intranuclear inclusions and syncytial cell formation was also present. A herpes virus was isolated and identified by fluorescent antibody and polymerase chain reaction studies as herpesvirus simplex type 1. To our knowledge, this is the first report of herpes infection in the African hedgehog and the first time herpes simplex has been identified as a cause of disease in insectivores.
Thyroid c-cell carcinoma in an African pygmy hedgehog (Atelerix albiventris).
Miller, Debra L; Styer, Eloise L; Stobaeus, Janeen K; Norton, Terry M
2002-12-01
A 3-yr-old African pygmy hedgehog (Atelerix albiventris) was submitted with dysphagia, weight loss, and tetraparesis. A palpable mass was found on the ventral neck. Histologic examination revealed replacement of the thyroid gland by a highly cellular, expansile, and infiltrative mass composed of lobules of polygonal cells separated by fine fibrovascular septa. Examination of ultrathin sections revealed tumor cells with few to many dense-core neuroendocrine granules, approximately 100-200 nm in diameter, and stromal amyloid. Immunohistochemical stains were positive for neuron-specific enolase. Only rare cells had positive immunohistochemical staining for calcitonin. Findings are consistent with a neuroendocrine tumor of C-cell origin. This is the first report of a C-cell carcinoma in a hedgehog.
Gibert, Jean-Michel; Karch, François; Schlötterer, Christian
2011-01-01
The phenotype produced by a given genotype can be strongly modulated by environmental conditions. Therefore, natural populations continuously adapt to environment heterogeneity to maintain optimal phenotypes. It generates a high genetic variation in environment-sensitive gene networks, which is thought to facilitate evolution. Here we analyze the chromatin regulator crm, identified as a candidate for adaptation of Drosophila melanogaster to northern latitudes. We show that crm contributes to environmental canalization. In particular, crm modulates the effect of temperature on a genomic region encoding Hedgehog and Wingless signaling effectors. crm affects this region through both constitutive heterochromatin and Polycomb silencing. Furthermore, we show that crm European and African natural variants shift the reaction norms of plastic traits. Interestingly, traits modulated by crm natural variants can differ markedly between Drosophila species, suggesting that temperature adaptation facilitates their evolution. PMID:21283785
Ginns, E I; Galdzicka, M; Elston, R C; Song, Y E; Paul, S M; Egeland, J A
2015-10-01
Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders.
Perrot, Carole Y; Javelaud, Delphine; Mauviel, Alain
2013-02-01
Recent advances in the field of cancer therapeutics come from the development of drugs that specifically recognize validated oncogenic or pro-metastatic targets. The latter may be mutated proteins with altered function, such as kinases that become constitutively active, or critical components of growth factor signaling pathways, whose deregulation leads to aberrant malignant cell proliferation and dissemination to metastatic sites. We herein focus on the description of the overlapping activities of two important developmental pathways often exacerbated in cancer, namely Transforming Growth Factor-β (TGF-β) and Hedgehog (HH) signaling, with a special emphasis on the unifying oncogenic role played by GLI1/2 transcription factors. The latter are the main effectors of the canonical HH pathway, yet are direct target genes of TGF-β/SMAD signal transduction. While tumor-suppressor in healthy and pre-malignant tissues, TGF-β is often expressed at high levels in tumors and contributes to tumor growth, escape from immune surveillance, invasion and metastasis. HH signaling regulates cell proliferation, differentiation and apoptosis, and aberrant HH signaling is found in a variety of cancers. We discuss the current knowledge on HH and TGF-β implication in cancer including cancer stem cell biology, as well as the current state, both successes and failures, of targeted therapeutics aimed at blocking either of these pathways in the pre-clinical and clinical settings. Copyright © 2012 Elsevier Inc. All rights reserved.
Chen, Sheng-Cai; Huang, Ming; He, Quan-Wei; Zhang, Yan; Opoku, Elvis Nana; Yang, Hang; Jin, Hui-Juan; Xia, Yuan-Peng; Hu, Bo
2017-06-03
The Sonic hedgehog (Shh) signaling pathway is recapitulated in response to ischemic injury. Here, we investigated the clinical implications of Shh protein in the ischemic stroke and explored the underlying mechanism. Intracerebroventricular injection of Shh, Cyclopamine, or anti-vascular endothelial growth factor (VEGF) was performed immediately after permanent middle cerebral artery occlusion (pMCAO) surgery and lasted for 7days (d). Phosphate-buffered saline (PBS) was used as control. Neurological deficits and infarct volume were examined 7d after pMCAO. Microvascular density with fluorescein-iso-thiocyanate (FITC) assay and double staining with CD31 and Ki-67 was measured at 7d. To observe in vitro angiogenesis, rat brain microvascular endothelial cells (RBMECs) were incubated under oxygen glucose deprivation (OGD) for 6h (h) and treated with Shh/anti-VEGF. We found that (1) Shh improved neurological scores and reduced infarct volume, which was blocked by Cyclopamine, (2) Shh improved the microvascular density and promoted angiogenesis and neuron survival in the ischemic boundary zone, (3) Shh enhanced VEGF expression and VEGF antibody could reverse angiogenic and protective effect of Shh in vivo and in vitro. These data demonstrate that the administration of Shh protein could protect brain from ischemic injury, in part by promoting angiogenic repair. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Rudolf, Katrin; Umetsu, Daiki; Aliee, Maryam; Sui, Liyuan; Jülicher, Frank; Dahmann, Christian
2015-11-15
Tissue organization requires the interplay between biochemical signaling and cellular force generation. The formation of straight boundaries separating cells with different fates into compartments is important for growth and patterning during tissue development. In the developing Drosophila wing disc, maintenance of the straight anteroposterior (AP) compartment boundary involves a local increase in mechanical tension at cell bonds along the boundary. The biochemical signals that regulate mechanical tension along the AP boundary, however, remain unknown. Here, we show that a local difference in Hedgehog signal transduction activity between anterior and posterior cells is necessary and sufficient to increase mechanical tension along the AP boundary. This difference in Hedgehog signal transduction is also required to bias cell rearrangements during cell intercalations to keep the characteristic straight shape of the AP boundary. Moreover, severing cell bonds along the AP boundary does not reduce tension at neighboring bonds, implying that active mechanical tension is upregulated, cell bond by cell bond. Finally, differences in the expression of the homeodomain-containing protein Engrailed also contribute to the straight shape of the AP boundary, independently of Hedgehog signal transduction and without modulating cell bond tension. Our data reveal a novel link between local differences in Hedgehog signal transduction and a local increase in active mechanical tension of cell bonds that biases junctional rearrangements. The large-scale shape of the AP boundary thus emerges from biochemical signals inducing patterns of active tension on cell bonds. © 2015. Published by The Company of Biologists Ltd.
Pereira, Joana; Johnson, Warren E.; O’Brien, Stephen J.; Jarvis, Erich D.; Zhang, Guojie; Gilbert, M. Thomas P.; Vasconcelos, Vitor; Antunes, Agostinho
2014-01-01
The Hedgehog (Hh) gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog – Shh; Indian hedgehog – Ihh; and Desert hedgehog – Dhh), each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots. PMID:25549322
The ADAMTS5 Metzincin Regulates Zebrafish Somite Differentiation
Dancevic, Carolyn M.; Gibert, Yann; Smith, Adam D.; Ward, Alister C.; McCulloch, Daniel R.
2018-01-01
The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated. PMID:29518972
The Role of the Sonic Hedgehog Pathway for Prostate Cancer Progression
2005-02-01
analyses. Sumin Chi contributed to wers GY, Qi YP, Gysin S, Fernandez-Del Castillo C, Yajnik V. AntoniuB, McMahon M, Warshaw AL Hebrok M: Hedgehog is an...role for p27kiP, gene dosage • 15. Romer JT, Kimura H, Magdaleno S et at: 391(6662), 90-92 (1998). in a mouse model of prostate carcinogenesis
Bering, Luis; Paulussen, Felix M; Antonchick, Andrey P
2018-04-06
The nitrosonium ion-catalyzed dehydrogenative coupling of heteroarenes under mild reaction conditions is reported. The developed method utilizes ambient molecular oxygen as a terminal oxidant, and only water is produced as byproduct. Dehydrogenative coupling of heteroarenes translated into the rapid discovery of novel hedgehog signaling pathway inhibitors, emphasizing the importance of the developed methodology.
Targeting the Hedgehog pathway in cancer: can the spines be smoothened?
Ailles, Laurie; Siu, Lillian L
2011-04-15
Aberrant Hedgehog (Hh) pathway signaling has been suggested to play a role in the development of multiple solid tumors and hematologic malignancies. GDC-0449 is a novel first-in-human, first-in-class smoothened (SMO) inhibitor, which has completed its phase I evaluation and achieved proof of concept in tumors with Hh pathway mutations. ©2011 AACR.
Dynamic impact testing of hedgehog spines using a dual-arm crash pendulum.
Swift, Nathan B; Hsiung, Bor-Kai; Kennedy, Emily B; Tan, Kwek-Tze
2016-08-01
Hedgehog spines are a potential model for impact resistant structures and material. While previous studies have examined static mechanical properties of individual spines, actual collision tests on spines analogous to those observed in the wild have not previously been investigated. In this study, samples of roughly 130 keratin spines were mounted vertically in thin substrates to mimic the natural spine layout on hedgehogs. A weighted crash pendulum was employed to induce and measure the effects of repeated collisions against samples, with the aim to evaluate the influence of various parameters including humidity effect, impact energy, and substrate hardness. Results reveal that softer samples-due to humidity conditioning and/or substrate material used-exhibit greater durability over multiple impacts, while the more rigid samples exhibit greater energy absorption performance at the expense of durability. This trend is exaggerated during high-energy collisions. Comparison of the results to baseline tests with industry standard impact absorbing foam, wherein the spines exhibit similar energy absorption, verifies the dynamic impact absorption capabilities of hedgehog spines and their candidacy as a structural model for engineered impact technology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Matsumoto, Kenichi; Shimo, Tsuyoshi; Kurio, Naito; Okui, Tatsuo; Ibaragi, Soichiro; Kunisada, Yuki; Obata, Kyoichi; Masui, Masanori; Pai, Pang; Horikiri, Yuu; Yamanaka, Nobuyuki; Takigawa, Masaharu; Sasaki, Akira
2018-06-01
Low-intensity pulsed ultrasound (LIPUS) has been used as an adjunct to fracture healing therapies, but the mechanisms underlying its action are not known. We reported that sonic hedgehog (SHH) signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture. Mechanical stimulation is a crucial factor in bone remodeling, and it is related to the primary cilia as a sensor of hedgehog signaling. Here we observed that LIPUS promoted callus formation in accord with Gli2-positive cells after 14 days at the mouse femur fractured site compared with a control group. An immunofluorescence analysis showed that the numbers of primary cilia and cilia/osterix double-positive osteoblasts were increased at the fracture site by LIPUS. LIPUS stimulated not only the number and the length of primary cilia, but also the levels of ciliated protein, Ift88 mRNA, and SHH, Gli1, and Gli2 in MC3T3-E1 cells. Further experiments revealed that LIPUS stimulated osteogenic differentiation in the presence of smoothened agonist (SAG) treatment. These results indicate that LIPUS stimulates osteogenic differentiation and the maturation of osteoblasts by a primary cilium-mediated activation of hedgehog signaling. © 2017 Wiley Periodicals, Inc.
Regulating mechanical tension at compartment boundaries in Drosophila.
Michel, Marcus; Dahmann, Christian
2016-10-01
During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.
Investigational Notch and Hedgehog Inhibitors – Therapies for Cardiovascular disease
Redmond, EM; Guha, S; Walls, D; Cahill, PA
2011-01-01
Importance to the field During the past decade a variety of Notch and Hedgehog pathway inhibitors have been developed for the treatment of several cancers. An emerging paradigm suggests that these same gene regulatory networks are often recapitulated in the context of cardiovascular disease and may now offer an attractive target for therapeutic intervention. Areas Covered This article briefly reviews the profile of Notch and Hedgehog inhibitors that have reached the pre-clinic and clinic for cancer treatment and discusses the clinical issues surrounding targeted use of these inhibitors in the treatment of vascular disorders. Expert Opinion Pre-clinical and clinical data using pan-Notch inhibitors (γ-secretase inhibitors) and selective antibodies to preferentially target notch receptors and ligands has proven successful but concerns remain over normal organ homeostasis and significant pathology in multiple organs. In contrast, the Hedgehog based drug pipeline is rich with more than a dozen Smoothened (SMO) inhibitors at various stages of development. Overall, refined strategies will be necessary to harness these pathways safely as a powerful tool to disrupt angiogenesis and vascular proliferative phenomena without causing prohibitive side effects already seen with cancer models and patients. PMID:22007748
OSTEOSARCOMA IN AFRICAN HEDGEHOGS (ATELERIX ALBIVENTRIS): FIVE CASES.
Reyes-Matute, Alonso; Méndez-Bernal, Adriana; Ramos-Garduño, Liliana-Aurora
2017-06-01
Osteosarcomas are unusual neoplasms in African hedgehogs ( Atelerix albiventris ) and have been reported in extraskeletal and skeletal locations, including mandible, ribs, and vertebra. Five hedgehogs with osteosarcoma submitted to the Pathology Department at Facultad de Medicina Veterinaria y Zootecnia, National Autonomous University of Mexico are reported. In two cases, the neoplasm arose from the skull; one case arose from the ribs with associated compression of the thoracic and abdominal cavity, and another case involved the vertebrae. In the last case, the neoplasm arose from the scapula. Histologic lesions were similar in all cases and consisted of well-demarcated nodules in which neoplastic cells were arranged in sheets of polyhedral to spindle-shaped cells with interspersed areas of necrosis. Numerous trabeculae of osteoid were present throughout the tumors. No metastases were detected. The predominant histologic pattern was osteoblastic, but a telangiectatic-like pattern was observed in the vertebral osteosarcoma. Electron microscopy was performed in two cases, and malignant osteoblasts had features consistent with descriptions in other species, including deposits of hydroxyapatite in osteoid. According to these cases and previously published data, axial osteosarcomas are more frequent in contrast to appendicular osteosarcomas in African hedgehogs, and metastases are rare.
Dixit, Radhika; Ai, Xingbin; Fine, Alan
2013-01-01
Recent studies have shown that mesothelial progenitors contribute to mesenchymal lineages of developing organs. To what extent the overlying mesothelium contributes to lung development remains unknown. To rigorously address this question, we employed Wt1CreERT2/+ mice for high-fidelity lineage tracing after confirming that Cre recombinase was mesothelial specific and faithfully recapitulated endogenous Wilms’ tumor 1 (Wt1) gene expression. We visualized WT1+ mesothelial cell entry into the lung by live imaging and identified their progenies in subpopulations of bronchial smooth muscle cells, vascular smooth muscle cells and desmin+ fibroblasts by lineage tagging. Derivation of these lineages was only observed with Cre recombinase activation during early lung development. Using loss-of-function assays in organ cultures, and targeted mesothelial-restricted hedgehog loss-of-function mice, we demonstrated that mesothelial cell movement into the lung requires the direct action of hedgehog signaling. By contrast, hedgehog signaling was not required for fetal mesothelial heart entry. These findings further support a paradigm wherein the mesothelium is a source of progenitors for mesenchymal lineages during organogenesis and indicate that signals controlling mesothelial cell entry are organ specific. PMID:24130328
Dixit, Radhika; Ai, Xingbin; Fine, Alan
2013-11-01
Recent studies have shown that mesothelial progenitors contribute to mesenchymal lineages of developing organs. To what extent the overlying mesothelium contributes to lung development remains unknown. To rigorously address this question, we employed Wt1(CreERT2/+) mice for high-fidelity lineage tracing after confirming that Cre recombinase was mesothelial specific and faithfully recapitulated endogenous Wilms' tumor 1 (Wt1) gene expression. We visualized WT1(+) mesothelial cell entry into the lung by live imaging and identified their progenies in subpopulations of bronchial smooth muscle cells, vascular smooth muscle cells and desmin(+) fibroblasts by lineage tagging. Derivation of these lineages was only observed with Cre recombinase activation during early lung development. Using loss-of-function assays in organ cultures, and targeted mesothelial-restricted hedgehog loss-of-function mice, we demonstrated that mesothelial cell movement into the lung requires the direct action of hedgehog signaling. By contrast, hedgehog signaling was not required for fetal mesothelial heart entry. These findings further support a paradigm wherein the mesothelium is a source of progenitors for mesenchymal lineages during organogenesis and indicate that signals controlling mesothelial cell entry are organ specific.
Yang, Bin; Hird, Alexander W; Russell, Daniel John; Fauber, Benjamin P; Dakin, Les A; Zheng, Xiaolan; Su, Qibin; Godin, Robert; Brassil, Patrick; Devereaux, Erik; Janetka, James W
2012-07-15
Cell-based subset screening of compounds using a Gli transcription factor reporter cell assay and shh stimulated cell differentiation assay identified a series of bisamide compounds as hedgehog pathway inhibitors with good potency. Using a ligand-based optimization strategy, heteroaryl groups were utilized as conformationally restricted amide isosteres replacing one of the amides which significantly increased their potency against SMO and the hedgehog pathway while decreasing activity against p38α kinase. We report herein the identification of advanced lead compounds such as imidazole 11c and 11f encompassing good p38α selectivity, low nanomolar potency in both cell assays, excellent physiochemical properties and in vivo pharmacokinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Myxoma of the penis in an African pygmy hedgehog (Atelerix albiventris)
TAKAMI, Yoshinori; YASUDA, Namie; UNE, Yumi
2016-01-01
A penile tumor (4 × 2.5 × 1 cm) was surgically removed from an African pygmy hedgehog (Atelerix albiventris) aged 3 years and 5 months. The tumor was continuous with the dorsal fascia of the penile head. Histopathologically, tumor cells were pleomorphic (oval-, short spindle- and star-shaped cells) with low cell density. Abundant edematous stroma was weakly positive for Alcian blue staining and positive for colloidal iron reaction. Tumor cells displayed no cellular atypia or karyokinesis. Tumor cell cytoplasm was positive for vimentin antibody, while cytoplasm and nuclei were positive for S-100 protein antibody. Tumor cell ultrastructure matched that of fibroblasts, and the rough endoplasmic reticulum was enlarged. The tumor was diagnosed as myxoma. This represents the first report of myxoma in a hedgehog. PMID:27784859
Díaz-Delgado, Josué; Pool, Roy; Hoppes, Sharman; Cerezo, Argine; Quesada-Canales, Óscar; Stoica, George
2017-05-18
This report describes the clinical, macroscopic, histopathological and immunohistochemical features of a spontaneous multicentric extraskeletal sarcoma in an adult male African hedgehog (Atelerix albiventris). It also provides a succinct up-to-date review on neoplasia in this species. On autopsy examination, main gross findings included a moderately demarcated cranial mass and a multilobulated, caudal intra-abdominal mass. The cranial mass had perforated the underlying temporal and occipital bones and had extended into the cranial vault and was compressing the surface of the cerebellum and cerebrum. Histologic, histochemical and immunohistochemical analyses supported a diagnosis of multicentric poorly differentiated spindle cell sarcoma with fibrosarcomatous, storiform and myxoid foci. The high incidence of neoplasia and cross similarities renders the African hedgehog a suitable species for comparative pathology studies.
Myxoma of the penis in an African pygmy hedgehog (Atelerix albiventris).
Takami, Yoshinori; Yasuda, Namie; Une, Yumi
2017-01-20
A penile tumor (4 × 2.5 × 1 cm) was surgically removed from an African pygmy hedgehog (Atelerix albiventris) aged 3 years and 5 months. The tumor was continuous with the dorsal fascia of the penile head. Histopathologically, tumor cells were pleomorphic (oval-, short spindle- and star-shaped cells) with low cell density. Abundant edematous stroma was weakly positive for Alcian blue staining and positive for colloidal iron reaction. Tumor cells displayed no cellular atypia or karyokinesis. Tumor cell cytoplasm was positive for vimentin antibody, while cytoplasm and nuclei were positive for S-100 protein antibody. Tumor cell ultrastructure matched that of fibroblasts, and the rough endoplasmic reticulum was enlarged. The tumor was diagnosed as myxoma. This represents the first report of myxoma in a hedgehog.
Hedgehog Signaling in the Stomach
Konstantinou, Daniel; Bertaux-Skeirik, Nina; Zavros, Yana
2016-01-01
The Hedgehog (Hh) signaling pathway not only plays a key part in controlling embryonic development, but in the adult stomach governs important cellular events such as epithelial cell differentiation, proliferation, gastric disease and regeneration. In particular, Sonic Hedgehog (Shh) signaling has been well studied for its role in gastric physiology and pathophysiology. Shh is secreted from the gastric parietal cells and contributes to the regeneration of the epithelium in response to injury, or the development of gastritis during Helicobacter pylori infection. Dysregulation of the Shh signaling pathway leads to the disruption of gastric differentiation, loss of gastric acid secretion and the development of cancer. In this chapter, we will review the most recent findings that reveal the role of Shh as a regulator of gastric physiology, regeneration and disease. PMID:27750091
Hedgehog signaling in the stomach.
Konstantinou, Daniel; Bertaux-Skeirik, Nina; Zavros, Yana
2016-12-01
The Hedgehog (Hh) signaling pathway not only plays a key part in controlling embryonic development, but in the adult stomach governs important cellular events such as epithelial cell differentiation, proliferation, gastric disease, and regeneration. In particular, Sonic Hedgehog (Shh) signaling has been well studied for its role in gastric physiology and pathophysiology. Shh is secreted from the gastric parietal cells and contributes to the regeneration of the epithelium in response to injury, or the development of gastritis during Helicobacter pylori infection. Dysregulation of the Shh signaling pathway leads to the disruption of gastric differentiation, loss of gastric acid secretion and the development of cancer. In this chapter, we will review the most recent findings that reveal the role of Shh as a regulator of gastric physiology, regeneration, and disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enzenhofer, Elisabeth; Parzefall, Thomas; Haymerle, Georg; Schneider, Sven; Kadletz, Lorenz; Heiduschka, Gregor; Pammer, Johannes; Oberndorfer, Felicitas; Wrba, Fritz; Loader, Benjamin; Grasl, Matthäus Christoph; Perisanidis, Christos; Erovic, Boban M.
2016-01-01
Introduction HPV positive patients suffering from head and neck cancer benefit from intensified radiotherapy when applied as a primary as well as an adjuvant treatment strategy. However, HPV negative patients treated with surgery and adjuvant radiotherapy lack validated prognostic biomarkers. It is therefore important to define prognostic biomarkers in this particular patient population. Especially, ´high-risk groups´ need to be defined in order to adapt treatment protocols. Since dysregulation of the sonic hedgehog pathway plays an important role in carcinogenesis, we aimed to assess whether members of the sonic hedgehog-signaling pathway may act as prognostic factors in patients with HPV negative head and neck squamous cell carcinoma. Materials and Methods In this prospective study, pretreatment tumor biopsies of patients with head and neck squamous cell carcinoma were taken during panendoscopy (2005 to 2008). All patients were treated with surgery and postoperative radiotherapy. After assessment of HPV and p16 status, protein expression profiles of the Sonic hedgehog-signaling pathway were determined by immunohistochemistry and tissue microarray analyses in 36 HPV negative tumor biopsies. Expression profiles of Sonic hedgehog, Indian hedgehog, Patched, Smoothened, Gli-1, Gli-2 and Gli-3 were correlated with patients´ clinical data, local-control rate, disease-free as well as overall survival. Data from The Cancer Genome Atlas databank were used for external validation of our results. Results Gli-1 (p = 0.04) and Gli-2 (p = 0.02) overexpression was significantly linked to improved overall survival of HPV negative patients. Gli-2 (p = 0.04) overexpression correlated significantly with prolonged disease-free survival. Cox-multivariate analysis showed that overexpression of Gli-2 correlated independently (HR 0.40, 95% CI 0.16–0.95, p = 0.03) with increased overall survival. Discussion Gli-1 and Gli-2 overexpression represents a substantial prognostic factor for overall and disease-free survival in patients with locally advanced HPV negative head and neck cancer undergoing surgery and postoperative radiotherapy. PMID:27918595
Coy, Shannon; Du, Ziming; Sheu, Shu-Hsien; Woo, Terri; Rodriguez, Fausto J; Kieran, Mark W; Santagata, Sandro
2016-12-01
Cilia are highly conserved organelles, which serve critical roles in development and physiology. Motile cilia are expressed in a limited range of tissues, where they principally regulate local extracellular fluid dynamics. In contrast, primary cilia are expressed by many vertebrate cell types during interphase, and are intimately involved in the cell cycle and signal transduction. Notably, primary cilia are essential for vertebrate hedgehog pathway activity. Improved detection of motile cilia may assist in the diagnosis of some pathologic entities such as Rathke's cleft cysts, whereas characterizing primary cilia in neoplastic tissues may implicate cilia-dependent signaling pathways as critical for tumorigenesis. We show that immunohistochemistry for the nuclear transcription factor FOXJ1, a master regulator of motile ciliogenesis, robustly labels the motile ciliated epithelium of Rathke's cleft cysts. FOXJ1 expression discriminates Rathke's cleft cysts from entities in the sellar/suprasellar region with overlapping histologic features such as craniopharyngiomas. Co-immunohistochemistry for FOXJ1 and markers that highlight motile cilia such as acetylated tubulin (TUBA4A) and the small GTPase ARL13B further enhance the ability to identify diagnostic epithelial cells. In addition to highlighting motile cilia, ARL13B immunohistochemistry also robustly highlights primary cilia in formalin-fixed paraffin-embedded sections. Primary cilia are present throughout the neoplastic epithelium of adamantinomatous craniopharyngioma, but are limited to basally oriented cells near the fibrovascular stroma in papillary craniopharyngioma. Consistent with this differing pattern of primary ciliation, adamantinomatous craniopharyngiomas express significantly higher levels of SHH, and downstream targets such as PTCH1 and GLI2, compared with papillary craniopharyngiomas. In conclusion, motile ciliated epithelium can be readily identified using immunohistochemistry for FOXJ1, TUBA4A, and ARL13B, facilitating the diagnosis of Rathke's cleft cysts. Primary cilia can be identified by ARL13B immunohistochemistry in routine pathology specimens. The widespread presence of primary cilia in adamantinomatous craniopharyngioma implicates cilia-dependent hedgehog signaling in the pathogenesis of adamantinomatous craniopharyngioma.
Distinct Patterns of Primary and Motile Cilia in Rathke’s Cleft Cysts and Craniopharyngioma Subtypes
Coy, Shannon; Du, Ziming; Sheu, Shu-Hsien; Woo, Terri; Rodriguez, Fausto J.; Kieran, Mark W.; Santagata, Sandro
2017-01-01
Cilia are highly conserved organelles which serve critical roles in development and physiology. Motile cilia are expressed in a limited range of tissues, where they principally regulate local extracellular fluid dynamics. In contrast, primary cilia are expressed by many vertebrate cell types during interphase, and are intimately involved in the cell cycle and signal transduction. Notably, primary cilia are essential for vertebrate hedgehog pathway activity. Improved detection of motile cilia may assist in the diagnosis of some pathologic entities such as Rathke’s cleft cysts while characterizing primary cilia in neoplastic tissues may implicate cilia-dependent signaling pathways as critical for tumorigenesis. We show that immunohistochemistry for the nuclear transcription factor FOXJ1, a master regulator of motile ciliogenesis, robustly labels the motile ciliated epithelium of Rathke’s cleft cysts. FOXJ1 expression discriminates Rathke’s cleft cysts from entities in the sellar/suprasellar region with overlapping histologic features such as craniopharyngiomas. Co-immunohistochemistry for FOXJ1 and markers that highlight motile cilia such as acetylated tubulin (TUBA4A) and the small GTPase ARL13B further enhance the ability to identify diagnostic epithelial cells. In addition to highlighting motile cilia, ARL13B immunohistochemistry also robustly highlights primary cilia in formalin-fixed paraffin-embedded sections. Primary cilia are present throughout the neoplastic epithelium of adamantinomatous craniopharyngioma, but are limited to basally oriented cells near the fibrovascular stroma in papillary craniopharyngioma. Consistent with this differing pattern of primary ciliation, adamantinomatous craniopharyngiomas express significantly higher levels of SHH, and downstream targets such as PTCH1 and GLI2, compared to papillary craniopharyngiomas. In conclusion, motile ciliated epithelium can be readily identified using immunohistochemistry for FOXJ1, TUBA4A and ARL13B, facilitating the diagnosis of Rathke’s cleft cyst. Primary cilia can be identified by ARL13B immunohistochemistry in routine pathology specimens. The widespread presence of primary cilia in adamantinomatous craniopharyngioma implicates cilia-dependent hedgehog signaling in the pathogenesis of adamantinomatous craniopharyngioma. PMID:27562488
Ross, Ashley E; Hughes, Robert M; Glavaris, Stephanie; Ghabili, Kamyar; He, Ping; Anders, Nicole M; Harb, Rana; Tosoian, Jeffrey J; Marchionni, Luigi; Schaeffer, Edward M; Partin, Alan W; Allaf, Mohamad E; Bivalacqua, Trinity J; Chapman, Carolyn; O'Neal, Tanya; DeMarzo, Angelo M; Hurley, Paula J; Rudek, Michelle A; Antonarakis, Emmanuel S
2017-11-28
To determine the pharmacodynamic effects of Sonidegib (LDE-225) in prostate tumor tissue from men with high-risk localized prostate cancer, by comparing pre-surgical core-biopsy specimens to tumor tissue harvested post-treatment at prostatectomy. We conducted a prospective randomized (Sonidegib vs. observation) open-label translational clinical trial in men with high-risk localized prostate cancer undergoing radical prostatectomy. The primary endpoint was the proportion of patients in each arm who achieved at least a two-fold reduction in GLI1 mRNA expression in post-treatment versus pre-treatment tumor tissue. Secondary endpoints included the effect of pre-surgical treatment with Sonidegib on disease progression following radical prostatectomy, and safety. Fourteen men were equally randomized (7 per arm) to either neoadjuvant Sonidegib or observation for 4 weeks prior to prostatectomy. Six of seven men (86%) in the Sonidegib arm (and none in the control group) achieved a GLI1 suppression of at least two-fold. In the Sonidegib arm, drug was detectable in plasma and in prostatic tissue; and median intra-patient GLI1 expression decreased by 63-fold, indicating potent suppression of Hedgehog signaling. Sonidegib was well tolerated, without any Grade 3-4 adverse events observed. Disease-free survival was comparable among the two arms (HR = 1.50, 95% CI 0.26-8.69, P = 0.65). Hedgehog pathway activity (as measured by GLI1 expression) was detectable at baseline in men with localized high-risk prostate cancer. Sonidegib penetrated into prostatic tissue and induced a >60-fold suppression of the Hedgehog pathway. The oncological benefit of Hedgehog pathway inhibition in prostate cancer remains unclear.
Latchoumycandane, Calivarathan; Hanouneh, Mohamad; Nagy, Laura E.; McIntyre, Thomas M.
2015-01-01
Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR) for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh) and Indian hedgehog (Ihh) expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO) is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo -/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not commonly biopsied. PMID:26720402
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samarzija, Ivana; Beard, Peter, E-mail: peter.beard@epfl.ch
Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of themore » Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.« less
A review of hedgehog signaling in cranial bone development
Pan, Angel; Chang, Le; Nguyen, Alan; James, Aaron W.
2013-01-01
During craniofacial development, the Hedgehog (HH) signaling pathway is essential for mesodermal tissue patterning and differentiation. The HH family consists of three protein ligands: Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Desert Hedgehog (DHH), of which two are expressed in the craniofacial complex (IHH and SHH). Dysregulations in HH signaling are well documented to result in a wide range of craniofacial abnormalities, including holoprosencephaly (HPE), hypotelorism, and cleft lip/palate. Furthermore, mutations in HH effectors, co-receptors, and ciliary proteins result in skeletal and craniofacial deformities. Cranial suture morphogenesis is a delicate developmental process that requires control of cell commitment, proliferation and differentiation. This review focuses on both what is known and what remains unknown regarding HH signaling in cranial suture morphogenesis and intramembranous ossification. As demonstrated from murine studies, expression of both SHH and IHH is critical to the formation and fusion of the cranial sutures and calvarial ossification. SHH expression has been observed in the cranial suture mesenchyme and its precise function is not fully defined, although some postulate SHH to delay cranial suture fusion. IHH expression is mainly found on the osteogenic fronts of the calvarial bones, and functions to induce cell proliferation and differentiation. Unfortunately, neonatal lethality of IHH deficient mice precludes a detailed examination of their postnatal calvarial phenotype. In summary, a number of basic questions are yet to be answered regarding domains of expression, developmental role, and functional overlap of HH morphogens in the calvaria. Nevertheless, SHH and IHH ligands are integral to cranial suture development and regulation of calvarial ossification. When HH signaling goes awry, the resultant suite of morphologic abnormalities highlights the important roles of HH signaling in cranial development. PMID:23565096
Olesen, Uffe H; Bojesen, Sophie; Gehl, Julie; Haedersdal, Merete
2017-11-01
Nonmelanoma skin cancer is the most common cancer in humans, comprising mainly basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC proliferation is highly dependent on the Hedgehog signaling pathway. We aimed to investigate a panel of anticancer drugs with known activity against skin cancer for their therapeutic potential in localized, enhanced topical treatment of SCC and BCC. Cytotoxicity profiles for vismodegib, 5-fluorouracil (5-FU), methotrexate (MTX), cisplatin, bleomycin, and vorinostat were established in terms of half maximal inhibitory concentration values in a panel of immortalized keratinocytes (HaCaT), BCC (UWBCC1 and BCC77015), and SCC (A431 and SCC25) cell lines. The impact of treatment on the regulation of Hedgehog pathway target genes (GLI1 and PTCH1), measured by real-time PCR, was compared between UWBCC1 and HaCaT. Varying cell line sensitivity profiles to the examined anticancer drugs were observed. Generally, 24-h drug exposure was sufficient to reduce cell viability. We found that 5-FU, MTX, and cisplatin significantly downregulated the expression of two genes controlled by the Hedgehog pathway (≤25-, 2.9-, and 12.5-fold, respectively, for GLI1 in UWBCC1 cells at 48 h, P<0.0001). The gene regulation showed clear concentration dependence and correlated with cytotoxicity for both 5-FU and MTX. We find a potential for the use of anticancer drugs in localized and enhanced topical treatment of nonmelanoma skin cancer. Of importance in the clinical setting, 24-h drug exposure may be sufficient for significant cytotoxicity for vismodegib, 5-FU, cisplatin, and bleomycin. MTX, 5-FU, and cisplatin may offer particular promise through combined cytotoxicity and downregulation of Hedgehog pathway genes GLI1 and PTCH1.
