On radiating baroclinic instability of zonally varying flow
NASA Technical Reports Server (NTRS)
Finley, Catherine A.; Nathan, Terrence R.
1993-01-01
A quasi-geostrophic, two-layer, beta-plane model is used to study the baroclinic instability characteristics of a zonally inhomogeneous flow. It is assumed that the disturbance varied slowly in the cross-stream direction, and the stability problem was formulated as a 1D initial value problem. Emphasis is placed on determining how the vertically averaged wind, local maximum in vertical wind shear, and length of the locally supercritical region combine to yield local instabilities. Analysis of the local disturbance energetics reveals that, for slowly varying basic states, the baroclinic energy conversion predominates within the locally unstable region. Using calculations of the basic state tendencies, it is shown that the net effect of the local instabilities is to redistribute energy from the baroclinic to the barotropic component of the basic state flow.
Becher, Kent D.; Kalkhoff, Stephen J.; Schnoebelen, Douglas J.; Barnes, Kimberlee K.; Miller, Von E.
2001-01-01
Synoptic samples collected during low and high base flow had nitrogen, phosphorus, and organic-carbon concentrations that varied spatially and seasonally. Comparisons of water-quality data from six basic-fixed sampling sites and 19 other synoptic sites suggest that the water-quality data from basic-fixed sampling sites were representative of the entire study unit during periods of low and high base flow when most streamflow originates from ground water.
Study of unsteady flow simulation of backward impeller with non-uniform casing
NASA Astrophysics Data System (ADS)
Swe, War War Min; Morimatsu, Hiroya; Hayashi, Hidechito; Okumura, Tetsuya; Oda, Ippei
2017-06-01
The flow characteristics of the centrifugal fans with different blade outlet angles are basically discussed on steady and unsteady simulations for a rectangular casing fan. The blade outlet angles of the impellers are 35° and 25° respectively. The unsteady flow behavior in the passage of the impeller 35° is quite different from that in the steady flow behavior. The large flow separation occurs in the steady flow field and unsteady flow field of the impeller 35°, the flow distribution in the circumferential direction varies remarkably and the flow separation on the blade occurs only at the back region of the fan; but the steady flow behavior in the impeller 25° is almost consistent with the unsteady flow behavior, the flow distribution of the circumferential direction doesn't vary much and the flow separation on the blade hardly occurs. When the circumferential variation of the flow in the impeller is large, the steady flow simulation is not coincident to the unsteady flow simulation.
Relationships between basic soils-engineering equations and basic ground-water flow equations
Jorgensen, Donald G.
1980-01-01
The many varied though related terms developed by ground-water hydrologists and by soils engineers are useful to each discipline, but their differences in terminology hinder the use of related information in interdisciplinary studies. Equations for the Terzaghi theory of consolidation and equations for ground-water flow are identical under specific conditions. A combination of the two sets of equations relates porosity to void ratio and relates the modulus of elasticity to the coefficient of compressibility, coefficient of volume compressibility, compression index, coefficient of consolidation, specific storage, and ultimate compaction. Also, transient ground-water flow is related to coefficient of consolidation, rate of soil compaction, and hydraulic conductivity. Examples show that soils-engineering data and concepts are useful to solution of problems in ground-water hydrology.
Laboratory administration--capital budgeting.
Butros, F
1997-01-01
The process of capital budgeting varies among different health-care institutions. Understanding the concept of present value of money, incremental cash flow statements, and the basic budgeting techniques will enable the laboratory manager to make the rational and logical decisions that are needed in today's competitive health-care environment.
Study of VTOL in ground-effect flow field including temperature effect
NASA Technical Reports Server (NTRS)
Hill, W. G.; Jenkins, R. C.; Kalemaris, S. G.; Siclari, M. J.
1982-01-01
Detailed pressure, temperature, and velocity data were obtained for twin-fan configurations in-ground-effect and flow models to aid in predicting pressures and upwash forces on aircraft surfaces were developed. For the basic experiments, 49.5 mm-diameter jets were used, oriented normal to a simulated round plane, with pressurized, heated air providing a jet. The experimental data consisted of: (1) the effect of jet height and temperature on the ground, model, and upwash pressures, and temperatures, (2) the effect of simulated aircraft surfaces on the isolated flow field, (3) the jet-induced forces on a three-dimensional body with various strakes, (4) the effects of non-uniform coannular jets. For the uniform circular jets, temperature was varied from room temperature (24 C) to 232 C. Jet total pressure was varied between 9,300 Pascals and 31,500 Pascals. For the coannular jets, intended to represent turbofan engines, fan temperature was maintained at room temperature while core temperature was varied from room temperature to 437 C. Results are presented.
NASA Technical Reports Server (NTRS)
Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.
1989-01-01
The effects of Mach number and Reynolds number on the experimental surface pressure distributions and transition patterns for a large chord, swept supercritical airfoil incorporating an active Laminar Flow Control suction system with spanwise slots are presented. The experiment was conducted in the Langley 8 foot Transonic Pressure Tunnel. Also included is a discussion of the influence of model/tunnel liner interactions on the airfoil pressure distribution. Mach number was varied from 0.40 to 0.82 at two chord Reynolds numbers, 10 and 20 x 1,000,000, and Reynolds number was varied from 10 to 20 x 1,000,000 at the design Mach number.
