Sample records for variational explicit polarization

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brizard, Alain J.; Tronci, Cesare

    The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

  2. Oceanic signals in rapid polar motion: results from a barotropic forward model with explicit consideration of self-attraction and loading effects

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Quinn, Katherine J.; Ponte, Rui M.

    2017-04-01

    Numerical modeling of non-tidal variations in ocean currents and bottom pressure has played a key role in closing the excitation budget of Earth's polar motion for a wide range of periodicities. Non-negligible discrepancies between observations and model accounts of pole position changes prevail, however, on sub-monthly time scales and call for examination of hydrodynamic effects usually omitted in general circulation models. Specifically, complete hydrodynamic cores must incorporate self-attraction and loading (SAL) feedbacks on redistributed water masses, effects that produces ocean bottom pressure perturbations of typically about 10% relative to the computed mass variations. Here, we report on a benchmark simulation with a near-global, barotropic forward model forced by wind stress, atmospheric pressure, and a properly calculated SAL term. The latter is obtained by decomposing ocean mass anomalies on a 30-minute grid into spherical harmonics at each time step and applying Love numbers to account for seafloor deformation and changed gravitational attraction. The increase in computational time at each time step is on the order of 50%. Preliminary results indicate that the explicit consideration of SAL in the forward runs increases the fidelity of modeled polar motion excitations, in particular on time scales shorter than 5 days as evident from cross spectral comparisons with geodetic excitation. Definite conclusions regarding the relevance of SAL in simulating rapid polar motion are, however, still hampered by the model's incomplete domain representation that excludes parts of the highly energetic Arctic Ocean.

  3. Vectorial mask optimization methods for robust optical lithography

    NASA Astrophysics Data System (ADS)

    Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong; Arce, Gonzalo R.

    2012-10-01

    Continuous shrinkage of critical dimension in an integrated circuit impels the development of resolution enhancement techniques for low k1 lithography. Recently, several pixelated optical proximity correction (OPC) and phase-shifting mask (PSM) approaches were developed under scalar imaging models to account for the process variations. However, the lithography systems with larger-NA (NA>0.6) are predominant for current technology nodes, rendering the scalar models inadequate to describe the vector nature of the electromagnetic field that propagates through the optical lithography system. In addition, OPC and PSM algorithms based on scalar models can compensate for wavefront aberrations, but are incapable of mitigating polarization aberrations in practical lithography systems, which can only be dealt with under the vector model. To this end, we focus on developing robust pixelated gradient-based OPC and PSM optimization algorithms aimed at canceling defocus, dose variation, wavefront and polarization aberrations under a vector model. First, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. A steepest descent algorithm is then used to iteratively optimize the mask patterns. Simulations show that the proposed algorithms can effectively improve the process windows of the optical lithography systems.

  4. An exact variational method to calculate vibrational energies of five atom molecules beyond the normal mode approach

    DOE PAGES

    Yu, Hua-Gen

    2002-01-01

    We present a full dimensional variational algorithm to calculate vibrational energies of penta-atomic molecules. The quantum mechanical Hamiltonian of the system for J=0 is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame without any dynamical approximation. Moreover, the vibrational Hamiltonian has been obtained in an explicitly Hermitian form. Variational calculations are performed in a direct product discrete variable representation basis set. The sine functions are used for the radial coordinates, whereas the Legendre polynomials are employed for the polar angles. For the azimuthal angles, the symmetrically adapted Fourier–Chebyshev basis functions are utilized. The eigenvalue problem ismore » solved by a Lanczos iterative diagonalization algorithm. The preliminary application to methane is given. Ultimately, we made a comparison with previous results.« less

  5. Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization.

    PubMed

    Mazack, Michael J M; Gao, Jiali

    2014-05-28

    The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.

  6. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Polarization of light and hopf fibration

    NASA Astrophysics Data System (ADS)

    Jurčo, B.

    1987-09-01

    A set of polarization states of quasi-monochromatic light is described geometrically in terms of the Hopf fibration. Several associated alternative polarization parametrizations are given explicitly, including the Stokes parameters.

  8. Paleointensity Behavior and Intervals Between Geomagnetic Reversals in the Last 167 Ma

    NASA Astrophysics Data System (ADS)

    Kurazhkovskii, A. Yu.; Kurazhkovskaya, N. A.; Klain, B. I.

    2018-01-01

    The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous-Paleogene boundary and the termination of paleointensity bursts after the boundary of 45-40 Ma are not marked by explicit features in the geomagnetic polarity behavior.

  9. Beyond Point Charges: Dynamic Polarization from Neural Net Predicted Multipole Moments.

    PubMed

    Darley, Michael G; Handley, Chris M; Popelier, Paul L A

    2008-09-09

    Intramolecular polarization is the change to the electron density of a given atom upon variation in the positions of the neighboring atoms. We express the electron density in terms of multipole moments. Using glycine and N-methylacetamide (NMA) as pilot systems, we show that neural networks can capture the change in electron density due to polarization. After training, modestly sized neural networks successfully predict the atomic multipole moments from the nuclear positions of all atoms in the molecule. Accurate electrostatic energies between two atoms can be then obtained via a multipole expansion, inclusive of polarization effects. As a result polarization is successfully modeled at short-range and without an explicit polarizability tensor. This approach puts charge transfer and multipolar polarization on a common footing. The polarization procedure is formulated within the context of quantum chemical topology (QCT). Nonbonded atom-atom interactions in glycine cover an energy range of 948 kJ mol(-1), with an average energy difference between true and predicted energy of 0.2 kJ mol(-1), the largest difference being just under 1 kJ mol(-1). Very similar energy differences are found for NMA, which spans a range of 281 kJ mol(-1). The current proof-of-concept enables the construction of a new protein force field that incorporates electron density fragments that dynamically respond to their fluctuating environment.

  10. Polarization variations in installed fibers and their influence on quantum key distribution systems.

    PubMed

    Ding, Yu-Yang; Chen, Hua; Wang, Shuang; He, De-Yong; Yin, Zhen-Qiang; Chen, Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2017-10-30

    Polarization variations in the installed fibers are complex and volatile, and would severely affect the performances of polarization-sensitive quantum key distribution (QKD) systems. Based on the recorded data about polarization variations of different installed fibers, we establish an analytical methodology to quantitatively evaluate the influence of polarization variations on polarization-sensitive QKD systems. Using the increased quantum bit error rate induced by polarization variations as a key criteria, we propose two parameters - polarization drift time and required tracking speed - to characterize polarization variations. For field buried and aerial fibers with different length, we quantitatively evaluate the influence of polarization variations, and also provide requirements and suggestions for polarization basis alignment modules of QKD systems deployed in different kind of fibers.

  11. Explicit polarization: a quantum mechanical framework for developing next generation force fields.

    PubMed

    Gao, Jiali; Truhlar, Donald G; Wang, Yingjie; Mazack, Michael J M; Löffler, Patrick; Provorse, Makenzie R; Rehak, Pavel

    2014-09-16

    Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples involving water clusters (which show the power of two-body corrections), ethylmethylimidazolium acetate ionic liquids (which reveal that the amount of charge transfer between anion and cation is much smaller than what has been assumed in some classical simulations), and a solvated protein in aqueous solution (which shows that the average charge distribution of carbonyl groups along the polypeptide chain depends strongly on their position in the sequence, whereas they are fixed in most classical force fields). The development of QMFFs also offers an opportunity to extend the accuracy of biochemical simulations to areas where classical force fields are often insufficient, especially in the areas of spectroscopy, reactivity, and enzyme catalysis.

  12. Soliton polarization rotation in fiber lasers

    NASA Astrophysics Data System (ADS)

    Afanasjev, V. V.

    1995-02-01

    I have found the approximate analytical solution in explicit form for a vector soliton with an arbitrary component ratio. My solution describes the dependence of soliton intensity on polarization angle and also nonlinear polarization rotation. The analytical results agree well with the numerical simulations.

  13. Examining the cognitive demands of analogy instructions compared to explicit instructions.

    PubMed

    Tse, Choi Yeung Andy; Wong, Andus; Whitehill, Tara; Ma, Estella; Masters, Rich

    2016-10-01

    In many learning domains, instructions are presented explicitly despite high cognitive demands associated with their processing. This study examined cognitive demands imposed on working memory by different types of instruction to speak with maximum pitch variation: visual analogy, verbal analogy and explicit verbal instruction. Forty participants were asked to memorise a set of 16 visual and verbal stimuli while reading aloud a Cantonese paragraph with maximum pitch variation. Instructions about how to achieve maximum pitch variation were presented via visual analogy, verbal analogy, explicit rules or no instruction. Pitch variation was assessed off-line, using standard deviation of fundamental frequency. Immediately after reading, participants recalled as many stimuli as possible. Analogy instructions resulted in significantly increased pitch variation compared to explicit instructions or no instructions. Explicit instructions resulted in poorest recall of stimuli. Visual analogy instructions resulted in significantly poorer recall of visual stimuli than verbal stimuli. The findings suggest that non-propositional instructions presented via analogy may be less cognitively demanding than instructions that are presented explicitly. Processing analogy instructions that are presented as a visual representation is likely to load primarily visuospatial components of working memory rather than phonological components. The findings are discussed with reference to speech therapy and human cognition.

  14. Polarization effects in recoil-induced resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazebnyi, D. B., E-mail: becks.ddf@gmail.com; Brazhnikov, D. V.; Taichenachev, A. V.

    2017-01-15

    The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.

  15. Regularization destriping of remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle

    2017-07-01

    We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

  16. Folding of a helix is critically stabilized by polarization of backbone hydrogen bonds: study in explicit water.

    PubMed

    Duan, Li L; Gao, Ya; Mei, Ye; Zhang, Qing G; Tang, Bo; Zhang, John Z H

    2012-03-15

    Multiple single-trajectory molecular dynamics (MD) simulation at room temperature (300 K) in explicit water was carried out to study the folding dynamics of an α-helix (PDB 2I9M ) using a polarized charge scheme that includes electronic polarization of backbone hydrogen bonds. Starting from an extended conformation, the 17-residue peptide was successfully folded into the native structure (α-helix) between 80 and 130 ns with a root-mean-square deviation of ~1.0 Å. Analysis of the time-dependent trajectories revealed that helix formation of the peptide started at the terminals and progressed toward the center of the peptide. For comparison, MD trajectories generated under various versions of standard AMBER force fields failed to show any significant or stable helix formation in our simulation. Our result shows clear evidence that the electronic polarization of backbone hydrogen bonds energetically stabilizes the helix formation and is critical to the stable folding of the short helix structure. © 2012 American Chemical Society

  17. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  18. Fermionic vacuum polarization in a higher-dimensional global monopole spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra de Mello, E. R.

    2007-12-15

    In this paper we analyze the vacuum polarization effects associated with a massless fermionic field in a higher-dimensional global monopole spacetime in the 'braneworld' scenario. In this context we admit that our Universe, the bulk, is represented by a flat (n-1)-dimensional brane having a global monopole in an extra transverse three-dimensional submanifold. We explicitly calculate the renormalized vacuum average of the energy-momentum tensor, {sub Ren}, admitting the global monopole as being a pointlike object. We observe that this quantity depends crucially on the value of n, and provide explicit expressions to it for specific values attributed to n.

  19. Leveling the field: The role of training, safety programs, and knowledge management systems in fostering inclusive field settings

    NASA Astrophysics Data System (ADS)

    Starkweather, S.; Crain, R.; Derry, K. R.

    2016-12-01

    Knowledge is empowering in all settings, but plays an elevated role in empowering under-represented groups in field research. Field research, particularly polar field research, has deep roots in masculinized and colonial traditions, which can lead to high barriers for women and minorities (e.g. Carey et al., 2016). While recruitment of underrepresented groups into polar field research has improved through the efforts of organizations like the Association of Polar Early Career Scientists (APECS), the experiences and successes of these participants is often contingent on the availability of specialized training opportunities or the quality of explicitly documented information about how to survive Arctic conditions or how to establish successful measurement protocols in harsh environments. In Arctic field research, knowledge is often not explicitly documented or conveyed, but learned through "experience" or informally through ad hoc advice. The advancement of field training programs and knowledge management systems suggest two means for unleashing more explicit forms of knowledge about field work. Examples will be presented along with a case for how they level the playing field and improve the experience of field work for all participants.

  20. Leveling the field: The role of training, safety programs, and knowledge management systems in fostering inclusive field settings

    NASA Astrophysics Data System (ADS)

    Starkweather, S.; Crain, R.; Derry, K. R.

    2017-12-01

    Knowledge is empowering in all settings, but plays an elevated role in empowering under-represented groups in field research. Field research, particularly polar field research, has deep roots in masculinized and colonial traditions, which can lead to high barriers for women and minorities (e.g. Carey et al., 2016). While recruitment of underrepresented groups into polar field research has improved through the efforts of organizations like the Association of Polar Early Career Scientists (APECS), the experiences and successes of these participants is often contingent on the availability of specialized training opportunities or the quality of explicitly documented information about how to survive Arctic conditions or how to establish successful measurement protocols in harsh environments. In Arctic field research, knowledge is often not explicitly documented or conveyed, but learned through "experience" or informally through ad hoc advice. The advancement of field training programs and knowledge management systems suggest two means for unleashing more explicit forms of knowledge about field work. Examples will be presented along with a case for how they level the playing field and improve the experience of field work for all participants.

  1. Beta Regression Finite Mixture Models of Polarization and Priming

    ERIC Educational Resources Information Center

    Smithson, Michael; Merkle, Edgar C.; Verkuilen, Jay

    2011-01-01

    This paper describes the application of finite-mixture general linear models based on the beta distribution to modeling response styles, polarization, anchoring, and priming effects in probability judgments. These models, in turn, enhance our capacity for explicitly testing models and theories regarding the aforementioned phenomena. The mixture…

  2. X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water.

    PubMed

    Xie, Wangshen; Orozco, Modesto; Truhlar, Donald G; Gao, Jiali

    2009-02-17

    A recently proposed electronic structure-based force field called the explicit polarization (X-Pol) potential is used to study many-body electronic polarization effects in a protein, in particular by carrying out a molecular dynamics (MD) simulation of bovine pancreatic trypsin inhibitor (BPTI) in water with periodic boundary conditions. The primary unit cell is cubic with dimensions ~54 × 54 × 54 Å(3), and the total number of atoms in this cell is 14281. An approximate electronic wave function, consisting of 29026 basis functions for the entire system, is variationally optimized to give the minimum Born-Oppenheimer energy at every MD step; this allows the efficient evaluation of the required analytic forces for the dynamics. Intramolecular and intermolecular polarization and intramolecular charge transfer effects are examined and are found to be significant; for example, 17 out of 58 backbone carbonyls differ from neutrality on average by more than 0.1 electron, and the average charge on the six alanines varies from -0.05 to +0.09. The instantaneous excess charges vary even more widely; the backbone carbonyls have standard deviations in their fluctuating net charges from 0.03 to 0.05, and more than half of the residues have excess charges whose standard deviation exceeds 0.05. We conclude that the new-generation X-Pol force field permits the inclusion of time-dependent quantum mechanical polarization and charge transfer effects in much larger systems than was previously possible.

  3. Three-dimensional polarization algebra.

    PubMed

    R Sheppard, Colin J; Castello, Marco; Diaspro, Alberto

    2016-10-01

    If light is focused or collected with a high numerical aperture lens, as may occur in imaging and optical encryption applications, polarization should be considered in three dimensions (3D). The matrix algebra of polarization behavior in 3D is discussed. It is useful to convert between the Mueller matrix and two different Hermitian matrices, representing an optical material or system, which are in the literature. Explicit transformation matrices for converting the column vector form of these different matrices are extended to the 3D case, where they are large (81×81) but can be generated using simple rules. It is found that there is some advantage in using a generalization of the Chandrasekhar phase matrix treatment, rather than that based on Gell-Mann matrices, as the resultant matrices are of simpler form and reduce to the two-dimensional case more easily. Explicit expressions are given for 3D complex field components in terms of Chandrasekhar-Stokes parameters.

  4. Spatial variations of the Sr I 4607 Å scattering polarization peak

    NASA Astrophysics Data System (ADS)

    Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.

    2018-06-01

    Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.

  5. Hydrological and oceanic excitations to polar motion andlength-of-day variation

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Chao, B. F.; Shum, C. K.; Tapley, B. D.

    2000-04-01

    Water mass redistributions in the global hydrosphere, including continental water storage change and non-steric sea level change, introduce variations in the hydrological angular momentum (HAM) and the oceanic angular momentum (OAM). Under the conservation of angular momentum, HAM and OAM variations are significant excitation sources of the Earth rotational variations at a wide range of timescales. In this paper, we estimate HAM and OAM variations and their excitations to polar motion and length-of-day variation using soil moisture and snow estimates andnon-steric sea level change determined by TOPEX/Poseidon satellite radar altimeter observations and a simplified steric sea level change model. The results are compared with the variations of polar motion and LOD that are not accounted for by the atmosphere. This study indicates that seasonal continental water storage change provides significant contributions to both polar motion and LOD variation, especially to polar motion X, and the non-steric sea level change is responsible for a major part of the remaining excitations at both seasonal scale and high frequencies, particularly in polar motion Y and LOD. The good correlation between OAM contributions and the remaining excitations shows that large-scale non-tidal mass variation exists in the oceans and can be detected by TOPEX/Poseidon altimeter observations.

  6. Emergence of a coherent and cohesive swarm based on mutual anticipation

    PubMed Central

    Murakami, Hisashi; Niizato, Takayuki; Gunji, Yukio-Pegio

    2017-01-01

    Collective behavior emerging out of self-organization is one of the most striking properties of an animal group. Typically, it is hypothesized that each individual in an animal group tends to align its direction of motion with those of its neighbors. Most previous models for collective behavior assume an explicit alignment rule, by which an agent matches its velocity with that of neighbors in a certain neighborhood, to reproduce a collective order pattern by simple interactions. Recent empirical studies, however, suggest that there is no evidence for explicit matching of velocity, and that collective polarization arises from interactions other than those that follow the explicit alignment rule. We here propose a new lattice-based computational model that does not incorporate the explicit alignment rule but is based instead on mutual anticipation and asynchronous updating. Moreover, we show that this model can realize densely collective motion with high polarity. Furthermore, we focus on the behavior of a pair of individuals, and find that the turning response is drastically changed depending on the distance between two individuals rather than the relative heading, and is consistent with the empirical observations. Therefore, the present results suggest that our approach provides an alternative model for collective behavior. PMID:28406173

  7. Reproducing the Ensemble Average Polar Solvation Energy of a Protein from a Single Structure: Gaussian-Based Smooth Dielectric Function for Macromolecular Modeling.

    PubMed

    Chakravorty, Arghya; Jia, Zhe; Li, Lin; Zhao, Shan; Alexov, Emil

    2018-02-13

    Typically, the ensemble average polar component of solvation energy (ΔG polar solv ) of a macromolecule is computed using molecular dynamics (MD) or Monte Carlo (MC) simulations to generate conformational ensemble and then single/rigid conformation solvation energy calculation is performed on each snapshot. The primary objective of this work is to demonstrate that Poisson-Boltzmann (PB)-based approach using a Gaussian-based smooth dielectric function for macromolecular modeling previously developed by us (Li et al. J. Chem. Theory Comput. 2013, 9 (4), 2126-2136) can reproduce that ensemble average (ΔG polar solv ) of a protein from a single structure. We show that the Gaussian-based dielectric model reproduces the ensemble average ΔG polar solv (⟨ΔG polar solv ⟩) from an energy-minimized structure of a protein regardless of the minimization environment (structure minimized in vacuo, implicit or explicit waters, or crystal structure); the best case, however, is when it is paired with an in vacuo-minimized structure. In other minimization environments (implicit or explicit waters or crystal structure), the traditional two-dielectric model can still be selected with which the model produces correct solvation energies. Our observations from this work reflect how the ability to appropriately mimic the motion of residues, especially the salt bridge residues, influences a dielectric model's ability to reproduce the ensemble average value of polar solvation free energy from a single in vacuo-minimized structure.

  8. Effects of collection geometry variations on linear and circular polarization persistence in both isotropic-scattering and forward-scattering environments

    DOE PAGES

    van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.; ...

    2016-11-04

    We present simulation and experimental results showing circular polarization is more tolerant of optical collection geometry (field of view and collection area) variations than linear polarization for forward-scattering environments. Circular polarization also persists superiorly in the forward-scattering environment compared to linear polarization by maintaining its degree of polarization better through increasing optical thicknesses. In contrast, both linear and circular polarizations are susceptible to collection geometry variations for isotropic-scattering (Rayleigh regime) environments, and linear polarization maintains a small advantage in polarization persistence. Simulations and measurements are presented for laboratory-based environments of polystyrene microspheres in water. As a result, particle diameters weremore » 0.0824 μm (for isotropic-scattering) and 1.925 μm (for forward-scattering) with an illumination wavelength of 543.5 nm.« less

  9. Effects of collection geometry variations on linear and circular polarization persistence in both isotropic-scattering and forward-scattering environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.

    We present simulation and experimental results showing circular polarization is more tolerant of optical collection geometry (field of view and collection area) variations than linear polarization for forward-scattering environments. Circular polarization also persists superiorly in the forward-scattering environment compared to linear polarization by maintaining its degree of polarization better through increasing optical thicknesses. In contrast, both linear and circular polarizations are susceptible to collection geometry variations for isotropic-scattering (Rayleigh regime) environments, and linear polarization maintains a small advantage in polarization persistence. Simulations and measurements are presented for laboratory-based environments of polystyrene microspheres in water. As a result, particle diameters weremore » 0.0824 μm (for isotropic-scattering) and 1.925 μm (for forward-scattering) with an illumination wavelength of 543.5 nm.« less

  10. Field-calibrated model of melt, refreezing, and runoff for polar ice caps: Application to Devon Ice Cap

    NASA Astrophysics Data System (ADS)

    Morris, Richard M.; Mair, Douglas W. F.; Nienow, Peter W.; Bell, Christina; Burgess, David O.; Wright, Andrew P.

    2014-09-01

    Understanding the controls on the amount of surface meltwater that refreezes, rather than becoming runoff, over polar ice masses is necessary for modeling their surface mass balance and ultimately for predicting their future contributions to global sea level change. We present a modified version of a physically based model that includes an energy balance routine and explicit calculation of near-surface meltwater refreezing capacity, to simulate the evolution of near-surface density and temperature profiles across Devon Ice Cap in Arctic Canada. Uniquely, our model is initiated and calibrated using high spatial resolution measurements of snow and firn densities across almost the entire elevation range of the ice cap for the summer of 2004 and subsequently validated with the same type of measurements obtained during the very different meteorological conditions of summer 2006. The model captures the spatial variability across the transect in bulk snowpack properties although it slightly underestimates the flow of meltwater into the firn of previous years. The percentage of meltwater that becomes runoff is similar in both years; however, the spatial pattern of this melt-runoff relationship is different in the 2 years. The model is found to be insensitive to variation in the depth of impermeable layers within the firn but is very sensitive to variation in air temperature, since the refreezing capacity of firn decreases with increasing temperature. We highlight that the sensitivity of the ice cap's surface mass balance to air temperature is itself dependent on air temperature.

  11. How to calculate H3 better.

    PubMed

    Pavanello, Michele; Tung, Wei-Cheng; Adamowicz, Ludwik

    2009-11-14

    Efficient optimization of the basis set is key to achieving a very high accuracy in variational calculations of molecular systems employing basis functions that are explicitly dependent on the interelectron distances. In this work we present a method for a systematic enlargement of basis sets of explicitly correlated functions based on the iterative-complement-interaction approach developed by Nakatsuji [Phys. Rev. Lett. 93, 030403 (2004)]. We illustrate the performance of the method in the variational calculations of H(3) where we use explicitly correlated Gaussian functions with shifted centers. The total variational energy (-1.674 547 421 Hartree) and the binding energy (-15.74 cm(-1)) obtained in the calculation with 1000 Gaussians are the most accurate results to date.

  12. Simulating polar bear energetics during a seasonal fast using a mechanistic model.

    PubMed

    Mathewson, Paul D; Porter, Warren P

    2013-01-01

    In this study we tested the ability of a mechanistic model (Niche Mapper™) to accurately model adult, non-denning polar bear (Ursus maritimus) energetics while fasting during the ice-free season in the western Hudson Bay. The model uses a steady state heat balance approach, which calculates the metabolic rate that will allow an animal to maintain its core temperature in its particular microclimate conditions. Predicted weight loss for a 120 day fast typical of the 1990s was comparable to empirical studies of the population, and the model was able to reach a heat balance at the target metabolic rate for the entire fast, supporting use of the model to explore the impacts of climate change on polar bears. Niche Mapper predicted that all but the poorest condition bears would survive a 120 day fast under current climate conditions. When the fast extended to 180 days, Niche Mapper predicted mortality of up to 18% for males. Our results illustrate how environmental conditions, variation in animal properties, and thermoregulation processes may impact survival during extended fasts because polar bears were predicted to require additional energetic expenditure for thermoregulation during a 180 day fast. A uniform 3°C temperature increase reduced male mortality during a 180 day fast from 18% to 15%. Niche Mapper explicitly links an animal's energetics to environmental conditions and thus can be a valuable tool to help inform predictions of climate-related population changes. Since Niche Mapper is a generic model, it can make energetic predictions for other species threatened by climate change.

  13. Simulating Polar Bear Energetics during a Seasonal Fast Using a Mechanistic Model

    PubMed Central

    Mathewson, Paul D.; Porter, Warren P.

    2013-01-01

    In this study we tested the ability of a mechanistic model (Niche Mapper™) to accurately model adult, non-denning polar bear (Ursus maritimus) energetics while fasting during the ice-free season in the western Hudson Bay. The model uses a steady state heat balance approach, which calculates the metabolic rate that will allow an animal to maintain its core temperature in its particular microclimate conditions. Predicted weight loss for a 120 day fast typical of the 1990s was comparable to empirical studies of the population, and the model was able to reach a heat balance at the target metabolic rate for the entire fast, supporting use of the model to explore the impacts of climate change on polar bears. Niche Mapper predicted that all but the poorest condition bears would survive a 120 day fast under current climate conditions. When the fast extended to 180 days, Niche Mapper predicted mortality of up to 18% for males. Our results illustrate how environmental conditions, variation in animal properties, and thermoregulation processes may impact survival during extended fasts because polar bears were predicted to require additional energetic expenditure for thermoregulation during a 180 day fast. A uniform 3°C temperature increase reduced male mortality during a 180 day fast from 18% to 15%. Niche Mapper explicitly links an animal’s energetics to environmental conditions and thus can be a valuable tool to help inform predictions of climate-related population changes. Since Niche Mapper is a generic model, it can make energetic predictions for other species threatened by climate change. PMID:24019883

  14. In-situ Microwave Brightness Temperature Variability from Ground-based Radiometer Measurements at Dome C in Antarctica Induced by Wind-formed Features

    NASA Technical Reports Server (NTRS)

    Royer, A.; Picard, G.; Arnaud, L.; Brucker, L.; Fily, M..

    2014-01-01

    Space-borne microwave radiometers are among the most useful tools to study snow and to collect information on the Antarctic climate. They have several advantages over other remote sensing techniques: high sensitivity to snow properties of interest (temperature, grain size, density), subdaily coverage in the polar regions, and their observations are independent of cloud conditions and solar illumination. Thus, microwave radiometers are widely used to retrieve information over snow-covered regions. For the Antarctic Plateau, many studies presenting retrieval algorithms or numerical simulations have assumed, explicitly or not, that the subpixel-scale heterogeneity is negligible and that the retrieved properties were representative of whole pixels. In this presentation, we investigate the spatial variations of brightness temperature over arange of a few kilometers in the Dome C area (Antarctic Plateau).

  15. Martian thermal boundary layers: Subhourly variations induced by radiative-conductive heat transfer within the dust-laden atmosphere-ground system

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.; Dannevik, W. P.; Frisella, S. P.

    1973-01-01

    Radiative-conductive heat transfer has been investigated for the ground-atmosphere system of the planet Mars. The basic goal was the quantitative determination of time dependent vertical distributions of temperature and static stability for Southern-Hemispheric summer season and middle and polar latitudes, for both dust-free and dust-laden atmospheric conditions. The numerical algorithm which models at high spatial and temporal resolution the thermal energy transports in the dual ground-atmosphere system, is based on solution of the applicable heating rate equation, including radiative and molecular-conductive heat transport terms. The two subsystems are coupled by an internal thermal boundary condition applied at the ground-atmosphere interface level. Initial data and input parameters are based on Mariner 4, 6, 7, and 9 measurements and the JPL Mars Scientific Model. Numerical experiments were run for dust-free and dust-laden conditions in the midlatitudes, as well as ice-free and ice-covered polar regions. Representative results and their interpretation are presented. Finally, the theoretical framework of the generalized problem with nonconservative Mie scattering and explicit thermal-convective heat transfer is formulated, and applicable solution algorithms are outlined.

  16. Vacuum polarization near a distorted black hole

    NASA Astrophysics Data System (ADS)

    Frolov, V. P.; Alberto García, D.

    1983-12-01

    The vacuum polarization near a black hole distorted by the axially symmetric gravitational field of external matter is studied. The explicit expression for <φ2> at the pole of the distorted horizon is obtained. Also at Sección de Graduados, Escuela Superior de Ingeniería Mecánica y Eléctrica del IPN, México DF, México.

  17. Non-inverse-square force-distance law for long thin magnets-revisited.

    PubMed

    Darvell, Brian W; Gilding, Brian H

    2012-05-01

    It had previously been shown that the inverse-square law does not apply to the force-distance relationship in the case of a long, thin magnet with one end in close proximity to its image in a permeable plane when simple point-like poles are assumed. Treating the system instead as having a 'polar disc', arising from an assumed bundle of dipoles, led to a double integral that could only be evaluated numerically, and a relationship that still did not match observed behavior. Using an elaborate 'stretched' exponential polynomial to represent the position of an 'elastic' polar disc resulted in a fair representation of the physical response, but this was essentially merely the fitting of an arbitrary function. The present purpose was therefore to find an explicit formula for the force-distance relationship in the polar-disc problem and assess its fit to the previously obtained experimental data. Starting from Coulomb's law a corrected integral formula for the force-distance relationship was derived. The integral in this formula was evaluated explicitly using rescaling, changes of order of integration, reduction by symmetry, and change of variables. The resulting formula was then fitted to data that had been obtained for the force exerted by eighty-five rod-shaped magnets (Alnico V, 3 mm diameter, 170 mm long) perpendicular to a large steel plate, as a function of distance, at small separations (<5 mm). Subsequently, the fit of alternative functions was explored. An explicit formula in terms of elliptic integrals was obtained for the polar-disc problem. Despite the greater fidelity, this too was found not to fit the observed physical behavior. Given that failure, nevertheless a simple formula that conforms closely and parsimoniously to the actual magnet data was found. A key feature remains the marked departure from inverse-square behavior. The failure of the explicit formula to fit the data indicates an inadequate model of the physical system. Nonetheless it constitutes a useful tool for quantifying the force-distance relationship on the premise of polar discs. Given these insights, it may now be possible to address the original motivating problem of the behavior of real dental magnets. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    PubMed

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  19. Solvent electronic polarization effects on a charge transfer excitation studied by the mean-field QM/MM method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, Hiroshi; Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8245

    2015-12-31

    Electronic polarization effects of a medium can have a significant impact on a chemical reaction in condensed phases. We discuss the effects on the charge transfer excitation of a chromophore, N,N-dimethyl-4-nitroaniline, in various solvents using the mean-field QM/MM method with a polarizable force field. The results show that the explicit consideration of the solvent electronic polarization effects is important especially for a solvent with a low dielectric constant when we study the solvatochromism of the chromophore.

  20. Spectral sea surface reflectance of skylight.

    PubMed

    Zhang, Xiaodong; He, Shuangyan; Shabani, Afshin; Zhai, Peng-Wang; Du, Keping

    2017-02-20

    In examining the dependence of the sea surface reflectance of skylight ρs on sky conditions, wind speed, solar zenith angle, and viewing geometry, Mobley [Appl. Opt.38, 7442 (1999).10.1364/AO.38.007442] assumed ρs is independent of wavelength. Lee et al. [Opt. Express18, 26313 (2010).10.1364/OE.18.026313] showed experimentally that ρs does vary spectrally due to the spectral difference of sky radiance coming from different directions, which was ignored in Mobley's study. We simulated ρs from 350 nm to 1000 nm by explicitly accounting for spectral variations of skylight distribution and Fresnel reflectance. Furthermore, we separated sun glint from sky glint because of significant differences in magnitude, spectrum and polarization state between direct sun light and skylight light. The results confirm that spectral variation of ρs(λ) mainly arises from the spectral distribution of skylight and would vary from slightly blueish due to normal dispersion of the refractive index of water, to neutral and then to reddish with increasing wind speeds and decreasing solar zenith angles. Polarization moderately increases sky glint by 8 - 20% at 400 nm but only by 0 - 10% at 1000 nm. Sun glint is inherently reddish and becomes significant (>10% of sky glint) when the sun is at the zenith with moderate winds or when the sea is roughened (wind speeds > 10 m s-1) with solar zenith angles < 20°. We recommend a two-step procedure by first correcting the glint due to direct sun light, which is unpolarized, followed by removing the glint due to diffused and polarized skylight. The simulated ρs(λ) as a function of wind speeds, sun angles and aerosol concentrations for currently recommended sensor-sun geometry, i.e., zenith angle = 40° and azimuthal angle relative to the sun = 45°, is available upon request.

  1. A multiscale model for charge inversion in electric double layers

    NASA Astrophysics Data System (ADS)

    Mashayak, S. Y.; Aluru, N. R.

    2018-06-01

    Charge inversion is a widely observed phenomenon. It is a result of the rich statistical mechanics of the molecular interactions between ions, solvent, and charged surfaces near electric double layers (EDLs). Electrostatic correlations between ions and hydration interactions between ions and water molecules play a dominant role in determining the distribution of ions in EDLs. Due to highly polar nature of water, near a surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced variations in the electrostatic and hydration energies of ions. Classical continuum theories fail to accurately describe electrostatic correlations and molecular effects of water in EDLs. In this work, we present an empirical potential based quasi-continuum theory (EQT) to accurately predict the molecular-level properties of aqueous electrolytes. In EQT, we employ rigorous statistical mechanics tools to incorporate interatomic interactions, long-range electrostatics, correlations, and orientation polarization effects at a continuum-level. Explicit consideration of atomic interactions of water molecules is both theoretically and numerically challenging. We develop a systematic coarse-graining approach to coarse-grain interactions of water molecules and electrolyte ions from a high-resolution atomistic scale to the continuum scale. To demonstrate the ability of EQT to incorporate the water orientation polarization, ion hydration, and electrostatic correlations effects, we simulate confined KCl aqueous electrolyte and show that EQT can accurately predict the distribution of ions in a thin EDL and also predict the complex phenomenon of charge inversion.

  2. Why do morphological phylogenies vary in quality? An investigation based on the comparative history of lizard clades.

    PubMed

    Arnold, E N

    1990-05-22

    Phylogenies based on morphology vary considerably in their quality: some are robust and explicit with little conflict in the data set, whereas others are far more tenuous, with much conflict and many possible alternatives. The main primary reasons for untrue or inexplicit morphological phylogenies are: not enough characters developed between branching points, uncertain character polarity, poorly differentiated character states, homoplasy caused by parallelism or reversal, and extinction, which may remove species entirely from consideration and can make originally conflicting data sets misleadingly compatible, increasing congruence at the expense of truth. Extinction differs from other confounding factors in not being apparent either in the data set or in subsequent analysis. One possibility is that variation in the quality of morphological phylogenies has resulted from exposure to different ecological situations. To investigate this, it is necessary to compare the histories of the clades concerned. In the case of explicit morphological phylogenies, ecological and behavioural data can be integrated with them and it may then be possible to decide whether morphological characters are likely to have been elicited by the environments through which the clade has passed. The credibility of such results depends not only on the phylogeny being robust but also on its detailed topology: a pectinate phylogeny will often allow more certain and more explicit statements to be made about historical events. In the case of poor phylogenies, it is not possible to produce detailed histories, but they can be compared with robust phylogenies in the range of ecological situations occupied, and whether they occupy novel situations in comparison with their outgroups. LeQuesne testing can give information about niche homoplasy, and it may also be possible to see if morphological features are functionally associated with ecological parameters, even if the direction of change is unknown. Examination of the robust and explicit phylogeny of the semaphore geckoes (Pristurus) suggests that its quality does stem from a variety of environmental factors. The group has progressed along an ecological continuum, passing through a series of increasingly severe niches that appear to have elicited many morphological changes. The fact that niches are progressively filled reduces the likelihood of species reinvading a previous one with related character reversal. Because the niches of advanced Pristurus are virtually unique within the Gekkonidae the morphological changes produced are also very rare and therefore easy to polarize. Ecological changes on the main stem of the phylogeny are abrupt and associated character states consequently well differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. The determination of the in situ structure by nuclear spin contrast variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  4. Comparisons of the North Polar Cap of Mars and the Earth's Northern Hemisphere snow cover

    NASA Technical Reports Server (NTRS)

    Foster, J.; Owe, M.; Capen, C.

    1985-01-01

    The boundaries of the polar caps of Mars have been measured on more than 3000 photographs since 1905 from the plate collection at the Lowell Observatory. For the Earth the polar caps have been accurately mapped only since the mid 1960's when satellites were first available to synoptically view the polar regions. The polar caps of both planets wax and wane in response to changes in the seasons, and interannual differences in polar cap behavior on Mars as well as Earth are intimately linked to global energy balance. In this study data on the year to year variations in the extent of the polar caps of Mars and Earth were assembled and analyzed together with data on annual variations in solar activity to determine if associations exist between these data. It was found that virtually no correlation exists between measurements of Mars north polar cap and solar variability. An inverse relationship was found between variations in the size of the north polar caps of Mars and Earth, although only 6 years of concurrent data were available for comparison.

  5. Polarized and non-polarized leaf reflectances of Coleus blumei

    NASA Technical Reports Server (NTRS)

    Grant, Lois; Daughtry, C. S. T.; Vanderbilt, V. C.

    1987-01-01

    A polarization photometer has been used to measure the reflectance of three variegated portions of Coleus blumei, Benth. in five wavelength bands of the visible and near-infrared spectrum. The polarized component of the reflectance factor was found to be independent of wavelength, indicating that the polarized reflectance arises from the leaf surface. It is suggested that differences in the polarized component result from variations in surface features. The nonpolarized component of the reflectance factor is shown to be related to the internal leaf structure. The variation of the degree of polarization with wavelength was found to be greatest in the regions of the spectrum where absorption occurs.

  6. The Use of Orthogonal Polarizations in Microwave Imagery of Isolated Canine Kidney

    NASA Astrophysics Data System (ADS)

    Larsen, L. E.; Jacobi, J. H.

    1980-06-01

    A method of imaging biological targets using microwave radiation at a frequency of 4 GHz is presented. Linearly polarized radiation is transmitted through an isolated canine kidney and received with co-polarized and cross-polarized antennas. Images are displayed as the spatial variation of the magnitude of the transmission scattering parameter S21 for each mode of polarization. The relationship between the spatial variation of the magnitude of S21 and canine renal anatomy is discussed. It is shown that within the kidney the cross-polarized image tends to emphasize linear or piecewise linear structures, whereas the co-polarized image balances renal cortical lobulations.

  7. Data Assimilation of Photosynthetic Light-use Efficiency using Multi-angular Satellite Data: II Model Implementation and Validation

    NASA Technical Reports Server (NTRS)

    Hilker, Thomas; Hall, Forest G.; Tucker, J.; Coops, Nicholas C.; Black, T. Andrew; Nichol, Caroline J.; Sellers, Piers J.; Barr, Alan; Hollinger, David Y.; Munger, J. W.

    2012-01-01

    Spatially explicit and temporally continuous estimates of photosynthesis will be of great importance for increasing our understanding of and ultimately closing the terrestrial carbon cycle. Current capabilities to model photosynthesis, however, are limited by accurate enough representations of the complexity of the underlying biochemical processes and the numerous environmental constraints imposed upon plant primary production. A potentially powerful alternative to model photosynthesis through these indirect observations is the use of multi-angular satellite data to infer light-use efficiency (e) directly from spectral reflectance properties in connection with canopy shadow fractions. Hall et al. (this issue) introduced a new approach for predicting gross ecosystem production that would allow the use of such observations in a data assimilation mode to obtain spatially explicit variations in e from infrequent polar-orbiting satellite observations, while meteorological data are used to account for the more dynamic responses of e to variations in environmental conditions caused by changes in weather and illumination. In this second part of the study we implement and validate the approach of Hall et al. (this issue) across an ecologically diverse array of eight flux-tower sites in North America using data acquired from the Compact High Resolution Imaging Spectroradiometer (CHRIS) and eddy-flux observations. Our results show significantly enhanced estimates of e and therefore cumulative gross ecosystem production (GEP) over the course of one year at all examined sites. We also demonstrate that e is greatly heterogeneous even across small study areas. Data assimilation and direct inference of GEP from space using a new, proposed sensor could therefore be a significant step towards closing the terrestrial carbon cycle.

  8. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE PAGES

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  9. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  10. Explicit symplectic orbit and spin tracking method for electric storage ring

    DOE PAGES

    Hwang, Kilean; Lee, S. Y.

    2016-08-18

    We develop a symplectic charged particle tracking method for phase space coordinates and polarization in all electric storage rings. Near the magic energy, the spin precession tune is proportional to the fractional momentum deviation δ m from the magic energy, and the amplitude of the radial and longitudinal spin precession is proportional to η/δ m, where η is the electric dipole moment for an initially vertically polarized beam. As a result, the method can be used to extract the electron electric dipole moment of a charged particle by employing narrow band frequency analysis of polarization around the magic energy.

  11. Electrode effects in dielectric spectroscopy of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Cirkel, P. A.; van der Ploeg, J. P. M.; Koper, G. J. M.

    1997-02-01

    We present a simple model to account for electrode polarization in colloidal suspensions. Apart from correctly predicting the ω {-3}/{2} dependence for the dielectric permittivity at low frequencies ω, the model provides an explicit dependence of the effect on electrode spacing. The predictions are tested for the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) water-in-oil microemulsion with iso-octane as continuous phase. In particular, the dependence of electrode polarization effects on electrode spacing has been measured and is found to be in accordance with the model prediction. Methods to reduce or account for electrode polarization are briefly discussed.

  12. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    Variations of Earth rotation on sub-daily to secular timescales are caused by mass redistributions in the Earth system as a consequence of geophysical processes and gravitational influences. Forced oscillations of polar motion are superposed by free oscillations of the Earth, i.e. the Chandler wobble and the free core nutation. In order to study the interactions between externally induced polar motion and the Earth's free oscillations, a non-linear gyroscopic model has been developed. In most of the former investigations on polar motion, the Chandler wobble is introduced as a damped oscillation with predetermined frequency and amplitude. However, as the effect of rotational deformation is a backcoupling mechanism of polar motion on the Earth's rotational dynamics, both period and amplitude of the Chandler wobble are time-dependent when regarding additional excitations from, e.g., atmospheric or oceanic mass redistributions. The gyroscopic model is free of any explicit information concerning amplitude, phase, and period of free oscillations. The characteristics of the Earth's free oscillation is reproduced by the model from rheological and geometrical parameters and rotational deformation is taken into account. This enables to study the time variable Chandler oscillation when the gyro is forced with atmospheric and oceanic angular momentum from the global atmospheric ECHAM3-T21 general circulation model together with the ocean model for circulation and tides OMCT driven by ECHAM including surface pressure. Besides, mass redistributions in the Earth's body due to gravitational and loading deformations are regarded and external torques exerted by Moon and Sun are considered. The numerical results of the gyro are significantly related with the geodetically observed time series of polar motion published by the IERS. It is shown that the consistent excitation is capable to counteract the damping and thus to maintain the Chandler amplitude. Spectral analyses of the ECHAM and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  13. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    PubMed

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  14. [Emotional processes in schizophrenia: investigation of the evaluative component].

    PubMed

    Sander, D; Koenig, O; Georgieff, N; Terra, J-L; Franck, N

    2005-01-01

    Schizophrenia is a disease that constitutes a particularly relevant way to investigate emotional processing. Indeed, major clinical signs of emotional disturbance (eg, anhedonia) suggest that some emotional mechanisms are defective in patients with schizophrenia. Evaluation can be considered as a fundamental component of the emotional system (28) and the first aim of the present study was to test the polarity hypothesis according to which different mechanisms are involved in the evaluation of positive vs negative emotional events. The second aim was to disentangle a -paradox emerging from the schizophrenia literature. On one hand, the tendency that schizophrenic patients have to under-evaluate the level of unpleasantness of negative stimuli suggests a deficit in the evaluation of negative events. For instance, it was proposed that patients with schizophrenia show a major deficit in the recognition of negative emotions, but a preserved recognition of positive emotions. On the other hand, the fact that anhedonia constitutes a critical cli-nical feature of schizophrenia suggests a deficit in the eva-luation of positive events. For instance, Crespo-Facorro et al. showed that patients with schizophrenia had a tendency to under-evaluate the level of pleasantness of positive stimuli but correctly evaluated the level of unpleasantness of negative stimuli. Given the importance of the social component in the analysis of deficits in patients with schizophrenia, we hypothesized that the variation of this component in stimuli used in the literature could explain the apparently inconsistent results described above. For example, the Bell et al. study used social stimuli whereas the Crespo-Facorro et al. study used non-social stimuli. Therefore, in our study, we have decided to manipulate the social component of stimuli. Another research issue of the present experiment was to study the explicit and/or implicit mode of processing of eva-luation in schizophrenic patients. In general, the experimental logic was to expect interaction effects between the factors polarity (negative vs positive) and participants (schizophrenic patients vs controls). Moreover, given the potential importance of the social component, a three-way interaction of the factors polarity, participants, and social component was expected. Finally, the experimental paradigm allowed us to search for dissociations in the context of both explicit and implicit evaluation. Stimuli used were negative and positive emotional pictures from the International Affective Picture System. Stimuli were chosen so that the mean valence -ratings of negative and positive pictures were at the same distance from neutrality. The factor arousal was controlled so that negative and positive pictures had equivalent mean arousal ratings. The social component factor was operatio-nalized by selecting pictures that either depicted or not a social scene. A fundamental criterion was that all social pictures were depicting at least one human being (eg, a wedding or a funeral), whereas non-social pictures never depicted any human being (eg, animals and landscapes). An upper and a lower border, that were either identical or different, were added to each picture. In a first experiment (the "implicit-task experiment"), patients with schizophrenia and matched controls were requested to decide whether the two borders surrounding the pictures were identical or different. Asking participants to process the borders was an experimental ruse to test if emotional processing takes place even when it is not task-relevant, and therefore if it is implicit. In a second experiment (the "explicit-task experiment"), the same participants were requested to evaluate whether the pictures were pleasant or unpleasant. Analyses of variance (ANOVA) were computed on response time and number of correct responses for both tasks. An important result was the observation of the expected three-way interaction effect of the factors polarity, participants, and social component on response time in the explicit task F(1, 19)=4.8, p<0.05. Critically, we observed that, for non-social stimuli, the interaction effect of the factors participants and polarity on response time was significant in the explicit task, F(1, 8)=4.9, p<0.05. These results are consistent with the polarity hypothesis and suggest a deficit in the processing of non-social positive stimuli in patients with schizophrenia. The expected three-way interaction effect was also observed on the number of correct responses in the explicit task F(1, 19)=5, p<0.04. For this task, we critically observed that, for social stimuli, the interaction effect of the factors participants and polarity on the number of correct responses was significant F(1, 19)=8.4, p<0.04. These results are also consistent with the polarity hypothesis and suggest a deficit in the processing of social negative stimuli in patients with schizophrenia. Moreover, let us notice that a comparison of the performances of the two groups revealed that patients made significantly more errors than controls for the evaluation of non-social positive stimuli, F(1, 19)=10,5, p<0.001, but not for the evaluation of non-social negative stimuli, F<1. In the implicit-task experiment, the analysis revealed that patients had a tendency to make more errors in the judgment of borders configuration for negative than for positive stimuli, whereas control participants showed the opposite tendency F(1, 19)=5.7, p<0.03, for the interaction of the factors polarity and participants. This result is consistent with the idea that distinct cognitive mechanisms are involved in the evaluation of positive vs negative emotional events even in the context of implicit processing. In conclusion, results obtained support the hypothesis according to which different cognitive mechanisms are involved in the evaluation of positive vs negative emotional events. Moreover, results suggest that patients with schizophrenia show a deficit in hedonic judgment of social negative and non-social positive stimuli. The later result indicates that the paradox described above becomes clearer whenever the social component of emotional stimuli happens to be taken into account. Results suggest that the polarity and the social component of events evaluated by patients with schizophrenia are critical parameters that should be considered in forthcoming studies that investigate affect disorders in schizophrenia.

  15. Photodetection and Photoswitch Based On Polarized Optical Response of Macroscopically Aligned Carbon Nanotubes.

    PubMed

    Zhang, Ling; Wu, Yang; Deng, Lei; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-10-12

    Light polarization is extensively applied in optical detection, industry processing and telecommunication. Although aligned carbon nanotube naturally suppresses the transmittance of light polarized parallel to its axial direction, there is little application regarding the photodetection of carbon nanotube based on this anisotropic interaction with linearly polarized light. Here, we report a photodetection device realized by aligned carbon nanotube. Because of the different absorption behavior of polarized light with respect to polarization angles, such device delivers an explicit response to specific light wavelength regardless of its intensity. Furthermore, combining both experimental and mathematical analysis, we found that the light absorption of different wavelength causes characteristic thermoelectric voltage generation, which makes aligned carbon nanotube promising in optical detection. This work can also be utilized directly in developing new types of photoswitch that features a broad spectrum application from near-ultraviolet to intermediate infrared with easy integration into practical electric devices, for instance, a "wavelength lock".

  16. Cosmic ray sidereal diurnal variation of galactic origin observed by neutron monitors

    NASA Technical Reports Server (NTRS)

    Ishida, Y.; Nagashima, K.; Mori, S.; Morishita, I.

    1985-01-01

    Cosmic ray sidereal diurnal variations observed by neutron monitors are analyzed for the period 1961 to 1978, by adding 134 station years data to the previous paper (Nagashima, et al., 1983). Also the dependence of the sidereal variations on Sun's polar magnetic field polarity is examined for two periods; the period of negative polarity in the northern region, 1961 to 1969 and the period of positive polarity, 1970 to 1978. It is obtained that for the former period, the amplitude A=0.0203 + or 0.0020% and the phase phi=6.1 + or - 0.4 h LST and for the latter period, 0.0020% and phi=8.6 + or - 4 h LST, respectively.

  17. Variation of linear and circular polarization persistence for changing field of view and collection area in a forward scattering environment

    NASA Astrophysics Data System (ADS)

    van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.; Kemme, Shanalyn A.; Dereniak, Eustace L.