Thorpe, Stephen D; Gambassi, Silvia; Thompson, Clare L; Chandrakumar, Charmilie; Santucci, Annalisa; Knight, Martin M
2017-09-01
Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2-dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog-related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.
Douglas, Andrew E.; Heim, Jennifer A.; Shen, Feng; Almada, Luciana L.; Riobo, Natalia A.; Fernández-Zapico, Martin E.; Manning, David R.
2011-01-01
Smoothened (Smo) is a seven-transmembrane (7-TM) receptor that is essential to most actions of the Hedgehog family of morphogens. We found previously that Smo couples to members of the Gi family of heterotrimeric G proteins, which in some cases are integral although alone insufficient in the activation of Gli transcription factors through Hedgehog signaling. In response to a report that the G12/13 family is relevant to Hedgehog signaling as well, we re-evaluated the coupling of Smo to one member of this family, G13, and investigated the capacity of this and other G proteins to activate one or more of forms of Gli. We found no evidence that Smo couples directly to G13. We found nonetheless that Gα13 and to some extent Gαq and Gα12 are able to effect activation of Gli(s). This capacity is realized in some cells, e.g. C3H10T1/2, MC3T3, and pancreatic cancer cells, but not all cells. The mechanism employed is distinct from that achieved through canonical Hedgehog signaling, as the activation does not involve autocrine signaling or in any other way require active Smo and does not necessarily involve enhanced transcription of Gli1. The activation by Gα13 can be replicated through a Gq/G12/13-coupled receptor, CCKA, and is attenuated by inhibitors of p38 mitogen-activated protein kinase and Tec tyrosine kinases. We posit that G proteins, and perhaps G13 in particular, provide access to Gli that is independent of Smo and that they thus establish a basis for control of at least some forms of Gli-mediated transcription apart from Hedgehogs. PMID:21757753
Rossi, Gabriele; Mangiagalli, Gerard; Paracchini, Giulia; Paltrinieri, Saverio
2014-03-01
Information about laboratory reference intervals (RIs) of European Hedgehog (Erinaceus europaeus) hospitalized at rehabilitation centers is scarce. The purpose of this study was to establish hematologic and biochemical RIs for rehabilitated hedgehogs before the release into the wild, and to assess whether sex and management of the center influence laboratory results. Blood was collected from 50 hedgehogs at 3 centers. Thirty-eight animals were included in the study based on normal body weight, absence of clinical signs of disease, Bunnell index > 0.80, and absence of hibernation during overwintering. CBCs were performed using an automated laser cell counter followed by morphologic analysis of blood smears. Clinical biochemistry was performed using an automated spectrophotometer. RIs were determined as recommended by the ASVCP guidelines. Hematology profiles revealed a prevalence of lymphocytes, a constant presence of nucleated RBCs, Howell-Jolly bodies and basophils, and bilobed nuclei in neutrophils and eosinophils. Biochemistry profiles were characterized by higher creatinine and urea concentrations, and higher ALP and GGT activities compared with other domestic species. The sex did not influence the results. Conversely, numbers of eosinophils, activated and large granular lymphocytes, and concentrations of total protein, glucose and cholesterol were different among the centers, likely due to different management practices (eg, antiparasitic treatments, environmental exposure to microorganisms, diet). The RIs established in this study can be used to monitor the health status of hedgehogs in rehabilitation centers. As management practices appeared to influence some variables, it is recommended to standardize the management protocols to minimize their influence on laboratory data. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.
Dworkin, Sebastian; Boglev, Yeliz; Owens, Harley; Goldie, Stephen J.
2016-01-01
Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh), a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible). PMID:29615588
Dworkin, Sebastian; Boglev, Yeliz; Owens, Harley; Goldie, Stephen J
2016-08-03
Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog ( Shh ), a vertebrate orthologue of Drosophila hedgehog , is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible).
Regulation of Hedgehog Signalling Inside and Outside the Cell
Ramsbottom, Simon A.; Pownall, Mary E.
2016-01-01
The hedgehog (Hh) signalling pathway is conserved throughout metazoans and plays an important regulatory role in both embryonic development and adult homeostasis. Many levels of regulation exist that control the release, reception, and interpretation of the hedgehog signal. The fatty nature of the Shh ligand means that it tends to associate tightly with the cell membrane, and yet it is known to act as a morphogen that diffuses to elicit pattern formation. Heparan sulfate proteoglycans (HSPGs) play a major role in the regulation of Hh distribution outside the cell. Inside the cell, the primary cilium provides an important hub for processing the Hh signal in vertebrates. This review will summarise the current understanding of how the Hh pathway is regulated from ligand production, release, and diffusion, through to signal reception and intracellular transduction. PMID:27547735
Anderson, Nickesha C.; Chen, Christopher Y.; Grabel, Laura
2016-01-01
Loss or damage of cortical inhibitory interneurons characterizes a number of neurological disorders. There is therefore a great deal of interest in learning how to generate these neurons from a pluripotent stem cell source so they can be used for cell replacement therapies or for in vitro drug testing. To design a directed differentiation protocol, a number of groups have used the information gained in the last 15 years detailing the conditions that promote interneuron progenitor differentiation in the ventral telencephalon during embryogenesis. The use of Hedgehog peptides and agonists is featured prominently in these approaches. We review here the data documenting a role for Hedgehog in specifying interneurons in both the embryonic brain during development and in vitro during the directed differentiation of pluripotent stem cells. PMID:29615590
Recurrent sebaceous carcinoma in an African hedgehog (Atelerix albiventris).
Kim, Hyung-Jin; Kim, Yong-Baek; Park, Jun-Won; Oh, Won-Seok; Kim, Eun-Ok; Lim, Byoung-Yong; Kim, Dae-Yong
2010-07-01
A 1.5-year-old intact male African hedgehog (Atelerix albiventris) was presented with a firm, non-movable subcutaneous mass on ventral chest area. Microscopically, the tumor was un-encapsulated, invasive up to the muscle layer, and composed of highly pleomorphic polygonal cells arranged in variably-sized lobules. The neoplastic cells had abundant cytoplasm with vacuolation and a large pleomorphic nucleus with prominent nucleoli. Mitotic figures were frequently observed with atypical mitoses. Immunohistochemically, the neoplastic cells were strongly positive for cytokeratin, but negative for vimentin. Based on these findings, a diagnosis of sebaceous carcinoma was made. Three months after the surgery, a recurrent mass was found at the surgical site. On necropsy, the mass has penetrated the underlying intercostal musculature, without metastasis to distant organs. This is the first report of a sebaceous carcinoma in an African hedgehog.
DÍAZ-DELGADO, Josué; POOL, Roy; HOPPES, Sharman; CEREZO, Argine; QUESADA-CANALES, Óscar; STOICA, George
2017-01-01
This report describes the clinical, macroscopic, histopathological and immunohistochemical features of a spontaneous multicentric extraskeletal sarcoma in an adult male African hedgehog (Atelerix albiventris). It also provides a succinct up-to-date review on neoplasia in this species. On autopsy examination, main gross findings included a moderately demarcated cranial mass and a multilobulated, caudal intra-abdominal mass. The cranial mass had perforated the underlying temporal and occipital bones and had extended into the cranial vault and was compressing the surface of the cerebellum and cerebrum. Histologic, histochemical and immunohistochemical analyses supported a diagnosis of multicentric poorly differentiated spindle cell sarcoma with fibrosarcomatous, storiform and myxoid foci. The high incidence of neoplasia and cross similarities renders the African hedgehog a suitable species for comparative pathology studies. PMID:28331115
Gorlin syndrome (nevoid basal cell carcinoma syndrome): update and literature review.
Fujii, Katsunori; Miyashita, Toshiyuki
2014-10-01
Gorlin syndrome, also called nevoid basal cell carcinoma syndrome, is an autosomal dominant neurocutaneous disease characterized by developmental anomalies such as palmar pits and rib anomaly, and tumorigenesis such as medulloblastoma and basal cell carcinoma. This syndrome is mainly caused by a mutation of PTCH1, a human homologue of Drosophila patched, including frameshift, missense, or nonsense mutations. Genotype-phenotype correlation has not been established. PTCH1 is a member of hedgehog signaling, which is a highly conserved pathway in vertebrates, composed of hedgehog, SMO, and GLI proteins as well as PTCH1. Given that hedgehog signaling regulates cell growth and development, disorder of this pathway gives rise to not only developmental anomalies but also diverse tumors such as those seen in Gorlin syndrome. We recently reported, for the first time, a nationwide survey of Gorlin syndrome in Japan, noting that the frequency was 1/235,800 in the Japanese population, and that the frequency of basal cell carcinomas was significantly lower in Japan than in the USA and Europe, suggesting that ethnicity and genetic background contribute to these differences. Given that many clinical trials using newly discovered molecular inhibitors are still ongoing, these agents should become the new therapeutic options for hedgehog pathway-dependent tumors in patients with or without Gorlin syndrome. © 2014 Japan Pediatric Society.
Booms, Patrick; Harth, Marc; Sader, Robert; Ghanaati, Shahram
2015-01-01
Vismodegib hedgehog signaling inhibition treatment has potential for reducing the burden of multiple skin basal cell carcinomas and jaw keratocystic odontogenic tumors. They are major criteria for the diagnosis of Gorlin syndrome, also called nevoid basal cell carcinoma syndrome. Clinical features of Gorlin syndrome are reported, and the relevance of hedgehog signaling pathway inhibition by oral vismodegib for maxillofacial surgeons is highlighted. In summary, progressed basal cell carcinoma lesions are virtually inoperable. Keratocystic odontogenic tumors have an aggressive behavior including rapid growth and extension into adjacent tissues. Interestingly, nearly complete regression of multiple Gorlin syndrome-associated keratocystic odontogenic tumors following treatment with vismodegib. Due to radio-hypersensitivity in Gorlin syndrome, avoidance of treatment by radiotherapy is strongly recommended for all affected individuals. Vismodegib can help in those instances where radiation is contra-indicated, or the lesions are inoperable. The effect of vismodegib on basal cell carcinomas was associated with a significant decrease in hedgehog-signaling and tumor proliferation. Vismodegib, a new and approved drug for the treatment of advanced basal cell carcinoma, is a specific oncogene inhibitor. It also seems to be effective for treatment of keratocystic odontogenic tumors and basal cell carcinomas in Gorlin syndrome, rendering the surgical resections less challenging.
Feng, Weiguo; Choi, Irene; Clouthier, David E.; Niswander, Lee; Williams, Trevor
2013-01-01
Mouse models provide valuable opportunities for probing the underlying pathology of human birth defects. Employing an ENU-based screen for recessive mutations affecting craniofacial anatomy we isolated a mouse strain, Dogface-like (DL), with abnormal skull and snout morphology. Examination of the skull indicated that these mice developed craniosynostosis of the lambdoid suture. Further analysis revealed skeletal defects related to the pathology of basal cell nevus syndrome (BCNS) including defects in development of the limbs, scapula, ribcage, secondary palate, cranial base, and cranial vault. In humans, BCNS is often associated with mutations in the Hedgehog receptor PTCH1 and genetic mapping in DL identified a point mutation at a splice donor site in Ptch1. Using genetic complementation analysis we determined that DL is a hypomorphic allele of Ptch1, leading to increased Hedgehog signaling. Two aberrant transcripts are generated by the mutated Ptch1DL gene, which would be predicted to reduce significantly the levels of functional Patched1 protein. This new Ptch1 allele broadens the mouse genetic reagents available to study the Hedgehog pathway and provides a valuable means to study the underlying skeletal abnormalities in BCNS. In addition, these results strengthen the connection between elevated Hedgehog signaling and craniosynostosis. PMID:23897749
Yamasaki, Akio; Onishi, Hideya; Imaizumi, Akira; Kawamoto, Makoto; Fujimura, Akiko; Oyama, Yasuhiro; Katano, Mitsuo
2016-08-01
Hedgehog signaling is activated in pancreatic cancer and could be a therapeutic target. We previously demonstrated that recombination signal binding protein for immunoglobulin-kappa-J region (RBPJ) and mastermind-like 3 (MAML3) contribute to the hypoxia-induced up-regulation of Smoothened (SMO) transcription. We have also shown that protein-bound polysaccharide-K (PSK) could be effective for refractory pancreatic cancer that down-regulates SMO transcription under hypoxia. In this study, we evaluated whether the anticancer mechanism of PSK involves inhibiting RBPJ and MAML3 expression under hypoxia. PSK reduced SMO, MAML3 and RBPJ expression in pancreatic cancer cells under hypoxia. PSK also blocked RBPJ-induced invasiveness under hypoxia by inhibiting matrix metalloproteinase expression. Lastly, we showed that PSK attenuated RBPJ-induced proliferation both in vitro and in vivo. These results suggest that PSK suppresses Hedgehog signaling through down-regulation of MAML3 and RBPJ transcription under hypoxia, inhibiting the induction of a malignant phenotype in pancreatic cancer. Our results may lead to development of new treatments for refractory pancreatic cancer using PSK as a Hedgehog inhibitor. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond.
Bakshi, Anshika; Chaudhary, Sandeep C; Rana, Mehtab; Elmets, Craig A; Athar, Mohammad
2017-12-01
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs. © 2017 Wiley Periodicals, Inc.
Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond
Bakshi, Anshika; Chaudhary, Sandeep C.; Rana, Mehtab; Elmets, Craig A.; Athar, Mohammad
2018-01-01
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10–100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs. PMID:28574612
Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival.
Renault, Marie-Ange; Chapouly, Candice; Yao, Qinyu; Larrieu-Lahargue, Frédéric; Vandierdonck, Soizic; Reynaud, Annabel; Petit, Myriam; Jaspard-Vinassa, Béatrice; Belloc, Isabelle; Traiffort, Elisabeth; Ruat, Martial; Duplàa, Cécile; Couffinhal, Thierry; Desgranges, Claude; Gadeau, Alain-Pierre
2013-03-01
Blood vessel growth and patterning have been shown to be regulated by nerve-derived signals. Desert hedgehog (Dhh), one of the Hedgehog family members, is expressed by Schwann cells of peripheral nerves. The purpose of this study was to investigate the contribution of Dhh to angiogenesis in the setting of ischemia. We induced hindlimb ischemia in wild-type and Dhh(-/-) mice. First, we found that limb perfusion is significantly impaired in the absence of Dhh. This effect is associated with a significant decrease in capillary and artery density in Dhh(-/-). By using mice in which the Hedgehog signaling pathway effector Smoothened was specifically invalidated in endothelial cells, we demonstrated that Dhh does not promote angiogenesis by a direct activation of endothelial cells. On the contrary, we found that Dhh promotes peripheral nerve survival in the ischemic muscle and, by doing so, maintains the pool of nerve-derived proangiogenic factors. Consistently, we found that denervation of the leg, immediately after the onset of ischemia, severely impairs ischemia-induced angiogenesis and decreases expression of vascular endothelial growth factor A, angiopoietin 1, and neurotrophin 3 in the ischemic muscle. This study demonstrates the crucial roles of nerves and factors regulating nerve physiology in the setting of ischemia-induced angiogenesis.
Seidel, Kerstin; Ahn, Christina P.; Lyons, David; Nee, Alexander; Ting, Kevin; Brownell, Isaac; Cao, Tim; Carano, Richard A. D.; Curran, Tom; Schober, Markus; Fuchs, Elaine; Joyner, Alexandra; Martin, Gail R.; de Sauvage, Frederic J.; Klein, Ophir D.
2010-01-01
In many organ systems such as the skin, gastrointestinal tract and hematopoietic system, homeostasis is dependent on the continuous generation of differentiated progeny from stem cells. The rodent incisor, unlike human teeth, grows throughout the life of the animal and provides a prime example of an organ that rapidly deteriorates if newly differentiated cells cease to form from adult stem cells. Hedgehog (Hh) signaling has been proposed to regulate self-renewal, survival, proliferation and/or differentiation of stem cells in several systems, but to date there is little evidence supporting a role for Hh signaling in adult stem cells. We used in vivo genetic lineage tracing to identify Hh-responsive stem cells in the mouse incisor and we show that sonic hedgehog (SHH), which is produced by the differentiating progeny of the stem cells, signals to several regions of the incisor. Using a hedgehog pathway inhibitor (HPI), we demonstrate that Hh signaling is not required for stem cell survival but is essential for the generation of ameloblasts, one of the major differentiated cell types in the tooth, from the stem cells. These results therefore reveal the existence of a positive-feedback loop in which differentiating progeny produce the signal that in turn allows them to be generated from stem cells. PMID:20978073
The chicken talpid3 gene encodesa novel protein essentialfor Hedgehog signaling
Davey, Megan G.; Paton, I. Robert; Yin, Yili; Schmidt, Maike; Bangs, Fiona K.; Morrice, David R.; Smith, Terence Gordon; Buxton, Paul; Stamataki, Despina; Tanaka, Mikiko; Münsterberg, Andrea E.; Briscoe, James; Tickle, Cheryll; Burt, Dave W.
2006-01-01
Talpid3 is a classical chicken mutant with abnormal limb patterning and malformations in other regions of the embryo known to depend on Hedgehog signaling. We combined the ease of manipulating chicken embryos with emerging knowledge of the chicken genome to reveal directly the basis of defective Hedgehog signal transduction in talpid3 embryos and to identify the talpid3 gene. We show in several regions of the embryo that the talpid3 phenotype is completely ligand independent and demonstrate for the first time that talpid3 is absolutely required for the function of both Gli repressor and activator in the intracellular Hedgehog pathway. We map the talpid3 locus to chromosome 5 and find a frameshift mutation in a KIAA0586 ortholog (ENSGALG00000012025), a gene not previously attributed with any known function. We show a direct causal link between KIAA0586 and the mutant phenotype by rescue experiments. KIAA0586 encodes a novel protein, apparently specific to vertebrates, that localizes to the cytoplasm. We show that Gli3 processing is abnormal in talpid3 mutant cells but that Gli3 can still translocate to the nucleus. These results suggest that the talpid3 protein operates in the cytoplasm to regulate the activity of both Gli repressor and activator proteins. PMID:16702409
He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao; Chen, Yanxia
2017-01-01
Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H 2 O 2 ). Shh alleviated the apoptosis rate of H 2 O 2 -induced neurons. Shh also increased neuritogenesis injuried by H 2 O 2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H 2 O 2 . In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H 2 O 2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Sonic Hedgehog, VACTERL, and Fanconi anemia: Pathogenetic connections and therapeutic implications.
Lubinsky, Mark
2015-11-01
Three systems with VACTERL association findings- mutations of the Sonic Hedgehog (SHH) signaling pathway in mice, murine adriamycin teratogenicity, and human Fanconi anemia (FA) pathway mutations, may all involve a similar mechanism. SHH is up-regulated in irradiated cells, and DNA breaks common with radiation damage in the adriamycin and FA systems are plausible signals for such effects, which would affect development. Since FA related DNA breakage occurs throughout life, SHH disturbances may account for later FA related findings involving hematopoietic and malignancy issues. In support, androgen, a standard treatment for FA hematologic failure, down-regulates SHH, and common FA malignancies such as squamous cell carcinomas and acute myeloid leukemia have been linked to enhanced SHH function. This suggests that interventions lowering SHH levels may be useful therapeutically. Also supporting a connection between pre- and post- natal findings, the frequency and number of VACTERL anomalies with FA correlate with the severity and onset of hematopoietic and malignancy issues. In FA, radial anomalies are the most common of these defects, followed by renal findings, while vertebral and gastrointestinal anomalies are relatively uncommon, a pattern that differs from observations of the VACTERL association. Genes with more severe effects also show a greatly increased incidence of brain abnormalities, and a paucity of such findings with other FA genes suggests that brain development is relatively refractory to SHH related effects, accounting for the rarity of such findings with the association. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Na; Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114; Chen, Yan
Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We showmore » that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.« less
Intertumoral Heterogeneity within Medulloblastoma Subgroups.
Cavalli, Florence M G; Remke, Marc; Rampasek, Ladislav; Peacock, John; Shih, David J H; Luu, Betty; Garzia, Livia; Torchia, Jonathon; Nor, Carolina; Morrissy, A Sorana; Agnihotri, Sameer; Thompson, Yuan Yao; Kuzan-Fischer, Claudia M; Farooq, Hamza; Isaev, Keren; Daniels, Craig; Cho, Byung-Kyu; Kim, Seung-Ki; Wang, Kyu-Chang; Lee, Ji Yeoun; Grajkowska, Wieslawa A; Perek-Polnik, Marta; Vasiljevic, Alexandre; Faure-Conter, Cecile; Jouvet, Anne; Giannini, Caterina; Nageswara Rao, Amulya A; Li, Kay Ka Wai; Ng, Ho-Keung; Eberhart, Charles G; Pollack, Ian F; Hamilton, Ronald L; Gillespie, G Yancey; Olson, James M; Leary, Sarah; Weiss, William A; Lach, Boleslaw; Chambless, Lola B; Thompson, Reid C; Cooper, Michael K; Vibhakar, Rajeev; Hauser, Peter; van Veelen, Marie-Lise C; Kros, Johan M; French, Pim J; Ra, Young Shin; Kumabe, Toshihiro; López-Aguilar, Enrique; Zitterbart, Karel; Sterba, Jaroslav; Finocchiaro, Gaetano; Massimino, Maura; Van Meir, Erwin G; Osuka, Satoru; Shofuda, Tomoko; Klekner, Almos; Zollo, Massimo; Leonard, Jeffrey R; Rubin, Joshua B; Jabado, Nada; Albrecht, Steffen; Mora, Jaume; Van Meter, Timothy E; Jung, Shin; Moore, Andrew S; Hallahan, Andrew R; Chan, Jennifer A; Tirapelli, Daniela P C; Carlotti, Carlos G; Fouladi, Maryam; Pimentel, José; Faria, Claudia C; Saad, Ali G; Massimi, Luca; Liau, Linda M; Wheeler, Helen; Nakamura, Hideo; Elbabaa, Samer K; Perezpeña-Diazconti, Mario; Chico Ponce de León, Fernando; Robinson, Shenandoah; Zapotocky, Michal; Lassaletta, Alvaro; Huang, Annie; Hawkins, Cynthia E; Tabori, Uri; Bouffet, Eric; Bartels, Ute; Dirks, Peter B; Rutka, James T; Bader, Gary D; Reimand, Jüri; Goldenberg, Anna; Ramaswamy, Vijay; Taylor, Michael D
2017-06-12
While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials. Copyright © 2017 Elsevier Inc. All rights reserved.
Multi-layered mutation in hedgehog-related genes in Gorlin syndrome may affect the phenotype.
Onodera, Shoko; Saito, Akiko; Hasegawa, Daigo; Morita, Nana; Watanabe, Katsuhito; Nomura, Takeshi; Shibahara, Takahiko; Ohba, Shinsuke; Yamaguchi, Akira; Azuma, Toshifumi
2017-01-01
Gorlin syndrome is a genetic disorder of autosomal dominant inheritance that predisposes the affected individual to a variety of disorders that are attributed largely to heterozygous germline patched1 (PTCH1) mutations. PTCH1 is a hedgehog (Hh) receptor as well as a repressor, mutation of which leads to constitutive activation of Hh pathway. Hh pathway encompasses a wide variety of cellular signaling cascades, which involve several molecules; however, no associated genotype-phenotype correlations have been reported. Recently, mutations in Suppressor of fused homolog (SUFU) or PTCH2 were reported in patients with Gorlin syndrome. These facts suggest that multi-layered mutations in Hh pathway may contribute to the development of Gorlin syndrome. We demonstrated multiple mutations of Hh-related genes in addition to PTCH1, which possibly act in an additive or multiplicative manner and lead to Gorlin syndrome. High-throughput sequencing was performed to analyze exome sequences in four unrelated Gorlin syndrome patient genomes. Mutations in PTCH1 gene were detected in all four patients. Specific nucleotide variations or frameshift variations of PTCH1 were identified along with the inferred amino acid changes in all patients. We further filtered 84 different genes which are closely related to Hh signaling. Fifty three of these had enough coverage of over ×30. The sequencing results were filtered and compared to reduce the number of sequence variants identified in each of the affected individuals. We discovered three genes, PTCH2, BOC, and WNT9b, with mutations with a predicted functional impact assessed by MutationTaster2 or PolyPhen-2 (Polymorphism Phenotyping v2) analysis. It is noticeable that PTCH2 and BOC are Hh receptor molecules. No significant mutations were observed in SUFU. Multi-layered mutations in Hh pathway may change the activation level of the Hh signals, which may explain the wide phenotypic variability of Gorlin syndrome.
[Traumatic spondylolysis in the hedgehog. A contribution to the problem of isthmus dysplasia].
Roth, M
1994-01-01
Traumatic spondylolysis in a hedgehog is reported. On the basis of that rare observation the "dysplastic" thinning of the vertebral isthmus frequently associated with spondylolysis in man is claimed to be related to the "neuroenveloping" function of the spine shared with that of the neurocranium. Dysplasia of the isthmus results from abnormal ganglio-foraminal interrelation in the embryo rather than from any primary derangement of the vertebral bone growth proper.
Lack of centrioles and primary cilia in STIL−/− mouse embryos
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474
Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.
La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano
2014-01-01
We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991
Nevoid Basal Cell Carcinoma Syndrome (Gorlin Syndrome).
Bresler, Scott C; Padwa, Bonnie L; Granter, Scott R
2016-06-01
Nevoid basal cell carcinoma syndrome, or basal cell nevus syndrome (Gorlin syndrome), is a rare autosomal dominantly inherited disorder that is characterized by development of basal cell carcinomas from a young age. Other distinguishing clinical features are seen in a majority of patients, and include keratocystic odontogenic tumors (formerly odontogenic keratocysts) as well as dyskeratotic palmar and plantar pitting. A range of skeletal and other developmental abnormalities are also often seen. The disorder is caused by defects in hedgehog signaling which result in constitutive pathway activity and tumor cell proliferation. As sporadic basal cell carcinomas also commonly harbor hedgehog pathway aberrations, therapeutic agents targeting key signaling constituents have been developed and tested against advanced sporadically occurring tumors or syndromic disease, leading in 2013 to FDA approval of the first hedgehog pathway-targeted small molecule, vismodegib. The elucidation of the molecular pathogenesis of nevoid basal cell carcinoma syndrome has resulted in further understanding of the most common human malignancy.
Kim, Da-Hee; Oh, Dae-Sung; Ahn, Kyu-Sung; Shin, Sung-Shik
2012-06-01
In February 2010, dermatitis characterized by scale and self-trauma due to puritis was recognized in a group of 22 four-toed hedgehogs (Atelerix albiventris Wagner, 1841) from a local pet shop in Gwangju, Korea. Microscopic examinations of skin scraping samples showed numerous mites of all developmental stages. Morphologically, pedicels of adult mites were short and unjointed. Tarsal caruncles were bell-shaped on all legs of males while they were absent on legs III and IV of females. Three long setae on the third pair of legs in both sexes were present. Adult males had posterior end of the abdomen with trilobate projection on each side, each lobe with a long seta. Based on these features, the mites were identified as Caparinia tripilis. This is the first report of caparinic mite infestation in hedgehogs from Korea. Identification keys for the family Psoroptidae and the genus Caparinia are provided.
Kim, Da-Hee; Oh, Dae-Sung; Ahn, Kyu-Sung
2012-01-01
In February 2010, dermatitis characterized by scale and self-trauma due to puritis was recognized in a group of 22 four-toed hedgehogs (Atelerix albiventris Wagner, 1841) from a local pet shop in Gwangju, Korea. Microscopic examinations of skin scraping samples showed numerous mites of all developmental stages. Morphologically, pedicels of adult mites were short and unjointed. Tarsal caruncles were bell-shaped on all legs of males while they were absent on legs III and IV of females. Three long setae on the third pair of legs in both sexes were present. Adult males had posterior end of the abdomen with trilobate projection on each side, each lobe with a long seta. Based on these features, the mites were identified as Caparinia tripilis. This is the first report of caparinic mite infestation in hedgehogs from Korea. Identification keys for the family Psoroptidae and the genus Caparinia are provided. PMID:22711928
2012-01-01
Background The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. Results In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway. Conclusions Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR modeling are available in the Additional file 1. PMID:22849868
Gao, Jun; Che, Dongsheng; Zheng, Vincent W; Zhu, Ruixin; Liu, Qi
2012-07-31
The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway. Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR modeling are available in the Additional file 1.
Xavier, Guilherme M.; Panousopoulos, Leonidas; Cobourne, Martyn T.
2013-01-01
The vertebrate Scube family consists of three independent members Scube1-3; which encode secreted cell surface-associated membrane glycoproteins that share a domain organization of at least five recognizable motifs and the ability to both homo- and heterodimerize. There is recent biochemical evidence to suggest that Scube2 is directly involved in Hedgehog signaling, acting co-operatively with Dispatched to mediate the release in soluble form of cholesterol and palmitate-modified Hedgehog ligand during long-range activity. Indeed, in the zebrafish myotome, all three Scube proteins can subtly promote Hedgehog signal transduction in a non-cell autonomous manner. In order to further investigate the role of Scube genes during development, we have generated mice with targeted inactivation of Scube3. Despite a dynamic developmental expression pattern, with transcripts present in neuroectoderm, endoderm and endochondral tissues, particularly within the craniofacial region; an absence of Scube3 function results in no overt embryonic phenotype in the mouse. Mutant mice are born at expected Mendelian ratios, are both viable and fertile, and seemingly retain normal Hedgehog signaling activity in craniofacial tissues. These findings suggest that in the mouse, Scube3 is dispensable for normal development; however, they do not exclude the possibility of a co-operative role for Scube3 with other Scube members during embryogenesis or a potential role in adult tissue homeostasis over the long-term. PMID:23383134
Hassanpour, Mehdi; Rezabakhsh, Aysa; Rahbarghazi, Reza; Nourazarian, Alireza; Nouri, Mohammad; Avci, Çığır Biray; Ghaderi, Shahrooz; Alidadyani, Neda; Bagca, Bakiye Goker; Bagheri, Hesam Saghaei
2017-11-01
Diabetes mellitus type 2 predisposes patients to various microvascular complications. In the current experiment, the potent role of diabetes mellitus was investigated on the content of VEGFR-1, -2, Tie-1 and -2, and Akt in human endothelial progenitor cells. The gene expression profile of mTOR and Hedgehog signaling pathways were measured by PCR array. The possible crosstalk between RTKs, mTOR and Hedgehog signaling was also studied by bioinformatic analysis. Endothelial progenitor cells were incubated with serum from normal and diabetic for 7days. Compared to non-treated cells, diabetic serum-induced cell apoptosis (~2-fold) and prohibited cell migration toward bFGF (p<0.001). ELISA analysis showed that diabetes exposed cells had increased abundance of Tie-1, -2 and VEGFR-2 and reduced amount of VEGFR-1 (p<0.0001) in diabetic cells. Western blotting showed a marked reduction in the protein level of Akt after cells exposure to serum from diabetic subjects (p<0.0001). PCR array revealed a significant stimulation of both mTOR and Hedgehog signaling pathways in diabetic cells (p<0.05). According to data from bioinformatic datasets, we showed VEGFR-1, -2 and Tie-2, but not Tie-1, are master regulators of angiogenesis. There is a crosstalk between RTKs and mTOR signaling by involving P62, GABARAPL1, and HTT genes. It seems that physical interaction and co-expression of Akt decreased the level of VEGFR-1 in diabetic cells. Regarding data from the present experiment, diabetic serum contributed to uncontrolled induction of both mTOR and Hedgehog signaling in endothelial progenitor cells. Diabetes mellitus induces mTOR pathway by involving receptor tyrosine kinases while Hedgehog stimulation is independent of these receptors. Copyright © 2017 Elsevier Inc. All rights reserved.
2003-06-01
californicus- _" -~ T ~ - 1" T - E I T Coho salmon Unarmoured three- spined stickleback I Tidewater goby 1 Eucyclogobius n e w b e p i ,.I...ENDANGERED Black-footed ferret (Mustela nigripes)"" Northern aplomado falcon (Falcofemoralis septentrionalis) Kuenzler hedgehog cachls (Echi...Empidonax traillii ertimus) Kuenzler hedgehog cactus (Echinocer~.~rendleri var. kuenzleri) Todsen’s pennyroyal (Hedeoma fodsenii) Sacramento
Understanding Airpower: Bonfire of the Fallacies
2009-03-01
Isaiah Berlin, The Hedgehog and the Fox: An Essay on Tolstoy’s View of History (New York: Mentor Books, 957), 24–25. 2. Carl H. Builder, The Masks of...University, December 2007), –3, http://www.aupress.au.af.mil/ ARI_Papers/GrayARI2.pdf. 62 0. Isaiah Berlin, The Hedgehog and the Fox, presents an...potential for disaster has always been severe for these elite troops. 54. See Richard B. Andres, “Deep Attack against Iraq,” in Thomas G. Mahnken
Chen, Hui-Xia; Ju, Hui-Dong; Li, Yang; Li, Liang
2017-12-20
In the present study, light and scanning electron microscopy (SEM) were used to further study the detailed morphology of Physaloptera clausa Rudolphi, 1819, based on the material collected from the Amur hedgehog E. amurensis Schrenk in China. The results revealed a few previously unreported morphological features and some morphological and morphometric variability between our specimens and the previous studies. The present supplementary morphological characters and morphometric data could help us to recognize this species more accurately.