A workstation based simulator for teaching compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
A workstation-based interactive flow simulator has been developed to aid in the teaching of undergraduate compressible aerodynamics. By solving the equations found in NACA 1135, the simulator models three basic fluids problems encountered in supersonic flow: flow past a compression corner, flow past two wedges in series, and flow past two opposed wedges. The study can vary the geometry or flow conditions through a graphical user interface and the new conditions are calculated immediately. Various graphical formats present the results of the flow calculations to the student. The simulator includes interactive questions and answers to aid in both the use of the tool and to develop an understanding of some of the complexities of compressible aerodynamics. A series of help screens make the simulator easy to learn and use.
NASA Astrophysics Data System (ADS)
Mannattil, Manu; Pandey, Ambrish; Verma, Mahendra K.; Chakraborty, Sagar
2017-12-01
Constructing simpler models, either stochastic or deterministic, for exploring the phenomenon of flow reversals in fluid systems is in vogue across disciplines. Using direct numerical simulations and nonlinear time series analysis, we illustrate that the basic nature of flow reversals in convecting fluids can depend on the dimensionless parameters describing the system. Specifically, we find evidence of low-dimensional behavior in flow reversals occurring at zero Prandtl number, whereas we fail to find such signatures for reversals at infinite Prandtl number. Thus, even in a single system, as one varies the system parameters, one can encounter reversals that are fundamentally different in nature. Consequently, we conclude that a single general low-dimensional deterministic model cannot faithfully characterize flow reversals for every set of parameter values.
Progress report number 2: investigations of some sedimentation characteristics of sand-bed streams
Hubbell, D.W.
1960-01-01
Hydraulic and sediment characteristics at six river sections upstream and downstream from the confluence of the Middle Loup and Dismal Rivers were measured and studied to determine some of the interrelationships between variables and the differences that exist between common variables when two flows unite. The two streams, which flow through the Sandhills region of Nebraska, have about the same water discharge, sediment concentration, and particle-size distribution of suspended sediment and bed material. Sediment discharges and flow resistances varied widely, although water discharges remained almost constant. The factor affecting the variations was water temperature, which ranged from 32° to 80° F. The bed form, which also varied with the water temperature, seemed to have a dominating influence on the sediment discharge, flow resistance, and possibly the vertical distribution of velocity and suspended sediment. Multiple regression with parameters derived from dimensional analysis yielded an expression for predicting the flow resistance and the widths and depths of individual channel sections. Contrary to those near many other confluences, slopes were steeper and channels were wider downstream from the junction of the two rivers than they were upstream. An investigation of specific sediment-transport phenomena and field procedures was made during 1956 and 1957 in cooperation with the U.S. Bureau of Reclamation. The purposes of this investigation were to provide information on the regime of rivers and to improve the procedures related to the collection of sediment data. The basic data and results of the studies made in 1956 were presented in progress report number 1, "Investigations of Some Sedimentation Characteristics of a Sand-Bed Stream." Some of the basic data and results of the studies made in 1957 are given in this report.
NASA Technical Reports Server (NTRS)
Merz, A. W.; Hague, D. S.
1975-01-01
An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of the NACA 64-206 and 64 sub 1 - 212 airfoils. The additional thickness distribution had the form of a continuous mathematical function which disappears at both the leading edge and the trailing edge. The function behaves as a polynomial of order epsilon sub 1 at the leading edge, and a polynomial of order epsilon sub 2 at the trailing edge. Epsilon sub 2 is a constant and epsilon sub 1 is varied over a range of practical interest. The magnitude of the additional thickness, y, is a second input parameter, and the effect of varying epsilon sub 1 and y on the aerodynamic performance of the airfoil was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic airfoils, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
A one-third-scale model of a generic tailpipe offtake system for an advanced short takeoff, vertical landing (ASTOVL) aircraft was tested at the NASA Lewis Research Center Powered Lift Facility. The basic model consisted of a tailpipe with a center body to form an annulus simulating turbine outflow with no swirl; twin offtake ducts with elbows at the ends to turn the flow to a downward direction; flow control nozzles at the ends of the elbows; and a blind flange at the end of the tailpipe to simulate a closed cruise nozzle. The offtake duct-to-tailpipe diameter ratio was 0.74. Modifications of a generic nature were then made to this basic configuration to measure the effects of flow-path changes on the flow and pressure-loss characteristics. The modifications included adding rounded entrances at the forward edges of the offtake openings, blocking the tailpipe just aft the openings instead of at the cruise nozzle, changing the location of the openings along the tailpipe, removing the center body, and varying the Mach number (flow rate) over a wide range in the tailpipe ahead of the openings by changing the size of the flow control nozzles. The tests were made with unheated air at tailpipe-to-ambient pressure ratios from 1.4 to 5. Results are presented and compared with performance graphs, total-pressure contour plots, paint streak flow visualization photographs, and a flow-angle probe traverse at the offtake entrance.
Vortex Rossby Waves in Asymmetric Basic Flow of Typhoons
NASA Astrophysics Data System (ADS)
Wang, Tianju; Zhong, Zhong; Wang, Ju
2018-05-01
Wave ray theory is employed to study features of propagation pathways (rays) of vortex Rossby waves in typhoons with asymmetric basic flow, where the tangential asymmetric basic flow is constructed by superimposing the wavenumber-1 perturbation flow on the symmetric basic flow, and the radial basic flow is derived from the non-divergence equation. Results show that, in a certain distance, the influences of the asymmetry in the basic flow on group velocities and slopes of rays of vortex Rossby waves are mainly concentrated near the radius of maximum wind (RMW), whereas it decreases outside the RMW. The distributions of radial and tangential group velocities of the vortex Rossby waves in the asymmetric basic flow are closely related to the azimuth location of the maximum speed of the asymmetric basic flow, and the importance of radial and tangential basic flow on the group velocities would change with radius. In addition, the stronger asymmetry in the basic flow always corresponds to faster outward energy propagation of vortex Rossby waves. In short, the group velocities, and thereby the wave energy propagation and vortex Rossby wave ray slope in typhoons, would be changed by the asymmetry of the basic flow.