    2016-05-01

    We present experimental and simulation results for a laboratory-based forward-scattering environment, where 1 μm diameter polystyrene spheres are suspended in water to model the optical scattering properties of fog. Circular polarization maintains its degree of polarization better than linear polarization as the optical thickness of the scattering environment increases. Both simulation and experiment quantify circular polarization's superior persistence, compared to that of linear polarization, and show that it is much less affected by variations in the field of view and collection area of the optical system. Our experimental environment's lateral extent was physically finite, causing a significant difference between measured and simulated degree of polarization values for incident linearly polarized light, but not for circularly polarized light. Through simulation we demonstrate that circular polarization is less susceptible to the finite environmental extent as well as the collection optic's limiting configuration.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battum, LJ van; Heukelom, S

    Purpose This study investigates the origin of lateral optical density (OD) variation for Gafchromic film (EBT and EBT2) scanned in transmission mode with Epson flatbed scanners (1680 Expression Pro and 10000XL). Effects investigated are: cross talk, optical path length and polarization. Methods Cross talk has been examined with triangular shaped light-transmission sheets with OD ranging from 0 to opaque. Optical path length has been studied with absorptive and reflective OD-filters (OD range 0.2 to 2.0). Dependency on light-polarization on the scanner read out has been investigated using linear polarizer sheets. All experiments have been performed at centre scanner position (normmore » point) and at several lateral scan positions, without and with (un)irradiated EBT-film. Dose values used ranged between 0.2 to 9 Gy, yielding an OD-range between 0.25 to 1.1. Results The lateral OD variation is dose dependent and increases up to 14% at most lateral position for dose up to 9 Gy. Cross talk effect contributes to 0.5% in clinical used OD ranges but equals 2% for extreme high dose gradients. Film induced optical path length will effect the lateral OD variation up to 3% at most lateral points. Light polarization is inherent present in these scanners due to multiple reflection on mirrors. In addition film induced polarization is the most important effect generating the observed lateral OD variation. Both Gafchromic film base and sensitive layer have polarizing capabilities; for the sensitive layer its influence is dose dependent. Conclusions Lateral OD variation origins from optical physics (i.e. polarization and reflection) related to scanner and film construction. Cross talk can be ignored in film dosimetry for clinical used dose values and gradients. Therefore it is recommended to determine the lateral OD variation per film type and scanner.« less

  19. Stellar occultation of polarized light from circumstellar electrons. I - Flat envelopes viewed edge on

    NASA Technical Reports Server (NTRS)

    Brown, John C.; Fox, Geoffrey K.

    1989-01-01

    The depolarizing and occultation effects of a finite spherical light source on the polarization of light Thomson-scattered from a flat circumstellar envelope seen edge-on are analyzed. The analysis shows that neglect of the finite size of the light source leads to a gross overestimate of the polarization for a given disk geometry. By including occultation and depolarization, it is found that B-star envelopes are necessarily highly flattened disk-type structures. For a disk viewed edge-on, the effect of occultation reduces the polarization more than the inclusion of the depolarization factor alone. Analysis of a one-dimensional plume leads to a powerful technique that permits the electron density distribution to be explicitly obtained from the polarimetric data.

  20. TRANSPORT EQUATION OF A PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.

    1960-10-01

    It is shown that the many-body problem in plasmas can be handled explicitly. An equation describing the collective effects of the problem is derived. For simplicity, a onecomponent gas is considered in a continuous neutralizing background. The tool for handling the problem is provided by the general theory of irreversible processes in gases. The equation derived describes the interaction of electrons which are"dressed" by a polarization cloud. The polarization cloud differs from the Debye cloud. (B.O.G.)

  1. Optical polarization variations in the blazar PKS 1749+096

    NASA Astrophysics Data System (ADS)

    Uemura, Makoto; Itoh, Ryosuke; Liodakis, Ioannis; Blinov, Dmitry; Nakayama, Masanori; Xu, Longyin; Sawada, Naoko; Wu, Hsiang-Yun; Fujishiro, Issei

    2017-12-01

    We report on the variation in the optical polarization of the blazar PKS 1749+096 observed in 2008-2015. The degree of polarization (PD) tends to increase in short flares, having a time-scale of a few days. The object favors a polarization angle (PA) of 40°-50° at the flare maxima, which is close to the position angle of the jet (20°-40°). Three clear polarization rotations were detected in the negative PA direction associated with flares. In addition, a rapid and large decrease in the PA was observed in the other two flares, while another two flares showed no large PA variation. The light-curve maxima of the flares possibly tended to lag behind the PD maxima and color-index minima. The PA became -50° to -20° in the decay phase of active states, which is almost perpendicular to the jet position angle. We propose a scenario to explain these observational features, where transverse shocks propagate along curved trajectories. The favored PA at the flare maxima suggests that the observed variations were governed by the variations in the Doppler factor, δ. Based on this scenario, the minimum viewing angle of the source, θ _min = 4.8°-6.6°, and the location of the source, Δr ≳ 0.1 pc, from the central black hole were estimated. In addition, the acceleration of electrons by the shock and synchrotron cooling would have a time-scale similar to that of the change in δ. The combined effect of the variation in δ and acceleration/cooling of electrons is probably responsible for the observed diversity of the polarization variations in the flares.

  2. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  3. Linear dimension reduction and Bayes classification

    NASA Technical Reports Server (NTRS)

    Decell, H. P., Jr.; Odell, P. L.; Coberly, W. A.

    1978-01-01

    An explicit expression for a compression matrix T of smallest possible left dimension K consistent with preserving the n variate normal Bayes assignment of X to a given one of a finite number of populations and the K variate Bayes assignment of TX to that population was developed. The Bayes population assignment of X and TX were shown to be equivalent for a compression matrix T explicitly calculated as a function of the means and covariances of the given populations.

  4. Estimating Terra MODIS Polarization Effect Using Ocean Data

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.; Brinkmann, Jake; Wu, Aisheng; Xiong, Jack

    2016-01-01

    Terra MODIS has been known since pre-launch to have polarization sensitivity, particularly in shortest-wavelength bands 8 and 9. On-orbit reflectance trending of pseudo-invariant sites show a variation in reflectance as a function of band and scan mirror angle of incidence consistent with time-dependent polarization effects from the rotating double-sided scan mirror. The MODIS Characterization Support Team [MCST] estimates the Mueller matrix trending from this variation as observed from a single desert site, but this effect is not included in Collection 6 [C6] calibration. Here we extend the MCSTs current polarization sensitivity monitoring to two ocean sites distributed over latitude to helpestimate the uncertainties in the derived Mueller matrix. The Mueller matrix elements derived for polarization-sensitive Band 8 for a given site are found to be fairly insensitive to surface brdf modeling. The site-to-site variation is a measure of the uncertainty in the Mueller estimation.Results for band 8 show that the polarization correction reduces mirror-side striping by up to 50% and reduces the instrument polarization effect on reflectance time series of an ocean target.

  5. The effects of seasonal and diurnal variations in the Earth's magnetic dipole orientation on solar wind-magnetosphere-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Cnossen, Ingrid; Wiltberger, Michael; Ouellette, Jeremy E.

    2012-11-01

    The angle μ between the geomagnetic dipole axis and the geocentric solar magnetospheric (GSM) z axis, sometimes called the “dipole tilt,” varies as a function of UT and season. Observations have shown that the cross-polar cap potential tends to maximize near the equinoxes, when on average μ = 0, with smaller values observed near the solstices. This is similar to the well-known semiannual variation in geomagnetic activity. We use numerical model simulations to investigate the role of two possible mechanisms that may be responsible for the influence of μ on the magnetosphere-ionosphere system: variations in the coupling efficiency between the solar wind and the magnetosphere and variations in the ionospheric conductance over the polar caps. Under southward interplanetary magnetic field (IMF) conditions, variations in ionospheric conductance at high magnetic latitudes are responsible for 10-30% of the variations in the cross-polar cap potential associated with μ, but variations in solar wind-magnetosphere coupling are more important and responsible for 70-90%. Variations in viscous processes contribute slightly to this, but variations in the reconnection rate with μ are the dominant cause. The variation in the reconnection rate is primarily the result of a variation in the length of the section of the separator line along which relatively strong reconnection occurs. Changes in solar wind-magnetosphere coupling also affect the field-aligned currents, but these are influenced as well by variations in the conductance associated with variations in μ, more so than the cross-polar cap potential. This may be the case for geomagnetic activity too.

  6. Analysis of all-frequency variational behavior of the Kirchhoff approximation for a classic surface-scattering model

    NASA Technical Reports Server (NTRS)

    Bird, J. F.

    1985-01-01

    In testing a stochastic variational principle at high frequencies by using a Kirchhoffean trial function in an idealized model for surface scattering - a randomly embossed plane - we have found not only the predicted high-frequency improvement but also an unexpected low-frequency improvement in the calculated scattering amplitudes. To investigate systematically the all-frequency variational behavior, we consider here the deterministic one-boss case - Rayleigh's classic model whose exact solution is available for comparison - over all wavelengths, polarizations, and configurations of incidence and scattering. We examine analytically in particular the long-wave limit of the variational-Kirchhoff amplitudes; the results demonstrate improvements in both wavelength and angle depedence for horizontal (TM) polarization and some variational improvements for vertical (TE) polarization. This low-frequency behavior in tandem with the foreseen high-frequency improvement leads to good variational-Kirchhoff results through the intermediate resonance-frequency regime for this model.

  7. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.

    PubMed

    Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James

    2015-12-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of both direct exposure to at least -24 °C and the rapid and large temperature fluctuations. These results suggest that the studied polar soil invertebrate community may be robust to at least one important predicted consequence of projected climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Excited state electronic polarization and reappraisal of the n ← π∗ emission of acetone in water

    NASA Astrophysics Data System (ADS)

    Orozco-González, Yoelvis; Coutinho, Kaline; Canuto, Sylvio

    2010-10-01

    Electronic polarization of the acetone molecule in the excited n → π∗ state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm -1.

  9. Evaluation of Hydration Free Energy by Level-Set Variational Implicit-Solvent Model with Coulomb-Field Approximation.

    PubMed

    Guo, Zuojun; Li, Bo; Dzubiella, Joachim; Cheng, Li-Tien; McCammon, J Andrew; Che, Jianwei

    2013-03-12

    In this article, we systematically apply a novel implicit-solvent model, the variational implicit-solvent model (VISM) together with the Coulomb-Field Approximation (CFA), to calculate the hydration free energy of a large set of small organic molecules. Because these molecules have been studied in detail by molecular dynamics simulations and other implicit-solvent models, they provide a good benchmark for evaluating the performance of VISM-CFA. With all-atom Amber force field parameters, VISM-CFA is able to reproduce well not only the experimental and MD simulated total hydration free energy but also the polar and nonpolar contributions individually. The correlation between VISM-CFA and experiments is R 2 = 0.763 for the total hydration free energy, with a root-mean-square deviation (RMSD) of 1.83 kcal/mol, and the correlation to results from TIP3P explicit water MD simulations is R 2 = 0.839 with a RMSD = 1.36 kcal/mol. In addition, we demonstrate that VISM captures dewetting phenomena in the p53/MDM2 complex and hydrophobic characteristics in the system. This work demonstrates that the level-set VISM-CFA can be used to study the energetic behavior of realistic molecular systems with complicated geometries in solvation, protein-ligand binding, protein-protein association, and protein folding processes.

  10. Vacuum-polarization effects in global monopole space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzitelli, F.D.; Lousto, C.O.

    1991-01-15

    The gravitational effect produced by a global monopole may be approximated by a solid deficit angle. As a consequence, the energy-momentum tensor of a quantum field will have a nonzero vacuum expectation value. Here we study this vacuum-polarization effect'' around the monopole. We find explicit expressions for both {l angle}{phi}{sup 2}{r angle}{sub ren} and {l angle}{ital T}{sub {mu}{nu}}{r angle}{sub ren} for a massless scalar field. The back reaction of the quantum field on the monopole metric is also investigated.

  11. Polarized 3-folds in a codimension 10 weighted homogeneous F4 variety

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Imran

    2017-10-01

    We describe the construction of a codimension 10 weighted homogeneous variety wΣF4(μ , u) corresponding to the exceptional Lie group F4 by explicit computation of its graded ring structure. We give a formula for the Hilbert series of the generic weighted wΣF4(μ , u) in terms of representation theoretic data of F4. We also construct some families of polarized 3-folds in codimension 10 whose general member is a weighted complete intersection of some wΣF4(μ , u) .

  12. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  13. Reducing Variation in the Assessment of Student Writing

    ERIC Educational Resources Information Center

    Hunter, Kerry; Docherty, Peter

    2011-01-01

    This paper extends the literature on grader variation and the role of moderation and socialisation processes in reducing this variation. It offers a fresh categorisation of academics' assessment beliefs and expectations, and uses this categorisation to analyse the interaction between implicit and explicit expectations in relation to grader…

  14. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.

    PubMed

    Forest, M Gregory; Wang, Qi; Zhou, Ruhai

    2015-08-28

    Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic state, consisting of discrete 1d banded or 2d cellular patterns depending on nanorod volume fraction. Increasing activation strength further induces a sequence of attractor bifurcations, including oscillations superimposed on the 1d and 2d stationary patterns, a uniform translational motion of 1d and 2d oscillating patterns, and periodic switching between 1d and 2d patterns. These results imply that active macromolecular suspensions are capable of long-range spatial and dynamic organization at isotropic equilibrium concentrations, provided particle-scale activation is sufficiently strong.

  15. Sensitivity of Multiangle, Multispectral Polarimetric Remote Sensing Over Open Oceans to Water-Leaving Radiance: Analyses of RSP Data Acquired During the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    Chowdhary, Jacek; Cairns, Brian; Waquet, Fabien; Knobelspiesse, Kirk; Ottaviani, Matteo; Redemann, Jens; Travis, Larry; Mishchenko, Michael

    2012-01-01

    For remote sensing of aerosol over the ocean, there is a contribution from light scattered underwater. The brightness and spectrum of this light depends on the biomass content of the ocean, such that variations in the color of the ocean can be observed even from space. Rayleigh scattering by pure sea water, and Rayleigh-Gans type scattering by plankton, causes this light to be polarized with a distinctive angular distribution. To study the contribution of this underwater light polarization to multiangle, multispectral observations of polarized reflectance over ocean, we previously developed a hydrosol model for use in underwater light scattering computations that produces realistic variations of the ocean color and the underwater light polarization signature of pure sea water. In this work we review this hydrosol model, include a correction for the spectrum of the particulate scattering coefficient and backscattering efficiency, and discuss its sensitivity to variations in colored dissolved organic matter (CDOM) and in the scattering function of marine particulates. We then apply this model to measurements of total and polarized reflectance that were acquired over open ocean during the MILAGRO field campaign by the airborne Research Scanning Polarimeter (RSP). Analyses show that our hydrosol model faithfully reproduces the water-leaving contributions to RSP reflectance, and that the sensitivity of these contributions to Chlorophyll a concentration [Chl] in the ocean varies with the azimuth, height, and wavelength of observations. We also show that the impact of variations in CDOM on the polarized reflectance observed by the RSP at low altitude is comparable to or much less than the standard error of this reflectance whereas their effects in total reflectance may be substantial (i.e. up to >30%). Finally, we extend our study of polarized reflectance variations with [Chl] and CDOM to include results for simulated spaceborne observations.

  16. The relaxed-polar mechanism of locally optimal Cosserat rotations for an idealized nanoindentation and comparison with 3D-EBSD experiments

    NASA Astrophysics Data System (ADS)

    Fischle, Andreas; Neff, Patrizio; Raabe, Dierk

    2017-08-01

    The rotation {{polar}}(F) \\in {{SO}}(3) arises as the unique orthogonal factor of the right polar decomposition F = {{polar}}(F) U of a given invertible matrix F \\in {{GL}}^+(3). In the context of nonlinear elasticity Grioli (Boll Un Math Ital 2:252-255, 1940) discovered a geometric variational characterization of {{polar}}(F) as a unique energy-minimizing rotation. In preceding works, we have analyzed a generalization of Grioli's variational approach with weights (material parameters) μ > 0 and μ _c ≥ 0 (Grioli: μ = μ _c). The energy subject to minimization coincides with the Cosserat shear-stretch contribution arising in any geometrically nonlinear, isotropic and quadratic Cosserat continuum model formulated in the deformation gradient field F :=\

  17. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less

  18. McDonald 2.1-m and CRTS Photometry of Eclipsing Polars

    NASA Astrophysics Data System (ADS)

    Wells, Natalie; Mason, Paul

    2018-01-01

    We present broadband optical photometry of five polars made using the 2.1-m telescope of McDonald Observatory. Four of the polars are eclipsing (EP Dra, FL Cet, V2301 Oph, and a Catalina Sky Survey (CSS) polar candidate). In addition, a pre-polar (MQ Dra) was observed. Typical integration times were 1-3 seconds with no dead time. At this time resolution, eclipse structure can be seen in both one- and two-pole accretors. McDonald 2.1-m data over several years is phased together with CSS photometry covering up to 7 years, in search of indications of period variation. Combining the high-resolution, high-speed photometry obtained using the ProEm camera on the McDonald 2.1-m with the sparse, but high-quality multi-year baseline photometry of the CSS places strong constraints on the time variability of the eclipse periods in these binary systems. In most cases, eclipse variations do not perfectly fit a linear ephemeris. We investigate the source of variations using standard O-C diagram techniques and period search algorithms.

  19. Polarization holographic gratings in PAZO azopolymer recorded with different recording-beams polarizations

    NASA Astrophysics Data System (ADS)

    Mateev, G.; Nedelchev, L.; Ivanov, D.; Tomova, R.; Petrova, P.; Strijkova, V.; Berberova, N.; Nazarova, D.

    2018-03-01

    Polarization holographic gratings (PHG) were recorded using a laser emitting a wavelength of 491 nm in thin films of the (poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt]) azopolymer, shortly denoted as PAZO. Thin azopolymer films with various thicknesses were spin-coated on plastic and glass substrates. Four different polarization states of the recording beams were used, and the results compared: a) two vertical linear polarizations, b) horizontal and vertical linear polarizations, c) linear polarizations at +45° and –45° relative to the recording plane, and d) two orthogonal circular polarizations – left- and right-handed (LCP and RCP). The diffraction efficiency in the +1 diffraction order was monitored in real time by a probing laser beam at the wavelength of 635 nm. The results indicate that the highest diffraction efficiency is achieved when recording with orthogonal polarizations – linear at ±45° or left and right circular. This is explained by the ability of the azopolymer material to record the variations in the polarization state of light better than the variations in its intensity. The holographic gratings obtained can be used to enhance the light-extraction efficiency of an OLED device.

  20. Magnetic Nulls and Super-radial Expansion in the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, Sarah E.; Dalmasse, Kevin; Tomczyk, Steven

    Magnetic fields in the Sun’s outer atmosphere—the corona—control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity. CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factorsmore » from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.« less

  1. Magnetic Nulls and Super-Radial Expansion in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Gibson, Sarah E.; Dalmasse, Kevin; Rachmeler, Laurel A.; De Rosa, Marc L.; Tomczyk, Steven; De Toma, Giuliana; Burkepile, Joan; Galloy, Michael

    2017-01-01

    Magnetic fields in the Sun's outer atmosphere, the corona, control both solar-wind acceleration and the dynamics of solar eruptions. We present the first clear observational evidence of coronal magnetic nulls in off-limb linearly polarized observations of pseudostreamers, taken by the Coronal Multichannel Polarimeter (CoMP) telescope. These nulls represent regions where magnetic reconnection is likely to act as a catalyst for solar activity.CoMP linear-polarization observations also provide an independent, coronal proxy for magnetic expansion into the solar wind, a quantity often used to parameterize and predict the solar wind speed at Earth. We introduce a new method for explicitly calculating expansion factors from CoMP coronal linear-polarization observations, which does not require photospheric extrapolations. We conclude that linearly polarized light is a powerful new diagnostic of critical coronal magnetic topologies and the expanding magnetic flux tubes that channel the solar wind.

  2. Physics of crypto-nonlocality

    NASA Astrophysics Data System (ADS)

    Navascués, Miguel

    2014-02-01

    In 2003, Leggett introduced his model of crypto-nonlocality based on considerations on the reality of photon polarization [A. J. Leggett, Found. Phys. 33, 1469 (2003), 10.1023/A:1026096313729]. In this paper, we prove that, contrary to hints in subsequent literature, crypto-nonlocality does not follow naturally from the postulate that polarization is a realistic variable. More explicitly, consider physical theories where (a) faster-than-light communication is impossible, (b) all physical photon states have a definite polarization, and (c) given two separate photons, if we measure one of them and post-select on the result, the measurement statistics of the remaining system correspond to a photon state. We show that the outcomes of any two-photon polarization experiment in these theories must follow the statistics generated by measuring a separable two-qubit quantum state. Consequently, in such experiments any instance of entanglement detection—and not necessarily a Leggett inequality violation—can be regarded as a refutation of this class of theories.

  3. Cultural Variation in Implicit Mental Illness Stigma.

    PubMed

    Cheon, Bobby K; Chiao, Joan Y

    2012-10-01

    Culture shapes how individuals perceive and respond to others with mental illness. Prior studies have suggested that Asians and Asian Americans typically endorse greater stigma of mental illness compared to Westerners (White Europeans and Americans). However, whether these differences in stigma arise from cultural variations in automatic affective reactions or deliberative concerns of the appropriateness of one's reactions to mental illness remains unknown. Here we compared implicit and explicit attitudes toward mental illness among Asian and Caucasian Americans. Asian Americans showed stronger negative implicit attitudes toward mental illness relative to Caucasian Americans, suggesting that cultural variation in stigma of mental illness can be observed even when concerns regarding the validity and appropriateness of one's attitudes toward mental illness are minimized. Asian Americans also explicitly endorsed greater desire for social distance from mental illness relative to Caucasian Americans. These findings suggest that cultural variations in mental illness stigma may arise from cultural differences in automatic reactions to mental illness, though cultural variations in deliberative processing may further shape differences in these immediate reactions to mental illness.

  4. The feasibility of using explicit method for linear correction of the particle size variation using NIR Spectroscopy combined with PLS2regression method

    NASA Astrophysics Data System (ADS)

    Yulia, M.; Suhandy, D.

    2018-03-01

    NIR spectra obtained from spectral data acquisition system contains both chemical information of samples as well as physical information of the samples, such as particle size and bulk density. Several methods have been established for developing calibration models that can compensate for sample physical information variations. One common approach is to include physical information variation in the calibration model both explicitly and implicitly. The objective of this study was to evaluate the feasibility of using explicit method to compensate the influence of different particle size of coffee powder in NIR calibration model performance. A number of 220 coffee powder samples with two different types of coffee (civet and non-civet) and two different particle sizes (212 and 500 µm) were prepared. Spectral data was acquired using NIR spectrometer equipped with an integrating sphere for diffuse reflectance measurement. A discrimination method based on PLS-DA was conducted and the influence of different particle size on the performance of PLS-DA was investigated. In explicit method, we add directly the particle size as predicted variable results in an X block containing only the NIR spectra and a Y block containing the particle size and type of coffee. The explicit inclusion of the particle size into the calibration model is expected to improve the accuracy of type of coffee determination. The result shows that using explicit method the quality of the developed calibration model for type of coffee determination is a little bit superior with coefficient of determination (R2) = 0.99 and root mean square error of cross-validation (RMSECV) = 0.041. The performance of the PLS2 calibration model for type of coffee determination with particle size compensation was quite good and able to predict the type of coffee in two different particle sizes with relatively high R2 pred values. The prediction also resulted in low bias and RMSEP values.

  5. Variations in Gegenschein polarization

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Weinberg, J. L.

    1975-01-01

    Claims made by Bandermann and Wolstencroft (1974) that angular structure and day-to-day variations of the polarized component of the zodiacal light were observed near the antisolar point are shown to be unsubstantiated. The data obtained by Bandermann and Wolstencroft are reviewed together with the instruments they used. It is shown that the incorrect results reported were due to observation errors.

  6. Polar codes for achieving the classical capacity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Wilde, Mark

    2012-02-01

    We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.

  7. Variation in Pockels constants of silicate glass-ceramics prepared by perfect surface crystallization

    NASA Astrophysics Data System (ADS)

    Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi

    2018-01-01

    We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.

  8. Evolution of Martian polar landscapes - Interplay of long-term variations in perennial ice cover and dust storm intensity

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.; Blasius, K. R.; Roberts, W. J.

    1979-01-01

    The discovery of a new type of Martian polar terrain, called undulating plain, is reported and the evolution of the plains and other areas of the Martian polar region is discussed in terms of the trapping of dust by the perennial ice cover. High-resolution Viking Orbiter 2 observations of the north polar terrain reveal perennially ice-covered surfaces with low relief, wavelike, regularly spaced, parallel ridges and troughs (undulating plains) occupying areas of the polar terrain previously thought to be flat, and associated with troughs of considerable local relief which exhibit at least partial annual melting. It is proposed that the wavelike topography of the undulating plains originates from long-term periodic variations in cyclical dust precipitation at the margin of a growing or receding perennial polar cap in response to changes in insolation. The troughs are proposed to originate from areas of steep slope in the undulating terrain which have lost their perennial ice cover and have become incapable of trapping dust. The polar landscape thus appears to record the migrations, expansions and contractions of the Martian polar cap.

  9. Is There Spectral Variation in the Polarized Reflectance of Leaves?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  10. Is there Spectral Variation in the Polarized Reflectance of Leaves?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  11. PROBABILISTIC CHARACTERIZATION OF ATMOSPHERIC TRANSPORT AND DIFFUSION

    EPA Science Inventory

    The observed scatter of observations about air quality model predictions stems from a combination of naturally occurring stochastic variations that are impossible for any model to explicitly simulate and variations arising from limitations in our knowledge and from imperfect inpu...

  12. Collision-induced stimulated photon echoes in ‘strong’ magnetic field

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2018-05-01

    Collision-induced stimulated photon echoes formed in a gaseous medium on the transition with the angular momentum change Ja=0 → Jb=1 under the action of ‘strong’ longitudinal magnetic field, when the echo pulse becomes unpolarized, are considered with an account of elastic depolarizing collisions. In the case of narrow spectral line the explicit expressions for the echo polarization density matrix and the degree of polarization are obtained. In the case of broad spectral line the results of the numeric calculations reproduce qualitatively the curve obtained in the experiments with ytterbium vapor.

  13. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana.

    PubMed

    Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier

    2014-01-01

    The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.

  14. Spatial and temporal variation in size of polar bear (Ursus maritimus) sexual organs and its use in pollution and climate change studies.

    PubMed

    Sonne, Christian; Dietz, Rune; Born, Erik W; Riget, Frank F; Leifsson, Pall S; Bechshøft, Thea Ø; Kirkegaard, Maja

    2007-11-15

    Sexual organs and their development are susceptible to atmospheric transported environmental xenoendocrine pollutants and climate change (food availability). We therefore investigated sexual organs from 55 male and 44 female East Greenland polar bears (Ursus maritimus) to obtain information about growth/size and sexual maturity. Then, the genitalia size was compared with those previously reported from Canadian and Svalbard polar bears. Growth models showed that East Greenland male polar bears reached sexual maturity around 7 years of age and females around 4 years of age. When comparing East Greenland and Svalbard polar bears, the size of baculum and uterus were significantly lower in the East Greenland polar bears (ANOVA: all p < 0.05). Based on previously published baculum mean values from Canadian polar bears, a similar baculum pattern was found for East Greenland vs. Canadian polar bears. It is speculated whether this could be a result of the general high variation in polar bear body size, temporal distribution patterns of anthropogenic long-range transported persistent organic pollutants or climate change (decreasing food availability). The present investigation represents conservation and background data for future spatial and temporal assessments of hunting, pollution and climate change scenarios.

  15. Direct folding simulation of a long helix in explicit water

    NASA Astrophysics Data System (ADS)

    Gao, Ya; Lu, Xiaoliang; Duan, Lili; Zhang, Dawei; Mei, Ye; Zhang, John Z. H.

    2013-05-01

    A recently proposed Polarizable Hydrogen Bond (PHB) method has been employed to simulate the folding of a 53 amino acid helix (PDB ID 2KHK) in explicit water. Under PHB simulation, starting from a fully extended structure, the peptide folds into the native state as confirmed by measured time evolutions of radius of gyration, root mean square deviation (RMSD), and native hydrogen bond. Free energy and cluster analysis show that the folded helix is thermally stable under the PHB model. Comparison of simulation results under, respectively, PHB and standard nonpolarizable force field demonstrates that polarization is critical for stable folding of this long α-helix.

  16. Spectral amplitude code label switching system for IM, DQPSK and PDM-DQPSK with frequency swept coherent detection

    NASA Astrophysics Data System (ADS)

    Isaac, Aboagye Adjaye; Yongsheng, Cao; Fushen, Chen

    2018-05-01

    We present and compare the outcome of implicit and explicit labels using intensity modulation (IM), differential quadrature phase shift keying (DQPSK), and polarization division multiplexed (PDM-DQPSK). A payload bit rate of 1, 2, and 5 Gb/s is considered for IM implicit labels, while payloads of 40, 80, and 112 Gb/s are considered in DQPSK and PDM-DQPSK explicit labels by stimulating a 4-code 156-Mb/s SAC label. The generated label and payloads are observed by assessing the eye diagram, received optical power (ROP), and optical signal to noise ratio (OSNR).

  17. Development of a Coherent Bistatic Vegetation Model for Signal of Opportunity Applications at VHF UHF-Bands

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; Deshpande, Manohar; Joseph, Alicia T.; O'Neill, Peggy E.; Lang, Roger H.; Eroglu, Orhan

    2017-01-01

    A coherent bistatic vegetation scattering model, based on a Monte Carlo simulation, is being developed to simulate polarimetric bi-static reflectometry at VHF/UHF-bands (240-270 MHz). The model is aimed to assess the value of geostationary satellite signals of opportunity to enable estimation of the Earth's biomass and root-zone soil moisture. An expression for bistatic scattering from a vegetation canopy is derived for the practical case of a ground-based/low altitude platforms with passive receivers overlooking vegetation. Using analytical wave theory in conjunction with distorted Born approximation (DBA), the transmit and receive antennas effects (i.e., polarization, orientation, height, etc.) are explicitly accounted for. Both the coherency nature of the model (joint phase and amplitude information) and the explicit account of system parameters (antenna, altitude, polarization, etc) enable one to perform various beamforming techniques to evaluate realistic deployment configurations. In this paper, several test scenarios will be presented and the results will be evaluated for feasibility for future biomass and root-zone soil moisture application using geostationary communication satellite signals of opportunity at low frequencies.

  18. Plasma sheet dynamics observed by the Polar spacecraft in association with substorm onsets

    NASA Astrophysics Data System (ADS)

    Toivanen, P. K.; Baker, D. N.; Peterson, W. K.; Li, X.; Donovan, E. F.; Viljanen, A.; Keiling, A.; Wygant, J. R.; Kletzing, C. A.

    2001-09-01

    We present observations of the Polar spacecraft of magnetospheric substorm signatures in the plasma sheet midway along auroral field lines between the ionosphere and the equatorial plasma sheet. On October 17, 1997, Polar was located in the onset meridian in conjunction with the Scandinavian magnetometer chain (International Monitor for Auroral Geomagnetic Effects; IMAGE). In addition, a geostationary spacecraft, LANL-97A, was located near the onset meridian. On August 29, 1997, Polar was magnetically conjugate to the Canadian magnetometer chain (Canadian Auroral Network for the OPEN Program Unified Study; CANOPUS) ~5 hours east of the onset meridian. In both cases, substorm activity was manifested as strong magnetic (20 nT) and electric (40 mVm-1) field variations with bursts of parallel Poynting flux (~1 ergcm-2s-1), predominantly directed toward the ionosphere. In the first event Polar was located in the plasma sheet near the plasma sheet boundary, and the field variations were initiated at the ground onset. In the second event, Polar crossed the plasma sheet boundary to the tail lobes a few minutes prior to a local plasma sheet expansion. As Polar was engulfed by the plasma sheet, the field variations occurred in the previously quiet plasma sheet boundary. This coincided with the auroral bulge reaching the CANOPUS stations. We compare these two events and argue that the field variations were most probably signatures of the reconnection of open field lines and the subsequent enhanced earthward flows. Furthermore, weak flow bursts were observed at Polar in both events ~9 min before the onset. In the first event, a gradual development toward a negative bay and a burst of Pi2 pulsations were associated with the flow bursts. We anticipate that these signatures, often described in terms of pseudobreakups, were a precursor of the substorm onset, the initiation of the reconnection of closed field lines.

  19. Directional Dependence of Hydrogen Bonds: a Density-based Energy Decomposition Analysis and Its Implications on Force Field Development

    PubMed Central

    Lu, Zhenyu; Zhou, Nengjie; Wu, Qin; Zhang, Yingkai

    2011-01-01

    One well-known shortcoming of widely-used biomolecular force fields is the description of the directional dependence of hydrogen bonding (HB). Here we aim to better understand the origin of this difficulty and thus provide some guidance for further force field development. Our theoretical approaches center on a novel density-based energy decomposition analysis (DEDA) method [J. Chem. Phys., 131, 164112 (2009)], in which the frozen density energy is variationally determined through constrained search. This unique and most significant feature of DEDA enables us to find that the frozen density interaction term is the key factor in determining the HB orientation, while the sum of polarization and charge-transfer components shows very little HB directional dependence. This new insight suggests that the difficulty for current non-polarizable force fields to describe the HB directional dependence is not due to the lack of explicit polarization or charge-transfer terms. Using the DEDA results as reference, we further demonstrate that the main failure coming from the atomic point charge model can be overcome largely by introducing extra charge sites or higher order multipole moments. Among all the electrostatic models explored, the smeared charge distributed multipole model (up to quadrupole), which also takes account of charge penetration effects, gives the best agreement with the corresponding DEDA results. Meanwhile, our results indicate that the van der Waals interaction term needs to be further improved to better model directional hydrogen bonding. PMID:22267958

  20. Space-based Coronagraphic Imaging Polarimetry of the TW Hydrae Disk: Shedding New Light on Self-shadowing Effects

    NASA Astrophysics Data System (ADS)

    Poteet, Charles A.; Chen, Christine H.; Hines, Dean C.; Perrin, Marshall D.; Debes, John H.; Pueyo, Laurent; Schneider, Glenn; Mazoyer, Johan; Kolokolova, Ludmilla

    2018-06-01

    We present Hubble Space Telescope Near-Infrared Camera and Multi-Object Spectrometer coronagraphic imaging polarimetry of the TW Hydrae protoplanetary disk. These observations simultaneously measure the total and polarized intensity, allowing direct measurement of the polarization fraction across the disk. In accord with the self-shadowing hypothesis recently proposed by Debes et al., we find that the total and polarized intensity of the disk exhibits strong azimuthal asymmetries at projected distances consistent with the previously reported bright and dark ring-shaped structures (∼45–99 au). The sinusoidal-like variations possess a maximum brightness at position angles near ∼268°–300° and are up to ∼28% stronger in total intensity. Furthermore, significant radial and azimuthal variations are also detected in the polarization fraction of the disk. In particular, we find that regions of lower polarization fraction are associated with annuli of increased surface brightness, suggesting that the relative proportion of multiple-to-single scattering is greater along the ring and gap structures. Moreover, we find strong (∼20%) azimuthal variation in the polarization fraction along the shadowed region of the disk. Further investigation reveals that the azimuthal variation is not the result of disk flaring effects, but is instead from a decrease in the relative contribution of multiple-to-single scattering within the shadowed region. Employing a two-layer scattering surface, we hypothesize that the diminished contribution in multiple scattering may result from shadowing by an inclined inner disk, which prevents direct stellar light from reaching the optically thick underlying surface component.

  1. Heritability of body size in the polar bears of Western Hudson Bay.

    PubMed

    Malenfant, René M; Davis, Corey S; Richardson, Evan S; Lunn, Nicholas J; Coltman, David W

    2018-04-18

    Among polar bears (Ursus maritimus), fitness is dependent on body size through males' abilities to win mates, females' abilities to provide for their young and all bears' abilities to survive increasingly longer fasting periods caused by climate change. In the Western Hudson Bay subpopulation (near Churchill, Manitoba, Canada), polar bears have declined in body size and condition, but nothing is known about the genetic underpinnings of body size variation, which may be subject to natural selection. Here, we combine a 4449-individual pedigree and an array of 5,433 single nucleotide polymorphisms (SNPs) to provide the first quantitative genetic study of polar bears. We used animal models to estimate heritability (h 2 ) among polar bears handled between 1966 and 2011, obtaining h 2 estimates of 0.34-0.48 for strictly skeletal traits and 0.18 for axillary girth (which is also dependent on fatness). We genotyped 859 individuals with the SNP array to test for marker-trait association and combined p-values over genetic pathways using gene-set analysis. Variation in all traits appeared to be polygenic, but we detected one region of moderately large effect size in body length near a putative noncoding RNA in an unannotated region of the genome. Gene-set analysis suggested that variation in body length was associated with genes in the regulatory cascade of cyclin expression, which has previously been associated with body size in mice. A greater understanding of the genetic architecture of body size variation will be valuable in understanding the potential for adaptation in polar bear populations challenged by climate change. © 2018 John Wiley & Sons Ltd.

  2. A Digital Map From External Forcing to the Final Surface Warming Pattern and its Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Cai, M.

    2015-12-01

    Historically, only the thermodynamic processes (e.g., water vapor, cloud, surface albedo, and atmospheric lapse rate) that directly influence the top of the atmosphere (TOA) radiative energy flux balance are considered in climate feedback analysis. One of my recent research areas is to develop a new framework for climate feedback analysis that explicitly takes into consideration not only the thermodynamic processes that the directly influence the TOA radiative energy flux balance but also the local dynamical (e.g., evaporation, surface sensible heat flux, vertical convections etc) and non-local dynamical (large-scale horizontal energy transport) processes in aiming to explain the warming asymmetry between high and low latitudes, between ocean and land, and between the surface and atmosphere. In the last 5-6 years, we have developed a coupled atmosphere-surface climate feedback-response analysis method (CFRAM) as a new framework for estimating climate feedback and sensitivity in coupled general circulation models with a full physical parameterization package. In the CFRAM, the isolation of partial temperature changes due to an external forcing alone or an individual feedback is achieved by solving the linearized infrared radiation transfer model subject to individual energy flux perturbations (external or due to feedbacks). The partial temperature changes are addable and their sum is equal to the (total) temperature change (in the linear sense). The CFRAM is used to isolate the partial temperature changes due to the external forcing, due to water vapor feedback, clouds, surface albedo, local vertical convection, and non-local atmospheric dynamical feedbacks, as well as oceanic heat storage. It has been shown that seasonal variations in the cloud feedback, surface albedo feedback, and ocean heat storage/dynamics feedback, directly caused by the strong annual cycle of insolation, contribute primarily to the large seasonal variation of polar warming. Furthermore, the CO2 forcing, and water vapor and atmospheric dynamics feedbacks add to the maximum polar warming in fall/winter.

  3. Theory of helix traveling wave tubes with dielectric and vane loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freund, H.P.; Zaidman, E.G.; Antonsen, T.M. Jr.

    1996-08-01

    A time-dependent nonlinear analysis of a helix traveling wave tube (TWT) is presented for a configuration where an electron beam propagates through a sheath helix surrounded by a conducting wall. The effects of dielectric and vane loading are included in the formulation as is efficiency enhancement by tapering the helix pitch. Dielectric loading is described under the assumption that the gap between the helix and the wall is uniformly filled by a dielectric material. The vane-loading model describes the insertion of an arbitrary number of vanes running the length of the helix, and the polarization of the field between themore » vanes is assumed to be an azimuthally symmetric transverse-electric mode. The field is represented as a superposition of azimuthally symmetric waves in a vacuum sheath helix. An overall explicit sinusoidal variation of the form exp({ital ikz}{minus}{ital i}{omega}{ital t}) is assumed (where {omega} denotes the angular frequency corresponding to the wave number {ital k} in the vacuum sheath helix), and the polarization and radial variation of each wave is determined by the boundary conditions in a vacuum sheath helix. The propagation of each wave {ital in} {ital vacuo} as well as the interaction of each wave with the electron beam is included by allowing the amplitudes of the waves to vary in {ital z} and {ital t}. A dynamical equation for the field amplitudes is derived analogously to Poynting{close_quote}s equation, and solved in conjunction with the three-dimensional Lorentz force equations for an ensemble of electrons. Electron beams with a both a continuous and emission-gated pulse format are analyzed, and the model is compared with linear theory of the interaction as well as with the performance of a TWTs operated at the Naval Research Laboratory and at Northrop{endash}Grumman Corporation. {copyright} {ital 1996 American Institute of Physics.}« less

  4. High-frequency Earth rotation variations deduced from altimetry-based ocean tides

    NASA Astrophysics Data System (ADS)

    Madzak, Matthias; Schindelegger, Michael; Böhm, Johannes; Bosch, Wolfgang; Hagedoorn, Jan

    2016-11-01

    A model of diurnal and semi-diurnal variations in Earth rotation parameters (ERP) is constructed based on altimetry-measured tidal heights from a multi-mission empirical ocean tide solution. Barotropic currents contributing to relative angular momentum changes are estimated for nine major tides in a global inversion algorithm that solves the two-dimensional momentum equations on a regular 0.5° grid with a heavily weighted continuity constraint. The influence of 19 minor tides is accounted for by linear admittance interpolation of ocean tidal angular momentum, although the assumption of smooth admittance variations with frequency appears to be a doubtful concept for semi-diurnal mass terms in particular. A validation of the newly derived model based on post-fit corrections to polar motion and universal time (Δ UT1) from the analysis of Very Long Baseline Interferometry (VLBI) observations shows a variance reduction for semi-diurnal Δ UT1 residuals that is significant at the 0.05 level with respect to the conventional ERP model. Improvements are also evident for the explicitly modeled K_1, Q_1, and K_2 tides in individual ERP components, but large residuals of more than 15 μ as remain at the principal lunar frequencies of O_1 and M_2. We attribute these shortcomings to uncertainties in the inverted relative angular momentum changes and, to a minor extent, to violation of mass conservation in the empirical ocean tide solution. Further dedicated hydrodynamic modeling efforts of these anomalous constituents are required to meet the accuracy standards of modern space geodesy.

  5. Variational estimate method for solving autonomous ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi

    2018-04-01

    In this paper, we propose a method for solving first-order autonomous ordinary differential equation problems using a variational estimate formulation. The variational estimate is constructed with a Lagrange multiplier which is chosen optimally, so that the formulation leads to an accurate solution to the problem. The variational estimate is an integral form, which can be computed using a computer software. As the variational estimate is an explicit formula, the solution is easy to compute. This is a great advantage of the variational estimate formulation.

  6. On Exact Solutions of Rarefaction-Rarefaction Interactions in Compressible Isentropic Flow

    NASA Astrophysics Data System (ADS)

    Jenssen, Helge Kristian

    2017-12-01

    Consider the interaction of two centered rarefaction waves in one-dimensional, compressible gas flow with pressure function p(ρ )=a^2ρ ^γ with γ >1. The classic hodograph approach of Riemann provides linear 2nd order equations for the time and space variables t, x as functions of the Riemann invariants r, s within the interaction region. It is well known that t( r, s) can be given explicitly in terms of the hypergeometric function. We present a direct calculation (based on works by Darboux and Martin) of this formula, and show how the same approach provides an explicit formula for x( r, s) in terms of Appell functions (two-variable hypergeometric functions). Motivated by the issue of vacuum and total variation estimates for 1-d Euler flows, we then use the explicit t-solution to monitor the density field and its spatial variation in interactions of two centered rarefaction waves. It is found that the variation is always non-monotone, and that there is an overall increase in density variation if and only if γ >3. We show that infinite duration of the interaction is characterized by approach toward vacuum in the interaction region, and that this occurs if and only if the Riemann problem defined by the extreme initial states generates a vacuum. Finally, it is verified that the minimal density in such interactions decays at rate O(1)/ t.

  7. Self-consistent modelling of the polar thermosphere and ionosphere to magnetospheric convection and precipitation (invited review)

    NASA Technical Reports Server (NTRS)

    Rees, D.; Fuller-Rowell, T.; Quegan, S.; Moffett, R.

    1986-01-01

    It has recently been demonstrated that the dramatic effects of plasma precipitation and convection on the composition and dynamics of the polar thermosphere and ionosphere include a number of strong interactive, or feedback, processes. To aid the evaluation of these feedback processes, a joint three dimensional time dependent global model of the Earth's thermosphere and ionosphere was developed in a collaboration between University College London and Sheffield University. This model includes self consistent coupling between the thermosphere and the ionosphere in the polar regions. Some of the major features in the polar ionosphere, which the initial simulations indicate are due to the strong coupling of ions and neutrals in the presence of strong electric fields and energetic electron precipitation are reviewed. The model is also able to simulate seasonal and Universal time variations in the polar thermosphere and ionospheric regions which are due to the variations of solar photoionization in specific geomagnetic regions such as the cusp and polar cap.

  8. Polarization modeling and predictions for Daniel K. Inouye Solar Telescope part 1: telescope and example instrument configurations

    NASA Astrophysics Data System (ADS)

    Harrington, David M.; Sueoka, Stacey R.

    2017-01-01

    We outline polarization performance calculations and predictions for the Daniel K. Inouye Solar Telescope (DKIST) optics and show Mueller matrices for two of the first light instruments. Telescope polarization is due to polarization-dependent mirror reflectivity and rotations between groups of mirrors as the telescope moves in altitude and azimuth. The Zemax optical modeling software has polarization ray-trace capabilities and predicts system performance given a coating prescription. We develop a model coating formula that approximates measured witness sample polarization properties. Estimates show the DKIST telescope Mueller matrix as functions of wavelength, azimuth, elevation, and field angle for the cryogenic near infra-red spectro-polarimeter (CryoNIRSP) and visible spectro-polarimeter. Footprint variation is substantial and shows vignetted field points will have strong polarization effects. We estimate 2% variation of some Mueller matrix elements over the 5-arc min CryoNIRSP field. We validate the Zemax model by showing limiting cases for flat mirrors in collimated and powered designs that compare well with theoretical approximations and are testable with lab ellipsometers.

  9. Full Field Photoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    2000-01-01

    A structural specimen coated with or constructed of photoelastic material, when illuminated with circularly polarized light will, when stressed: reflect or transmit elliptically polarized light, the direction of the axes of the ellipse and variation of the elliptically light from illuminating circular light will correspond to and indicate the direction and magnitude of the shear stresses for each illuminated point on the specimen. The principles of this invention allow for several embodiments of stress analyzing apparatus, ranging from those involving multiple rotating optical elements, to those which require no moving parts at all. A simple polariscope may be constructed having two polarizing filters with a single one-quarter waveplate placed between the polarizing filters. Light is projected through the first polarizing filter and the one-quarter waveplate and is reflected from a sub-fringe birefringent coating on a structure under load. Reflected light from the structure is analyzed with a polarizing filter. The two polarizing filters and the one-quarter waveplate may be rotated together or the analyzer alone may be rotated. Computer analysis of the variation in light intensity yields shear stress magnitude and direction.

  10. Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model.

    PubMed

    Das, Debananda; Koh, Yasuhiro; Tojo, Yasushi; Ghosh, Arun K; Mitsuya, Hiroaki

    2009-12-01

    Reliable and robust prediction of the binding affinity for drug molecules continues to be a daunting challenge. We simulated the binding interactions and free energy of binding of nine protease inhibitors (PIs) with wild-type and various mutant proteases by performing GBSA simulations in which each PI's partial charge was determined by quantum mechanics (QM) and the partial charge accounts for the polarization induced by the protease environment. We employed a hybrid solvation model that retains selected explicit water molecules in the protein with surface-generalized Born (SGB) implicit solvent. We examined the correlation of the free energy with the antiviral potency of PIs with regard to amino acid substitutions in protease. The GBSA free energy thus simulated showed strong correlations (r > 0.75) with antiviral IC(50) values of PIs when amino acid substitutions were present in the protease active site. We also simulated the binding free energy of PIs with P2-bis-tetrahydrofuranylurethane (bis-THF) or related cores, utilizing a bis-THF-containing protease crystal structure as a template. The free energy showed a strong correlation (r = 0.93) with experimentally determined anti-HIV-1 potency. The present data suggest that the presence of selected explicit water in protein and protein polarization-induced quantum charges for the inhibitor, compared to lack of explicit water and a static force-field-based charge model, can serve as an improved lead optimization tool and warrants further exploration.

  11. Imaging Mercury's Polar Deposits during MESSENGER's Low-altitude Campaign.

    PubMed

    Chabot, Nancy L; Ernst, Carolyn M; Paige, David A; Nair, Hari; Denevi, Brett W; Blewett, David T; Murchie, Scott L; Deutsch, Ariel N; Head, James W; Solomon, Sean C

    2016-09-28

    Images obtained during MESSENGER's low-altitude campaign in the final year of the mission provide the highest-spatial-resolution views of Mercury's polar deposits. Images for distinct areas of permanent shadow within 35 north polar craters were successfully captured during the campaign. All of these regions of permanent shadow were found to have low-reflectance surfaces with well-defined boundaries. Additionally, brightness variations across the deposits correlate with variations in the biannual maximum surface temperature across the permanently shadowed regions, supporting the conclusion that multiple volatile organic compounds are contained in Mercury's polar deposits, in addition to water ice. A recent large impact event or ongoing bombardment by micrometeoroids could deliver water as well as many volatile organic compounds to Mercury. Either scenario is consistent with the distinctive reflectance properties and well-defined boundaries of Mercury's polar deposits and the presence of volatiles in all available cold traps.

  12. Molecular modelling of protein-protein/protein-solvent interactions

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler

    The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule destabilization. No conformational change was observed but a nucleotide dependent 'softening' of the interaction was found instead, suggesting that an entropic force in a microtubule configuration could be the mechanism of microtubule collapse. Finally, to overcome much of the computational costs associated with explicit soIvent calculations, a new combination of molecular dynamics with the 3D-reference interaction site model (3D-RISM) of solvation was integrated into the Amber molecular dynamics package. Our implementation of 3D-RISM shows excellent agreement with explicit solvent free energy calculations. Several optimisation techniques, including a new multiple time step method, provide a nearly 100 fold performance increase, giving similar computational performance to explicit solvent.