The Role of the Sonic Hedgehog Pathway for Prostate Cancer Progression
2007-02-01
hepatocellular carcinomas : through transcriptional activation of the ligand Shh (Carcinogenesis 27: 1334-40, 2006). Second, our studies of Su(Fu...in hepatocellular carcinomas . Fig. 3 shows that the sonic hedgehog promoter activity is high in Huh7 cells but low in HepG2 cells. In the presence of... hepatocellular carcinomas and prostate cancer. LNCaP cells 0 50 100 150 200 250 300 Vector (-1800 to -200) (-680 to -200) R el at iv e lu ci fe ra
Ruiz Salas, Veronica; Alegre, Marta; Garcés, Joan Ramón; Puig, Lluis
2014-06-01
The hedgehog (Hh) signaling pathway has been identified as important to normal embryonic development in living organisms and it is implicated in processes including cell proliferation, differentiation and tissue patterning. Aberrant Hh pathway has been involved in the pathogenesis and chemotherapy resistance of different solid and hematologic malignancies. Basal cell carcinoma (BCC) and medulloblastoma are two well-recognized cancers with mutations in components of the Hh pathway. Vismodegib has recently approved as the first inhibitor of one of the components of the Hh pathway (smoothened). This review attempts to provide current data on the molecular pathways involved in the development of BCC and the therapeutic options available for the treatment of locally advanced and metastatic BCC, and the new targeted therapies in development.
Deubiquitinating enzymes in cancer stem cells: functions and targeted inhibition for cancer therapy.
Kaushal, Kamini; Antao, Ainsley Mike; Kim, Kye-Seong; Ramakrishna, Suresh
2018-06-01
The ability of cancers to evade conventional treatments, such as chemotherapy and radiation therapy, has been attributed to a subpopulation of cancer stem cells (CSCs). CSCs are regulated by mechanisms similar to those that regulate normal stem cells (NSCs), including processes involving ubiquitination and deubiquitination enzymes (DUBs) that regulate the expression of various factors, such as Notch, Wnt, Sonic Hedgehog (Shh), and Hippo. In this review, we discuss the roles of various DUBs involved in the regulation of core stem cell transcription factors and CSC-related proteins that are implicated in the modulation of cellular processes and carcinogenesis. In addition, we discuss the various DUB inhibitors that have been designed to target processes relevant to cancer and CSC maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Clonal cooperativity in heterogenous cancers
Zhou, Hengbo; Neelakantan, Deepika; Ford, Heide L.
2016-01-01
Tumor heterogeneity is a major obstacle to the development of effective therapies and is thus an important focus of cancer research. Genetic and epigenetic alterations, as well as altered tumor microenvironments, result in tumors made up of diverse subclones with different genetic and phenotypic characteristics. Intratumor heterogeneity enables competition, but also supports clonal cooperation via cell-cell contact or secretion of factors, resulting in enhanced tumor progression. Here, we summarize recent findings related to interclonal interactions within a tumor and the therapeutic implications of such interactions, with an emphasis on how different subclones collaborate with each other to promote proliferation, metastasis and therapy-resistance. Furthermore, we propose that disruption of clonal cooperation by targeting key factors (such as Wnt and Hedgehog, amongst others) can be an alternative approach to improving clinical outcomes. PMID:27582427
Mao, Suifang; Shah, Alok S; Moninger, Thomas O; Ostedgaard, Lynda S; Lu, Lin; Tang, Xiao Xiao; Thornell, Ian M; Reznikov, Leah R; Ernst, Sarah E; Karp, Philip H; Tan, Ping; Keshavjee, Shaf; Abou Alaiwa, Mahmoud H; Welsh, Michael J
2018-02-06
Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gα i and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses. Copyright © 2018 the Author(s). Published by PNAS.
Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation.
Kanayama, Masaki; Akiyama-Oda, Yasuko; Nishimura, Osamu; Tarui, Hiroshi; Agata, Kiyokazu; Oda, Hiroki
2011-10-11
During development segmentation is a process that generates a spatial periodic pattern. Peak splitting of waves of gene expression is a mathematically predicted, simple strategy accounting for this type of process, but it has not been well characterized biologically. Here we show temporally repeated splitting of gene expression into stripes that is associated with head axis growth in the spider Achaearanea embryo. Preceding segmentation, a wave of hedgehog homologue gene expression is observed to travel posteriorly during development stage 6. This stripe, co-expressing an orthodenticle homologue, undergoes two cycles of splitting and shifting accompanied by convergent extension, serving as a generative zone for the head segments. The two orthodenticle and odd-paired homologues are identified as targets of Hedgehog signalling, and evidence suggests that their activities mediate feedback to maintain the head generative zone and to promote stripe splitting in this zone. We propose that the 'stripe-splitting' strategy employs genetic components shared with Drosophila blastoderm subdivision, which are required for participation in an autoregulatory signalling network.
Anaplastic astrocytoma in the spinal cord of an African pygmy hedgehog (Atelerix albiventris).
Gibson, C J; Parry, N M A; Jakowski, R M; Eshar, D
2008-11-01
A 2-year-old, female hedgehog presented with an 8-month history of progressive, ascending paresis/paralysis and was tentatively diagnosed with wobbly hedgehog syndrome. She died awaiting further diagnostic tests, and the owners consented to postmortem examination. Grossly, the bladder was large and flaccid and the cervical and lumbar spinal cord were regionally enlarged, light grey, and friable with multifocal hemorrhages. The thoracic spinal cord was grossly normal. Microscopically all regions of the spinal cord had similar changes, although the cervical and lumbar sections were most severely affected. These regions were completely effaced by a moderately cellular infiltration of highly pleomorphic polygonal to spindle shaped cells, mineralization, and necrosis, which were most consistent with anaplastic astrocytoma. The thoracic spinal cord white matter was similarly infiltrated by the neoplastic cells, with perivascular extension into the otherwise normal grey matter. A diagnosis of anaplastic astrocytoma was confirmed using immunohistochemical stains that were positive for glial fibrillary acidic protein and S100.
Rib osteoblastic osteosarcoma in an African hedgehog (Atelerix albiventris).
Benoit-Biancamano, Marie-Odile; D'Anjou, Marc-André; Girard, Christiane; Langlois, Isabelle
2006-07-01
A 3-year-old African hedgehog (Atelerix albiventris) was presented to the Exotic Animal Clinic of the University of Montreal for evaluation of a mass growing on the right thoracic wall. The diagnostic workup, which included helical computed tomography, confirmed the presence of a large mass, originating from the right 7th rib, infiltrating the thoracic wall and cavity. The animal was euthanized due to the poor prognosis. At necropsy, a well-demarcated mass penetrated the thoracic wall and incorporated the 6th to 8th ribs. Cut sections of the tumor were white, glistening, firm, and gritty. Microscopically, it was composed of polyhedral to elongated cells with interspersed trabeculae of osteoid and large areas of coagulative necrosis. On the basis of histopathologic findings, a diagnosis of osteoblastic osteosarcoma was made. To the authors' knowledge, this is the first report of an osteoblastic osteosarcoma on the thoracic wall of an African hedgehog, as well as the first report of the use of helical computed tomography in that species.
KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes
Putoux, Audrey; Thomas, Sophie; Coene, Karlien L M; Davis, Erica E; Alanay, Yasemin; Ogur, Gönül; Uz, Elif; Buzas, Daniela; Gomes, Céline; Patrier, Sophie; Bennett, Christopher L; Elkhartoufi, Nadia; Frison, Marie-Hélène Saint; Rigonnot, Luc; Joyé, Nicole; Pruvost, Solenn; Utine, Gulen Eda; Boduroglu, Koray; Nitschke, Patrick; Fertitta, Laura; Thauvin-Robinet, Christel; Munnich, Arnold; Cormier-Daire, Valérie; Hennekam, Raoul; Colin, Estelle; Akarsu, Nurten Ayse; Bole-Feysot, Christine; Cagnard, Nicolas; Schmitt, Alain; Goudin, Nicolas; Lyonnet, Stanislas; Encha-Razavi, Férechté; Siffroi, Jean-Pierre; Winey, Mark; Katsanis, Nicholas; Gonzales, Marie; Vekemans, Michel; Beales, Philip L; Attié-Bitach, Tania
2012-01-01
KIF7, the human ortholog of Drosophila Costal2, is a key component of the Hedgehog signaling pathway. Here we report mutations in KIF7 in individuals with hydrolethalus and acrocallosal syndromes, two multiple malformation disorders with overlapping features that include polydactyly, brain abnormalities and cleft palate. Consistent with a role of KIF7 in Hedgehog signaling, we show deregulation of most GLI transcription factor targets and impaired GLI3 processing in tissues from individuals with KIF7 mutations. KIF7 is also a likely contributor of alleles across the ciliopathy spectrum, as sequencing of a diverse cohort identified several missense mutations detrimental to protein function. In addition, in vivo genetic interaction studies indicated that knockdown of KIF7 could exacerbate the phenotype induced by knockdown of other ciliopathy transcripts. Our data show the role of KIF7 in human primary cilia, especially in the Hedgehog pathway through the regulation of GLI targets, and expand the clinical spectrum of ciliopathies. PMID:21552264
LncRNA EGOT Promotes Tumorigenesis Via Hedgehog Pathway in Gastric Cancer.
Peng, Wei; Wu, Jianzhong; Fan, Hong; Lu, Jianwei; Feng, Jifeng
2017-12-05
Gastric cancer (GC) is one of the mostly terminal malignancies with poor prognosis. Long noncoding RNA EGOT (EGOT) acts as a crucial regulator in the breast cancer. However, the function of EGOT in GC remains unknown. This work was to explore the clinical value and biological significance of EGOT in GC. EGOT levels in GC tissue and cell were analyzed by qRT-PCR. After knockdown of EGOT, GC cell growth and cycle progression were detected. The expression of EGOT was observably elevated in GC. Upregulation of EGOT was related with lymphatic metastasis and TNM stage. In addition, knockdown of EGOT by siRNA could significantly inhibit GC cell proliferation and arrest cycle progression in G1 phase. Moreover, EGOT mediated cyclin D1 expression in GC cells which was regulated by Hedgehog pathway. Further, loss of EGOT downregulated Hedgehog signaling pathway in GC cells. EGOT functions as an oncogene in GC, and may be useful as a conceivable diagnostic and prognostic biomarker for GC tumorigenesis.
Gedunin inhibits pancreatic cancer by altering sonic hedgehog signaling pathway
Subramani, Ramadevi; Gonzalez, Elizabeth; Nandy, Sushmita Bose; Arumugam, Arunkumar; Camacho, Fernando; Medel, Joshua; Alabi, Damilola; Lakshmanaswamy, Rajkumar
2017-01-01
INTRODUCTION The lack of efficient treatment options for pancreatic cancer highlights the critical need for the development of novel and effective chemotherapeutic agents. The medicinal properties found in plants have been used to treat many different illnesses including cancers. This study focuses on the anticancer effects of gedunin, a natural compound isolated from Azadirachta indica. METHODS Anti–proliferative effect of gedunin on pancreatic cancer cells was assessed using MTS assay. We used matrigel invasion assay, scratch assay, and soft agar colony formation assay to measure the anti–metastatic potential of gedunin. Immunoblotting was performed to analyze the effect of gedunin on the expression of key proteins involved in pancreatic cancer growth and metastasis. Gedunin induced apoptosis was measured using flow cytometric analysis. To further validate, xenograft studies with HPAC cells were performed. RESULTS Gedunin treatment is highly effective in inducing death of pancreatic cancer cells via intrinsic and extrinsic mediated apoptosis. Our data further indicates that gedunin inhibited metastasis of pancreatic cancer cells by decreasing their EMT, invasive, migratory and colony formation capabilities. Gedunin treatment also inhibited sonic hedgehog signaling pathways. Further, experiments with recombinant sonic hedgehog protein and Gli inhibitor (Gant-61) demonstrated that gedunin induces its anti–metastatic effect through inhibition of sonic hedgehog signaling. The anti–cancer effect of gedunin was further validated using xenograft mouse model. CONCLUSION Overall, our data suggests that gedunin could serve as a potent anticancer agent against pancreatic cancers. PMID:26988754
A study of peripheral blood in hedgehogs in Turkey.
Ozparlak, Haluk; Celik, Ilhami; Sur, Emrah; Ozaydin, Tuğba; Arslan, Atilla
2011-09-01
The aim of this study was to determine diameters of blood cells, differential counts of peripheral blood leukocytes, alpha-naphthyl acetate esterase (ANAE), acid phosphatase (ACP-ase) activity of some leukocyte types, and enzymatic positivity percentages of peripheral blood lymphocytes in two hedgehogs species, Hemiechinus auritus, the long-eared hedgehog, and Erinaceus concolor, the southern white-breasted hedgehog. Air-dried peripheral blood smears were stained with May-Grünwald-Giemsa stain. ANAE and ACP-ase were stained in glutaraldehyde-acetone-fixed smears. ANAE-positive lymphocytes displayed a dot-like positivity pattern characterized with 1-5 reddish brown cytoplasmic granules, whereas ACP-ase positive lymphocytes displayed a dot-like positivity pattern characterized with 1-3 pinkish cytoplasmic granules. Monocytes gave a diffuse and strong reaction while neutrophils displayed a weak positive reaction for ANAE and ACP-ase. No difference was observed in mean diameters of peripheral blood cells of these species. It was found that lymphocytes made up the majority (64.3% and 65.5%) of leukocytes, followed by neutrophils (23.9% and 23.3%), eosinophils (9.0% and 7.6%), monocytes (1.8% and 2.3%), and basophils (1.0% and 1.3%) in H. auritus and E. concolor, respectively. Mean ANAE positivity oflymphocytes was 36.6% and 51.3% and ACP-ase positivity was 32.1% and 37.5% for H. auritus and E. concolor, respectively. The ANAE positivity of lymphocytes in E. concolor was significantly (P < 0.05) higher than that of H. auritus.
Desouza, Lynette A; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E; Kottmann, Andreas H; Tole, Shubha; Vaidya, Vidita A
2011-05-01
Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T₃ administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T₃ treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T₃ administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.
Singh, R R; Kunkalla, K; Qu, C; Schlette, E; Neelapu, S S; Samaniego, F; Vega, F
2011-12-08
Successful treatment of diffuse large B-cell lymphoma (DLBCL) is frequently hindered by the development of resistance to conventional chemotherapy resulting in disease relapse and high mortality. High expression of antiapoptotic and/or drug transporter proteins induced by oncogenic signaling pathways has been implicated in the development of chemoresistance in cancer. Previously, our studies showed that high expression of adenosine triphosphate-binding cassette drug transporter ABCG2 in DLBCL correlated inversely with disease- and failure-free survival. In this study, we have implicated activated hedgehog (Hh) signaling pathway as a key factor behind high ABCG2 expression in DLBCL through direct upregulation of ABCG2 gene transcription. We have identified a single binding site for GLI transcription factors in the ABCG2 promoter and established its functionality using luciferase reporter, site-directed mutagenesis and chromatin-immunoprecipitation assays. Furthermore, in DLBCL tumor samples, significantly high ABCG2 and GLI1 levels were found in DLBCL tumors with lymph node involvement in comparison with DLBCL tumor cells collected from pleural and/or peritoneal effusions. This suggests a role for the stromal microenvironment in maintaining high levels of ABCG2 and GLI1. Accordingly, in vitro co-culture of DLBCL cells with HS-5 stromal cells increased ABCG2 mRNA and protein levels by paracrine activation of Hh signaling. In addition to ABCG2, co-culture of DLBCL cells with HS-5 cells also resulted in increase expression of the antiapoptotic proteins BCL2, BCL-xL and BCL2A1 and in induced chemotolerance to doxorubicin and methotrexate, drugs routinely used for the treatment of DLBCL. Similarly, activation of Hh signaling in DLBCL cell lines with recombinant Shh N-terminal peptide resulted in increased expression of BCL2 and ABCG2 associated with increased chemotolerance. Finally, functional inhibition of ABCG2 drug efflux activity with fumitremorgin C or inhibition of Hh signaling with cyclopamine-KAAD abrogated the stroma-induced chemotolerance suggesting that targeting ABCG2 and Hh signaling may have therapeutic value in overcoming chemoresistance in DLBCL.
Mohan, Shalini V; Chang, Anne Lynn S
2014-06-01
Precision medicine and precision therapeutics is currently in its infancy with tremendous potential to improve patient care by better identifying individuals at risk for skin cancer and predict tumor responses to treatment. This review focuses on the Hedgehog signaling pathway, its critical role in the pathogenesis of basal cell carcinoma, and the emergence of targeted treatments for advanced basal cell carcinoma. Opportunities to utilize precision medicine are outlined, such as molecular profiling to predict basal cell carcinoma response to targeted therapy and to inform therapeutic decisions.
Anatomy and Disorders of the Oral Cavity of Miscellaneous Exotic Companion Mammals.
Lennox, Angela M; Miwa, Yasutsugu
2016-09-01
Unusual mammalian species such as the hedgehog, sugar glider, and miniature pig are encountered with increasing frequency in exotic companion medicine. Disease of the oral cavity can occur in any species; although occasionally encountered in exotic mammalian species, it is rarely described in the literature. Anatomy and dentition vary significantly; diagnosis and treatment are often extrapolated from that known in other species. The best-documented disease of the oral cavity in this group of species is oral neoplasia in the hedgehog. Copyright © 2016 Elsevier Inc. All rights reserved.
Lowden, L R; Davies, J L
2016-07-01
A malignant neuroendocrine tumour (carcinoid) of the spleen was diagnosed on post-mortem examination of a 3-year-old, male African pygmy hedgehog (Atelerix albiventris). The animal presented with a history of inappetence, weight loss, lethargy, a wide-based gait and a palpable abdominal mass. The gross pathological, histopathological, histochemical and immunohistochemical findings are described. Primary splenic carcinoids are reported rarely in the human medical literature and this is believed to be the first report in a non-human animal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genotypic and phenotypic analysis of 396 individuals with mutations in Sonic Hedgehog.
Solomon, Benjamin D; Bear, Kelly A; Wyllie, Adrian; Keaton, Amelia A; Dubourg, Christele; David, Veronique; Mercier, Sandra; Odent, Sylvie; Hehr, Ute; Paulussen, Aimee; Clegg, Nancy J; Delgado, Mauricio R; Bale, Sherri J; Lacbawan, Felicitas; Ardinger, Holly H; Aylsworth, Arthur S; Bhengu, Ntombenhle Louisa; Braddock, Stephen; Brookhyser, Karen; Burton, Barbara; Gaspar, Harald; Grix, Art; Horovitz, Dafne; Kanetzke, Erin; Kayserili, Hulya; Lev, Dorit; Nikkel, Sarah M; Norton, Mary; Roberts, Richard; Saal, Howard; Schaefer, G B; Schneider, Adele; Smith, Erika K; Sowry, Ellen; Spence, M Anne; Shalev, Stavit A; Steiner, Carlos E; Thompson, Elizabeth M; Winder, Thomas L; Balog, Joan Z; Hadley, Donald W; Zhou, Nan; Pineda-Alvarez, Daniel E; Roessler, Erich; Muenke, Maximilian
2012-07-01
Holoprosencephaly (HPE), the most common malformation of the human forebrain, may result from mutations in over 12 genes. Sonic Hedgehog (SHH) was the first such gene discovered; mutations in SHH remain the most common cause of non-chromosomal HPE. The severity spectrum is wide, ranging from incompatibility with extrauterine life to isolated midline facial differences. To characterise genetic and clinical findings in individuals with SHH mutations. Through the National Institutes of Health and collaborating centres, DNA from approximately 2000 individuals with HPE spectrum disorders were analysed for SHH variations. Clinical details were examined and combined with published cases. This study describes 396 individuals, representing 157 unrelated kindreds, with SHH mutations; 141 (36%) have not been previously reported. SHH mutations more commonly resulted in non-HPE (64%) than frank HPE (36%), and non-HPE was significantly more common in patients with SHH than in those with mutations in the other common HPE related genes (p<0.0001 compared to ZIC2 or SIX3). Individuals with truncating mutations were significantly more likely to have frank HPE than those with non-truncating mutations (49% vs 35%, respectively; p=0.012). While mutations were significantly more common in the N-terminus than in the C-terminus (including accounting for the relative size of the coding regions, p=0.00010), no specific genotype-phenotype correlations could be established regarding mutation location. SHH mutations overall result in milder disease than mutations in other common HPE related genes. HPE is more frequent in individuals with truncating mutations, but clinical predictions at the individual level remain elusive.
2013-01-01
Background Production and wild animals are major sources of human salmonellosis and animals raised for food also play an important role in transmission of antimicrobial resistant Salmonella strains to humans. Furthermore, in sub-Saharan Africa non-typhoidal Salmonella serotypes are common bloodstream isolates in febrile patients. Yet, little is known about the environmental reservoirs and predominant modes of transmission of these pathogens. The purpose of this study was to discover potential sources and distribution vehicles of Salmonella by isolating strains from apparently healthy slaughtered food animals and wild hedgehogs and by determining the genetic relatedness between the strains and human isolates. For this purpose, 729 feces samples from apparently healthy slaughtered cattle (n = 304), poultry (n = 350), swine (n = 50) and hedgehogs (n = 25) were examined for the presence of Salmonella enterica in Burkina Faso. The isolates were characterized by serotyping, antimicrobial-susceptibility testing, phage typing, and pulsed-field gel electrophoresis (PFGE) with XbaI and BlnI restriction enzymes. Results Of the 729 feces samples, 383 (53%) contained Salmonella, representing a total of 81 different serotypes. Salmonella was present in 52% of the cattle, 55% of the poultry, 16% of the swine and 96% of the hedgehog feces samples. Antimicrobial resistance was detected in 14% of the isolates. S. Typhimurium isolates from poultry and humans (obtained from a previous study) were multiresistant to the same antimicrobials (ampicillin, chloramphenicol, streptomycin, sulfonamides and trimethoprim), had the same phage type DT 56 and were closely related in PFGE. S. Muenster isolates from hedgehogs had similar PFGE patterns as the domestic animals. Conclusions Based on our results it seems that production and wild animals can share the same Salmonella serotypes and potentially transmit some of them to humans. As the humans and animals often live in close vicinity in Africa and the hygiene control of the meat retail chain is defective, high Salmonella carriage rates of the animals can pose a major public health risk in Burkina Faso. This underlines the necessity for a joint and coordinated surveillance and monitoring programs for salmonellosis in Africa. PMID:24215206
Abu Baker, Mohammad A; Reeve, Nigel; Conkey, April A T; Macdonald, David W; Yamaguchi, Nobuyuki
2017-01-01
Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀) and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀). Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g) in comparison to the natural desert area (376.37±12.71SE g). Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE) for males and 42 ha (±11SE) for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE) for males and 150 ha (±29 SE) for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters) influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats), whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle East where the transformation from dry lands to 'islands of fertility' is often extreme.
Reeve, Nigel; Conkey, April A. T.; Macdonald, David W.
2017-01-01
Degradation and alteration of natural environments because of agriculture and other land uses have major consequences on vertebrate populations, particularly on spatial organization and movement patterns. We used GPS tracking to study the effect of land use and sex on the home range size and movement of a typical model species, the Ethiopian hedgehogs. We used free-ranging hedgehogs from two areas with different land use practices: 24 from an area dominated by irrigated farms (12 ♂♂, 12 ♀♀) and 22 from a natural desert environment within a biosphere reserve (12 ♂♂, 10 ♀♀). Animals were significantly heavier in the resource-rich irrigated farms area (417.71 ±12.77SE g) in comparison to the natural desert area (376.37±12.71SE g). Both habitat and sex significantly influenced the home range size of hedgehogs. Home ranges were larger in the reserve than in the farms area. Total home ranges averaged 103 ha (±17 SE) for males and 42 ha (±11SE) for females in the farms area, but were much larger in the reserve averaging 230 ha (±33 SE) for males and 150 ha (±29 SE) for females. The home ranges of individuals of both sexes overlapped. Although females were heavier than males, body weight had no effect on home range size. The results suggest that resources provided in the farms (e.g. food, water, and shelters) influenced animal density and space use. Females aggregated around high-resource areas (either farms or rawdhats), whereas males roamed over greater distances, likely in search of mating opportunities to maximize reproductive success. Most individual home ranges overlapped with many other individuals of either sex, suggesting a non-territorial, promiscuous mating. Patterns of space use and habitat utilization are key factors in shaping aspects of reproductive biology and mating system. To minimize the impacts of agriculture on local wildlife, we recommend that biodiversity-friendly agro-environmental schemes be introduced in the Middle East where the transformation from dry lands to ‘islands of fertility’ is often extreme. PMID:28746381
Adult neurogenesis in the hedgehog (Erinaceus concolor) and mole (Talpa europaea).
Bartkowska, K; Turlejski, K; Grabiec, M; Ghazaryan, A; Yavruoyan, E; Djavadian, R L
2010-01-01
We investigated adult neurogenesis in two species of mammals belonging to the superorder Laurasiatheria, the southern white-breasted hedgehog (order Erinaceomorpha, species Erinaceus concolor) from Armenia and the European mole (order Soricomorpha, species Talpa europaea) from Poland. Neurogenesis in the brain of these species was examined immunohistochemically, using the endogenous markers doublecortin (DCX) and Ki-67, which are highly conserved among species. We found that in both the hedgehog and mole, like in the majority of earlier investigated mammals, neurogenesis continues in the subventricular zone (SVZ) of the lateral ventricles and in the dentate gyrus (DG). In the DG of both species, DCX-expressing cells and Ki-67-labeled cells were present in the subgranular and granular layers. In the mole, a strong bundle of DCX-labeled processes, presumably axons of granule cells, was observed in the center of the hilus. Proliferating cells (expressing Ki-67) were identified in the SVZ of lateral ventricles of both species, but neuronal precursor cells (expressing DCX) were also observed in the olfactory bulb (OB). In both species, the vast majority of cells expressing DCX in the OB were granule cells with radially orientated dendrites, although some periglomerular cells surrounding the glomeruli were also labeled. In addition, this paper is the first to show DCX-labeled fibers in the anterior commissure of the hedgehog and mole. These fibers must be axons of new neurons making interhemispheric connections between the two OB or piriform (olfactory) cortices. DCX-expressing neurons were observed in the striatum and piriform cortex of both hedgehog and mole. We postulate that in both species a fraction of cells newly generated in the SVZ migrates along the rostral migratory stream to the piriform cortex. This pattern of migration resembles that of the 'second-wave neurons' generated during embryonal development of the neocortex rather than the pattern observed during development of the allocortex. In spite of the presence of glial cells alongside DCX-expressing cells, we never found colocalization of DCX protein with a glial marker (vimentin or glial fibrillary acidic protein). Copyright © 2010 S. Karger AG, Basel.
Thorpe, Stephen D.; Gambassi, Silvia; Thompson, Clare L.; Chandrakumar, Charmilie
2017-01-01
Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2‐dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog‐related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU. PMID:28158906
Vermeulen, Frouke; D'Havé, Helga; Mubiana, Valentine K; Van den Brink, Nico W; Blust, Ronny; Bervoets, Lieven; De Coen, Wim
2009-02-15
Hair has been proven to be suitable for non-destructive and non-invasive exposure assessments in human and mammal populations. A previous study with European hedgehog (Erinaceus europaeus) showed that, for some metals, hair and spine metal concentrations were positively correlated to levels in liver, kidney and muscle. Although blood has been studied in a wide variety of species, the relationship between hair and blood metal concentrations has yet to be quantified in many mammalian species. Tissue concentrations from hedgehogs residing in a park with known metal pollution were compared with those from a reference park and correlations between contaminant levels in hair and blood, and spines and blood were studied. Moreover, the relative distribution of arsenic and metals in hair, spines and blood was determined. Elevated concentrations were found in hedgehogs residing in the polluted site for As (8.2 microg/g, 6.3 microg/g, 3.6 microg/ml), Cd (0.48 microg/g, 0.17 microg/g, 0.02 microg/ml) and Pb (7.6 microg/g, 7.3 microg/g, 54 microg/ml), in hair, spines and blood respectively. Positive correlations were identified for exposure levels between hair and blood as well as between spines and blood for three elements (As, Cd, and Pb), whereas a negative correlation was found between Cr concentrations in spines and blood. In conclusion, hair and spines can be used to monitor blood concentrations of some metals, although more data are needed on uptake from the food chain and on the incorporation dynamics of these contaminants.
Ferrer, I; Zujar, M J; Admella, C; Alcantara, S
1992-01-01
To investigate the morphology and distribution of nonpyramidal neurons in the brain of insectivores, parvalbumin and calbindin 28 kDa immunoreactivity was examined in the cerebral cortex of the hedgehog (Erinaceus europaeus). Parvalbumin-immunoreactive cells were found in all layers of the isocortex, but in contrast to other mammals, a laminar organisation or specific regional distribution was not seen. Characteristic parvalbumin-immunoreactive neurons were multipolar cells with large ascending and descending dendrites extending throughout several layers. Calbindin-immunoreactive neurons were similar to those found in other species, although appearing in smaller numbers than in the cerebral cortex of more advanced mammals. The morphology and distribution of parvalbumin- and calbindin-immunoreactive cells in the piriform and entorhinal cortices were similar in hedgehogs and rodents. Parvalbumin-immunoreactive cells in the hippocampal complex were pyramidal-like and bitufted neurons, which were mainly found in the stratum oriens and stratum pyramidale of the hippocampus, and in the stratum moleculare and hilus of the fascia dentata. Heavily stained cells were found in the deep part of the stratum granulare. Intense calbindin immunoreactivity occurred mainly in the granule cell and molecular layers of the dentate gyrus and in the mossy fibre layer. The most outstanding feature in the hippocampal complex of the hedgehog was the extension of calbindin immunoreactivity to CA1 field of the hippocampus, suggesting, in agreement with other reports, that mossy fibres can establish synaptic contacts throughout the pyramidal cell layer. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1452472
[Effect of hedgehog hydnum on the delay of fatigue in mice].
Lu, Y H; Xin, C L; Zhou, Y F; Liu, X W; Chi, J W; Chang, X
1996-02-01
Two groups of mice were fed with either hedgehog hydnum powder or extract for sixty days. For the assay of fatigue, the activity of serum lactate dehydrogenase, the serum urea nitrogen content, blood lactic acid, hepatic and muscular glycogen, and the physical stamina of the mice were determined. The activity of serum lactate dehydrogenase and the hepatic and muscular glycogen content in the experimental mice were evidently higher than that in the control mice (P < 0.05 or P < 0.01). After exercise, the increase in blood lactic acid and serum urea nitrogen in the experimental mice was significantly lower than that in the control mice (P < 0.05 or P < 0.01), but the rate of elimination of blood lactic acid in the experimental mice was significantly higher than that in the control mice (P < 0.05). In the physical stamina swimming, the experimental mice drowned after a longer period of time than the control mice (P < 0.05). In conclusion hedgehog hydnum had a significant effect on raising physical stamina and delaying fatigue in mice.
Warzecha, Jörg; Göttig, Stephan; Brüning, Christian; Lindhorst, Elmar; Arabmothlagh, Mohammad; Kurth, Andreas
2006-10-01
Sonic hedgehog (Shh) protein is known to be an important signaling protein in early embryonic development. Also, Shh is involved in the induction of early cartilaginous differentiation of mesenchymal cells in the limb and in the spine. The impact of Shh on adult stem cells, human bone marrow-derived mesenchymal stem cells (MSCs), was tested. The MSCs were treated either with recombinant Sonic hedgehog protein (r-Shh) or with transforming growth factor-beta 1 (TGF-beta(1)) as a positive control in vitro for 3 weeks. The effects on cartilaginous differentiation and proliferation were assayed. MSCs when treated with either Shh or TGF-beta(1) showed expression of cartilage markers aggrecan, Sox9, CEP-68, and collagen type II and X within 3 weeks. Only r-Shh-treated cells showed a very strong cell proliferation and much higher BrdU incorporation in cell assay systems. These are the first data that indicate an important role of Shh for the induction of cartilage production by MSCs in vitro.
Multicentric epitheliotropic T-cell lymphoma in an African hedgehog (Atelerix albiventris).
Chung, Tae-Ho; Kim, Hyo-Jin; Choi, Ul-Soo
2014-12-01
A 2-year-old female African hedgehog was presented with a 5-month history of pruritus, and diffuse spine and hair loss. A dermatologic examination revealed erythema, excoriation, scales, and crusting affecting the face, flanks, forelimbs, hindlimbs, and dorsal and ventral abdomen. Fine-needle aspiration was performed and skin biopsies were taken from several lesions for cytologic and histologic evaluation. The aspirates yielded smears characterized by a monomorphic population of medium-sized to large lymphocytes with scant to moderate amounts of clear to moderately basophilic cytoplasm and distinct nucleoli along with a low number of cytoplasmic fragments. On histopathologic examination, there were dense dermal lymphoid infiltrates invading the dermis and a monomorphic population of round cells that had infiltrated the overlying epidermis. Epitheliotropic cutaneous lymphoma was diagnosed based on morphologic features. Additional immunochemical analysis using anti-CD3 and anti-CD79a antibodies revealed strong CD3 expression by the tumor cells, which confirmed epitheliotropic cutaneous T-cell lymphoma. This is the first description of a multicentric pattern of epitheliotropic cutaneous T-cell lymphoma in an African hedgehog. © 2014 American Society for Veterinary Clinical Pathology.
A new role for Hedgehogs in juxtacrine signaling.
Pettigrew, Christopher A; Asp, Eva; Emerson, Charles P
2014-02-01
The Hedgehog pathway plays important roles in embryonic development, adult stem cell maintenance and tumorigenesis. In mammals these effects are mediated by Sonic, Desert and Indian Hedgehog (Shh, Dhh and Ihh). Shh undergoes autocatalytic cleavage and dual lipidation prior to secretion and forming a response gradient. Post-translational processing and secretion of Dhh and Ihh ligands has not previously been investigated. This study reports on the synthesis, processing, secretion and signaling activities of SHH, IHH and DHH preproteins expressed in cultured cells, providing unexpected evidence that DHH does not undergo substantial autoprocessing or secretion, and does not function in paracrine signaling. Rather, DHH functions as a juxtacrine signaling ligand to activate a cell contact-mediated HH signaling response, consistent with its localised signaling in vivo. Further, the LnCAP prostate cancer cell, when induced to express endogenous DHH and SHH, is active only in juxtacrine signaling. Domain swap studies reveal that the C-terminal domain of HH regulates its processing and secretion. These findings establish a new regulatory role for HHs in cell-mediated juxtacrine signaling in development and cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.