Pulsatile Flow and Transport of Blood past a Cylinder: Basic Transport for an Artificial Lung.
NASA Astrophysics Data System (ADS)
Zierenberg, Jennifer R.
2005-11-01
The fluid mechanics and transport for flow of blood past a single cylinder is investigated using CFD. This work refers to an artificial lung in which oxygen travels through fibers oriented perpendicularly to the incoming blood flow. A pulsatile blood flow was considered: Ux=U0[ 1+A( φt ) ], where Ux is the velocity far from the cylinder. The Casson equation was used to describe the shear thinning and yield stress properties of blood. The presence of hemoglobin (i.e. facilitated diffusion) was considered. We examined the effect of A, U0 and φ on the flow and transport by varying the dimensionless parameters: A; Reynolds number, Re; and Womersley parameter, α. Two different feed gases were considered: pure O2 and air. The flow and concentration fields were computed for Re = 5, 10, and 40, 0 <=A<= 0.75, α = 0.25, 0.4, and Schmidt number, Sc = 1000. Vortices attached downstream of the cylinder are found to oscillate in size and strength as α and A are varied. Mass transport is found to primarily depend on Re and to increase with increasing Re, α and decreasing A. The presence of hemoglobin increases mass transport. Supported by NIH HL69420, NSF Fellowship
Comparative evaluation of three heat transfer enhancement strategies in a grooved channel
NASA Astrophysics Data System (ADS)
Herman, C.; Kang, E.
Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re=200-6500, corresponding to flow velocities from 0.076 to 2.36m/s. Flow oscillations were first observed between Re=1050 and 1320 for the basic grooved channel, and around Re=350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties also increased significantly.
NASA Astrophysics Data System (ADS)
Leonard, T.; Spence, S.; Early, J.; Filsinger, D.
2013-12-01
Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle - the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters. Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model. Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle. The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.
Smith, Simeon L.; Titze, Ingo R.
2016-01-01
Objectives To characterize the pressure-flow relationship of tubes used for semi-occluded vocal tract voice training/therapy, as well as to answer these major questions: (1) What is the relative importance of tube length to tube diameter? (2) What is the range of oral pressures achieved with tubes at phonation flow rates? (3) Does mouth configuration behind the tubes matter? Methods Plastic tubes of various diameters and lengths were mounted in line with an upstream pipe, and the pressure drop across each tube was measured at stepwise increments in flow rate. Basic flow theory and modified flow theory equations were used to describe the pressure-flow relationship of the tubes based on diameter and length. Additionally, the upstream pipe diameter was varied to explore how mouth shape affects tube resistance. Results The modified equation provided an excellent prediction of the pressure-flow relationship across all tube sizes (6% error compared to the experimental data). Variation in upstream pipe diameter yielded up to 10% deviation in pressure for tube sizes typically used in voice training/therapy. Conclusions Using the presented equations, resistance can be characterized for any tube based on diameter, length, and flow rate. With regard to the original questions, we found that: (1) For commonly used tubes, diameter is the critical variable for governing flow resistance; (2) For phonation flow rates, a range of tube dimensions produced pressures between 0 and 7.0 kPa; (3) The mouth pressure behind the lips will vary slightly with different mouth shapes, but this effect can be considered relatively insignificant. PMID:27133001
NASA Astrophysics Data System (ADS)
Andrei, Armas; Robert, Beilicci; Erika, Beilicci
2017-10-01
MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric limitations, numerical simplification, or the use of empirical correlations. Some are obvious: one-dimensional models must average properties over the two remaining directions. It is the less obvious and poorly advertised approximations that pose the greatest threat to the novice user. Some of these, such as the inability of one-dimensional unsteady models to simulate supercritical flow can cause significant inaccuracy in the model predictions.
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
Many conceptual designs for advanced short-takeoff, vertical landing (ASTOVL) aircraft need exhaust nozzles that can vector the jet to provide forces and moments for controlling the aircraft's movement or attitude in flight near the ground. A type of nozzle that can both vector the jet and vary the jet flow area is called a vane nozzle. Basically, the nozzle consists of parallel, spaced-apart flow passages formed by pairs of vanes (vanesets) that can be rotated on axes perpendicular to the flow. Two important features of this type of nozzle are the abilities to vector the jet rearward up to 45 degrees and to produce less harsh pressure and velocity footprints during vertical landing than does an equivalent single jet. A one-third-scale model of a generic vane nozzle was tested with unheated air at the NASA Lewis Research Center's Powered Lift Facility. The model had three parallel flow passages. Each passage was formed by a vaneset consisting of a long and a short vane. The longer vanes controlled the jet vector angle, and the shorter controlled the flow area. Nozzle performance for three nominal flow areas (basic and plus or minus 21 percent of basic area), each at nominal jet vector angles from -20 deg (forward of vertical) to +45 deg (rearward of vertical) are presented. The tests were made with the nozzle mounted on a model tailpipe with a blind flange on the end to simulate a closed cruise nozzle, at tailpipe-to-ambient pressure ratios from 1.8 to 4.0. Also included are jet wake data, single-vaneset vector performance for long/short and equal-length vane designs, and pumping capability. The pumping capability arises from the subambient pressure developed in the cavities between the vanesets, which could be used to aspirate flow from a source such as the engine compartment. Some of the performance characteristics are compared with characteristics of a single-jet nozzle previously reported.