  13. Monochromatic Measurements of the JPSS-1 VIIRS Polarization Sensitivity

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Moyer, David; Brown, Steven W.; Lykke, Keith R.; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong

    2016-01-01

    Polarization sensitivity is a critical property that must be characterized for spaceborne remote sensing instruments designed to measure reflected solar radiation. Broadband testing of the first Joint Polar-orbiting Satellite System (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS) showed unexpectedly large polarization sensitivities for the bluest bands on VIIRS (centered between 400 and 600 nm). Subsequent ray trace modeling indicated that large diattenuation on the edges of the bandpass for these spectral bands was the driver behind these large sensitivities. Additional testing using the National Institute of Standards and Technologies Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources was added to the test program to verify and enhance the model. The testing was limited in scope to two spectral bands at two scan angles; nonetheless, this additional testing provided valuable insight into the polarization sensitivity. Analysis has shown that the derived diattenuation agreed with the broadband measurements to within an absolute difference of about0.4 and that the ray trace model reproduced the general features of the measured data. Additionally, by deriving the spectral responsivity, the linear diattenuation is shown to be explicitly dependent on the changes in bandwidth with polarization state.

  14. Titan Polar Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  15. Generalized Scalar-on-Image Regression Models via Total Variation.

    PubMed

    Wang, Xiao; Zhu, Hongtu

    2017-01-01

    The use of imaging markers to predict clinical outcomes can have a great impact in public health. The aim of this paper is to develop a class of generalized scalar-on-image regression models via total variation (GSIRM-TV), in the sense of generalized linear models, for scalar response and imaging predictor with the presence of scalar covariates. A key novelty of GSIRM-TV is that it is assumed that the slope function (or image) of GSIRM-TV belongs to the space of bounded total variation in order to explicitly account for the piecewise smooth nature of most imaging data. We develop an efficient penalized total variation optimization to estimate the unknown slope function and other parameters. We also establish nonasymptotic error bounds on the excess risk. These bounds are explicitly specified in terms of sample size, image size, and image smoothness. Our simulations demonstrate a superior performance of GSIRM-TV against many existing approaches. We apply GSIRM-TV to the analysis of hippocampus data obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset.

  16. Mercury concentrations in Southern Beaufort Sea polar bears: variation based on stable isotopes of carbon and nitrogen.

    PubMed

    Cardona-Marek, Tamara; Knott, Katrina K; Meyer, Benjamin E; O'Hara, Todd M

    2009-07-01

    Total Hg concentration was measured in hair and whole blood of 52 adult Southern Beaufort Sea polar bears (Ursus maritimus) captured in the spring of 2005. Stable isotopic signatures (i.e., 13C/12C, delta13C; 15N/14N, delta15N) in hair and two blood compartments (packed blood cells/clot and serum) were determined to assess the variation of Hg concentrations among polar bears in relation to their feeding ecology and other biological factors. Concentrations of Hg in hair and blood (2.2-23.9 microg/g dry wt and 0.007-0.213 microg/g wet wt, respectively) were within the range of values previously reported for polar bears in Canada and East Greenland. Mercury concentration in hair from females was higher than that in hair from males, and concentration was related to interactions between delta13C, delta15N, and longitude of capture location. Mercury concentrations in hair were inversely correlated to delta13C in hair and blood, suggesting that polar bears with greater total Hg concentrations fed more on pelagic prey, such as ringed seals or beluga whale, than on benthic prey. Variability in Hg concentrations in polar bear hair and blood may be the result of intraspecific or regional variation in prey selection rather than strictly trophic level interactions.

  17. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes

    NASA Astrophysics Data System (ADS)

    Wölbern, I.; Löbl, U.; Rümpker, G.

    2014-04-01

    In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.

  18. Population genetic studies of the polar bear (Ursus maritimus): A summary of available data and interpretation of results

    USGS Publications Warehouse

    Scribner, Kim T.; Garner, G.W.; Amstrup, Steven C.; Cronin, M.A.; Dizon, Andrew E.; Chivers, Susan J.; Perrin, William F.

    1997-01-01

    A summary of existing population genetics literature is presented for polar bears (Ursus maritimus) and interpreted in the context of the species' life-history characteristics and regional heterogeneity in environmental regimes and movement patterns. Several nongenetic data sets including morphology, contaminant levels, geographic variation in reproductive characteristics, and the location and distribution of open-water foraging habitat suggest some degree of spatial structuring. Eleven populations are recognized by the IUCN Polar Bear Specialist Group. Few genetics studies exist for polar bears. Interpretation and generalizations of regional variation in intra- and interpopulation levels of genetic variability are confounded by the paucity of data from many regions and by the fact that no single informative genetic marker has been employed in multiple regions. Early allozyme studies revealed comparatively low levels of genetic variability and no compelling evidence of spatial structuring. Studies employing mitochondrial DNA (mtDNA) also found low levels of genetic variation, a lack of phylogenetic structure, and no significant evidence for spatial variation in haplotype frequency. In contrast, microsatellite variable number of tandem repeat (VNTR) loci have revealed significant heterogeneity in allele frequency among populations in the Canadian Arctic. These regions are characterized by archipelgic patterns of sea-ice movements. Further studies using highly polymorphic loci are needed in regions characterized by greater polar bear dependency on pelagic sea-ice movements and in regions for which no data currently exist (i.e., Laptev and Novaya Zemlya/Franz Josef).

  19. Dependence of spin dephasing on initial spin polarization in a high-mobility two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Stich, D.; Zhou, J.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Wu, M. W.; Schüller, C.

    2007-11-01

    We have studied the spin dynamics of a high-mobility two-dimensional electron system in a GaAs/Al0.3Ga0.7As single quantum well by time-resolved Faraday rotation and time-resolved Kerr rotation in dependence on the initial degree of spin polarization, P , of the electrons. By increasing the initial spin polarization from the low- P regime to a significant P of several percent, we find that the spin dephasing time, T2* , increases from about 20to200ps . Moreover, T2* increases with temperature at small spin polarization but decreases with temperature at large spin polarization. All these features are in good agreement with theoretical predictions by Weng and Wu [Phys. Rev. B 68, 075312 (2003)]. Measurements as a function of spin polarization at fixed electron density are performed to further confirm the theory. A fully microscopic calculation is performed by setting up and numerically solving the kinetic spin Bloch equations, including the D’yakonov-Perel’ and the Bir-Aronov-Pikus mechanisms, with all the scattering explicitly included. We reproduce all principal features of the experiments, i.e., a dramatic decrease of spin dephasing with increasing P and the temperature dependences at different spin polarizations.

  20. Influence of concentration polarization on DNA translocation through a nanopore.

    PubMed

    Zhai, Shengjie; Zhao, Hui

    2016-05-01

    Concentration polarization can be induced by the unique ion-perm selectivity of small nanopores, leading to a salt concentration gradient across nanopores. This concentration gradient can create diffusio-osmosis and induce an electric field, affecting ionic currents on DNA that translocates through a nanopore. Here this influence is theoretically investigated by solving the continuum Poisson-Nernst-Planck model for different salt concentrations, DNA surface charge densities, and pore properties. By implementing the perturbation method, we can explicitly compute the contribution of concentration polarization to the ionic current. The induced electric field by concentration polarization is opposite to the imposed electric field and decreases the migration current, and the induced diffusio-osmosis can decrease the convection current as well. Our studies suggest that the importance of the concentration polarization can be determined by the parameter λ/G where λ is the double-layer thickness and G is the gap size. When λ/G is larger than a critical value, the influence of concentration polarization becomes more prominent. This conclusion is supported by the studies on the dependence of the ionic current on salt concentration and pore properties, showing that the difference between two models with and without accounting for concentration polarization is larger for low salts and small pores, which correspond to larger λ/G.

  1. The disturbing function for polar Centaurs and transneptunian objects

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2017-10-01

    The classical disturbing function of the three-body problem is based on an expansion of the gravitational interaction in the vicinity of nearly coplanar orbits. Consequently, it is not suitable for the identification and study of resonances of the Centaurs and transneptunian objects on nearly polar orbits with the Solar system planets. Here, we provide a series expansion algorithm of the gravitational interaction in the vicinity of polar orbits and produce explicitly the disturbing function to fourth order in eccentricity and inclination cosine. The properties of the polar series differ significantly from those of the classical disturbing function: the polar series can model any resonance, as the expansion order is not related to the resonance order. The powers of eccentricity and inclination of the force amplitude of a p:q resonance do not depend on the value of the resonance order |p - q| but only on its parity. Thus, all even resonance order eccentricity amplitudes are ∝e2 and odd ones ∝e to lowest order in eccentricity e. With the new findings on the structure of the polar disturbing function and the possible resonant critical arguments, we illustrate the dynamics of the polar resonances 1:3, 3:1, 2:9 and 7:9 where transneptunian object 471325 could currently be locked.

  2. Geometric constrained variational calculus. II: The second variation (Part I)

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2016-10-01

    Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.

  3. The Role of Ionospheric Conductivity in the Response of the Magnetosphere and Ionosphere to Changes in the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cnossen, I.; Wiltberger, M. J.; Richmond, A. D.; Ouellette, J.

    2014-12-01

    The strength and orientation of the Earth's magnetic field play an important role in the magnetosphere-ionosphere-thermosphere system. This is demonstrated in a set of idealized experiments with the Coupled Magnetosphere-Ionosphere-Thermosphere model using a dipolar magnetic field. A decrease of the dipole moment (M) causes an increase in ionospheric conductance. This increase in conductance results in enhanced field-aligned currents (FACs), which change the shape of the magnetosphere, and causes a deviation from theoretical scaling relations of the stand-off distance, the size of the polar cap, and the cross-polar cap potential with M. The orientation of the Earth's magnetic field determines how the angle μ between the geomagnetic dipole axis and the geocentric solar magnetospheric (GSM) z-axis varies with season and universal time (UT). The angle μ can affect solar wind-magnetosphere-ionosphere coupling in two distinct ways: via variations in ionospheric conductivity over the polar caps or via a change in the coupling efficiency between the solar wind and magnetosphere as a result of changes in geometry. Simulations in which the ionospheric conductivity was either kept fixed or allowed to vary realistically demonstrated that variations in ionospheric conductance are responsible for ~10-30% of the variations in the cross-polar cap potential associated with variations in μ for southward interplanetary magnetic field (IMF). The remainder was mostly due to variations in the magnetic reconnection rate, which were associated with variations in the length of the section of the separator line along which relatively strong reconnection occurs.

  4. A fully polarimetric scattering model for a coniferous forest

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Lopes, A.; Mougin, E.

    1991-01-01

    For an elliptically polarized plane wave exciting a coniferous forested canopy a fully polarimetric scattering model has been developed to account for the size and orientation distributions of each forest constituent. A canopy is divided into three layers over a rough interface. The upper two layers represent the crown with its constituents (leaves, stems, and branches). The lower layer stands for the trunks and the rough interface is the canopy-ground interface. For a plane wave exciting the canopy, the explicit expressions for the bistatic scattering coefficient associated with each scattering mechanism are given. For an elliptically polarized incidence wave, the present model can be recast in a form suitable for polarimetric wave synthesis. The model validation is justified by comparing the measured and the calculated values of the backscattering coefficients for a linearly polarized incident wave. The comparison is made over a wide range of frequencies and incident angles. Numerical simulations are conducted to calculate the radar polarization signature of the canopy for different incident frequencies and angles.

  5. Role of polarizer-tilting-angle in zero-field spin-transfer nano-oscillators with perpendicular anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P.

    2015-10-05

    An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in amore » broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.« less

  6. Photoionization of sodium atoms and electron scattering from ionized sodium

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Bhatia, A. K.

    1985-01-01

    The polarized-orbital method of Temkin (1957) is applied using polarized orbitals determined from Sternheimer's equation to compute the photoionization cross sections of Na atoms from threshold to about 60 eV. The approximations involved in the analysis are explained in detail; the explicit forms of the integrals and matrix expressions are given in appendices; and the results are presented in tables and graphs. Good agreement is found with the results of Chang and Kelly (1975), and the possibility that small amounts of molecular vapor in Na-photoionization experiments are responsible for the discrepancies between calculated and measured cross sections is considered.

  7. Surface plasmons for doped graphene

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Pirozhenko, I. G.

    2015-04-01

    Within the Dirac model for the electronic excitations of graphene, we calculate the full polarization tensor with finite mass and chemical potential. It has, besides the (00)-component, a second form factor, which must be accounted for. We obtain explicit formulas for both form factors and for the reflection coefficients. Using these, we discuss the regions in the momentum-frequency plane where plasmons may exist and give numeric solutions for the plasmon dispersion relations. It turns out that plasmons exist for both, transverse electric and transverse magnetic polarizations over the whole range of the ratio of mass to chemical potential, except for zero chemical potential, where only a TE plasmon exists.

  8. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    NASA Technical Reports Server (NTRS)

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  9. Active motion on curved surfaces

    NASA Astrophysics Data System (ADS)

    Castro-Villarreal, Pavel; Sevilla, Francisco J.

    2018-05-01

    A theoretical analysis of active motion on curved surfaces is presented in terms of a generalization of the telegrapher equation. Such a generalized equation is explicitly derived as the polar approximation of the hierarchy of equations obtained from the corresponding Fokker-Planck equation of active particles diffusing on curved surfaces. The general solution to the generalized telegrapher equation is given for a pulse with vanishing current as initial data. Expressions for the probability density and the mean squared geodesic displacement are given in the limit of weak curvature. As an explicit example of the formulated theory, the case of active motion on the sphere is presented, where oscillations observed in the mean squared geodesic displacement are explained.

  10. The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Wollan, D. S.

    1974-01-01

    A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.

  11. Variability in Terrestrial Water Storage and its effect on polar motion

    NASA Astrophysics Data System (ADS)

    Śliwińska, Justyna; Nastula, Jolanta

    2017-04-01

    Explaining the hydrological part of observed polar motion excitation has been a major challenge over a dozen years. The terrestrial water storage (TWS) excitation of polar motion - hydrological angular momentum (HAM), has been investigated widely using global hydrological models mainly at seasonal timescales. Unfortunately, the results from the models do not fully explain the role of hydrological signal in polar motion excitation. The determination of TWS from the Earth's gravity field observations represents an indirect approach for estimating land hydrology. Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in Terrestrial Water Storage. Our investigations are focused on the influence of Terrestrial Water Storage (TWS) variations obtained from Gravity Recovery and Climate Experiment (GRACE) mission on polar motion excitation functions at decadal and inter-annual timescales. The global and regional trend, seasonal cycle as well as some extremes in TWS variations are considered here. Here TWS are obtained from the monthly mass grids land GRACE Tellus data: GRACE CSR RL05, GRACE GFZ RL05 and GRACE JPL RL05. As a comparative dataset, we also use TWS estimates determined from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5). GRACE data and state-of-the-art CMIP5 climate models allow us to show the variability of hydrological part of polar motion under climate changes. Our studies include two steps: first, the determination and comparisons of regional patterns of TWS obtained from GRACE data and climate models, and second, comparison of the regional and global hydrological excitation functions of polar motion with a hydrological signal in the geodetic excitation functions of polar motion.

  12. Effects of meridional flow variations on solar cycles 23 and 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upton, Lisa; Hathaway, David H., E-mail: lisa.a.upton@vanderbilt.edu, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov

    2014-09-10

    The faster meridional flow that preceded the solar cycle 23/24 minimum is thought to have led to weaker polar field strengths, producing the extended solar minimum and the unusually weak cycle 24. To determine the impact of meridional flow variations on the sunspot cycle, we have simulated the Sun's surface magnetic field evolution with our newly developed surface flux transport model. We investigate three different cases: a constant average meridional flow, the observed time-varying meridional flow, and a time-varying meridional flow in which the observed variations from the average have been doubled. Comparison of these simulations shows that the variationsmore » in the meridional flow over cycle 23 have a significant impact (∼20%) on the polar fields. However, the variations produced polar fields that were stronger than they would have been otherwise. We propose that the primary cause of the extended cycle 23/24 minimum and weak cycle 24 was the weakness of cycle 23 itself—with fewer sunspots, there was insufficient flux to build a big cycle. We also find that any polar counter-cells in the meridional flow (equatorward flow at high latitudes) produce flux concentrations at mid-to-high latitudes that are not consistent with observations.« less

  13. Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains.

    PubMed

    Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A

    2017-01-19

    The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).

  14. Inter- and intraspecific mitochondrial DNA variation in North American bears (Ursus)

    USGS Publications Warehouse

    Cronin, Matthew A.; Amstrup, Steven C.; Garner, Gerald W.; Vyse, Ernest R.

    1991-01-01

    We assessed mitochondrial DNA variation in North American black bears (Ursus americanus), brown bears (Ursus arctos), and polar bears (Ursus maritimus). Divergent mitochondrial DNA haplotypes (0.05 base substitutions per nucleotide) were identified in populations of black bears from Montana and Oregon. In contrast, very similar haplotypes occur in black bears across North America. This discordance of haplotype phylogeny and geographic distribution indicates that there has been maintenance of polymorphism and considerable gene flow throughout the history of the species. Intraspecific mitochondrial DNA sequence divergence in brown bears and polar bears is lower than in black bears. The two morphological forms of U. arctos, grizzly and coastal brown bears, are not in distinct mtDNA lineages. Interspecific comparisons indicate that brown bears and polar bears share similar mitochondrial DNA (0.023 base substitutions per nucleotide) which is quite divergent (0.078 base substitutions per nucleotide) from that of black bears. High mitochondrial DNA divergence within black bears and paraphyletic relationships of brown and polar bear mitochondrial DNA indicate that intraspecific variation across species' ranges should be considered in phylogenetic analyses of mitochondrial DNA.

  15. Effects of the Observed Meridional Flow Variations since 1996 on the Sun's Polar Fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David; Upton, Lisa

    2013-01-01

    The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. The polar fields are produced by the latitudinal transport of magnetic flux that emerged in low-latitude active regions. The polar fields thus depend upon the details of both the flux emergence and the flux transport. We have measured the flux transport flows (differential rotation, meridional flow, and supergranules) since 1996 and find systematic and substantial variation in the meridional flow alone. Here we present experiments using a Surface Flux Transport Model in which magnetic field data from SOHO/MDI and SDO/HMI are assimilated into the model only at latitudes between 45-degrees north and south of the equator (this assures that the details of the active region flux emergence are well represented). This flux is then transported in both longitude and latitude by the observed flows. In one experiment the meridional flow is given by the time averaged (and north-south symmetric) meridional flow profile. In the second experiment the time-varying and north-south asymmetric meridional flow is used. Differences between the observed polar fields and those produced in these two experiments allow us to ascertain the effects of these meridional flow variations on the Sun s polar fields.

  16. Log-polar mapping-based scale space tracking with adaptive target response

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing

    2017-05-01

    Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.

  17. Moderators of the Relationship between Implicit and Explicit Evaluation

    PubMed Central

    Nosek, Brian A.

    2005-01-01

    Automatic and controlled modes of evaluation sometimes provide conflicting reports of the quality of social objects. This paper presents evidence for four moderators of the relationship between automatic (implicit) and controlled (explicit) evaluations. Implicit and explicit preferences were measured for a variety of object pairs using a large sample. The average correlation was r = .36, and 52 of the 57 object pairs showed a significant positive correlation. Results of multilevel modeling analyses suggested that: (a) implicit and explicit preferences are related, (b) the relationship varies as a function of the objects assessed, and (c) at least four variables moderate the relationship – self-presentation, evaluative strength, dimensionality, and distinctiveness. The variables moderated implicit-explicit correspondence across individuals and accounted for much of the observed variation across content domains. The resulting model of the relationship between automatic and controlled evaluative processes is grounded in personal experience with the targets of evaluation. PMID:16316292

  18. Interannual Atmospheric Variability Simulated by a Mars GCM: Impacts on the Polar Regions

    NASA Technical Reports Server (NTRS)

    Bridger, Alison F. C.; Haberle, R. M.; Hollingsworth, J. L.

    2003-01-01

    It is often assumed that in the absence of year-to-year dust variations, Mars weather and climate are very repeatable, at least on decadal scales. Recent multi-annual simulations of a Mars GCM reveal however that significant interannual variations may occur with constant dust conditions. In particular, interannual variability (IAV) appears to be associated with the spectrum of atmospheric disturbances that arise due to baroclinic instability. One quantity that shows significant IAV is the poleward heat flux associated with these waves. These variations and their impacts on the polar heat balance will be examined here.

  19. Magnetic Field Strengths and Grain Alignment Variations in the Local Bubble Wall

    NASA Astrophysics Data System (ADS)

    Medan, Ilija; Andersson, B.-G.

    2018-01-01

    Optical and infrared continuum polarization is known to be due to irregular dust grains aligned with the magnetic field. This provides an important tool to probe the geometry and strength of those fields, particularly if the variations in the grain alignment efficiencies can be understood. Here, we examine polarization variations observed throughout the Local Bubble for b>30○, using a large polarization survey of the North Galactic cap from Berdyugin et al. (2014). These data are supported by archival photometric and spectroscopic data along with the mapping of the Local Bubble by Lallement et al. (2003). We can accurately model the observational data assuming that the grain alignment variations are due to the radiation from the OB associations within 1 kpc of the sun. This strongly supports radiatively driven grain alignment. We also probe the relative strength of the magnetic field in the wall of the Local Bubble using the Davis-Chandrasekhar-Fermi method. We find evidence for a bimodal field strength distribution, where the variations in the field are correlated with the variations in grain alignment efficiency, indicating that the higher strength regions might represent a compression of the wall by the interaction of the outflow in the Local Bubble and the opposing flows by the surrounding OB associations.

  20. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar

    NASA Astrophysics Data System (ADS)

    Behrenfeld, Michael J.; Hu, Yongxiang; O'Malley, Robert T.; Boss, Emmanuel S.; Hostetler, Chris A.; Siegel, David A.; Sarmiento, Jorge L.; Schulien, Jennifer; Hair, Johnathan W.; Lu, Xiaomei; Rodier, Sharon; Scarino, Amy Jo

    2017-02-01

    Polar plankton communities are among the most productive, seasonally dynamic and rapidly changing ecosystems in the global ocean. However, persistent cloud cover, periods of constant night and prevailing low solar elevations in polar regions severely limit traditional passive satellite ocean colour measurements and leave vast areas unobserved for many consecutive months each year. Consequently, our understanding of the annual cycles of polar plankton and their interannual variations is incomplete. Here we use space-borne lidar observations to overcome the limitations of historical passive sensors and report a decade of uninterrupted polar phytoplankton biomass cycles. We find that polar phytoplankton dynamics are categorized by `boom-bust' cycles resulting from slight imbalances in plankton predator-prey equilibria. The observed seasonal-to-interannual variations in biomass are predicted by mathematically modelled rates of change in phytoplankton division. Furthermore, we find that changes in ice cover dominated variability in Antarctic phytoplankton stocks over the past decade, whereas ecological processes were the predominant drivers of change in the Arctic. We conclude that subtle and environmentally driven imbalances in polar food webs underlie annual phytoplankton boom-bust cycles, which vary interannually at each pole.

  1. Discovery of interstellar circular polarization in the direction of the Crab Nebula.

    NASA Technical Reports Server (NTRS)

    Martin, P. G.; Illing, R.; Angel, J. R. P.

    1972-01-01

    A search in many small regions of the Crab Nebula has resulted in the detection of a small component of circular polarization. The variation of the sign and magnitude with position in the Nebula indicates that the polarization is of interstellar origin. On the basis of the polarity, strength, and colour dependence, it is concluded that the composition of the aligned grains causing this polarization is dielectric. Metallic particles are clearly ruled out. Some stars have also been observed with negative results.

  2. Colorful Polar Layered Deposits

    NASA Image and Video Library

    2016-03-23

    The North Polar layered deposits provide a record of recent climate changes on Mars as seen by NASA Mars Reconnaissance Orbiter spacecraft. Color variations between layers are due to differences in composition of the dust.

  3. Asymmetries in ozone depressions between the polar stratospheres following a solar proton event

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Heath, D. F.

    1978-01-01

    Ozone depletions in the polar stratosphere during the energetic solar proton event on 4 August 1972 were observed by the backscattered ultraviolet (BUV) experiments on the Nimbus 4 satellite. The observed ozone contents, the ozone depressions and their temporal variations above the 4 mb level exhibited distinct asymmetries between the northern and southern hemispheres. Since the ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres, due to the geomagnetic dipole field, it is suggested that these asymmetries may be explained in terms of the differences in dynamics between the summer and the winter polar atmospheres. In the summer (northern) hemisphere, the stratospheric and mesospheric ozone depletion and recovery are smooth functions of time due to the preponderance of undistributed orderly flow in this region. On the other hand, the temporal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) exhibits large amplitude irregularities. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperatures and winds observed by balloons and rocket soundings.

  4. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    ERIC Educational Resources Information Center

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  5. A subsurface depocenter in the South Polar Layered Deposits of Mars

    NASA Astrophysics Data System (ADS)

    Whitten, J. L.; Campbell, B. A.; Morgan, G. A.

    2017-08-01

    The South Polar Layered Deposits (SPLD) are one of the largest water ice reservoirs on Mars, and their accumulation is driven by variations in the climate primarily controlled by orbital forcings. Patterns of subsurface layering in the SPLD provide important information about past atmospheric dust content, periods of substantial erosion, and variations in local or regional deposition. Here we analyze the SPLD using SHAllow RADar (SHARAD) sounder data to gain a unique perspective on the interior structure of the deposits and to determine what subsurface layers indicate about the preserved climate history. SHARAD data reveal a major deviation from the gently domical layering typical of the SPLD: a subsurface elongate dome. The dome most likely formed due to variations in the accumulation of ice and snow across the cap, with a higher rate occurring in this region over a prolonged period. This SPLD depositional center provides an important marker of south polar climate patterns.

  6. Dual-Processes in Learning and Judgment: Evidence from the Multiple Cue Probability Learning Paradigm

    ERIC Educational Resources Information Center

    Rolison, Jonathan J.; Evans, Jonathan St. B. T.; Dennis, Ian; Walsh, Clare R.

    2012-01-01

    Multiple cue probability learning (MCPL) involves learning to predict a criterion based on a set of novel cues when feedback is provided in response to each judgment made. But to what extent does MCPL require controlled attention and explicit hypothesis testing? The results of two experiments show that this depends on cue polarity. Learning about…

  7. Probing antibody internal dynamics with fluorescence anisotropy and molecular dynamics simulations.

    PubMed

    Kortkhonjia, Ekaterine; Brandman, Relly; Zhou, Joe Zhongxiang; Voelz, Vincent A; Chorny, Ilya; Kabakoff, Bruce; Patapoff, Thomas W; Dill, Ken A; Swartz, Trevor E

    2013-01-01

    The solution dynamics of antibodies are critical to antibody function. We explore the internal solution dynamics of antibody molecules through the combination of time-resolved fluorescence anisotropy experiments on IgG1 with more than two microseconds of all-atom molecular dynamics (MD) simulations in explicit water, an order of magnitude more than in previous simulations. We analyze the correlated motions with a mutual information entropy quantity, and examine state transition rates in a Markov-state model, to give coarse-grained descriptors of the motions. Our MD simulations show that while there are many strongly correlated motions, antibodies are highly flexible, with F(ab) and F(c) domains constantly forming and breaking contacts, both polar and non-polar. We find that salt bridges break and reform, and not always with the same partners. While the MD simulations in explicit water give the right time scales for the motions, the simulated motions are about 3-fold faster than the experiments. Overall, the picture that emerges is that antibodies do not simply fluctuate around a single state of atomic contacts. Rather, in these large molecules, different atoms come in contact during different motions.

  8. Conductivity Variation Observed by Polarization and Depolarization Current Measurements of High-Voltage Equipment Insulation System

    NASA Astrophysics Data System (ADS)

    Jamail, Nor Akmal Mohd; Piah, Mohamed Afendi Mohamed; Muhamad, Nor Asiah

    2012-09-01

    Nondestructive and time domain dielectric measurement techniques such as polarization and depolarization current (PDC) measurements have recently been widely used as a potential tool for determining high-voltage insulation conditions by analyzing the insulation conductivity. The variation in the conductivity of an insulator was found to depend on several parameters: the difference between the polarization and depolarization currents, geometric capacitance, and the relative permittivity of the insulation material. In this paper the conductivities of different types of oil-paper insulation material are presented. The insulation conductivities of several types of electrical apparatus were simulated using MATLAB. Conductivity insulation was found to be high at high polarizations and at the lowest depolarization current. It was also found to increase with increasing relative permittivity as well as with decreasing geometric capacitance of the insulating material.

  9. Heliospheric Transient Structures Associated with Short-Period Variations in the GCR Flux

    NASA Astrophysics Data System (ADS)

    Mulligan, T.; Blake, J.B.; Shaul, D.; Quenby, J.

    Short-period variations in the integral GCR fluence ( > 100 MeV) often observed in neutron monitor data have also been seen by the High Sensitivity Telescope (HIST) aboard the Polar spacecraft. Although HIST was designed to measure radiation-belt electrons, it makes clean measurements of the integral GCR fluence when Polar is outside the radiation belts. These measurements show GCR variability on a variety of timescales including 0.1 mHz - 1 mHz. On August 20, 2006 a Forbush decrease observed at Polar was also seen at the INTEGRAL spacecraft. Data from Polar HIST and from INTEGRAL’s Ge detector saturation rate (GEDSAT), which also measures the GCR background with a threshold of ~200 MeV, show similar, coherent, short-period GCR variations at two very different locations within the Earth’s magnetosphere. Comparing these variations from Polar and INTEGRAL to solar wind magnetic field and plasma conditions at the L1 Libration point sunward of the Earth reveal this coherency occurs when Earth is in close proximity to and inside a flux rope interplanetary CME (ICME). Inversion of the ICME magnetic field results in a flux rope axial orientation nearly parallel to the radial direction. This orientation is consistent with a grazing passage of the ICME with the Earth. New measurements from STEREO will enable detailed 3-D analyses of such solar wind disturbances along spatial scales on the same order of typical SEP and GCR proton gyroradii, which are needed to help determine the mechanism behind this short-period variability.

  10. The influence of polarization on millimeter wave propagation through rain

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1974-01-01

    The influence of polarization on millimeter wave propagation through rain is investigated. The experimental equipment consisted of a 1.43 km line-of-sight path with 4-foot diameter dual-polarized parabolic reflector antennas at each end. Linearly polarized 17.65 GHz signals were transmitted with the electric field vectors at plus 45 degrees and minus 45 degrees from the vertical. These polarizations were initially chosen to maximize the measured depolarization at any given rainfall rate. Later it was discovered that the cross polarization levels measured with plus or minus 45 degree linearly polarized signals are theoretically the least sensitive to variations in drop canting angle and this choice of polarization reduces the scatter in the data.

  11. Ortho-Babinet polarization-interrogating filter: an interferometric approach to polarization measurement.

    PubMed

    Van Delden, Jay S

    2003-07-15

    A novel, interferometric, polarization-interrogating filter assembly and method for the simultaneous measurement of all four Stokes parameters across a partially polarized irradiance image in a no-moving-parts, instantaneous, highly sensitive manner is described. In the reported embodiment of the filter, two spatially varying linear retarders and a linear polarizer comprise an ortho-Babinet, polarization-interrogating (OBPI) filter. The OBPI filter uniquely encodes the incident ensemble of electromagnetic wave fronts comprising a partially polarized irradiance image in a controlled, deterministic, spatially varying manner to map the complete state of polarization across the image to local variations in a superposed interference pattern. Experimental interferograms are reported along with a numerical simulation of the method.

  12. Sharing Teaching Ideas: Starship.

    ERIC Educational Resources Information Center

    Camp, Dane R.

    1995-01-01

    Presents a game used to help students learning polar coordinates in precalculus class. The game is a variation of the game Battleship with the major difference being that students use polar coordinates. Includes reproducible student worksheets and directions. (MKR)

  13. Spatial distribution of polarization over the disks of Venus, Jupiter, Saturn, and the moon

    NASA Technical Reports Server (NTRS)

    Fountain, J. W.

    1974-01-01

    The method of photographic subtraction, which superposes positive and negative photographs taken with the analyzer rotated through 90 deg, is used to analyze polarization photographs of Venus, Jupiter, Saturn, and the moon. For Venus, near 90 deg phase angle, variation in polarization in ultraviolet light appears to correspond generally with the position of the cloud markings. The northern hemisphere of Saturn shows higher polarization in blue light than does the rest of the planet. The polarization of the moon is shown to deviate significantly from Umov's law for reciprocity of polarization and reflectivity in certain regions.

  14. A 3D model of polarized dust emission in the Milky Way

    NASA Astrophysics Data System (ADS)

    Martínez-Solaeche, Ginés; Karakci, Ata; Delabrouille, Jacques

    2018-05-01

    We present a three-dimensional model of polarized galactic dust emission that takes into account the variation of the dust density, spectral index and temperature along the line of sight, and contains randomly generated small-scale polarization fluctuations. The model is constrained to match observed dust emission on large scales, and match on smaller scales extrapolations of observed intensity and polarization power spectra. This model can be used to investigate the impact of plausible complexity of the polarized dust foreground emission on the analysis and interpretation of future cosmic microwave background polarization observations.

  15. Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms

    PubMed Central

    Wagoner, Jason A.; Baker, Nathan A.

    2006-01-01

    Continuum solvation models provide appealing alternatives to explicit solvent methods because of their ability to reproduce solvation effects while alleviating the need for expensive sampling. Our previous work has demonstrated that Poisson-Boltzmann methods are capable of faithfully reproducing polar explicit solvent forces for dilute protein systems; however, the popular solvent-accessible surface area model was shown to be incapable of accurately describing nonpolar solvation forces at atomic-length scales. Therefore, alternate continuum methods are needed to reproduce nonpolar interactions at the atomic scale. In the present work, we address this issue by supplementing the solvent-accessible surface area model with additional volume and dispersion integral terms suggested by scaled particle models and Weeks–Chandler–Andersen theory, respectively. This more complete nonpolar implicit solvent model shows very good agreement with explicit solvent results and suggests that, although often overlooked, the inclusion of appropriate dispersion and volume terms are essential for an accurate implicit solvent description of atomic-scale nonpolar forces. PMID:16709675

  16. Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.

    PubMed

    Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  17. Division B Commission 25: Astronomical Photometry and Polarimetry

    NASA Astrophysics Data System (ADS)

    Walker, Alistair; Adelman, Saul; Milone, Eugene; Anthony-Twarog, Barbara; Bastien, Pierre; Chen, Wen Ping; Howell, Steve; Knude, Jens; Kurtz, Donald; Magalhães, Antonio Mario; Menzies, John; Smith, Allyn; Volk, Kevin

    2016-04-01

    Commission 25 (C25) deals with the techniques and issues involved with the measurement of optical and infrared radiation intensities and polarization from astronomical sources. As such, in recent years attention has focused on photometric standard stars, atmospheric extinction, photometric passbands, transformation between systems, nomenclature, and observing and reduction techniques. At the start of the trimester C25 changed its name from Stellar Photometry and Polarization to Astronomical Photometry and Polarization so as to explicitly include in its mandate particular issues arising from the measurement of resolved sources, given the importance of photometric redshifts of distant galaxies for many of the large photometric surveys now underway. We begin by summarizing commission activities over the 2012-2014 period, follow with a report on Polarimetry, continue with Photometry topics that have been of interest to C25 members, and conclude with a Vision for the Future.

  18. Polarization operator of a photon in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katkov, V. M., E-mail: V.M.Katkov@inp.nsk.su

    2016-08-15

    The polarization operator of a photon in a static uniform magnetic field has been studied at photon energies both above and below the threshold of electron–positron pair production by a photon. In the first order of the fine-structure constant α, expressions for the refractive index of a photon with a certain polarization in both low and high fields as compared to the critical field H{sub 0} = 4.41 × 10{sup 13} G have been obtained. Both the purely quantum range of photon energies, where the particles of a pair are produced at the lowest Landau levels, and the region ofmore » applicability of the semiclassical approximation in the case of the population of high energy levels have been considered. A general spectral integral formula has been obtained with divergent threshold terms separated in an explicit form.« less

  19. A Combined FEM/MoM/GTD Technique To Analyze Elliptically Polarized Cavity-Backed Antennas With Finite Ground Plane

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.

  20. Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. II. Fe XIV 5303 A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, L.L.; Querfeld, C.W.; Rees, D.E.

    1982-04-15

    Coronal magnetic fields influence in the intensity and linear polarization of light scattered by coronal Fe XIV ions. To interpret polarization measurements of Fe XIV 5303 A coronal emission requires a detailed understanding of the dependence of the emitted Stokes vector on coronal magnetic field direction, electron density, and temperature and on height of origin. The required dependence is included in the solutions of statistical equilibrium for the ion which are solved explicitly for 34 magnetic sublevels in both the ground and four excited terms. The full solutions are reduced to equivalent simple analytic forms which clearly show the requiredmore » dependence on coronal conditions. The analytic forms of the reduced solutions are suitable for routine analysis of 5303 green line polarimetric data obtained at Pic du Midi and from the Solar Maximum Mission Coronagraph/Polarimeter.« less

  1. Prediction of global vapor-liquid equilibria for mixtures containing polar and associating components with improved renormalization group theory.

    PubMed

    Mi, Jianguo; Tang, Yiping; Zhong, Chongli; Li, Yi-Gui

    2005-11-03

    Our recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids. The calculated results for both pure fluids and mixtures are in good agreement with experimental data both inside and outside the critical region. This work demonstrates that the RG theory incorporated with the solution of FMSA is a promising route for accurately describing the global phase behavior of complex fluids and mixtures.

  2. Obliquity variation in a Mars climate evolution model

    NASA Technical Reports Server (NTRS)

    Tyler, D.; Haberle, Robert M.

    1993-01-01

    The existence of layered terrain in both polar regions of Mars is strong evidence supporting a cyclic variation in climate. It has been suggested that periods of net deposition have alternated with periods of net erosion in creating the layered structure that is seen today. The cause for this cyclic climatic behavior is variation in the annually averaged latitudinal distribution of solar insolation in response to obliquity cycles. For Mars, obliquity variation leads to major climatological excursion due to the condensation and sublimation of the major atmospheric constituent, CO2. The atmosphere will collapse into the polar caps, or existing caps will rapidly sublimate into the atmosphere, dependent upon the polar surface heat balance and the direction of the change in obliquity. It has been argued that variations in the obliquity of Mars cause substantial departures from the current climatological values of the surface pressure and the amount of CO2 stored in both the planetary regolith and polar caps. In this new work we have modified the Haberle et al. model to incorporate variable obliquity by allowing the polar and equatorial insolation to become functions of obliquity, which we assume to vary sinusoidally in time. As obliquity varies in the model, there can be discontinuities in the time evolution of the model equilibrium values for surface pressure, regolith, and polar cap storage. The time constant, tau r, for the regolith to find equilibrium with the climate is estimated--depending on the depth, thermal conductivity, and porosity of the regolith--between 10(exp 4) and 10(exp 6) yr. Thus, using 2000-yr timesteps to move smoothly through the 0.1250 m.y. obliquity cycles, we have an atmosphere/regolith system that cannot be assumed in equilibrium. We have dealt with this problem by limiting the rate at which CO2, can move between the atmosphere and regolith, mimicking the diffusive nature and effects of the temperature and pressure waves, by setting the time rate of change of regolith storage proportional to the difference between equilibrium storage and current storage.

  3. Chemical disorder as an engineering tool for spin polarization in Mn3Ga -based Heusler systems

    NASA Astrophysics Data System (ADS)

    Chadov, S.; D'Souza, S. W.; Wollmann, L.; Kiss, J.; Fecher, G. H.; Felser, C.

    2015-03-01

    Our study highlights spin-polarization mechanisms in metals by focusing on the mobilities of conducting electrons with different spins instead of their quantities. Here, we engineer electron mobility by applying chemical disorder induced by nonstoichiometric variations. As a practical example, we discuss the scheme that establishes such variations in tetragonal Mn3Ga Heusler material. We justify this approach using first-principles calculations of the spin-projected conductivity components based on the Kubo-Greenwood formalism. It follows that, in the majority of cases, even a small substitution of some other transition element instead of Mn may lead to a substantial increase in spin polarization along the tetragonal axis.

  4. Importance of parametrizing constraints in quantum-mechanical variational calculations

    NASA Technical Reports Server (NTRS)

    Chung, Kwong T.; Bhatia, A. K.

    1992-01-01

    In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.

  5. Computing the Polarimetric and Photometric Variability of Be Stars

    NASA Astrophysics Data System (ADS)

    Marr, K. C.; Jones, C. E.; Halonen, R. J.

    2018-01-01

    We investigate variations in the linear polarization as well as in the V-band and B-band color–magnitudes for classical Be star disks. We present two models: disks with enhanced disk density and disks that are tilted or warped from the stellar equatorial plane. In both cases, we predict variation in observable properties of the system as the disk rotates. We use a non-LTE radiative transfer code BEDISK (Sigut & Jones) in combination with a Monte Carlo routine that includes multiple scattering (Halonen et al.) to model classical Be star systems. We find that a disk with an enhanced density region that is one order of magnitude denser than the disk’s base density shows as much as ∼ 0.2 % variability in the polarization while the polarization position angle varies by ∼ 8^\\circ . The ΔV magnitude for the same system shows variations of up to ∼ 0.4 mag while the Δ(B–V) color varies by at most ∼ 0.01 mag. We find that disks tilted from the equatorial plane at small angles of ∼ 30^\\circ more strongly reflect the values of polarization and color–magnitudes reported in the literature than disks tilted at larger angles. For this model, the linear polarization varies by ∼ 0.3 % , the polarization position angle varies by ∼ 60^\\circ , the ΔV magnitude varies up to 0.35 mag, and the Δ(B–V) color varies by up to 0.1 mag. We find that the enhanced disk density models show ranges of polarization and color–magnitudes that are commensurate with what is reported in the literature for all sizes of the density-enhanced regions. From this, we cannot determine any preference for small or large density-enhanced regions.

  6. The Known Mix: A Taste of Variation

    ERIC Educational Resources Information Center

    Canada, Daniel L.

    2008-01-01

    To create an environment in which all students have opportunities to notice, describe, and wonder about variability, this article takes a context familiar to many teacher--sampling colored chips from a jar--and shows how this context was used to explicitly focus on variation in the classroom. The sampling activity includes physical as well as…

  7. Crossing the Threshold: Bringing Biological Variation to the Foreground

    ERIC Educational Resources Information Center

    Batzli, Janet M.; Knight, Jennifer K.; Hartley, Laurel M.; Maskiewicz, April Cordero; Desy, Elizabeth A.

    2016-01-01

    Threshold concepts have been referred to as "jewels in the curriculum": concepts that are key to competency in a discipline but not taught explicitly. In biology, researchers have proposed the idea of threshold concepts that include such topics as variation, randomness, uncertainty, and scale. In this essay, we explore how the notion of…

  8. A new cue to figure-ground coding: top-bottom polarity.

    PubMed

    Hulleman, Johan; Humphreys, Glyn W

    2004-11-01

    We present evidence for a new figure-ground cue: top-bottom polarity. In an explicit reporting task, participants were more likely to interpret stimuli with a wide base and a narrow top as a figure. A similar advantage for wide-based stimuli also occurred in a visual short-term memory task, where the stimuli had ambiguous figure-ground relations. Further support comes from a figural search task. Figural search is a discrimination task in which participants are set to search for a symmetric target in a display with ambiguous figure-ground organization. We show that figural search was easier when stimuli with a top-bottom polarity were placed in an orientation where they had a wide base and a narrow top, relative to when this orientation was inverted. This polarity effect was present when participants were set to use color to parse figure from ground, and it was magnified when the participants did not have any foreknowledge of the color of the symmetric target. Taken together the results suggest that top-bottom polarity influences figure-ground assignment, with wide base stimuli being preferred as a figure. In addition, the figural search task can serve as a useful procedure to examine figure-ground assignment.

  9. On the Wiener Polarity Index of Lattice Networks.

    PubMed

    Chen, Lin; Li, Tao; Liu, Jinfeng; Shi, Yongtang; Wang, Hua

    2016-01-01

    Network structures are everywhere, including but not limited to applications in biological, physical and social sciences, information technology, and optimization. Network robustness is of crucial importance in all such applications. Research on this topic relies on finding a suitable measure and use this measure to quantify network robustness. A number of distance-based graph invariants, also known as topological indices, have recently been incorporated as descriptors of complex networks. Among them the Wiener type indices are the most well known and commonly used such descriptors. As one of the fundamental variants of the original Wiener index, the Wiener polarity index has been introduced for a long time and known to be related to the cluster coefficient of networks. In this paper, we consider the value of the Wiener polarity index of lattice networks, a common network structure known for its simplicity and symmetric structure. We first present a simple general formula for computing the Wiener polarity index of any graph. Using this formula, together with the symmetric and recursive topology of lattice networks, we provide explicit formulas of the Wiener polarity index of the square lattices, the hexagonal lattices, the triangular lattices, and the 33 ⋅ 42 lattices. We also comment on potential future research topics.

  10. Solvatochromic Effects on the Absorption Spectrum of 2-Thiocytosine

    PubMed Central

    2017-01-01

    The solvatochromic effects of six different solvents on the UV absorption spectrum of 2-thiocytosine have been studied by a combination of experimental and theoretical techniques. The steady-state absorption spectra show significant shifts of the absorption bands, where in more polar solvents the first absorption maximum shifts to higher transition energies and the second maximum to lower energies. The observed solvatochromic shifts have been rationalized using three popular solvatochromic scales and with high-level multireference quantum chemistry calculations including implicit and explicit solvent effects. It has been found that the dipole moments of the excited states account for some general shifts in the excitation energies, whereas the explicit solvent interactions explain the differences in the spectra recorded in the different solvents. PMID:28452483

  11. Implicit versus explicit momentum relaxation time solution for semiconductor nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A., E-mail: agodoy@ugr.es

    2015-07-14

    We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicitmore » approach inaccuracies on the total mobility of Si and III-V NWs are studied.« less

  12. The contribution of scalars to N = 4 SYM amplitudes II: Young tableaux, asymptotic factorisation and strong coupling

    NASA Astrophysics Data System (ADS)

    Bonini, Alfredo; Fioravanti, Davide; Piscaglia, Simone; Rossi, Marco

    2018-06-01

    We disentangle the contribution of scalars to the OPE series of null hexagonal Wilson loops/MHV gluon scattering amplitudes in multicolour N = 4 SYM. In specific, we develop a systematic computation of the SU (4) matrix part of the Wilson loop by means of Young tableaux (with several examples). Then, we use a peculiar factorisation property (when a group of rapidities becomes large) to deduce an explicit polar form. Furthermore, we emphasise the advantages of expanding the logarithm of the Wilson loop in terms of 'connected functions' as we apply this procedure to find an explicit strong coupling expansion (definitively proving that the leading order can prevail on the classical AdS5 string contribution).

  13. Algorithm for quantum-mechanical finite-nuclear-mass variational calculations of atoms with two p electrons using all-electron explicitly correlated Gaussian basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy

    2009-12-15

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.

  14. Nonlinear optical susceptibility described with a spherical formalism applied to coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Cleff, Carsten; Rigneault, Hervé; Brasselet, Sophie; Duboisset, Julien

    2017-07-01

    We describe coherent Raman scattering in a complete spherical formalism allowing a better understanding of the coherent Raman process with respect to its symmetry properties, which is especially helpful in polarized coherent Raman microscopy. We describe how to build the coherent Raman tensor from spontaneous Raman tensor for crystalline and disordered media. We introduce a distribution function for molecular bonds and show how this distribution function results in a new macroscopic symmetry which can be very different from the symmetry of vibrational modes. Finally, we explicitly show polarization configurations for coherent anti-Stokes Raman scattering to probe specific vibration symmetries in crystalline samples and lipid layers.

  15. Plate motion and the secular shift of the mean pole

    NASA Technical Reports Server (NTRS)

    Liu, H.; Carpenter, L.; Agreen, R. W.

    1973-01-01

    The global plate motion indicates that changes in the products of inertia of the earth due to tectonic plate movement may provide a secular shift of the mean pole. A mathematical procedure for calculating this shift based on the plate theory is presented. Explicit expressions were obtained for the dependence of the secular polar shift on the dimensions and locations of the plate boundaries. Numerical results show that the secular motion of the mean pole is 0.0002 sec/year in the direction of 67 W. Hence, it is deduced that the influence of the plate motion on the secular polar shift may account for 10% of the observed value.

  16. Chiral photonic crystals with an anisotropic defect layer.

    PubMed

    Gevorgyan, A H; Harutyunyan, M Z

    2007-09-01

    In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.

  17. SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V; Parsai, E; Mathew, D

    2016-06-15

    Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements weremore » made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.« less

  18. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems.

    PubMed

    Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong

    2014-12-29

    In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.

  19. Polarization-Analyzing CMOS Image Sensor With Monolithically Embedded Polarizer for Microchemistry Systems.

    PubMed

    Tokuda, T; Yamada, H; Sasagawa, K; Ohta, J

    2009-10-01

    This paper proposes and demonstrates a polarization-analyzing CMOS sensor based on image sensor architecture. The sensor was designed targeting applications for chiral analysis in a microchemistry system. The sensor features a monolithically embedded polarizer. Embedded polarizers with different angles were implemented to realize a real-time absolute measurement of the incident polarization angle. Although the pixel-level performance was confirmed to be limited, estimation schemes based on the variation of the polarizer angle provided a promising performance for real-time polarization measurements. An estimation scheme using 180 pixels in a 1deg step provided an estimation accuracy of 0.04deg. Polarimetric measurements of chiral solutions were also successfully performed to demonstrate the applicability of the sensor to optical chiral analysis.

  20. Influence of soil organic matter composition on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Klle, D.E.

    1992-01-01

    The sorption at room temperature of benzene and carbon tetrachloride from water on three high-organic-content soils (muck, peat, and extracted peat) and on cellulose was determined in order to evaluate the effect of sorbent polarity on the solute partition coefficients. The isotherms are highly linear for both solutes on all the organic matter samples, which is consistent with a partition model. For both solutes, the extracted peat shows the greatest sorption capacity while the cellulose shows the lowest capacity; the difference correlates with the polar-to-nonpolar group ratio [(O + N)/C] of the sorbent samples. The relative increase of solute partition coefficient (Kom) with a decrease of sample polar content is similar for both solutes, and the limiting sorption capacity on a given organic matter sample is comparable between the solutes. This observation suggests that one can estimate the polarity effect of a sample of soil organic matter (SOM) on Kom of various nonpolar solutes by determining the partition coefficient of single nonpolar solute when compositional analysis of the SOM is not available. The observed dependence of Kom on sample polarity is used to account for the variation of Kom values of individual compounds on different soils that results from change in the polar group content of SOM. On the assumption that the carbon content of SOM in "ordinary soils" is 53-63%, the calculated variation of Kom is a factor of ???3. This value is in agreement with the limit of variation of most Kom data with soils of relatively high SOM contents.