Castillo-Azofeifa, David; Losacco, Justin T; Salcedo, Ernesto; Golden, Erin J; Finger, Thomas E; Barlow, Linda A
2017-09-01
The integrity of taste buds is intimately dependent on an intact gustatory innervation, yet the molecular nature of this dependency is unknown. Here, we show that differentiation of new taste bud cells, but not progenitor proliferation, is interrupted in mice treated with a hedgehog (Hh) pathway inhibitor (HPI), and that gustatory nerves are a source of sonic hedgehog (Shh) for taste bud renewal. Additionally, epithelial taste precursor cells express Shh transiently, and provide a local supply of Hh ligand that supports taste cell renewal. Taste buds are minimally affected when Shh is lost from either tissue source. However, when both the epithelial and neural supply of Shh are removed, taste buds largely disappear. We conclude Shh supplied by taste nerves and local taste epithelium act in concert to support continued taste bud differentiation. However, although neurally derived Shh is in part responsible for the dependence of taste cell renewal on gustatory innervation, neurotrophic support of taste buds likely involves a complex set of factors. © 2017. Published by The Company of Biologists Ltd.
Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics
Maschinot, C.A.; Pace, J.R.; Hadden, M.K.
2016-01-01
The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919
Ricolo, Delia; Butí, Elisenda; Araújo, Sofia J
2015-08-01
We report that the morphogen Hedgehog (Hh) is an axonal chemoattractant in the midline of Drosophila melanogaster embryos. Hh is present in the ventral nerve cord during axonal guidance and overexpression of hh in the midline causes ectopic midline crossing of FasII-positive axonal tracts. In addition, we show that Hh influences axonal guidance via a non-canonical signalling pathway dependent on Ptc. Our results reveal that the Hh pathway cooperates with the Netrin/Frazzled pathway to guide axons through the midline in invertebrates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy
Pak, Ekaterina; Segal, Rosalind A.
2016-01-01
Summary The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly-regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights on regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies. PMID:27554855
Zoonoses of ferrets, hedgehogs, and sugar gliders.
Pignon, Charly; Mayer, Jörg
2011-09-01
With urbanization, people live in close proximity to their pets. People often share their living quarters and furniture, and this proximity carries a new potential for pathogen transmission. In addition to the change in lifestyle with our pets, new exotic pets are being introduced to the pet industry regularly. Often, we are unfamiliar with specific clinical signs of diseases in these new exotic pets or the routes of transmission of pathogens for the particular species. This article reviews zoonoses that occur naturally in ferrets, hedgehogs, and sugar gliders, discussing the occurrence and clinical symptoms of these diseases in humans.
Generalized hedgehog ansatz and Gribov copies in regions with nontrivial topologies
NASA Astrophysics Data System (ADS)
Canfora, Fabrizio; Salgado-Rebolledo, Patricio
2013-02-01
In this paper the arising of Gribov copies both in Landau and Coulomb gauges in regions with nontrivial topologies but flat metric, (such as closed tubes S1×D2, or R×T2) will be analyzed. Using a novel generalization of the hedgehog ansatz beyond spherical symmetry, analytic examples of Gribov copies of the vacuum will be constructed. Using such ansatz, we will also construct the elliptic Gribov pendulum. The requirement of absence of Gribov copies of the vacuum satisfying the strong boundary conditions implies geometrical constraints on the shapes and sizes of the regions with nontrivial topologies.
Maughan, Benjamin L; Suzman, Daniel L; Luber, Brandon; Wang, Hao; Glavaris, Stephanie; Hughes, Robert; Sullivan, Rana; Harb, Rana; Boudadi, Karim; Paller, Channing; Eisenberger, Mario; Demarzo, Angelo; Ross, Ashely; Antonarakis, Emmanuel S
2016-12-01
Hedgehog (Hh) pathway signaling has been implicated in prostate cancer tumorigenesis and metastatic development and may be upregulated even further in the castration-resistant state. We hypothesized that antagonism of the Hh pathway with vismodegib in men with metastatic castration-resistant prostate cancer (mCRPC) would result in pathway engagement, inhibition and perhaps induce measurable clinical responses in patients. This is a single-arm study of oral daily vismodegib in men with mCRPC. All patients were required to have biopsies of the tumor and skin (a surrogate tissue) at baseline and after 4 weeks of therapy. Ten patients were planned for enrollment. The primary outcome was the pharmacodynamic assessment of Gli1 mRNA suppression with vismodegib in tumor tissue. Secondary outcomes included PSA response rates, progression-free survival (PFS), overall survival (OS) and safety. Nine patients were enrolled. Gli1 mRNA was significantly suppressed by vismodegib in both tumor tissue (4/7 evaluable biopsies, 57%) and benign skin biopsies (6/8 evaluable biopsies, 75%). The median number of treatment cycles completed was three, with a median PFS of 1.9 months (95% CI 1.3, NA), and a median OS of 7.04 months (95% CI 3.4, NA). No patient achieved a PSA reduction or a measurable tumor response. Safety data were consistent with the known toxicities of vismodegib. Hh signaling, as measured by Gli1 mRNA expression in mCRPC tissues, was suppressed with vismodegib in the majority of patients. Despite this pharmacodynamic response that indicated target inhibition in some patients, there was no apparent signal of clinical activity. Vismodegib will not be developed further as monotherapy in mCRPC.
El‐Agroudy, Nermeen N; El‐Naga, Reem N; El‐Razeq, Rania Abd
2016-01-01
Background and Purpose Liver fibrosis is one of the leading causes of morbidity and mortality worldwide with very limited therapeutic options. Given the pivotal role of activated hepatic stellate cells in liver fibrosis, attention has been directed towards the signalling pathways underlying their activation and fibrogenic functions. Recently, the hedgehog (Hh) signalling pathway has been identified as a potentially important therapeutic target in liver fibrosis. The present study was designed to explore the antifibrotic effects of the potent Hh signalling inhibitor, forskolin, and the possible molecular mechanisms underlying these effects. Experimental Approach Male Sprague‐Dawley rats were treated with either CCl4 and/or forskolin for 6 consecutive weeks. Serum hepatotoxicity markers were determined, and histopathological evaluation was performed. Hepatic fibrosis was assessed by measuring α‐SMA expression and collagen deposition by Masson's trichrome staining and hydroxyproline content. The effects of forskolin on oxidative stress markers (GSH, GPx, lipid peroxides), inflammatory markers (NF‐κB, TNF‐α, COX‐2, IL‐1β), TGF‐β1 and Hh signalling markers (Ptch‐1, Smo, Gli‐2) were also assessed. Key Results Hepatic fibrosis induced by CCl4 was significantly reduced by forskolin, as indicated by decreased α‐SMA expression and collagen deposition. Forskolin co‐treatment significantly attenuated oxidative stress and inflammation, reduced TGF‐β1 levels and down‐regulated mRNA expression of Ptch‐1, Smo and Gli‐2 through cAMP‐dependent PKA activation. Conclusion and Implications In our model, forskolin exerted promising antifibrotic effects which could be partly attributed to its antioxidant and anti‐inflammatory effects, as well as to its inhibition of Hh signalling, mediated by cAMP–dependent activation of PKA. PMID:27590029
Desouza, Lynette A.; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E.; Kottmann, Andreas H.; Tole, Shubha
2011-01-01
Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T3 administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh+/LacZ mice. Further, acute T3 treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T3 administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone. PMID:21363934
Specific Inhibition of the transcription factor Ci by a Cobalt(III)-Schiff base-DNA conjugate
Hurtado, Ryan R.; Harney, Allison S.; Heffern, Marie C.; Holbrook, Robert J.; Holmgren, Robert A.; Meade, Thomas J.
2012-01-01
We describe the use of Co(III) Schiff base-DNA conjugates, a versatile class of research tools that target C2H2 transcription factors, to inhibit the Hedgehog (Hh) pathway. In developing mammalian embryos, Hh signaling is critical for the formation and development of many tissues and organs. Inappropriate activation of the Hedgehog (Hh) pathway has been implicated in a variety of cancers including medulloblastomas and basal cell carcinomas. It is well known that Hh regulates the activity of the Gli family of C2H2 zinc finger transcription factors in mammals. In Drosophila the function of the Gli proteins is performed by a single transcription factor with an identical DNA binding consensus sequence, Cubitus Interruptus (Ci). We have demonstrated previously that conjugation of a specific 17 base-pair oligonucleotide to a Co(III) Schiff base complex results in a targeted inhibitor of the Snail family C2H2 zinc finger transcription factors. Modification of the oligonucleotide sequence in the Co(III) Schiff base-DNA conjugate to that of Ci’s consensus sequence (Co(III)-Ci) generates an equally selective inhibitor of Ci. Co(III)-Ci irreversibly binds the Ci zinc finger domain and prevents it from binding DNA in vitro. In a Ci responsive tissue culture reporter gene assay, Co(III)-Ci reduces the transcriptional activity of Ci in a concentration dependent manner. In addition, injection of wild-type Drosophila embryos with Co(III)-Ci phenocopies a Ci loss of function phenotype, demonstrating effectiveness in vivo. This study provides evidence that Co(III) Schiff base-DNA conjugates are a versatile class of specific and potent tools for studying zinc finger domain proteins and have potential applications as customizable anti-cancer therapeutics. PMID:22214326
Billings, Paul C; Pacifici, Maurizio
2015-01-01
Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.
Sonic Hedgehog Signaling in Limb Development
Tickle, Cheryll; Towers, Matthew
2017-01-01
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs. PMID:28293554
Hammond, Katherine L.; Whitfield, Tanya T.
2011-01-01
Specification of the otic anteroposterior axis is one of the earliest patterning events during inner ear development. In zebrafish, Hedgehog signalling is necessary and sufficient to specify posterior otic identity between the 10 somite (otic placode) and 20 somite (early otic vesicle) stages. We now show that Fgf signalling is both necessary and sufficient for anterior otic specification during a similar period, a function that is completely separable from its earlier role in otic placode induction. In lia–/– (fgf3–/–) mutants, anterior otic character is reduced, but not lost altogether. Blocking all Fgf signalling at 10-20 somites, however, using the pan-Fgf inhibitor SU5402, results in the loss of anterior otic structures and a mirror image duplication of posterior regions. Conversely, overexpression of fgf3 during a similar period, using a heat-shock inducible transgenic line, results in the loss of posterior otic structures and a duplication of anterior domains. These phenotypes are opposite to those observed when Hedgehog signalling is altered. Loss of both Fgf and Hedgehog function between 10 and 20 somites results in symmetrical otic vesicles with neither anterior nor posterior identity, which, nevertheless, retain defined poles at the anterior and posterior ends of the ear. These data suggest that Fgf and Hedgehog act on a symmetrical otic pre-pattern to specify anterior and posterior otic identity, respectively. Each signalling pathway has instructive activity: neither acts simply to repress activity of the other, and, together, they appear to be key players in the specification of anteroposterior asymmetries in the zebrafish ear. PMID:21831919
Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins
Pei, Jimin; Grishin, Nick V
2012-01-01
Frizzled and Smoothened are homologous seven-transmembrane proteins functioning in the Wnt and Hedgehog signaling pathways, respectively. They harbor an extracellular cysteine-rich domain (FZ-CRD), a mobile evolutionary unit that has been found in a number of other metazoan proteins and Frizzled-like proteins in Dictyostelium. Domains distantly related to FZ-CRDs, in Hedgehog-interacting proteins (HHIPs), folate receptors and riboflavin-binding proteins (FRBPs), and Niemann-Pick Type C1 proteins (NPC1s), referred to as HFN-CRDs, exhibit similar structures and disulfide connectivity patterns compared with FZ-CRDs. We used computational analyses to expand the homologous set of FZ-CRDs and HFN-CRDs, providing a better understanding of their evolution and classification. First, FZ-CRD-containing proteins with various domain compositions were identified in several major eukaryotic lineages including plants and Chromalveolata, revealing a wider phylogenetic distribution of FZ-CRDs than previously recognized. Second, two new and distinct groups of highly divergent FZ-CRDs were found by sensitive similarity searches. One of them is present in the calcium channel component Mid1 in fungi and the uncharacterized FAM155 proteins in metazoans. Members of the other new FZ-CRD group occur in the metazoan-specific RECK (reversion-inducing-cysteine-rich protein with Kazal motifs) proteins that are putative tumor suppressors acting as inhibitors of matrix metalloproteases. Finally, sequence and three-dimensional structural comparisons helped us uncover a divergent HFN-CRD in glypicans, which are important morphogen-binding heparan sulfate proteoglycans. Such a finding reinforces the evolutionary ties between the Wnt and Hedgehog signaling pathways and underscores the importance of gene duplications in creating essential signaling components in metazoan evolution. PMID:22693159
2013-01-01
Background Physaloptera clausa (Spirurida: Physalopteridae) nematodes parasitize the stomach of the European hedgehog (Erinaceus europaeus) and cause weight loss, anorexia and gastric lesions. The present study provides the first morphological description of adult P. clausa from the stomachs of infected hedgehogs, using scanning electron microscopy (SEM). Methods From June to October 2011, 10 P. clausa from European hedgehogs were fixed, dried, coated and subjected to SEM examination. Results Males and females (22–30 mm and 28–47 mm, respectively) were stout, with the cuticle reflecting over the lips to form a large cephalic collarette and showing fine transverse striations in both sexes. The mouth was characterized by two large, simple triangular lateral pseudolabia, each armed with external and internal teeth. Inside the buccal cavity, a circle of internal small teeth can be observed. Around the mouth, four sub-median cephalic papillae and two large amphids were also observed. The anterior end of both male and female bore an excretory pore on the ventral side and a pair of lateral ciliated cervical papillae. In the female worm, the vulva was located in the middle and the eggs were characterized by smooth surfaces. The posterior end of the female worm was stumpy with two large phasmids in proximity to its extremity. The posterior end of the male had large lateral alae, joined together anteriorly across the ventral surface, with subequal and dissimilar spicules, as well as four pairs of stalked pre-cloacal papillae, three pairs of post-cloacal papillae, and two phasmids. Three sessile papillae occured anteriorly and four posteriorly to the cloaca. Conclusions The present SEM study provides the first in-depth morphological characterization of adult P. clausa, and highlights similarities and differences with P. bispiculata P. herthameyerae, Heliconema longissimum and Turgida turgida. PMID:23566611
Gorgani, Tahmine; Naem, Soraya; Farshid, Amir Abbass; Otranto, Domenico
2013-04-08
Physaloptera clausa (Spirurida: Physalopteridae) nematodes parasitize the stomach of the European hedgehog (Erinaceus europaeus) and cause weight loss, anorexia and gastric lesions. The present study provides the first morphological description of adult P. clausa from the stomachs of infected hedgehogs, using scanning electron microscopy (SEM). From June to October 2011, 10 P. clausa from European hedgehogs were fixed, dried, coated and subjected to SEM examination. Males and females (22-30 mm and 28-47 mm, respectively) were stout, with the cuticle reflecting over the lips to form a large cephalic collarette and showing fine transverse striations in both sexes. The mouth was characterized by two large, simple triangular lateral pseudolabia, each armed with external and internal teeth. Inside the buccal cavity, a circle of internal small teeth can be observed. Around the mouth, four sub-median cephalic papillae and two large amphids were also observed. The anterior end of both male and female bore an excretory pore on the ventral side and a pair of lateral ciliated cervical papillae. In the female worm, the vulva was located in the middle and the eggs were characterized by smooth surfaces. The posterior end of the female worm was stumpy with two large phasmids in proximity to its extremity. The posterior end of the male had large lateral alae, joined together anteriorly across the ventral surface, with subequal and dissimilar spicules, as well as four pairs of stalked pre-cloacal papillae, three pairs of post-cloacal papillae, and two phasmids. Three sessile papillae occured anteriorly and four posteriorly to the cloaca. The present SEM study provides the first in-depth morphological characterization of adult P. clausa, and highlights similarities and differences with P. bispiculata P. herthameyerae, Heliconema longissimum and Turgida turgida.
Reproductive characteristics of the african pygmy hedgehog, atelerix albiventris.
Bedford, J M; Mock, O B; Nagdas, S K; Winfrey, V P; Olson, G E
2000-09-01
To obtain further perspective on reproduction and particularly gamete function among so-called primitive mammals presently grouped in the Order Insectivora, we have examined the African hedgehog, Atelerix albiventris, in light of unusual features reported in shrews and moles. Atelerix proves to share many but not all of the characteristics seen in these other insectivores. The penis of Atelerix has a 'snail-like' form, but lacks the surface spines common in insectivores and a number of other mammals. Hedgehog spermatozoa display an eccentric insertion of the tail on the sperm head, and they manifest the barbs on the perforatorium that, in shrews, probably effect the initial binding of the sperm head to the zona pellucida. As a possible correlate, the structural matrix of the hedgehog acrosome comprises only two main components, as judged by immunoblotting, rather than the complex of peptides seen in the matrix of some higher mammals. The Fallopian tube of Atelerix is relatively simple; it displays only minor differences in width and in the arborized epithelium between the isthmus and ampulla, and shows no evidence of the unusual sperm crypts that characterize the isthmus or ampulla, depending on the species, in shrews and moles. In common with other insectivores, Atelerix appears to be an induced ovulator, as judged by the ovulation of some 6-8 eggs by about 23 h after injection of hCG. The dense cumulus oophorus appeared to have little matrix, in keeping with the modest dimensions of the tubal ampulla and, while it was not quite as discrete as that of soricids, it did show the same insensitivity to 0.5% (w/v) ovine or bovine hyaluronidase.
Buglino, John A; Resh, Marilyn D
2010-06-23
Sonic hedgehog (Shh) is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat), a member of the membrane bound O-acyl transferase (MBOAT) family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown. Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234) that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m) and V(max) for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants. This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.
LncRNA: a new player in 1α, 25(OH)(2) vitamin D(3) /VDR protection against skin cancer formation.
Jiang, Yan J; Bikle, Daniel D
2014-03-01
Sunlight, vitamin D and skin cancer form a controversial brew. While too much sunlight exposure causes skin cancer, it is the major source of vitamin D from skin. We propose that these processes can be balanced. Vitamin D signalling (VDS) protects against skin cancer as demonstrated by the susceptibility of the skin to tumor formation in VDR null mice and protection from UVB-induced mutations when VDR agonists are administered. The question is how is protection afforded. Previously, we have focused on the Wnt/β-catenin/hedgehog and DNA damage repair (DDR) pathways. As VDR regulates hundreds of genes with thousands of VDR response elements (VDRE) throughout the genome, and many VDREs are in non-coding regions, we decided to explore long non-coding RNAs (lncRNA). LncRNAs are mRNA-like transcripts ranging from 200 bases ~100 kb lacking significant open reading frames. They are aberrantly expressed in human cancers and involved in a spectrum of tumorigenic/metastatic processes (cell proliferation/apoptosis/angiogenesis). We discovered that VDS regulated the expression of certain lncRNAs in a manner consistent with VDS protection against skin cancer. Given the huge variation in genes actively regulated by 1,25(OH)2 D from different cell types, it is conceivable that our results could apply to personalized medicine based on the distinctive lncRNA profiles. These lncRNAs could also serve as skin cancer biomarkers secreted into the blood or urine via exosomes as demonstrated in other cancer types (breast, prostate). Modulation of lncRNA profile by VDS may also provide insight into regulating pathways such as Wnt/ß-catenin and hedgehog. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
GDC-0449-a potent inhibitor of the hedgehog pathway.
Robarge, Kirk D; Brunton, Shirley A; Castanedo, Georgette M; Cui, Yong; Dina, Michael S; Goldsmith, Richard; Gould, Stephen E; Guichert, Oivin; Gunzner, Janet L; Halladay, Jason; Jia, Wei; Khojasteh, Cyrus; Koehler, Michael F T; Kotkow, Karen; La, Hank; Lalonde, Rebecca L; Lau, Kevin; Lee, Leslie; Marshall, Derek; Marsters, James C; Murray, Lesley J; Qian, Changgeng; Rubin, Lee L; Salphati, Laurent; Stanley, Mark S; Stibbard, John H A; Sutherlin, Daniel P; Ubhayaker, Savita; Wang, Shumei; Wong, Susan; Xie, Minli
2009-10-01
SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.
Effective response theory for zero-energy Majorana bound states in three spatial dimensions
NASA Astrophysics Data System (ADS)
Lopes, Pedro L. e. S.; Teo, Jeffrey C. Y.; Ryu, Shinsei
2015-05-01
We propose a gravitational response theory for point defects (hedgehogs) binding Majorana zero modes in (3 + 1)-dimensional superconductors. Starting in 4 + 1 dimensions, where the point defect is extended into a line, a coupling of the bulk defect texture with the gravitational field is introduced. Diffeomorphism invariance then leads to an S U (2) 2 Kac-Moody current running along the defect line. The S U (2) 2 Kac-Moody algebra accounts for the non-Abelian nature of the zero modes in 3 + 1 dimensions. It is then shown to also encode the angular momentum density which permeates throughout the bulk between hedgehog-antihedgehog pairs.
Chen, Leon; Silapunt, Sirunya; Migden, Michael R
2016-09-01
The Hedgehog inhibitors are promising alternative for patients with advanced basal cell carcinoma that are not amenable to radiotherapy or surgery. Sonidegib, also known as LDE225, is an orally available SMO antagonist that was recently approved by the US FDA for the treatment of patients with locally advanced basal cell carcinoma. This article will provide an overview of the pharmacology and pharmacokinetics of sonidegib and in-depth analysis of the BOLT trial with additional data from the 12-month update. The present challenges associated with Hedgehog inhibitors will also be discussed.
Lu, Yuan; Starkey, Nicholas; Lei, Wei; Li, Jilong; Cheng, Jianlin; Folk, William R.; Lubahn, Dennis B.
2015-01-01
Sutherlandia frutescens (L) R. Br. (Sutherlandia) is a South African botanical that is traditionally used to treat a variety of health conditions, infections and diseases, including cancer. We hypothesized Sutherlandia might act through Gli/ Hedgehog (Hh)-signaling in prostate cancer cells and used RNA-Seq transcription profiling to profile gene expression in TRAMPC2 murine prostate cancer cells with or without Sutherlandia extracts. We found 50% of Hh-responsive genes can be repressed by Sutherlandia ethanol extract, including the canonical Hh-responsive genes Gli1 and Ptch1 as well as newly distinguished Hh-responsive genes Hsd11b1 and Penk. PMID:26710108
Not so Fast: Co-Requirements for Sonic Hedgehog Induced Brain Tumorigenesis.
Ward, Stacey A; Rubin, Joshua B
2015-08-06
The Sonic hedgehog (Shh) pathway plays an integral role in cellular proliferation during normal brain development and also drives growth in a variety of cancers including brain cancer. Clinical trials of Shh pathway inhibitors for brain tumors have yielded disappointing results, indicating a more nuanced role for Shh signaling. We postulate that Shh signaling does not work alone but requires co-activation of other signaling pathways for tumorigenesis and stem cell maintenance. This review will focus on the interplay between the Shh pathway and these pathways to promote tumor growth in brain tumors, presenting opportunities for the study of combinatorial therapies.
Leontovich, T A; Zvegintseva, E G
1985-10-01
Two principal classes of striatum long axonal neurons (sparsely ramified reticular cells and densely ramified dendritic cells) were analyzed quantitatively in four animal species: hedgehog, rabbit, dog and monkey. The cross section area, total dendritic length and the area of dendritic field were measured using "LEITZ-ASM" system. Classes of neurons studied were significantly different in dogs and monkeys, while no differences were noted between hedgehog and rabbit. Reticular neurons of different species varied much more than dendritic ones. Quantitative analysis has revealed the progressive increase in the complexity of dendritic tree in mammals from rabbit to monkey.
Modelisation of an unspecialized quadruped walking mammal.
Neveu, P; Villanova, J; Gasc, J P
2001-12-01
Kinematics and structural analyses were used as basic data to elaborate a dynamic quadruped model that may represent an unspecialized mammal. Hedgehogs were filmed on a treadmill with a cinefluorographic system providing trajectories of skeletal elements during locomotion. Body parameters such as limb segments mass and length, and segments centre of mass were checked from cadavers. These biological parameters were compiled in order to build a virtual quadruped robot. The robot locomotor behaviour was compared with the actual hedgehog to improve the model and to disclose the necessary changes. Apart from use in robotics, the resulting model may be useful to simulate the locomotion of extinct mammals.
Hedgehogs and sugar gliders: respiratory anatomy, physiology, and disease.
Johnson, Dan H
2011-05-01
This article discusses the respiratory anatomy, physiology, and disease of African pygmy hedgehogs (Atelerix albiventris) and sugar gliders (Petaurus breviceps), two species commonly seen in exotic animal practice. Where appropriate, information from closely related species is mentioned because cross-susceptibility is likely and because these additional species may also be encountered in practice. Other body systems and processes are discussed insofar as they relate to or affect respiratory function. Although some topics, such as special senses, hibernation, or vocalization, may seem out of place, in each case the information relates back to respiration in some important way. Copyright © 2011 Elsevier Inc. All rights reserved.
La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Verrico, Annalisa; Miele, Andrea; Monti, Ludovica; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Ricci, Biancamaria; Soriani, Alessandra; Santoni, Angela; Caraglia, Michele; Porto, Stefania; Da Pozzo, Eleonora; Martini, Claudia; Brancale, Andrea; Marinelli, Luciana; Novellino, Ettore; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Bigogno, Chiara; Dondio, Giulio; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano
2015-08-13
We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethoxyphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4-7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20-50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer.
La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Verrico, Annalisa; Miele, Andrea; Monti, Ludovica; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Ricci, Biancamaria; Soriani, Alessandra; Santoni, Angela; Caraglia, Michele; Porto, Stefania; Pozzo, Eleonora Da; Martini, Claudia; Brancale, Andrea; Marinelli, Luciana; Novellino, Ettore; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Bigogno, Chiara; Dondio, Giulio; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano
2015-01-01
We designed 39 new 2-phenylindole derivatives as potential anticancer agents bearing the 3,4,5-trimethox-yphenyl moiety with a sulfur, ketone, or methylene bridging group at position 3 of the indole and with halogen or methoxy substituent(s) at positions 4–7. Compounds 33 and 44 strongly inhibited the growth of the P-glycoprotein-overexpressing multi-drug-resistant cell lines NCI/ADR-RES and Messa/Dx5. At 10 nM, 33 and 44 stimulated the cytotoxic activity of NK cells. At 20–50 nM, 33 and 44 arrested >80% of HeLa cells in the G2/M phase of the cell cycle, with stable arrest of mitotic progression. Cell cycle arrest was followed by cell death. Indoles 33, 44, and 81 showed strong inhibition of the SAG-induced Hedgehog signaling activation in NIH3T3 Shh-Light II cells with IC50 values of 19, 72, and 38 nM, respectively. Compounds of this class potently inhibited tubulin polymerization and cancer cell growth, including stimulation of natural killer cell cytotoxic activity and repression of Hedgehog-dependent cancer. PMID:26132075
NHR-23 dependent collagen and hedgehog-related genes required for molting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek
2011-10-07
Highlights: {yields} NHR-23 is a critical regulator of nematode development and molting. {yields} The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. {yields} Whole genome expression analysis identifies new potential targets of NHR-23. {yields} Hedgehog-related genes are identified as NHR-23 dependent genes. {yields} New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparativemore » expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.« less
Yao, Humphrey Hung-Chang; Capel, Blanche
2014-01-01
Most studies to date indicate that the formation of testis cords is critical for proper Sertoli cell differentiation, inhibition of germ cell meiosis, and regulation of Leydig cell differentiation. However, the connections between these events are poorly understood. The objective of this study was to dissect the molecular and cellular relationships between these events in testis formation. We took advantage of the different effects of two hedgehog signaling inhibitors, cyclopamine and forskolin, on gonad explant cultures. Both hedgehog inhibitors phenocopied the disruptive effect of Dhh−/− on formation of testis cords without influencing Sertoli cell differentiation. However, they exhibited different effects on other cellular events during testis development. Treatment with cyclopamine did not affect inhibition of germ cell meiosis and mesonephric cell migration but caused defects in Leydig cell differentiation. In contrast, forskolin treatment induced germ cell meiosis, inhibited mesonephric cell migration, and had no effect on Leydig cell differentiation. By carefully contrasting the different effects of these two hedgehog inhibitors, we demonstrate that although formation of testis cords and development of other cell types normally take place in a tightly regulated sequence, each of these events can occur independent of the others. PMID:12051821
Determinants of the epithelial-muscular axis on embryonic stem cell-derived gut-like structures.
Luo, Yi; Takaki, Miyako; Misawa, Hiromi; Matsuyoshi, Hiroko; Sasahira, Tomonori; Chihara, Yoshitomo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki
2010-01-01
Dome-like structures with epithelial-muscular layers resembling the gut have been derived from mouse embryonic stem (ES) cells. These domes have been reported to show spontaneous contractions and are called ES gut. In the present study, we examined the epithelial-muscular axis of these domes by detecting differentiation markers. A normal epithelial-muscular axis was exhibited in the domes with spontaneous motility, whereas the domes without spontaneous motility showed either an inverted or obscure axis. To investigate the factors affecting the epithelial-muscular axis, we examined the expression of hedgehog signaling factors in the domes. Expression of hedgehog family factors was detected in the epithelial components of the domes with motility, whereas this expression was inverted or obscure in the domes without motility. Out of the 25 domes, 10 of the 10 motility (+) domes showed a normal epithelial-muscular axis, whereas 14 of the 15 motility (-) domes lacked a normal epithelial-muscular axis. This implies that activin A upregulated the expression of sonic hedgehog and intestinal alkaline phosphatase in the embryoid bodies. These findings suggest that the motility of the ES gut depends on the domes' epithelial-muscular axis. Copyright © 2010 S. Karger AG, Basel.
Furumoto, T A; Miura, N; Akasaka, T; Mizutani-Koseki, Y; Sudo, H; Fukuda, K; Maekawa, M; Yuasa, S; Fu, Y; Moriya, H; Taniguchi, M; Imai, K; Dahl, E; Balling, R; Pavlova, M; Gossler, A; Koseki, H
1999-06-01
During axial skeleton development, the notochord is essential for the induction of the sclerotome and for the subsequent differentiation of cartilage forming the vertebral bodies and intervertebral discs. These functions are mainly mediated by the diffusible signaling molecule Sonic hedgehog. The products of the paired-box-containing Pax1 and the mesenchyme forkhead-1 (Mfh1) genes are expressed in the developing sclerotome and are essential for the normal development of the vertebral column. Here, we demonstrate that Mfh1 like Pax1 expression is dependent on Sonic hedgehog signals from the notochord, and Mfh1 and Pax1 act synergistically to generate the vertebral column. In Mfh1/Pax1 double mutants, dorsomedial structures of the vertebrae are missing, resulting in extreme spina bifida accompanied by subcutaneous myelomeningocoele, and the vertebral bodies and intervertebral discs are missing. The morphological defects in Mfh1/Pax1 double mutants strongly correlate with the reduction of the mitotic rate of sclerotome cells. Thus, both the Mfh1 and the Pax1 gene products cooperate to mediate Sonic hedgehog-dependent proliferation of sclerotome cells. Copyright 1999 Academic Press.
The ciliopathy gene Rpgrip1l is essential for hair follicle development.
Chen, Jiang; Laclef, Christine; Moncayo, Alejandra; Snedecor, Elizabeth R; Yang, Ning; Li, Li; Takemaru, Ken-Ichi; Paus, Ralf; Schneider-Maunoury, Sylvie; Clark, Richard A
2015-03-01
The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgrip1l gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.
Desmoplastic ganglioglioma of the spinal cord in a western European hedgehog (Erinaceus europaeus).
Ulrich, Reiner; Stan, Alexandru C; Fehr, Michael; Mallig, Carolin; Puff, Christina
2010-11-01
Gangliogliomas are composed of neoplastic glial and neuronal cells and are extremely rare tumors of the central nervous system of domestic animals. The present report describes the clinical presentation and the pathomorphological and immunophenotypical characteristics of a desmoplastic ganglioglioma in the spinal cord of a 3-year-old male western European hedgehog (Erinaceus europaeus). Clinically, the hedgehog exhibited a skin wound and therapy-resistant paresis of the left hind limb. Necropsy showed dilatation of the urinary bladder. Histologic examination of the thoracic spinal cord revealed a focally extensive infiltrative mass, which consisted of multiple nodules of smaller bipolar or oligopolar glial cells and variably sized polygonal, ganglionic, neuron-like cells embedded in variable amounts of microcystic neuropilic matrix. An area of spindle-shaped cells arranged in interwoven fascicles and surrounded by a prominent network of reticulin fibers was interpreted as desmoplastic leptomeningeal stroma. Immunohistochemistry revealed a moderate number of glial fibrillary acidic protein and S-100-positive cells and processes. In addition, the ganglionic neuron-like cells expressed neurofilament, microtubule-associated protein-2, and neuron-specific enolase. In summary, this spinal cord tumor was composed of astroglial and neuronal cellular elements, justifying the diagnosis of a desmoplastic ganglioglioma.