Magnus effects on spinning transonic missiles
NASA Technical Reports Server (NTRS)
Seginer, A.; Rosenwasser, I.
1983-01-01
Magnus forces and moments were measured on a basic-finner model spinning in transonic flow. Spin was induced by canted fins or by full-span or semi-span, outboard and inboard roll controls. Magnus force and moment reversals were caused by Mach number, reduced spin rate, and angle of attack variations. Magnus center of pressure was found to be independent of the angle of attack but varied with the Mach number and model configuration or reduced spin rate.
Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.
Cowin, Stephen C; Cardoso, Luis
2015-03-18
There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Blood and Interstitial flow in the hierarchical pore space architecture of bone tissue
Cowin, Stephen C.; Cardoso, Luis
2015-01-01
There are two main types of fluid in bone tissue, blood and interstitial fluid. The chemical composition of these fluids varies with time and location in bone. Blood arrives through the arterial system containing oxygen and other nutrients and the blood components depart via the venous system containing less oxygen and reduced nutrition. Within the bone, as within other tissues, substances pass from the blood through the arterial walls into the interstitial fluid. The movement of the interstitial fluid carries these substances to the cells within the bone and, at the same time, carries off the waste materials from the cells. Bone tissue would not live without these fluid movements. The development of a model for poroelastic materials with hierarchical pore space architecture for the description of blood flow and interstitial fluid flow in living bone tissue is reviewed. The model is applied to the problem of determining the exchange of pore fluid between the vascular porosity and the lacunar-canalicular porosity in bone tissue due to cyclic mechanical loading and blood pressure. These results are basic to the understanding of interstitial flow in bone tissue that, in turn, is basic to understanding of nutrient transport from the vasculature to the bone cells buried in the bone tissue and to the process of mechanotransduction by these cells. PMID:25666410
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.
2003-12-01
Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.
[National health fund and morbidity-based risk structure equalization with focus on haemophilia].
König, T
2010-11-01
The Gesundheitsfonds (national health fund) was established in Germany on January 1st, 2009, in combination with the morbidity-based risk structure equalization (RSA) in order to manage the cash flow between the statutory health insurances. The RSA equalizes income differences due to the varying levels of contributory income of the members of a health insurance (basic wage totals) and expenditure differences due to varying distribution of morbidity risks across different health insurances, as well as the varying numbers of non-contributing insured family members. Additionally, insured persons are allocated to morbidity groups according to a classification model based upon diagnoses and prescriptions anticipating medical expenses in the subsequent year. Haemophilia falls, among 80 disease entities, in the morbidity group which generates the highest risk supplement. Matching of prescribed drugs with disease entities facilitates disease grading and improves the accuracy of risk supplements.
Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.
Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian
2016-05-01
In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Dynamics of a class of vortex rings. Ph.D. Thesis - Stanford Univ.
NASA Technical Reports Server (NTRS)
Shariff, Karim; Leonard, Anthony; Ferziger, Joel H.
1989-01-01
The contour dynamics method is extended to vortex rings with vorticity varying linearly from the symmetry axis. An elliptic core model is also developed to explain some of the basic physics. Passage and collisions of two identical rings are studied focusing on core deformation, sound generation and stirring of fluid elements. With respect to core deformation, not only the strain rate but how rapidly it varies is important and accounts for greater susceptibility to vortex tearing than in two dimensions. For slow strain, as a passage interaction is completed and the strain relaxes, the cores return to their original shape while permanent deformations remain for rapidly varying strain. For collisions, if the strain changes slowly the core shapes migrate through a known family of two-dimensional steady vortex pairs up to the limiting member of the family. Thereafter energy conservation does not allow the cores to maintain a constant shape. For rapidly varying strain, core deformation is severe and a head-tail structure in good agreement with experiments is formed. With respect to sound generation, good agreement with the measured acoustic signal for colliding rings is obtained and a feature previously thought to be due to viscous effects is shown to be an effect of inviscid core deformation alone. For passage interactions, a component of high frequency is present. Evidence for the importance of this noise source in jet noise spectra is provided. Finally, processes of fluid engulfment and rejection for an unsteady vortex ring are studied using the stable and unstable manifolds. The unstable manifold shows excellent agreement with flow visualization experiments for leapfrogging rings suggesting that it may be a good tool for numerical flow visualization in other time periodic flows.
NASA Technical Reports Server (NTRS)
Hall, Philip; Bennett, James
1986-01-01
The Taylor-Goertler vortex instability equations are formulated for steady and unsteady interacting boundary-layer flows. The effective Goertler number is shown to be a function of the wall shape in the boundary layer and the possibility of both steady and unsteady Taylor-Goertler modes exists. As an example the steady flow in a symmetrically constricted channel is considered and it is shown that unstable Goertler vortices exist before the boundary layers at the wall develop the Goldstein singularity discussed by Smith and Daniels (1981). As an example of an unsteady spatially varying basic state, it is considered the instability of high-frequency large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved channel. It is shown that they are unstable in the first 'Stokes-layer stage' of the hierarchy of nonlinear states discussed by Smith and Burggraf (1985). This instability of Tollmien-Schlichting waves in an internal flow can occur in the presence of either convex or concave curvature. Some discussion of this instability in external flows is given.
Basic principles and ecological consequences of changing water regimes: riparian plant communities.