  1. Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2014-01-01

    The author presents a model for variability of the flux and polarization of blazars in which turbulent plasma flowing at a relativistic speed down a jet crosses a standing conical shock. The shock compresses the plasma and accelerates electrons to energies up to γmax >~ 104 times their rest-mass energy, with the value of γmax determined by the direction of the magnetic field relative to the shock front. The turbulence is approximated in a computer code as many cells, each with a uniform magnetic field whose direction is selected randomly. The density of high-energy electrons in the plasma changes randomly with time in a manner consistent with the power spectral density of flux variations derived from observations of blazars. The variations in flux and polarization are therefore caused by continuous noise processes rather than by singular events such as explosive injection of energy at the base of the jet. Sample simulations illustrate the behavior of flux and linear polarization versus time that such a model produces. The variations in γ-ray flux generated by the code are often, but not always, correlated with those at lower frequencies, and many of the flares are sharply peaked. The mean degree of polarization of synchrotron radiation is higher and its timescale of variability shorter toward higher frequencies, while the polarization electric vector sometimes randomly executes apparent rotations. The slope of the spectral energy distribution exhibits sharper breaks than can arise solely from energy losses. All of these results correspond to properties observed in blazars.

  2. Invariant polarimetric contrast parameters of coherent light.

    PubMed

    Réfrégier, Philippe; Goudail, François

    2002-06-01

    Many applications use an active coherent illumination and analyze the variation of the polarization state of optical signals. However, as a result of the use of coherent light, these signals are generally strongly perturbed with speckle noise. This is the case, for example, for active polarimetric imaging systems that are useful for enhancing contrast between different elements in a scene. We propose a rigorous definition of the minimal set of parameters that characterize the difference between two coherent and partially polarized states. Indeed, two states of partially polarized light are a priori defined by eight parameters, for example, their two Stokes vectors. We demonstrate that the processing performance for such signal processing tasks as detection, localization, or segmentation of spatial or temporal polarization variations is uniquely determined by two scalar functions of these eight parameters. These two scalar functions are the invariant parameters that define the polarimetric contrast between two polarized states of coherent light. Different polarization configurations with the same invariant contrast parameters will necessarily lead to the same performance for a given task, which is a desirable quality for a rigorous contrast measure. The definition of these polarimetric contrast parameters simplifies the analysis and the specification of processing techniques for coherent polarimetric signals.

  3. High extinction ratio terahertz wire-grid polarizers with connecting bridges on quartz substrates.

    PubMed

    Cetnar, John S; Vangala, Shivashankar; Zhang, Weidong; Pfeiffer, Carl; Brown, Elliott R; Guo, Junpeng

    2017-03-01

    A terahertz (THz) wire-grid polarizer with metallic bridges on a quartz substrate was simulated, fabricated, and tested. The device functions as a wide-band polarizer to incident THz radiation. In addition, the metallic bridges permit the device to function as a transparent electrode when a DC bias is applied to it. Three design variations of the polarizer with bridges and a polarizer without bridges were studied. Results show the devices with bridges have average s-polarization transmittance of less than -3  dB and average extinction ratios of approximately 40 dB across a frequency range of 220-990 GHz and thus are comparable to a polarizer without bridges.

  4. Geometrical dart infrared polarization signatures

    NASA Astrophysics Data System (ADS)

    Lewis, Gareth D.; Jordan, David L.

    1996-06-01

    The 8 - 12 micrometer polarization signatures of diffuse and specular aluminum geometrical darts were analyzed outdoors using a polarization sensitive thermal imager. Results of the degree and plane of polarization are presented for different thermal imager gain bands and weather conditions during a two week period. The 0 degree, 45 degree, 90 degree and 135 degree polarizer orientations were thermally calibrated and the S1 and S2 Stokes parameters shown as radiometric temperature differences. The effect on the polarization signatures of range is considered for these targets at 100 m and 370 m. A comparison of the degree of polarization to changes in the emission/reflection balance and to variations in the dart's complex refractive index is made.

  5. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity

    USGS Publications Warehouse

    Rode, Karyn D.; Wilson, Ryan R.; Douglas, David C.; Muhlenbruch, Vanessa L; Atwood, Todd C.; Regehr, Eric V.; Richardson, Evan; Pilfold, Nicholas; Derocher, Andrew E.; Durner, George M.; Stirling, Ian; Amstrup, Steven C.; St Martin, Michelle; Pagano, Anthony M.; Simac, Kristin

    2018-01-01

    The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983–1999 and 2000–2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in affecting upper trophic-level productivity in these marine ecosystems.

  6. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity.

    PubMed

    Rode, Karyn D; Wilson, Ryan R; Douglas, David C; Muhlenbruch, Vanessa; Atwood, Todd C; Regehr, Eric V; Richardson, Evan S; Pilfold, Nicholas W; Derocher, Andrew E; Durner, George M; Stirling, Ian; Amstrup, Steven C; St Martin, Michelle; Pagano, Anthony M; Simac, Kristin

    2018-01-01

    The effects of declining Arctic sea ice on local ecosystem productivity are not well understood but have been shown to vary inter-specifically, spatially, and temporally. Because marine mammals occupy upper trophic levels in Arctic food webs, they may be useful indicators for understanding variation in ecosystem productivity. Polar bears (Ursus maritimus) are apex predators that primarily consume benthic and pelagic-feeding ice-associated seals. As such, their productivity integrates sea ice conditions and the ecosystem supporting them. Declining sea ice availability has been linked to negative population effects for polar bears but does not fully explain observed population changes. We examined relationships between spring foraging success of polar bears and sea ice conditions, prey productivity, and general patterns of ecosystem productivity in the Beaufort and Chukchi Seas (CSs). Fasting status (≥7 days) was estimated using serum urea and creatinine levels of 1,448 samples collected from 1,177 adult and subadult bears across three subpopulations. Fasting increased in the Beaufort Sea between 1983-1999 and 2000-2016 and was related to an index of ringed seal body condition. This change was concurrent with declines in body condition of polar bears and observed changes in the diet, condition and/or reproduction of four other vertebrate consumers within the food chain. In contrast, fasting declined in CS polar bears between periods and was less common than in the two Beaufort Sea subpopulations consistent with studies demonstrating higher primary productivity and maintenance or improved body condition in polar bears, ringed seals, and bearded seals despite recent sea ice loss in this region. Consistency between regional and temporal variation in spring polar bear fasting and food web productivity suggests that polar bears may be a useful indicator species. Furthermore, our results suggest that spatial and temporal ecological variation is important in affecting upper trophic-level productivity in these marine ecosystems. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. Evidence for subsurface water ice in Korolev crater, Mars

    USGS Publications Warehouse

    Armstrong, J.C.; Titus, T.N.; Kieffer, H.H.

    2005-01-01

    Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ???73?? latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix. ?? 2004 Elsevier Inc. All rights reserved.

  8. The rotation of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  9. Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion

    NASA Astrophysics Data System (ADS)

    Milton, Graeme W.

    2017-09-01

    Here, we obtain explicit formulas for bounds on the complex electrical polarizability at a given frequency of an inclusion with known volume that follow directly from the quasistatic bounds of Bergman and Milton on the effective complex dielectric constant of a two-phase medium. We also describe how analogous bounds on the orientationally averaged bulk and shear polarizabilities at a given frequency can be obtained from bounds on the effective complex bulk and shear moduli of a two-phase medium obtained by Milton, Gibiansky, and Berryman, using the quasistatic variational principles of Cherkaev and Gibiansky. We also show how the polarizability problem and the acoustic scattering problem can both be reformulated in an abstract setting as "Y problems." In the acoustic scattering context, to avoid explicit introduction of the Sommerfeld radiation condition, we introduce auxiliary fields at infinity and an appropriate "constitutive law" there, which forces the Sommerfeld radiation condition to hold. As a consequence, we obtain minimization variational principles for acoustic scattering that can be used to obtain bounds on the complex backwards scattering amplitude. Some explicit elementary bounds are given.

  10. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework.

    PubMed

    Slunyaev, A V; Pelinovsky, E N

    2016-11-18

    The role of multiple soliton and breather interactions in the formation of very high waves is disclosed within the framework of the integrable modified Korteweg-de Vries (MKdV) equation. Optimal conditions for the focusing of many solitons are formulated explicitly. Namely, trains of ordered solitons with alternate polarities evolve to huge strongly localized transient waves. The focused wave amplitude is exactly the sum of the focusing soliton heights; the maximum wave inherits the polarity of the fastest soliton in the train. The focusing of several solitary waves or/and breathers may naturally occur in a soliton gas and will lead to rogue-wave-type dynamics; hence, it represents a new nonlinear mechanism of rogue wave generation. The discovered scenario depends crucially on the soliton polarities (phases), and is not taken into account by existing kinetic theories. The performance of the soliton mechanism of rogue wave generation is shown for the example of the focusing MKdV equation, when solitons possess "frozen" phases (certain polarities), though the approach is efficient in some other integrable systems which admit soliton and breather solutions.

  11. Role of Multiple Soliton Interactions in the Generation of Rogue Waves: The Modified Korteweg-de Vries Framework

    NASA Astrophysics Data System (ADS)

    Slunyaev, A. V.; Pelinovsky, E. N.

    2016-11-01

    The role of multiple soliton and breather interactions in the formation of very high waves is disclosed within the framework of the integrable modified Korteweg-de Vries (MKdV) equation. Optimal conditions for the focusing of many solitons are formulated explicitly. Namely, trains of ordered solitons with alternate polarities evolve to huge strongly localized transient waves. The focused wave amplitude is exactly the sum of the focusing soliton heights; the maximum wave inherits the polarity of the fastest soliton in the train. The focusing of several solitary waves or/and breathers may naturally occur in a soliton gas and will lead to rogue-wave-type dynamics; hence, it represents a new nonlinear mechanism of rogue wave generation. The discovered scenario depends crucially on the soliton polarities (phases), and is not taken into account by existing kinetic theories. The performance of the soliton mechanism of rogue wave generation is shown for the example of the focusing MKdV equation, when solitons possess "frozen" phases (certain polarities), though the approach is efficient in some other integrable systems which admit soliton and breather solutions.

  12. Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone, 1958-1987 (1991)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angell, J. K.; Korshover, J.; Planet, W. G.

    For 1958 through 1987, this data base presents total ozone variations and layer mean ozone variations expressed as percent deviations from the 1958 to 1977 mean. The total ozone variations were derived from mean monthly ozone values published in Ozone Data for the World by the Atmospheric Environment Service in cooperation with the World Meteorological Organization. The layer mean ozone variations are derived from ozonesonde and Umkehr observations. The data records include year, seasonal and annual total ozone variations, and seasonal and annual layer mean ozone variations. The total ozone data are for four regions (Soviet Union, Europe, North America,more » and Asia); five climatic zones (north and south polar, north and south temperate, and tropical); both hemispheres; and the world. Layer mean ozone data are for four climatic zones (north and south temperate and north and south polar) and for the stratosphere, troposphere, and tropopause layers. The data are in two files [seasonal and year-average total ozone (13.4 kB) and layer mean ozone variations (24.2 kB)].« less

  13. Positive vs. Negative: The Impact of Question Polarity in Voting Advice Applications

    PubMed Central

    Krouwel, André; van de Pol, Jasper; de Vreese, Claes

    2016-01-01

    Online Voting Advice Applications (VAAs) are survey-like instruments that help citizens to shape their political preferences and compare them with those of political parties. Especially in multi-party democracies, their increasing popularity indicates that VAAs play an important role in opinion formation for citizens, as well as in the public debate prior to elections. Hence, the objectivity and transparency of VAAs are crucial. In the design of VAAs, many choices have to be made. Extant research in survey methodology shows that the seemingly arbitrary choice to word questions positively (e.g., ‘The city council should allow cars into the city centre’) or negatively (‘The city council should ban cars from the city centre’) systematically affects the answers. This asymmetry in answers is in line with work on negativity bias in other areas of linguistics and psychology. Building on these findings, this study investigated whether question polarity also affects the answers to VAA statements. In a field experiment (N = 31,112) during the Dutch municipal elections we analysed the effects of polarity for 16 out of 30 VAA statements with a large variety of linguistic contrasts. Analyses show a significant effect of question wording for questions containing a wide range of implicit negations (such as ‘forbid’ vs. ‘allow’), as well as for questions with explicit negations (e.g., ‘not’). These effects of question polarity are found especially for VAA users with lower levels of political sophistication. As these citizens are an important target group for Voting Advice Applications, this stresses the need for VAA builders to be sensitive to wording choices when designing VAAs. This study is the first to show such consistent wording effects not only for political attitude questions with implicit negations in VAAs, but also for political questions containing explicit negations. PMID:27723776

  14. Monovalent Ions and Water Dipoles in Contact with Dipolar Zwitterionic Lipid Headgroups-Theory and MD Simulations

    PubMed Central

    Velikonja, Aljaž; Perutkova, Šarka; Gongadze, Ekaterina; Kramar, Peter; Polak, Andraž; Maček-Lebar, Alenka; Iglič, Aleš

    2013-01-01

    The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipids which have dipolar, but electrically neutral head groups, are most frequently used in formation of artificial lipid bilayers. In this work the electrical properties of the lipid layer composed of zwitterionic lipids with non-zero dipole moments are studied theoretically. In the model, the zwitterionic lipid bilayer is assumed to be in contact with aqueous solution of monovalent salt ions. The orientational ordering of water, resulting in spatial variation of permittivity, is explicitly taken into account. It is shown that due to saturation effect in orientational ordering of water dipoles the relative permittivity in the zwitterionic headgroup region is decreased, while the corresponding electric potential becomes strongly negative. Some of the predictions of the presented mean-field theoretical consideration are critically evaluated using the results of molecular dynamics (MD) simulation. PMID:23434651

  15. Inter-annual and Long-term Temperature Variations in the Mesopause Region at High Latitudes Generated by the Stratospheric QBO

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, John G.; Huang, Frank T.

    2007-01-01

    The Numerical Spectral Model (NSM) simulates the Quasi-biennial Oscillation (QBO) that dominates the zonal circulation of the lower stratosphere at low latitudes. In the model, the QBO is generated with parameterized small-scale gravity waves (GW), which are partially augmented in 3D with planetary waves owing to baroclinic instability. Due to GW filtering, the QBO extends into the upper mesosphere, evident in UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, even in simulations with latitude-independent wave source, the associated temperature variations extend to high latitudes. The meridional circulation redistributes some of the QBO energy to focus it partially onto the Polar Regions. The resulting QBO temperature variations away from the equator tend to increase at higher altitudes to produce inter-annual variations that can exceed 5 K in the polar mesopause region -- and our 3D model simulations show that the effect is variable from year to year and can produce large differences between the two hemispheres, presumably due to interactions involving the seasonal variations. Modeling studies with the NSM have shown that long-term variations can also be generated by the QBO interacting with the seasonal cycles through OW node-filtering. A 30-month QBO, optimally synchronized by the 6-month Semi-Annual Oscillation (SAO), thus produces a 5-year or semi-decadal (SD) oscillation -- and observational evidence for that has been provided by a recent analysis of stratospheric NCEP data. In a simulation with the 2D version of the NSM, this SD oscillation extends into the upper mesosphere, and we present results to show that the related temperature variations could contribute significantly to the long-term variations of the polar mesopause region. Quasi-decadal variations could furthermore arise from the modeled solar cycle modulations of the QBO and 12-month annual oscillation. Our numerical results are discussed in the context of the observed low summer temperatures reproduced by the model, to demonstrate that the above interannual and long-term variations could contribute significantly to the climatology of Polar Mesospheric Clouds (PMC) investigated by the Aeronomy of Ice in the Mesosphere (AIM) mission.

  16. Treatment algorithms and protocolized care.

    PubMed

    Morris, Alan H

    2003-06-01

    Excess information in complex ICU environments exceeds human decision-making limits and likely contributes to unnecessary variation in clinical care, increasing the likelihood of clinical errors. I reviewed recent critical care clinical trials searching for information about the impact of protocol use on clinically pertinent outcomes. Several recently published clinical trials illustrate the importance of distinguishing efficacy and effectiveness trials. One of these trials illustrates the danger of conducting effectiveness trials before the efficacy of an intervention is established. The trials also illustrate the importance of distinguishing guidelines and inadequately explicit protocols from adequately explicit protocols. Only adequately explicit protocols contain enough detail to lead different clinicians to the same decision when faced with the same clinical scenario. Differences between guidelines and protocols are important. Guidelines lack detail and provide general guidance that requires clinicians to fill in many gaps. Computerized or paper-based protocols are detailed and, when used for complex clinical ICU problems, can generate patient-specific, evidence-based therapy instructions that can be carried out by different clinicians with almost no interclinician variability. Individualization of patient therapy can be preserved by these protocols when they are driven by individual patient data. Explicit decision-support tools (eg, guidelines and protocols) have favorable effects on clinician and patient outcomes and can reduce the variation in clinical practice. Guidelines and protocols that aid ICU decision makers should be more widely distributed.

  17. Regional contamination versus regional dietary differences: Understanding geographic variation in brominated and chlorinated contaminant levels in polar bears

    USGS Publications Warehouse

    McKinney, M.A.; Letcher, R.J.; Aars, Jon; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Gabrielsen, G.W.; Muir, D.C.G.; Peacock, E.; Sonne, C.

    2011-01-01

    The relative contribution of regional contamination versus dietary differences to geographic variation in polar bear (Ursus maritimus) contaminant levels is unknown. Dietary variation between Alaska Canada, East Greenland, and Svalbard subpopulations was assessed by muscle nitrogen and carbon stable isotope (?? 15N, ?? 13C) and adipose fatty acid (FA) signatures relative to their main prey (ringed seals). Western and southern Hudson Bay signatures were characterized by depleted ?? 15N and ??13C, lower proportions of C20 and C22 monounsaturated FAs and higher proportions of C18 and longer chain polyunsaturated FAs. East Greenland and Svalbard signatures were reversed relative to Hudson Bay. Alaskan ?? 2011 American Chemical Society.

  18. Recovering a hidden polarization by ghost polarimetry.

    PubMed

    Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang

    2018-02-15

    By exploiting polarization correlations of light from a broadband fiber-based amplified spontaneous emission source we succeed in reconstructing a hidden polarization in a ghost polarimetry experiment in close analogy to ghost imaging and ghost spectroscopy. Thereby, an original linear polarization state in the object arm of a Mach-Zehnder interferometer configuration which has been camouflaged by a subsequent depolarizer is recovered by correlating it with light from a reference beam. The variation of a linear polarizer placed inside the reference beam results in a Malus law type second-order intensity correlation with high contrast, thus measuring a ghost polarigram.

  19. Magnetic resonance imaging of convection in laser-polarized xenon

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  20. On push-forward representations in the standard gyrokinetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyato, N., E-mail: miyato.naoaki@jaea.go.jp; Yagi, M.; Scott, B. D.

    2015-01-15

    Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This ismore » true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear.« less

  1. Non-hydrostatic general circulation model of the Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander V.; Mingalev, Igor; Orlov, Konstantin; Ignatiev, Nikolay

    We present the first non-hydrostatic global circulation model of the Venus atmosphere based on the complete set of gas dynamics equations. The model employs a spatially uniform triangular mesh that allows to avoid artificial damping of the dynamical processes in the polar regions, with altitude as a vertical coordinate. Energy conversion from the solar flux into atmospheric motion is described via explicitly specified heating and cooling rates or, alternatively, with help of the radiation block based on comprehensive treatment of the Venus atmosphere spectroscopy, including line mixing effects in CO2 far wing absorption. Momentum equations are integrated using the semi-Lagrangian explicit scheme that provides high accuracy of mass and energy conservation. Due to high vertical grid resolution required by gas dynamics calculations, the model is integrated on the short time step less than one second. The model reliably repro-duces zonal superrotation, smoothly extending far below the cloud layer, tidal patterns at the cloud level and above, and non-rotating, sun-synchronous global convective cell in the upper atmosphere. One of the most interesting features of the model is the development of the polar vortices resembling those observed by Venus Express' VIRTIS instrument. Initial analysis of the simulation results confirms the hypothesis that it is thermal tides that provides main driver for the superrotation.

  2. Ancient Hybridization and an Irish Origin for the Modern Polar Bear Matriline

    PubMed Central

    Edwards, Ceiridwen J.; Suchard, Marc A.; Lemey, Philippe; Welch, John J.; Barnes, Ian; Fulton, Tara L.; Barnett, Ross; O’Connell, Tamsin C.; Coxon, Peter; Monaghan, Nigel; Valdiosera, Cristina E.; Lorenzen, Eline D.; Willerslev, Eske; Baryshnikov, Gennady F.; Rambaut, Andrew; Thomas, Mark G.; Bradley, Daniel G.; Shapiro, Beth

    2015-01-01

    Summary Background Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change. Results We used a spatially explicit phylogeographic model to estimate the dynamics of 242 brown bear and polar bear matrilines sampled throughout the last 120,000 years and across their present and past geographic ranges. Our results show that the present distribution of these matrilines was shaped by a combination of regional stability and rapid, long-distance dispersal from ice-age refugia. In addition, hybridization between polar bears and brown bears may have occurred multiple times throughout the Late Pleistocene. Conclusions The reconstructed matrilineal history of brown and polar bears has two striking features. First, it is punctuated by dramatic and discrete climate-driven dispersal events. Second, opportunistic mating between these two species as their ranges overlapped has left a strong genetic imprint. In particular, a likely genetic exchange with extinct Irish brown bears forms the origin of the modern polar bear matriline. This suggests that interspecific hybridization not only may be more common than previously considered but may be a mechanism by which species deal with marginal habitats during periods of environmental deterioration. PMID:21737280

  3. Ancient hybridization and an Irish origin for the modern polar bear matriline.

    PubMed

    Edwards, Ceiridwen J; Suchard, Marc A; Lemey, Philippe; Welch, John J; Barnes, Ian; Fulton, Tara L; Barnett, Ross; O'Connell, Tamsin C; Coxon, Peter; Monaghan, Nigel; Valdiosera, Cristina E; Lorenzen, Eline D; Willerslev, Eske; Baryshnikov, Gennady F; Rambaut, Andrew; Thomas, Mark G; Bradley, Daniel G; Shapiro, Beth

    2011-08-09

    Polar bears (Ursus maritimus) are among those species most susceptible to the rapidly changing arctic climate, and their survival is of global concern. Despite this, little is known about polar bear species history. Future conservation strategies would significantly benefit from an understanding of basic evolutionary information, such as the timing and conditions of their initial divergence from brown bears (U. arctos) or their response to previous environmental change. We used a spatially explicit phylogeographic model to estimate the dynamics of 242 brown bear and polar bear matrilines sampled throughout the last 120,000 years and across their present and past geographic ranges. Our results show that the present distribution of these matrilines was shaped by a combination of regional stability and rapid, long-distance dispersal from ice-age refugia. In addition, hybridization between polar bears and brown bears may have occurred multiple times throughout the Late Pleistocene. The reconstructed matrilineal history of brown and polar bears has two striking features. First, it is punctuated by dramatic and discrete climate-driven dispersal events. Second, opportunistic mating between these two species as their ranges overlapped has left a strong genetic imprint. In particular, a likely genetic exchange with extinct Irish brown bears forms the origin of the modern polar bear matriline. This suggests that interspecific hybridization not only may be more common than previously considered but may be a mechanism by which species deal with marginal habitats during periods of environmental deterioration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Junocam: Juno's Outreach Camera

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Caplinger, M. A.; Ingersoll, A.; Ravine, M. A.; Jensen, E.; Bolton, S.; Orton, G.

    2017-11-01

    Junocam is a wide-angle camera designed to capture the unique polar perspective of Jupiter offered by Juno's polar orbit. Junocam's four-color images include the best spatial resolution ever acquired of Jupiter's cloudtops. Junocam will look for convective clouds and lightning in thunderstorms and derive the heights of the clouds. Junocam will support Juno's radiometer experiment by identifying any unusual atmospheric conditions such as hotspots. Junocam is on the spacecraft explicitly to reach out to the public and share the excitement of space exploration. The public is an essential part of our virtual team: amateur astronomers will supply ground-based images for use in planning, the public will weigh in on which images to acquire, and the amateur image processing community will help process the data.

  5. Product operator descriptions of INEPT and RINEPT NMR spectroscopies for ISn (I=1/2, S=3/2) spin systems.

    PubMed

    Tokatli, Ahmet; Gençten, Azmi; Sahin, Mükerrem; Tezel, Ozden; Bahçeli, Semiha

    2004-07-01

    The product operator descriptions of INEPT and reverse INEPT (RINEPT) NMR experiments are introduced for weakly coupled ISn (I=1/2, S=3/2 with n=1,2,3) spin systems. Explicit expressions for polarization transfer from spin-3/2 quadrupolar nuclei to spin-1/2 nuclei (and reversed polarization transfer) are given in detail by using the evolutions of product operators under the spin-spin coupling Hamiltonian. The results calculated for the intensities and positions of the observable signals are simulated in the molecules containing the 119Sn (I=1/2) and 35Cl (S=3/2) nuclei at the coupling constant of J(Sn-Cl)=375 Hz by using the Maple programme on computer.

  6. Product operator descriptions of INEPT and RINEPT NMR spectroscopies for ISn ( I=1/2, S=3/2) spin systems

    NASA Astrophysics Data System (ADS)

    Tokatlı, Ahmet; Gençten, Azmi; Şahin, Mükerrem; Tezel, Özden; Bahçeli, Semiha

    2004-07-01

    The product operator descriptions of INEPT and reverse INEPT (RINEPT) NMR experiments are introduced for weakly coupled ISn ( I=1/2, S=3/2 with n=1,2,3) spin systems. Explicit expressions for polarization transfer from spin-3/2 quadrupolar nuclei to spin-1/2 nuclei (and reversed polarization transfer) are given in detail by using the evolutions of product operators under the spin-spin coupling Hamiltonian. The results calculated for the intensities and positions of the observable signals are simulated in the molecules containning the 119Sn ( I=1/2) and 35Cl ( S=3/2) nuclei at the coupling constant of JSn-Cl=375 Hz by using the Maple programme on computer.

  7. Optimized Unlike-Pair Interactions for Water-Carbon Dioxide Mixtures described by the SPC/E and EPM2 Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Chialvo, Ariel A; Cole, David

    The unlike- pair interaction parameters for the SPC/E- EPM2 models have been optimized to reproduce the mutual solubility of water and carbon dioxide at the conditions of liquid- supercritical fluid phase equilibria. An efficient global optimization of the parameters is achieved through an implementation of the coupling parameter approach, adapted to phase equilibria calculations in the Gibbs ensemble, that explicitly corrects for the over- polarization of the SPC/E water molecule in the non- polar CO2 environments. The resulting H2O- CO2 force field reproduces accurately the available experimental solubilities at the two fluid phases in equilibria as well as the correspondingmore » species tracer diffusion coefficients.« less

  8. Ab initio folding of mixed-fold FSD-EY protein using formula-based polarizable hydrogen bond (PHB) charge model

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Lazim, Raudah; Mun Yip, Yew

    2017-09-01

    We conducted an all-atom ab initio folding of FSD-EY, a protein with a ββα configuration using non-polarizable (AMBER) and polarizable force fields (PHB designed by Gao et al.) in implicit solvent. The effect of reducing the polarization effect integrated into the force field by the PHB model, termed the PHB0.7 was also examined in the folding of FSD-EY. This model incorporates into the force field 70% of the original polarization effect to minimize the likelihood of over-stabilizing the backbone hydrogen bonds. Precise folding of the β-sheet of FSD-EY was further achieved by relaxing the REMD structure obtained in explicit water.

  9. Vacuum polarization of the electromagnetic field near a rotating black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-12-15

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor givesmore » a result which coincides at the event horizon with the exact value of /sup ren/. .AE« less

  10. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    NASA Astrophysics Data System (ADS)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  11. Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager

    NASA Astrophysics Data System (ADS)

    Vadawale, S. V.; Chattopadhyay, T.; Mithun, N. P. S.; Rao, A. R.; Bhattacharya, D.; Vibhute, A.; Bhalerao, V. B.; Dewangan, G. C.; Misra, R.; Paul, B.; Basu, A.; Joshi, B. C.; Sreekumar, S.; Samuel, E.; Priya, P.; Vinod, P.; Seetha, S.

    2018-01-01

    The Crab pulsar is a typical example of a young, rapidly spinning, strongly magnetized neutron star that generates broadband electromagnetic radiation by accelerating charged particles to near light speeds in its magnetosphere1. Details of this emission process so far remain poorly understood. Measurement of polarization in X-rays, particularly as a function of pulse phase, is thought to be a key element necessary to unravel the mystery of pulsar radiation2-4. Such measurements are extremely difficult, however: to date, Crab is the only pulsar to have been detected in polarized X-rays5-8 and the measurements have not been sensitive enough to adequately reveal the variation of polarization characteristics across the pulse7. Here, we present the most sensitive measurement to date of polarized hard X-ray emission from the Crab pulsar and nebula in the 100-380 keV band, using the Cadmium-Zinc-Telluride Imager9 instrument on-board the Indian astronomy satellite AstroSat10. We confirm with high significance the earlier indication6,7 of a strongly polarized off-pulse emission. However, we also find a variation in polarization properties within the off-pulse region. In addition, our data hint at a swing of the polarization angle across the pulse peaks. This behaviour cannot be fully explained by the existing theoretical models of high-energy emission from pulsars.

  12. LONG-TERM OPTICAL POLARIZATION VARIABILITY OF THE TeV BLAZAR 1ES 1959+650

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorcia, Marco; Benitez, Erika; Cabrera, Jose I.

    A detailed analysis of the optical polarimetric variability of the TeV blazar 1ES 1959+650 from 2007 October 18 to 2011 May 5 is presented. The source showed maximum and minimum brightness states in the R band of 14.08 {+-} 0.03 mag and 15.20 {+-} 0.03 mag, respectively, with a maximum variation of 1.12 mag, and a maximum polarization degree of P = (12.2 {+-} 0.7)%, with a maximum variation of 10.7%. From 2009 August to November, a correlation between the optical R-band flux and the degree of linear polarization was found with a correlation coefficient r {sub pol} = 0.984more » {+-} 0.025. The source presented a preferential position angle of optical polarization of {approx}153 Degree-Sign , with variations of 10 Degree-Sign -50 Degree-Sign , which is in agreement with the projected position angle of the parsec-scale jet found at 43 GHz. From the Stokes parameters we infer the existence of two optically thin synchrotron components that contribute to the polarized flux. One of them is stable with a constant polarization degree of 4%. Assuming a stationary shock for the variable component, we estimated some parameters associated with the physics of the relativistic jet: the magnetic field, B {approx} 0.06 G, the Doppler factor, {delta}{sub 0} {approx} 23, the viewing angle, {Phi} {approx} 2. Degree-Sign 4, and the size of the emission region r{sub b} {approx} 5.6 Multiplication-Sign 10{sup 17} cm. Our study is consistent with the spine-sheath model of explaining the polarimetric variability displayed by this source during our monitoring.« less

  13. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    NASA Astrophysics Data System (ADS)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  14. Locv Calculations for Polarized Liquid 3He with the Spin-Dependent Correlation

    NASA Astrophysics Data System (ADS)

    Bordbar, G. H.; Karimi, M. J.

    We have used the lowest order constrained variational (LOCV) method to calculate some ground-state properties of polarized liquid 3 He at zero temperature with the spin-dependent correlation function employing the Lennard-Jones and Aziz pair potentials. We have seen that the total energy of polarized liquid 3He increases with increasing polarization. For all polarizations, it is shown that the total energy in the spin-dependent case is lower than the spin-independent case. We have seen that the difference between the energies of spin-dependent and spin-independent cases decreases by increasing the polarization. We have shown that the main contribution of the potential energy comes from the spin-triplet state.

  15. Linear polarimetry of AP stars. IV. The influence of deviations from a pure dipolar model.

    NASA Astrophysics Data System (ADS)

    Leroy, J. L.; Landolfi, M.; Landi Degl'Innocenti, M.; Landi Degl'Innocenti, E.; Bagnulo, S.; Laporte, P.

    1995-09-01

    In the previous papers of this series we have described a new observational program of broadband linear polarimetry aimed at Ap stars. At the same time, we have established a canonical model, based on the oblique rotator geometry, which describes successfully the main features of the observed polarization: in some cases the linear polarization data, combined with the classical circular polarization measurements, allow one to determine the characteristic parameters which define the oblique dipolar rotator. However, we have also observed polarization diagrams that depart clearly from those predicted by the canonical model, which means that it is not always possible to rely on a pure dipolar model (nor on a combination of a dipole plus a linear quadrupole parallel to the dipole). Although an interpretation of the polarization peculiarities in terms of magnetic `anomalies' (i.e. deviations from the dipolar configuration) is quite natural, one must also take into account the possible influence of local abundance inhomogeneities. Therefore, we have first studied the sensitivity of the polarized signal (which is known to be due to the differential saturation of Zeeman components in spectral lines) to a variation of the metallic absorption spectrum. Then we have examined how a local enhancement (or reduction) of the polarization produced by a dipolar magnetic field affects the Fourier spectrum of the observed polarization signal. Finally, we have designed an inversion program making possible the recovery - under certain restrictions - of the spatial modulations of the polarization generated by a dipole, which are necessary to explain `odd' polarimetric data. This program has been applied to the data gathered from three stars (49 Cam, β CrB, HD 71866). As far as the last star is concerned, none of the spatial modulations considered was able to reproduce the observations. On the contrary, good solutions are found for the other two. However, if one interprets the variations of the polarization as the result of abundance variations, which must correspond to a modulation of the absorption spectrum, a contradiction arises, especially for β CrB, because the observed spectral variability of these stars is too small to account for our computed maps. Therefore, non-canonical polarization diagrams must essentially be interpreted in terms of magnetic anomalies, not of abundance anomalies: in other words, the peculiarities of the polarization diagrams are likely to result mainly from departures of the magnetic configuration from the pure dipolar configuration.

  16. Reflection-induced linear polarization rotation and phase modulation between orthogonal waves for refractive index variation measurement.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2016-04-01

    An optical phase interrogation is proposed to study reflection-induced linear polarization rotation in a common-path homodyne interferometer. This optical methodology can also be applied to the measurement of the refractive index variation of a liquid solution. The performance of the refractive index sensing structure is discussed theoretically, and the experimental results demonstrated a very good ability based on the proposed schemes. Compared with a conventional common-path heterodyne interferometer, the proposed homodyne interferometer with only a single channel reduced the usage of optic elements.

  17. Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation

    PubMed Central

    Ramirez, Samuel A.; Elston, Timothy C.

    2018-01-01

    Polarity establishment, the spontaneous generation of asymmetric molecular distributions, is a crucial component of many cellular functions. Saccharomyces cerevisiae (yeast) undergoes directed growth during budding and mating, and is an ideal model organism for studying polarization. In yeast and many other cell types, the Rho GTPase Cdc42 is the key molecular player in polarity establishment. During yeast polarization, multiple patches of Cdc42 initially form, then resolve into a single front. Because polarization relies on strong positive feedback, it is likely that the amplification of molecular-level fluctuations underlies the generation of multiple nascent patches. In the absence of spatial cues, these fluctuations may be key to driving polarization. Here we used particle-based simulations to investigate the role of stochastic effects in a Turing-type model of yeast polarity establishment. In the model, reactions take place either between two molecules on the membrane, or between a cytosolic and a membrane-bound molecule. Thus, we developed a computational platform that explicitly simulates molecules at and near the cell membrane, and implicitly handles molecules away from the membrane. To evaluate stochastic effects, we compared particle simulations to deterministic reaction-diffusion equation simulations. Defining macroscopic rate constants that are consistent with the microscopic parameters for this system is challenging, because diffusion occurs in two dimensions and particles exchange between the membrane and cytoplasm. We address this problem by empirically estimating macroscopic rate constants from appropriately designed particle-based simulations. Ultimately, we find that stochastic fluctuations speed polarity establishment and permit polarization in parameter regions predicted to be Turing stable. These effects can operate at Cdc42 abundances expected of yeast cells, and promote polarization on timescales consistent with experimental results. To our knowledge, our work represents the first particle-based simulations of a model for yeast polarization that is based on a Turing mechanism. PMID:29529021

  18. On the Wiener Polarity Index of Lattice Networks

    PubMed Central

    Chen, Lin; Li, Tao; Liu, Jinfeng; Shi, Yongtang; Wang, Hua

    2016-01-01

    Network structures are everywhere, including but not limited to applications in biological, physical and social sciences, information technology, and optimization. Network robustness is of crucial importance in all such applications. Research on this topic relies on finding a suitable measure and use this measure to quantify network robustness. A number of distance-based graph invariants, also known as topological indices, have recently been incorporated as descriptors of complex networks. Among them the Wiener type indices are the most well known and commonly used such descriptors. As one of the fundamental variants of the original Wiener index, the Wiener polarity index has been introduced for a long time and known to be related to the cluster coefficient of networks. In this paper, we consider the value of the Wiener polarity index of lattice networks, a common network structure known for its simplicity and symmetric structure. We first present a simple general formula for computing the Wiener polarity index of any graph. Using this formula, together with the symmetric and recursive topology of lattice networks, we provide explicit formulas of the Wiener polarity index of the square lattices, the hexagonal lattices, the triangular lattices, and the 33 ⋅ 42 lattices. We also comment on potential future research topics. PMID:27930705

  19. Flocking and Turning: a New Model for Self-organized Collective Motion

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas; Jelic, Asja; Melillo, Stefania; Mora, Thierry; Parisi, Leonardo; Silvestri, Edmondo; Viale, Massimiliano; Walczak, Aleksandra M.

    2015-02-01

    Birds in a flock move in a correlated way, resulting in large polarization of velocities. A good understanding of this collective behavior exists for linear motion of the flock. Yet observing actual birds, the center of mass of the group often turns giving rise to more complicated dynamics, still keeping strong polarization of the flock. Here we propose novel dynamical equations for the collective motion of polarized animal groups that account for correlated turning including solely social forces. We exploit rotational symmetries and conservation laws of the problem to formulate a theory in terms of generalized coordinates of motion for the velocity directions akin to a Hamiltonian formulation for rotations. We explicitly derive the correspondence between this formulation and the dynamics of the individual velocities, thus obtaining a new model of collective motion. In the appropriate overdamped limit we recover the well-known Vicsek model, which dissipates rotational information and does not allow for polarized turns. Although the new model has its most vivid success in describing turning groups, its dynamics is intrinsically different from previous ones in a wide dynamical regime, while reducing to the hydrodynamic description of Toner and Tu at very large length-scales. The derived framework is therefore general and it may describe the collective motion of any strongly polarized active matter system.

  20. Second-harmonic generation in shear wave beams with different polarizations

    NASA Astrophysics Data System (ADS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  1. Explicitly-correlated non-born-oppenheimer calculations of the HD molecule in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Adamowicz, Ludwik; Stanke, Monika; Tellgren, Erik; Helgaker, Trygve

    2017-08-01

    Explicitly correlated all-particle Gaussian functions with shifted centers (ECGs) are implemented within the earlier proposed effective variational non-Born-Oppenheimer method for calculating bound states of molecular systems in magnetic field (Adamowicz et al., 2015). The Hamiltonian used in the calculations is obtained by subtracting the operator representing the kinetic energy of the center-of-mass motion from the total laboratory-frame Hamiltonian. Test ECG calculations are performed for the HD molecule.

  2. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C.

    1973-01-01

    The research is reported concerning energy-density relation for the normal state of neutron star matter, and the effects of superfluidity and polarization on neutron star matter. Considering constraints on variation, and the theory of quantum fluids, three methods for calculating the energy-density range are presented. The effects of polarization on neutron star structure, and polarization effects on condensation and superfluid-state energy are discussed.

  3. Polarization and Piezoelectric Properties of a Nitrile Substituted Polyimide

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn; Ounaies, Zoubeida; Fay, Catharine

    1997-01-01

    This research focuses on the synthesis and characterization of a piezoelectric (beta-CN)- APB/ODPA polyimide. The remanent polarization and piezoelectric d(sub 31) and g(sub 33) coefficients are reported to assess the effect of synthesis variations. Each of the materials exhibits a level of piezoelectricity which increases with temperature. The remanent polarization is retained at temperatures close to the glass transition temperature of the polyimide.

  4. Dietary biomagnification of organochlorine contaminants in Alaskan polar bears

    USGS Publications Warehouse

    Bentzen, T.W.; Follmann, Erich H.; Amstrup, Steven C.; York, G.S.; Wooller, M.J.; Muir, D.C.G.; O'Hara, T. M.

    2008-01-01

    Concentrations of organochlorine contaminants in the adipose tissue of polar bears (Ursus maritimus Phipps, 1774) vary throughout the Arctic. The range in concentrations has not been explained fully by bear age, sex, condition, location, or reproductive status. Dietary pathways expose polar bears to a variety of contaminant profiles and concentrations. Prey range from lower trophic level bowhead whales (Balaena mysticetus L., 1758), one of the least contaminated marine mammals, to highly contaminated upper trophic level ringed seals (Phoca hispida (Schreber, 1775)). We used ??15N and ??13C signatures to estimate the trophic status of 42 polar bears sampled along Alaska's Beaufort Sea coast to determine the relationship between organochlorine concentration and trophic level. The ?? 15N values in the cellular portions of blood ranged from 18.2% to 20.7%. We found strong positive relationships between concentrations of the most recalcitrant polychlorinated biphenyls (PCBs) and ??15N values in models incorporating age, lipid content, and ??13C value. Specifically these models accounted for 67% and 76% of the variation in PCB153 and oxychlordane concentration in male polar bears and 85% and 93% in females, respectively. These results are strong indicators of variation in diet and biomagnification of organochlorines among polar bears related to their sex, age, and trophic position. ?? 2008 NRC.

  5. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, A. H.; Wang, G.

    The electromagnetic (EM) eld pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system, and causes photons emitted in upper- and lower-hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, due to the global vorticity, is also possible. In this paper, we lay down a procedure to measure the variation of the circular polarization w.r.t the reaction plane in relativistic heavy-ion collisions formore » massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper- and lower-hemispheres in order to identify and quantify such effects.« less

  6. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    DOE PAGES

    Tang, A. H.; Wang, G.

    2016-08-30

    The electromagnetic (EM) eld pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system, and causes photons emitted in upper- and lower-hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, due to the global vorticity, is also possible. In this paper, we lay down a procedure to measure the variation of the circular polarization w.r.t the reaction plane in relativistic heavy-ion collisions formore » massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper- and lower-hemispheres in order to identify and quantify such effects.« less

  7. A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells.

    PubMed

    Shenoy, Vivek B; Wang, Hailong; Wang, Xiao

    2016-02-06

    We propose a chemo-mechanical model based on stress-dependent recruitment of myosin motors to describe how the contractility, polarization and strain in cells vary with the stiffness of their surroundings and their shape. A contractility tensor, which depends on the distribution of myosin motors, is introduced to describe the chemical free energy of the cell due to myosin recruitment. We explicitly include the contributions to the free energy that arise from mechanosensitive signalling pathways (such as the SFX, Rho-Rock and MLCK pathways) through chemo-mechanical coupling parameters. Taking the variations of the total free energy, which consists of the chemical and mechanical components, in accordance with the second law of thermodynamics provides equations for the temporal evolution of the active stress and the contractility tensor. Following this approach, we are able to recover the well-known Hill relation for active stresses, based on the fundamental principles of irreversible thermodynamics rather than phenomenology. We have numerically implemented our free energy-based approach to model spatial distribution of strain and contractility in (i) cells supported by flexible microposts, (ii) cells on two-dimensional substrates, and (iii) cells in three-dimensional matrices. We demonstrate how the polarization of the cells and the orientation of stress fibres can be deduced from the eigenvalues and eigenvectors of the contractility tensor. Our calculations suggest that the chemical free energy of the cell decreases with the stiffness of the extracellular environment as the cytoskeleton polarizes in response to stress-dependent recruitment of molecular motors. The mechanical energy, which includes the strain energy and motor potential energy, however, increases with stiffness, but the overall energy is lower for cells in stiffer environments. This provides a thermodynamic basis for durotaxis, whereby cells preferentially migrate towards stiffer regions of the extracellular environment. Our models also explain, from an energetic perspective, why the shape of the cells can change in response to stiffness of the surroundings. The effect of the stiffness of the nucleus on its shape and the orientation of the stress fibres is also studied for all the above geometries. Along with making testable predictions, we have estimated the magnitudes of the chemo-mechanical coupling parameters for myofibroblasts based on data reported in the literature.

  8. A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells

    PubMed Central

    Shenoy, Vivek B.; Wang, Hailong; Wang, Xiao

    2016-01-01

    We propose a chemo-mechanical model based on stress-dependent recruitment of myosin motors to describe how the contractility, polarization and strain in cells vary with the stiffness of their surroundings and their shape. A contractility tensor, which depends on the distribution of myosin motors, is introduced to describe the chemical free energy of the cell due to myosin recruitment. We explicitly include the contributions to the free energy that arise from mechanosensitive signalling pathways (such as the SFX, Rho-Rock and MLCK pathways) through chemo-mechanical coupling parameters. Taking the variations of the total free energy, which consists of the chemical and mechanical components, in accordance with the second law of thermodynamics provides equations for the temporal evolution of the active stress and the contractility tensor. Following this approach, we are able to recover the well-known Hill relation for active stresses, based on the fundamental principles of irreversible thermodynamics rather than phenomenology. We have numerically implemented our free energy-based approach to model spatial distribution of strain and contractility in (i) cells supported by flexible microposts, (ii) cells on two-dimensional substrates, and (iii) cells in three-dimensional matrices. We demonstrate how the polarization of the cells and the orientation of stress fibres can be deduced from the eigenvalues and eigenvectors of the contractility tensor. Our calculations suggest that the chemical free energy of the cell decreases with the stiffness of the extracellular environment as the cytoskeleton polarizes in response to stress-dependent recruitment of molecular motors. The mechanical energy, which includes the strain energy and motor potential energy, however, increases with stiffness, but the overall energy is lower for cells in stiffer environments. This provides a thermodynamic basis for durotaxis, whereby cells preferentially migrate towards stiffer regions of the extracellular environment. Our models also explain, from an energetic perspective, why the shape of the cells can change in response to stiffness of the surroundings. The effect of the stiffness of the nucleus on its shape and the orientation of the stress fibres is also studied for all the above geometries. Along with making testable predictions, we have estimated the magnitudes of the chemo-mechanical coupling parameters for myofibroblasts based on data reported in the literature. PMID:26855753

  9. Quantum mechanical force field for water with explicit electronic polarization.

    PubMed

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes.

  10. Second-order Boltzmann equation: gauge dependence and gauge invariance

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Pitrou, Cyril; Koyama, Kazuya; Sasaki, Misao

    2013-08-01

    In the context of cosmological perturbation theory, we derive the second-order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: (i) the polarization of light is incorporated in this formalism by using a tensor-valued distribution function; (ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; (iii) we perform a separation between temperature and spectral distortion, both for the intensity and polarization for the first time; (iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature.

  11. Image method for induced surface charge from many-body system of dielectric spheres

    NASA Astrophysics Data System (ADS)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-01

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.

  12. Rogue-pair and dark-bright-rogue waves of the coupled nonlinear Schrödinger equations from inhomogeneous femtosecond optical fibers.

    PubMed

    Yomba, Emmanuel; Zakeri, Gholam-Ali

    2016-08-01

    The coupled inhomogeneous Schrödinger equations with a wide range of applications describing a field of pluses with the right and the left polarizations that take into account cross-phase modulations, stimulated Ramani scattering, and absorption effects are investigated. A combination of several different approaches is used in a novel way to obtain the explicit expressions for the rogue-pair and dark-bright-rogue waves. We study the dynamics of these structurally stable rogues and analyze the effects of a parameter that controls the region of stability that intrinsically connects the cross-phase modulation and other Kerr nonlinearity factors. The effects of the right and left polarizations on the shape of the rogue-pair and other solitary rogue waves are graphically analyzed. These rogue-pair waves are studied on periodic and non-periodic settings. We observe that rogue-pair wave from the right and left polarizations has a similar structure while the dark-bright-rogue waves have quite different intensity profiles.

  13. IImage method for induced surface charge from many-body system of dielectric spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-28

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less

  14. Vacuum polarization effects on flat branes due to a global monopole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezerra de Mello, E.R.

    2006-05-15

    In this paper we analyze the vacuum polarization effects associated with a massless scalar field in the higher-dimensional spacetime. Specifically we calculate the renormalized vacuum expectation value of the square of the field, <{phi}{sup 2}(x)>{sub Ren}, induced by a global monopole in the 'braneworld' scenario. In this context the global monopole lives in a n=3-dimensional submanifold of the higher-dimensional (bulk) spacetime, and our universe is represented by a transverse flat (p-1)-dimensional brane. In order to develop this analysis we calculate the general Green function admitting that the scalar field propagates in the bulk. Also a general curvature coupling parameter betweenmore » the field and the geometry is assumed. We explicitly show that the vacuum polarization effects depend crucially on the values attributed to p. We also investigate the general structure of the renormalized vacuum expectation value of the energy-momentum tensor, {sub Ren}, for p=3.« less

  15. Hydrological excitation of polar motion

    NASA Astrophysics Data System (ADS)

    Nastula, Y.; Kolaczek, B.

    2006-08-01

    Hydrological excitation of the polar motion (HAM) were computed from the available recently hydrological data series (NCEP, ECMWF, CPC water storage and LaD World simulations of global continental water) and compared. Time variable seasonal spectra of these hydrological excitation functions and of the geodetic excitation function of polar motion computed from the polar motion COMB03 data were compared showing big differences in their temporal characteristics and the necessity of the further improvement of the HAM models. Seasonal oscillations of the global geophysical excitation functions (AAM + OAM + HAM) and their time variations were compared also. These hydrological excitation functions do not close the budget of the global geophysical excitation function of polar motion.

  16. Measurements of the north polar cap of Mars and the earth's Northern Hemisphere ice and snow cover

    NASA Technical Reports Server (NTRS)

    Foster, J.; Owe, M.; Capen, C.

    1986-01-01

    The boundaries of the polar caps of Mars have been measured on more than 3000 photographs since 1905 from the plate collection at the Lowell Observatory. For the earth, the polar caps have been accurately mapped only since the mid 1960s when satellites were first available to synoptically view the polar regions. The polar caps of both planets wax and wane in response to changes in the seasons, and interannual differences in polar cap behavior on Mars as well as earth are intimately linked to global energy balance. Data on the year to year variations in the extent of the north polar caps of Mars and earth have been assembled and compared, although only 6 years of concurrent data were available for comparison.

  17. Polar Wind Measurements with TIDE/PSI and HYDRA on the Polar Spacecraft

    NASA Technical Reports Server (NTRS)

    Su, Y. J.; Horwitz, J. L.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.