Juhász, Tamás; Szentléleky, Eszter; Szűcs Somogyi, Csilla; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza
2015-01-01
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load. PMID:26230691
Williams, David; Adeyeye, Nina; Visser, Erni
2017-01-01
In this study we aimed to examine wild European hedgehogs (Erinaceus europaeus) in rescue centres and to determine ocular abnormalities in this animal population. Three hundred animals varying in age from 2 months to 5 years were examined, 147 being male and 153 female. All animals were evaluated with direct and indirect ophthalmoscopy and slit lamp biomicroscopy in animals where lesions were detected. Tonometry using the Tonovet rebound tonometer was undertaken in selected animals as was assessment of tear production using the Schirmer I tear test. Four animals were affected by orbital infection, 3 were anophthalmic, 2 unilaterally and one bilaterally, 3 by conjunctivitis, 3 by non-ulcerative keratitis and 4 by uveitis with corneal oedema. Fifty seven animals were affected by cataract, 54 with bilateral nuclear lens opacities. Twenty six of these animals were young animals considered too small to hibernate. This report documents the first prospective study of ocular disease in the European hedgehog. The predominant finding was bilateral nuclear cataract seen particularly in young poorly growing animals. Investigation into the potential causation of cataracts by poor nutrition or poor feeding ability by lens opacification requires further study. PMID:29038778
Juhász, Tamás; Szentléleky, Eszter; Somogyi, Csilla Szűcs; Takács, Roland; Dobrosi, Nóra; Engler, Máté; Tamás, Andrea; Reglődi, Dóra; Zákány, Róza
2015-07-29
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurohormone exerting protective function during various stress conditions either in mature or developing tissues. Previously we proved the presence of PACAP signaling elements in chicken limb bud-derived chondrogenic cells in micromass cell cultures. Since no data can be found if PACAP signaling is playing any role during mechanical stress in any tissues, we aimed to investigate its contribution in mechanotransduction during chondrogenesis. Expressions of the mRNAs of PACAP and its major receptor, PAC1 increased, while that of other receptors, VPAC1, VPAC2 decreased upon mechanical stimulus. Mechanical load enhanced the expression of collagen type X, a marker of hypertrophic differentiation of chondrocytes and PACAP addition attenuated this elevation. Moreover, exogenous PACAP also prevented the mechanical load evoked activation of hedgehog signaling: protein levels of Sonic and Indian Hedgehogs and Gli1 transcription factor were lowered while expressions of Gli2 and Gli3 were elevated by PACAP application during mechanical load. Our results suggest that mechanical load activates PACAP signaling and exogenous PACAP acts against the hypertrophy inducing effect of mechanical load.
Chemkhi, Jomaa; Souguir, Hejer; Ali, Insaf Bel Hadj; Driss, Mehdi; Guizani, Ikram; Guerbouj, Souheila
2015-10-01
In Tunisia, Leishmania parasites are responsible of visceral leishmaniasis, caused by Leishmania infantum species while three cutaneous disease forms are documented: chronic cutaneous leishmaniasis due to Leishmania killicki, sporadic cutaneous form (SCL) caused by L. infantum and the predominant zoonotic cutaneous leishmanaisis (ZCL) due to Leishmania major. ZCL reservoirs are rodents of the Psammomys and Meriones genera, while for SCL the dog is supposed to be a reservoir. Ctenodactylus gundii is involved in the transmission of L. killicki. However, other mammals could constitute potential reservoir hosts in Tunisia and other North African countries. In order to explore the role of hedgehogs as potential reservoirs of leishmaniasis, specimens (N=6) were captured during July-November period in 2011-2013 in an SCL endemic area in El Kef region, North-Western Tunisia. Using morphological characteristics, all specimens were described and measured. Biopsies from liver, heart, kidney and spleen of each animal were used to extract genomic DNA, which was further used in PCR assays to assess the presence of Leishmania parasites. Different PCRs targeting kinetoplast minicircles, ITS1, mini-exon genes and a repetitive Leishmania- specific sequence, were applied. To further identify Leishmania species involved, RFLP analysis of amplified fragments was performed with appropriate restriction enzymes. Using morphological characters, animals were identified as North African hedgehogs, also called Algerian hedgehogs, that belong to the Erinaceidae family, genus Atelerix Pomel 1848, and species algirus (Lereboullet, 1842). PCR results showed in total that all specimens were Leishmania infected, with different organs incriminated, mainly liver and spleen. Results were confirmed by direct sequencing of amplified fragments. Species identification showed that all specimens were infected with L. major, three of which were additionally co-infected with L. infantum. The present study demonstrates, for the first time in Tunisia, natural infection of hedgehog animals (Atelerix algirus) by the Leishmania parasites species L. major and L. infantum. L. major is also detected for the first time in wild animals captured in the North Western part of the country; likewise for the co-infection of these animals by the 2 Leishmania species. This mammal could play a potential reservoir role in epidemiology of SCL or ZCL and could contribute to emergence or extension of ZCL in the studied region. Copyright © 2015 Elsevier B.V. All rights reserved.
Structure of the human smoothened receptor 7TM bound to an antitumor agent
Wang, Chong; Wu, Huixian; Katritch, Vsevolod; Han, Gye Won; Huang, Xi-Ping; Liu, Wei; Siu, Fai Yiu; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C.
2013-01-01
The smoothened (SMO) receptor, a key signal transducer in the Hedgehog (Hh) signaling pathway is both responsible for the maintenance of normal embryonic development and implicated in carcinogenesis. The SMO receptor is classified as a class Frizzled (class F) G protein-coupled receptor (GPCR), although the canonical Hh signaling pathway involves the transcription factor Gli and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure at 2.5 Å resolution of the transmembrane domain of the human SMO receptor bound to the small molecule antagonist LY2940680. Although the SMO receptor shares the seven transmembrane helical (7TM) fold, most conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulfide bonds. The ligand binds at the extracellular end of the 7TM bundle and forms extensive contacts with the loops. PMID:23636324
Congenital erythropoietic porphyria in an African hedgehog (Atelerix albiventris).
Wolff, Carlos; Corradini, Paulina; Cortés, Galaxia
2005-06-01
A 6-mo-old, male African hedgehog (Atelerix albiventris) presented with a history of pink urine and demonstrating pink-colored teeth and mild hepatomegaly on examination. Urinalysis revealed no physical, chemical, or cellular abnormalities other than a pink color and fluorescence under ultraviolet light (UV). Also under UV, intense fluorescence of teeth, feet, and spines was noted. Porphyria was suspected. Spectrophotometric evaluation of urine showed extremely elevated levels of copro- and uroporphyrins. Analysis of the urine by thin-layer chromatography showed an abnormal pattern of excreted porphyrin intermediates. Urine high-performance thin-layer chromatography showed that excreted porphyrins were 90-95% of the type-I isomeric form, suggestive of congenital erythropoietic porphyria.
Noncanonical Hedgehog Signaling
Brennan, Donna; Chen, Xiaole; Cheng, Lan; Mahoney, My; Riobo, Natalia A.
2012-01-01
The notion of noncanonical hedgehog (Hh) signaling in mammals has started to receive support from numerous observations. By noncanonical, we refer to all those cellular and tissue responses to any of the Hh isoforms that are independent of transcriptional changes mediated by the Gli family of transcription factors. In this chapter, we discuss the most recent findings that suggest that Patched1 can regulate cell proliferation and apoptosis independently of Smoothened (Smo) and Gli and the reports that Smo modulates actin cytoskeleton-dependent processes such as fibroblast migration, endothelial cell tubulogenesis, axonal extension, and neurite formation by diverse mechanisms that exclude any involvement of Gli-dependent transcription. We also acknowledge the existence of less stronger evidence of noncanonical signaling in Drosophila. PMID:22391299
Cutaneous T-cell lymphoma in an African hedgehog (Atelerix albiventris).
Spugnini, Enrico P; Pagotto, Annarita; Zazzera, Francesca; D'Avino, Alfredo; Caruso, Giovanni; Citro, Gennaro; Baldi, Alfonso
2008-01-01
A three-year-old male African hedgehog was presented for a non healing crusty proliferation on the left pinna. The lesion failed to respond to topical therapy and systemic antibiotic therapy. Whole body radiography and abdominal ultrasonograpy were within normal limits. The lesion was surgically removed. The patient recovered well from the procedure and remained in remission for nine months when he came back as an emergency case and died of an unrelated disease. The histopathology report enabled a diagnosis of completely excised cutaneous T-cell lymphoma. This report represents the first successful treatment of a cutanous T-cell lymphoma in this species and might help to plan future therapies.
Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination
Samanta, Jayshree; Grund, Ethan M.; Silva, Hernandez M.; Lafaille, Juan J.; Fishell, Gord; Salzer, James L.
2016-01-01
Summary Enhancing repair of myelin is an important, but still elusive therapeutic goal in many neurological disorders1. In Multiple Sclerosis (MS), an inflammatory demyelinating disease, endogenous remyelination does occur but is frequently insufficient to restore function. Both parenchymal oligodendrocyte progenitor cells (OPCs) and endogenous adult neural stem cells (NSCs) resident within the subventricular zone (SVZ) are known sources of remyelinating cells2. Here, we characterize the contribution to remyelination of a subset of adult NSCs, identified by their expression of Gli1, a transcriptional effector of the Sonic Hedgehog (Shh) pathway. We show that these cells are recruited from the SVZ to populate demyelinated lesions in the forebrain but never enter healthy, white matter tracts. Unexpectedly, recruitment of this pool of NSCs, and their differentiation into oligodendrocytes, is significantly enhanced by genetic or pharmacological inhibition of Gli1. Importantly, complete inhibition of canonical hedgehog signaling was ineffective indicating that Gli1’s role in both augmenting hedgehog signaling and retarding myelination is specialized. Indeed, inhibition of Gli1 improves the functional outcome in a relapsing/remitting model of experimental autoimmune encephalomyelitis (RR-EAE) and is neuroprotective. Thus, endogenous NSCs can be mobilized for the repair of demyelinated lesions by inhibiting Gli1, identifying a new therapeutic avenue for the treatment of demyelinating disorders. PMID:26416758
Fecher, Leslie A; Sharfman, William H
2015-01-01
Cutaneous basal cell carcinoma (BCC) is the most common human cancer and its incidence is rising worldwide. Ultraviolet radiation exposure, including tanning bed use, as well as host factors play a role in its development. The majority of cases are treated and cured with local therapies including surgery. Yet, the health care costs of diagnosis and treatment of BCCs in the US is substantial. In the United States, the cost of nonmelanoma skin cancer care in the Medicare population is estimated to be US$426 million per year. While rare, locally advanced BCCs that can no longer be controlled with surgery and/or radiation, and metastatic BCCs do occur and can be associated with significant morbidity and mortality. Vismodegib (GDC-0449), a smoothened inhibitor targeted at the hedgehog pathway, is the first US Food and Drug Association (FDA)-approved agent in the treatment of locally advanced, unresectable, and metastatic BCCs. This class of agents appears to be changing the survival rates in advanced BCC patients, but appropriate patient selection and monitoring are important. Multidisciplinary assessments are essential for the optimal care and management of these patients. For some patients with locally advanced BCC, treatment with a hedgehog inhibitor may eliminate the need for an excessively disfiguring or morbid surgery. PMID:26604681
Xavier, Guilherme M.; Seppala, Maisa; Papageorgiou, Spyridon N.; Fan, Chen-Ming; Cobourne, Martyn T.
2016-01-01
Abnormal regulation of Sonic hedgehog (Shh) signaling has been described in a variety of human cancers and developmental anomalies, which highlights the essential role of this signaling molecule in cell cycle regulation and embryonic development. Gas1 and Boc are membrane co-receptors for Shh, which demonstrate overlapping domains of expression in the early face. This study aims to investigate potential interactions between these co-receptors during formation of the secondary palate. Mice with targeted mutation in Gas1 and Boc were used to generate Gas1; Boc compound mutants. The expression of key Hedgehog signaling family members was examined in detail during palatogenesis via radioactive in situ hybridization. Morphometric analysis involved computational quantification of BrdU-labeling and cell packing; whilst TUNEL staining was used to assay cell death. Ablation of Boc in a Gas1 mutant background leads to reduced Shh activity in the palatal shelves and an increase in the penetrance and severity of cleft palate, associated with failed elevation, increased proliferation and reduced cell death. Our findings suggest a dual requirement for Boc and Gas1 during early development of the palate, mediating cell cycle regulation during growth and subsequent fusion of the palatal shelves. PMID:27811357
Halepoto, Dost Muhammad; Bashir, Shahid; Zeina, Rana; Al-Ayadhi, Laila Y
2015-12-01
To determine the correlation of Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and Brain-Derived Neurotrophic Factor (BDNF) in children with Autism Spectrum Disorder (ASD). An observational, comparative study. Autism Research and Treatment Center, Al-Amodi Autism Research Chair, Department of Physiology, Faculty of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, from October 2011 to May 2012. Serum levels of SHH, IHH and BDNF were determined in recently diagnosed autistic patients and age-matched healthy children (n=25), using the Enzyme-Linked Immunosorbent Assay (ELISA). Childhood Autism Rating Scale (CARS) was used for the assessment of autistic severity. Spearman correlation co-efficient 'r' was determined. The serum levels of IHH and SHH were significantly higher in autistic subjects than those of control subjects. There was significant correlation between age and IHH (r = 0.176, p = 0.03), BDNF and severe IHH (r = 0.1763, p = 0.003), and severe BDNF and severe SHH (r = 0.143, p < 0.001). However, there were no significant relationships among the serum levels of SHH, IHH and BDNF and the CARS score, age or gender. The findings support a correlation between SHH, IHH and BDNF in autistic children, suggesting their pathological role in autism.
Molecular signaling in intervertebral disk development.
DiPaola, Christian P; Farmer, James C; Manova, Katia; Niswander, Lee A
2005-09-01
The purpose of this investigation is to identify and study the expression pattern of pertinent molecular factors involved in the differentiation of the intervertebral disk (IVD). It is likely that hedgehog genes and the BMP inhibitors are key factors involved in spinal joint formation. Radioactive in situ hybridization with mRNA probes for pax-1, SHH, IHH and Noggin gene was performed on mouse embryo and adult tissue. Immunohistochemistry was performed to localize hedgehog receptor, "patched" (ptc). From 14.5 dpc until birth pax-1 mRNA was expressed in the developing anulus fibrosus (AF). During the same developmental period Noggin mRNA is highly expressed throughout the spine, in the developing AF, while ptc protein and SHH mRNA were expressed in the developing nucleus pulposus (NP). IHH mRNA was expressed by condensing chondrocytes of the vertebral bodies and later becomes confined to the vertebral endplate. We show for the first time that pax-1 is expressed in the adult intervertebral disk. Ptc expression in the NP is an indicator of hedgehog protein signaling in the developing IVD. The expression pattern of the BMP inhibitor Noggin appears to be important for the normal formation of the IVD and may prove to play a role in its segmental pattern formation.
Niedermaier, Michael; Schwabe, Georg C; Fees, Stephan; Helmrich, Anne; Brieske, Norbert; Seemann, Petra; Hecht, Jochen; Seitz, Volkhard; Stricker, Sigmar; Leschik, Gundula; Schrock, Evelin; Selby, Paul B; Mundlos, Stefan
2005-04-01
Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5-E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development.
Niedermaier, Michael; Schwabe, Georg C.; Fees, Stephan; Helmrich, Anne; Brieske, Norbert; Seemann, Petra; Hecht, Jochen; Seitz, Volkhard; Stricker, Sigmar; Leschik, Gundula; Schrock, Evelin; Selby, Paul B.; Mundlos, Stefan
2005-01-01
Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5–E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development. PMID:15841179
Chau, Michael; Forcinito, Patricia; Andrade, Anenisia C; Hegde, Anita; Ahn, Sohyun; Lui, Julian C; Baron, Jeffrey; Nilsson, Ola
2011-08-01
In embryonic growth cartilage, Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) participate in a negative feedback loop that regulates chondrocyte differentiation. Postnatally, this region undergoes major structural and functional changes. To explore the organization of the Ihh–PTHrP system in postnatal growth plate, we microdissected growth plates of 7-day-old rats into their constituent zones and assessed expression of genes participating in the h–PTHrP feedback loop. Ihh, Patched 1, Smoothened, Gli1, Gli2, Gli3, and Pthr1 were expressed in regions analogous to the expression domains in embryonic growth cartilage. However, PTHrP was expressed in resting zone cartilage, a site that differs from the embryonic source, the periarticular cells. We then used mice in which lacZ has replaced coding sequences of Gli1 and thus serves as a marker for active hedgehog signaling. At 1, 4, 8, and 12 weeks of age, lacZ expression was detected in a pattern analogous to that of embryonic cartilage. The findings support the hypothesis that the embryonic Ihh–PTHrP feedback loop is maintained in the postnatal growth plate except that the source of PTHrP has shifted to a more proximal location in the resting zone.
Sonic Hedgehog in pancreatic cancer: From bench to bedside, then back to the bench
Rosow, David E.; Liss, Andrew S.; Strobel, Oliver; Fritz, Stefan; Bausch, Dirk; Valsangkar, Nakul P.; Alsina, Janivette; Kulemann, Birte; Park, Joo Kyung; Yamaguchi, Junpei; LaFemina, Jennifer; Thayer, Sarah P.
2013-01-01
Developmental genes are known to regulate cell proliferation, migration, and differentiation; thus, it comes as no surprise that the misregulation of developmental genes plays an important role in the biology of human cancers. One such pathway that has received an increasing amount of attention for its function in carcinogenesis is the Hedgehog (Hh) pathway. Initially the domain of developmental biologists, the Hh pathway and one of its ligands, Sonic Hedgehog (Shh), have been shown to play an important role in body planning and organ development, particularly in the foregut endoderm. Their importance in human disease became known to cancer biologists when germline mutations that resulted in the unregulated activity of the Hh pathway were found to cause basal cell carcinoma and medulloblastoma. Since then, misexpression of the Hh pathway has been shown to play an important role in many other cancers, including those of the pancreas. In many institutions, investigators are targeting misexpression of the Hh pathway in clinical trials, but there is still much fundamental knowledge to be gained about this pathway that can shape its clinical utility. This review will outline the evolution of our understanding of this pathway as it relates to the pancreas, as well as how the Hh pathway came to be a high-priority target for treatment. PMID:22770959
Sonic Hedgehog Guides Axons via Zipcode Binding Protein 1-Mediated Local Translation.
Lepelletier, Léa; Langlois, Sébastien D; Kent, Christopher B; Welshhans, Kristy; Morin, Steves; Bassell, Gary J; Yam, Patricia T; Charron, Frédéric
2017-02-15
Sonic hedgehog (Shh) attracts spinal cord commissural axons toward the floorplate. How Shh elicits changes in the growth cone cytoskeleton that drive growth cone turning is unknown. We find that the turning of rat commissural axons up a Shh gradient requires protein synthesis. In particular, Shh stimulation increases β-actin protein at the growth cone even when the cell bodies have been removed. Therefore, Shh induces the local translation of β-actin at the growth cone. We hypothesized that this requires zipcode binding protein 1 (ZBP1), an mRNA-binding protein that transports β-actin mRNA and releases it for local translation upon phosphorylation. We found that Shh stimulation increases phospho-ZBP1 levels in the growth cone. Disruption of ZBP1 phosphorylation in vitro abolished the turning of commissural axons toward a Shh gradient. Disruption of ZBP1 function in vivo in mouse and chick resulted in commissural axon guidance errors. Therefore, ZBP1 is required for Shh to guide commissural axons. This identifies ZBP1 as a new mediator of noncanonical Shh signaling in axon guidance. SIGNIFICANCE STATEMENT Sonic hedgehog (Shh) guides axons via a noncanonical signaling pathway that is distinct from the canonical Hedgehog signaling pathway that specifies cell fate and morphogenesis. Axon guidance is driven by changes in the growth cone in response to gradients of guidance molecules. Little is known about the molecular mechanism of how Shh orchestrates changes in the growth cone cytoskeleton that are required for growth cone turning. Here, we show that the guidance of axons by Shh requires protein synthesis. Zipcode binding protein 1 (ZBP1) is an mRNA-binding protein that regulates the local translation of proteins, including actin, in the growth cone. We demonstrate that ZBP1 is required for Shh-mediated axon guidance, identifying a new member of the noncanonical Shh signaling pathway. Copyright © 2017 the authors 0270-6474/17/371685-11$15.00/0.
Enzootic origins for clinical manifestations of Lyme borreliosis.
Jahfari, Setareh; Krawczyk, Aleksandra; Coipan, E Claudia; Fonville, Manoj; Hovius, Joppe W; Sprong, Hein; Takumi, Katsuhisa
2017-04-01
Both early localized and late disseminated forms of Lyme borreliosis are caused by Borrelia burgdorferi senso lato. Differentiating between the spirochetes that only cause localized skin infection from those that cause disseminated infection, and tracing the group of medically-important spirochetes to a specific vertebrate host species, are two critical issues in disease risk assessment and management. Borrelia burgdorferi senso lato isolates from Lyme borreliosis cases with distinct clinical manifestations (erythema migrans, neuroborreliosis, acrodermatitis chronica atrophicans, and Lyme arthritis) and isolates from Ixodes ricinus ticks feeding on rodents, birds and hedgehogs were typed to the genospecies level by sequencing part of the intergenic spacer region. In-depth molecular typing was performed by sequencing eight additional loci with different characteristics (plasmid-bound, regulatory, and housekeeping genes). The most abundant genospecies and genotypes in the clinical isolates were identified by using odds ratio as a measure of dominance. Borrelia afzelii was the most common genospecies in acrodermatitis patients and engorged ticks from rodents. Borrelia burgdorferi senso stricto was widespread in erythema migrans patients. Borrelia bavariensis was widespread in neuroborreliosis patients and in ticks from hedgehogs, but rare in erythema migrans patients. Borrelia garinii was the dominant genospecies in ticks feeding on birds. Spirochetes in ticks feeding on hedgehogs were overrepresented in genotypes of the plasmid gene ospC from spirochetes in erythema migrans patients. Spirochetes in ticks feeding on hedgehogs were overrepresented in genotypes of ospA from spirochetes in acrodermatitis patients. Spirochetes from ticks feeding on birds were overrepresented in genotypes of the plasmid and regulatory genes dbpA, rpoN and rpoS from spirochetes in neuroborreliosis patients. Overall, the analyses of our datasets support the existence of at least three transmission pathways from an enzootic cycle to a clinical manifestation of Lyme borreliosis. Based on the observations with these nine loci, it seems to be justified to consider the population structure of B. burgdorferi senso lato as being predominantly clonal. Copyright © 2017 Elsevier B.V. All rights reserved.
Monecke, Stefan; Gavier-Widen, Dolores; Mattsson, Roland; Rangstrup-Christensen, Lena; Lazaris, Alexandros; Coleman, David C.; Shore, Anna C.; Ehricht, Ralf
2013-01-01
Recently, a novel mec gene conferring beta-lactam resistance in Staphylococcus aureus has been discovered. This gene, mecC, is situated on a SCCmec XI element that has to date been identified in clonal complexes 49, 130, 425, 599 and 1943. Some of the currently known isolates have been identified from animals. This, and observations of mecA alleles that do not confer beta-lactam resistance, indicate that mec genes might have a reservoir in Staphylococcus species from animals. Thus it is important also to screen wildlife isolates for mec genes. Here, we describe mecC-positive Staphylococcus aureus (ST130-MRSA-XI) and the lesions related to the infection in two diseased free-ranging European hedgehogs (Erinaceus europaeus). One was found dead in 2003 in central Sweden, and suffered from S. aureus septicaemia. The other one, found on the island of Gotland in the Baltic Sea in 2011, showed a severe dermatitis and was euthanised. ST130-MRSA-XI isolates were isolated from lesions from both hedgehogs and were essentially identical to previously described isolates from humans. Both isolates carried the complete SCCmec XI element. They lacked the lukF-PV/lukS-PV and lukM/lukF-P83 genes, but harboured a gene for an exfoliative toxin homologue previously described from Staphylococcus hyicus, Staphylococcus pseudintermedius and other S. aureus of the CC130 lineage. To the best of our knowledge, these are the first reported cases of CC130-MRSA-XI in hedgehogs. Given that one of the samples was taken as early as 2003, this was the earliest detection of this strain and of mecC in Sweden. This and several other recent observations suggest that CC130 might be a zoonotic lineage of S. aureus and that SCCmec XI/mecC may have originated from animal pathogens. PMID:23776626
Kosaka, Katsuko; Kosaka, Toshio
2004-04-19
We immunohistochemically examined the organization of the main olfactory bulbs (MOBs) in seven mammalian species, including moles, hedgehogs, tree shrews, bats, and mice as well as laboratory musk shrews and rats. We focused our investigation on two points: 1) whether nidi, particular spheroidal synaptic regions subjacent to glomeruli, which we previously reported for the laboratory musk shrew MOBs, are also present in other animals and 2) whether the compartmental organization of glomeruli and two types of periglomerular cells we proposed for the rat MOBs are general in other animals. The general laminar pattern was similar among these seven species, but discrete nidi and the nidal layer were recognized only in two insectivores, namely, the mole and laboratory musk shrew. Olfactory marker protein-immunoreactive (OMP-IR) axons extended beyond the limits of the glomerular layer (GL) into the superficial region of the external plexiform layer (EPL) or the nidal layer in the laboratory musk shrew, mole, hedgehog, and tree shrew but not in bat, mouse, and rat. We observed, in nidi and the nidal layer in the mole and laboratory musk shrew MOBs, only a few OMP-IR axons. In the hedgehog, another insectivore, OMP-IR processes extending from the glomeruli were scattered and intermingled with calbindin D28k-IR cells at the border between the GL and the EPL. In the superficial region of the EPL of the tree shrew MOBs, there were a small number of tiny glomerulus-like spheroidal structures where OMP-IR axons protruding from glomeruli were intermingled with dendritic branches of surrounding calbindin D28k-IR cells. Furthermore, we recognized the compartmental organization of glomeruli and two types of periglomerular cells in the MOBs of all of the mammals we examined. These structural features are therefore considered to be common and important organizational principles of the MOBs. Copyright 2004 Wiley-Liss, Inc.
Bhatia, Bobby; Potts, Chad R; Guldal, Cemile; Choi, SunPhil; Korshunov, Andrey; Pfister, Stefan; Kenney, Anna M; Nahlé, Zaher A
2012-04-01
Sonic hedgehog (Shh) signaling is critical during development and its aberration is common across the spectrum of human malignancies. In the cerebellum, excessive activity of the Shh signaling pathway is associated with the devastating pediatric brain tumor medulloblastoma. We previously demonstrated that exaggerated de novo lipid synthesis is a hallmark of Shh-driven medulloblastoma and that hedgehog signaling inactivates the Rb/E2F tumor suppressor complex to promote lipogenesis. Indeed, such Shh-mediated metabolic reprogramming fuels tumor progression, in an E2F1- and FASN-dependent manner. Here, we show that the nutrient sensor PPARγ is a key component of the Shh metabolic network, particularly its regulation of glycolysis. Our data show that in primary cerebellar granule neural precursors (CGNPs), proposed medulloblastoma cells-of-origin, Shh stimulation elicits a marked induction of PPARγ alongside major glycolytic markers. This is also documented in the actively proliferating Shh-responsive CGNPs in the developing cerebellum, and PPARγ expression is strikingly elevated in Shh-driven medulloblastoma in vivo. Importantly, pharmacological blockade of PPARγ and/or Rb inactivation inhibits CGNP proliferation, drives medulloblastoma cell death and extends survival of medulloblastoma-bearing animals in vivo. This coupling of mitogenic Shh signaling to a major nutrient sensor and metabolic transcriptional regulator define a novel mechanism through which Shh signaling engages the nutrient sensing machinery in brain cancer, controls the cell cycle, and regulates the glycolytic index. This also reveals a dominant role of Shh in the etiology of glucose metabolism in medulloblastoma and underscores the function of the Shh → E2F1 → PPARγ axis in altering substrate utilization patterns in brain cancers in favor of tumor growth. These findings emphasize the value of PPARγ downstream of Shh as a global therapeutic target in hedgehog-dependent and/or Rb-inactivated tumors.
Monecke, Stefan; Gavier-Widen, Dolores; Mattsson, Roland; Rangstrup-Christensen, Lena; Lazaris, Alexandros; Coleman, David C; Shore, Anna C; Ehricht, Ralf
2013-01-01
Recently, a novel mec gene conferring beta-lactam resistance in Staphylococcus aureus has been discovered. This gene, mecC, is situated on a SCCmec XI element that has to date been identified in clonal complexes 49, 130, 425, 599 and 1943. Some of the currently known isolates have been identified from animals. This, and observations of mecA alleles that do not confer beta-lactam resistance, indicate that mec genes might have a reservoir in Staphylococcus species from animals. Thus it is important also to screen wildlife isolates for mec genes. Here, we describe mecC-positive Staphylococcus aureus (ST130-MRSA-XI) and the lesions related to the infection in two diseased free-ranging European hedgehogs (Erinaceus europaeus). One was found dead in 2003 in central Sweden, and suffered from S. aureus septicaemia. The other one, found on the island of Gotland in the Baltic Sea in 2011, showed a severe dermatitis and was euthanised. ST130-MRSA-XI isolates were isolated from lesions from both hedgehogs and were essentially identical to previously described isolates from humans. Both isolates carried the complete SCCmec XI element. They lacked the lukF-PV/lukS-PV and lukM/lukF-P83 genes, but harboured a gene for an exfoliative toxin homologue previously described from Staphylococcus hyicus, Staphylococcus pseudintermedius and other S. aureus of the CC130 lineage. To the best of our knowledge, these are the first reported cases of CC130-MRSA-XI in hedgehogs. Given that one of the samples was taken as early as 2003, this was the earliest detection of this strain and of mecC in Sweden. This and several other recent observations suggest that CC130 might be a zoonotic lineage of S. aureus and that SCCmec XI/mecC may have originated from animal pathogens.
Roles for Hedgehog signaling in adult organ homeostasis and repair
Petrova, Ralitsa; Joyner, Alexandra L.
2014-01-01
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner. PMID:25183867
Liu, Shuaishuai; Zhang, Yanhong; Wang, Changming; Lin, Qiang
2016-07-01
The complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus was first determined in this article. The total length of H. spinosissimus mitogenome is 16 527 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. spinosissimus were similar to those of most other vertebrates. The overall base composition of H. spinosissimus is 32.1% A, 30.3% T, 14.9% G and 22.7% C, with a slight A + T-rich feature (62.4%). Phylogenetic analyses based on complete mitochondrial genome sequence showed that H. spinosissimus has a close genetic relationship to H. ingens and H. kuda.
6D Visualization of Multidimensional Data by Means of Cognitive Technology
NASA Astrophysics Data System (ADS)
Vitkovskiy, V.; Gorohov, V.; Komarinskiy, S.
2010-12-01
On the basis of the cognitive graphics concept, we worked out the SW-system for visualization and analysis. It allows to train and to aggravate intuition of researcher, to raise his interest and motivation to the creative, scientific cognition, to realize process of dialogue with the very problems simultaneously. The Space Hedgehog system is the next step in the cognitive means of the multidimensional data analyze. The technique and technology cognitive 6D visualization of the multidimensional data is developed on the basis of the cognitive visualization research and technology development. The Space Hedgehog system allows direct dynamic visualization of 6D objects. It is developed with use of experience of the program Space Walker creation and its applications.
Hedgehog and Resident Vascular Stem Cell Fate
Mooney, Ciaran J.; Hakimjavadi, Roya; Fitzpatrick, Emma; Kennedy, Eimear; Walls, Dermot; Morrow, David; Redmond, Eileen M.; Cahill, Paul A.
2015-01-01
The Hedgehog pathway is a pivotal morphogenic driver during embryonic development and a key regulator of adult stem cell self-renewal. The discovery of resident multipotent vascular stem cells and adventitial progenitors within the vessel wall has transformed our understanding of the origin of medial and neointimal vascular smooth muscle cells (SMCs) during vessel repair in response to injury, lesion formation, and overall disease progression. This review highlights the importance of components of the Hh and Notch signalling pathways within the medial and adventitial regions of adult vessels, their recapitulation following vascular injury and disease progression, and their putative role in the maintenance and differentiation of resident vascular stem cells to vascular lineages from discrete niches within the vessel wall. PMID:26064136
BMI-1 Promotes Self-Renewal of Radio- and Temozolomide (TMZ)-Resistant Breast Cancer Cells.
Yan, Yanfang; Wang, Ying; Zhao, Pengxin; Ma, Weiyuan; Hu, Zhigang; Zhang, Kaili
2017-12-01
Breast cancer is a hormone-dependent malignancy and is the most prevalent cause of cancer-related mortality among females. Radiation therapy and chemotherapy are common treatments of breast cancer. However, tumor relapse and metastasis following therapy are major clinical challenges. The importance of B-lymphoma Moloney murine leukemia virus insertion region-1 (BMI-1) was implicated in cell proliferation, stem cell maintenance, and tumor initiation. We established radio- and temozolomide (TMZ)-resistant (IRC-R) MCF-7 and MDA-MB-231 cell lines to investigate the mechanism involved in therapeutic resistance. Cell proliferation and sphere number were dramatically elevated, and BMI-1 was remarkably upregulated, in IRC-R cells compared to parental cells. Silencing BMI-1 by RNA interference only affected the cell proliferation of IRC-R but not parental cells, suggesting the critical role of BMI-1 in radio- and TMZ resistance. We used a xenograft mice model to elucidate that BMI-1 was necessary in tumor development by assessing tumor volume and Ki67 expression. We found that Hedgehog (Hhg) signaling exerted synergized functions together with BMI-1, implicating the importance of BMI-1 in Hhg signaling. Downregulation of BMI-1 could be an effective strategy to suppress tumor growth, which supports the potential clinical use of targeting BMI-1 in breast cancer treatment.
GSK-3 as potential target for therapeutic intervention in cancer
McCubrey, James A.; Steelman, Linda S.; Bertrand, Fred E.; Davis, Nicole M.; Sokolosky, Melissa; Abrams, Steve L.; Montalto, Giuseppe; D'Assoro, Antonino B.; Libra, Massimo; Nicoletti, Ferdinando; Maestro, Roberta; Basecke, Jorg; Rakus, Dariusz; Gizak, Agnieszka; Demidenko, Zoya; Cocco, Lucio; Martelli, Alberto M.; Cervello, Melchiorre
2014-01-01
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified and studied in the regulation of glycogen synthesis. GSK-3 functions in a wide range of cellular processes. Aberrant activity of GSK-3 has been implicated in many human pathologies including: bipolar depression, Alzheimer's disease, Parkinson's disease, cancer, non-insulin-dependent diabetes mellitus (NIDDM) and others. In some cases, suppression of GSK-3 activity by phosphorylation by Akt and other kinases has been associated with cancer progression. In these cases, GSK-3 has tumor suppressor functions. In other cases, GSK-3 has been associated with tumor progression by stabilizing components of the beta-catenin complex. In these situations, GSK-3 has oncogenic properties. While many inhibitors to GSK-3 have been developed, their use remains controversial because of the ambiguous role of GSK-3 in cancer development. In this review, we will focus on the diverse roles that GSK-3 plays in various human cancers, in particular in solid tumors. Recently, GSK-3 has also been implicated in the generation of cancer stem cells in various cell types. We will also discuss how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTORC1, Ras/Raf/MEK/ERK, Wnt/beta-catenin, Hedgehog, Notch and others. PMID:24931005
Molecular biology of pancreatic cancer: how useful is it in clinical practice?