Nilsson, Christer; Svedmark, Magnus
2002-10-01
Recent research has emphasized the importance of riparian ecosystems as centers of biodiversity and links between terrestrial and aquatic systems. Riparian ecosystems also belong among the environments that are most disturbed by humans and are in need of restoration to maintain biodiversity and ecological integrity. To facilitate the completion of this task, researchers have an important function to communicate their knowledge to policy-makers and managers. This article presents some fundamental qualities of riparian systems, articulated as three basic principles. The basic principles proposed are: (1) The flow regime determines the successional evolution of riparian plant communities and ecological processes. (2) The riparian corridor serves as a pathway for redistribution of organic and inorganic material that influences plant communities along rivers. (3) The riparian system is a transition zone between land and water ecosystems and is disproportionately plant species-rich when compared to surrounding ecosystems. Translating these principles into management directives requires more information about how much water a river needs and when and how, i.e., flow variables described by magnitude, frequency, timing, duration, and rate of change. It also requires information about how various groups of organisms are affected by habitat fragmentation, especially in terms of their dispersal. Finally, it requires information about how effects of hydrologic alterations vary between different types of riparian systems and with the location within the watershed.
A higher order panel method for linearized supersonic flow
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Epton, M. A.; Johnson, F. T.; Magnus, A. E.; Rubbert, P. E.
1979-01-01
The basic integral equations of linearized supersonic theory for an advanced supersonic panel method are derived. Methods using only linear varying source strength over each panel or only quadratic doublet strength over each panel gave good agreement with analytic solutions over cones and zero thickness cambered wings. For three dimensional bodies and wings of general shape, combined source and doublet panels with interior boundary conditions to eliminate the internal perturbations lead to a stable method providing good agreement experiment. A panel system with all edges contiguous resulted from dividing the basic four point non-planar panel into eight triangular subpanels, and the doublet strength was made continuous at all edges by a quadratic distribution over each subpanel. Superinclined panels were developed and tested on s simple nacelle and on an airplane model having engine inlets, with excellent results.
Influence of perched groundwater on base flow
Niswonger, Richard G.; Fogg, Graham E.
2008-01-01
Analysis with a three‐dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine‐sediment unit and the hydraulic conductivity of the fine‐sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000‐m stream reach. Generally, the rate of perched‐groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine‐sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine‐sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched‐groundwater discharge nearly 75%.
NASA Astrophysics Data System (ADS)
Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish
2015-10-01
Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.
Fundamental Scalings of Zonal Flows in a Basic Plasma Physics Experiment
NASA Astrophysics Data System (ADS)
Sokolov, Vladimir; Wei, Xiao; Sen, Amiya K.
2007-11-01
A basic physics experimental study of zonal flows (ZF) associated with ITG (ion temperature gradient) drift modes has been performed in the Columbia Linear Machine (CLM) and ZF has been definitively identified [1]. However, in contrast to most tokamak experiments, the stabilizing effect of ZF shear to ITG appears to be small in CLM. We now report on the study of important scaling behavior of ZF. First and most importantly, we report on the collisional damping scaling of ZF, which is considered to be its saturation mechanism [2]. By varying the sum of ion-ion and ion-neutral collision frequency over nearly half an order of magnitude, we find no change in the amplitude of ZF. Secondly, we study the scaling of ZF amplitude with ITG amplitude via increasing ITG drive though ηi, as well as feedback (stabilizing / destabilizing). We have observed markedly different scaling near and far above marginal stability. [1] V. Sokolov, X. Wei, A.K. Sen and K. Avinash, Plasma Phys.Controlled Fusion 48, S111 (2006). [2] P.H. Diamond, S.-I. Itoh, K.Itoh and T.S. Hahm, Plasma Phys.Controlled Fusion 47, R35 (2005).
NASA Technical Reports Server (NTRS)
Hague, D. S.; Merz, A. W.
1975-01-01
An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64 sub 1 - 212 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64 sub 1 - 212 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.
NASA Technical Reports Server (NTRS)
Merz, A. W.; Hague, D. S.
1975-01-01
An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64-206 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64-206 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.
Simulation of Flow Fluid in the BOF Steelmaking Process
NASA Astrophysics Data System (ADS)
Lv, Ming; Zhu, Rong; Guo, Ya-Guang; Wang, Yong-Wei
2013-12-01
The basic oxygen furnace (BOF) smelting process consists of different chemical reactions among oxygen, slag, and molten steel, which engenders a vigorous stirring process to promote slagging, dephosphorization, decarbonization, heating of molten steel, and homogenization of steel composition and temperature. Therefore, the oxygen flow rate, lance height, and slag thickness vary during the smelting process. This simulation demonstrated a three-dimensional mathematical model for a 100 t converter applying four-hole supersonic oxygen lance and simulated the effect of oxygen flow rate, lance height, and slag thickness on the flow of molten bath. It is found that as the oxygen flow rate increases, the impact area and depth increases, which increases the flow speed in the molten bath and decreases the area of dead zone. Low oxygen lance height benefits the increase of impact depth and accelerates the flow speed of liquid steel on the surface of the bath, while high oxygen lance height benefits the increase of impact area, thereafter enhances the uniform distribution of radial velocity in the molten steel and increases the flow velocity of molten steel at the bottom of furnace hearth. As the slag thickness increases, the diameter of impinging cavity on the slag and steel surface decreases. The radial velocity of liquid steel in the molten bath is well distributed when the jet flow impact on the slag layer increases.
Predicting bifurcation angle effect on blood flow in the microvasculature.
Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin
2016-11-01
Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.