    1998-01-01

    The Thermal Ion Dynamics Experiment (TIDE) on the POLAR spacecraft has allowed sampling of the three-dimensional ion distributions with excellent energy, angular, and mass resolution. The companion Plasma Source Instrument, when operated, allows sufficient diminution of the electric potential to observe the polar wind at very high altitudes. In this presentation, we will describe the results of polar wind characteristics H+, He+, and 0+ as observed by TIDE at 5000 km and 8 RE altitudes. The relationship of the polar wind parameters with the solar zenith angle and with the day-night distance in the Solar Magnetic coordinate system will also be presented. We will compare these measurements with recent simulations of the photoelectron-driven polar wind using a couple fluid-semikinetic model. In addition, we will compare these polar wind observations with low-energy electrons sampled by the HYDRA experiment on POLAR to examine possible effects of the polar rain and photoelectrons and hopefully explain the large ion outflow velocity variations at POLAR apogee.

  18. Using effort information with change-in-ratio data for population estimation

    USGS Publications Warehouse

    Udevitz, Mark S.; Pollock, Kenneth H.

    1995-01-01

    Most change-in-ratio (CIR) methods for estimating fish and wildlife population sizes have been based only on assumptions about how encounter probabilities vary among population subclasses. When information on sampling effort is available, it is also possible to derive CIR estimators based on assumptions about how encounter probabilities vary over time. This paper presents a generalization of previous CIR models that allows explicit consideration of a range of assumptions about the variation of encounter probabilities among subclasses and over time. Explicit estimators are derived under this model for specific sets of assumptions about the encounter probabilities. Numerical methods are presented for obtaining estimators under the full range of possible assumptions. Likelihood ratio tests for these assumptions are described. Emphasis is on obtaining estimators based on assumptions about variation of encounter probabilities over time.

  19. Theory of a refined earth model

    NASA Technical Reports Server (NTRS)

    Krause, H. G. L.

    1968-01-01

    Refined equations are derived relating the variations of the earths gravity and radius as functions of longitude and latitude. They particularly relate the oblateness coefficients of the old harmonics and the difference of the polar radii /respectively, ellipticities and polar gravity accelerations/ in the Northern and Southern Hemispheres.

  20. Creativity, Problem Solving, and Solution Set Sightedness: Radically Reformulating BVSR

    ERIC Educational Resources Information Center

    Simonton, Dean Keith

    2012-01-01

    Too often, psychological debates become polarized into dichotomous positions. Such polarization may have occurred with respect to Campbell's (1960) blind variation and selective retention (BVSR) theory of creativity. To resolve this unnecessary controversy, BVSR was radically reformulated with respect to creative problem solving. The reformulation…

  1. Anatomical study of variations in the blood supply of kidneys.

    PubMed

    Aristotle, Sharmila; Sundarapandian; Felicia, Christilda

    2013-08-01

    Each kidney is supplied by a single renal artery and a single renal vein, which accounts for about 20% of the cardiac output. However, variations in the form of level of origin and arrangement of renal arteries are so frequent. The present study aimed to note the vascular anatomy of kidneys with respect to the variations in their origin, course and any aberrant vessels which were present. The study material comprised of 15 formalin fixed human cadavers. During routine abdominal dissection for undergraduate students, the kidneys were exposed and the blood supply, along with its variations, were noted. The following anatomical findings are observed in this study: (i) Accessory renal arteries (ii) Presegmental arteries (iii) Upper polar arteries (iv) Lower polar arteries (v) Inferior suprarenal artery from accessory renal artery and (vi) Accessory renal vein. Awareness of the normal as well variational anatomy is mandatory for the surgeons, radiologists and urologists, for doing any uroradiological procedures or angiographic studies. Hence, this study will serve a useful guideline for the above mentioned procedures.

  2. Planck intermediate results: L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghanim, N.; Ashdown, M.; Aumont, J.

    The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. In this paper, we make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the C BB ℓ angular power spectra between themore » 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. In conclusion, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.« less

  3. Planck intermediate results. L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Comis, B.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Liguori, M.; Lilje, P. B.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Naselsky, P.; Nørgaard-Nielsen, H. U.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patrizii, L.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Stanco, L.; Suur-Uski, A.-S.; Tauber, J. A.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Vansyngel, F.; Van Tent, F.; Vielva, P.; Wandelt, B. D.; Wehus, I. K.; Zacchei, A.; Zonca, A.

    2017-03-01

    The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.

  4. Planck intermediate results: L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

    DOE PAGES

    Aghanim, N.; Ashdown, M.; Aumont, J.; ...

    2017-02-28

    The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. In this paper, we make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the C BB ℓ angular power spectra between themore » 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. In conclusion, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.« less

  5. Historical Variations in Inner Core Rotation and Polar Motion at Decade Timescales

    NASA Astrophysics Data System (ADS)

    Dumberry, M.

    2005-12-01

    Exchanges of angular momentum between the mantle, the fluid core and the solid inner core result in changes in the Earth's rotation. Torques in the axial direction produce changes in amplitude, or changes in length of day, while torques in the equatorial direction lead to changes in orientation of the rotation vector with respect to the mantle, or polar motion. In this work, we explore the possibility that a combination of electromagnetic and gravitational torques on the inner core can reproduce the observed decadal variations in polar motion known as the Markowitz wobble. Torsional oscillations, which involve azimuthal motions in the fluid core with typical periods of decades, entrain the inner core by electromagnetic traction. When the inner core is axially rotated, its surfaces of constant density are no longer aligned with the gravitational potential from mantle density heterogeneities, and this results in a gravitational torque between the two. The axial component of this torque has been previously described and is believed to be partly responsible for decadal changes in length of day. In this work, we show that it has also an equatorial component, which produces a tilt of the inner core and results in polar motion. The polar motion produced by this mechanism depends on the density structure in the mantle, the rheology of the inner core, and the time-history of the angle of axial misalignment between the inner core and the mantle. We reconstruct the latter using a model of torsional oscillations derived from geomagnetic secular variation. From this time-history, and by using published models of mantle density structure, we show that we can reproduce the salient characteristics of the Markowitz wobble: an eccentric decadal polar motion of 30-50 milliarcsecs oriented along a specific longitude. We discuss the implications of this result, noting that a match in both amplitude and phase of the observed Markowitz wobble allows the recovery of the historical rotational variations of the inner core, and also provides constraints on structure, rheology and dynamics of the Earth's deep interior that cannot be observed directly.

  6. Time Domain Radar Laboratory Operating System Development and Transient EM Analysis.

    DTIC Science & Technology

    1981-09-01

    polarization of the return, arg used. Other similar methods use amplitude and phase differences or special properties of Rayleigh region scattering. All these...3ptias Inverse Scattering ... 19 2. "!xact" Inverse Scattering !Nethod .. 20 3. Other Methods ................... 21 C. REVIEW OF TDRL PROGRESS AT SPS...explicit independant variable in.most methods . In the past, frequency domain analysis has been the primary means of analyzing aan-monochromatic EM

  7. Propagation of Polarization Modulated Beams Through a Turbulent Atmosphere

    DTIC Science & Technology

    2014-11-24

    Clifford Algebra to Geometric Calculus , Reidel, 1984. Hirschfelder, J.O., Curtiss, C.F. & Bird, R.B., Molecular Theory of Gases and Liquids, Wiley, 1954...are made explicit in a Poincaré sphere and geometric (Clifford) algebra representation. Section 5.0 of this report provides the evidence supporting...MEDIA 4.0 LABORATORY TEST CONFIGURATIONS 5.0 TEST RESULTS 5.1 DATA ANALYSIS METHODS 5.2 DATA ANALYSIS 6.0 GEOMETRIC ALGEBRA 6.1 INTRODUCTION

  8. Microsatellite DNA and mitochondrial DNA variation in polar bears (Ursus maritimus) from the Beaufort and Chukchi seas, Alaska

    USGS Publications Warehouse

    Cronin, M.A.; Amstrup, Steven C.; Scribner, K.T.

    2006-01-01

    Radiotelemetry data have shown that polar bears (Ursus maritimus Phipps, 1774) occur in separate subpopulations in the Chukchi Sea and the southern Beaufort Sea. However, segregation is not absolute, and there is overlap of ranges of animals in each subpopulation. We used genetic variation at eight microsatellite DNA loci and mitochondrial DNA (mtDNA) to further assess the degree of spatial structure of polar bears from the Chukchi and southern Beaufort seas. Microsatellite allele frequencies and mtDNA haplotype frequencies of bears from the southern Beaufort and Chukchi seas did not differ significantly. Lack of differentiation at both maternally inherited mtDNA and bi-parentally inherited microsatellite loci suggests that gene flow between the two areas is mediated by both sexes. The genetic data indicate that polar bears in the southern Beaufort and Chukchi seas compose one interbreeding population. However, there is considerable fidelity to ranges in each area, particularly by adult females. The combined genetic and movement data suggest that polar bears could be managed as Beaufort Sea and Chukchi Sea subpopulations of a combined southern Beaufort Sea and Chukchi Sea population. ?? 2006 NRC.

  9. Molecular accessibility in solvent swelled coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kispert, L.D.

    1991-08-01

    Research continued on the determination of pore size and number distribution changes after swelling the coal samples with various solvents. A paper has just been submitted to the journal Fuel on the Low temperature Swelling of Argonne Premium Coal samples using solvents of varying polarity. The variation in the shape of the pore was followed as a function of temperature and swelling solvent polarity. This change in pore structure was attributed to break-up of the hydrogen bonding network in coal by polar solvents. The modification in pore shape from spherical to cylindrical was attributed to anisotropy in hydrogen bond densities.more » A copy of this paper has been attached to this report. Wojciech Sady has determine the structural changes in the pores that occur when APCS coal is dehydrated prior to swelling with polar solvents. These changes are different from those that occur in the absence of prior dehydration. He has also completed a study on the variation in the hydrogen bonding character of the pore wall as the coals are swelled with various polar solvents. A statistical analysis of the data is currently underway to determine important trends in his data. 9 refs.« less

  10. Effect of Ice-Shell Thickness Variations on the Tidal Deformation of Enceladus

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Cadek, O.; Behounkova, M.; Tobie, G.; Kozubek, T.

    2015-12-01

    Recent analysis of Enceladus's gravity and topography has suggested that the thickness of the ice shell significantly varies laterally - from 30-40 km in the south polar region to 60 km elsewhere. These variations may influence the activity of the geysers and increase the tidal heat production in regions where the ice shell is thinned. Using a model including a regional or global subsurface ocean and Maxwell viscoelasticity, we investigate the impact of these variations on the tidal deformation of the moon and its heat production. For that purpose, we use different numerical approaches - finite elements, local application of 1d spectral method, and a generalized spectral method. Results obtained with these three approaches for various models of ice-shell thickness variations are presented and compared. Implications of a reduced ice shell thickness for the south polar terrain activity are discussed.

  11. Estimation of Mars radar backscatter from measured surface rock populations

    USGS Publications Warehouse

    Baron, J.E.; Simpson, R.A.; Tyler, G.L.; Moore, H.J.; Harmon, J.K.

    1998-01-01

    Reanalysis of rock population data at the Mars Viking Lander sites has yielded updated values of rock fractional surface coverage (about 0.16 at both sites, including outcrops) and new estimates of rock burial depths and axial ratios. These data are combined with a finite difference time domain (FDTD) numerical scattering model to estimate diffuse backscatter due to rocks at both the Lander l (VL1) and Lander 2 (VL2) sites. We consider single scattering from both surface and subsurface objects of various shapes, ranging from an ideal sphere to an accurate digitized model of a terrestrial rock. The FDTD cross-section calculations explicitly account for the size, shape, composition, orientation, and burial state of the scattering object, the incident wave angle and polarization, and the composition of the surface. We calculate depolarized specific cross sections at 12.6 cm wavelength due to lossless rock-like scatterers of about 0.014 at VL1 and 0.023 at VL2, which are comparable to the measured ranges of 0.019-0.032 and 0.012-0.018, respectively. We also discuss the variation of the diffuse cross section as the local angle of incidence, ??i, changes. Numerical calculations for a limited set of rock shapes indicate a marked difference between the angular backscattering behavior of wavelength-scale surface and subsurface rocks: while subsurface rocks scatter approximately as a cosine power law, surface rocks display a complex variation, often with peak backscattering at high incidence angles (??i = 70??-75??). Copyright 1998 by the American Geophysical Union.

  12. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    PubMed

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  13. Gravitational dynamos and the low-frequency geomagnetic secular variation

    PubMed Central

    Olson, P.

    2007-01-01

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345

  14. Extended Malus Law with metallic linear polarizers in terahertz and microwave domains

    NASA Astrophysics Data System (ADS)

    Romain, Xavier; Baida, Fadi; Boyer, Philippe

    2016-04-01

    An extended Malus' Law for the well-known Polarizer-Analyzer Mounting (PAM) is analytically obtained and investigated. The PAM is composed of two perfectly parallel Metallic Linear Polarizers (MLP), with subwavelength periodic pattern composed of rectangular holes. Our analytical theory especially highlights the influence of multiple reflections between the two MLPs which leads to an extended and tunable Malus Law. We demonstrate that the classical Malus Law (obtained for dichroic polarizers) is modulated by a factor which also depends on the angular difference between both MLP axes. In our analysis, the Malus' law is studied at the resonance wavelengths. Due to the interactions between the two MLP, the modulation factor is tuned by the optical distance between them which makes substantial variations of the Malus Law. We mention that, for each reflections, the light is re-polarized according to the orientation of the MLP. This tunable Malus' Law provides an original tool for ultrasensitive detection in the terahertz or microwave regime. For example, one can use an ultra-narrow angle Malus' Law as a hyper-sensitive device to analyze with a high accuracy the electro-optical response of a material sandwiched between polarizer and analyzer. We theoretically propose one PAM designed to detect a refractive index variation as small as 10-5. Finally, we extend the theory, which takes the form of an extended Jones formalism, to a large number of stacked MLP. It is applied to achieve many polarization manipulation processes as total polarization conversion with tunable spectral bandwidth, for instance.

  15. Anisotropy in electromagnetic field variations and its implication for lateral inhomogeneity of the electrical conductivity structure

    NASA Astrophysics Data System (ADS)

    Honkura, Y.; Watanabe, N.; Kaneko, Y.; Oshima, S.

    1989-03-01

    Two-dimensional analyses of magnetotelluric data provide information on anisotropic response for two different polarization cases; the so-called B-polarization and E-polarization cases. Similar anisotropy should also be observed in the horizontal components of magnetic field variations. On the assumption that a reference station provides the normal magnetic field, transfer functions for the horizontal magnetic fields can be derived in a fashion similar to the impedance analysis for magnetotelluric data. We applied this method to magnetic data obtained at some observation sites in a geothermal area in Japan. Transfer functions for the horizontal magnetic fields exhibit a strong anisotropy with the preferred direction nearly perpendicular to that for the electric field. This result implies the existence of strong electric currents flowing in the direction perpendicular to the above preferred direction for the magnetic field. The present method was also applied to the horizontal components of magnetic field variations observed at the seafloor. In this case, a magnetic observatory on land was taken as the reference station, and attenuation of the amplitude of horizontal magnetic field variation was examined. Anisotropy in attenuation was then found with the preferred direction perpendicular to the axis of the Okinawa trough where the seafloor measurement was undertaken.

  16. Indication of the Hanle Effect by Comparing the Scattering Polarization Observed by CLASP in the Ly α and Si iii 120.65 nm Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, R.; Kubo, M.; Kano, R.

    The Chromospheric Lyman-Alpha Spectro-Polarimeter is a sounding rocket experiment that has provided the first successful measurement of the linear polarization produced by scattering processes in the hydrogen Ly α line (121.57 nm) radiation of the solar disk. In this paper, we report that the Si iii line at 120.65 nm also shows scattering polarization and we compare the scattering polarization signals observed in the Ly α and Si iii lines in order to search for observational signatures of the Hanle effect. We focus on four selected bright structures and investigate how the U / I spatial variations vary between themore » Ly α wing, the Ly α core, and the Si iii line as a function of the total unsigned photospheric magnetic flux estimated from Solar Dynamics Observatory /Helioseismic and Magnetic Imager observations. In an internetwork region, the Ly α core shows an antisymmetric spatial variation across the selected bright structure, but it does not show it in other more magnetized regions. In the Si iii line, the spatial variation of U / I deviates from the above-mentioned antisymmetric shape as the total unsigned photospheric magnetic flux increases. A plausible explanation of this difference is the operation of the Hanle effect. We argue that diagnostic techniques based on the scattering polarization observed simultaneously in two spectral lines with very different sensitivities to the Hanle effect, like Ly α and Si iii, are of great potential interest for exploring the magnetism of the upper solar chromosphere and transition region.« less

  17. Gauge properties of the guiding center variational symplectic integrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, J.; Tang, W. M.; Qin, H.

    Variational symplectic algorithms have recently been developed for carrying out long-time simulation of charged particles in magnetic fields [H. Qin and X. Guan, Phys. Rev. Lett. 100, 035006 (2008); H. Qin, X. Guan, and W. Tang, Phys. Plasmas (2009); J. Li, H. Qin, Z. Pu, L. Xie, and S. Fu, Phys. Plasmas 18, 052902 (2011)]. As a direct consequence of their derivation from a discrete variational principle, these algorithms have very good long-time energy conservation, as well as exactly preserving discrete momenta. We present stability results for these algorithms, focusing on understanding how explicit variational integrators can be designed formore » this type of system. It is found that for explicit algorithms, an instability arises because the discrete symplectic structure does not become the continuous structure in the t{yields}0 limit. We examine how a generalized gauge transformation can be used to put the Lagrangian in the 'antisymmetric discretization gauge,' in which the discrete symplectic structure has the correct form, thus eliminating the numerical instability. Finally, it is noted that the variational guiding center algorithms are not electromagnetically gauge invariant. By designing a model discrete Lagrangian, we show that the algorithms are approximately gauge invariant as long as A and {phi} are relatively smooth. A gauge invariant discrete Lagrangian is very important in a variational particle-in-cell algorithm where it ensures current continuity and preservation of Gauss's law [J. Squire, H. Qin, and W. Tang (to be published)].« less

  18. The use of sea ice habitat by female polar bears in the Beaufort Sea

    USGS Publications Warehouse

    Durner, George M.; Amstrup, Steven C.; Nielson, Ryan M.; McDonald, Trent

    2003-01-01

    Polar bears (Ursus maritimus) depend on ice-covered seas to satisfy life history requirements. Modern threats to polar bears include oil spills in the marine environment and changes in ice composition resulting from climate change. Managers need practical models that explain the distribution of bears in order to assess the impacts of these threats. We used stepwise procedures to create resource selection models of habitat use for radio-collared female polar bears in the Beaufort Sea. Sea ice characteristics and ocean depths at known polar bear locations were compared to the same features at randomly selected locations. Models generated for each of four seasons confirmed complexities of habitat use by polar bears and their response to numerous factors. Bears preferred shallow water areas where ice concentrations were > 80 % and different ice types intersected. Variation among seasons was reflected mainly in differential selection of ice stages, floe sizes, and their interactions. Water depth, total ice concentration and distance to the nearest interface between different ice types were significant terms in models for most seasons. Variation in ice stage and form also appeared in three models, and several interaction effects were identified. Habitat selection by polar bears is likely related to prey abundance and availability. Use of habitats in shallow water possibly reflects higher productivity in those areas. Habitat use in close proximity to ice edges is probably related to greater access of prey in those habitats.

  19. Dielectric Studies on Binary Mixtures of Diethyl Ether (DEE) in Polar Solvents

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Dash, S. K.; Swain, M. D.; Swain, B. B.

    2011-11-01

    Dielectric constant (ɛ) of diethylether (DEE) in binary mixtures with four polar solvents such as n-butanl, i-butanol, t-butanol and tolune has been measured at 455 kHz and at a temperature 303.15 K. The refractive indices were measured at a regulated temperature by Pulfrich refractometer at sodium D-line. The data is used to evaluate mutual correlation factor gab, excess molar polarization and excess free energy of mixing ΔGab by using Winkelmann-Quitzsch equation for binary mixtures to asses the suitability of the polar solvents as modifiers. The trend of variation for these parameters exhibit marked dependence on the nature of alcohols. Diethylether is one of the solvent extractant used for the extraction and separation of zirconium and hafnium in reactor technology. The extractant is blended with appropriate polar modifiers for greater dispersal and more rapid phase disengagement. This facilitates in the elimination of the third organo-aqueous phase containing some of the metal ions. As such the study of molecular interaction among the component molecules has been undertaken in these binary mixtures using the dielectric route. The interaction parameters such as mutual correlation factor gab is found to be less than one in all alcohols, while it is negative in toluene upto 0.7 DEE molefraction and thereafter becoming positive. The nature of variation of the excess miolar polarization ΔP and excess free energy of mixing Gab tends to support the assessment of gab to choose a suitable polar modifier.

  20. Polarization characteristics of double-clad elliptical fibers.

    PubMed

    Zhang, F; Lit, J W

    1990-12-20

    A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.

  1. Effects of Be acceptors on the spin polarization of carriers in p-i-n resonant tunneling diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awan, I. T.; Galvão Gobato, Y.; Galeti, H. V. A.

    In this paper, we have investigated the effect of Be acceptors on the electroluminescence and the spin polarization in GaAs/AlAs p-i-n resonant tunneling diodes. The quantum well emission comprise two main lines separated by ∼20 meV attributed to excitonic and Be-related transitions, which intensities show remarkably abrupt variations at critical voltages, particularly at the electron resonant peak where it shows a high-frequency bistability. The circular-polarization degree of the quantum-well electroluminescence also shows strong and abrupt variations at the critical bias voltages and it attains relatively large values (of ∼−75% at 15 T). These effects may be explored to design novel devices formore » spintronic applications such as a high-frequency spin-oscillators.« less

  2. Room-Temperature Spin Polariton Diode Laser

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aniruddha; Baten, Md Zunaid; Iorsh, Ivan; Frost, Thomas; Kavokin, Alexey; Bhattacharya, Pallab

    2017-08-01

    A spin-polarized laser offers inherent control of the output circular polarization. We have investigated the output polarization characteristics of a bulk GaN-based microcavity polariton diode laser at room temperature with electrical injection of spin-polarized electrons via a FeCo /MgO spin injector. Polariton laser operation with a spin-polarized current is characterized by a threshold of ˜69 A / cm2 in the light-current characteristics, a significant reduction of the electroluminescence linewidth and blueshift of the emission peak. A degree of output circular polarization of ˜25 % is recorded under remanent magnetization. A second threshold, due to conventional photon lasing, is observed at an injection of ˜7.2 kA /cm2 . The variation of output circular and linear polarization with spin-polarized injection current has been analyzed with the carrier and exciton rate equations and the Gross-Pitaevskii equations for the condensate and there is good agreement between measured and calculated data.

  3. Quantitative analysis of domain texture in polycrystalline barium titanate by polarized Raman microprobe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe

    2007-12-01

    A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  5. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers

    NASA Astrophysics Data System (ADS)

    Del Sorbo, D.; Seipt, D.; Thomas, A. G. R.; Ridgers, C. P.

    2018-06-01

    It has recently been suggested that two counter-propagating, circularly polarized, ultra-intense lasers can induce a strong electron spin polarization at the magnetic node of the electromagnetic field that they setup (Del Sorbo et al 2017 Phys. Rev. A 96 043407). We confirm these results by considering a more sophisticated description that integrates over realistic trajectories. The electron dynamics is weakly affected by the variation of power radiated due to the spin polarization. The degree of spin polarization differs by approximately 5% if considering electrons initially at rest or already in a circular orbit. The instability of trajectories at the magnetic node induces a spin precession associated with the electron migration that establishes an upper temporal limit to the polarization of the electron population of about one laser period.

  6. Geographic variation of PCB congeners in polar bears (Ursus maritimus) from Svalbard east to the Chukchi Sea

    USGS Publications Warehouse

    Andersen, M.; Lie, E.; Derocher, A.E.; Belikov, S.E.; Bernhoft, A.; Boltunov, Andrei N.; Garner, G.W.; Skaare, J.U.; Wiig, Øystein

    2001-01-01

    We present data on geographic variation in polychlorinated biphenyl (PCB) congeners in adult female polar bears (Ursus maritimus) from Svalbard eastward to the Chukchi Sea. Blood samples from 90 free-living polar bears were collected in 1987–1995. Six PCB congeners, penta to octa chlorinated (PCB-99, -118, -153, -156, -180, -194), were selected for this study. Differences between areas were found in PCB levels and congener patterns. Bears from Franz Josef Land (11,194 ng/g lipid weight) and the Kara Sea (9,412 ng/g lw) had similar ΣPCB levels and were higher than all other populations (Svalbard 5,043 ng/g lw, East Siberian Sea 3,564 ng/g lw, Chukchi Sea 2,465 ng/g lw). Svalbard PCB levels were higher than those from the Chukchi Sea. Our results, combined with earlier findings, indicate that polar bears from Franz Josef Land and the Kara Sea have the highest PCB levels in the Arctic. Decreasing trends were seen eastwards and westwards from this region. Of the congeners investigated in the present study, the lower chlorinated PCBs are increasing and the high chlorinated PCBs are decreasing from Svalbard eastward to the Chukchi Sea. Different pollution sources, compound transport patterns and regional prey differences could explain the variation in PCB congener levels and patterns between regions.

  7. Variational multiscale models for charge transport.

    PubMed

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms is developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability. Extensive numerical experiment is designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field.

  8. Variational multiscale models for charge transport

    PubMed Central

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms is developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability. Extensive numerical experiment is designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field. PMID:23172978

  9. Is Polar Bear Hair Fiber Optic?

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.

    1998-05-01

    New direct measurement of high optical attenuation rates in polar bear hairs 2 8 dB mm in the visible and reanalysis of the data of Tributsch et al . Sol. Energy Mater. 21, 219 (1990) seem to rule out the UV waveguiding proposed by Grojean et al . Appl. Opt. 19, 339 (1980) . The case against fiber-optic polar bear hairs is summarized, and four conditions are given that any variation of the model of Grojean et al . would have to satisfy.

  10. Burst-mode manipulation of magnonic vortex crystals

    NASA Astrophysics Data System (ADS)

    Hänze, Max; Adolff, Christian F.; Weigand, Markus; Meier, Guido

    2015-03-01

    The manipulation of polarization states in 4 ×4 vortex crystals using sinusoidal magnetic field bursts is investigated by means of a broadband ferromagnetic-resonance setup. Magnetic field excitation with the proper amplitude and frequency allows tuning different polarization states, which are observed in the measured absorption spectra. The variation of the sinusoidal burst width consecutively identifies the time scale of the underlying process. A memorylike polarization state writing process is demonstrated on the submicrosecond time scale.

  11. Sensitivity analysis of periodic errors in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  12. Polar cap contraction and expansion during a period of substorms

    NASA Astrophysics Data System (ADS)

    Aikio, Anita; Pitkänen, Timo; Honkonen, Ilja; Palmroth, Minna; Amm, Olaf

    We have studied the variations in the polar cap area and related parameters during a period of four substorms on February 18, 2004, following an extended quiet period. The measurements were obtained by the EISCAT incoherent scatter radars, MIRACLE magnetometers, Geotail and solar wind satellites. In addition, the event is modeled by the GUMICS-4 MHD simulation. By using the measured and modeled data, the dayside and nightside reconnection voltages are calculated. The results show a good general agreement in the polar cap boundary (PCB) location as estimated by the EISCAT radars and the GUMICS simulation. Deviations are found, too, like shorter durations of expansion phases in the simulation. Geotail measurements of the inclination angle of the magnetic field in the tail (Xgsm= -22 Re) agree with the PCB latitude variations measured by EISCAT at a different MLT. We conclude that a large polar cap corresponds to a stretched tail configuration in the near-Earth tail and a small polar cap to a more dipolar configuration. The substorm onsets took place during southward IMF. A specific feature is that the substorm expansion phases were not associated with significant contractions of the polar cap. Even though nightside reconnection voltages started to increase during expansion phases, maximum closure of open flux took place in the recovery phases. We shortly discuss implications of the observation to the definition of the recovery phase.

  13. Non-coaxial superposition of vector vortex beams.

    PubMed

    Aadhi, A; Vaity, Pravin; Chithrabhanu, P; Reddy, Salla Gangi; Prabakar, Shashi; Singh, R P

    2016-02-10

    Vector vortex beams are classified into four types depending upon spatial variation in their polarization vector. We have generated all four of these types of vector vortex beams by using a modified polarization Sagnac interferometer with a vortex lens. Further, we have studied the non-coaxial superposition of two vector vortex beams. It is observed that the superposition of two vector vortex beams with same polarization singularity leads to a beam with another kind of polarization singularity in their interaction region. The results may be of importance in ultrahigh security of the polarization-encrypted data that utilizes vector vortex beams and multiple optical trapping with non-coaxial superposition of vector vortex beams. We verified our experimental results with theory.

  14. Multipolarization radar images for geologic mapping and vegetation discrimination

    NASA Technical Reports Server (NTRS)

    Evans, D. L.; Farr, T. G.; Ford, J. P.; Thompson, T. W.; Werner, C. L.

    1986-01-01

    NASA has developed an airborne SAR that simultaneously yields image data in four linear polarizations in L-band with 10-m resolution over a swath of about 10 km. Signal data are recorded both optically and digitally and annotated in each of the channels to facilitate completely automated digital correlation. Comparison of the relative intensities of the different polarizations furnishes discriminatory mapping information. Local intensity variations in like-polarization images result from topographic effects, while strong cross polarization responses denote the effects of vegetation cover and, in some cases, possible scattering from the subsurface. In each of the areas studied, multiple polarization data led to the discrimination and mapping of unique surface unit features.

  15. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation

    NASA Astrophysics Data System (ADS)

    Maslovskaya, A. G.; Barabash, T. K.

    2018-03-01

    The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.

  16. Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.

    2013-04-01

    We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.

  17. Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.

    PubMed

    Ki, Dae-Han; Jung, Young-Dae

    2013-04-21

    The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.

  18. Low-Energy Electron Effects on the Polar Wind Observed by the POLAR Spacecraft

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.; Su, Y.-J.; Dors, E. E.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.

    1998-01-01

    Large ion outflow velocity variation at POLAR apogee have been observed. The observed H+ flow velocities were in the range of 23-110 km/s and 0+ flow velocities were in the range of 5-25 km/s. These velocity ranges lie between those predicted by simulations of the photoelectron-driven polar wind and "baseline" polar wind. The electric current contributions of the photoelectrons and polar rain are expected to control the size and altitude of an electric potential drop which accelerates the polar wind at relatively high altitudes. In this presentation, we compare polar wind characteristics observed near 5000 km and 8 RE altitudes by the Thermal Ion Dynamics Experiment (TIDE) with measurements of low-energy electrons sampled by HYDRA, both from the POLAR spacecraft, to examine possible effects of the polar rain and photoelectrons on the polar wind. Both correlations and anti-correlations are found between the polar wind velocities and the polar rain fluxes at POLAR apogee during different polar cap crossings. Also, the low-altitude upward/downward photoelectron spectra are used to estimates the potential drops above the spacecraft. We interpret these observations in terms of the effects that both photoelectrons and polar rain may have on the electric potential and polar wind acceleration along polar cap magnetic field lines.

  19. Evaluation of the magnitude of EBT Gafchromic film polarization effects.

    PubMed

    Butson, M J; Cheung, T; Yu, P K N

    2009-03-01

    Gafchromic EBT film, has become a main dosimetric tools for quantitative evaluation of radiation doses in radiation therapy application. One aspect of variability using EBT Gafchromic film is the magnitude of the orientation effect when analysing the film in landscape or portrait mode. This work has utilized a > 99% plane polarized light source and a non-polarized diffuse light source to investigate the absolute magnitude of EBT Gafchromic films polarization or orientation effects. Results have shown that using a non-polarized light source produces a negligible orientation effect for EBT Gafchromic film and thus the angle of orientation is not important. However, the film exhibits a significant variation in transmitted optical density with angle of orientation to polarized light producing more than 100% increase, or over a doubling of measured OD for films irradiated with x-rays up to dose levels of 5 Gy. The maximum optical density was found to be in a plane at an angle of 14 degrees +/- 7 degrees (2 SD) when the polarizing sheet is turned clockwise with respect to the film. As the magnitude of the orientation effect follows a sinusoidal shape it becomes more critical for alignment accuracy of the film with respect to the polarizing direction in the anticlockwise direction as this will place the alignment of the polarizing axes on the steeper gradient section of the sinusoidal pattern. An average change of 4.5% per 5 degrees is seen for an anticlockwise polarizer rotation where as the effect is 1.2% per 5 degrees for an clockwise polarizer rotation. This may have consequences to the positional accuracy of placement of the EBT Gafchromic film on a scanner as even a 1 degree alignment error can cause an approximate 1% error in analysis. The magnitude of the orientation effect is therefore dependant on the degree of polarization of the scanning light source and can range from negligible (diffuse LED light source) through to more than 100% or doubling of OD variation with a fully linear polarized light source.

  20. An exact solution to the relativistic equation of motion of a charged particle driven by a linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1988-01-01

    An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..

  1. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    NASA Astrophysics Data System (ADS)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  2. Modeling of outgassing and matrix decomposition in carbon-phenolic composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1994-01-01

    Work done in the period Jan. - June 1994 is summarized. Two threads of research have been followed. First, the thermodynamics approach was used to model the chemical and mechanical responses of composites exposed to high temperatures. The thermodynamics approach lends itself easily to the usage of variational principles. This thermodynamic-variational approach has been applied to the transpiration cooling problem. The second thread is the development of a better algorithm to solve the governing equations resulting from the modeling. Explicit finite difference method is explored for solving the governing nonlinear, partial differential equations. The method allows detailed material models to be included and solution on massively parallel supercomputers. To demonstrate the feasibility of the explicit scheme in solving nonlinear partial differential equations, a transpiration cooling problem was solved. Some interesting transient behaviors were captured such as stress waves and small spatial oscillations of transient pressure distribution.

  3. Effect of assessment scale on spatial and temporal variations in CH4, C02, and N20 fluxes in a forested wetland

    Treesearch

    Zhaohua Dai; Carl Trettin; Changsheng Li; Harbin Li; Ge Sun; Devendra Amatya

    2011-01-01

    Emissions of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) from a forested watershed (160 ha) in South Carolina, USA, were estimated with a spatially explicit watershed-scale modeling framework that utilizes the spatial variations in physical and biogeochemical characteristics across watersheds. The target watershed (WS80) consisting of wetland (23%) and...

  4. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    PubMed

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  5. Spectral degree of polarization uniformity for polarization-sensitive OCT

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Götzinger, Erich; Rauscher, Sabine; Glösmann, Martin; Lammer, Jan; Schmidt-Erfurth, Ursula; Gröger, Marion; Hitzenberger, Christoph K.

    2015-12-01

    Depolarization of light can be measured by polarization-sensitive optical coherence tomography (PS-OCT) and has been used to improve tissue discrimination as well as segmentation of pigmented structures. Most approaches to depolarization assessment for PS-OCT - such as the degree of polarization uniformity (DOPU) - rely on measuring the uniformity of polarization states using spatial evaluation kernels. In this article, we present a different approach which exploits the spectral dimension. We introduce the spectral DOPU for the pixelwise analysis of polarization state variations between sub-bands of the broadband light source spectrum. Alongside a comparison with conventional spatial and temporal DOPU algorithms, we demonstrate imaging in the healthy human retina, and apply the technique for contrasting hard exudates in diabetic retinopathy and investigating the pigment epithelium of the rat iris.

  6. Integrated polarization beam splitter with relaxed fabrication tolerances.

    PubMed

    Pérez-Galacho, D; Halir, R; Ortega-Moñux, A; Alonso-Ramos, C; Zhang, R; Runge, P; Janiak, K; Bach, H-G; Steffan, A G; Molina-Fernández, Í

    2013-06-17

    Polarization handling is a key requirement for the next generation of photonic integrated circuits (PICs). Integrated polarization beam splitters (PBS) are central elements for polarization management, but their use in PICs is hindered by poor fabrication tolerances. In this work we present a fully passive, highly fabrication tolerant polarization beam splitter, based on an asymmetrical Mach-Zehnder interferometer (MZI) with a Si/SiO(2) Periodic Layer Structure (PLS) on top of one of its arms. By engineering the birefringence of the PLS we are able to design the MZI arms so that sensitivities to the most critical fabrication errors are greatly reduced. Our PBS design tolerates waveguide width variations of 400nm maintaining a polarization extinction ratio better than 13dB in the complete C-Band.

  7. A novel polarization demodulation method using polarization beam splitter (PBS) for dynamic pressure sensor

    NASA Astrophysics Data System (ADS)

    Su, Yang; Zhou, Hua; Wang, Yiming; Shen, Huiping

    2018-03-01

    In this paper we propose a new design to demodulate polarization properties induced by pressure using a PBS (polarization beam splitter), which is different with traditional polarimeter based on the 4-detector polarization measurement approach. The theoretical model is established by Muller matrix method. Experimental results confirm the validity of our analysis. Proportional relationships and linear fit are found between output signal and applied pressure. A maximum sensitivity of 0.092182 mv/mv is experimentally achieved and the frequency response exhibits a <0.14 dB variation across the measurement bandwidth. The sensitivity dependence on incident SOP (state of polarization) is investigated. The simple and all-fiber configuration, low-cost and high speed potential make it promising for fiber-based dynamic pressure sensing.

  8. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  9. Center-to-limb variation of intensity and polarization in continuum spectra of FGK stars for spherical atmospheres

    NASA Astrophysics Data System (ADS)

    Kostogryz, N. M.; Milic, I.; Berdyugina, S. V.; Hauschildt, P. H.

    2016-02-01

    Aims: One of the necessary parameters needed for the interpretation of the light curves of transiting exoplanets or eclipsing binary stars (as well as interferometric measurements of a star or microlensing events) is how the intensity and polarization of light changes from the center to the limb of a star. Scattering and absorption processes in the stellar atmosphere affect both the center-to-limb variation of intensity (CLVI) and polarization (CLVP). In this paper, we present a study of the CLVI and CLVP in continuum spectra, taking into consideration the different contributions of scattering and absorption opacity for a variety of spectral type stars with spherical atmospheres. Methods: We solve the radiative transfer equation for polarized light in the presence of a continuum scattering, taking into consideration the spherical model of a stellar atmosphere. To cross-check our results, we developed two independent codes that are based on Feautrier and short characteristics methods, respectively, Results: We calculate the center-to-limb variation of intensity (CLVI) and polarization (CLVP) in continuum for the Phoenix grid of spherical stellar model atmospheres for a range of effective temperatures (4000-7000 K), gravities (log g = 1.0-5.5), and wavelengths (4000-7000 Å), which are tabulated and available at the CDS. In addition, we present several tests of our codes and compare our calculations for the solar atmosphere with published photometric and polarimetric measurements. We also show that our two codes provide similar results in all considered cases. Conclusions: For sub-giant and dwarf stars (log g = 3.0-4.5), the lower gravity and lower effective temperature of a star lead to higher limb polarization of the star. For giant and supergiant stars (log g = 1.0-2.5), the highest effective temperature yields the largest polarization. By decreasing the effective temperature of a star down to 4500-5500 K (depending on log g), the limb polarization decreases and reaches a local minimum. It increases again with a corresponding decrease in temperature down to 4000 K. For the most compact dwarf stars (log g = 5.0-5.5), the limb polarization degree shows a maximum for models with effective temperatures in the range 4200-4600 K (depending on log g) and decreases toward higher and lower temperatures. The intensity and polarization profiles are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A87

  10. The Feasibility of Formation and Kinetics of NMR Signal Amplification by Reversible Exchange (SABRE) at High Magnetic Field (9.4 T)

    PubMed Central

    2015-01-01

    1H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective 1H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process. PMID:24528143

  11. The feasibility of formation and kinetics of NMR signal amplification by reversible exchange (SABRE) at high magnetic field (9.4 T).

    PubMed

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-03-05

    (1)H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective (1)H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process.

  12. The ellipsoidal universe in the Planck satellite era

    NASA Astrophysics Data System (ADS)

    Cea, Paolo

    2014-06-01

    Recent Planck data confirm that the cosmic microwave background displays the quadrupole power suppression together with large-scale anomalies. Progressing from previous results, that focused on the quadrupole anomaly, we strengthen the proposal that the slightly anisotropic ellipsoidal universe may account for these anomalies. We solved at large scales the Boltzmann equation for the photon distribution functions by taking into account both the effects of the inflation produced primordial scalar perturbations and the anisotropy of the geometry in the ellipsoidal universe. We showed that the low quadrupole temperature correlations allowed us to fix the eccentricity at decoupling, edec = (0.86 ± 0.14) 10-2, and to constraint the direction of the symmetry axis. We found that the anisotropy of the geometry of the universe contributes only to the large-scale temperature anisotropies without affecting the higher multipoles of the angular power spectrum. Moreover, we showed that the ellipsoidal geometry of the universe induces sizeable polarization signal at large scales without invoking the reionization scenario. We explicitly evaluated the quadrupole TE and EE correlations. We found an average large-scale polarization ΔTpol = (1.20 ± 0.38) μK. We point out that great care is needed in the experimental determination of the large-scale polarization correlations since the average temperature polarization could be misinterpreted as foreground emission leading, thereby, to a considerable underestimate of the cosmic microwave background polarization signal.

  13. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing

    PubMed Central

    Yun, S.H.; Vakoc, B.J.; Shishkov, M.; Desjardins, A.E.; Park, B.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E.

    2009-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm. PMID:18542183

  14. Multiple scattered radiation emerging from Rayleigh and continental haze layers. I - Radiance, polarization, and neutral points

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.

    1976-01-01

    The matrix operator method was used to calculate the polarization of radiation scattered on layers of various optical thicknesses, with results compared for Rayleigh scattering and for scattering from a continental haze. In both cases, there are neutral points arising from the zeros of the polarization of single scattered photons at scattering angles of zero and 180 degrees. The angular position of these Rayleigh-like neutral points (RNP) in the sky shows appreciable variation with the optical thickness of the scattering layer for a Rayleigh phase matrix, but only a small variation for haze L phase matrix. Another type of neutral point exists for non-Rayleigh phase functions that is associated with the zeros of the polarization for single scattering which occurs between the end points of the curve. A comparison of radiances calculated from the complete theory of radiative transfer using Stokes vectors with those obtained from the scalar theory shows that differences of the order of 23% may be obtained for Rayleigh scattering, while the largest difference found for a haze L phase function was of the order of 0.1%.

  15. Quantitative thickness measurement of polarity-inverted piezoelectric thin-film layer by scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Odagawa, Hiroyuki; Terada, Koshiro; Tanaka, Yohei; Nishikawa, Hiroaki; Yanagitani, Takahiko; Cho, Yasuo

    2017-10-01

    A quantitative measurement method for a polarity-inverted layer in ferroelectric or piezoelectric thin film is proposed. It is performed nondestructively by scanning nonlinear dielectric microscopy (SNDM). In SNDM, linear and nonlinear dielectric constants are measured using a probe that converts the variation of capacitance related to these constants into the variation of electrical oscillation frequency. In this paper, we describe a principle for determining the layer thickness and some calculation results of the output signal, which are related to the radius of the probe tip and the thickness of the inverted layer. Moreover, we derive an equation that represents the relationship between the output signal and the oscillation frequency of the probe and explain how to determine the thickness from the measured frequency. Experimental results in Sc-doped AlN piezoelectric thin films that have a polarity-inverted layer with a thickness of 1.5 µm fabricated by radio frequency magnetron sputtering showed a fairly good value of 1.38 µm for the thickness of the polarity-inverted layer.

  16. Fast, High-Precision Optical Polarization Synthesizer for Ultracold-Atom Experiments

    NASA Astrophysics Data System (ADS)

    Robens, Carsten; Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Zopes, Jonathan; Alberti, Andrea

    2018-03-01

    We present a technique for the precision synthesis of arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices, Phys. Rev. Lett. 118, 065302 (2017), 10.1103/PhysRevLett.118.065302] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices which trap atoms depending on their internal spin state. We use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.

  17. Polarized light sensitivity and orientation in coral reef fish post-larvae.

    PubMed

    Berenshtein, Igal; Kiflawi, Moshe; Shashar, Nadav; Wieler, Uri; Agiv, Haim; Paris, Claire B

    2014-01-01

    Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity-the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun's position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh's test p<0.05, R = 0.74±0.23), but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze), which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae.

  18. Automation of Mode Locking in a Nonlinear Polarization Rotation Fiber Laser through Output Polarization Measurements.

    PubMed

    Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé

    2016-02-28

    When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.

  19. Automation of Mode Locking in a Nonlinear Polarization Rotation Fiber Laser through Output Polarization Measurements

    PubMed Central

    Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé

    2016-01-01

    When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques. PMID:26967924

  20. Polarized Light Sensitivity and Orientation in Coral Reef Fish Post-Larvae

    PubMed Central

    Berenshtein, Igal; Kiflawi, Moshe; Shashar, Nadav; Wieler, Uri; Agiv, Haim; Paris, Claire B.

    2014-01-01

    Recent studies of the larvae of coral-reef fishes reveal that these tiny vertebrates possess remarkable swimming capabilities, as well as the ability to orient to olfactory, auditory, and visual cues. While navigation according to reef-generated chemicals and sounds can significantly affect dispersal, the effect is limited to the vicinity of the reef. Effective long-distance navigation requires at least one other capacity–the ability to maintain a bearing using, for example, a sun compass. Directional information in the sun’s position can take the form of polarized-light related cues (i.e., e-vector orientation and percent polarization) and/or non-polarized-light related cues (i.e., the direct image of the sun, and the brightness and spectral gradients). We examined the response to both types of cues using commercially-reared post-larvae of the spine-cheeked anemonefish Premnas biaculeatus. Initial optomotor trials indicated that the post-larval stages are sensitive to linearly polarized light. Swimming directionality was then tested using a Drifting In-Situ Chamber (DISC), which allowed us to examine the response of the post-larvae to natural variation in light conditions and to manipulated levels of light polarization. Under natural light conditions, 28 of 29 post-larvae showed significant directional swimming (Rayleigh’s test p<0.05, R = 0.74±0.23), but to no particular direction. Swimming directionality was positively affected by sky clarity (absence of clouds and haze), which explained 38% of the observed variation. Moreover, post-larvae swimming under fully polarized light exhibited a distinct behavior of tracking the polarization axis, as it rotated along with the DISC. This behavior was not observed under partially-polarized illumination. We view these findings as an indication for the use of sun-related cues, and polarized light signal in specific, by orienting coral-reef fish larvae. PMID:24516662

  1. Making maps of cosmic microwave background polarization for B-mode studies: the POLARBEAR example

    DOE PAGES

    Poletti, Davide; Fabbian, Giulio; Le Jeune, Maude; ...

    2017-03-30

    Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this paper, we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in whichmore » the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Finally, our analysis and conclusions are however more generally applicable.« less

  2. Making maps of cosmic microwave background polarization for B-mode studies: the POLARBEAR example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poletti, Davide; Fabbian, Giulio; Le Jeune, Maude

    Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this paper, we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in whichmore » the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Finally, our analysis and conclusions are however more generally applicable.« less

  3. The influence of grain growth in circumstellar dust envelopes on observed colors and polarization of some eruptive stars

    NASA Technical Reports Server (NTRS)

    Efimov, Yu. S.

    1989-01-01

    R CrB stars are classical examples of stars where dust envelope formation takes place. Dust envelope formation was detected around the Kuwano-Honda object (PU Vul) in 1980 to 1981 when the star's brightness fell to 8(sup m). Such envelopes are also formed at nova outbursts. The process of dust envelope formation leads to appreciable variations in optical characteristics, which are seen in specific color and polarization variations in the course of light fading and the appearance of IR radiation. It is shown that the model of a circumstellar dust envelope with aligned particles of changing size can be successfully applied to explain most phenomena observed at the time of light minima for a number of eruptive stars. The polarization may arise in a nonspherical dust envelope or be produced by alignment of nonspherical particles.

  4. The 3-D collagen structure of equine articular cartilage, characterized using variable-angle-of-incidence polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Gangnus, Sergei V.; Matcher, Stephen J.

    2005-08-01

    Polarization-sensitive optical coherence tomography has been used to spatially map the birefringence of equine articular cartilage. Images obtained in the vicinity of visible osteoarthritic lesions display a characteristic disruption of the regular birefringence bands shown by normal cartilage. We also note that significant (e.g. ×2) variations in the apparent birefringence of samples taken from young (18 month) animals that otherwise appear visually homogeneous are found over spatial scales of a few millimeters. We suggest that whilst some of this variation may be due to changes in the intrinsic birefringence of the tissue, the 3-D orientation of the collagen fibers relative to the plane of the joint surface should also be taken into account. We propose a method based on multiple angles of illumination to determine the polar angle of the collagen fibers.

  5. Sunspot cycle-dependent changes in the distribution of GSE latitudinal angles of IMF observed near 1 AU

    NASA Astrophysics Data System (ADS)

    Felix Pereira, B.; Girish, T. E.

    2004-05-01

    The solar cycle variations in the characteristics of the GSE latitudinal angles of the Interplanetary Magnetic Field ($\\theta$GSE) observed near 1 AU have been studied for the period 1967-2000. It is observed that the statistical parameters mean, standard deviation, skewness and kurtosis vary with sunspot cycle. The $\\theta$GSE distribution resembles the Gaussian curve during sunspot maximum and is clearly non-Gaussian during sunspot minimum. The width of the $\\theta$GSE distribution is found to increase with sunspot activity, which is likely to depend on the occurrence of solar transients. Solar cycle variations in skewness are ordered by the solar polar magnetic field changes. This can be explained in terms of the dependence of the dominant polarity of the north-south component of IMF in the GSE system near 1 AU on the IMF sector polarity and the structure of the heliospheric current sheet.

  6. Direct generation of linearly polarized single photons with a deterministic axis in quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Puchtler, Tim J.; Patra, Saroj K.; Zhu, Tongtong; Ali, Muhammad; Badcock, Tom J.; Ding, Tao; Oliver, Rachel A.; Schulz, Stefan; Taylor, Robert A.

    2017-07-01

    We report the direct generation of linearly polarized single photons with a deterministic polarization axis in self-assembled quantum dots (QDs), achieved by the use of non-polar InGaN without complex device geometry engineering. Here, we present a comprehensive investigation of the polarization properties of these QDs and their origin with statistically significant experimental data and rigorous k·p modeling. The experimental study of 180 individual QDs allows us to compute an average polarization degree of 0.90, with a standard deviation of only 0.08. When coupled with theoretical insights, we show that these QDs are highly insensitive to size differences, shape anisotropies, and material content variations. Furthermore, 91% of the studied QDs exhibit a polarization axis along the crystal [1-100] axis, with the other 9% polarized orthogonal to this direction. These features give non-polar InGaN QDs unique advantages in polarization control over other materials, such as conventional polar nitride, InAs, or CdSe QDs. Hence, the ability to generate single photons with polarization control makes non-polar InGaN QDs highly attractive for quantum cryptography protocols.