Sakorafas, George H; Smyrniotis, Vasileios
2012-07-10
During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years). Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active) etc. Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology in pancreatic cancer will expand in the future, improving the effectiveness of treatment and prognosis of patients with pancreatic cancer.
Dyment, Nathaniel A.; Breidenbach, Andrew P.; Schwartz, Andrea G.; Russell, Ryan P.; Aschbacher-Smith, Lindsey; Liu, Han; Hagiwara, Yusuke; Jiang, Rulang; Thomopoulos, Stavros; Butler, David L.; Rowe, David W.
2015-01-01
The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time. The hedgehog (Hh) pathway regulates this process, as Hh-responsive Gli1+ cells within the developing enthesis mature from unmineralized to mineralized fibrochondrocytes in response to activated signaling. Hh signaling is required for mineralization, as tissue-specific deletion of its obligate transducer Smoothened in the developing tendon and enthesis cells leads to significant reductions in the apposition of mineralized fibrocartilage. Together, these findings provide a spatiotemporal map of events – from expansion of the embryonic progenitor pool to synthesis of the collagen template and finally mineralization of this template – that leads to the formation of the mature zonal enthesis. These results can inform future tendon-to-bone repair strategies to create a mechanically functional enthesis in which tendon collagen fibers are anchored to bone through mineralized fibrocartilage. PMID:26141957
Black-holes-hedgehogs in the false vacuum and a new physics beyond the Standard Model
NASA Astrophysics Data System (ADS)
Das, C. R.; Laperashvili, L. V.; Sidharth, B. G.; Nielsen, H. B.
2017-12-01
In the present talk, we consider the existence of the two degenerate universal vacua: a) the first Electroweak vacuum at v = 246 GeV - “true vacuum”, and b) the second Planck scale “false vacuum” at v 2 ∼ 1018 GeV. In these vacua, we investigated the different topological defects. The main aim of this paper is an investigation of the hedgehog’s configurations as defects of the false vacuum. In the framework of the f(R) gravity, suggested by authors in their Gravi-Weak Unification model, we obtained a black hole solution, which corresponds to a “hedgehog” - global monopole, “swallowed” by a black-hole with mass ∼ 1019 GeV. These black-holes form a lattice-like structure of the vacuum at the Planck scale. Considering the results of the hedgehog lattice theory in the framework of the SU(2) Yang-Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehog’s confinement phase. This result gave us the possibility to conclude that there exist triplet Higgs fields which can contribute to the SM at the energy scale ≃ 104 ∼ 105 GeV. Showing a new physics at the scale 10÷100 TeV, these triplet Higgs particles can provide the stability of the EW-vacuum of the SM.
Li, Wenlu; Sun, Qinsheng; Song, Lu; Gao, Chunmei; Liu, Feng; Chen, Yuzong; Jiang, Yuyang
2017-12-01
PI3K/Akt/mTOR and hedgehog (Hh) signalings are two important pathways in breast cancer, which are usually connected with the drug resistance and cancer migration. Many studies indicated that PI3K/Akt/mTOR inhibitors and Hh inhibitors displayed synergistic effects, and the combination of the two signaling drugs could delay drug resistance and inhibit cancer migration in breast cancer. Therefore, the development of molecules simultaneously inhibiting these two pathways is urgent needed. Based on the structures of PI3K inhibitor buparlisib and Hh inhibitor vismodegib, a series of hybrid structures were designed and synthesized utilizing rational drug design and computer-based drug design. Several compounds displayed excellent antiproliferative activities against several breast cancer cell lines, including triple-negative breast cancer (TNBC) MDA-MB-231 cell. Further mechanistic studies demonstrated that the representative compound 9i could inhibit both PI3K/Akt/mTOR and hedgehog (Hh) signalings by inhibiting the phosphorylation of S6K and Akt as well as decreasing the SAG elevated expression of Gli1. Compound 9i could also induce apoptosis remarkably in T47D and MDA-MB-231 cells. In the transwell assay, 9i showed significant inhibition on the migration of MDA-MB-231. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhang, Honghao; Kamiya, Nobuhiro; Tsuji, Takehito; Takeda, Haruko; Scott, Greg; Rajderkar, Sudha; Ray, Manas K; Mochida, Yoshiyuki; Allen, Benjamin; Lefebvre, Veronique; Hung, Irene H; Ornitz, David M; Kunieda, Tetsuo; Mishina, Yuji
2016-12-01
Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome.
C2cd3 is required for cilia formation and Hedgehog signaling in mouse
Hoover, Amber N.; Wynkoop, Aaron; Zeng, Huiqing; Jia, Jinping; Niswander, Lee A.; Liu, Aimin
2011-01-01
Cilia are essential for mammalian embryonic development as well as for the physiological activity of various adult organ systems. Despite the multiple crucial roles that cilia play, the mechanisms underlying ciliogenesis in mammals remain poorly understood. Taking a forward genetic approach, we have identified Hearty (Hty), a recessive lethal mouse mutant with multiple defects, including neural tube defects, abnormal dorsal-ventral patterning of the spinal cord, a defect in left-right axis determination and severe polydactyly (extra digits). By genetic mapping, sequence analysis of candidate genes and characterization of a second mutant allele, we identify Hty as C2cd3, a novel gene encoding a vertebrate-specific C2 domain-containing protein. Target gene expression and double-mutant analyses suggest that C2cd3 is an essential regulator of intracellular transduction of the Hedgehog signal. Furthering a link between Hedgehog signaling and cilia function, we find that cilia formation and proteolytic processing of Gli3 are disrupted in C2cd3 mutants. Finally, we observe C2cd3 protein at the basal body, consistent with its essential function in ciliogenesis. Interestingly, the human ortholog for this gene lies in proximity to the critical regions of Meckel-Gruber syndrome 2 (MKS2) and Joubert syndrome 2 (JBTS2), making it a potential candidate for these two human genetic disorders. PMID:19004860
Katic, Jelena; Loers, Gabriele; Tosic, Jelena; Schachner, Melitta; Kleene, Ralf
2017-08-01
The immunoglobulin superfamily adhesion molecule close homolog of L1 (CHL1) plays important roles during nervous system development. Here, we identified the hedgehog receptor patched-1 (PTCH1) as a novel CHL1-binding protein and showed that CHL1 interacts with the first extracellular loop of PTCH1 via its extracellular domain. Colocalization and co-immunoprecipitation of CHL1 with PTCH1 suggest an association of CHL1 with this major component of the hedgehog signaling pathway. The trans -interaction of CHL1 with PTCH1 promotes neuronal survival in cultures of dissociated cerebellar granule cells and of organotypic cerebellar slices. An inhibitor of the PTCH1-regulated hedgehog signal transducer, smoothened (SMO), and inhibitors of RhoA and Rho-associated kinase (ROCK) 1 and 2 prevent CHL1-dependent survival of cultured cerebellar granule cells and survival of cerebellar granule and Purkinje cells in organotypic cultures. In histological sections from 10- and 14-day-old CHL1-deficient mice, enhanced apoptosis of granule, but not Purkinje, cells was observed. The results of the present study indicate that CHL1 triggers PTCH1-, SMO-, RhoA- and ROCK-dependent signal transduction pathways to promote neuronal survival after cessation of the major morphogenetic events during mouse cerebellar development. © 2017. Published by The Company of Biologists Ltd.
Hedgehog signaling regulates FOXA2 in esophageal embryogenesis and Barrett’s metaplasia
Wang, David H.; Tiwari, Anjana; Kim, Monica E.; Clemons, Nicholas J.; Regmi, Nanda L.; Hodges, William A.; Berman, David M.; Montgomery, Elizabeth A.; Watkins, D. Neil; Zhang, Xi; Zhang, Qiuyang; Jie, Chunfa; Spechler, Stuart J.; Souza, Rhonda F.
2014-01-01
Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett’s esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett’s metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett’s pathogenesis. By microarray analysis, we found that the transcription factor Foxa2 is more highly expressed in murine embryonic esophagus compared with postnatal esophagus. Conditional activation of Shh in mouse esophageal epithelium induced FOXA2, while FOXA2 expression was reduced in Shh knockout embryos, establishing Foxa2 as an esophageal Hh target gene. Evaluation of patient samples revealed FOXA2 expression in Barrett’s metaplasia, dysplasia, and adenocarcinoma but not in esophageal squamous epithelium or squamous cell carcinoma. In esophageal squamous cell lines, Hh signaling upregulated FOXA2, which induced expression of MUC2, an intestinal mucin found in Barrett’s esophagus, and the MUC2-processing protein AGR2. Together, these data indicate that Hh signaling induces expression of genes that determine an intestinal phenotype in esophageal squamous epithelial cells and may contribute to the development of Barrett’s metaplasia. PMID:25083987
Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang
2015-05-20
Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression.
The Hedgehog processing pathway is required for NSCLC growth and survival
Rodriguez-Blanco, Jezabel; Schilling, Neal S.; Tokhunts, Robert; Giambelli, Camilla; Long, Jun; Liang Fei, Dennis; Singh, Samer; Black, Kendall E.; Wang, Zhiqiang; Galimberti, Fabrizio; Bejarano, Pablo A.; Elliot, Sharon; Glassberg, Marilyn K.; Nguyen, Dao M.; Lockwood, William W.; Lam, Wan L.; Dmitrovsky, Ethan; Capobianco, Anthony J.; Robbins, David J.
2013-01-01
Considerable interest has been generated from the results of recent clinical trials using SMOOTHENED (SMO) antagonists to inhibit the growth of HEDGEHOG (HH) signaling dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, SKINNY HEDGEHOG (SKN) or DISPATCHED-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently over-expressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand dependent cancers. PMID:22733134
Kim, Tae-Hee; Kim, Byeong-Moo; Mao, Junhao; Rowan, Sheldon; Shivdasani, Ramesh A.
2011-01-01
The digestive tract epithelium and its adjoining mesenchyme undergo coordinated patterning and growth during development. The signals they exchange in the process are not fully characterized but include ligands of the Hedgehog (Hh) family, which originate in the epithelium and are necessary for mesenchymal cells to expand in number and drive elongation of the developing gut tube. The Notch signaling pathway has known requirements in fetal and adult intestinal epithelial progenitors. We detected Notch pathway activity in the embryonic gut mesenchyme and used conditional knockout mice to study its function. Selective disruption of the Notch effector gene RBP-Jκ (Rbpj) in the mesenchyme caused progressive loss of subepithelial fibroblasts and abbreviated gut length, revealing an unexpected requirement in this compartment. Surprisingly, constitutive Notch activity also induced rapid mesenchymal cell loss and impaired organogenesis, probably resulting from increased cell death and suggesting the need for a delicate balance in Notch signaling. Because digestive tract anomalies in mouse embryos with excess Notch activity phenocopy the absence of Hh signaling, we postulated that endodermal Hh restrains mesenchymal Notch pathway activity. Indeed, Hh-deficient embryos showed Notch overactivity in their defective gut mesenchyme and exposure to recombinant sonic hedgehog could override Notch-induced death of cultured fetal gut mesenchymal cells. These results reveal unexpected interactions between prominent signals in gastrointestinal development and provide a coherent explanation for Hh requirements in mesenchymal cell survival and organ growth. PMID:21750033
Mast cells in the sheep, hedgehog and rat forebrain
MICHALOUDI, HELEN C.; PAPADOPOULOS, GEORGIOS C.
1999-01-01
The study was designed to reveal the distribution of various mast cell types in the forebrain of the adult sheep, hedgehog and rat. Based on their histochemical and immunocytochemical characteristics, mast cells were categorised as (1) connective tissue-type mast cells, staining metachromatically purple with the toluidine blue method, or pale red with the Alcian blue/safranin method, (2) mucosal-type or immature mast cells staining blue with the Alcian blue/safranin method and (3) serotonin immunopositive mast cells. All 3 types of brain mast cells in all species studied were located in both white and grey matter, often associated with intraparenchymal blood vessels. Their distribution pattern exhibited interspecies differences, while their number varied considerably not only between species but also between individuals of each species. A distributional left-right asymmetry, with more cells present on the left side, was observed in all species studied but it was most prominent in the sheep brain. In the sheep, mast cells were abundantly distributed in forebrain areas, while in the hedgehog and the rat forebrain, mast cells were less widely distributed and were relatively or substantially fewer in number respectively. A limited number of brain mast cells, in all 3 species, but primarily in the rat, were found to react both immunocytochemically to 5-HT antibody and histochemically with Alcian blue/safranin staining. PMID:10634696
Zhang, Honghao; Kamiya, Nobuhiro; Tsuji, Takehito; Takeda, Haruko; Scott, Greg; Ray, Manas K.; Mochida, Yoshiyuki; Lefebvre, Veronique; Hung, Irene H.; Kunieda, Tetsuo; Mishina, Yuji
2016-01-01
Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling. In this report, we comprehensively analyze limb skeletogenesis in Evc2 mutant mice and in cell and tissue cultures derived from these mice. Both in vivo and in vitro data demonstrate elevated Fibroblast Growth Factor (FGF) signaling in Evc2 mutant growth plates, in addition to compromised but not abrogated Hedgehog-PTHrP feedback loop. Elevation of FGF signaling, mainly due to increased Fgf18 expression upon inactivation of Evc2 in the perichondrium, critically contributes to the pathogenesis of limb dwarfism. The limb dwarfism phenotype is partially rescued by inactivation of one allele of Fgf18 in the Evc2 mutant mice. Taken together, our data uncover a novel pathogenic mechanism to understand limb dwarfism in patients with Ellis-van Creveld syndrome. PMID:28027321
Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly.
Maity, Tapan; Fuse, Naoyuki; Beachy, Philip A
2005-11-22
Holoprosencephaly (HPE), a human developmental brain defect, usually is also associated with varying degrees of midline facial dysmorphism. Heterozygous mutations in the Sonic hedgehog (SHH) gene are the most common genetic lesions associated with HPE, and loss of Shh function in the mouse produces cyclopia and alobar forebrain development. The N-terminal domain (ShhNp) of Sonic hedgehog protein, generated by cholesterol-dependent autoprocessing and modification at the C terminus and by palmitate addition at the N terminus, is the active ligand in the Shh signal transduction pathway. Here, we analyze seven reported missense mutations (G31R, D88V, Q100H, N115K, W117G, W117R, and E188Q) that alter the N-terminal signaling domain of Shh protein, and show that two of these mutations (Q100H and E188Q), which are questionably linked to HPE, produce no detectable effects on function. The remaining five alterations affect normal processing, Ptc binding, and signaling to varying degrees. These effects include introduction of a recognition site for furin-like proteases by the G31R alteration, resulting in cleavage of 11 amino acid residues from the N terminus of ShhNp and consequent reduced signaling potency. Two other alterations, W117G and W117R, cause temperature-dependent misfolding and retention in the sterol-poor endoplasmic reticulum, thus disrupting cholesterol-dependent autoprocessing.
Shigemura, Katsumi; Huang, Wen-Chin; Li, Xiangyan; Zhau, Haiyen E.; Zhu, Guodong; Gotoh, Akinobu; Fujisawa, Masato; Xie, Jingwu; Marshall, Fray F.; Chung, Leland W. K.
2012-01-01
BACKGROUND Sonic hedgehog (Shh) signaling plays a pivotal role in stromal-epithelial interaction during normal development but its role in tumor-stromal interaction during carcinogenic progression is less well defined. Since hormone refractory prostate cancer with bone metastasis is difficult to treat, it is crucial to investigate how androgen independent (AI) human prostate cancer cells communicate with their associated stroma. METHODS Shh and its target transcription factor, Gli1 mRNA, were assessed by RT-PCR and/or quantitative RT-PCR in co-cultured cell recombinants comprised of AI C4-2 either with NPF (prostate fibroblasts from normal/benign prostate gland) or CPF cancer-associated stromal fibroblasts) under Shh/cyclopamine (a hedgehog signaling inhibitor) treatment. Human bone marrow stromal (HS27A) cells were used as controls. In vivo investigation was performed by checking serum PSA and immunohistochemical staining for the apoptosis-associated M30 gene in mice bearing chimeric C4-2/NPF tumors. RESULTS CONCLUSIONS Based on co-culture and chimeric tumor models, active Shh-mediated signaling was demonstrated between AI prostate cancer and NPF in a paracrine- and tumor progression-dependent manner. Our study suggests that drugs like cyclopamine that interfere with Shh signaling could be beneficial in preventing AI progression in prostate cancer cells. PMID:21520153
Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways.
Sigg, Monika Abedin; Menchen, Tabea; Lee, Chanjae; Johnson, Jeffery; Jungnickel, Melissa K; Choksi, Semil P; Garcia, Galo; Busengdal, Henriette; Dougherty, Gerard W; Pennekamp, Petra; Werner, Claudius; Rentzsch, Fabian; Florman, Harvey M; Krogan, Nevan; Wallingford, John B; Omran, Heymut; Reiter, Jeremy F
2017-12-18
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster.
Tolhuis, Bas; de Wit, Elzo; Muijrers, Inhua; Teunissen, Hans; Talhout, Wendy; van Steensel, Bas; van Lohuizen, Maarten
2006-06-01
Polycomb group (PcG) proteins maintain transcriptional repression of developmentally important genes and have been implicated in cell proliferation and stem cell self-renewal. We used a genome-wide approach to map binding patterns of PcG proteins (Pc, esc and Sce) in Drosophila melanogaster Kc cells. We found that Pc associates with large genomic regions of up to approximately 150 kb in size, hereafter referred to as 'Pc domains'. Sce and esc accompany Pc in most of these domains. PcG-bound chromatin is trimethylated at histone H3 Lys27 and is generally transcriptionally silent. Furthermore, PcG proteins preferentially bind to developmental genes. Many of these encode transcriptional regulators and key components of signal transduction pathways, including Wingless, Hedgehog, Notch and Delta. We also identify several new putative functions of PcG proteins, such as in steroid hormone biosynthesis. These results highlight the extensive involvement of PcG proteins in the coordination of development through the formation of large repressive chromatin domains.
Imparting regenerative capacity to limbs by progenitor cell transplantation
Lin, Gufa; Chen, Ying; Slack, Jonathan M.W.
2012-01-01
Summary The frog Xenopus can normally regenerate its limbs at early developmental stages but loses the ability during metamorphosis. This behavior provides a potential gain-of-function model for measures that can enhance limb regeneration. Here we show that frog limbs can be caused to form multidigit regenerates after receiving transplants of larval limb progenitor cells. It is necessary to activate Wnt/β -catenin signaling in the cells, and to add Sonic hedgehog, FGF10 and thymosin β4. These factors promote survival and growth of the grafted cells and also provide pattern information. The eventual regenerates are not composed solely of donor tissue; the host cells also make a substantial contribution despite their lack of regeneration-competence. Cells from adult frog legs or from regenerating tadpole tails do not promote limb regeneration, demonstrating the necessity for limb progenitor cells. These findings have obvious implications for the development of a technology to promote limb regeneration in mammals. PMID:23273877
Infante, Paola; Faedda, Roberta; Bernardi, Flavia; Bufalieri, Francesca; Lospinoso Severini, Ludovica; Alfonsi, Romina; Mazzà, Daniela; Siler, Mariangela; Coni, Sonia; Po, Agnese; Petroni, Marialaura; Ferretti, Elisabetta; Mori, Mattia; De Smaele, Enrico; Canettieri, Gianluca; Capalbo, Carlo; Maroder, Marella; Screpanti, Isabella; Kool, Marcel; Pfister, Stefan M; Guardavaccaro, Daniele; Gulino, Alberto; Di Marcotullio, Lucia
2018-03-07
Suppressor of Fused (SuFu), a tumour suppressor mutated in medulloblastoma, is a central player of Hh signalling, a pathway crucial for development and deregulated in cancer. Although the control of Gli transcription factors by SuFu is critical in Hh signalling, our understanding of the mechanism regulating this key event remains limited. Here, we show that the Itch/β-arrestin2 complex binds SuFu and induces its Lys63-linked polyubiquitylation without affecting its stability. This process increases the association of SuFu with Gli3, promoting the conversion of Gli3 into a repressor, which keeps Hh signalling off. Activation of Hh signalling antagonises the Itch-dependent polyubiquitylation of SuFu. Notably, different SuFu mutations occurring in medulloblastoma patients are insensitive to Itch activity, thus leading to deregulated Hh signalling and enhancing medulloblastoma cell growth. Our findings uncover mechanisms controlling the tumour suppressive functions of SuFu and reveal that their alterations are implicated in medulloblastoma tumorigenesis.
Evolution of the human-specific microRNA miR-941
Hu, Hai Yang; He, Liu; Fominykh, Kseniya; Yan, Zheng; Guo, Song; Zhang, Xiaoyu; Taylor, Martin S.; Tang, Lin; Li, Jie; Liu, Jianmei; Wang, Wen; Yu, Haijing; Khaitovich, Philipp
2012-01-01
MicroRNA-mediated gene regulation is important in many physiological processes. Here we explore the roles of a microRNA, miR-941, in human evolution. We find that miR-941 emerged de novo in the human lineage, between six and one million years ago, from an evolutionarily volatile tandem repeat sequence. Its copy-number remains polymorphic in humans and shows a trend for decreasing copy-number with migration out of Africa. Emergence of miR-941 was accompanied by accelerated loss of miR-941-binding sites, presumably to escape regulation. We further show that miR-941 is highly expressed in pluripotent cells, repressed upon differentiation and preferentially targets genes in hedgehog- and insulin-signalling pathways, thus suggesting roles in cellular differentiation. Human-specific effects of miR-941 regulation are detectable in the brain and affect genes involved in neurotransmitter signalling. Taken together, these results implicate miR-941 in human evolution, and provide an example of rapid regulatory evolution in the human linage. PMID:23093182
Structural basis for Smoothened receptor modulation and chemoresistance to anti-cancer drugs
Wang, Chong; Wu, Huixian; Evron, Tama; Vardy, Eyal; Han, Gye Won; Huang, Xi-Ping; Hufeisen, Sandy J.; Mangano, Thomas J.; Urban, Dan J.; Katritch, Vsevolod; Cherezov, Vadim; Caron, Marc G.; Roth, Bryan L.; Stevens, Raymond C.
2014-01-01
The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumors; however, mutations at SMO have been found to abolish their anti-tumor effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6–2.8Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbors multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D4736.55 elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules. PMID:25008467
Ramirez, Elisa; Singh, Rajesh R; Kunkalla, Kranthi; Liu, Yadong; Qu, Changju; Cain, Christine; Multani, Asha S.; Lennon, Patrick A; Jackacky, Jared; Ho, Michael; Dawud, Sity; Gu, Jun; Yang, Su; Hu, Peter C; Vega, Francisco
2012-01-01
Hedgehog (Hh) signaling pathway is activated in diffuse large B-cell lymphoma (DLBCL). Genetic abnormalities that explain activation of Hh signaling in DLBCL are unknown. We investigate the presence of amplifications of Hh genes that might result in activation of this pathway in DLBCL. Our data showed few extra copies of GLI1 and SMO due to chromosomal aneuploidies in a subset of DLBCL cell lines. We also showed that pharmacologic inhibition of PI3K/AKT and NF-KB pathways resulted in decreased expression of GLI1 and Hh ligands. In conclusion, our data support the hypothesis that aberrant activation of Hh signaling in DLBCL mainly results from integration of deregulated oncogenic signaling inputs converging into Hh signaling. PMID:22809693
Duell, Eric J.; Yu, Kai; Risch, Harvey A.; Olson, Sara H.; Kooperberg, Charles; Wolpin, Brian M.; Jiao, Li; Dong, Xiaoqun; Wheeler, Bill; Arslan, Alan A.; Bueno-de-Mesquita, H. Bas; Fuchs, Charles S.; Gallinger, Steven; Gross, Myron; Hartge, Patricia; Hoover, Robert N.; Holly, Elizabeth A.; Jacobs, Eric J.; Klein, Alison P.; LaCroix, Andrea; Mandelson, Margaret T.; Petersen, Gloria; Zheng, Wei; Agalliu, Ilir; Albanes, Demetrius; Boutron-Ruault, Marie-Christine; Bracci, Paige M.; Buring, Julie E.; Canzian, Federico; Chang, Kenneth; Chanock, Stephen J.; Cotterchio, Michelle; Gaziano, J.Michael; Giovannucci, Edward L.; Goggins, Michael; Hallmans, Göran; Hankinson, Susan E.; Hoffman Bolton, Judith A.; Hunter, David J.; Hutchinson, Amy; Jacobs, Kevin B.; Jenab, Mazda; Khaw, Kay-Tee; Kraft, Peter; Krogh, Vittorio; Kurtz, Robert C.; McWilliams, Robert R.; Mendelsohn, Julie B.; Patel, Alpa V.; Rabe, Kari G.; Riboli, Elio; Shu, Xiao-Ou; Tjønneland, Anne; Tobias, Geoffrey S.; Trichopoulos, Dimitrios; Virtamo, Jarmo; Visvanathan, Kala; Watters, Joanne; Yu, Herbert; Zeleniuch-Jacquotte, Anne; Stolzenberg-Solomon, Rachael Z.
2012-01-01
Four loci have been associated with pancreatic cancer through genome-wide association studies (GWAS). Pathway-based analysis of GWAS data is a complementary approach to identify groups of genes or biological pathways enriched with disease-associated single-nucleotide polymorphisms (SNPs) whose individual effect sizes may be too small to be detected by standard single-locus methods. We used the adaptive rank truncated product method in a pathway-based analysis of GWAS data from 3851 pancreatic cancer cases and 3934 control participants pooled from 12 cohort studies and 8 case–control studies (PanScan). We compiled 23 biological pathways hypothesized to be relevant to pancreatic cancer and observed a nominal association between pancreatic cancer and five pathways (P < 0.05), i.e. pancreatic development, Helicobacter pylori lacto/neolacto, hedgehog, Th1/Th2 immune response and apoptosis (P = 2.0 × 10−6, 1.6 × 10−5, 0.0019, 0.019 and 0.023, respectively). After excluding previously identified genes from the original GWAS in three pathways (NR5A2, ABO and SHH), the pancreatic development pathway remained significant (P = 8.3 × 10−5), whereas the others did not. The most significant genes (P < 0.01) in the five pathways were NR5A2, HNF1A, HNF4G and PDX1 for pancreatic development; ABO for H. pylori lacto/neolacto; SHH for hedgehog; TGFBR2 and CCL18 for Th1/Th2 immune response and MAPK8 and BCL2L11 for apoptosis. Our results provide a link between inherited variation in genes important for pancreatic development and cancer and show that pathway-based approaches to analysis of GWAS data can yield important insights into the collective role of genetic risk variants in cancer. PMID:22523087
Cytomegalic inclusion disease in the east African headgehog.
Karstad, L
1975-04-01
Cytomegaly with intranuclear inclusion bodies was found in the duct epithelium of the salivary glands of five of ten hedgehogs (Atelerix albiventris). Cytomegalovirus infection was presumed to be the cause.
Inhibiting the Hedgehog Pathway in Patients with the Basal-Cell Nevus Syndrome
Tang, Jean Y.; Mackay-Wiggan, Julian M.; Aszterbaum, Michelle; Yauch, Robert L.; Lindgren, Joselyn; Chang, Kris; Coppola, Carol; Chanana, Anita M.; Marji, Jackleen; Bickers, David R.; Epstein, Ervin H.
2012-01-01
BACKGROUND Dysregulated hedgehog signaling is the pivotal molecular abnormality underlying basal-cell carcinomas. Vismodegib is a new orally administered hedgehog-pathway inhibitor that produces objective responses in locally advanced and metastatic basal-cell carcinomas. METHODS We tested the anti–basal-cell carcinoma efficacy of vismodegib in a randomized, double-blind, placebo-controlled trial in patients with the basal-cell nevus syndrome at three clinical centers from September 2009 through January 2011. The primary end point was reduction in the incidence of new basal-cell carcinomas that were eligible for surgical resection (surgically eligible) with vismodegib versus placebo after 3 months; secondary end points included reduction in the size of existing basal-cell carcinomas. RESULTS In 41 patients followed for a mean of 8 months (range, 1 to 15) after enrollment, the per-patient rate of new surgically eligible basal-cell carcinomas was lower with vismodegib than with placebo (2 vs. 29 cases per group per year, P<0.001), as was the size (percent change from baseline in the sum of the longest diameter) of existing clinically significant basal-cell carcinomas (−65% vs. −11%, P = 0.003). In some patients, all basal-cell carcinomas clinically regressed. No tumors progressed during treatment with vismodegib. Patients receiving vismodegib routinely had grade 1 or 2 adverse events of loss of taste, muscle cramps, hair loss, and weight loss. Overall, 54% of patients (14 of 26) receiving vismodegib discontinued drug treatment owing to adverse events. At 1 month, vismodegib use had reduced the hedgehog target-gene expression by basal-cell carcinoma by 90% (P<0.001) and diminished tumor-cell proliferation, but apoptosis was not affected. No residual basal-cell carcinoma was detectable in 83% of biopsy samples taken from sites of clinically regressed basal-cell carcinomas. CONCLUSIONS Vismodegib reduces the basal-cell carcinoma tumor burden and blocks growth of new basal-cell carcinomas in patients with the basal-cell nevus syndrome. The adverse events associated with treatment led to discontinuation in over half of treated patients. (Funded by Genentech and others; ClinicalTrials.gov number, NCT00957229.) PMID:22670904
Code of Federal Regulations, 2014 CFR
2014-01-01
...: (1) The name and address of the shipper in the region of origin of the hedgehog or tenrec intended... United States. (5) The mode of transportation. (6) The number, breed, species, and descriptions of the...
Code of Federal Regulations, 2011 CFR
2011-01-01
...: (1) The name and address of the shipper in the region of origin of the hedgehog or tenrec intended... United States. (5) The mode of transportation. (6) The number, breed, species, and descriptions of the...
Code of Federal Regulations, 2012 CFR
2012-01-01
...: (1) The name and address of the shipper in the region of origin of the hedgehog or tenrec intended... United States. (5) The mode of transportation. (6) The number, breed, species, and descriptions of the...
Code of Federal Regulations, 2010 CFR
2010-01-01
...: (1) The name and address of the shipper in the region of origin of the hedgehog or tenrec intended... United States. (5) The mode of transportation. (6) The number, breed, species, and descriptions of the...
Code of Federal Regulations, 2013 CFR
2013-01-01
...: (1) The name and address of the shipper in the region of origin of the hedgehog or tenrec intended... United States. (5) The mode of transportation. (6) The number, breed, species, and descriptions of the...
Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Jin; Zheng Hua; Xiao Honglei
2007-11-16
Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results providemore » evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.« less
NHR-23 dependent collagen and hedgehog-related genes required for molting.
Kouns, Nathaniel A; Nakielna, Johana; Behensky, Frantisek; Krause, Michael W; Kostrouch, Zdenek; Kostrouchova, Marta
2011-10-07
NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa. Copyright © 2011 Elsevier Inc. All rights reserved.
Fan, C M; Tessier-Lavigne, M
1994-12-30
An early step in the development of vertebrae, ribs, muscle, and dermis is the differentiation of the somitic mesoderm into dermomyotome dorsally and sclerotome ventrally. To analyze this process, we have developed an in vitro assay for somitic mesoderm differentiation. We show that sclerotomal markers can be induced by a diffusible factor secreted by notochord and floor plate and that heterologous cells expressing Sonic hedgehog (shh/vhh-1) mimic this effect. In contrast, expression of dermomyotomal markers can be caused by a contact-dependent signal from surface ectoderm and a diffusible signal from dorsal neural tube. Our results extend previous studies by suggesting that dorsoventral patterning of somites involves the coordinate action of multiple dorsalizing and ventralizing signals and that a diffusible form of Shh/Vhh-1 mediates sclerotome induction.
Mixed Glioma (Oligoastrocytoma) in the brain of an African Hedgehog (Atelerix albiventris).
Benneter, S S; Summers, B A; Schulz-Schaeffer, W J; Härtig, W; Mollidor, J; Schöniger, S
2014-11-01
This report describes an oligoastrocytoma in the brain of a 3.5-year-old female pet African hedgehog (Atelerix albiventris) that showed progressive central nervous system signs for 6 months. Microscopical examination of the brain revealed a widely infiltrative, deep-seated glioma within the white matter of the cerebral hemispheres, basal nuclei, hippocampus, thalamus, midbrain, pons and the medulla of the cerebellum with extension of neoplastic cells into the cerebral cortex and overlying leptomeninges. Morphological features of the neoplastic cells, together with variable immunohistochemical expression of glial fibrillary acidic protein, Olig-2 and Nogo-A, indicated the presence of intermingled astrocytic and oligodendroglial tumour cells with an astrocytic component of approximately 40% consistent with an oligoastrocytoma. The distribution of the tumour is consistent with gliomatosis cerebri. Copyright © 2014 Elsevier Ltd. All rights reserved.
Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock
2009-01-01
Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123
Zhou, Xiao-Yi; Xu, Xi-Ming; Wu, Sui-Yi; Zhang, Zi-Cheng; Wang, Fei; Yang, Yi-Lin; Li, Ming; Wei, Xian-Zhao
2018-05-01
Low-intensity pulsed ultrasound (LIPUS) has been found to accelerate the healing process of spinal fusion via a process closely related to osteoblast differentiation and migration. Sonic hedgehog (Shh) signaling plays an important role in development and homeostasis, including a critical function in bone formation. However, its role in spinal fusion during LIPUS treatment is still unknown. This study showed that LIPUS treatment after spinal fusion surgery increased bone formation. The increased bone mass under LIPUS treatment appeared to result from the increased migration and proliferation of osteoblasts, resulting from upregulation of the Shh signaling pathway. In contrast, inhibition of Shh reduced the migratory and proliferative ability of osteoblast-like MG63 cells and blocked the efficacy of LIPUS treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Schüller, Ulrich; Heine, Vivi M.; Mao, Junhao; Kho, Alvin T.; Dillon, Allison K.; Han, Young-Goo; Huillard, Emmanuelle; Sun, Tao; Ligon, Azra H.; Qian, Ying; Ma, Qiufu; Alvarez-Buylla, Arturo; McMahon, Andrew P.; Rowitch, David H.; Ligon, Keith L.