Deformations of a pre-stretched elastic membrane driven by non-uniform electroosmotic flow
NASA Astrophysics Data System (ADS)
Bercovici, Moran; Boyko, Evgeniy; Gat, Amir
2016-11-01
We study viscous-elastic dynamics of fluid confined between a rigid plate and a pre-stretched elastic membrane subjected to non-uniform electroosmotic flow, and focus on the case of a finite-size membrane clamped at its boundaries. Considering small deformations of a strongly pre-stretched membrane, and applying the lubrication approximation for the flow, we derive a linearized leading-order non-homogenous 4th order diffusion equation governing the deformation and pressure fields. We derive a time-dependent Green's function for a rectangular domain, and use it to obtain several basic solutions for the cases of constant and time varying electric fields. In addition, defining an asymptotic expansion where the small parameter is the ratio of the induced to prescribed tension, we obtain a set of four one-way coupled equations providing a first order correction for the deformation field. Funded by the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme, Grant agreement No. 678734 (MetamorphChip).
NASA Technical Reports Server (NTRS)
Yamanaka, M. D.
1989-01-01
In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.
RSRA sixth scale wind tunnel test. [of scale model of Sikorsky Whirlwind Helicopter
NASA Technical Reports Server (NTRS)
Flemming, R.; Ruddell, A.
1974-01-01
The sixth scale model of the Sikorsky/NASA/Army rotor systems research aircraft was tested in an 18-foot section of a large subsonic wind tunnel for the purpose of obtaining basic data in the areas of performance, stability, and body surface loads. The model was mounted in the tunnel on the struts arranged in tandem. Basic testing was limited to forward flight with angles of yaw from -20 to +20 degrees and angles of attack from -20 to +25 degrees. Tunnel test speeds were varied up to 172 knots (q = 96 psf). Test data were monitored through a high speed static data acquisition system, linked to a PDP-6 computer. This system provided immediate records of angle of attack, angle of yaw, six component force and moment data, and static and total pressure information. The wind tunnel model was constructed of aluminum structural members with aluminum, fiberglass, and wood skins. Tabulated force and moment data, flow visualization photographs, tabulated surface pressure data are presented for the basic helicopter and compound configurations. Limited discussions of the results of the test are included.
The Influence of Slope Breaks on Lava Flow Surface Disruption
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert
2014-01-01
Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.
NASA Astrophysics Data System (ADS)
Rodriguez, J. F.; Gorrick, S.; Kalma, J.; Cook, N.; Outhet, D.; Raine, A.
2005-12-01
Riparian lands are important for maintaining viable ecosystems, improving water quality and reducing sediment yields. Yet, riparian lands are frequently neglected, degraded and poorly managed. In many Australian riverine zones clearing or grazing of native riparian vegetation has resulted in varying degrees of erosion, sedimentation and degradation of aquatic ecosystems. Reintroducing riparian vegetation is one of the preferred methods for improving bank stability, reducing bank erosion to natural rates and rehabilitating channels. The present research aims to explore how reintroduced riparian vegetation modifies the flow and sediment transport patterns and at the same time how the vegetation is affected by flow and sediment. Both field experimentation and laboratory studies will lead to basic understanding of the processes involved and will help the efficient design of plantings for riparian rehabilitation. In order to be able to reproduce the most important processes in a laboratory physical model, a field site with a relatively simple geometry has been selected for the study. The site is on a small sand bed stream in the Hunter Valley in NSW. The reach has a large radius bend with no riparian vegetation on the outer bank, where erosion occurs periodically. Reintroduction of vegetation is planned for October 2005, with pre and post monitoring stages running from March 2005 to August 2008. Laboratory physical modelling based on field characteristics and with varying flow discharges and plant arrangement will provide information to help develop, adapt and test quantitative models of flow dynamics, sediment transport and bank erosion incorporating the effects of vegetation. These results can then be used by river managers when they are developing rehabilitation strategies.
NASA Astrophysics Data System (ADS)
Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.
2015-12-01
Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.
Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods
NASA Astrophysics Data System (ADS)
Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi
2010-06-01
Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.
Design and simulation of the micromixer with chaotic advection in twisted microchannels.
Jen, Chun-Ping; Wu, Chung-Yi; Lin, Yu-Cheng; Wu, Ching-Yi
2003-05-01
Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.
Compressible flow at high pressure with linear equation of state
NASA Astrophysics Data System (ADS)
Sirignano, William A.
2018-05-01
Compressible flow varies from ideal-gas behavior at high pressures where molecular interactions become important. Density is described through a cubic equation of state while enthalpy and sound speed are functions of both temperature and pressure, based on two parameters, A and B, related to intermolecular attraction and repulsion, respectively. Assuming small variations from ideal-gas behavior, a closed-form solution is obtained that is valid over a wide range of conditions. An expansion in these molecular-interaction parameters simplifies relations for flow variables, elucidating the role of molecular repulsion and attraction in variations from ideal-gas behavior. Real-gas modifications in density, enthalpy, and sound speed for a given pressure and temperature lead to variations in many basic compressible flow configurations. Sometimes, the variations can be substantial in quantitative or qualitative terms. The new approach is applied to choked-nozzle flow, isentropic flow, nonlinear-wave propagation, and flow across a shock wave, all for the real gas. Modifications are obtained for allowable mass-flow through a choked nozzle, nozzle thrust, sonic wave speed, Riemann invariants, Prandtl's shock relation, and the Rankine-Hugoniot relations. Forced acoustic oscillations can show substantial augmentation of pressure amplitudes when real-gas effects are taken into account. Shocks at higher temperatures and pressures can have larger pressure jumps with real-gas effects. Weak shocks decay to zero strength at sonic speed. The proposed framework can rely on any cubic equation of state and be applied to multicomponent flows or to more-complex flow configurations.