  7. Coherent energy exchange between components of a vector soliton in fiber lasers.

    PubMed

    Zhang, H; Tang, D Y; Zhao, L M; Xiang, N

    2008-08-18

    We report on the experimental evidence of four wave mixing (FWM) between the two polarization components of a vector soliton formed in a passively mode-locked fiber laser. Extra spectral sidebands with out-of-phase intensity variation between the polarization resolved soliton spectra was firstly observed, which was identified to be caused by the energy exchange between the two soliton polarization components. Other features of the FWM spectral sidebands and the soliton internal FWM were also experimentally investigated and numerically confirmed.

  8. Visualizing polarization singularities in Bessel-Poincaré beams.

    PubMed

    Shvedov, V; Karpinski, P; Sheng, Y; Chen, X; Zhu, W; Krolikowski, W; Hnatovsky, C

    2015-05-04

    We demonstrate that an annulus of light whose polarization is linear at each point, but the plane of polarization gradually rotates by π radians can be used to generate Bessel-Poincaré beams. In any transverse plane this beam exhibits concentric rings of polarization singularities in the form of L-lines, where the polarization is purely linear. Although the L-lines are invisible in terms of light intensity variations, we present a simple way to visualize them as dark rings around a sharp peak of intensity in the beam center. To do this we use a segmented polarizer whose transmission axes are oriented differently in each segment. The radius of the first L-line is always smaller than the radius of the central disk of the zero-order Bessel beam that would be produced if the annulus were homogeneously polarized and had no phase circulation along it.

  9. Polarized deuterium internal target at AmPS (NIKHEF)

    NASA Astrophysics Data System (ADS)

    Ferro-Luzzi, M.; Zhou, Z.-L.; van den Brand, J. F. J.; Bulten, H. J.; Alarcon, R.; van Bakel, N.; Botto, T.; Bouwhuis, M.; van Buuren, L.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Geurts, D.; Heimberg, P.; Higinbotham, D. W.; de Jager, C. W.; Lang, J.; de Lange, D. J.; Norum, B.; Passchier, I.; Poolman, H. R.; Six, E.; Steijger, J.; Szczerba, D.; Unal, O.; de Vries, H.

    1998-01-01

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)α reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.

  10. Polarized deuterium internal target at AmPS (NIKHEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norum, Blaine; De Jager, Cornelis; Geurts, D.

    1997-08-01

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)sigma reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the targetmore » gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less

  11. Polarized deuterium internal target at AmPS (NIKHEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferro-Luzzi, M.; NIKHEF, P.O. Box 41882, 1009 DB Amsterdam; Zhou, Z.-L.

    1998-01-20

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the {sup 3}H(d,n){alpha} reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of themore » target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less

  12. Linear polarization of a group of symbiotic systems

    NASA Astrophysics Data System (ADS)

    Brandi, E.; García, L. G.; Piirola, V.; Scaltriti, F.; Quiroga, C.

    2000-08-01

    We report linear polarization measurements of a set of symbiotic stars, made at several epochs during the period 1994-1998. Evidence of intrinsic polarization is looked for from the wavelength dependence of the polarization degree and position angle in UBVRI bands. The results have also been analysed to search for temporal variability of polarization. Several objects have shown a polarization spectrum different from that produced by interstellar dust grains and/or polarimetric variations on time scales as short as several days or months, indicating the presence of polarization component of circumstellar origin. Based on observations taken at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación and the National Universities of La Plata, Córdoba and San Juan.

  13. Comparison of Polar Cap (PC) index calculations.

    NASA Astrophysics Data System (ADS)

    Stauning, P.

    2012-04-01

    The Polar Cap (PC) index introduced by Troshichev and Andrezen (1985) is derived from polar magnetic variations and is mainly a measure of the intensity of the transpolar ionospheric currents. These currents relate to the polar cap antisunward ionospheric plasma convection driven by the dawn-dusk electric field, which in turn is generated by the interaction of the solar wind with the Earth's magnetosphere. Coefficients to calculate PCN and PCS index values from polar magnetic variations recorded at Thule and Vostok, respectively, have been derived by several different procedures in the past. The first published set of coefficients for Thule was derived by Vennerstrøm, 1991 and is still in use for calculations of PCN index values by DTU Space. Errors in the program used to calculate index values were corrected in 1999 and again in 2001. In 2005 DMI adopted a unified procedure proposed by Troshichev for calculations of the PCN index. Thus there exists 4 different series of PCN index values. Similarly, at AARI three different sets of coefficients have been used to calculate PCS indices in the past. The presentation discusses the principal differences between the various PC index procedures and provides comparisons between index values derived from the same magnetic data sets using the different procedures. Examples from published papers are examined to illustrate the differences.

  14. Evaluation and display of polarimetric image data using long-wave cooled microgrid focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bowers, David L.; Boger, James K.; Wellems, L. David; Black, Wiley T.; Ortega, Steve E.; Ratliff, Bradley M.; Fetrow, Matthew P.; Hubbs, John E.; Tyo, J. Scott

    2006-05-01

    Recent developments for Long Wave InfraRed (LWIR) imaging polarimeters include incorporating a microgrid polarizer array onto the focal plane array (FPA). Inherent advantages over typical polarimeters include packaging and instantaneous acquisition of thermal and polarimetric information. This allows for real time video of thermal and polarimetric products. The microgrid approach has inherent polarization measurement error due to the spatial sampling of a non-uniform scene, residual pixel to pixel variations in the gain corrected responsivity and in the noise equivalent input (NEI), and variations in the pixel to pixel micro-polarizer performance. The Degree of Linear Polarization (DoLP) is highly sensitive to these parameters and is consequently used as a metric to explore instrument sensitivities. Image processing and fusion techniques are used to take advantage of the inherent thermal and polarimetric sensing capability of this FPA, providing additional scene information in real time. Optimal operating conditions are employed to improve FPA uniformity and sensitivity. Data from two DRS Infrared Technologies, L.P. (DRS) microgrid polarizer HgCdTe FPAs are presented. One FPA resides in a liquid nitrogen (LN2) pour filled dewar with a 80°K nominal operating temperature. The other FPA resides in a cryogenic (cryo) dewar with a 60° K nominal operating temperature.

  15. On the link between martian total ozone and potential vorticity

    NASA Astrophysics Data System (ADS)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  16. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics

    PubMed Central

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-01-01

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. PMID:26488648

  17. Lommel modes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Kotlyar, Victor V.

    2015-03-01

    We study a non-paraxial family of nondiffracting laser beams whose complex amplitude is proportional to an n-th order Lommel function of two variables. These beams are referred to as Lommel modes. Explicit analytical relations for the angular spectrum of plane waves and orbital angular momentum of the Lommel beams have been derived. The even (n=2p) and odd (n=2p+1) Lommel modes are mutually orthogonal, as are the Lommel modes characterized by different projections of the wave vector on the optical axis. At a definite parameter, the Lommel modes change to conventional Bessel beams. Asymmetry of the Lommel modes depends on a complex parameter с, with its modulus in the polar notation defining the intensity pattern in the beam‧s cross-section and the argument defining the angle of rotation of the intensity pattern about the optical axis. If the parameter с is real or purely imaginary, the transverse intensity component of the Lommel modes is specularly symmetric about the Cartesian coordinate axes. Besides, with the modulus of the с parameter increasing from 0 to 1, the orbital angular momentum of the Lommel modes increases from a finite value proportional to the topological charge n to infinity. The orbital angular momentum of the Lommel modes undergoes continuous variations, in contrast to its discrete changes in the Bessel modes.

  18. Decision or no decision: how do patient-physician interactions end and what matters?

    PubMed

    Tai-Seale, Ming; Bramson, Rachel; Bao, Xiaoming

    2007-03-01

    A clearly stated clinical decision can induce a cognitive closure in patients and is an important investment in the end of patient-physician communications. Little is known about how often explicit decisions are made in primary care visits. To use an innovative videotape analysis approach to assess physicians' propensity to state decisions explicitly, and to examine the factors influencing decision patterns. We coded topics discussed in 395 videotapes of primary care visits, noting the number of instances and the length of discussions on each topic, and how discussions ended. A regression analysis tested the relationship between explicit decisions and visit factors such as the nature of topics under discussion, instances of discussion, the amount of time the patient spoke, and competing demands from other topics. About 77% of topics ended with explicit decisions. Patients spoke for an average of 58 seconds total per topic. Patients spoke more during topics that ended with an explicit decision, (67 seconds), compared with 36 seconds otherwise. The number of instances of a topic was associated with higher odds of having an explicit decision (OR = 1.73, p < 0.01). Increases in the number of topics discussed in visits (OR = 0.95, p < .05), and topics on lifestyle and habits (OR = 0.60, p < .01) were associated with lower odds of explicit decisions. Although discussions often ended with explicit decisions, there were variations related to the content and dynamics of interactions. We recommend strengthening patients' voice and developing clinical tools, e.g., an "exit prescription," to improving decision making.

  19. Anatomical Study of Variations in the Blood Supply of Kidneys

    PubMed Central

    Aristotle, Sharmila; Sundarapandian; Felicia, Christilda

    2013-01-01

    Background: Each kidney is supplied by a single renal artery and a single renal vein, which accounts for about 20% of the cardiac output. However, variations in the form of level of origin and arrangement of renal arteries are so frequent. Aim: The present study aimed to note the vascular anatomy of kidneys with respect to the variations in their origin, course and any aberrant vessels which were present. Materials and Methods: The study material comprised of 15 formalin fixed human cadavers. During routine abdominal dissection for undergraduate students, the kidneys were exposed and the blood supply, along with its variations, were noted. Results: The following anatomical findings are observed in this study: (i) Accessory renal arteries (ii) Presegmental arteries (iii) Upper polar arteries (iv) Lower polar arteries (v) Inferior suprarenal artery from accessory renal artery and (vi) Accessory renal vein. Conclusion: Awareness of the normal as well variational anatomy is mandatory for the surgeons, radiologists and urologists, for doing any uroradiological procedures or angiographic studies. Hence, this study will serve a useful guideline for the above mentioned procedures. PMID:24086837

  20. Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus).

    PubMed

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; McKinney, Melissa A; Peacock, Elizabeth; Sonne, Christian

    2012-12-01

    In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n = 121) from 10 Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using δ(13) C in muscle tissue and fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and δ(13) C suggested that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and lipid sources in Bering-Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal trends of long-range transported trace elements. Copyright © 2012 SETAC.

  1. Spatio-temporal changes of seismic anisotropy in seismogenic zones

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J.; Roux, P.; Paul, C.; Brenguier, F.; Enescu, B.; Shiomi, K.

    2013-12-01

    Seismic anisotropy plays a key role in the study of stress and strain fields in the earth. Potential temporal change of seismic anisotropy can be interpreted as change of the orientation of cracks in seismogenic zones and thus change of the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes (Durand et al. , 2011) but are still not well understood. In this study, from a numerical point of view, we investigate the variations of the polarization of surface waves in anisotropic media. These variations are related to the elastic properties of the medium, in particular to anisotropy. The technique used is based on the calculation of the whole cross-correlation tensor (CCT) of ambient seismic noise. If the sources are randomly distributed in homogeneous medium, it allows us to reconstruct the Green's tensor between two stations continuously and to monitor the region through the use of its fluctuations. Therefore, the temporal change of the Green's cross-correlation tensor enables the monitoring of stress and strain fields. This technique is applied to synthetic seismograms computed in a transversally isotropic medium with horizontal symmetry axis (hereafter referred to an HTI medium) using a code RegSEM (Cupillard et al. , 2012) based on the spectral element method. We designed an experiment in order to investigate the influence of anisotropy on the CCT. In homogeneous, isotropic medium the off-diagonal terms of the Green's tensor are null. The CCT is computed between each pair of stations and then rotated in order to approximate the Green's tensor by minimizing the off-diagonal components. This procedure permits the calculation of the polarization angle of quasi-Rayleigh and quasi-Love waves, and to observe the azimuthal variation of their polarization. The results show that even a small variation of the azimuth of seismic anisotropy with respect to a certain pair of stations can induce, in some cases, a large variation in the horizontal polarization of surface waves along the direction of this pair of stations. It depends on the relative azimuth angle between the pair of stations and the direction of anisotropy, on the amplitude of anisotropy and the frequency band of the signal. Therefore, it is now possible to explain the large, rapid and very localized variations of surface waves horizontal polarization observed by Durand et al. (2011) during the Parkfield earthquake of 2004. Furthermore, some preliminary results about the investigation of seismic anisotropy change caused by the June 13, 2008 Iwate-Miyagi Nairiku earthquake (Mw = 6.9) will be presented.

  2. Importance of spatial autocorrelation in modeling bird distributions at a continental scale

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.

  3. Belief propagation decoding of quantum channels by passing quantum messages

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.

    2017-07-01

    The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.

  4. Polar process and world climate /A brief overview/

    NASA Technical Reports Server (NTRS)

    Goody, R.

    1980-01-01

    A review is presented of events relating polar regions to the world climate, the mechanisms of sea ice and polar ice sheets, and of two theories of the Pleistocene Ice Ages. The sea ice which varies over time scales of one or two years and the polar ice sheets with time changes measured in tens or hundreds of thousands of years introduce two distinct time constants into global time changes; the yearly Arctic sea ice variations affect northern Europe and have some effect over the entire Northern Hemisphere; the ice-albedo coupling in the polar ice sheets is involved in major climatic events such as the Pleistocene ice ages. It is concluded that climate problems require a global approach including the atmosphere, the oceans, and the cryosphere.

  5. Parametric analysis of synthetic aperture radar data acquired over truck garden vegetation

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    An airborne X-band SAR acquired multipolarization and multiflight pass SAR images over a truck garden vegetation area. Based on a variety of land cover and row crop direction variations, the vertical (VV) polarization data contain the highest contrast, while cross polarization contains the least. When the radar flight path is parallel to the row direction, both horizontal (HH) and VV polarization data contain very high return which masks out the specific land cover that forms the row structure. Cross polarization data are not that sensitive to row orientation. The inclusion of like and cross polarization data help delineate special surface features (e.g., row crop against non-row-oriented land cover, very-rough-surface against highly row-oriented surface).

  6. Inferring interplanetary magnetic field polarities from geomagnetic variations

    NASA Astrophysics Data System (ADS)

    Vokhmyanin, M. V.; Ponyavin, D. I.

    2012-06-01

    In this paper, we propose a modified procedure to infer the interplanetary magnetic field (IMF) polarities from geomagnetic observations. It allows to identify the polarity back to 1905. As previous techniques it is based on the well-known Svalgaard-Mansurov effect. We have improved the quality and accuracy of polarity inference compared with the previous results of Svalgaard (1975) and Vennerstroem et al. (2001) by adding new geomagnetic stations and extracting carefully diurnal curve. The data demonstrates an excess of one of the two IMF sectors within equinoxes (Rosenberg-Coleman rule) evidencing polar field reversals at least for the last eight solar cycles. We also found a predominance of the two-sector structure in late of descending phase of solar cycle 16.

  7. Daily variation characteristics at polar geomagnetic observatories

    NASA Astrophysics Data System (ADS)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  8. Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh

    2018-05-01

    The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.

  9. A method to calculate Stokes parameters and angle of polarization of skylight from polarized CIMEL sun/sky radiometers

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, Z.; Li, K.; Blarel, L.; Wendisch, M.

    2014-12-01

    The polarized CIMEL sun/sky radiometers have been routinely operated within the Sun/sky-radiometer Observation NETwork (SONET) in China and some sites of the AErosol RObotic NETwork (AERONET) around the world. However, the polarization measurements are not yet widely used due to in a certain degree the lack of Stokes parameters derived directly from these polarization measurements. Meanwhile, it have been shown that retrievals of several microphysical properties of aerosol particles can be significantly improved by using degree of linear polarization (DoLP) measurements of polarized CIMEL sun/sky radiometers (CE318-DP). The Stokes parameters Q and U, as well as angle of polarization (AoP) contain additional information about linear polarization and its orientation. A method to calculate Stokes parameters Q, U, and AoP from CE318-DP polarized skylight measurements is introduced in this study. A new polarized almucantar geometry based on CE318-DP is measured to illustrate abundant variation features of these parameters. The polarization parameters calculated in this study are consistent with previous results of DoLP and I, and also comparable to vector radiative transfer simulations.

  10. Short- and Medium-term Atmospheric Effects of Very Large Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Fleming, Eric L.; Labow, Gordon J.; Randall, Cora E.; Lopez-Puertas, Manuel; Funke, Bernd

    2007-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. In particular, the humankind or anthropogenic influence on ozone from chlorofluorocarbons and halons (chlorine and bromine) has led to international regulations greatly limiting the release of these substances. These anthropogenic effects on ozone are most important in polar regions and have been significant since the 1970s. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the short- and medium-term (days to a few months) influences of solar proton events between 1963 and 2005 on stratospheric ozone. The four largest events in the past 45 years (August 1972; October 1989; July 2000; and October-November 2003) caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- containing compounds, which led to the polar ozone destruction. The hydrogen-containing compounds have very short lifetimes and lasted for only a few days (typically the duration of the solar proton event). On the other hand, the nitrogen-containing compounds lasted much longer, especially in the Winter. The nitrogen oxides were predicted to increase substantially due to these solar events and led to mid- to upper polar stratospheric ozone decreases of over 20%. These WACCM results generally agreed with satellite measurements. Both WACCM and measurements showed enhancements of nitric acid, dinitrogen pentoxide, and chlorine nitrate, which were indirectly caused by these solar events. Solar proton events were shown to cause a significant change in the polar stratosphere and need to be considered in understanding variations during years of strong solar activity.

  11. Polar clouds and radiation in satellite observations, reanalyses, and climate models

    NASA Astrophysics Data System (ADS)

    Lenaerts, Jan T. M.; Van Tricht, Kristof; Lhermitte, Stef; L'Ecuyer, Tristan S.

    2017-04-01

    Clouds play a pivotal role in the surface energy budget of the polar regions. Here we use two largely independent data sets of cloud and surface downwelling radiation observations derived by satellite remote sensing (2007-2010) to evaluate simulated clouds and radiation over both polar ice sheets and oceans in state-of-the-art atmospheric reanalyses (ERA-Interim and Modern Era Retrospective-Analysis for Research and Applications-2) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model ensemble. First, we show that, compared to Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled, CloudSat-CALIPSO better represents cloud liquid and ice water path over high latitudes, owing to its recent explicit determination of cloud phase that will be part of its new R05 release. The reanalyses and climate models disagree widely on the amount of cloud liquid and ice in the polar regions. Compared to the observations, we find significant but inconsistent biases in the model simulations of cloud liquid and ice water, as well as in the downwelling radiation components. The CMIP5 models display a wide range of cloud characteristics of the polar regions, especially with regard to cloud liquid water, limiting the representativeness of the multimodel mean. A few CMIP5 models (CNRM, GISS, GFDL, and IPSL_CM5b) clearly outperform the others, which enhances credibility in their projected future cloud and radiation changes over high latitudes. Given the rapid changes in polar regions and global feedbacks involved, future climate model developments should target improved representation of polar clouds. To that end, remote sensing observations are crucial, in spite of large remaining observational uncertainties, which is evidenced by the substantial differences between the two data sets.

  12. Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss.

    PubMed

    Dey, Cody J; Richardson, Evan; McGeachy, David; Iverson, Samuel A; Gilchrist, Hugh G; Semeniuk, Christina A D

    2017-05-01

    Climate change can influence interspecific interactions by differentially affecting species-specific phenology. In seasonal ice environments, there is evidence that polar bear predation of Arctic bird eggs is increasing because of earlier sea ice breakup, which forces polar bears into nearshore terrestrial environments where Arctic birds are nesting. Because polar bears can consume a large number of nests before becoming satiated, and because they can swim between island colonies, they could have dramatic influences on seabird and sea duck reproductive success. However, it is unclear whether nest foraging can provide an energetic benefit to polar bear populations, especially given the capacity of bird populations to redistribute in response to increasing predation pressure. In this study, we develop a spatially explicit agent-based model of the predator-prey relationship between polar bears and common eiders, a common and culturally important bird species for northern peoples. Our model is composed of two types of agents (polar bear agents and common eider hen agents) whose movements and decision heuristics are based on species-specific bioenergetic and behavioral ecological principles, and are influenced by historical and extrapolated sea ice conditions. Our model reproduces empirical findings that polar bear predation of bird nests is increasing and predicts an accelerating relationship between advancing ice breakup dates and the number of nests depredated. Despite increases in nest predation, our model predicts that polar bear body condition during the ice-free period will continue to decline. Finally, our model predicts that common eider nests will become more dispersed and will move closer to the mainland in response to increasing predation, possibly increasing their exposure to land-based predators and influencing the livelihood of local people that collect eider eggs and down. These results show that predator-prey interactions can have nonlinear responses to changes in climate and provides important predictions of ecological change in Arctic ecosystems. © 2016 John Wiley & Sons Ltd.

  13. Electron correlation by polarization of interacting densities

    NASA Astrophysics Data System (ADS)

    Whitten, Jerry L.

    2017-02-01

    Coulomb interactions that occur in electronic structure calculations are correlated by allowing basis function components of the interacting densities to polarize dynamically, thereby reducing the magnitude of the interaction. Exchange integrals of molecular orbitals are not correlated. The modified Coulomb interactions are used in single-determinant or configuration interaction calculations. The objective is to account for dynamical correlation effects without explicitly introducing higher spherical harmonic functions into the molecular orbital basis. Molecular orbital densities are decomposed into a distribution of spherical components that conserve the charge and each of the interacting components is considered as a two-electron wavefunction embedded in the system acted on by an average field Hamiltonian plus r12-1. A method of avoiding redundancy is described. Applications to atoms, negative ions, and molecules representing different types of bonding and spin states are discussed.

  14. Comment on “Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions” [J. Chem. Phys. 141, 064905 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Jesse G.; Yethiraj, Arun

    The manuscript by Ballal et al.(Ref 1) presents an interesting study demonstrating the inability of popular force fields with standard combination rules to accurately describe water/alkane interactions. The authors find that the Lorentz-Berthelot combination rules on the SPC/E water and TraPPE alkane potentials give a cross interaction that fails to predict the (low-water content) water solubility in various alkanes. Realizing that both explicit polarization as well as the static octupole moment of methane are missing in these potentials, the authors examine the effect of these terms, but are still unable to resolve the discrepancy. They conclude with the statement thatmore » “the research community lacks a complete picture of water-alkane interactions at the molecular level.« less

  15. Comment on “Isolating the non-polar contributions to the intermolecular potential for water-alkane interactions” [J. Chem. Phys. 141, 064905 (2014)

    DOE PAGES

    McDaniel, Jesse G.; Yethiraj, Arun

    2016-04-06

    The manuscript by Ballal et al.(Ref 1) presents an interesting study demonstrating the inability of popular force fields with standard combination rules to accurately describe water/alkane interactions. The authors find that the Lorentz-Berthelot combination rules on the SPC/E water and TraPPE alkane potentials give a cross interaction that fails to predict the (low-water content) water solubility in various alkanes. Realizing that both explicit polarization as well as the static octupole moment of methane are missing in these potentials, the authors examine the effect of these terms, but are still unable to resolve the discrepancy. They conclude with the statement thatmore » “the research community lacks a complete picture of water-alkane interactions at the molecular level.« less

  16. Evolution of the Antarctic polar vortex in spring: Response of a GCM to a prescribed Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Boville, B. A.; Kiehl, J. T.; Briegleb, B. P.

    1988-01-01

    The possible effect of the Antartic ozone hole on the evolution of the polar vortex during late winter and spring using a general circulation model (GCM) is examined. The GCM is a version of the NCAR Community Climate Model whose domain extends from the surface to the mesosphere and is similar to that described on Boville and Randel (1986). Ozone is not a predicted variable in the model. A zonally averaged ozone distribution is specified as a function of latitude, pressure and month for the radiation parameterization. Rather that explicitly address reasons for the formation of the ozone hole, researchers postulate its existence and ask what effect it has on the subsequent evolution of the vortex. The evolution of the model when an ozone hole is imposed is then discussed.

  17. Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain

    DOE PAGES

    Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi

    2015-12-29

    In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for dmore » electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.« less

  18. Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi

    In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for dmore » electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.« less

  19. Incident polarization angle and temperature dependence of polarization and spectral response characteristics in optical fiber couplers.

    PubMed

    Namihira, Y; Kawazawa, T; Wakabayashi, H

    1991-03-20

    The incident polarization angle and temperature dependence of the polarization and spectral response characteristics of three different types of fiber coupler are presented. The couplers are (1) the biconicalfused- twisted-taper single-mode fiber (coupler A), (2) the asymmetric-etched-fused-taper wavelength division multiplex (coupler B), and (3) the biconical-polished polarization maintaining fiber (coupler C), respectively. It is confirmed experimentally that the polarization characteristics of couplers A and B vary greatly with temperature, but those of coupler C are independent of temperature. Also, the wavelength dependence characteristics of the power splitting ratio of couplers B and C have almost no change with temperature. However, the wavelength dependence of coupler A is greatly changed with temperature. Comparing couplers A and B, it is postulated that the sinusoidal variations of the polarization state vs the incident polarization angle are due to the stress birefringence caused by the fiber twisting when the fused fiber coupler is fabricated and packaged.

  20. Normalized Polarization Ratios for the Analysis of Cell Polarity

    PubMed Central

    Shimoni, Raz; Pham, Kim; Yassin, Mohammed; Ludford-Menting, Mandy J.; Gu, Min; Russell, Sarah M.

    2014-01-01

    The quantification and analysis of molecular localization in living cells is increasingly important for elucidating biological pathways, and new methods are rapidly emerging. The quantification of cell polarity has generated much interest recently, and ratiometric analysis of fluorescence microscopy images provides one means to quantify cell polarity. However, detection of fluorescence, and the ratiometric measurement, is likely to be sensitive to acquisition settings and image processing parameters. Using imaging of EGFP-expressing cells and computer simulations of variations in fluorescence ratios, we characterized the dependence of ratiometric measurements on processing parameters. This analysis showed that image settings alter polarization measurements; and that clustered localization is more susceptible to artifacts than homogeneous localization. To correct for such inconsistencies, we developed and validated a method for choosing the most appropriate analysis settings, and for incorporating internal controls to ensure fidelity of polarity measurements. This approach is applicable to testing polarity in all cells where the axis of polarity is known. PMID:24963926

  1. Comment on ``Nonlinear gyrokinetic theory with polarization drift'' [Phys. Plasmas 17, 082304 (2010)

    NASA Astrophysics Data System (ADS)

    Leerink, S.; Parra, F. I.; Heikkinen, J. A.

    2010-12-01

    In this comment, we show that by using the discrete particle distribution function the changes of the phase-space volume of gyrocenter coordinates due to the fluctuating E ×B velocity do not explicitly appear in the Poisson equation and the [Sosenko et al., Phys. Scr. 64, 264 (2001)] result is recovered. It is demonstrated that there is no contradiction between the work presented by Sosenko et al. and the work presented by [Wang et al., Phys. Plasmas 17, 082304 (2010)].

  2. Theory of ion-matrix-sheath dynamics

    NASA Astrophysics Data System (ADS)

    Kos, L.; Tskhakaya, D. D.

    2018-01-01

    The time evolution of a one-dimensional, uni-polar ion sheath (an "ion matrix sheath") is investigated. The analytical solutions for the ion-fluid and Poisson's equations are found for an arbitrary time dependence of the wall-applied negative potential. In the case that the wall potential is large and remains constant after its ramp-up application, the explicit time dependencies of the sheath's parameters during the initial stage of the process are given. The characteristic rate of approaching the stationary state, satisfying the Child-Langmuir law, is determined.

  3. Implications of a quadratic stream definition in radiative transfer theory.

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1972-01-01

    An explicit definition of the radiation-stream concept is stated and applied to approximate the integro-differential equation of radiative transfer with a set of twelve coupled differential equations. Computational efficiency is enhanced by distributing the corresponding streams in three-dimensional space in a totally symmetric way. Polarization is then incorporated in this model. A computer program based on the model is briefly compared with a Monte Carlo program for simulation of horizon scans of the earth's atmosphere. It is found to be considerably faster.

  4. Coherent perfect rotation

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Dawson, Nathan J.; Andrews, James H.

    2012-09-01

    Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. Faraday rotation, but not optical activity, is capable of coherent perfect rotation, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. Unlike coherent perfect absorption, however, this process is explicitly energy conserving and reversible. Our study highlights the necessity of time-reversal-odd processes (not just absorption) and coherence in perfect mode conversion and thus informs the optimization of active multiport optical devices.

  5. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications

    PubMed Central

    2016-01-01

    Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena. PMID:26815602

  6. Coherent nonlinear optical response of single-layer black phosphorus: third-harmonic generation

    NASA Astrophysics Data System (ADS)

    Margulis, Vladimir A.; Muryumin, Evgeny E.; Gaiduk, Evgeny A.

    2017-10-01

    We theoretically calculate the nonlinear optical (NLO) response of phosphorene (a black phosphorus monolayer) to a normally incident and linearly polarized coherent laser radiation of frequency ω, resulting in the generation of radiation at frequency 3ω. We derive explicit analytic expressions for four independent nonvanishing elements of the third-order NLO susceptibility tensor, describing the third-harmonic generation (THG) from phosphorene. The final formulas are numerically evaluated for typical values of the system's parameters to explore how the efficiency of the THG varies with both the frequency and the polarization direction of the incident radiation. The results obtained show a resonant enhancement of the THG efficiency when the pump photon energy ℏω approaches a value of one third of the bandgap energy Eg (≈1.5 eV) of phosphorene. It is also shown that the THG efficiency exhibits a specific polarization dependence, allowing the THG to be used for determining the orientation of phosphorene's crystallographic axes. Our findings highlight the material's potential for practical application in nanoscale photonic devices such as frequency convertors operating in the near-infrared spectral range.

  7. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.

    PubMed

    Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D

    2015-07-15

    Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.

  8. Relative contributions of synoptic and intraseasonal variations to strong cold events over eastern China

    NASA Astrophysics Data System (ADS)

    Song, Lei; Wu, Renguang; Jiao, Yang

    2018-06-01

    The present study investigates the relative roles of intraseasonal oscillations (ISOs) and synoptic variations in strong cold events over eastern China during the boreal winter. The ISOs and synoptic variations explain about 55% and 20% of the total area-mean temperature anomaly in eastern China, respectively. The advection of synoptic winds on synoptic temperature gradients has a leading contribution to the temperature decrease before the cold events and thus the synoptic variations are important in determining the time of peak cold anomalies. The ISOs have a larger role in sustaining the cold events. The height anomalies associated with ISOs and synoptic variations are manifested as Rossby wave trains propagating along the polar front jet over the Eurasian continent before the cold events. They both contribute to the deepening of the East Asian trough and the development of cold events. Compared to the ISO wave train, the synoptic wave train has a smaller spatial scale and moves faster. There are obvious intraseasonal signals in the stratosphere about 1 week before the cold events over eastern China. Large negative height anomalies associated with the weakening of the polar vortex are observed over the North Atlantic. These anomalies move eastwards and propagate downwards after reaching the west coast of Europe. The downward moving stratospheric signal triggers height anomalies in the troposphere over the entrance region of the polar front jet. Then the anomalies propagate towards East Asia along the wave train, contributing to the intensification of the Siberian high and the East Asian trough and the occurrence of cold events over eastern China.

  9. Climate, atmosphere, and volatile inventory evolution: Polar processes, climate records, volatile inventories

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1988-01-01

    Climate change on Mars was driven by long term changes in the solar luminosity, variations in the partitioning of volatiles between the atmosphere and near-surface reservoirs, and astronomical variations in axial and orbital properties. There are important parallels between these drives for Mars and comparable ones for Earth. In the early history of the solar system, the Sun's luminosity was 25 to 30 percent lower than its current value. It is suggested that an early benign climate on Earth was due to the presence of much more carbon dioxide in its atmosphere at these early times than currently resides there. Such a partitioning of carbon dioxide, at the expense of the carbonate rock reservoir, may have resulted from a more vigorous tectonic and volcanic style at early times. Such a line of reasoning may imply that much more carbon dioxide was present in the Martian atmosphere during the planet's early history than resides there today. It is now widely recognized that astronomical variations of the Earth's axial and orbital characteristics have played a dominant role in causing the succession of glacial and interglacial periods characterizing the last several million years. The magnitude of the axial and eccentricity variations are much larger for Mars than for Earth. Such changes on Mars could result in sizeable variations in atmospheric pressure, dust storm activity, and the stability of perennial carbon dioxide and water ice polar caps. These quasi-periodic climate changes occur on periods of 100,000 to 1,000,000 years and may be recorded in the sedimentary layers of the polar layered terrain.

  10. Changes in soil respiration across a chronosequence of tallgrass prairie reconstructions

    Treesearch

    Ryan M. Maher; Heidi Asbjornsen; Randall K. Kolka; Cynthia A. Cambardella; James W. Raich

    2010-01-01

    Close relationships among climatic factors and soil respiration (Rs) are commonly reported. However, variation in Rs across the landscape is compounded by site-specific differences that impede the development of spatially explicit models. Among factors that influence R

  11. Annual Variations of the Geomagnetic Field in the Earth's Polar Regions

    NASA Astrophysics Data System (ADS)

    Ou, Jiaming; Du, Aimin

    2017-04-01

    The annual variations of the geomagnetic field play an important role in the coupling processes between the solar wind, magnetosphere and ionosphere. The annual variation is a well-established feature of the geomagnetic field, and usually is applied for modeling the conductivity of the lower mantle [Parkinson, 1983], and for long-term space weather forecasting [Bartels, 1932; Malin and Mete Isikara, 1976; Gonzalez et al., 1994]. Considerable effort has been devoted toward understanding the causes of the geomagnetic field variations, but the suggested physical mechanisms differ widely. The annual variation is relatively weak in many magnetic indices, but it has a distinct signature in the geomagnetic components. Thus, we use the components for this analysis. The components have a positive peak in northern summer and a negative dip in winter [Vestine, 1954]. Vestine [1954] suggested that the annual variation is caused by an ionospheric dynamo in which electric currents in the ionosphere are generated by meridional winds. The winds blow from north-to-south during northern summer, and south-to-north in northern winter. Malin and Mete Isikara [1976], using near-midnight geomagnetic data, concluded that the annual variation results from a latitudinal movement of the auroral electrojet or the ring current. Stauning [2011] derived of the seasonal variation of the quiet daily variations and examined the influence of the sector structure of the interplanetary magnetic field. Ziegger and Mursula [1998] have suggested a third mechanism: that the cause is related to an asymmetric solar wind speed distribution across the heliographic equator. In this paper, we study the annual variation problem using long-term magnetic observation and ionospheric conductivity. The sunlight incident on the ionosphere will be calculated. Although a global analysis is done, particular focus will be placed on the polar regions. This study covers the interval 1990-2010, and the cause of the well-known fundamental north-south and seasonal anti-correlations is discussed. Reference 1. Malin, S. R. C., A. Mete Isikaka (1976), Annual variation of the geomagnetic field, J. R. Astron. Soc., 47, 445-457, doi: 10.1111/j.1365-246X.1976.tb07096.x. 2. Stauning, P. (2011), Determination of the quiet daily geomagnetic variations for polar regions, J. Atmos. Sol-Terr. Phy., 73, 2314-2330, doi:10.1016/j.jastp.2011.07.004.

  12. Remote Monitoring of the Polarized Target's Control for E1039

    NASA Astrophysics Data System (ADS)

    Fox, David; SeaQuest Collaboration

    2017-09-01

    The 1039 experiment at FNAL will further our understanding of spin structure by measuring the contribution that sea quarks orbital angular momentum provide to overall nucleon spin. It is accepted that the valence-quarks of nucleons only provide 30% of the total nucleon spin. To study the nucleon's sea quark contribution, E1039 will use the Drell-Yan process by colliding 120 GeV un-polarized beam protons with polarized ammonia targets of hydrogen and deuterium. The asymmetric spin distributions of resulting dimuons will be measured. These asymmetries are sensitive, among other effects, to the orbital angular momentum contribution of the sea quarks. The polarized target requires a multi-stage vacuum pump located near the target. Since access to its present controls will not be possible during running, remote control and monitoring upgrades were required. A secondary control panel was purchased and tested. Information from the programmable logic controller (PLC) must be fed into our data stream to enable remote monitoring and to signal possible alarm conditions. This solution and the program created using explicit TCP/IP messaging to extract data tags from the PLC and log it within our databases will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.

  13. Linking Spectral Induced Polarization (SIP) and Subsurface Microbial Processes: Results from Sand Column Incubation Experiments.

    PubMed

    Mellage, Adrian; Smeaton, Christina M; Furman, Alex; Atekwana, Estella A; Rezanezhad, Fereidoun; Van Cappellen, Philippe

    2018-02-20

    Geophysical techniques, such as spectral induced polarization (SIP), offer potentially powerful approaches for in situ monitoring of subsurface biogeochemistry. The successful implementation of these techniques as monitoring tools for reactive transport phenomena, however, requires the deconvolution of multiple contributions to measured signals. Here, we present SIP spectra and complementary biogeochemical data obtained in saturated columns packed with alternating layers of ferrihydrite-coated and pure quartz sand, and inoculated with Shewanella oneidensis supplemented with lactate and nitrate. A biomass-explicit diffusion-reaction model is fitted to the experimental biogeochemical data. Overall, the results highlight that (1) the temporal response of the measured imaginary conductivity peaks parallels the microbial growth and decay dynamics in the columns, and (2) SIP is sensitive to changes in microbial abundance and cell surface charging properties, even at relatively low cell densities (<10 8 cells mL -1 ). Relaxation times (τ) derived using the Cole-Cole model vary with the dominant electron accepting process, nitrate or ferric iron reduction. The observed range of τ values, 0.012-0.107 s, yields effective polarization diameters in the range 1-3 μm, that is, 2 orders of magnitude smaller than the smallest quartz grains in the columns, suggesting that polarization of the bacterial cells controls the observed chargeability and relaxation dynamics in the experiments.

  14. Corrosion evaluation of heat recovery steam generator superheater tube in two methods of testing: Tafel polarization and electrochemical impedance spectroscopy (EIS)

    NASA Astrophysics Data System (ADS)

    Santoso, Rio Pudjidarma; Riastuti, Rini

    2018-05-01

    The purpose of this research is to evaluate the corrosion process which occurs on the water side of Heat Recovery Steam Generator (HRSG) superheater tube. The tube was 13CrMo44 and divided into 3 types of specimen: new tube, used tube (with oxide layer on surface), cleaned-used tube (without oxide layer on surface). The evaluation of corrosion parameters wasperformed using deaerated ultra-high purity water (boiler feed water) in two methods of testing: Tafel polarization and Electrochemical Impedance Spectroscopy (EIS). Tafel polarization was excellent as its capability to show the value of corrosion current and the corrosion rate explicitly, on the other hand, EIS was excellent as its capability to explain for corrosion mechanism on metal interface in detail. Both methods showed that the increase of electrolyte temperature from 25°C to 55°C would increase the corrosion rate with the mechanism of decreasing polarization resistance due to thinning out the passive film thickness and enlarge the area of reduction reaction of cathode. Magnetite oxide scale which is laid on the surface of used tube specimen shows protective nature to reduce the corrosion rate, and clear up this oxide would increase the corrosion rate back as new tube.

  15. Test of a flexible spacecraft dynamics simulator

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald; Sedlak, Joseph

    1998-01-01

    There are a number of approaches one can take to modeling the dynamics of a flexible body. While one can attempt to capture the full dynamical behavior subject to disturbances from actuators and environmental torques, such a detailed description often is unnecessary. Simplification is possible either by limiting the amplitude of motion to permit linearization of the dynamics equations or by restricting the types of allowed motion. In this work, we study the nonlinear dynamics of bending deformations of wire booms on spinning spacecraft. The theory allows for large amplitude excursions from equilibrium while enforcing constraints on the dynamics to prohibit those modes that are physically less relevant or are expected to damp out fast. These constraints explicitly remove the acoustic modes (i.e., longitudinal sound waves and shear waves) while allowing for arbitrary bending and twisting, motions which typically are of lower frequency. As a test case, a spin axis reorientation maneuver by the Polar Plasma Laboratory (POLAR) spacecraft has been simulated. POLAR was chosen as a representative spacecraft because it has flexible wire antennas that extend to a length of 65 meters. Bending deformations in these antennas could be quite large and have a significant effect on the attitude dynamics of the spacecraft body. Summary results from the simulation are presented along, with a comparison with POLAR flight data.

  16. Prompt charmonia production and polarization at the LHC in the NRQCD with kT-factorization. III. J /ψ meson

    NASA Astrophysics Data System (ADS)

    Baranov, S. P.; Lipatov, A. V.

    2017-08-01

    In the framework of the kT-factorization approach, the production and polarization of prompt J /ψ mesons at the LHC energies is studied. Our consideration is based on the nonrelativistic QCD formalism for bound states and off-shell amplitudes for hard partonic subprocesses. Both the direct production mechanism and feed-down contributions from χc and ψ (2 S ) decays are taken into account. The transverse momentum dependent (or unintegrated) gluon densities in a proton were derived from Ciafaloni-Catani-Fiorani-Marchesini evolution equation or, alternatively, were chosen in accordance with Kimber-Martin-Ryskin prescription. The nonperturbative color-octet matrix elements were first deduced from the fits to the latest CMS data on J /ψ transverse momentum distributions and then applied to describe the ATLAS and LHCb data on J /ψ production and polarization at √{s }=7 , 8 and 13 TeV. We perform an estimation of polarization parameters λθ, λϕ, and λθ ϕ which determine J /ψ spin density matrix and demonstrate that treating the soft gluon emission as a series of explicit color-electric dipole transitions within NRQCD leads to unpolarized J /ψ production at high transverse momenta, that is in qualitative agreement with the LHC data.

  17. Calculations of the Electric Fields in Liquid Solutions

    PubMed Central

    Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.

    2014-01-01

    The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155

  18. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry.

    PubMed

    Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.

  19. Explicit Filtering Based Low-Dose Differential Phase Reconstruction Algorithm with the Grating Interferometry

    PubMed Central

    Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang

    2015-01-01

    X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971

  20. Schrödinger and Dirac solutions to few-body problems

    NASA Astrophysics Data System (ADS)

    Muolo, Andrea; Reiher, Markus

    We elaborate on the variational solution of the Schrödinger and Dirac equations for small atomic and molecular systems without relying on the Born-Oppenheimer approximation. The all-particle equations of motion are solved in a numerical procedure that relies on the variational principle, Cartesian coordinates and parametrized explicitly correlated Gaussians functions. A stochastic optimization of the variational parameters allows the calculation of accurate wave functions for ground and excited states. Expectation values such as the radial and angular distribution functions or the dipole moment can be calculated. We developed a simple strategy for the elimination of the global translation that allows to generally adopt laboratory-fixed cartesian coordinates. Simple expressions for the coordinates and operators are then preserved throughout the formalism. For relativistic calculations we devised a kinetic-balance condition for explicitly correlated basis functions. We demonstrate that the kinetic-balance condition can be obtained from the row reduction process commonly applied to solve systems of linear equations. The resulting form of kinetic balance establishes a relation between all components of the spinor of an N-fermion system. ETH Zürich, Laboratorium für Physikalische Chemie, CH-8093 Zürich, Switzerland.

  1. Variations in Cementitious Media.

    DTIC Science & Technology

    1986-05-01

    THIS REPORT SHALL NOT BE USED IN ADVE RTISING OR SALES PROMOTION TO INDICATE EITHER EXPLICITLY I)R IMPLICITLY FNOORSEVENJT OF THWS PHODUCT BY THE U. S...USED I ZOIEATISING OP SALES PROMOTION TO INDICATE EITHER EXPLICITLY OR P-LIC.YLY E NDORSEMENT OF TH S PAIOD.ICT BT THE U, S. GOVUERNUENT W. G. MILLER A...8217" r n.SqL O u. GI’stu’N , T’.SI RPORT S.ALL NOT 6S USl[OIN AOVEITIS-,o 01 SALES PROMOTION TO NO CATE EITNEN EXPLCITLY o ,C’, . EN0O SENVT O ?uIS P

  2. FAST TRACK COMMUNICATION Accurate estimate of α variation and isotope shift parameters in Na and Mg+

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2010-12-01

    We present accurate calculations of fine-structure constant variation coefficients and isotope shifts in Na and Mg+ using the relativistic coupled-cluster method. In our approach, we are able to discover the roles of various correlation effects explicitly to all orders in these calculations. Most of the results, especially for the excited states, are reported for the first time. It is possible to ascertain suitable anchor and probe lines for the studies of possible variation in the fine-structure constant by using the above results in the considered systems.

  3. Elliptically polarized terahertz radiation from a chiral oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, R.; Kida, N., E-mail: kida@k.u-tokyo.ac.jp; Sotome, M.

    2015-09-28

    Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses.more » Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.« less

  4. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haocheng; Li, Hui; Guo, Fan

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. Here, in this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares withmore » polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. In addition, compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.« less

  5. Application of the moving frame method to deformed Willmore surfaces in space forms

    NASA Astrophysics Data System (ADS)

    Paragoda, Thanuja

    2018-06-01

    The main goal of this paper is to use the theory of exterior differential forms in deriving variations of the deformed Willmore energy in space forms and study the minimizers of the deformed Willmore energy in space forms. We derive both first and second order variations of deformed Willmore energy in space forms explicitly using moving frame method. We prove that the second order variation of deformed Willmore energy depends on the intrinsic Laplace Beltrami operator, the sectional curvature and some special operators along with mean and Gauss curvatures of the surface embedded in space forms, while the first order variation depends on the extrinsic Laplace Beltrami operator.

  6. Total Triiodothyronine by Fluorescence Polarization Immunoassay (FPIA),

    DTIC Science & Technology

    Graves ’ disease . Traditionally, radioimmunoassays (RIA) have been employed for the determination of total T3. Enzyme immunoassays (EIA) and fluorescence immunoassays (FIA) have been developed for many of the analytes that formerly were measured using RIA. One variation of this new generation of immunoassays is fluorescence polarization. A fluorescence polarization immunoassay (FPIA) method for total T3 has been automated by adaptation to the TDx (Abbott, Chicago, IL) clinical analyzer. The TDx total T3 assay has been evaluated as a replacement for an RIA total T3

  7. Molecular recognition in chiral smectic liquid crystals: the effect of core-core interactions and chirality transfer on polar order.

    PubMed

    Lemieux, Robert P

    2007-12-01

    This critical review focuses on the induction of polar order in smectic liquid crystal phases by dopants with axially chiral cores, and should be of interest to all practitioners of supramolecular chemistry. The variations in polarization power of these dopants with the core structure of the liquid crystal hosts is a manifestation of molecular recognition that reflects the nanosegregation of aromatic cores from paraffinic side-chains in smectic phases, and the collective effect of core-core interactions that enable the propagation of chiral perturbations.

  8. Polarized time-resolved photoluminescence measurements of m-plane AlGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, B.; Bretagnon, T.; Zhang, F.; Okur, S.; Monavarian, M.; Izioumskaia, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.

    2014-03-01

    The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells grown on m-plane oriented substrate are studied in 8K-300K temperature range. The optical spectra reveal strong in-plane optical anisotropies as predicted by group theory. Polarized time resolved temperature-dependent photoluminescence experiments are performed providing access to the relative contributions of the non-radiative and radiative recombination processes. We deduce the variation of the radiative decay time with temperature in the two polarizations.

  9. Influence of polarization and self-polarization charges on impurity binding energy in spherical quantum dot with parabolic confinement

    NASA Astrophysics Data System (ADS)

    Sarkar, Supratik; Sarkar, Samrat; Bose, Chayanika

    2018-07-01

    We present a general formulation of the ground state binding energy of a shallow hydrogenic impurity in spherical quantum dot with parabolic confinement, considering the effects of polarization and self energy. The variational approach within the effective mass approximation is employed here. The binding energy of an on-center impurity is computed for a GaAs/AlxGa1-xAs quantum dot as a function of the dot size with the dot barrier as parameter. The influence of polarization and self energy are also treated separately. Results indicate that the binding energy increases due to the presence of polarization charge, while decreases due to the self energy of the carrier. An overall enhancement in impurity binding energy, especially for small dots is noted.

  10. Coherent-backscatter effect - A vector formulation accounting for polarization and absorption effects and small or large scatterers

    NASA Technical Reports Server (NTRS)

    Peters, Kenneth J.

    1992-01-01

    Previous theoretical work on the coherent-backscatter effect in the context of speckle time autocorrelation has gone beyond the diffusion approximation and the assumption of isotropic (point) scatterers. This paper extends the theory to include the effects of polarization and absorption, and to give the angular line shape. The results are expressions for angular variations valid for small and large scatterers and linear and circular polarizations, in lossless or lossy media. Calculations show that multiple anisotropic scattering results in the preservation of incident polarization. Application to a problem in radar astronomy is considered. It is shown that the unusual radar measurements (high reflectivity and polarization ratios) of Jupiter's icy Galilean satellites can be explained by coherent backscatter from anisotropic (forward) scatterers.

  11. Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells.

    PubMed

    Stein, Daniel C; LeVan, Adriana; Hardy, Britney; Wang, Liang-Chun; Zimmerman, Lindsey; Song, Wenxia

    2015-01-01

    Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.

  12. A dual-polarized and reconfigurable reflectarray for generation of vortex radio waves

    NASA Astrophysics Data System (ADS)

    Li, Chen-Chen; Wu, Lin-Sheng; Yin, Wen-Yan

    2018-05-01

    Electromagnetic (EM) waves with orbital angular momentum (OAM) provide a new degree of freedom for channel multiplexing to improve the capacity of wireless communication. For OAM-based systems, it is important to design specific configurations to generate vortex radios. In this paper, a reconfigurable reflectarray antenna is proposed with independent control of dual polarizations. A reflective cell is proposed by properly assigning the variable capacitances of four varactors, which are placed between metal square rings of each unit. The varactors of each unit are divided into two groups and the capacitance value of each group controls the reflection phase for a single linear polarization. By using the equivalent circuit model, the reflective units and array can be designed efficiently. Smooth phase variation and good reflection efficiency are achieved. Then, the reflectarray is set into sectors and a simple phase-shifting surface model is used to generate vortex beam. Each sector is realized with reflective units satisfying desired reflection phases for different modes. This kind of OAM-generating method can reduce the required variation range of reflection phase and provide more choices for a specific OAM mode combination with dual polarization, which is helpful to reduce mutual coupling between the two linear polarizations. Finally, full-wave simulations show that the 0, ±1, ±2 modes of vortex beam are successfully generated at 3.5 GHz with arbitrary combination in dual-polarization, which is also supported by OAM modes purity and reflection efficiency analysis. Therefore, in our design, the reconfigurable OAM and spin angular momentum (SAM), related with polarization, can be utilized simultaneously and independently for high-capacity wireless communication.

  13. Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field

    NASA Astrophysics Data System (ADS)

    Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.

    2018-04-01

    In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.

  14. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide.