2008-01-01
Origins of the brain tumor, medulloblastoma, from stem cells or restricted progenitor cells are unclear. To investigate this, we activated oncogenic Hedgehog (Hh) signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipotent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ RL progenitors. Hh activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hh signaling promotes medulloblastoma from lineage-restricted granule cell progenitors. PMID:18691547
Dyment, Nathaniel A; Breidenbach, Andrew P; Schwartz, Andrea G; Russell, Ryan P; Aschbacher-Smith, Lindsey; Liu, Han; Hagiwara, Yusuke; Jiang, Rulang; Thomopoulos, Stavros; Butler, David L; Rowe, David W
2015-09-01
The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time. The hedgehog (Hh) pathway regulates this process, as Hh-responsive Gli1+ cells within the developing enthesis mature from unmineralized to mineralized fibrochondrocytes in response to activated signaling. Hh signaling is required for mineralization, as tissue-specific deletion of its obligate transducer Smoothened in the developing tendon and enthesis cells leads to significant reductions in the apposition of mineralized fibrocartilage. Together, these findings provide a spatiotemporal map of events - from expansion of the embryonic progenitor pool to synthesis of the collagen template and finally mineralization of this template - that leads to the formation of the mature zonal enthesis. These results can inform future tendon-to-bone repair strategies to create a mechanically functional enthesis in which tendon collagen fibers are anchored to bone through mineralized fibrocartilage. Copyright © 2015 Elsevier Inc. All rights reserved.
Shin, Jeong-Oh; Ankamreddy, Harinarayana; Jakka, Naga Mahesh; Lee, Seokwon; Kim, Un-Kyung; Bok, Jinwoong
2017-01-01
The mammalian inner ear is a complex organ responsible for balance and hearing. Sonic hedgehog (Shh), a member of the Hedgehog (Hh) family of secreted proteins, has been shown to play important roles in several aspects of inner ear development, including dorsoventral axial specification, cochlear elongation, tonotopic patterning, and hair cell differentiation. Hh proteins initiate a downstream signaling cascade by binding to the Patched 1 (Ptch1) receptor. Recent studies have revealed that other types of co-receptors can also mediate Hh signaling, including growth arrest-specific 1 (Gas1), cell-adhesion molecules-related/down-regulated by oncogenes (Cdon), and biregional Cdon binding protein (Boc). However, little is known about the role of these Hh co-receptors in inner ear development. In this study, we examined the expression patterns of Gas1, Cdon, and Boc, as well as that of Ptch1, in the developing mouse inner ear from otocyst (embryonic day (E) 9.5) until birth and in the developing middle ear at E15.5. Ptch1, a readout of Hh signaling, was expressed in a graded pattern in response to Shh signaling throughout development. Expression patterns of Gas1, Cdon, and Boc differed from that of Ptch1, and each Hh co-receptor was expressed in specific cells and domains in the developing inner and middle ear. These unique and differential expression patterns of Hh co-receptors suggest their roles in mediating various time- and space-specific functions of Shh during ear development.
Ye, Xiuqin; Hong, Wei; Hao, Binwei; Peng, Gongyong; Huang, Lingmei; Zhao, Zhuxiang; Zhou, Yumin; Zheng, Mengning; Li, Chenglong; Liang, Chunxiao; Yi, Erkang; Pu, Jinding; Li, Bing; Ran, Pixin
2018-03-02
The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.
An, Songzhu Michael; Ding, Qiang Peter; Li, Ling-song
2013-06-01
One of the most exciting fields in biomedical research over the past few years is stem cell biology, and therapeutic application of stem cells to replace the diseased or damaged tissues is also an active area in development. Although stem cell therapy has a number of technical challenges and regulatory hurdles to overcome, the use of stem cells as tools in drug discovery supported by mature technologies and established regulatory paths is expected to generate more immediate returns. In particular, the targeting of stem cell signaling pathways is opening up a new avenue for drug discovery. Aberrations in these pathways result in various diseases, including cancer, fibrosis and degenerative diseases. A number of drug targets in stem cell signaling pathways have been identified. Among them, WNT and Hedgehog are two most important signaling pathways, which are the focus of this review. A hedgehog pathway inhibitor, vismodegib (Erivedge), has recently been approved by the US FDA for the treatment of skin cancer, while several drug candidates for the WNT pathway are entering clinical trials. We have discovered that the stem cell signaling pathways respond to traditional Chinese medicines. Substances isolated from herbal medicine may act specifically on components of stem cell signaling pathways with high affinities. As many of these events can be explained through molecular interactions, these phenomena suggest that discovery of stem cell-targeting drugs from natural products may prove to be highly successful.
NASA Astrophysics Data System (ADS)
Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang
2015-05-01
Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression.
Wang, Chuandong; Shan, Shengzhou; Wang, Chenglong; Wang, Jing; Li, Jiao; Hu, Guoli; Dai, Kerong; Li, Qingfeng; Zhang, Xiaoling
2017-03-15
Mechanical unloading leads to bone loss and disuse osteoporosis partly due to impaired osteoblastogenesis of bone marrow stromal cells (BMSCs). However, the underlying molecular mechanisms of this phenomenon are not fully understood. In this study, we demonstrated that cyclic mechanical stretch (CMS) promotes osteoblastogenesis of BMSCs both in vivo and in vitro. Besides, we found that Hedgehog (Hh) signaling pathway was activated in this process. Inhibition of which by either knockdown of Sonic hedgehog (Shh) or treating BMSCs with Hh inhibitors attenuated the osteogenic effect of CMS on BMSCs, suggesting that Hh signaling pathway acts as an endogenous mediator of mechanical stimuli on BMSCs. Furthermore, we demonstrated that Shh expression level was regulated by DNA methylation mechanism. Chromatin Immunoprecipitation (ChIP) assay showed that DNA methyltransferase 3b (Dnmt3b) binds to Shh gene promoter, leading to DNA hypermethylation in mechanical unloading BMSCs. However, mechanical stimulation down-regulates the protein level of Dnmt3b, results in DNA demethylation and Shh expression. More importantly, we found that inhibition of Dnmt3b partly rescued bone loss in HU mice by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation regulates osteoblastic genes expression via direct regulation of Dnmt3b, and the therapeutic inhibition of Dnmt3b may be an efficient strategy for enhancing bone formation under mechanical unloading. Copyright © 2017 Elsevier Inc. All rights reserved.
Young, Blanche; Minugh-Purvis, Nancy; Shimo, Tsuyoshi; St-Jacques, Benoit; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi; Koyama, Eiki; Pacifici, Maurizio
2006-11-01
The synchondroses consist of mirror-image growth plates and are critical for cranial base elongation, but relatively little is known about their formation and regulation. Here we show that synchondrosis development is abnormal in Indian hedgehog-null mice. The Ihh(-/-) cranial bases displayed reduced growth and chondrocyte proliferation, but chondrocyte hypertrophy was widespread. Rather than forming a typical narrow zone, Ihh(-/-) hypertrophic chondrocytes occupied an elongated central portion of each growth plate and were flanked by immature collagen II-expressing chondrocytes facing perichondrial tissues. Endochondral ossification was delayed in much of the Ihh(-/-) cranial bases but, surprisingly, was unaffected most posteriorly. Searching for an explanation, we found that notochord remnants near incipient spheno-occipital synchondroses at E13.5 expressed Sonic hedgehog and local chondrocytes expressed Patched, suggesting that Shh had sustained chondrocyte maturation and occipital ossification. Equally unexpected, Ihh(-/-) growth plates stained poorly with Alcian blue and contained low aggrecan transcript levels. A comparable difference was seen in cultured wild-type versus Ihh(-/-) synchondrosis chondrocytes. Treatment with exogenous Ihh did not fully restore normal proteoglycan levels in mutant cultures, but a combination of Ihh and BMP-2 did. In summary, Ihh is required for multiple processes during synchondrosis and cranial base development, including growth plate zone organization, chondrocyte orientation, and proteoglycan production. The cranial base appears to be a skeletal structure in which growth and ossification patterns along its antero-posterior axis are orchestrated by both Ihh and Shh.
Desert hedgehog is a mediator of demyelination in compression neuropathies.
Jung, James; Frump, Derek; Su, Jared; Wang, Weiping; Mozaffar, Tahseen; Gupta, Ranjan
2015-09-01
The secreted protein desert hedgehog (dhh) controls the formation of the nerve perineurium during development and is a key component of Schwann cells that ensures peripheral nerve survival. We postulated that dhh may play a critical role in maintaining myelination and investigated its role in demyelination-induced compression neuropathies by using a post-natal model of a chronic nerve injury in wildtype and dhh(-/-) mice. We evaluated demyelination using electrophysiological, morphological, and molecular approaches. dhh transcripts and protein are down-regulated early after injury in wild-type mice, suggesting an intimate relationship between the hedgehog pathway and demyelination. In dhh(-/-) mice, nerve injury induced more prominent and severe demyelination relative to their wild-type counterparts, suggesting a protective role of dhh. Alterations in nerve fiber characteristics included significant decreases in nerve conduction velocity, increased myelin debris, and substantial decreases in internodal length. Furthermore, in vitro studies showed that dhh blockade via either adenovirus-mediated (shRNA) or pharmacological inhibition both resulted in severe demyelination, which could be rescued by exogenous Dhh. Exogenous Dhh was protective against this demyelination and maintained myelination at baseline levels in a custom in vitro bioreactor to applied biophysical forces to myelinated DRG/Schwann cell co-cultures. Together, these results demonstrate a pivotal role for dhh in maintaining myelination. Furthermore, dhh signaling reveals a potential target for therapeutic intervention to prevent and treat demyelination of peripheral nerves in compression neuropathies. Copyright © 2015 Elsevier Inc. All rights reserved.
Muenke Syndrome Mutation, FgfR3P244R, Causes TMJ Defects
Yasuda, T.; Nah, H.D.; Laurita, J.; Kinumatsu, T.; Shibukawa, Y.; Shibutani, T.; Minugh-Purvis, N.; Pacifici, M.; Koyama, E.
2012-01-01
Muenke syndrome is characterized by various craniofacial deformities and is caused by an autosomal-dominant activating mutation in fibroblast growth factor receptor 3 (FGFR3P250R). Here, using mice carrying a corresponding mutation (FgfR3P244R), we determined whether the mutation affects temporomandibular joint (TMJ) development and growth. In situ hybridization showed that FgfR3 was expressed in condylar chondroprogenitors and maturing chondrocytes that also expressed the Indian hedgehog (Ihh) receptor and transcriptional target Patched 1(Ptch1). In FgfR3P244R mutants, the condyles displayed reduced levels of Ihh expression, H4C-positive proliferating chondroprogenitors, and collagen type II- and type X-expressing chondrocytes. Primary bone spongiosa formation was also disturbed and was accompanied by increased osteoclastic activity and reduced trabecular bone formation. Treatment of wild-type condylar explants with recombinant FGF2/FGF9 decreased Ptch1 and PTHrP expression in superficial/polymorphic layers and proliferation in chondroprogenitors. We also observed early degenerative changes of condylar articular cartilage, abnormal development of the articular eminence/glenoid fossa in the TMJ, and fusion of the articular disc. Analysis of our data indicates that the activating FgfR3P244R mutation disturbs TMJ developmental processes, likely by reducing hedgehog signaling and endochondral ossification. We suggest that a balance between FGF and hedgehog signaling pathways is critical for the integrity of TMJ development and for the maintenance of cellular organization. PMID:22622662
Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages.
Teillet, M; Watanabe, Y; Jeffs, P; Duprez, D; Lapointe, F; Le Douarin, N M
1998-06-01
In vertebrates, the medial moieties of the somites give rise to the vertebrae and epaxial muscles, which develop in close relationship with the axial organs, neural tube and notochord. The lateral moieties contribute to the ribs and to limb and body wall muscles (hypaxial muscles) after a phase of lateral and ventral migration. Surgical ablation of the neural tube and notochord in the chick embryo during segmentation and early differentiation of the somites (day 2 of incubation) does not affect primary development of the hypaxial muscles, but leads to a complete absence of epaxial muscles, vertebrae and ribs, due to cell death in the somites. Here we demonstrate that cell death, which occurs within 24 hours of excision of the axial organs, affects both myogenic and chondrogenic cell lineages defined, respectively, by the expression of MyoD and Pax-1 genes. In contrast, Pax-3 transcripts, normally present in cells giving rise to hypaxial muscles, are preserved in the excised embryos. Backgrafting either the ventral neural tube or the notochord allows survival of MyoD- and Pax-1-expressing cells. Similarly, Sonic hedgehog-producing cells grafted in place of axial organs also rescue MyoD- and Pax-1-expressing cells from death and allow epaxial muscles, ribs and vertebrae to undergo organogenesis. These results demonstrate that the ventral neural tube and the notochord promote the survival of both myogenic and chondrogenic cell lineages in the somites and that this action is mediated by Sonic hedgehog.
Rao, Jasti S.
2013-01-01
Cancer-initiating cells comprise a heterogeneous population of undifferentiated cells with the capacity for self-renewal and high proliferative potential. We investigated the role of uPAR and cathepsin B in the maintenance of stem cell nature in glioma-initiating cells (GICs). Simultaneous knockdown of uPAR and cathepsin B significantly reduced the expression of CD133, Nestin, Sox2 and Bmi1 at the protein level and GLI1 and GLI2 at the messenger RNA level. Also, knockdown of uPAR and cathepsin B resulted in a reduction in the number of GICs as well as sphere size. These changes are mediated by Sox2 and Bmi1, downstream of hedgehog signaling. Addition of cyclopamine reduced the expression of Sox2 and Bmi1 along with GLI1 and GLI2 expression, induced differentiation and reduced subsphere formation of GICs thereby indicating that hedgehog signaling acts upstream of Sox2 and Bmi1. Further confirmation was obtained from increased luciferase expression under the control of a GLI-bound Sox2 and Bmi1 luciferase promoter. Simultaneous knockdown of uPAR and cathepsin B also reduced the expression of Nestin Sox2 and Bmi1 in vivo. Thus, our study highlights the importance of uPAR and cathepsin B in the regulation of malignant stem cell self-renewal through hedgehog components, Bmi1 and Sox2. PMID:23222817
CXCL14 is a candidate biomarker for Hedgehog signalling in idiopathic pulmonary fibrosis.
Jia, Guiquan; Chandriani, Sanjay; Abbas, Alexander R; DePianto, Daryle J; N'Diaye, Elsa N; Yaylaoglu, Murat B; Moore, Heather M; Peng, Ivan; DeVoss, Jason; Collard, Harold R; Wolters, Paul J; Egen, Jackson G; Arron, Joseph R
2017-09-01
Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14 , which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. Post-results, NCT00968981. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Gaillard, Dany; Barlow, Linda A.
2012-01-01
Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519
Gaillard, Dany; Barlow, Linda A
2011-04-01
Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Naturescope, 1986
1986-01-01
Presents information about insectivores, including definitions and characteristics of shrews, moles, hedgehogs, and tenrecs. Contains descriptions of the teaching activities "Little Starnose" and "You and a Shrew." A reproducible worksheet is provided for use in "You and a Shrew." (TW)
Defect-Induced Hedgehog Polarization States in Multiferroics
NASA Astrophysics Data System (ADS)
Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing
2018-03-01
Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.
Yao, Pamela J.; Manor, Uri; Petralia, Ronald S.; Brose, Rebecca D.; Wu, Ryan T. Y.; Ott, Carolyn; Wang, Ya-Xian; Charnoff, Ari; Lippincott-Schwartz, Jennifer; Mattson, Mark P.
2017-01-01
Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons. PMID:27932496
Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain.
Currie, Ko W; Molinaro, Alyssa M; Pearson, Bret J
2016-11-19
The asexual freshwater planarian is a constitutive adult, whose central nervous system (CNS) is in a state of constant homeostatic neurogenesis. However, very little is known about the extrinsic signals that act on planarian stem cells to modulate rates of neurogenesis. We have identified two planarian homeobox transcription factors, Smed-nkx2.1 and Smed-arx , which are required for the maintenance of cholinergic, GABAergic, and octopaminergic neurons in the planarian CNS. These very same neurons also produce the planarian hedgehog ligand ( Smed-hh ), which appears to communicate with brain-adjacent stem cells to promote normal levels of neurogenesis. Planarian stem cells nearby the brain express core hh signal transduction genes, and consistent hh signaling levels are required to maintain normal production of neural progenitor cells and new mature cholinergic neurons, revealing an important mitogenic role for the planarian hh signaling molecule in the adult CNS.
Rodenfels, Jonathan; Lavrynenko, Oksana; Ayciriex, Sophie; Sampaio, Julio L; Carvalho, Maria; Shevchenko, Andrej; Eaton, Suzanne
2014-12-01
In Drosophila larvae, growth and developmental timing are regulated by nutrition in a tightly coordinated fashion. The networks that couple these processes are far from understood. Here, we show that the intestine responds to nutrient availability by regulating production of a circulating lipoprotein-associated form of the signaling protein Hedgehog (Hh). Levels of circulating Hh tune the rates of growth and developmental timing in a coordinated fashion. Circulating Hh signals to the fat body to control larval growth. It regulates developmental timing by controlling ecdysteroid production in the prothoracic gland. Circulating Hh is especially important during starvation, when it is also required for mobilization of fat body triacylglycerol (TAG) stores. Thus, we demonstrate that Hh, previously known only for its local morphogenetic functions, also acts as a lipoprotein-associated endocrine hormone, coordinating the response of multiple tissues to nutrient availability. © 2014 Rodenfels et al.; Published by Cold Spring Harbor Laboratory Press.
Defect-Induced Hedgehog Polarization States in Multiferroics.
Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G; Chen, Long-Qing; Pan, Xiaoqing
2018-03-30
Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO_{3}. An array of charged NSNRs are produced in BiFeO_{3} thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.
Mao, Feifei; Yang, Xiaofeng; Fu, Lin; Lv, Xiangdong; Zhang, Zhao; Wu, Wenqing; Yang, Siqi; Zhou, Zhaocai; Zhang, Lei; Zhao, Yun
2014-08-08
The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.
Mistretta, Charlotte M; Kumari, Archana
2017-02-10
The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.
Seri, M; Martucciello, G; Paleari, L; Bolino, A; Priolo, M; Salemi, G; Forabosco, P; Caroli, F; Cusano, R; Tocco, T; Lerone, M; Cama, A; Torre, M; Guys, J M; Romeo, G; Jasonni, V
1999-01-01
Anorectal malformations (ARMs) are common congenital anomalies that account for 1:4 digestive malformations. ARM patients show different degrees of sacral hypodevelopment while the hemisacrum is characteristic of the Currarino syndrome (CS). Cases of CS present an association of ARM, hemisacrum and presacral mass. A gene responsible for CS has recently been mapped in 7q36. Among the genes localized in this critical region, sonic hedgehog (SHH) was thought to represent a candidate gene for CS as well as for ARM with different levels of sacral hypodevelopment according to its role in the differentiation of midline mesoderm. By linkage analysis we confirmed the critical region in one large family with recurrence of CS. In addition, the screening of SHH in 7 CS and in 15 sporadic ARM patients with sacral hypodevelopment allowed us to exclude its role in the pathogenesis of these disorders.
Indian hedgehog contributes to human cartilage endplate degeneration.
Wang, Shaowei; Yang, Kun; Chen, Shuai; Wang, Jiying; Du, Guoqing; Fan, Shunwu; Wei, Lei
2015-08-01
To determine the role of Indian hedgehog (Ihh) signaling in human cartilage endplate (CEP) degeneration. CEP-degenerated tissues from patients with Modic I or II changes (n = 9 and 45, respectively) and normal tissues from vertebral burst fracture patients (n = 17) were collected. Specimens were either cut into slices for organ culture ex vivo or digested to isolate chondrocytes for cell culture in vitro. Ihh expression and the effect of Ihh on cartilage degeneration were determined by investigating degeneration markers in this study. Ihh expression and cartilage degeneration markers significantly increased in the Modic I and II groups. The expression of cartilage degeneration markers was positively correlated with degeneration severity. Gain-of-function for Ihh promoted expression of cartilage degeneration markers in vitro, while loss-of-function for Ihh inhibited their expression both in vitro and ex vivo. These findings demonstrated that Ihh promotes CEP degeneration. Blocking Ihh pathway has potential clinical usage for attenuating CEP degeneration.
Sonic Hedgehog Expression in Corticofugal Projection Neurons Directs Cortical Microcircuit Formation
Harwell, Corey C.; Parker, Philip R.L.; Gee, Steven M.; Okada, Ami; McConnell, Susan K.; Kreitzer, Anatol C.; Kriegstein, Arnold R.
2012-01-01
SUMMARY The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. PMID:22445340
Onishi, Keisuke
2017-01-01
Commissural axons switch on responsiveness to Wnt attraction during midline crossing and turn anteriorly only after exiting the floor plate. We report here that Sonic Hedgehog (Shh)-Smoothened signaling downregulates Shisa2, which inhibits the glycosylation and cell surface presentation of Frizzled3 in rodent commissural axon growth cones. Constitutive Shisa2 expression causes randomized turning of post-crossing commissural axons along the anterior–posterior (A–P) axis. Loss of Shisa2 led to precocious anterior turning of commissural axons before or during midline crossing. Post-crossing commissural axon turning is completely randomized along the A–P axis when Wntless, which is essential for Wnt secretion, is conditionally knocked out in the floor plate. This regulatory link between Shh and planar cell polarity (PCP) signaling may also occur in other developmental processes. PMID:28885142
Potential mechanisms of cerebellar hypoplasia in prematurity.
Tam, Emily W Y
2013-09-01
The cerebellum undergoes dramatic growth and maturation over the neonatal period after preterm birth and is thus particularly sensitive to impaired development due to various clinical factors. Impairments in growth can occur independent of cerebellar parenchymal damage, such as from local hemorrhage, resulting from reduced expression of sonic hedgehog signaling to trigger the appropriate expansion of the granule precursor cells. The primary risk factors for impaired cerebellar development include postnatal glucocorticoid exposure, which has direct effects on the sonic hedgehog pathway, and supratentorial brain injury, including intraventricular hemorrhage and white matter injury, which may result in crossed cerebellar diaschisis and local toxic effects of blood products on the external granular layer. Other cardiorespiratory and nutritional factors may also exist. Impaired cerebellar development is associated with adverse outcomes in motor and cognitive development. New approaches to care to counteract these risk factors may help improve long-term outcome after preterm birth.
Palacios-Álvarez, I; González-Sarmiento, R; Fernández-López, E
2018-04-01
Gorlin syndrome is a rare autosomal dominant disease caused by mutations in the sonic hedgehog signaling pathway. Of particular importance is the PTCH1 gene. The disease is characterized by the development of multiple basal cell carcinomas at young ages. These tumors may present with other skin manifestations such as palmoplantar pits and with extracutaneous manifestations such as odontogenic keratocysts and medulloblastoma. Although the dermatologist may be key for recognizing clinical suspicion of the syndrome, a multidisciplinary team is usually necessary for diagnosis, treatment, and follow-up. Skin treatment may be complicated due to the large number of basal cell carcinomas and the extent of involvement. In recent years, new drugs that inhibit targets in the sonic hedgehog pathway have been developed. Although these agents appear promising options for patients with Gorlin syndrome, their efficacy is limited by adverse effects and the development of resistance. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.
Homeodomains, Hedgehogs, and Happiness.
Scott, Matthew P
2016-01-01
Developmental biologists have had a spectacular quarter century of discoveries, building on many decades of work earlier, discovering molecular, cellular, and genetic mechanisms that underlie the magical process by which an egg becomes a plant or animal. Among the discoveries were homeodomains, DNA-binding domains that allow transcription factors to recognize their target genes, and the Hedgehog signaling pathway, which is used in many organs and tissues for communication among cells. The experience of unveiling the mechanisms and molecules connected to both of these findings has been remarkable, joyful, difficult, and a time of great teamwork and collaboration within and between laboratory groups. More than ever it is possible to discern the evolutionary processes, and their mechanisms, that led to the diversity of life on earth. A huge amount of work remains to be done to obtain a broad understanding of what happened and how development works. © 2016 Elsevier Inc. All rights reserved.
Indian hedgehog roles in post-natal TMJ development and organization.
Ochiai, T; Shibukawa, Y; Nagayama, M; Mundy, C; Yasuda, T; Okabe, T; Shimono, K; Kanyama, M; Hasegawa, H; Maeda, Y; Lanske, B; Pacifici, M; Koyama, E
2010-04-01
Indian hedgehog (Ihh) is essential for embryonic mandibular condylar growth and disc primordium formation. To determine whether it regulates those processes during post-natal life, we ablated Ihh in cartilage of neonatal mice and assessed the consequences on temporomandibular joint (TMJ) growth and organization over age. Ihh deficiency caused condylar disorganization and growth retardation and reduced polymorphic cell layer proliferation. Expression of Sox9, Runx2, and Osterix was low, as was that of collagen II, collagen I, and aggrecan, thus altering the fibrocartilaginous nature of the condyle. Though a disc formed, it exhibited morphological defects, partial fusion with the glenoid bone surface, reduced synovial cavity space, and, unexpectedly, higher lubricin expression. Analysis of the data shows, for the first time, that continuous Ihh action is required for completion of post-natal TMJ growth and organization. Lubricin overexpression in mutants may represent a compensatory response to sustain TMJ movement and function.
Santos, Sara M; Carvalho, Filipe; Mira, António
2011-01-01
Road mortality is probably the best-known and visible impact of roads upon wildlife. Although several factors influence road-kill counts, carcass persistence time is considered the most important determinant underlying underestimates of road mortality. The present study aims to describe and model carcass persistence variability on the road for different taxonomic groups under different environmental conditions throughout the year; and also to assess the effect of sampling frequency on the relative variation in road-kill estimates registered within a survey. Daily surveys of road-killed vertebrates were conducted over one year along four road sections with different traffic volumes. Survival analysis was then used to i) describe carcass persistence timings for overall and for specific animal groups; ii) assess optimal sampling designs according to research objectives; and iii) model the influence of road, animal and weather factors on carcass persistence probabilities. Most animal carcasses persisted on the road for the first day only, with some groups disappearing at very high rates. The advisable periodicity of road monitoring that minimizes bias in road mortality estimates is daily monitoring for bats (in the morning) and lizards (in the afternoon), daily monitoring for toads, small birds, small mammals, snakes, salamanders, and lagomorphs; 1 day-interval (alternate days) for large birds, birds of prey, hedgehogs, and freshwater turtles; and 2 day-interval for carnivores. Multiple factors influenced the persistence probabilities of vertebrate carcasses on the road. Overall, the persistence was much lower for small animals, on roads with lower traffic volumes, for carcasses located on road lanes, and during humid conditions and high temperatures during the wet season and dry seasons, respectively. The guidance given here on monitoring frequencies is particularly relevant to provide conservation and transportation agencies with accurate numbers of road-kills, realistic mitigation measures, and detailed designs for road monitoring programs.
Santos, Sara M.; Carvalho, Filipe; Mira, António
2011-01-01
Background Road mortality is probably the best-known and visible impact of roads upon wildlife. Although several factors influence road-kill counts, carcass persistence time is considered the most important determinant underlying underestimates of road mortality. The present study aims to describe and model carcass persistence variability on the road for different taxonomic groups under different environmental conditions throughout the year; and also to assess the effect of sampling frequency on the relative variation in road-kill estimates registered within a survey. Methodology/Principal Findings Daily surveys of road-killed vertebrates were conducted over one year along four road sections with different traffic volumes. Survival analysis was then used to i) describe carcass persistence timings for overall and for specific animal groups; ii) assess optimal sampling designs according to research objectives; and iii) model the influence of road, animal and weather factors on carcass persistence probabilities. Most animal carcasses persisted on the road for the first day only, with some groups disappearing at very high rates. The advisable periodicity of road monitoring that minimizes bias in road mortality estimates is daily monitoring for bats (in the morning) and lizards (in the afternoon), daily monitoring for toads, small birds, small mammals, snakes, salamanders, and lagomorphs; 1 day-interval (alternate days) for large birds, birds of prey, hedgehogs, and freshwater turtles; and 2 day-interval for carnivores. Multiple factors influenced the persistence probabilities of vertebrate carcasses on the road. Overall, the persistence was much lower for small animals, on roads with lower traffic volumes, for carcasses located on road lanes, and during humid conditions and high temperatures during the wet season and dry seasons, respectively. Conclusion/Significance The guidance given here on monitoring frequencies is particularly relevant to provide conservation and transportation agencies with accurate numbers of road-kills, realistic mitigation measures, and detailed designs for road monitoring programs. PMID:21980437
From Reflux Esophagitis to Esophageal Adenocarcinoma
Souza, Rhonda F.
2016-01-01
Reflux esophagitis causes Barrett's metaplasia, an abnormal esophageal mucosa predisposed to adenocarcinoma. Medical therapy for reflux esophagitis focuses on decreasing gastric acid production with proton pump inhibitors. We have reported that reflux esophagitis in a rat model develops from a cytokine-mediated inflammatory injury, not from a caustic chemical (acid) injury. In this model, refluxed acid and bile stimulate the release of inflammatory cytokines from esophageal squamous cells, recruiting lymphocytes first to the submucosa and later to the luminal surface. Emerging studies on acute reflux esophagitis in humans support this new concept, suggesting that reflux-induced cytokine release may be a future target for medical therapies. Sometimes, reflux esophagitis heals with Barrett's metaplasia, a process facilitated by reflux-related nitric oxide (NO) production and Sonic Hedgehog secretion by squamous cells. We have shown that NO reduces expression of genes that promote a squamous cell phenotype, while Hedgehog signaling induces genes that mediate the development of the columnar cell phenotypes of Barrett's metaplasia. Agents targeting esophageal NO production or Hedgehog signaling conceivably could prevent the development of Barrett's esophagus. Persistent reflux promotes cancer in Barrett's metaplasia. We have reported that acid and bile salts induce DNA damage in Barrett's cells. Bile salts also cause NF-κB activation in Barrett's cells, enabling them to resist apoptosis in the setting of DNA damage, and likely contributing to carcinogenesis. Oral treatment with ursodeoxycholic acid prevents the esophageal DNA damage and NF-κB activation induced by toxic bile acids. Altering bile acid composition might be another approach to cancer prevention. PMID:27331918
Hojo, Hironori; Ohba, Shinsuke; Yano, Fumiko; Saito, Taku; Ikeda, Toshiyuki; Nakajima, Keiji; Komiyama, Yuske; Nakagata, Naomi; Suzuki, Kentaro; Takato, Tsuyoshi; Kawaguchi, Hiroshi; Chung, Ung-il
2012-05-18
With regard to Hedgehog signaling in mammalian development, the majority of research has focused on Gli2 and Gli3 rather than Gli1. This is because Gli1(-/-) mice do not show any gross abnormalities in adulthood, and no detailed analyses of fetal Gli1(-/-) mice are available. In this study, we investigated the physiological role of Gli1 in osteogenesis. Histological analyses revealed that bone formation was impaired in Gli1(-/-) fetuses compared with WT fetuses. Gli1(-/-) perichondrial cells expressed neither runt-related transcription factor 2 (Runx2) nor osterix, master regulators of osteogenesis, in contrast to WT cells. In vitro analyses showed that overexpression of Gli1 up-regulated early osteogenesis-related genes in both WT and Runx2(-/-) perichondrial cells, and Gli1 activated transcription of those genes via its association with their 5'-regulatory regions, underlying the function of Gli1 in the perichondrium. Moreover, Gli1(-/-);Gli2(-/-) mice showed more severe phenotypes of impaired bone formation than either Gli1(-/-) or Gli2(-/-) mice, and osteoblast differentiation was impaired in Gli1(-/-);Gli3(-/-) perichondrial cells compared with Gli3(-/-) cells in vitro. These data suggest that Gli1 itself can induce early osteoblast differentiation, at least to some extent, in a Runx2-independent manner. It also plays a redundant role with Gli2 and is involved in the repressor function of Gli3 in osteogenesis. On the basis of these findings, we propose that upon Hedgehog input, Gli1 functions collectively with Gli2 and Gli3 in osteogenesis.
Walton, Katherine D; Croce, Jenifer C; Glenn, Thomas D; Wu, Shu-Yu; McClay, David R
2006-12-01
The Hedgehog (Hh) and Notch signal transduction pathways control a variety of developmental processes including cell fate choice, differentiation, proliferation, patterning and boundary formation. Because many components of these pathways are conserved, it was predicted and confirmed that pathway components are largely intact in the sea urchin genome. Spatial and temporal location of these pathways in the embryo, and their function in development offer added insight into their mechanistic contributions. Accordingly, all major components of both pathways were identified and annotated in the sea urchin Strongylocentrotus purpuratus genome and the embryonic expression of key components was explored. Relationships of the pathway components, and modifiers predicted from the annotation of S. purpuratus, were compared against cnidarians, arthropods, urochordates, and vertebrates. These analyses support the prediction that the pathways are highly conserved through metazoan evolution. Further, the location of these two pathways appears to be conserved among deuterostomes, and in the case of Notch at least, display similar capacities in endomesoderm gene regulatory networks. RNA expression profiles by quantitative PCR and RNA in situ hybridization reveal that Hedgehog is produced by the endoderm beginning just prior to invagination, and signals to the secondary mesenchyme-derived tissues at least until the pluteus larva stage. RNA in situ hybridization of Notch pathway members confirms that Notch functions sequentially in the vegetal-most secondary mesenchyme cells and later in the endoderm. Functional analyses in future studies will embed these pathways into the growing knowledge of gene regulatory networks that govern early specification and morphogenesis.