Liu, Yunqiang; Xu, Jiuping; Wang, Shize; Qi, Bin
2013-01-01
The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells. PMID:24163623
NASA Astrophysics Data System (ADS)
Khan, Mair; Malik, M. Y.; Salahuddin, T.; Hussian, Arif.
2018-03-01
The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE's is converted nonlinear into ODE's via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.
Life cycle assessment of mobile phone housing.
Yang, Jian-xin; Wang, Ru-song; Fu, Hao; Liu, Jing-ru
2004-01-01
The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process.
Optimal flow for brown trout: Habitat - prey optimization.
Fornaroli, Riccardo; Cabrini, Riccardo; Sartori, Laura; Marazzi, Francesca; Canobbio, Sergio; Mezzanotte, Valeria
2016-10-01
The correct definition of ecosystem needs is essential in order to guide policy and management strategies to optimize the increasing use of freshwater by human activities. Commonly, the assessment of the optimal or minimum flow rates needed to preserve ecosystem functionality has been done by habitat-based models that define a relationship between in-stream flow and habitat availability for various species of fish. We propose a new approach for the identification of optimal flows using the limiting factor approach and the evaluation of basic ecological relationships, considering the appropriate spatial scale for different organisms. We developed density-environment relationships for three different life stages of brown trout that show the limiting effects of hydromorphological variables at habitat scale. In our analyses, we found that the factors limiting the densities of trout were water velocity, substrate characteristics and refugia availability. For all the life stages, the selected models considered simultaneously two variables and implied that higher velocities provided a less suitable habitat, regardless of other physical characteristics and with different patterns. We used these relationships within habitat based models in order to select a range of flows that preserve most of the physical habitat for all the life stages. We also estimated the effect of varying discharge flows on macroinvertebrate biomass and used the obtained results to identify an optimal flow maximizing habitat and prey availability. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Knouft, J.; Chu, M. L.
2013-12-01
Natural flow regimes in aquatic systems sustain biodiversity and provide support for basic ecological processes. Nevertheless, the hydrology of aquatic systems is heavily impacted by human activities including land use changes associated with urbanization. Small increases in urban expansion can greatly increase surface runoff while decreasing infiltration. These changes in land use can also affect aquifer recharge and alter streamflow, thus impacting water quality, aquatic biodiversity, and ecosystem productivity. However, there are few studies predicting the effects of various levels of urbanization on flow regimes and the subsequent impacts of these flow alterations on ecosystem endpoints at the watershed scale. We quantified the potential effects of varying degrees of urban expansion on the discharge, velocity, and water depth in the Big River watershed in eastern Missouri using a physically-based watershed model, MIKE-SHE, and a 1D hydrodynamic river model, MIKE-11. Five land cover scenarios corresponding to increasing levels of urban expansion were used to determine the sensitivity of flow in the Big River watershed to increasing urbanization. Results indicate that the frequency of low flow events decreases as urban expansion increases, while the frequency of average and high-flow events increases as urbanization increases. We used current estimates of flow from the MIKE-SHE model to predict variation in fish species richness at 44 sites across the watershed based on standardized fish collections from each site. This model was then used with flow estimates from the urban expansion hydrological models to predict potential changes in fish species richness as urban areas increase. Responses varied among sites with some areas predicted to experience increases in species richness while others are predicted to experience decreases in species richness. Taxonomic identity of species also appeared to influence results with the number of species of Cyprinidae (minnows) expected to increase across the watershed, while the number of species of Centrachidae (bass and sunfish) is expected to decrease across the watershed.
Dynamic Transitions and Baroclinic Instability for 3D Continuously Stratified Boussinesq Flows
NASA Astrophysics Data System (ADS)
Şengül, Taylan; Wang, Shouhong
2018-02-01
The main objective of this article is to study the nonlinear stability and dynamic transitions of the basic (zonal) shear flows for the three-dimensional continuously stratified rotating Boussinesq model. The model equations are fundamental equations in geophysical fluid dynamics, and dynamics associated with their basic zonal shear flows play a crucial role in understanding many important geophysical fluid dynamical processes, such as the meridional overturning oceanic circulation and the geophysical baroclinic instability. In this paper, first we derive a threshold for the energy stability of the basic shear flow, and obtain a criterion for local nonlinear stability in terms of the critical horizontal wavenumbers and the system parameters such as the Froude number, the Rossby number, the Prandtl number and the strength of the shear flow. Next, we demonstrate that the system always undergoes a dynamic transition from the basic shear flow to either a spatiotemporal oscillatory pattern or circle of steady states, as the shear strength of the basic flow crosses a critical threshold. Also, we show that the dynamic transition can be either continuous or catastrophic, and is dictated by the sign of a transition number, fully characterizing the nonlinear interactions of different modes. Both the critical shear strength and the transition number are functions of the system parameters. A systematic numerical method is carried out to explore transition in different flow parameter regimes. In particular, our numerical investigations show the existence of a hypersurface which separates the parameter space into regions where the basic shear flow is stable and unstable. Numerical investigations also yield that the selection of horizontal wave indices is determined only by the aspect ratio of the box. We find that the system admits only critical eigenmodes with roll patterns aligned with the x-axis. Furthermore, numerically we encountered continuous transitions to multiple steady states, as well as continuous and catastrophic transitions to spatiotemporal oscillations.
Selected topics of fluid mechanics
Kindsvater, Carl E.