    PubMed

    Guan, Xiaowei; Wu, Hao; Shi, Yaocheng; Dai, Daoxin

    2014-01-15

    A novel polarization beam splitter (PBS) with an extremely small footprint is proposed based on a multimode interference (MMI) coupler with a silicon hybrid plasmonic waveguide. The MMI section, covered with a metal strip partially, is designed to achieve mirror imaging for TE polarization. On the other hand, for TM polarization, there is almost no MMI effect since the higher-order TM modes are hardly excited due to the hybrid plasmonic effect. With this design, the whole PBS including the 1.1 μm long MMI section as well as the output section has a footprint as small as ∼1.8 μm×2.5 μm. Besides, the fabrication process is simple since the waveguide dimension is relatively large (e.g., the input/output waveguides widths w ≥300 nm and the MMI width w(MMI)=800 nm). Numerical simulations show that the designed PBS has a broad band of ∼80 nm for an ER >10 dB as well as a large fabrication tolerance to allow a silicon core width variation of -30 nm<Δw<50 nm and a metal strip width variation of -200 nm<Δw(m)<0.

  15. Source characteristics and design consideration for an iron-free variable-period/polarizing undulator for the UV/VUV range on SPEAR (abstract)

    NASA Astrophysics Data System (ADS)

    Tatchyn, Roman

    1992-01-01

    Insertion devices that are tuned by electrical period variation are particularly suited for the design of flexible polarized-light sources [R. Tatchyn, J. Appl. Phys. 65, 4107 (1989); R. Tatchyn and T. Cremer, IEEE Trans. Mag. 26, 3102 (1990)]. Important advantages vis-a-vis mechanical or hybrid variable field designs include: (1) significantly more rapid modulation of both polarization and energy, (2) an inherently larger set of polarization modulation capabilities and (3) polarization/energy modulation at continuously optimized values of K. In this paper we outline some of the general considerations that enter into the design of hysteresis-free variable-period/polarizing undulator structures and present the parameters of a recently-completed prototype design capable of generating intense levels of UV/VUV photon flux on SPEAR running at 3 GeV.

  16. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  17. Achromatic vector vortex beams from a glass cone

    NASA Astrophysics Data System (ADS)

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-02-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.

  18. Atmospheric effects on SMMR and SSM/I 37 GHz polarization difference over the Sahel

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Major, E. R.; Smith, E. A.; Becker, F.

    1992-01-01

    The atmospheric effects on the difference of vertically and horizontally polarized brightness temperatures, Delta(T) observed at 37 GHz frequency of the SMMR on board the Nimbus-7 satellite and SSM/I on board the DMSP-F8 satellite are studied over two 2.5 by 2.5 deg regions within the Sahel and Sudan zones of Africa from January 1985 to December 1986 through radiative transfer analysis using surface temperature, atmospheric water vapor, and cloud optical thickness. It is found that atmospheric effects alone cannot explain the observed temporal variation of Delta(T), although the atmosphere introduces important modulations on the observed seasonal variations of Delta(T) due to rather significant seasonal variation of precipitable water vapor. These Delta(T) data should be corrected for atmospheric effects before any quantitative analysis of land surface change over the Sahel and Sudan zones.

  19. Modeling the Martian seasonal CO2 cycle. I - Fitting the Viking Lander pressure curves. II - Interannual variability

    NASA Technical Reports Server (NTRS)

    Wood, Stephen E.; Paige, David A.

    1992-01-01

    The present diurnal and seasonal thermal model for Mars, in which surface CO2 frost condensation and sublimation are determined by the net effects of radiation, latent heat, and heat conduction in subsurface soil layers, in order to simulate seasonal exchanges of CO2 between the polar caps and atmosphere, successfully reproduces the measured pressured variations at the Viking Lander 1 site. In the second part of this work, the year-to-year differences between measured surface pressures at Viking sites as a function of season are used as upper limits on the potential magnitudes of interannual variations in the Martian atmosphere's mass. Simulations indicate that the dust layers deposited onto the condensing north seasonal polar cap during dust storms can darken seasonal frost deposits upon their springtime uncovering, while having little effect on seasonal pressure variations.

  20. Solar wind and coronal structure near sunspot minimum - Pioneer and SMM observations from 1985-1987

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Barnes, A.; Hundhausen, A. J.; Smith, E. J.

    1990-01-01

    Changes in solar wind speed and magnetic polarity observed at the Pioneer spacecraft are discussed here in terms of the changing magnetic geometry implied by SMM coronagraph observations over the period 1985-1987. The pattern of recurrent solar wind streams, the long-term average speed, and the sector polarity of the interplanetary magnetic field all changed in a manner suggesting both a temporal variation, and a changing dependence on heliographic latitude. Coronal observations during this epoch show a systematic variation in coronal structure and the magnetic structure imposed on the expanding solar wind. These observations suggest interpretation of the solar wind speed variations in terms of the familiar model where the speed increases with distance from a nearly flat interplanetary current sheet, and where this current sheet becomes aligned with the solar equatorial plane as sunspot minimum approaches, but deviates rapidly from that orientation after minimum.

  1. Polarization-resolved optical response of plasmonic particle-on-film nanocavities

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Li, G.-C.; Lo, T. W.; Lei, D. Y.

    2018-02-01

    Placing a metal nanoparticle atop a metal film forms a plasmonic particle-on-film nanocavity. Such a nanocavity supports strong plasmonic coupling that results in rich hybridized plasmon modes, rendering the cavity a versatile platform for exploiting a wide range of plasmon-enhanced spectroscopy applications. In this paper, we fully address the polarization-resolved, orientation-dependent far-field optical responses of plasmonic monomer- and dimer-on-film nanocavities by numerical simulations and experiments. With polarization-resolved dark-field spectroscopy, the distinct plasmon resonances of these nanocavities are clearly determined from their scattering spectra. Moreover, the radiation patterns of respective plasmon modes, which are often mixed together in common dark-field imaging, can be unambiguously resolved with our proposed quasi-multispectral imaging method. Explicitly, the radiation pattern of the monomer-on-film nanocavity gradually transitions from a solid spot in the green imaging channel to a doughnut ring in the red channel when tuning the excitation polarization from parallel to perpendicular to the sample surface. This observation holds true for the plasmonic dimer-on-film nanocavity with the dimer axis aligned in the incidence plane; when the dimer axis is normal to the incidence plane, the pattern transitions from a solid spot to a doughnut ring both in the red channel. These studies not only demonstrate a flexible polarization control over the optical responses of plasmonic particle-on-film nanostructures but also enrich the optical tool kit for far-field imaging and spectroscopy characterization of various plasmonic nanostructures.

  2. A GCM Recent History of the Northern Martian Polar Layered Deposits

    NASA Technical Reports Server (NTRS)

    Levrard, B.; Laskar, J.; Forget, F.; Montmessin, F.

    2003-01-01

    The polar layered deposits are thought to contain alternate layers of water and dust in different proportions resulting from the astronomical forcing of the martian climate. In particular, longterm variations in the orbital and axial elements of Mars are presumed to generate variations of the latitudes of surface water ice stability and of the amount of water exchanged in the polar areas. At high obliquity, simplified climate models and independent general circulation simulations suggest a transfer of water ice from the north polar region to tropical areas, whereas at lower and present obliquities, water ice is expected to be stable only at the poles. If so, over obliquity cycles, water ice may be redistributed between the surface water reservoirs leading to their incremental building or disintegration depending on the rates of water transfer. If only a relative limited amount of the available water is exchanged on orbital timescales, this may provide an efficient mechanism for the formation of the observed polar deposits. Within this context, GCM simulations of the martian water cycle have been performed for various obliquities ranging from 15 degrees to 45 degrees and for a large set of initial water ice locations to determine the rate of water exchange between the surface water reservoirs as a function of the obliquity. Propagating these rates over the last 10 Ma orbital history gives a possible recent evolution of these reservoirs.

  3. Fine tuning of the dichroic behavior of Bragg reflectors based on anisotropically nanostructured silicon

    NASA Astrophysics Data System (ADS)

    Diener, J.; Künzner, N.; Kovalev, D.; Gross, E.; Koch, F.; Fujii, M.

    2003-05-01

    Electro-chemical etching of heavily doped, (110) oriented, p+ (boron) doped silicon wafers results in porous silicon (PSi) layers which exhibit a strong in-plane anisotropy of the refractive index (birefringence). Single- and multiple layers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection and transmission measurements. Dielectric stacks of birefringent PSi acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in-depth) variation of the refraction index. The possibility of fine tuning the two orthogonally polarized reflection bands and their spectral splitting is demonstrated.

  4. Polarization analysis of diamond subwavelength gratings acting as space-variant birefringent elements

    NASA Astrophysics Data System (ADS)

    Piron, P.; Vargas Catalan, E.; Karlsson, M.

    2018-02-01

    Subwavelength gratings are gratings with a period smaller than the incident wavelength. They only allow the zeroth order of diffraction, they possess form birefringence and they can be modeled as birefringent plates. In this paper, we present the first results of an experimental method designed to measure their polarization properties. The method consists in measuring the variation of the light transmitted through two linear polarizers with the subwavelength component between them for several orientations of the polarizers. In this paper, the basic principles of the method are introduced and the experimental setup is presented. Several types of components are numerically studied and the optical measurements of one component are presented.

  5. Intra- and intermolecular interaction inducing pyramidalization on both sides of a proline dipeptide during isomerization: an ab initio QM/MM molecular dynamics simulation study in explicit water.

    PubMed

    Yonezawa, Yasushige; Nakata, Kazuto; Sakakura, Kota; Takada, Toshikazu; Nakamura, Haruki

    2009-04-01

    The cis-trans isomerization of the peptide bond preceding a proline plays important roles in protein folding and biological function. Although many experimental and theoretical studies have been done, the mechanism has not yet been clearly elucidated. We studied the cis-trans isomerization of the proline dipeptide (Ace-Pro-NMe) in explicit water by molecular dynamics simulations using a combined potential derived from ab initio quantum mechanics and empirical molecular mechanics. We obtained the free energy landscape during the isomerization by using the umbrella sampling method. The free energy landscape is in good accordance with previous experimental and theoretical values. We observed that in the middle of the isomerization, the prolyl nitrogen transiently takes pyramidal conformations in two polarized directions and that, simultaneously, the prolyl C-N bond extends. We show that these geometrical changes cooperatively transform the prolyl nitrogen from a sp(2)-hybridized electronic state into a sp(3)-hybridized one, and thus realize a transition state that reduces the rotational barriers separating the cis- and trans-states. We also found that the hydration of the prolyl nitrogen stabilizes the negative pyramidal conformation, while an intramolecular interaction mainly stabilizes the positive one. Fluctuations in the polarity and magnitude of the pyramidal conformation during the isomerization are interpreted as a competition between the hydrogen-bonding partners for the prolyl nitrogen between different sides of the pyrrolidine ring.

  6. The collagen structure of equine articular cartilage, characterized using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Attenburrow, Don P.; Winlove, C. Peter; Matcher, Stephen J.

    2005-08-01

    Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. × 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.

  7. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    DOE PAGES

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; ...

    2016-01-28

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the FeL 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  8. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip.

    PubMed

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W; Hla, Saw-Wai; Rose, Volker

    2016-03-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

  9. Angular phase shift in polarization-angle dependence of microwave-induced magnetoresistance oscillations

    NASA Astrophysics Data System (ADS)

    Liu, Han-Chun; Samaraweera, Rasanga L.; Mani, R. G.; Reichl, C.; Wegscheider, W.

    2016-12-01

    We examine the microwave frequency (f ) variation of the angular phase shift, θ0, observed in the polarization-angle dependence of microwave-induced magnetoresistance oscillations in a high-mobility GaAs/AlGaAs two-dimensional electron system. By fitting the diagonal resistance Rx x versus θ plots to an empirical cosine square law, we extract θ0 and trace its quasicontinuous variation with f . The results suggest that the overall average of θ0 extracted from Hall bar device sections with length-to-width ratios of L /W =1 and 2 is the same. We compare the observations with expectations arising from the "ponderomotive force" theory for microwave radiation-induced transport phenomena.

  10. Transformation of atmospheric components near a spark discharge at the anode polarization of a metallic electrode hanging over a solution

    NASA Astrophysics Data System (ADS)

    Orlov, A. M.; Yavtushenko, I. O.; Bodnarskii, D. S.

    2013-03-01

    The variation of the pressure of a gas phase activated by spark discharges between an aqueous electrolyte solution (liquid cathode) and a metallic electrode (anode) hanging over the solution is studied. A mathematical model of the proceeding reaction kinetics is constructed, and the variation of the partial pressures of all initial and produced components in the gas phase is calculated. Both the Faraday and non-Faraday mechanisms of gas component production from water are confirmed. It is found that a large overhanging drop responsible for additional supply of simultaneously produced H2 and O2 molecules forms rapidly at the end face of the anodically polarized electrode.

  11. Local X-ray magnetic circular dichroism study of Fe/Cu(111) using a tunneling smart tip

    PubMed Central

    DiLullo, Andrew; Shirato, Nozomi; Cummings, Marvin; Kersell, Heath; Chang, Hao; Rosenmann, Daniel; Miller, Dean; Freeland, John W.; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L 2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain. PMID:26917146

  12. A Bespoke Spectropolarimetrist

    NASA Astrophysics Data System (ADS)

    Menke, John

    2016-05-01

    "Bespoke" refers to something custom or self-made. This paper continues the journey of an amateur learning spectropolarimtetry using an 18inch f3.5 reflector with homebuilt spectrometer modified to perform polarimetry, thus yielding the wavelength dependence of stellar polarization. Polarization of starlight occurs as the light passes through polarizing material in space near to the star or through a more distant, larger interstellar cloud. Polarization may occur by several different mechanisms, and may give insight into the presence of stellar winds or magnetic fields and into the polarizing material itself. Many stars show very substantial time variations in both polarization and direction. In the case of spectral Class B (hot) stars that show emission (rather than absorption) at the Ha line, the change of polarization with wavelength may give insight into where the emitting region is. I will show results from some 200 measurements on about 95 stars ranging down to mag 5. This is a new, challenging, and potentially fruitful endeavor for amateurs and for possible Pro-Am projects.

  13. Vacuum ultraviolet spectropolarimeter design for precise polarization measurements.

    PubMed

    Narukage, Noriyuki; Auchère, Frédéric; Ishikawa, Ryohko; Kano, Ryouhei; Tsuneta, Saku; Winebarger, Amy R; Kobayashi, Ken

    2015-03-10

    Precise polarization measurements in the vacuum ultraviolet (VUV) region provide a new means for inferring weak magnetic fields in the upper atmosphere of the Sun and stars. We propose a VUV spectropolarimeter design ideally suited for this purpose. This design is proposed and adopted for the NASA-JAXA chromospheric lyman-alpha spectropolarimeter (CLASP), which will record the linear polarization (Stokes Q and U) of the hydrogen Lyman-α line (121.567 nm) profile. The expected degree of polarization is on the order of 0.1%. Our spectropolarimeter has two optically symmetric channels to simultaneously measure orthogonal linear polarization states with a single concave diffraction grating that serves both as the spectral dispersion element and beam splitter. This design has a minimal number of reflective components with a high VUV throughput. Consequently, these design features allow us to minimize the polarization errors caused by possible time variation of the VUV flux during the polarization modulation and by statistical photon noise.

  14. Energetic Charged Particle Component or the NO(y) Budget of the Polar Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Vitt, F. M.; Jackman, C. H.

    1999-01-01

    Analysis of nitrates measured in polar ice cap snow at a high resolution shows large variations in the nitrates. It has been shown that the nitrate signal may contain a signature of solar activity [Zeller and Dreschhoff, 19951. Reactive odd nitrogen production associated with solar particle events (SPEs) and auroral activity may be a source of some of the nitrate anomalies observed in the polar ice caps. Periods of large SPEs can lead to a production of polar atmospheric odd nitrogen in excess of the ambient sources in the polar stratosphere and mesosphere, and may leave a large nitrate signal stratified in the polar ice cap. Auroral electrons and photoelectrons produce odd nitrogen in the thermosphere, some of which may be transported to the polar (>50 degrees) mesosphere and stratosphere. Sources of odd nitrogen in the polar middle atmosphere associated with SPEs, galactic cosmic rays, and auroral electron precipitation have been quantified. The relative contributions by the energetic particles sources to the Noy budget of the polar middle atmosphere (from tropopause to 50 km, from 50 degrees to 90 degrees latitude) are compared with the nitrates observed in the polar ice sheets.

  15. Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.; McCormick, M. P.

    1973-01-01

    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included.

  16. ERP-Variations on Time Scales Between Hours and Months Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Mendes Cerveira, P.

    2007-05-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Rotation Parameters (ERPs - polar motion, UT1/LOD) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the ERP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the year 2005. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 113 fairly stable stations out of the IGS05 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed.

  17. Global features of the semiannual oscillation in stratospheric temperatures and comparison between seasons and hemispheres

    NASA Technical Reports Server (NTRS)

    Gao, Xin-Hai; Yu, Wen-Bi; Stanford, John L.

    1987-01-01

    Four years of satellite-derived microwave and infrared radiances are analyzed for the three-dimensional and seasonal variation of semiannual oscillations (SAO) in stratospheric temperatures, with particular focus on high latitudes, to investigate the effect of stratospheric warmings on SAO. Separate analyses of individual seasons in each hemisphere reveal that the strongest SAO in temperature occur in the Northern Hemisphere (NH) winter polar upper stratosphere. These results, together with the latitudinal structure of the temperature SAO and the fact that the NH polar SAO is nearly out of phase with the lower latitude SAO, are consistent with the existence of a global-scale, meridional circulation on the SAO time scale. The results suggest that polar stratospheric warmings are an important source of SAO in both high and low latitude stratospheric temperature fields. Interannual variations, three-dimensional phase structure, and zonal asymmetry of SAO are also detailed. The SH stratospheric SAO is dominated by a localized feature in the high-latitude, eastern hemisphere which tilts westward with height.

  18. Pollen Morphology of Caesalpinia pulcherrima (L.) Swartz in Highland and Lowland West Sumatra

    NASA Astrophysics Data System (ADS)

    Fitri, R.; Des, M.

    2018-04-01

    Determine the morphology structure of pollen on some variation colour of corolla Caesalpinia pulcherrima L. (Swartz) in highland and lowland West Sumatra has been conducted. The result reveals that topography and variation colour of corolla C. pulcherrima L. (Swartz) affects the shape of pollen. Pollen of C. pulcherrima L. (Swartz) has single grains or monad, isopolar polarity, radial symmetry, and size categories large. The length of polar axis (P) 58.16 to 74.11 μm, the length of the equatorial diameter (E) 59.86 to 75.97 μm, so that pollen can be classified into sub-spheroidal sub-oblate, spheriodal sub-spheroidal oblate, and sub-spheroidal prolate. Ornamentation of C. pulcherrima (L.) Swartz was reticulate. The pollen has aperture 3, the type pore and located in equatorial. From these data can be concluded that pollen from varying colour of corolla C. pulcherrima (L.) Swartz has same in terms of unit, polarity, symmetry, size, and type aperture, but it different in terms of shape.

  19. Application of space periodic variation of light polarization in imaging polarimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drobczynski, Slawomir; Kasprzak, Henryk

    The application of space periodic variation of light polarization for measurement and calculation of the distribution of the phase retardation between two eigenwaves propagating inside a linearly birefringent media and the distribution of the azimuth angle of the first eigenvector is described. The measuring method proposed does not require any mechanical movements or rotations of any optical elements. Application of a liquid crystal (LC) modulator instead of a quarter-wave plate gives an opportunity to introduce the required phase shift. The space periodic modulation of the polarization of light is achieved by the use of a Wollaston prism placed inside themore » path of the light beam. Then a fast Fourier transform is used for further calculations. The number of measurements of the light intensity at the output of the system is minimized to two. These assumptions make the proposed method very fast, which is especially important in measurements of the objects with optical anisotropy that is changing in time.« less

  20. Use of Fourier transforms for asynoptic mapping: Applications to the Upper Atmosphere Research Satellite microwave limb sounder

    NASA Technical Reports Server (NTRS)

    Elson, Lee S.; Froidevaux, Lucien

    1993-01-01

    Fourier analysis has been applied to data obtained from limb viewing instruments on the Upper Atmosphere Research Satellite. A coordinate system rotation facilitates the efficient computation of Fourier transforms in the temporal and longitudinal domains. Fields such as ozone (O3), chlorine monoxide (ClO), temperature, and water vapor have been transformed by this process. The transforms have been inverted to provide maps of these quantities at selected times, providing a method of accurate time interpolation. Maps obtained by this process show evidence of both horizontal and vertical transport of important trace species such as O3 and ClO. An examination of the polar regions indicates that large-scale planetary variations are likely to play a significant role in transporting midstratospheric O3 into the polar regions. There is also evidence that downward transport occurs, providing a means of moving O3 into the polar vortex at lower altitudes. The transforms themselves show the structure and propagation characteristics of wave variations.

  1. Polar Mesospheric Clouds (PMCs) Observed by the Ozone Monitoring Instrument (OMI) on Aura

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Shettle, Eric P.; Levelt, Pieternel F.; Kowalewski, Matthew G.

    2010-01-01

    Backscattered ultraviolet (BUV) instruments designed for measuring stratospheric ozone profiles have proven to be robust tools for observing polar mesospheric clouds (PMCs). These measurements are available for more than 30 years, and have been used to demonstrate the existence of long-term variations in PMC occurrence frequency and brightness. The Ozone Monitoring Instrument (OMI) on the EOS Aura satellite provides new and improved capabilities for PMC characterization. OMI uses smaller pixels than previous BUV instruments, which increases its ability to identify PMCs and discern more spatial structure, and its wide cross-track viewing swath provides full polar coverage up to 90 latitude every day in both hemispheres. This cross-track coverage allows the evolution of PMC regions to be followed over several consecutive orbits. Localized PMC variations determined from OMI measurements are consistent with coincident SBUV/2 measurements. Nine seasons of PMC observations from OMI are now available, and clearly demonstrate the advantages of these measurements for PMC analysis.

  2. The response of fabric variations to simple shear and migration recrystallization

    DOE PAGES

    Kennedy, Joseph H.; Pettit, Erin C.

    2015-06-01

    The observable microstructures in ice are the result of many dynamic and competing processes. These processes are influenced by climate variables in the firn. Layers deposited in different climate regimes may show variations in fabric which can persist deep into the ice sheet; fabric may 'remember' these past climate regimes. In this paper, we model the evolution of fabric variations below the firn–ice transition and show that the addition of shear to compressive-stress regimes preserves the modeled fabric variations longer than compression-only regimes, because shear drives a positive feedback between crystal rotation and deformation. Even without shear, the modeled icemore » retains memory of the fabric variation for ~200 ka in typical polar ice-sheet conditions. Our model shows that temperature affects how long the fabric variation is preserved, but only affects the strain-integrated fabric evolution profile when comparing results straddling the thermal-activation-energy threshold (~–10°C). Even at high temperatures, migration recrystallization does not eliminate the modeled fabric's memory under most conditions. High levels of nearest-neighbor interactions will, however, eliminate the modeled fabric's memory more quickly than low levels of nearest-neighbor interactions. Finally, our model predicts that fabrics will retain memory of past climatic variations when subject to a wide variety of conditions found in polar ice sheets.« less

  3. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria. [Rayleigh-Gans-Debye

    NASA Technical Reports Server (NTRS)

    Kottarchyk, M.; Chen, S.-H.; Asano, S.

    1979-01-01

    The study tests the accuracy of the Rayleigh-Gans-Debye (RGD) approximation against a rigorous scattering theory calculation for a simplified model of E. coli (about 1 micron in size) - a solid spheroid. A general procedure is formulated whereby the scattered field amplitude correlation function, for both polarized and depolarized contributions, can be computed for a collection of particles. An explicit formula is presented for the scattered intensity, both polarized and depolarized, for a collection of randomly diffusing or moving particles. Two specific cases for the intermediate scattering functions are considered: diffusing particles and freely moving particles with a Maxwellian speed distribution. The formalism is applied to microorganisms suspended in a liquid medium. Sensitivity studies revealed that for values of the relative index of refraction greater than 1.03, RGD could be in serious error in computing the intensity as well as correlation functions.

  4. Molecular dynamics simulations of methane hydrate using polarizable force fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, H.N.; Jordan, K.D.; Taylor, C.E.

    2007-06-14

    Molecular dynamics simulations of methane hydrate have been carried out using the polarizable AMOEBA and COS/G2 force fields. Properties calculated include the temperature dependence of the lattice constant, the OC and OO radial distribution functions, and the vibrational spectra. Both the AMOEBA and COS/G2 force fields are found to successfully account for the available experimental data, with overall somewhat better agreement with experiment being found for the AMOEBA model. Comparison is made with previous results obtained using TIP4P and SPC/E effective two-body force fields and the polarizable TIP4P-FQ force field, which allows for in-plane polarization only. Significant differences are foundmore » between the properties calculated using the TIP4P-FQ model and those obtained using the other models, indicating an inadequacy of restricting explicit polarization to in-plane onl« less

  5. Self-interaction-corrected time-dependent density-functional-theory calculations of x-ray-absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Guangde; Rinkevicius, Zilvinas; Vahtras, Olav

    We outline an approach within time-dependent density functional theory that predicts x-ray spectra on an absolute scale. The approach rests on a recent formulation of the resonant-convergent first-order polarization propagator [P. Norman et al., J. Chem. Phys. 123, 194103 (2005)] and corrects for the self-interaction energy of the core orbital. This polarization propagator approach makes it possible to directly calculate the x-ray absorption cross section at a particular frequency without explicitly addressing the excited-state spectrum. The self-interaction correction for the employed density functional accounts for an energy shift of the spectrum, and fully correlated absolute-scale x-ray spectra are thereby obtainedmore » based solely on optimization of the electronic ground state. The procedure is benchmarked against experimental spectra of a set of small organic molecules at the carbon, nitrogen, and oxygen K edges.« less

  6. Double Parton Fragmentation Function and its Evolution in Quarkonium Production

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo

    2014-01-01

    We summarize the results of a recent study on a new perturbative QCD factorization formalism for the production of heavy quarkonia of large transverse momentum pT at collider energies. Such a new factorization formalism includes both the leading power (LP) and next-to-leading power (NLP) contributions to the cross section in the mQ2/p_T^2 expansion for heavy quark mass mQ. For the NLP contribution, the so-called double parton fragmentation functions are involved, whose evolution equations have been derived. We estimate fragmentation functions in the non-relativistic QCD formalism, and found that their contribution reproduce the bulk of the large enhancement found in explicit NLO calculations in the color singlet model. Heavy quarkonia produced from NLP channels prefer longitudinal polarization, in contrast to the single parton fragmentation function. This might shed some light on the heavy quarkonium polarization puzzle.

  7. TIME-RESOLVED SPECTROSCOPY OF THE POLAR EU CANCRI IN THE OPEN CLUSTER MESSIER 67

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kurtis A.; Howell, Steve B.; Liebert, James

    2013-05-15

    We present time-resolved spectroscopic and polarimetric observations of the AM Her system EU Cnc. EU Cnc is located near the core of the old open cluster Messier 67; new proper motion measurements indicate that EU Cnc is indeed a member of the star cluster, and this system therefore is useful to constrain the formation and evolution of magnetic cataclysmic variables. The spectra exhibit two-component emission features with independent radial velocity variations as well as time-variable cyclotron emission indicating a magnetic field strength of 41 MG. The period of the radial velocity and cyclotron hump variations are consistent with the previouslymore » known photometric period, and the spectroscopic flux variations are consistent in amplitude with previous photometric amplitude measurements. The secondary star is also detected in the spectrum. We also present polarimetric imaging measurements of EU Cnc that show a clear detection of polarization, and the degree of polarization drops below our detection threshold at phases when the cyclotron emission features are fading or not evident. The combined data are all consistent with the interpretation that EU Cnc is a low-state polar in the cluster Messier 67. The mass function of the system gives an estimate of the accretor mass of M{sub WD} {>=} 0.68 M{sub Sun} with M{sub WD} Almost-Equal-To 0.83 M{sub Sun} for an average inclination. We are thus able to place a lower limit on the progenitor mass of the accreting white dwarf of {>=}1.43 M{sub Sun }.« less

  8. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions havemore » significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.« less

  9. Molecular Level Understanding of Sodium Dodecyl Sulfate (SDS) Induced Sol-Gel Transition of Pluronic F127 Using Fisetin as a Fluorescent Molecular Probe.

    PubMed

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-01-11

    The thermoreversible sol-gel transition of pluronic F127 is markedly altered even with addition of submicellar concentration of sodium dodecyl sulfate (SDS) surfactant. Multiple fluorescence parameters like fluorescence intensity, fluorescence anisotropy and fluorescence lifetime of both the prototropic forms (anion (A - *) and phototautomer FT*) of the photoprototropic fluorescent probe fisetin has been efficiently used to understand the molecular level properties like polarity and microviscosity of the PF127-SDS system as a function of temperature. The SDS-induced increase in the interfacial hydrophobicity level is seen to affect the sol-gel phase transition of PF127 (21-18 °C). The E T (30) polarity parameter value of anionic emission of fisetin suggests that there is a considerable decrease in the polarity of the PF127 medium with increase in temperature and with the addition of SDS. The microviscosity progressively increases from ∼5 mPa s (sol state, 10 °C) to ∼22.01 mPa s (gel state 35 °C) in aqueous solution of PF127. The variation in microviscosity with addition of SDS in PF127-SDS mixed system is significant in sol phase whereas in gel phase this variation is significantly less. Temperature dependent fluorescence lifetime of FT* indicates that there is heterogeneity in distribution of fisetin molecules at different domains of PF127. This work also show-cases the sensitivity of fisetin toward change in polarity and change in sol-gel transition temperature of copolymer PF127 with variation in temperature (both forward and reverse directions) and SDS.

  10. Incompressible spectral-element method: Derivation of equations

    NASA Technical Reports Server (NTRS)

    Deanna, Russell G.

    1993-01-01

    A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.

  11. Atmospheric Rotational Effects on Mars Based on the NASA Ames General Circulation Model: Angular Momentum Approach

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Haberle, Robert M.; Schaeffer, James

    2004-01-01

    The objective of the investigation is to determine the motion of the rotational axis of Mars as a result of mass variations in the atmosphere and condensation and sublimation of CO2 ice on the polar caps. A planet experiences this type of motion if it has an atmosphere, which is changing its mass distribution with respect to the solid body of the planet and/or it is asymmetrically changing the amount of ice at the polar caps. The physical principle involved is the conservation of angular momentum, one can get a feeling for it by sitting on a well oiled swivel chair holding a rotating wheel on a horizontal direction and then changing the rotation axis of the wheel to a vertical direction. The person holding the wheel and the chair would begin to rotate in opposite direction to the rotation of the wheel. The motions of Mars atmosphere and the ice caps variations are obtained from a mathematical model developed at the NASA Ames Research Center. The model produces outputs for a time span of one Martian year, which is equivalent to 687 Earth days. The results indicate that Mars axis of rotation moves in a spiral with respect to a reference point on the surface of the planet. It can move as far away as 35.3 cm from the initial location as a result of both mass variations in the atmosphere and asymmetric ice variations at the polar caps. Furthermore the pole performs close to two revolutions around the reference point during a Martian year. This motion is a combination of two motions, one produced by the atmospheric mass variations and another due to the variations in the ice caps. The motion due to the atmospheric variations is a spiral performing about two and a half revolutions around the reference point during which the pole can move as far as 40.9 cm. The motion due to variations in the ice caps is a spiral performing almost three revolutions during which the pole can move as far as 32.8 cm.

  12. Transient IP Structures Associated with Short-Period Variations in the Solar Energetic Particle and Galactic Cosmic Ray Flux

    NASA Astrophysics Data System (ADS)

    Mulligan, T.; Blake, J.; Spence, H. E.; Jordan, A. P.; Quenby, J. J.; Shaul, D.

    2006-12-01

    Short-period variations in the integral SEP ( > 10 MeV) and GCR fluence ( > 100 MeV), often observed in neutron monitor data have also been seen by the High Sensitivity Telescope (HIST) aboard the Polar Spacecraft. Although HIST was designed to measure radiation-belt electrons, it makes clean measurements of the integral SEP and GCR fluence when Polar is outside the radiation belts. These measurements show variability on a variety of timescales including 0.1~mHz - 1~mHz. We examine these variations from Polar and compare them with IMF and plasma solar wind conditions at L1 using ACE data. We find coherent short-term variability occurs when Earth is in close proximity to the HCS and when Earth is either inside an ICME or when an ICME has just transited the Earth. Also, when a flux rope ICME signature is present, the rope axis is nearly parallel to the radial direction and the HCS. The launch of STEREO will enable detailed 3-D analyses of such solar wind disturbances along spatial scales on the same order of typical SEP and GCR proton gyroradii, which are needed to elucidate the mechanism behind this short-period variability.

  13. Design of ultrathin dual-resonant reflective polarization converter with customized bandwidths

    NASA Astrophysics Data System (ADS)

    Kundu, Debidas; Mohan, Akhilesh; Chakrabarty, Ajay

    2017-10-01

    In this paper, an ultrathin dual-resonant reflective polarization converter is proposed to obtain customized bandwidths using precise space-filling technique to its top geometry. The unit cell of the dual-resonant prototype consists of conductive square ring with two diagonally arranged slits, supported by metal-backed thin dielectric layer. It offers two narrow bands with fractional bandwidths of 3.98 and 6.65% and polarization conversion ratio (PCR) of 97.16 and 98.87% at 4.52 and 6.97 GHz, respectively. The resonances are brought in proximity to each other by changing the length of surface current paths of the two resonances. By virtue of this mechanism, two polarization converters with two different types of bandwidths are obtained. One polarization converter produces a full-width at half-maxima PCR bandwidth of 34%, whereas another polarization converter produces a 90% PCR bandwidth of 19%. All the proposed polarization converters are insensitive to wide variations of incident angle for both TE- and TM-polarized incident waves. Measured results show good agreement with the numerically simulated results.

  14. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haocheng; Taylor, Greg; Li, Hui

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarizationmore » fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.« less

  15. Infrared signature of micro-hydration in the organophosphate sarin: An ab initio study

    DOE PAGES

    Alam, Todd M.; Pearce, Charles Joseph

    2015-06-28

    The infrared (IR) spectra of micro-hydrated Sarin•(H 2O) n clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (~1270 to 1290 cm –1) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (~810 to 815 cm –1) and the C-O-P vibrational modes (~995 to 1004 cm –1) showed that the water interactions with these functional groups were minor, and that themore » structures of Sarin were not extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. As a result, the H 2O•H 2O vibrational modes (~3450 to 3660 cm –1) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters.« less

  16. The role of explicit and implicit standards in visual speed discrimination.

    PubMed

    Norman, J Farley; Pattison, Kristina F; Norman, Hideko F; Craft, Amy E; Wiesemann, Elizabeth Y; Taylor, M Jett

    2008-01-01

    Five experiments were designed to investigate visual speed discrimination. Variations of the method of constant stimuli were used to obtain speed discrimination thresholds in experiments 1, 2, 4, and 5, while the method of single stimuli was used in experiment 3. The observers' thresholds were significantly influenced by the choice of psychophysical method and by changes in the standard speed. The observers' judgments were unaffected, however, by changes in the magnitude of random variations in stimulus duration, reinforcing the conclusions of Lappin et al (1975 Journal of Experimental Psychology: Human Perception and Performance 1 383 394). When an implicit standard was used, the observers produced relatively low discrimination thresholds (7.0% of the standard speed), verifying the results of McKee (1981 Vision Research 21 491-500). When an explicit standard was used in a 2AFC variant of the method of constant stimuli, however, the observers' discrimination thresholds increased by 74% (to 12.2%), resembling the high thresholds obtained by Mandriota et al (1962 Science 138 437-438). A subsequent signal-detection analysis revealed that the observers' actual sensitivities to differences in speed were in fact equivalent for both psychophysical methods. The formation of an implicit standard in the method of single stimuli allows human observers to make judgments of speed that are as precise as those obtained when explicit standards are available.

  17. Heat waves connect abrupt polar climate changes during the past 67ka: evidence from sediment core GeoB3912-1

    NASA Astrophysics Data System (ADS)

    Yang, X.; Rial, J. A.

    2014-12-01

    According to the hypothesis of polar synchronization, climate variations of Earth's poles are connected with a persistent phase lock of π/2 throughout the last glacial period. However, it is not clear yet how the Earth's two poles communicate with each other, the Thermohaline circulation (THC) being a possible candidate for signal carrier. Here we present a possible way of climate variation propagation through the Atlantic Ocean - likely in the form of heat or thermal wave (Cattaneo's solution) - based on lagged correlation between an organic carbon climate proxy record from the tropical Atlantic and the south-north polar temperature gradient. We further demonstrate that the speed of such propagation is frequency dependent, of which the wave of the longest period travels the fastest at the speed of ~32 km/year consistent with the estimated speed of the THC. The observed speed - frequency relationship can be successfully modeled as resulting from a propagating dispersive thermal wave initiated by the polar temperature gradient maximum. We show that such heat wave propagation is a potential mechanism to couple and synchronize the polar climates during the last glacial period and to force the occurrence of Heinrich events. To summarize, the polar temperature gradient anomalies are consequence of the π/2 phase lock between the polar climates, which is caused by polar synchronization maintained by the coupling, which is, as the data suggest, in the form of thermal waves. The spikes in organic carbon and the Fe/Ca ratio records in the core GeoB3912-1 can be thought of as snapshots of the passage of strong meteorological wavefronts through the equatorial region. The results strongly suggest that each peak in the organic carbon recorded a half-hemisphere-delayed passage of a wave-like disturbance through the equator carrying the south-north temperature gradient maxima. And each of these occurs within timing error of the Heinrich events H0-H6.

  18. Method and apparatus for measuring stress

    DOEpatents

    Thompson, R.B.

    1983-07-28

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  19. Method and apparatus for measuring stress

    DOEpatents

    Thompson, R. Bruce

    1985-06-11

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  20. Visualizing Cytoplasmic Calcium in Polarizing Zygotes and Growing Rhizoids of Fucus Serratus.

    PubMed

    Brownlee, Colin

    1989-04-01

    Evidence for spatial variations in cytoplasmic free Ca 2+ in tip-growing cells is briefly summarized. Methods are described for detecting such gradients using fura-2 with dual wavelength excitation fluorescence microscopy. Results so far indicate that gradients of Ca 2+ are present in growing rhizoid cells but physiologically significant gradients have not yet been detected in the early stages of polarization.

  1. Towards a comprehensive model of Earth's disk-integrated Stokes vector

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.

    2015-07-01

    A significant body of work on simulating the remote appearance of Earth-like exoplanets has been done over the last decade. The research is driven by the prospect of characterizing habitable planets beyond the Solar System in the near future. In this work, I present a method to produce the disk-integrated signature of planets that are described in their three-dimensional complexity, i.e. with both horizontal and vertical variations in the optical properties of their envelopes. The approach is based on Pre-conditioned Backward Monte Carlo integration of the vector Radiative Transport Equation and yields the full Stokes vector for outgoing reflected radiation. The method is demonstrated through selected examples inspired by published work at wavelengths from the visible to the near infrared and terrestrial prescriptions of both cloud and surface albedo maps. I explore the performance of the method in terms of computational time and accuracy. A clear strength of this approach is that its computational cost does not appear to be significantly affected by non-uniformities in the planet optical properties. Earth's simulated appearance is strongly dependent on wavelength; both brightness and polarization undergo diurnal variations arising from changes in the planet cover, but polarization yields a better insight into variations with phase angle. There is partial cancellation of the polarized signal from the northern and southern hemispheres so that the outgoing polarization vector lies preferentially either in the plane parallel or perpendicular to the planet scattering plane, also for non-uniform cloud and albedo properties and various levels of absorption within the atmosphere. The evaluation of circular polarization is challenging; a number of one-photon experiments of 109 or more is needed to resolve hemispherically integrated degrees of circular polarization of a few times 10-5. Last, I introduce brightness curves of Earth obtained with one of the Messenger cameras at three wavelengths (0.48, 0.56 and 0.63 μm) during a flyby in 2005. The light curves show distinct structure associated with the varying aspect of the Earth's visible disk (phases of 98-107°) as the planet undergoes a full 24 h rotation; the structure is reasonably well reproduced with model simulations.

  2. Theoretical description of transverse measurements of polarization in optically-pumped Rb vapor cells

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy

    2012-06-01

    In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).

  3. Linearly polarized photoluminescence of InGaN quantum disks embedded in GaN nanorods.

    PubMed

    Park, Youngsin; Chan, Christopher C S; Nuttall, Luke; Puchtler, Tim J; Taylor, Robert A; Kim, Nammee; Jo, Yongcheol; Im, Hyunsik

    2018-05-25

    We have investigated the emission from InGaN/GaN quantum disks grown on the tip of GaN nanorods. The emission at 3.21 eV from the InGaN quantum disk doesn't show a Stark shift, and it is linearly polarized when excited perpendicular to the growth direction. The degree of linear polarization is about 39.3% due to the anisotropy of the nanostructures. In order to characterize a single nanostructure, the quantum disks were dispersed on a SiO 2 substrate patterned with a metal reference grid. By rotating the excitation polarization angle from parallel to perpendicular relative to the nanorods, the variation of overall PL for the 3.21 eV peak was recorded and it clearly showed the degree of linear polarization (DLP) of 51.5%.

  4. Reading the climate record of the martian polar layered deposits

    USGS Publications Warehouse

    Hvidberg, C.S.; Fishbaugh, K.E.; Winstrup, M.; Svensson, A.; Byrne, S.; Herkenhoff, K. E.

    2012-01-01

    The martian polar regions have layered deposits of ice and dust. The stratigraphy of these deposits is exposed within scarps and trough walls and is thought to have formed due to climate variations in the past. Insolation has varied significantly over time and caused dramatic changes in climate, but it has remained unclear whether insolation variations could be linked to the stratigraphic record. We present a model of layer formation based on physical processes that expresses polar deposition rates of ice and dust in terms of insolation. In this model, layer formation is controlled by the insolation record, and dust-rich layers form by two mechanisms: (1) increased summer sublimation during high obliquity, and (2) variations in the polar deposition of dust modulated by obliquity variations. The model is simple, yet physically plausible, and allows for investigations of the climate control of the polar layered deposits (PLD). We compare the model to a stratigraphic column obtained from the north polar layered deposits (NPLD) (Fishbaugh, K.E., Hvidberg, C.S., Byrne, S., Russel, P.S., Herkenhoff, K.E., Winstrup, M., Kirk, R. [2010a]. Geophys. Res. Lett., 37, L07201) and show that the model can be tuned to reproduce complex layer sequences. The comparison with observations cannot uniquely constrain the PLD chronology, and it is limited by our interpretation of the observed stratigraphic column as a proxy for NPLD composition. We identified, however, a set of parameters that provides a chronology of the NPLD tied to the insolation record and consistently explains layer formation in accordance with observations of NPLD stratigraphy. This model dates the top 500 m of the NPLD back to ∼1 million years with an average net deposition rate of ice and dust of 0.55 mm a−1. The model stratigraphy contains a quasi-periodic ∼30 m cycle, similar to a previously suggested cycle in brightness profiles from the NPLD (Laskar, J., Levrard, B., Mustard, F. [2002]. Nature, 419, 375–377; Milkovich, S., Head, J.W. [2005]. J. Geophys. Res. 110), but here related to half of the obliquity cycles of 120 and 99 kyr and resulting from a combination of the two layer formation mechanisms. Further investigations of the non-linear insolation control of PLD formation should consider data from other geographical locations and include radar data and other stratigraphic datasets that can constrain the composition and stratigraphy of the NPLD layers.

  5. Using a spatially explicit analysis model to evaluate spatial variation of corn yield

    USDA-ARS?s Scientific Manuscript database

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  6. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    PubMed

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  7. Generalized elimination of the global translation from explicitly correlated Gaussian functions

    NASA Astrophysics Data System (ADS)

    Muolo, Andrea; Mátyus, Edit; Reiher, Markus

    2018-02-01

    This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H2+={p+,p+,e- } ion and the H2 = {p+, p+, e-, e-} molecule.

  8. A new approach to the Schrödinger equation with rational potentials

    NASA Astrophysics Data System (ADS)

    Dong, Ming-de; Chu, Jue-Hui

    1984-04-01

    A new analytic theory is established for the Schrödinger equation with a rational potential, including a complete classification of the regular eigenfunctions into three different types, an exact method of obtaining wavefunctions, an explicit formulation of the spectral equation (3 x 3 determinant) etc. All representations are exhibited in a unifying way via function-theoretic methods and therefore given in explicit form, in contrast to the prevailing discussion appealing to perturbation or variation methods or continued-fraction techniques. The irregular eigenfunctions at infinity can be obtained analogously and will be discussed separately as another solvable case for singular potentials.

  9. Generalized elimination of the global translation from explicitly correlated Gaussian functions.

    PubMed

    Muolo, Andrea; Mátyus, Edit; Reiher, Markus

    2018-02-28

    This paper presents the multi-channel generalization of the center-of-mass kinetic energy elimination approach [B. Simmen et al., Mol. Phys. 111, 2086 (2013)] when the Schrödinger equation is solved variationally with explicitly correlated Gaussian functions. The approach has immediate relevance in many-particle systems which are handled without the Born-Oppenheimer approximation and can be employed also for Dirac-type Hamiltonians. The practical realization and numerical properties of solving the Schrödinger equation in laboratory-frame Cartesian coordinates are demonstrated for the ground rovibronic state of the H 2 + ={p + ,p + ,e - } ion and the H 2 = {p + , p + , e - , e - } molecule.

  10. The Polarization Orientation Shift Estimation and Compensation of PolSAR Data in Forest Area

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Chen, Erxue; Li, Zengyuan; Li, Lan; Gu, Xinzhi

    2016-08-01

    Polarization orientation angle (POA) is a major parameter of electromagnetic wave. This angle will be shift due to azimuth slopes, which will affect the radiometric quality of PolSAR data. Under the assumption of reflection symmetrical medium, the shift value of polarization orientation angle (POAs) can be estimated by Circular Polarization Method (CPM). Then, the shift angle can be used to compensate PolSAR data or extract DEM information. However, it is less effective when using high-frequency SAR (L-, C-band) in the forest area. The main reason is that the polarization orientation angle shift of forest area not only influenced by topography, but also affected by the forest canopy. Among them, the influence of the former belongs to the interference information should be removed, but the impact of the latter belongs to the polarization feature information needs to be retained. The ALOS2 PALSAR2 L-band full polarimetric SAR data was used in this study. Base on the Circular Polarization and DEM-based method, we analyzed the variation of shift value of polarization orientation angle and developed the polarization orientation shift estimation and compensation of PolSAR data in forest.

  11. East Greenland and Barents Sea polar bears (Ursus maritimus): adaptive variation between two populations using skull morphometrics as an indicator of environmental and genetic differences.

    PubMed

    Pertoldi, Cino; Sonne, Christian; Wiig, Øystein; Baagøe, Hans J; Loeschcke, Volker; Bechshøft, Thea Østergaard

    2012-06-01

    A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management decisions. © 2012 The Authors.

  12. Probing the gamma-ray variability in 3C 279 using broad-band observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, B.; Krichbaum, T. P.; Lee, S. -S.

    2016-09-27

    In this study, we present the results of a broad-band radio-to-GeV observing campaign organized to get a better understanding of the radiation processes responsible for the γ-ray flares observed in 3C 279. The total intensity and polarization observations of the source were carried out between 2013 December 28 and 2014 January 03 using the Fermi-Large Area Telescope, Swift-XRT, Swift-UVOT, and Korean VLBI Network telescopes. A prominent flare observed in the optical/near-UV passbands was found to be correlated with a concurrent γ-ray flare at a confidence level >95 percent, which suggests a co-spatial origin of the two. Moreover, the flaring activitymore » in the two regimes was accompanied by no significant spectral variations. A peak in the X-ray light curve coincides with the peaks of the fractional polarization curves at 43 and 86 GHz radio bands. No prominent variation was noticed for the total intensity and the electric vector position angle observations at radio bands during this period. We noticed a possible hint of steepening of the radio spectrum with an increase in percentage polarization, which suggests that the radio polarization variations could be simply due to a spectral change. In a simple scenario, the correlated optical/γ-ray flares could be caused by the same population of emitting particles. The coincidence of the increase in radio polarization with the X-ray flux supports the picture that X-rays are produced via inverse-Compton scattering of radio photons. Finally, the observed fractional variability for the γ-ray flare ~0.23 does not exceed that in the optical regime, which is inconsistent with what we usually observe for 3C 279; it could be due to different dependencies of the magnetic field and the external radiation field energy density profiles along the jet.« less

  13. Asynchronous variational integration using continuous assumed gradient elements.

    PubMed

    Wolff, Sebastian; Bucher, Christian

    2013-03-01

    Asynchronous variational integration (AVI) is a tool which improves the numerical efficiency of explicit time stepping schemes when applied to finite element meshes with local spatial refinement. This is achieved by associating an individual time step length to each spatial domain. Furthermore, long-term stability is ensured by its variational structure. This article presents AVI in the context of finite elements based on a weakened weak form (W2) Liu (2009) [1], exemplified by continuous assumed gradient elements Wolff and Bucher (2011) [2]. The article presents the main ideas of the modified AVI, gives implementation notes and a recipe for estimating the critical time step.

  14. Nearly scale invariant spectrum of gravitational radiation from global phase transitions.

    PubMed

    Jones-Smith, Katherine; Krauss, Lawrence M; Mathur, Harsh

    2008-04-04

    Using a large N sigma model approximation we explicitly calculate the power spectrum of gravitational waves arising from a global phase transition in the early Universe and we confirm that it is scale invariant, implying an observation of such a spectrum may not be a unique feature of inflation. Moreover, the predicted amplitude can be over 3 orders of magnitude larger than the naive dimensional estimate, implying that even a transition that occurs after inflation may dominate in cosmic microwave background polarization or other gravity wave signals.

  15. Decoherence of spin states induced by Rashba coupling for an electron confined to a semiconductor quantum dot in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Poszwa, A.

    2018-05-01

    We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.

  16. Comportamento stagionale delle calote polari di Marte

    NASA Astrophysics Data System (ADS)

    di Giovanni, Giovanni

    2004-08-01

    The rhythms of progression and retraction of the polar ice caps on Mars have been studied to establish possible variations in polar meteorology over the course of the last centuries. The applied theoretical procedure offers a mathematical function that contains some significant physical parameters, for example the length and the beginning of spring and another parameter which depends on temperature. The numerical data for the South Polar Cap during the grand oppositions of the last 130 years has been studied with the suggested theory. Evident correlations emerge between parameters and form of the diagram of cap amplitude versus time.