Callier, Patrick; Calvel, Pierre; Matevossian, Armine; Makrythanasis, Periklis; Bernard, Pascal; Kurosaka, Hiroshi; Vannier, Anne; Thauvin-Robinet, Christel; Borel, Christelle; Mazaud-Guittot, Séverine; Rolland, Antoine; Desdoits-Lethimonier, Christèle; Guipponi, Michel; Zimmermann, Céline; Stévant, Isabelle; Kuhne, Françoise; Conne, Béatrice; Santoni, Federico; Lambert, Sandy; Huet, Frederic; Mugneret, Francine; Jaruzelska, Jadwiga; Faivre, Laurence; Wilhelm, Dagmar; Jégou, Bernard; Trainor, Paul A; Resh, Marilyn D; Antonarakis, Stylianos E; Nef, Serge
2014-05-01
The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development.
Jones, Carolyn J P; Carter, A M; Allen, W R; Wilsher, Sandra A
2016-12-01
There are few descriptions of the placenta and associated tissues of the European hedgehog (Erinaceus europaeus) and here we present findings on a near-term pregnant specimen. Tissues were examined grossly and then formalin fixed and wax-embedded for histology and immunocytochemistry (cytokeratin) and resin embedded for lectin histochemistry. Each of four well-developed and near term hoglets displayed a discoid, haemochorial placenta with typical labyrinth and spongy zones. In addition there was a paraplacenta incorporating Reichert's membrane and a largely detached yolk sac. The trophoblast of the placenta contained diverse populations of granule which expressed most classes of glycan. Intercellular membranes were also glycosylated and this tended to be heavier in the labyrinth zone. Fetal capillary endothelium had glycosylated apical surfaces expressing sialic acid and various other glycans. Glycogen was present in large cells situated between the spongy zone and the endometrium. Trophoblast cells in the placental disc and under Reichert's membrane, as well as yolk sac endoderm and mesothelium, were cytokeratin positive. Reichert's membrane was heavily glycosylated. Yolk sac inner and outer endoderm expressed similar glycans except for N-acetylgalactosamine residues in endodermal acini. New features of near-term hedgehog placenta and associated tissues are presented, including their glycosylation, and novel yolk sac acinar structures are described. The trophoblast of the placental disc showed significant differences from that underlying Reichert's membrane while the glycan composition of the membrane itself showed some similarity to that of rat thereby implying a degree of biochemical conservation of this structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Makrythanasis, Periklis; Bernard, Pascal; Kurosaka, Hiroshi; Vannier, Anne; Thauvin-Robinet, Christel; Borel, Christelle; Mazaud-Guittot, Séverine; Rolland, Antoine; Desdoits-Lethimonier, Christèle; Guipponi, Michel; Zimmermann, Céline; Stévant, Isabelle; Kuhne, Françoise; Conne, Béatrice; Santoni, Federico; Lambert, Sandy; Huet, Frederic; Mugneret, Francine; Jaruzelska, Jadwiga; Faivre, Laurence; Wilhelm, Dagmar; Jégou, Bernard; Trainor, Paul A.; Resh, Marilyn D.; Antonarakis, Stylianos E.; Nef, Serge
2014-01-01
The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development. PMID:24784881
Künzle, H; Radtke-Schuller, S
2000-12-01
In the Madagascan hedgehog tenrec, Echinops telfairi, the entire paleocortical region (PCx) subjacent to the rhinal indentation is composed of three layers and occupies up to two thirds of the lateral hemisphere. A clear differentiation of PCx into its presumed constituents, the piriform cortex and the entorhinal cortex, as seen in other mammals, has not been obtained so far. To gain insight into location and intrinsic organization of these areas in a basal placental mammal we investigated the tenrec's PCx using cyto-, myelo- and chemoarchitectural criteria (zinc, acetylcholinesterase, NADPh-diaphorase, Wisteria floribunda agglutinin, parvalbumin, calbindin, calretinin) and analysed its connections with the olfactory bulb. The layers 2 and 3 of the tenrec's PCx differed from the corresponding layers in the rat. The layer 2 showed a complex distribution of corticobulbar cells but could not be subdivided, in contrast to layer 3. Additional cell groups in the depth of PCx were tentatively compared with subdivisions of the endopiriform region. The architectural and connectional features varied clearly along the rostrocaudal and dorso-ventral extents of PCx and gave hints for the presence of different paleocortical subdivisions. With the possible exception of an area located at the most caudal tip of the dorsomedial hemisphere, however, no conclusive evidence was obtained for the presence of a multilayered, entorhinal region. The bulbar projections to the PCx were very extensive and almost exclusively ipsilateral. The laterality of the projection is similar to that in higher mammals, but differs from that in the erinaceous hedgehog.
Zhang, Jiayu; Wu, Liang; Chen, Jiawei; Lin, Sisi; Cai, Daqiu; Chen, Chengwei; Chen, Zhenguo
2018-05-01
Diabetic retinopathy is a neurological disease, which can lead to blindness in severe cases. The pathogenesis underlying diabetic retinopathy is unclear. The aim of this study was to explore the role of dysregulated microRNA 29a/b in the onset and progression of diabetic retinopathy. Diabetes mellitus was induced in rats using 60 mg/kg of streptozotocin. Glucose (5.5 and 25 mM) was used to stimulate rat retinal Müller cells. Real-time polymerase chain reaction and Western blot analyses were used to determine gene expression. A luciferase reporter assay was conducted to validate the relationship of microRNA 29a/b with glioma-associated oncogene homolog 1 and Forkhead box protein O4. The expression of microRNA 29a/b and glutamine synthetase decreased in both diabetes mellitus rats and rat retinal Müller cells stimulated with high glucose, whereas the expression of sonic hedgehog, glioma-associated oncogene homolog 1, glial fibrillary acidic protein, and vascular endothelial growth factor, as well as the content of glutamate, increased. Dysregulated microRNA 29a/b was directly regulated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, and microRNA 29a and microRNA 29b targeted Forkhead box protein O4 and regulated its expression. Downregulation of microRNA 29a/b, mediated by the sonic hedgehog-glioma-associated oncogene homolog 1 signalling pathway, exacerbated diabetic retinopathy by upregulating Forkhead box protein O4.
Nfonsam, Landry E.; Cano, Carlos; Mudge, Joann; Schilkey, Faye D.; Curtiss, Jennifer
2012-01-01
Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans. PMID:22952997
Hedgehogs and foxes (and a bear)
NASA Astrophysics Data System (ADS)
Gibb, Bruce
2017-02-01
The chemical universe is big. Really big. You just won't believe how vastly, hugely, mind-bogglingly big it is. Bruce Gibb reminds us that it's somewhat messy too, and so we succeed by recognizing the limits of our knowledge.
Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki
2015-01-01
Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions. PMID:26544948
NASA Astrophysics Data System (ADS)
Bruineberg, Jelle; Hesp, Casper
2018-03-01
Ramstead et al. [9] integrate the free-energy principle (FEP) [5] and evolutionary systems theory (EST) [1] in order to develop a "meta-theoretical ontology of life", called 'variational neuro-ethology' (VNE). In drawing upon such abstract notions and integrating them even further, they prove themselves to be the ultimate "hedgehogs" [2]: aiming for the ultimate integration of the life sciences and social sciences under one unifying principle. We endorse this pursuit of theoretical integration, especially when derived from first principles. The fundamental nature of their work is exemplified by the book the authors take as their starting point: Schrödinger's What is Life?[10]. Given the variety and levels of complexity involved in defining "life", providing an answer to this question is challenging. We first briefly comment on VNE as a label and then highlight some possible problems for the kinds of explanations that would follow from VNE. We address the interrelated charges of (1) merely providing Bayesian and evolutionary "just-so" stories [4,6], and (2) limited interpretative clarity when casting "life" as a series of nested Markov blankets. As a pre-emptive response to these critical remarks, we sketch a few ways forward that we find promising.
Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki
2015-01-01
Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.
Mimeault, Murielle
2010-01-01
The hedgehog (Hh)/glioma-associated oncogene (GLI) signaling network is among the most important and fascinating signal transduction systems that provide critical functions in the regulation of many developmental and physiological processes. The coordinated spatiotemporal interplay of the Hh ligands and other growth factors is necessary for the stringent control of the behavior of diverse types of tissue-resident stem/progenitor cells and their progenies. The activation of the Hh cascade might promote the tissue regeneration and repair after severe injury in numerous organs, insulin production in pancreatic β-cells, and neovascularization. Consequently, the stimulation of the Hh pathway constitutes a potential therapeutic strategy to treat diverse human disorders, including severe tissue injuries; diabetes mellitus; and brain, skin, and cardiovascular disorders. In counterbalance, a deregulation of the Hh signaling network might lead to major tissular disorders and the development of a wide variety of aggressive and metastatic cancers. The target gene products induced through the persistent Hh activation can contribute to the self-renewal, survival, migration, and metastasis of cancer stem/progenitor cells and their progenies. Moreover, the pivotal role mediated through the Hh/GLI cascade during cancer progression also implicates the cooperation with other oncogenic products, such as mutated K-RAS and complex cross-talk with different growth factor pathways, including tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), Wnt/β-catenin, and transforming growth factor-β (TGF-β)/TGF-β receptors. Therefore, the molecular targeting of distinct deregulated gene products, including Hh and EGFR signaling components and other signaling elements that are frequently deregulated in highly tumorigenic cancer-initiating cells and their progenies, might constitute a potential therapeutic strategy to eradicate the total cancer cell mass. Of clinical interest is that these multitargeted approaches offer great promise as adjuvant treatments for improving the current antihormonal therapies, radiotherapies, and/or chemotherapies against locally advanced and metastatic cancers, thereby preventing disease relapse and the death of patients with cancer. PMID:20716670
Shi, Ting; Mazumdar, Tapati; DeVecchio, Jennifer; Duan, Zhong-Hui; Agyeman, Akwasi; Aziz, Mohammad; Houghton, Janet A.
2010-01-01
Background Hedgehog (HH) signaling plays a critical role in normal cellular processes, in normal mammalian gastrointestinal development and differentiation, and in oncogenesis and maintenance of the malignant phenotype in a variety of human cancers. Increasing evidence further implicates the involvement of HH signaling in oncogenesis and metastatic behavior of colon cancers. However, genomic approaches to elucidate the role of HH signaling in cancers in general are lacking, and data derived on HH signaling in colon cancer is extremely limited. Methodology/Principal Findings To identify unique downstream targets of the GLI genes, the transcriptional regulators of HH signaling, in the context of colon carcinoma, we employed a small molecule inhibitor of both GLI1 and GLI2, GANT61, in two human colon cancer cell lines, HT29 and GC3/c1. Cell cycle analysis demonstrated accumulation of GANT61-treated cells at the G1/S boundary. cDNA microarray gene expression profiling of 18,401 genes identified Differentially Expressed Genes (DEGs) both common and unique to HT29 and GC3/c1. Analyses using GenomeStudio (statistics), Matlab (heat map), Ingenuity (canonical pathway analysis), or by qRT-PCR, identified p21Cip1 (CDKN1A) and p15Ink4b (CDKN2B), which play a role in the G1/S checkpoint, as up-regulated genes at the G1/S boundary. Genes that determine further cell cycle progression at G1/S including E2F2, CYCLIN E2 (CCNE2), CDC25A and CDK2, and genes that regulate passage of cells through G2/M (CYCLIN A2 [CCNA2], CDC25C, CYCLIN B2 [CCNB2], CDC20 and CDC2 [CDK1], were down-regulated. In addition, novel genes involved in stress response, DNA damage response, DNA replication and DNA repair were identified following inhibition of HH signaling. Conclusions/Significance This study identifies genes that are involved in HH-dependent cellular proliferation in colon cancer cells, and following its inhibition, genes that regulate cell cycle progression and events downstream of the G1/S boundary. PMID:20957031
IS SONIC HEDGEHOG (SHH) A CANDIDATE GENE FOR SPINA BIFIDA? (R828292)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Film and History, Foxes and Hedgehogs.
ERIC Educational Resources Information Center
Doherty, Thomas
2002-01-01
Discusses the treatment of historical events within Hollywood (California) films. Addresses the idea of verisimilitude, or the true replication of history in all aspects. Examines films such as: "Pearl Harbor,""Park Row,""Verboten!,""October Sky," and "Thirteen Days," to demonstrate how films portray history. (CMK)
A mutation in the Cdon gene potentiates congenital nevus development mediated by NRAS(Q61K).
Chitsazan, Arash; Ferguson, Blake; Ram, Ramesh; Mukhopadhyay, Pamela; Handoko, Herlina Y; Gabrielli, Brian; Soyer, Peter H; Morahan, Grant; Walker, Graeme J
2016-07-01
Congenital nevi develop before birth and sometimes cover large areas of the body. They are presumed to arise from the acquisition of a gene mutation in an embryonic melanocyte that becomes trapped in the dermis during development. Mice bearing the Cdk4(R24C) ::Tyr-NRAS(Q) (61K) transgenes develop congenital nevus-like lesions by post-natal day 10, from melanocytes escaping the confines of hair follicles. We interbred these mice with the collaborative cross (CC), a resource that enables identification of modifier genes for complex diseases (those where multiple genes are involved). We examined variation in nevus cell density in 66 CC strains and mapped a large-effect quantitative trait locus (QTL) controlling nevus cell density to murine chromosome 9. The best candidate for a gene that exacerbates congenital nevus development in the context of an NRAS mutation is Cdon, a positive regulator of sonic hedgehog (Shh) that is expressed mainly in keratinocytes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dysregulation of Uterine Signaling Pathways in Progesterone Receptor-Cre Knockout of Dicer
Andreu-Vieyra, Claudia V.; Kim, Tae Hoon; Jeong, Jae-Wook; Hodgson, Myles C.; Chen, Ruihong; Creighton, Chad J.; Lydon, John P.; Gunaratne, Preethi H.; DeMayo, Francesco J.; Matzuk, Martin M.
2012-01-01
Epithelial-stromal interactions in the uterus are required for normal uterine functions such as pregnancy, and multiple signaling pathways are essential for this process. Although Dicer and microRNA (miRNA) have been implicated in several reproductive processes, the specific roles of Dicer and miRNA in uterine development are not known. To address the roles of miRNA in the regulation of key uterine pathways, we generated a conditional knockout of Dicer in the postnatal uterine epithelium and stroma using progesterone receptor-Cre. These Dicer conditional knockout females are sterile with small uteri, which demonstrate significant defects, including absence of glandular epithelium and enhanced stromal apoptosis, beginning at approximately postnatal d 15, with coincident expression of Cre and deletion of Dicer. Specific miRNA (miR-181c, −200b, −101, let-7d) were down-regulated and corresponding predicted proapoptotic target genes (Bcl2l11, Aldh1a3) were up-regulated, reflecting the apoptotic phenomenon. Although these mice had normal serum hormone levels, critical uterine signaling pathways, including progesterone-responsive genes, Indian hedgehog signaling, and the Wnt/β-catenin canonical pathway, were dysregulated at the mRNA level. Importantly, uterine stromal cell proliferation in response to progesterone was absent, whereas uterine epithelial cell proliferation in response to estradiol was maintained in adult uteri. These data implicate Dicer and appropriate miRNA expression as essential players in the regulation of multiple uterine signaling pathways required for uterine development and appropriate function. PMID:22798293
Implications of Cancer Stem Cell Theory for Cancer Chemoprevention by Natural Dietary Compounds
Li, Yanyan; Wicha, Max S.; Schwartz, Steven J.; Sun, Duxin
2011-01-01
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anti-cancer drugs targeting cancer stem cells. Naturally-occurring dietary compounds have received increasing attention in cancer chemoprevention. The anti-cancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog, and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine, and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. PMID:21295962
Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica
2013-01-01
The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.
Dendrosomatic Sonic Hedgehog Signaling in Hippocampal Neurons Regulates Axon Elongation
Petralia, Ronald S.; Ott, Carolyn; Wang, Ya-Xian; Lippincott-Schwartz, Jennifer; Mattson, Mark P.
2015-01-01
The presence of Sonic Hedgehog (Shh) and its signaling components in the neurons of the hippocampus raises a question about what role the Shh signaling pathway may play in these neurons. We show here that activation of the Shh signaling pathway stimulates axon elongation in rat hippocampal neurons. This Shh-induced effect depends on the pathway transducer Smoothened (Smo) and the transcription factor Gli1. The axon itself does not respond directly to Shh; instead, the Shh signal transduction originates from the somatodendritic region of the neurons and occurs in neurons with and without detectable primary cilia. Upon Shh stimulation, Smo localization to dendrites increases significantly. Shh pathway activation results in increased levels of profilin1 (Pfn1), an actin-binding protein. Mutations in Pfn1's actin-binding sites or reduction of Pfn1 eliminate the Shh-induced axon elongation. These findings indicate that Shh can regulate axon growth, which may be critical for development of hippocampal neurons. SIGNIFICANCE STATEMENT Although numerous signaling mechanisms have been identified that act directly on axons to regulate their outgrowth, it is not known whether signals transduced in dendrites may also affect axon outgrowth. We describe here a transcellular signaling pathway in embryonic hippocampal neurons in which activation of Sonic Hedgehog (Shh) receptors in dendrites stimulates axon growth. The pathway involves the dendritic-membrane-associated Shh signal transducer Smoothened (Smo) and the transcription factor Gli, which induces the expression of the gene encoding the actin-binding protein profilin 1. Our findings suggest scenarios in which stimulation of Shh in dendrites results in accelerated outgrowth of the axon, which therefore reaches its presumptive postsynaptic target cell more quickly. By this mechanism, Shh may play critical roles in the development of hippocampal neuronal circuits. PMID:26658865
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong Hwi; Department of Biochemistry & Molecular Biology, School of Medicine Kyung Hee University, Seoul 130-701; Chung, Young Cheul
Parkinson's disease (PD) is a progressive neurodegenerative disorder in which dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) region are selectively destroyed. Sonic hedgehog (Shh) has been well known to play a key role in a variety of processes such as embryogenesis, cell proliferation and protection, and tissue repair during inflammation. However, the evidences for the innate role of Shh in adult brain injury are presently lacking and studies have been needed to unveil the importance of Shh in the process of neurodegeneration. Here, we investigated the role of Shh in the pathologic progress of Parkinson's disease inmore » MPTP-induced animal model system. Interestingly, we observed that Shh expression was gradually increased in MPTP affected SNpc region. Activated microglia exclusively expressed SHH in vivo and we could recapitulate Shh induction in activated cultured primary microglia cells. Using the SHH responsive Cre-loxP binary genetic reporter transgenic mouse system, we also found that most of the cell types except for oligodendrocyte in the SNpc region reacted to the SHH by MPTP injection. Taken together, activated microglia induced Shh expression and most neural cells except oligodendrocyte responded to microglia-derived SHH in MPTP-treated SN. These results suggest that SHH in activated microglia by MPTP-injection might be involved in the innate processes of recovery from neurotoxin induced injury in the PD animal model system. - Highlights: • Sonic hedgehog (Shh) was induced by MPTP neurotoxin at the Substantia Nigra (SN) in vivo. • Activated microglia are major cell type for SHH expression in vivo and in vitro. • Different types of cells in the brain, except oligodendrocyte, respond to microglia-derived SHH in SN region.« less
Richards, Neil; Parker, David S.; Johnson, Lisa A.; Allen, Benjamin L.; Barolo, Scott; Gumucio, Deborah L.
2015-01-01
The Hedgehog (Hh) signaling pathway directs a multitude of cellular responses during embryogenesis and adult tissue homeostasis. Stimulation of the pathway results in activation of Hh target genes by the transcription factor Ci/Gli, which binds to specific motifs in genomic enhancers. In Drosophila, only a few enhancers (patched, decapentaplegic, wingless, stripe, knot, hairy, orthodenticle) have been shown by in vivo functional assays to depend on direct Ci/Gli regulation. All but one (orthodenticle) contain more than one Ci/Gli site, prompting us to directly test whether homotypic clustering of Ci/Gli binding sites is sufficient to define a Hh-regulated enhancer. We therefore developed a computational algorithm to identify Ci/Gli clusters that are enriched over random expectation, within a given region of the genome. Candidate genomic regions containing Ci/Gli clusters were functionally tested in chicken neural tube electroporation assays and in transgenic flies. Of the 22 Ci/Gli clusters tested, seven novel enhancers (and the previously known patched enhancer) were identified as Hh-responsive and Ci/Gli-dependent in one or both of these assays, including: Cuticular protein 100A (Cpr100A); invected (inv), which encodes an engrailed-related transcription factor expressed at the anterior/posterior wing disc boundary; roadkill (rdx), the fly homolog of vertebrate Spop; the segment polarity gene gooseberry (gsb); and two previously untested regions of the Hh receptor-encoding patched (ptc) gene. We conclude that homotypic Ci/Gli clustering is not sufficient information to ensure Hh-responsiveness; however, it can provide a clue for enhancer recognition within putative Hedgehog target gene loci. PMID:26710299
Bechtold, Till E.; Saunders, Cheri; Decker, Rebekah S.; Um, Hyo-Bin; Cottingham, Naiga; Salhab, Imad; Kurio, Naito; Billings, Paul C.; Pacifici, Maurizio; Nah, Hyun-Duck; Koyama, Eiki
2016-01-01
The temporomandibular joint (TMJ) is a diarthrodial joint that relies on lubricants for frictionless movement and long-term function. It remains unclear what temporal and causal relationships may exist between compromised lubrication and onset and progression of TMJ disease. Here we report that Proteoglycan 4 (Prg4)-null TMJs exhibit irreversible osteoarthritis-like changes over time and are linked to formation of ectopic mineralized tissues and osteophytes in articular disc, mandibular condyle and glenoid fossa. In the presumptive layer of mutant glenoid fossa’s articulating surface, numerous chondrogenic cells and/or chondrocytes emerged ectopically within the type I collagen-expressing cell population, underwent endochondral bone formation accompanied by enhanced Ihh expression, became entrapped into temporal bone mineralized matrix, and thereby elicited excessive chondroid bone formation. As the osteophytes grew, the roof of the glenoid fossa/eminence became significantly thicker and flatter, resulting in loss of its characteristic concave shape for accommodation of condyle and disc. Concurrently, the condyles became flatter and larger and exhibited ectopic bone along their neck, likely supporting the enlarged condylar heads. Articular discs lost their concave configuration, and ectopic cartilage developed and articulated with osteophytes. In glenoid fossa cells in culture, hedgehog signaling stimulated chondrocyte maturation and mineralization including alkaline phosphatase, while treatment with hedgehog inhibitor HhAntag prevented such maturation process. In sum, our data indicate that Prg4 is needed for TMJ integrity and long-term postnatal function. In its absence, progenitor cells near presumptive articular layer and disc undergo ectopic chondrogenesis and generate ectopic cartilage, possibly driven by aberrant activation of Hh signaling. The data suggest also that the Prg4-null mice represent a useful model to study TMJ osteoarthritis-like degeneration and clarify its pathogenesis. PMID:26945615
Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization.
Valverde, F; Facal-Valverde, M V
1986-01-01
The intrinsic organization and interlaminar connections in neocortical layers I and II have been studied in adult hedgehogs (Erinaceus europaeus) using the Golgi method. Layer I contains a dense plexus of horizontal fibers, the terminal dendritic bouquets of pyramidal cells of layer II and of underlying layers, and varieties of intrinsic neurons. Four main types of cells were found in layer I. Small horizontal cells represent most probably persisting foetal horizontal cells described for other mammals. Large horizontal cells, tufted cells, and spinous horizontal cells were also found in this layer. Layer II contains primitive pyramidal cells representing the most outstanding feature of the neocortex of the hedgehog. Most pyramidal cells in layer II have two, three or more apical dendrites, richly covered by spines predominating over the basal dendrites. These cells resemble pyramidal cells found in the piriform cortex, hippocampus and other olfactory areas. It is suggested that the presence of these neurons reflects the retention of a primitive character in neocortical evolution. Cells with intrinsic axons were found among pyramidal cells in layer II. These have smooth dendrites penetrating layer I and local axons forming extremely complex terminal arborizations around the bodies and proximal dendritic portions of pyramidal cells. They most probably effect numerous axo-somatic contacts resembling basket cells. The similarity of some axonal terminals with the chandelier type of axonal arborization is discussed. Other varieties of cells located in deep cortical layers and having ascending axons for layers I and II were also studied. It is concluded that the two first neocortical layers represent a level of important integration in this primitive mammal.
Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H
2009-02-01
Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.
Caradu, Caroline; Guy, Alexandre; James, Chloé; Reynaud, Annabel; Gadeau, Alain-Pierre; Renault, Marie-Ange
2018-04-01
Hedgehog (Hh) signalling has been shown to be re-activated in ischaemic tissues and participate in ischaemia-induced angiogenesis. Sonic Hedgehog (Shh) is upregulated by more than 80-fold in the ischaemic skeletal muscle, however its specific role in ischaemia-induced angiogenesis has not yet been fully investigated. The purpose of the present study was to investigate the role of endogenous Shh in ischaemia-induced angiogenesis. To this aim, we used inducible Shh knock-out (KO) mice and unexpectedly found that capillary density was significantly increased in re-generating muscle of Shh deficient mice 5 days after hind limb ischaemia was induced, demonstrating that endogenous Shh does not promote angiogenesis but more likely limits it. Myosin and MyoD expression were equivalent in Shh deficient mice and control mice, indicating that endogenous Shh is not required for ischaemia-induced myogenesis. Additionally, we observed a significant increase in macrophage infiltration in the ischaemic muscle of Shh deficient mice. Our data indicate that this was due to an increase in chemokine expression by myoblasts in the setting of impaired Hh signalling, using tissue specific Smoothened conditional KO mice. The increased macrophage infiltration in mice deficient for Hh signalling in myocytes was associated with increased VEGFA expression and a transiently increased angiogenesis, demonstrating that Shh limits inflammation and angiogenesis indirectly by signalling to myocytes. Although ectopic administration of Shh has previously been shown to promote ischaemia-induced angiogenesis, the present study reveals that endogenous Shh does not promote ischaemia-induced angiogenesis. On the contrary, the absence of Shh leads to aberrant ischaemic tissue inflammation and a transiently increased angiogenesis.
Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhong Xin; Sun, Cong Cong; Wenzhou People's Hospital, Wenzhou, Zhejiang
Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Westernmore » blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.« less
Brain morphology in children with nevoid basal cell carcinoma syndrome.
Shiohama, Tadashi; Fujii, Katsunori; Miyashita, Toshiyuki; Mizuochi, Hiromi; Uchikawa, Hideki; Shimojo, Naoki
2017-04-01
Brain morphology is tightly regulated by diverse signaling pathways. Hedgehog signaling is a candidate pathway considered responsible for regulating brain morphology. Nevoid basal cell carcinoma syndrome (NBCCS), caused by a PTCH1 mutation in the hedgehog signaling pathway, occasionally exhibits macrocephaly and medulloblastoma. Although cerebellar enlargement occurs in ptch1 heterozygous-deficient mice, its impact on human brain development remains unknown. We investigated the brain morphological characteristics of children with NBCCS. We evaluated brain T1-weighted images from nine children with NBCCS and 15 age-matched normal control (NC) children (mean [standard deviation], 12.2 [2.8] vs. 11.6 [2.3] years old). The diameters of the cerebrum, corpus callosum, and brain stem and the cerebellar volume were compared using two-tailed t-tests with Welch's correction. The transverse diameters (150.4 [9.9] vs. 136.0 [5.5] mm, P = 0.002) and longitudinal diameters (165.4 [8.0] vs. 151.3 [8.7] mm, P = 0.0007) of the cerebrum, cross-sectional area of the cerebellar vermis (18.7 [2.6] vs. 11.8 [1.7] cm 2 , P = 0.0001), and total volume of the cerebellar hemispheres (185.1 [13.0] vs. 131.9 [10.4] cm 3 , P = 0.0001) were significantly larger in the children with NBCCS than in NC children. Thinning of the corpus callosum and ventricular enlargement were also confirmed in children with NBCCS. We demonstrate that, on examination of the brain morphology, an increase in the size of the cerebrum, cerebellum, and cerebral ventricles is revealed in children with NBCCS compared to NC children. This suggests that constitutively active hedgehog signaling affects human brain morphology and the PI3K/AKT and RAS/MAPK pathways. © 2017 Wiley Periodicals, Inc.
Matsumaru, Daisuke; Haraguchi, Ryuma; Miyagawa, Shinichi; Motoyama, Jun; Nakagata, Naomi; Meijlink, Frits; Yamada, Gen
2011-01-01
Background An omphalocele is one of the major ventral body wall malformations and is characterized by abnormally herniated viscera from the body trunk. It has been frequently found to be associated with other structural malformations, such as genitourinary malformations and digit abnormalities. In spite of its clinical importance, the etiology of omphalocele formation is still controversial. Hedgehog (Hh) signaling is one of the essential growth factor signaling pathways involved in the formation of the limbs and urogenital system. However, the relationship between Hh signaling and ventral body wall formation remains unclear. Methodology/Principal Findings To gain insight into the roles of Hh signaling in ventral body wall formation and its malformation, we analyzed phenotypes of mouse mutants of Sonic hedgehog (Shh), GLI-Kruppel family member 3 (Gli3) and Aristaless-like homeobox 4 (Alx4). Introduction of additional Alx4Lst mutations into the Gli3Xt/Xt background resulted in various degrees of severe omphalocele and pubic diastasis. In addition, loss of a single Shh allele restored the omphalocele and pubic symphysis of Gli3Xt/+; Alx4Lst/Lst embryos. We also observed ectopic Hh activity in the ventral body wall region of Gli3Xt/Xt embryos. Moreover, tamoxifen-inducible gain-of-function experiments to induce ectopic Hh signaling revealed Hh signal dose-dependent formation of omphaloceles. Conclusions/Significance We suggest that one of the possible causes of omphalocele and pubic diastasis is ectopically-induced Hh signaling. To our knowledge, this would be the first demonstration of the involvement of Hh signaling in ventral body wall malformation and the genetic rescue of omphalocele phenotypes. PMID:21283718
Duan, Zhao-Heng; Wang, Hao-Chuan; Zhao, Dong-Mei; Ji, Xiao-Xin; Song, Min; Yang, Xiao-Jun; Cui, Wei
2015-01-01
Sonic hedgehog (Shh), a ligand of Hedgehog signaling pathway, is considered an important oncogene and an exciting potential therapeutic target in several cancers. Comprehensive understanding of the regulation mechanism of Shh in cancer cells is necessary to find an effective approach to selectively block its tumorigenic function. We and others previously demonstrated that nuclear factor-kappa B (NF-κB) activation and promoter hypomethylation contributed to the overexpression of Shh. However, the relationship between transcriptional and epigenetic regulation of Shh, and their roles in the malignant phenotype of cancer cells are still not clearly elucidated. In the present study, our data showed that the level of Shh was higher in breast cancer tissues with positive NF-κB nuclear staining and promoter hypomethylation. In addition, survival analysis revealed that Shh overexpression, but not hypomethylation and NF-κB nuclear staining, was a poor prognosis indicator for breast cancers. Moreover, in vitro data demonstrated that both NF-κB activation and hypomethylation in promoter region were positively associated with the overexpression of Shh. Mechanistically, the hypomethylation in Shh promoter could facilitate NF-κB binding to its site, and subsequently cooperate to induce transcription of Shh. Furthermore, the biological function data indicated that overexpressed Shh enhanced the self-renewal capacity and migration ability of breast cancer cells, which could be augmented by promoter demethylation and NF-κB activation. Overall, our findings reveal multiple and cooperative mechanisms of Shh upregulation in cancer cells, and the roles of Shh in tumor malignant behavior, thus suggesting a new strategy for therapeutic interventions to reduce Shh in tumors and improve patients’ prognosis. PMID:25990213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Kentaro; Murofushi, Mayumi; Nakao, Kazuhisa
2011-02-18
Research highlights: {yields} Bioengineered teeth regulated the contact area of epithelium and mesenchyme. {yields} The crown width is regulated by the contact area of the epithelium and mesenchyme. {yields} This regulation is associated with cell proliferation and Sonic hedgehog expression. {yields} The cusp number is correlated with the crown width of the bioengineered tooth. {yields} Cell proliferation and Shh expression areas regulate the tooth morphogenesis. -- Abstract: Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial-mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the numbermore » and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth.« less
Zhang, Ya-Ran; Gui, Lin-Sheng; Li, Yao-Kun; Jiang, Bi-Jie; Wang, Hong-Cheng; Zhang, Ying-Ying; Zan, Lin-Sen
2015-07-27
Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1-8) were identified and genotyped via direct sequencing covering most of the coding region and 3'UTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3'UTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p < 0.05) except SNP1/8 (p > 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p < 0.05) greater body length than those with Hap2/Hap2. Our results indicate that variations in the SMO gene could affect body size traits of Qinchuan cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs.
Zhang, Ya-Ran; Gui, Lin-Sheng; Li, Yao-Kun; Jiang, Bi-Jie; Wang, Hong-Cheng; Zhang, Ying-Ying; Zan, Lin-Sen
2015-01-01
Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1–8) were identified and genotyped via direct sequencing covering most of the coding region and 3ʹUTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3ʹUTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p < 0.05) except SNP1/8 (p > 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p < 0.05) greater body length than those with Hap2/Hap2. Our results indicate that variations in the SMO gene could affect body size traits of Qinchuan cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs. PMID:26225956
Insights into bird wing evolution and digit specification from polarizing region fate maps.
Towers, Matthew; Signolet, Jason; Sherman, Adrian; Sang, Helen; Tickle, Cheryll
2011-08-09
The proposal that birds descended from theropod dinosaurs with digits 2, 3 and 4 was recently given support by short-term fate maps, suggesting that the chick wing polarizing region-a group that Sonic hedgehog-expressing cells-gives rise to digit 4. Here we show using long-term fate maps that Green fluorescent protein-expressing chick wing polarizing region grafts contribute only to soft tissues along the posterior margin of digit 4, supporting fossil data that birds descended from theropods that had digits 1, 2 and 3. In contrast, digit IV of the chick leg with four digits (I-IV) arises from the polarizing region. To determine how digit identity is specified over time, we inhibited Sonic hedgehog signalling. Fate maps show that polarizing region and adjacent cells are specified in parallel through a series of anterior to posterior digit fates-a process of digit specification that we suggest is involved in patterning all vertebrate limbs with more than three digits.