  17. Resolving 3D magnetism in nanoparticles using polarization analyzed SANS

    NASA Astrophysics Data System (ADS)

    Krycka, K. L.; Booth, R.; Borchers, J. A.; Chen, W. C.; Conlon, C.; Gentile, T. R.; Hogg, C.; Ijiri, Y.; Laver, M.; Maranville, B. B.; Majetich, S. A.; Rhyne, J. J.; Watson, S. M.

    2009-09-01

    Utilizing a polarized 3He cell as an analyzer we were able to perform a full polarization analysis on small-angle neutron scattering (SANS) data from an ensemble of 7 nm magnetite nanoparticles. The results led to clear separation of magnetic and nuclear scattering plus a 3D vectorial decomposition of the magnetism observed. At remanence variation in long-range magnetic correlation length was found to be highly dependent on temperature from 50 to 300 K. Additionally, we were able to compare the magnetic scattering from moments along and perpendicular to an applied field at saturation and in remanence.

  18. Modeling polar cap F-region patches using time varying convection

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Bowline, M. D.; Schunk, R. W.; Decker, D. T.; Valladares, C. E.; Sheehan, R.; Anderson, D. N.; Heelis, R. A.

    1993-01-01

    Creation of polar cap F-region patches are simulated for the first time using two independent physical models of the high latitude ionosphere. The patch formation is achieved by temporally varying the magnetospheric electric field (ionospheric convection) input to the models. The imposed convection variations are comparable to changes in the convection that result from changes in the B(y) IMF component for southward IMF. Solar maximum-winter simulations show that simple changes in the convection pattern lead to significant changes in the polar cap plasma structuring. Specifically, in winter, as enhanced dayside plasma convects into the polar cap to form the classic tongue-of-ionization the convection changes produce density structures that are indistinguishable from the observed patches.

  19. Polarization to the field enhancement by a gold dimer

    NASA Astrophysics Data System (ADS)

    Hong, Xin; Jin, Zheng

    2016-11-01

    Due to the effect of plasmonic coupling, gold nanoparticle dimers have been paid more attentions in bio-imaging. The coupling effect existing at the gap between a closely linked particle pair can make the local field strongly enhanced and in which the angle between the excitation polarization and the dimer axis plays a dominant role. We calculated the amplitude distribution under a highly focused illumination objective. The simulation results show that for such a model, 45 degrees between the excitation polarization and the dimer axis can produce an optimum signal. The enhancement thus obtained is 10.78 fold while the variation between peak-peak can reach 6.59 fold compared to a single plasmoic particle during the rotation of the polarization.

  20. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    PubMed

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  1. When do glaciated landscapes form?

    NASA Astrophysics Data System (ADS)

    Koppes, M. N.

    2015-12-01

    Glacial erosion is a fundamental link between climate and the tectonic and surface processes that create topography. Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice masses, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, from the modern to orogenic. Recent numerical modeling efforts have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple index that relates erosion rate to ice dynamics. To provide a quantitative test of the links between glacial erosion, sliding and ice discharge, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes, from Patagonia to the Antarctic Peninsula. We find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 in Patagonia to 0.01-<0.1 mm yr-1 in the AP, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theories of glacial erosion. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold decrease in long-term relative to modern erosion rates may in part reflect the temporal averaging of temperate and polar conditions over the lifecycle of these glaciers. Hence, climatic variation, more than the extent of ice cover or tectonic changes, controls the pace at which glaciers shape mountains.

  2. Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out

    PubMed Central

    el-Showk, Sedeer; Help-Rinta-Rahko, Hanna; Blomster, Tiina; Siligato, Riccardo; Marée, Athanasius F. M.; Mähönen, Ari Pekka; Grieneisen, Verônica A.

    2015-01-01

    An auxin maximum is positioned along the xylem axis of the Arabidopsis root tip. The pattern depends on mutual feedback between auxin and cytokinins mediated by the PIN class of auxin efflux transporters and AHP6, an inhibitor of cytokinin signalling. This interaction has been proposed to regulate the size and the position of the hormones’ respective signalling domains and specify distinct boundaries between them. To understand the dynamics of this regulatory network, we implemented a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. Our analysis reveals that an informative spatial pattern in cytokinin levels generated by diffusion is a theoretically unlikely scenario. Furthermore, our model shows that such a pattern is not required for correct and robust auxin patterning. Instead, auxin-dependent modifications of cytokinin response, rather than variations in cytokinin levels, allow for the necessary feedbacks, which can amplify and stabilise the auxin maximum. Our simulations demonstrate the importance of hormonal regulation of auxin efflux for pattern robustness. While involvement of the PIN proteins in vascular patterning is well established, we predict and experimentally verify a role of AUX1 and LAX1/2 auxin influx transporters in this process. Furthermore, we show that polar localisation of PIN1 generates an auxin flux circuit that not only stabilises the accumulation of auxin within the xylem axis, but also provides a mechanism for auxin to accumulate specifically in the xylem-pole pericycle cells, an important early step in lateral root initiation. The model also revealed that pericycle cells on opposite xylem poles compete for auxin accumulation, consistent with the observation that lateral roots are not initiated opposite to each other. PMID:26505899

  3. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results.

    PubMed

    Christensen, Philip R; Bandfield, Joshua L; Bell, James F; Gorelick, Noel; Hamilton, Victoria E; Ivanov, Anton; Jakosky, Bruce M; Kieffer, Hugh H; Lane, Melissa D; Malin, Michael C; McConnochie, Timothy; McEwen, Alfred S; McSween, Harry Y; Mehall, Greg L; Moersch, Jeffery E; Nealson, Kenneth H; Rice, James W; Richardson, Mark I; Ruff, Steven W; Smith, Michael D; Titus, Timothy N; Wyatt, Michael B

    2003-06-27

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  4. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results

    USGS Publications Warehouse

    Christensen, P.R.; Bandfield, J.L.; Bell, J.F.; Gorelick, N.; Hamilton, V.E.; Ivanov, A.; Jakosky, B.M.; Kieffer, H.H.; Lane, M.D.; Malin, M.C.; McConnochie, T.; McEwen, A.S.; McSween, H.Y.; Mehall, G.L.; Moersch, J.E.; Nealson, K.H.; Rice, J. W.; Richardson, M.I.; Ruff, S.W.; Smith, M.D.; Titus, T.N.; Wyatt, M.B.

    2003-01-01

    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.

  5. Discontinuity-free edge-diffraction model for characterization of focused wave fields.

    PubMed

    Sedukhin, Andrey G

    2010-03-01

    A model of discontinuity-free edge diffraction is proposed that is valid in the framework of the scalar Debye approximation and describes the formation process and approximate structure of the stationary diffracted field of a monochromatic converging spherical wave of limited angular opening throughout the whole space about the focus. The field is represented semianalytically in terms of the sum of a direct quasi-spherical wave and two edge quasi-conical waves of the zeroth and first order. The angular spectrum amplitudes of all these waves have smooth continuous variations of the real and imaginary parts in polar angle and radius, the separable nonanalytic functions defining the polar-angle variations of the amplitudes being found by optimization techniques.

  6. Spatial effects, sampling errors, and task specialization in the honey bee.

    PubMed

    Johnson, B R

    2010-05-01

    Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists.

  7. Individual variation in the neural processes of motor decisions in the stop signal task: the influence of novelty seeking and harm avoidance personality traits.

    PubMed

    Hu, Jianping; Lee, Dianne; Hu, Sien; Zhang, Sheng; Chao, Herta; Li, Chiang-Shan R

    2016-06-01

    Personality traits contribute to variation in human behavior, including the propensity to take risk. Extant work targeted risk-taking processes with an explicit manipulation of reward, but it remains unclear whether personality traits influence simple decisions such as speeded versus delayed responses during cognitive control. We explored this issue in an fMRI study of the stop signal task, in which participants varied in response time trial by trial, speeding up and risking a stop error or slowing down to avoid errors. Regional brain activations to speeded versus delayed motor responses (risk-taking) were correlated to novelty seeking (NS), harm avoidance (HA) and reward dependence (RD), with age and gender as covariates, in a whole brain regression. At a corrected threshold, the results showed a positive correlation between NS and risk-taking responses in the dorsomedial prefrontal, bilateral orbitofrontal, and frontopolar cortex, and between HA and risk-taking responses in the parahippocampal gyrus and putamen. No regional activations varied with RD. These findings demonstrate that personality traits influence the neural processes of executive control beyond behavioral tasks that involve explicit monetary reward. The results also speak broadly to the importance of characterizing inter-subject variation in studies of cognition and brain functions.

  8. Modeling spatial variation in avian survival and residency probabilities

    USGS Publications Warehouse

    Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth

    2010-01-01

    The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.

  9. The Spatial Variation of Polar Rain Electrons and its Cause

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Wing, S.; Ruohoniemi, J. M.; Newell, P. T.; Gosling, J. T.; Skoug, R. M.

    2007-01-01

    It is generally accepted that field aligned electrons in the solar wind can follow field lines connected to Earth and precipitate in the polar ionosphere where they are known as polar rain. Few-hundred eV, field-aligned electrons of the solar wind "strahl" carry the interplanetary heat flux moving out from the sun and these electrons precipitate in either the northern or southern hemisphere depending on the magnetic field direction. These electrons produce enhanced polar rain in one hemisphere or the other although weaker polar rain is usually produced in the opposite hemisphere by whatever electrons are moving in the opposite direction. Although much evidence exists for this simple free entry mechanism, it has also long been known that there are spatial variations in the energies and intensities of the precipitating electrons. The present work compares electron distribution functions measured by the ACE spacecraft in the solar wind with those measured by the DMSP spacecraft at 800 km altitude over the polar cap. It is found that shifting the DMSP distribution functions in energy by amounts ranging from 10's to a few hundred eV produces quite good agreement with simultaneous ACE measurements. Over most of the polar cap this DMSP energy shift must be positive to achieve this agreement, suggesting the electrons have been decelerated by a field aligned potential as they move from the solar wind to low altitudes. The largest shifts occur on the nightside and on the dawn or dusk side, with the latter depending on the plasma convection pattern which is controlled by the orientation of the IMF. Nearer the cusp the shift is smaller or even negative. Since more massive tailward flowing magnetosheath ions are unable io follow the field lines into the magnetotail like the electrons, a field aligned potential is expected to develop to exclude low energy electrons and prevent an excessive charge imbalance. Such a potential would also produce the deceleration of those electrons that reach low altitudes. This improved understanding of polar rain should increase the utility of polar rain measurements as a diagnostic of the magnetosphere magnetic field configuration.

  10. Complex polarization propagator approach in the restricted open-shell, self-consistent field approximation: the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine.

    PubMed

    Linares, Mathieu; Stafström, Sven; Rinkevicius, Zilvinas; Ågren, Hans; Norman, Patrick

    2011-05-12

    A presentation of the complex polarization propagator in the restricted open-shell self-consistent field approximation is given. It rests on a formulation of a resonant-convergent, first-order polarization propagator approach that makes it possible to directly calculate the X-ray absorption cross section at a particular frequency without explicitly addressing the excited states. The quality of the predicted X-ray spectra relates only to the type of density functional applied without any separate treatment of dynamical relaxation effects. The method is applied to the calculation of the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine. Comparison is made between the spectra of the radicals and those of the corresponding cations and anions to assess the effect of the increase of electron charge in the frontier orbital. The method offers the possibility for unique assignment of symmetry-independent atoms. The overall excellent spectral agreement motivates the application of the method as a routine precise tool for analyzing X-ray absorption of large systems of technological interest.

  11. Active Polar Two-Fluid Macroscopic Dynamics

    NASA Astrophysics Data System (ADS)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  12. Genetic variation, relatedness, and effective population size of polar bears (Ursus maritimus) in the southern Beaufort Sea, Alaska.

    PubMed

    Cronin, Matthew A; Amstrup, Steven C; Talbot, Sandra L; Sage, George K; Amstrup, Kristin S

    2009-01-01

    Polar bears (Ursus maritimus) are unique among bears in that they are adapted to the Arctic sea ice environment. Genetic data are useful for understanding their evolution and can contribute to management. We assessed parentage and relatedness of polar bears in the southern Beaufort Sea, Alaska, with genetic data and field observations of age, sex, and mother-offspring and sibling relationships. Genotypes at 14 microsatellite DNA loci for 226 bears indicate that genetic variation is comparable to other populations of polar bears with mean number of alleles per locus of 7.9 and observed and expected heterozygosity of 0.71. The genetic data verified 60 field-identified mother-offspring pairs and identified 10 additional mother-cub pairs and 48 father-offspring pairs. The entire sample of related and unrelated bears had a mean pairwise relatedness index (r(xy)) of approximately zero, parent-offspring and siblings had r(xy) of approximately 0.5, and 5.2% of the samples had r(xy) values within the range expected for parent-offspring. Effective population size (N(e) = 277) and the ratio of N(e) to total population size (N(e)/N = 0.182) were estimated from the numbers of reproducing males and females. N(e) estimates with genetic methods gave variable results. Our results verify and expand field data on reproduction by females and provide new data on reproduction by males and estimates of relatedness and N(e) in a polar bear population.

  13. Genetic variation, relatedness, and effective population size of polar bears (Ursus maritimus) in the southern Beaufort Sea, Alaska

    USGS Publications Warehouse

    Cronin, Matthew A.; Amstrup, Steven C.; Talbot, Sandra L.; Sage, George K.; Amstrup, Kristin S.

    2009-01-01

    Polar bears (Ursus maritimus) are unique among bears in that they are adapted to the Arctic sea ice environment. Genetic data are useful for understanding their evolution and can contribute to management. We assessed parentage and relatedness of polar bears in the southern Beaufort Sea, Alaska, with genetic data and field observations of age, sex, and mother–offspring and sibling relationships. Genotypes at 14 microsatellite DNA loci for 226 bears indicate that genetic variation is comparable to other populations of polar bears with mean number of alleles per locus of 7.9 and observed and expected heterozygosity of 0.71. The genetic data verified 60 field-identified mother–offspring pairs and identified 10 additional mother–cub pairs and 48 father–offspring pairs. The entire sample of related and unrelated bears had a mean pairwise relatedness index (rxy) of approximately zero, parent–offspring and siblings had rxy of approximately 0.5, and 5.2% of the samples had rxy values within the range expected for parent-offspring. Effective population size (Ne= 277) and the ratio of Ne to total population size (Ne/N = 0.182) were estimated from the numbers of reproducing males and females. Ne estimates with genetic methods gave variable results. Our results verify and expand field data on reproduction by females and provide new data on reproduction by males and estimates of relatedness and Ne in a polar bear population.

  14. Discovery of Scattering Polarization in the Hydrogen Lyα Line of the Solar Disk Radiation

    NASA Astrophysics Data System (ADS)

    Kano, R.; Trujillo Bueno, J.; Winebarger, A.; Auchère, F.; Narukage, N.; Ishikawa, R.; Kobayashi, K.; Bando, T.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Giono, G.; Hara, H.; Suematsu, Y.; Shimizu, T.; Sakao, T.; Tsuneta, S.; Ichimoto, K.; Goto, M.; Belluzzi, L.; Štěpán, J.; Asensio Ramos, A.; Manso Sainz, R.; Champey, P.; Cirtain, J.; De Pontieu, B.; Casini, R.; Carlsson, M.

    2017-04-01

    There is a thin transition region (TR) in the solar atmosphere where the temperature rises from 10,000 K in the chromosphere to millions of degrees in the corona. Little is known about the mechanisms that dominate this enigmatic region other than the magnetic field plays a key role. The magnetism of the TR can only be detected by polarimetric measurements of a few ultraviolet (UV) spectral lines, the Lyα line of neutral hydrogen at 121.6 nm (the strongest line of the solar UV spectrum) being of particular interest given its sensitivity to the Hanle effect (the magnetic-field-induced modification of the scattering line polarization). We report the discovery of linear polarization produced by scattering processes in the Lyα line, obtained with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) rocket experiment. The Stokes profiles observed by CLASP in quiet regions of the solar disk show that the Q/I and U/I linear polarization signals are of the order of 0.1% in the line core and up to a few percent in the nearby wings, and that both have conspicuous spatial variations with scales of ˜10 arcsec. These observations help constrain theoretical models of the chromosphere-corona TR and extrapolations of the magnetic field from photospheric magnetograms. In fact, the observed spatial variation from disk to limb of polarization at the line core and wings already challenge the predictions from three-dimensional magnetohydrodynamical models of the upper solar chromosphere.

  15. Detecting seismic anisotropy across the 410 km discontinuity through polarity and amplitude variations of the underside reflections

    NASA Astrophysics Data System (ADS)

    Saki, Morvarid; Thomas, Christine; Merkel, Sebastien; Wookey, James

    2017-04-01

    We investigate the effect of various types of deformation mechanisms on the reflection coefficients of P and S waves underside reflections off the 410 km discontinuity, to find a diagnostic tool to detect the style of deformation at boundary layers. We calculate the reflection coefficient for P and SH underside reflections depending on the variation in velocity perturbations across the 410 km discontinuity for two deformation scenarios, compression and shear for different azimuths and angles of incidence at the interface. The results show that in the case of an anisotropic olivine layer above an isotropic wadsleyite layer, the P wave reflection coefficient amplitudes are only slightly influenced by the joint effect of angle of incidence and the strength of imposed deformation, without any polarity reversal and for all deformation styles. For the SH wave underside reflections a more complicated behaviour is visible: In compressional deformation, a polarity reversal occurs at distances depending on the incidence angle and the intensity of applied deformation without any azimuthal dependency. However, for shear geometry the azimuth to the direction of deformation appears as an important factor which strongly affects the incidence angle at which the polarity reversal of the reflected S wave occurs. These differences in amplitude and polarity patterns of reflection coefficients of different deformation geometries, especially for S wave at shorter distances allow to detect the style of deformation mechanisms at a boundary layer.

  16. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new seasonal, spatially explicit, global model - 2012

    EPA Science Inventory

    Background/Question/Methods Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in some depth. Much less is known, however, about seasonal patterns and zone and ...

  17. Factors influencing export of dissolved inorganic nitrogen by major rivers: a new seasonal, spatially explicit, global model

    EPA Science Inventory

    Background/Question/Methods Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in some depth. Much less is known, however, about seasonal patterns and controls ...

  18. Curve Numbers for Nine Mountainous Eastern United States Watersheds: Seasonal Variation and Forest Cutting

    EPA Science Inventory

    Many engineers and hydrologists use the curve number method to estimate runoff from ungaged watersheds; however, the method does not explicitly account for the influence of season or forest cutting on runoff. This study of observed rainfall and runoff for small, forested watershe...

  19. Influences of environment and disturbance on forest patterns in coastal Oregon watersheds.

    Treesearch

    Michael C. Wimberly; Thomas A. Spies

    2001-01-01

    Modern ecology often emphasizes the distinction between traditional theories of stable, environmentally structured communities and a new paradigm of disturbance driven, nonequilibrium dynamics. However, multiple hypotheses for observed vegetation patterns have seldom been explicitly tested. We used multivariate statistics and variation partitioning methods to assess...

  20. Hierarchical analysis of forest bird species-environment relationships in the Oregon Coast Range

    Treesearch

    Samuel A. Cushman; Kevin McGarigal

    2004-01-01

    Species in biological communities respond to environmental variation simultaneously across a range of organizational levels. Accordingly, it is important to quantify the effects of environmental factors at multiple levels on species distribution and abundance. Hierarchical methods that explicitly separate the independent and confounded influences of environmental...

  1. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new, seasonal, spatially explicit, global model

    EPA Science Inventory

    Substantial effort has focused on understanding spatial variation in dissolved inorganic nitrogen (DIN) export to the coastal zone and specific basins have been studied in depth. Much less is known, however, about seasonal patterns and controls of coastal DIN delivery across larg...

  2. The relationship of rain-induced cross-polarization discrimination to attenuation for 10 to 30 GHz earth-space radio links

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Runyon, D. L.

    1984-01-01

    Rain depolarization is quantified through the cross-polarization discrimination (XPD) versus attenuation relationship. Such a relationship is derived by curve fitting to a rigorous theoretical model (the multiple scattering model) to determine the variation of the parameters involved. This simple isolation model (SIM) is compared to data from several earth-space link experiments and to three other models.

  3. Dependence of the duration of geomagnetic polarity reversals on site latitude.

    PubMed

    Clement, Bradford M

    2004-04-08

    An important constraint on the processes governing the geodynamo--the flow in the outer core responsible for generating Earth's magnetic field--is the duration of geomagnetic polarity reversals; that is, how long it takes for Earth's magnetic field to reverse. It is generally accepted that Earth's magnetic field strength drops to low levels during polarity reversals, and the field direction progresses through a 180 degrees change while the field is weak. The time it takes for this process to happen, however, remains uncertain, with estimates ranging from a few thousand up to 28,000 years. Here I present an analysis of the available sediment records of the four most recent polarity reversals. These records yield an average estimate of about 7,000 years for the time it takes for the directional change to occur. The variation about this mean duration is not random, but instead varies with site latitude, with shorter durations observed at low-latitude sites, and longer durations observed at mid- to high-latitude sites. Such variation of duration with site latitude is predicted by simple geometrical reversal models, in which non-dipole fields are allowed to persist while the axial dipole decays through zero and then builds in the opposite direction, and provides a constraint on numerical dynamo models.

  4. Cotton fiber quality characterization with light scattering and fourier transform infrared techniques.

    PubMed

    Thomasson, J A; Manickavasagam, S; Mengüç, M P

    2009-03-01

    Fiber quality measurement is critical to assessing the value of a bale of cotton for various textile purposes. An instrument that could measure numerous cotton quality properties by optical means could be made simpler and faster than current fiber quality measurement instruments, and it might be more amenable to on-line measurement at processing facilities. To that end, a laser system was used to investigate cotton fiber samples with respect to electromagnetic scattering at various wavelengths, polarization angles, and scattering angles. A Fourier transform infrared (FT-IR) instrument was also used to investigate the transmission of electromagnetic energy at various mid-infrared wavelengths. Cotton samples were selected to represent a wide range of micronaire values. Varying the wavelength of the laser at a fixed polarization resulted in little variation in scattered light among the cotton samples. However, varying the polarization at a fixed wavelength produced notable variation, indicating that polarization might be used to differentiate among cotton samples with respect to certain fiber properties. The FT-IR data in the 12 to 22 microm range produced relatively large differences in the amount of scattered light among all samples, and FT-IR data at certain combinations of fixed wavelengths were highly linearly related to certain measures of cotton quality including micronaire.

  5. Quantifying spatially and temporally explicit CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shaoqing; Zhuang, Qianlai; Chen, Min

    Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less

  6. Quantifying spatially and temporally explicit CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics

    DOE PAGES

    Liu, Shaoqing; Zhuang, Qianlai; Chen, Min; ...

    2016-07-25

    Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less

  7. Dielectric response of an inhomogeneous quasi-two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Fernández-Velicia, F. J.; García-Moliner, F.; Velasco, V. R.

    1996-01-01

    The solution of the integral equation required to invert the dielectric function of a confined quasi-two-dimensional electron gas is studied by means of a formal analysis which yields a convergent algorithm. The dielectric function can then be inverted in real space for an arbitrary number of populated subbands and taking into account the effect of intersubband excitations involving empty subbands to any desired degree of accuracy. Plasma modes and screened potential can then be easily studied by using a basis which bears out explicitly the consequences of symmetry in symmetric systems. A model calculation of dynamical screening at frequencies of the order of those of confined polar optical modes in usual GaAs wells indicates that the empty states may play a quite significant role and the screened potential, explicitly obtained in real space, may exhibit a great variety of behaviors: the sign of the potential may change and its magnitude may be either reduced (ordinary screening) or enhanced (antiscreening).

  8. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Global Auroral Energy Deposition Compared with Magnetic Indices

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Fillingim, M. O.; Elsen, R.; Parks, G. K.; Germany, G. A.; Spann, J. F., Jr.

    1997-01-01

    Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. in this session. Magnetic indices, such as Kp, AE, and Dst, which are sensitive to variations in magnetospheric current systems have been constructed from ground magnetometer measurements and employed as measures of activity. The systematic study of global energy deposition raises the possibility of constructing a global magnetospheric activity index explicitly based on particle precipitation to supplement magnetic indices derived from ground magnetometer measurements. The relationship between global magnetic activity as measured by these indices and the rate of total global energy loss due to precipitation is not known at present. We study the correlation of the traditional magnetic index of Kp for the month of January 1997 with the energy deposition derived from the UVI images. We address the question of whether the energy deposition through particle precipitation generally matches the Kp and AE indices, or the more exciting, but distinct, possibility that this particle-derived index may provide an somewhat independent measure of global magnetospheric activity that could supplement traditional magnetically-based activity indices.

  10. Mode-independent attenuation in evanescent-field sensors

    NASA Astrophysics Data System (ADS)

    Gnewuch, Harald; Renner, Hagen

    1995-03-01

    Generally, the total power attenuation in multimode evanescent-field sensor waveguides is nonproportional to the bulk absorbance because the modal attenuation constants differ. Hence a direct measurement is difficult and is additionally aggravated because the waveguide absorbance is highly sensitive to the specific launching conditions at the waveguide input. A general asymptotic formula for the modal power attenuation in strongly asymmetric inhomogeneous planar waveguides with arbitrarily distributed weak absorption in the low-index superstrate is derived. Explicit expressions for typical refractive-index profiles are given. Except when very close to the cutoff, the predicted asymptotic attenuation behavior agrees well with exact calculations. The ratio of TM versus TE absorption has been derived to be (2 - n0 2/nf2 ) for arbitrary profiles. Waveguides with a linear refractive-index profile show mode-independent attenuation coefficients within each polarization. Further, the asymptotic sensitivity is independent of the wavelength, so that it should be possible to directly measure the spectral variation of the bulk absorption. The mode independence of the attenuation has been verified experimentally for a second-order polynomial profile, which is close to a linear refractive-index distribution. In contrast, the attenuation in the step-profile waveguide has been found to depend strongly on the mode number, as predicted by theory. A strong spread of the modal attenuation coefficients is also predicted for the parabolic-profile waveguide sensor.

  11. Isochronal Ice Sheet Model: a New Approach to Tracer Transport by Explicitly Tracing Accumulation Layers

    NASA Astrophysics Data System (ADS)

    Born, A.; Stocker, T. F.

    2014-12-01

    The long, high-resolution and largely undisturbed depositional record of polar ice sheets is one of the greatest resources in paleoclimate research. The vertical profile of isotopic and other geochemical tracers provides a full history of depositional and dynamical variations. Numerical simulations of this archive could afford great advances both in the interpretation of these tracers as well as to help improve ice sheet models themselves, as show successful implementations in oceanography and atmospheric dynamics. However, due to the slow advection velocities, tracer modeling in ice sheets is particularly prone to numerical diffusion, thwarting efforts that employ straightforward solutions. Previous attemps to circumvent this issue follow conceptually and computationally extensive approaches that augment traditional Eulerian models of ice flow with a semi-Lagrangian tracer scheme (e.g. Clarke et al., QSR, 2005). Here, we propose a new vertical discretization for ice sheet models that eliminates numerical diffusion entirely. Vertical motion through the model mesh is avoided by mimicking the real-world ice flow as a thinning of underlying layers (see figure). A new layer is added to the surface at equidistant time intervals (isochronally). Therefore, each layer is uniquely identified with an age. Horizontal motion follows the shallow ice approximation using an implicit numerical scheme. Vertical diffusion of heat which is physically desirable is also solved implicitly. A simulation of a two-dimensional section through the Greenland ice sheet will be discussed.

  12. Geomagnetic fluctuations during a polarity transition

    NASA Astrophysics Data System (ADS)

    Audunsson, Haraldur; Levi, Shaul

    1997-01-01

    The extensive Roza Member of the Columbia River Basalt Group (Washington State) has intermediate paleomagnetic directions, bracketed by underlying normal and overlying reverse polarity flows. A consistent paleomagnetic direction was measured at 11 widely distributed outcrops; the average direction has a declination of 189° and an inclination of -5°, with greater variation in the inclination [Rietman, 1966]. In this study the Roza Member was sampled in two Pasco Basin drillcores, where it is a single cooling unit and its thickness exceeds 50 m. Excellent core recovery allowed uniform and dense sampling of the drillcores. During its protracted cooling, the Roza flow in the drillcores recorded part of a 15.5 Ma geomagnetic polarity transition. The inclination has symmetric, quasicyclic intraflow variation, while the declination is nearly constant, consistent with the results from the outcrops. Thermal models of the cooling flow provide the timing for remanence acquisition. The inclination is inferred to have progressed from 0° to -15° and back to -3°over a period of 15 to 60 years, at rates of 1.6° to 0.5°/yr. Because the geomagnetic intensity was probably weak during the transition, these apparently high rates of change are not significantly different from present-day secular variation. These results agree with the hypothesis that normal secular variation persists through geomagnetic transitions. The Iow-amplitude quasicyclical fluctuations of the field over tens of years, recorded by Roza, suggest that the geomagnetic field reverses in discrete steps, and that more than 15-60 years were required to complete this reversal.

  13. Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface.

    PubMed

    Khan, M Ismail; Tahir, Farooq A

    2017-11-22

    A highly flexible single-layer metasurface manifesting quarter-wave plate as well as half-mirror (1:1 beam-splitter) operation in the microwave frequency regime is being presented in this research. The designed metasurface reflects half power of the impinging linearly polarized electromagnetic wave as circularly polarized wave while the remaining half power is transmitted as circularly polarized wave at resonance frequency. Similarly, a circularly polarized incident wave is reflected and transmitted as linearly polarized wave with equal half powers. Moreover, the response of the metasurface is quite stable against the variations in the incidence angle up to 45°. The measurements performed on the fabricated prototype exhibit a good agreement with the simulation results. The compact size, flexible structure, angular stability and two in one operation (operating as a quarter-wave plate and beam-splitter at the same time) are the main characteristics of the subject metasurface that makes it a potential candidate for numerous applications in communication and miniaturized and conformal polarization control devices.

  14. Polar organic chemical integrative sampler (POCIS) uptake rates for 17 polar pesticides and degradation products: laboratory calibration.

    PubMed

    Ibrahim, Imtiaz; Togola, Anne; Gonzalez, Catherine

    2013-06-01

    Polar organic chemical integrative samplers (POCIS) are useful for monitoring a wide range of chemicals, including polar pesticides, in water bodies. However, few calibration data are available, which limits the use of these samplers for time-weighted average concentration measurements in an aquatic medium. This work deals with the laboratory calibration of the pharmaceutical configuration of a polar organic chemical integrative sampler (pharm-POCIS) for calculating the sampling rates of 17 polar pesticides (1.15 ≤  logK(ow) ≤ 3.71) commonly found in water. The experiment, conducted for 21 days in a continuous water flow-through exposure system, showed an integrative accumulation of all studied pesticides for 15 days. Three compounds (metalaxyl, azoxystrobine, and terbuthylazine) remained integrative for the 21-day experiment. The sampling rates measured ranged from 67.9 to 279 mL day(-1) and increased with the hydrophobicity of the pesticides until reaching a plateau where no significant variation in sampling rate is observed when increasing the hydrophobicity.

  15. Reconciling charmonium production and polarization data in the midrapidity region at hadron colliders within the nonrelativistic QCD framework

    NASA Astrophysics Data System (ADS)

    Sun, Zhan; Zhang, Hong-Fei

    2018-04-01

    A thorough study reveals that the only key parameter for ψ (J/ψ, ψ‧) polarization at hadron colliders is the ratio < {O}\\psi {(}3{S}1[8])> /< {O}\\psi {(}3{P}0[8])> , if the velocity scaling rule holds. A slight variation of this parameter results in substantial change of the ψ polarization. We find that with equally good description of the yield data, this parameter can vary significantly. Fitting the yield data is therefore incapable of determining this parameter, and consequently, of determining the ψ polarization. We provide a universal approach to fixing the long-distance matrix elements (LDMEs) for J/ψ and ψ‧ production. Further, with the existing data, we implement this approach, obtain a favorable set of the LDMEs, and manage to reconcile the charmonia production and polarization experiments, except for two sets of CDF data on J/ψ polarization. Supported by National Natural Science Foundation of China (11405268, 11647113, 11705034)

  16. Solar Illumination Control of the Polar Wind

    NASA Astrophysics Data System (ADS)

    Maes, L.; Maggiolo, R.; De Keyser, J.; André, M.; Eriksson, A. I.; Haaland, S.; Li, K.; Poedts, S.

    2017-11-01

    Polar wind outflow is an important process through which the ionosphere supplies plasma to the magnetosphere. The main source of energy driving the polar wind is solar illumination of the ionosphere. As a result, many studies have found a relation between polar wind flux densities and solar EUV intensity, but less is known about their relation to the solar zenith angle at the ionospheric origin, certainly at higher altitudes. The low energy of the outflowing particles and spacecraft charging means it is very difficult to measure the polar wind at high altitudes. We take advantage of an alternative method that allows estimations of the polar wind flux densities far in the lobes. We analyze measurements made by the Cluster spacecraft at altitudes from 4 up to 20 RE. We observe a strong dependence on the solar zenith angle in the ion flux density and see that both the ion velocity and density exhibit a solar zenith angle dependence as well. We also find a seasonal variation of the flux density.

  17. Hydroxyapatite with Permanent Electrical Polarization: Preparation, Characterization, and Response against Inorganic Adsorbates.

    PubMed

    Rivas, Manuel; Del Valle, Luis J; Armelin, Elaine; Bertran, Oscar; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos

    2018-04-16

    Permanently polarized hydroxyapatite (HAp) particles have been prepared by applying a constant DC of 500 V at 1000 °C for 1 h to the sintered mineral. This process causes important chemical changes, as the formation of OH - defects (vacancies), the disappearance of hydrogenophosphate ions at the mineral surface layer, and structural variations reflected by the increment of the crystallinity. As a consequence, the electrochemical properties and electrical conductivity of the polarized mineral increase noticeably compared with as-prepared and sintered samples. Moreover, these increments remain practically unaltered after several months. In addition, permanent polarization favours significantly the ability of HAp to adsorb inorganic bioadsorbates in comparison with as-prepared and sintered samples. The adsorbates cause a significant increment of the electrochemical stability and electrical conductivity with respect to bare polarized HAp, which may have many implications for biomedical applications of permanently polarized HAp. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mining geographic variations of Plasmodium vivax for active surveillance: a case study in China.

    PubMed

    Shi, Benyun; Tan, Qi; Zhou, Xiao-Nong; Liu, Jiming

    2015-05-27

    Geographic variations of an infectious disease characterize the spatial differentiation of disease incidences caused by various impact factors, such as environmental, demographic, and socioeconomic factors. Some factors may directly determine the force of infection of the disease (namely, explicit factors), while many other factors may indirectly affect the number of disease incidences via certain unmeasurable processes (namely, implicit factors). In this study, the impact of heterogeneous factors on geographic variations of Plasmodium vivax incidences is systematically investigate in Tengchong, Yunnan province, China. A space-time model that resembles a P. vivax transmission model and a hidden time-dependent process, is presented by taking into consideration both explicit and implicit factors. Specifically, the transmission model is built upon relevant demographic, environmental, and biophysical factors to describe the local infections of P. vivax. While the hidden time-dependent process is assessed by several socioeconomic factors to account for the imported cases of P. vivax. To quantitatively assess the impact of heterogeneous factors on geographic variations of P. vivax infections, a Markov chain Monte Carlo (MCMC) simulation method is developed to estimate the model parameters by fitting the space-time model to the reported spatial-temporal disease incidences. Since there is no ground-truth information available, the performance of the MCMC method is first evaluated against a synthetic dataset. The results show that the model parameters can be well estimated using the proposed MCMC method. Then, the proposed model is applied to investigate the geographic variations of P. vivax incidences among all 18 towns in Tengchong, Yunnan province, China. Based on the geographic variations, the 18 towns can be further classify into five groups with similar socioeconomic causality for P. vivax incidences. Although this study focuses mainly on the transmission of P. vivax, the proposed space-time model is general and can readily be extended to investigate geographic variations of other diseases. Practically, such a computational model will offer new insights into active surveillance and strategic planning for disease surveillance and control.

  19. Ground roll attenuation using polarization analysis in the t-f-k domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, Y.

    2017-07-01

    S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.

  20. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser based on one polarization-maintaining fiber Bragg grating incorporating saturable absorber

    NASA Astrophysics Data System (ADS)

    Feng, Suchun; Xu, Ou; Lu, Shaohua; Chen, Ming; Jian, Shuisheng

    2009-08-01

    Switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser at room temperature is demonstrated. One fiber Bragg grating (FBG) directly written in a polarization-maintaining and photosensitive erbiumdoped fiber (PMPEDF) as the wavelength-selective component is used in a linear laser cavity. Due to the polarization hole burning (PHB) enhanced by the polarization-maintaining fiber Bragg grating (PMFBG), the laser can be designed to operate in stable dual-wavelength or wavelength-switching modes with a wavelength spacing of 0.202 nm by adjusting a polarization controller (PC). The stable SLM operation is guaranteed by a saturable absorber (SA). The optical signal-tonoise ratio (OSNR) of the laser is over 40 dB. The amplitude variation in nearly one and half an hour is less than 0.5 dB for both wavelengths.

  1. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    NASA Astrophysics Data System (ADS)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  2. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  3. Four-parameter model for polarization-resolved rough-surface BRDF.

    PubMed

    Renhorn, Ingmar G E; Hallberg, Tomas; Bergström, David; Boreman, Glenn D

    2011-01-17

    A modeling procedure is demonstrated, which allows representation of polarization-resolved BRDF data using only four parameters: the real and imaginary parts of an effective refractive index with an added parameter taking grazing incidence absorption into account and an angular-scattering parameter determined from the BRDF measurement of a chosen angle of incidence, preferably close to normal incidence. These parameters allow accurate predictions of s- and p-polarized BRDF for a painted rough surface, over three decades of variation in BRDF magnitude. To characterize any particular surface of interest, the measurements required to determine these four parameters are the directional hemispherical reflectance (DHR) for s- and p-polarized input radiation and the BRDF at a selected angle of incidence. The DHR data describes the angular and polarization dependence, as well as providing the overall normalization constraint. The resulting model conserves energy and fulfills the reciprocity criteria.

  4. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility.

  5. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages.

    PubMed

    Bidon, Tobias; Janke, Axel; Fain, Steven R; Eiken, Hans Geir; Hagen, Snorre B; Saarma, Urmas; Hallström, Björn M; Lecomte, Nicolas; Hailer, Frank

    2014-06-01

    Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Rotation of the optical polarization angle associated with the 2008 γ-ray flare of blazar W Comae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorcia, Marco; Benítez, Erika; Cabrera, José I.

    2014-10-10

    An R-band photopolarimetric variability analysis of the TeV bright blazar W Comae between 2008 February 28 and 2013 May 17 is presented. The source showed a gradual tendency to decrease its mean flux level with a total change of 3 mJy. A maximum and minimum brightness states in the R band of 14.25 ± 0.04 and 16.52 ± 0.1 mag, respectively, were observed, corresponding to a maximum variation of ΔF = 5.40 mJy. We estimated a minimum variability timescale of Δt = 3.3 days. A maximum polarization degree P = 33.8% ± 1.6%, with a maximum variation of ΔP =more » 33.2%, was found. One of our main results is the detection of a large rotation of the polarization angle from 78° to 315° (Δθ ∼ 237°) that coincides in time with the γ-ray flare observed in 2008 June. This result indicates that both optical and γ-ray emission regions could be co-spatial. During this flare, a correlation between the R-band flux and polarization degree was found with a correlation coefficient of r {sub F} {sub –} {sub p} = 0.93 ± 0.11. From the Stokes parameters, we infer the existence of two optically thin synchrotron components that contribute to the polarized flux. One of them is stable with a constant polarization degree of 11%. Assuming a shock-in jet model during the 2008 flare, we estimated a maximum Doppler factor δ {sub D} ∼ 27 and a minimum of δ {sub D} ∼ 16; a minimum viewing angle of the jet ∼2.°0; and a magnetic field B ∼ 0.12 G.« less

  7. 40Ar/ 39Ar ages and paleomagnetism of São Miguel lavas, Azores

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Wijbrans, Jan R.; Constable, Catherine G.; Gee, Jeff; Staudigel, Hubert; Tauxe, Lisa; Forjaz, Victor-H.; Salgueiro, Mário

    1998-08-01

    We present new 40Ar/ 39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/ 39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K-Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/ 39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0-0.1 Ma) and up to 0.78 Myr (0-0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78-0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.

  8. Spatial variations of brightness, colour and polarization of dust in comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Rosenbush, Vera K.; Ivanova, Oleksandra V.; Kiselev, Nikolai N.; Kolokolova, Ludmilla O.; Afanasiev, Viktor L.

    2017-07-01

    We present post-perihelion photometric and polarimetric observations of comet 67P/Churyumov-Gerasimenko performed at the 6-m telescope of the SAO RAS in the g-sdss (465/65 nm), r-sdss (620/60 nm) and R filters. Observations in November and December 2015 and April 2016 covered the range of heliocentric distance 1.62-2.72 au and phase angle 33.2°-10.4°. The comet was very active. Two persistent jets and long dust tail were observed during the whole observing period; one more jet was detected only in December. The radial profiles of surface brightness, colour and polarization significantly differed for the coma, jets and tail, and changed with increasing heliocentric distance. The dust production Afρ decreased from 162 cm at r = 1.62 au to 51 cm at r = 2.72 au. The dust colour (g-r) gradually changed from 0.8 mag in the innermost coma to about 0.4 mag in the outer coma. The spectral slope was 8.2 ± 1.7 per cent/100 nm in the 465 to 620 nm wavelength domain. In November and December, the polarization in the near-nucleus area was about 8 per cent, dropped sharply to 2 per cent at the distance above 5000 km and then gradually increased with distance from the nucleus, reaching ˜8 per cent at 40 000 km. In April, at a phase angle 10.4°, the polarization varied between -0.6 per cent in the near-nucleus area and -4 per cent in the outer coma. Circular polarization was not detected in the comet. The spatial variations of brightness, colour and polarization in different structural features suggest some evolution of particle properties, most likely decreasing the size of dust particles.

  9. Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Pérez-Suárez, D.; Doyle, J. G.

    2009-07-01

    Context: We diagnose the properties of the plume and interplume regions in a polar coronal hole and the role of waves in the acceleration of the solar wind. Aims: We attempt to detect whether Alfvén waves are present in the polar coronal holes through variations in EUV line widths. Methods: Using spectral observations performed over a polar coronal hole region with the EIS spectrometer on Hinode, we study the variation in the line width and electron density as a function of height. We use the density sensitive line pairs of Fe xii 186.88 Å and 195.119 Å and Fe xiii 203.82 Å and 202.04 Å. Results: For the polar region, the line width data show that the nonthermal line-of-sight velocity increases from 26~km s-1 at 10´´ above the limb to 42~km s-1 some 150´´ (i.e. ~110 000 km) above the limb. The electron density shows a decrease from 3.3 × 10^9~cm-3 to 1.9 × 10^8~cm-3 over the same distance. Conclusions: These results imply that the nonthermal velocity is inversely proportional to the quadratic root of the electron density, in excellent agreement with what is predicted for undamped radially propagating linear Alfvén waves. Our data provide signatures of Alfvén waves in the polar coronal hole regions, which could be important for the acceleration of the solar wind. Table [see full textsee full textsee full text] and Fig. [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  10. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  11. On the link between martian total ozone and potential vorticity

    NASA Astrophysics Data System (ADS)

    Lewis, S.; Holmes, J.; Patel, M.

    2016-12-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable.The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone can be of use to investigate the origin of potential vorticity filaments.

  12. Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments

    NASA Astrophysics Data System (ADS)

    Thurairajah, Brentha; Thomas, Gary E.; von Savigny, Christian; Snow, Martin; Hervig, Mark E.; Bailey, Scott M.; Randall, Cora E.

    2017-09-01

    Polar Mesospheric Cloud (PMC) observations from the Solar Occultation for Ice Experiment (SOFIE) and the Cloud Imaging and Particle Size (CIPS) experiment are used to investigate the response of PMCs to forcing associated with the 27-day solar rotation. We quantify the PMC response in terms of sensitivity values. Analysis of PMC data from 14 seasons indicate a large seasonal variability in sensitivity with both correlation and anti-correlation between PMC properties and Lyman-alpha irradiance for individual seasons. However, a superposed epoch analysis reveals the expected anti-correlation between variations in solar Lyman-alpha and variations in PMC ice water content, albedo, and frequency of occurrence. The PMC height is found to significantly correlate with 27-day variations in solar Lyman-alpha in the Southern Hemisphere (SH), but not in the Northern hemisphere (NH). Depending on instrument and property, the time lag between variations in PMC properties and solar Lyman-alpha ranges from 0 to 3 days in the NH and from 6 to 7 days in the SH. These hemispheric differences in PMC height and time lag are not understood, but it is speculated that they result from dynamical forcing that is controlled by the 27-day solar cycle.

  13. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing

    PubMed Central

    Yang, Changju; Kim, Hyongsuk

    2016-01-01

    A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model. PMID:27548186

  14. Quasi-periodic climatic changes on Mars and earth

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.; Pollack, J. B.; Toon, O. B.; Howard, A. D.

    1981-01-01

    Evidence of climatic changes on Mars and the earth due to geologic and astronomical variations is discussed. Finely striped ice-free bands in the Martian polar caps have been taken to indicate that long term variations in the orbit and axial tilt of Mars have precipitated these features at the rate of a mm/yr. Photogrammetric and photometric methods have contributed to measurements of the composition and depth of the Martian caps (14-46 m), and observations of higher solar energy absorption in the northern ice cap implies greater dust deposition in that region than on the south cap; however, the transport mechanisms are not well understood. Comparisons of earth and Martian climatic variations data are made, noting a lack of information on the age intervals of marine and nonmarine sediments on the earth. The possibilities of using quantitative data other than layer thickness to constrain climate models are discussed, and the slope or albedo of layers, or the spacing of polar undulations are suggested.

  15. Linearized Programming of Memristors for Artificial Neuro-Sensor Signal Processing.

    PubMed

    Yang, Changju; Kim, Hyongsuk

    2016-08-19

    A linearized programming method of memristor-based neural weights is proposed. Memristor is known as an ideal element to implement a neural synapse due to its embedded functions of analog memory and analog multiplication. Its resistance variation with a voltage input is generally a nonlinear function of time. Linearization of memristance variation about time is very important for the easiness of memristor programming. In this paper, a method utilizing an anti-serial architecture for linear programming is proposed. The anti-serial architecture is composed of two memristors with opposite polarities. It linearizes the variation of memristance due to complimentary actions of two memristors. For programming a memristor, additional memristor with opposite polarity is employed. The linearization effect of weight programming of an anti-serial architecture is investigated and memristor bridge synapse which is built with two sets of anti-serial memristor architecture is taken as an application example of the proposed method. Simulations are performed with memristors of both linear drift model and nonlinear model.

  16. Influence of atmospheric turbulence on the quantum polarization state

    NASA Astrophysics Data System (ADS)

    Yang, Ru; Xue, Yang; Li, Yunxia; Shi, Lei; Zhu, Yu; Zhu, Qiuli

    2018-03-01

    In order to study the influence of atmospheric turbulence on the polarization state of the free space quantum communication, the relationship between the refractive index and altitude, the refractive index structure constant and the turbulence dimension is deduced based on two different atmospheric refractive index structural constants models. The turbulence intensity factor κ is introduced and the equation of the variation of the quantum polarization degree with turbulence intensity is established. Through the simulation of the turbulent refractive index and the performance of four different polarization states in the low altitude turbulence environment, the results show that the atmospheric turbulence in the near ground will affect the fluctuation of the degree of polarization, and the degree of polarization varies linearly with the change of turbulence intensity. In the case of polarization |H>, the range of polarization |H> varies from 0 to 0.14 with the change of turbulence intensity. The influence of atmospheric turbulence on four different polarization states is different, and the degree of |H> and |V> depolarization is greater in the daytime and back. The depolarization degree of |-> at night is greater. The relationship between the degree of polarization and the change of turbulence intensity is analyzed by mathematical modeling, which is helpful to select the reasonable experimental scheme and compensate the change of polarization state in the aviation quantum Secure communication channel.

  17. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    PubMed

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  18. Divergence in Patterns of Leaf Growth Polarity Is Associated with the Expression Divergence of miR396

    PubMed Central

    2015-01-01

    Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. PMID:26410303

  19. Polychlorinated biphenyls and reproductive hormones in female polar bears at Svalbard.

    PubMed

    Haave, Marte; Ropstad, Erik; Derocher, Andrew E; Lie, Elisabeth; Dahl, Ellen; Wiig, Øystein; Skaare, Janneche U; Jenssen, Bjørn Munro

    2003-04-01

    High concentrations of polychlorinated biphenyls (PCBs) in polar bears from Svalbard have increased concern for that population's reproductive health. We examined whether there were associations between the plasma concentrations of PCBs and reproductive hormones [progesterone (P4)] and 17 beta-estradiol (E2)] in free-living female polar bears from Svalbard. Concentrations of P4 depended on reproductive status, and concentrations were lowest in females with offspring--females with cubs and females with yearlings. In these females, the P4 concentrations were positively correlated with plasma sigma PCBs (sum of all analyzed polychlorinated biphenyl congeners) concentrations. The sigma PCBs concentrations explained 27% of the variation in the P4 concentrations. There were no correlations between sigma PCBs and E2 and cortisol in any of the groups of polar bears, or between sigma PCBs and P4 in single polar bears. Although the sigma PCBs-P4 relationship in female polar bears with offspring is not evidence per se of a direct cause-effect association, the results indicate that PCBs may affect levels of P4 in polar bear females. There is a clear need to further assess the hormone balance and population health of polar bears at Svalbard.

  20. Polarized Transmission Spectrum of Earth as Observed during a Lunar Eclipse

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun; Itoh, Yoichi; Hosoya, Kensuke; Yanamandra-Fisher, Padma A.; Hattori, Takashi

    2017-12-01

    Polarization during a lunar eclipse is a forgotten mystery. Coyne & Pellicori reported the detection of significant polarization during the lunar eclipse on 1968 April 13. Multiple scattering during the first transmission through Earth’s atmosphere was suggested as a possible cause of the polarization, but no conclusive determination was made. No further investigations on polarization during a lunar eclipse are known. We revisit this mystery with an interest in possible application to extrasolar planets; if planetary transmitted light is indeed polarized, it may be possible to investigate an exoplanet atmosphere using “transit polarimetry.” Here we report results of the first spectropolarimetry for the Moon during a lunar eclipse on 2015 April 4. We observed polarization degrees of 2%-3% at wavelengths of 500-600 nm; in addition, an enhanced feature was detected at the O2 A band near 760 nm. The observed time variation and wavelength dependence are consistent with an explanation of polarization caused by double scattering during the first transmission through Earth’s atmosphere, accompanied by latitudinal atmospheric inhomogeneity. Transit polarimetry for exoplanets may be useful to detect O2 gas and to probe the latitudinal atmospheric inhomogeneity, and it is thus worthy of serious consideration.

Top