1958-01-01
The fundamental equations of fluid mechanics are specific expressions of the principles of motion which are ascribed to Isaac Newton. Thus, the equations which form the framework of applied fluid mechanics or hydraulics are, in addition to the equation of continuity, the Newtonian equations of energy and momentum. These basic relationships are also the foundations of river hydraulics. The fundamental equations are developed in this report with sufficient rigor to support critical examinations of their applicability to most problems met by hydraulic engineers of the Water Resources Division of the United States Geological Survey. Physical concepts are emphasized, and mathematical procedures are the simplest consistent with the specific requirements of the derivations. In lieu of numerical examples, analogies, and alternative procedures, this treatment stresses a brief methodical exposition of the essential principles. An important objective of this report is to prepare the user to read the literature of the science. Thus, it begins With a basic vocabulary of technical symbols, terms, and concepts. Throughout, emphasis is placed on the language of modern fluid mechanics as it pertains to hydraulic engineering. The basic differential and integral equations of simple fluid motion are derived, and these equations are, in turn, used to describe the essential characteristics of hydrostatics and piezometry. The one-dimensional equations of continuity and motion are defined and are used to derive the general discharge equation. The flow net is described as a means of demonstrating significant characteristics of two-dimensional irrotational flow patterns. A typical flow net is examined in detail. The influence of fluid viscosity is described as an obstacle to the derivation of general, integral equations of motion. It is observed that the part played by viscosity is one which is usually dependent on experimental evaluation. It follows that the dimensionless ratios known as the Euler, Froude, Reynolds, Weber, and Cauchy numbers are defined as essential tools for interpreting and using experimental data. The derivations of the energy and momentum equations are treated in detail. One-dimensional equations for steady nonuniform flow are developed, and the restrictions applicable to the equations are emphasized. Conditions of uniform and gradually varied flow are discussed, and the origin of the Chezy equation is examined in relation to both the energy and the momentum equations. The inadequacy of all uniform-flow equations as a means of describing gradually varied flow is explained. Thus, one of the definitive problems of river hydraulics is analyzed in the light of present knowledge. This report is the outgrowth of a series of short schools conducted during the spring and summer of 1953 for engineers of the Surface Water Branch, Water Resources Division, U. S. Geological Survey. The topics considered are essentially the same as the topics selected for inclusion in the schools. However, in order that they might serve better as a guide and outline for informal study, the arrangement of the writer's original lecture notes has been considerably altered. The purpose of the report, like the purpose of the schools which inspired it, is to build a simple but strong framework of the fundamentals of fluid mechanics. It is believed that this framework is capable of supporting a detailed analysis of most of the practical problems met by the engineers of the Geological Survey. It is hoped that the least accomplishment of this work will be to inspire the reader with the confidence and desire to read more of the recent and current technical literature of modern fluid mechanics.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Robinson, R. S.
1979-01-01
Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.
How well do basic models describe the turbidity currents coming down Monterey and Congo Canyon?
NASA Astrophysics Data System (ADS)
Cartigny, M.; Simmons, S.; Heerema, C.; Xu, J. P.; Azpiroz, M.; Clare, M. A.; Cooper, C.; Gales, J. A.; Maier, K. L.; Parsons, D. R.; Paull, C. K.; Sumner, E. J.; Talling, P.
2017-12-01
Turbidity currents rival rivers in their global capacity to transport sediment and organic carbon. Furthermore, turbidity currents break submarine cables that now transport >95% of our global data traffic. Accurate turbidity current models are thus needed to quantify their transport capacity and to predict the forces exerted on seafloor structures. Despite this need, existing numerical models are typically only calibrated with scaled-down laboratory measurements due to the paucity of direct measurements of field-scale turbidity currents. This lack of calibration thus leaves much uncertainty in the validity of existing models. Here we use the most detailed observations of turbidity currents yet acquired to validate one of the most fundamental models proposed for turbidity currents, the modified Chézy model. Direct measurements on which the validation is based come from two sites that feature distinctly different flow modes and grain sizes. The first are from the multi-institution Coordinated Canyon Experiment (CCE) in Monterey Canyon, California. An array of six moorings along the canyon axis captured at least 15 flow events that lasted up to hours. The second is the deep-sea Congo Canyon, where 10 finer grained flows were measured by a single mooring, each lasting several days. Moorings captured depth-resolved velocity and suspended sediment concentration at high resolution (<30 second) for each of the 25 events. We use both datasets to test the most basic model available for turbidity currents; the modified Chézy model. This basic model has been very useful for river studies over the past 200 years, as it provides a rapid estimate of how flow velocity varies with changes in river level and energy slope. Chézy-type models assume that the gravitational force of the flow equals the friction of the river-bed. Modified Chézy models have been proposed for turbidity currents. However, the absence of detailed measurements of friction and sediment concentration within full-scale turbidity currents has forced modellers to make rough assumptions for these parameters. Here we use mooring data to deduce observation-based relations that can replace the previous assumptions. This improvement will significantly enhance the model predictions and allow us to better constrain the behaviour of turbidity currents.
Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Geller, Marvin A.
1994-01-01
The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.
NASA Astrophysics Data System (ADS)
Tenenbaum-Katan, Janna; Hofemeier, Philipp; Sznitman, Josué; Janna Tenenbaum-Katan Team
2015-11-01
Inhalation therapy is the cornerstone of early-childhood respiratory treatments, as well as a rising potential for systemic drug delivery and pulmonary vaccination. As such, indispensable understanding of respiratory flow phenomena, coupled with particle transport at the deep regions of children's lungs is necessary to attain efficient targeting of aerosol therapy. However, fundamental research of pulmonary transport is overwhelmingly focused on adults. In our study, we have developed an anatomically-inspired computational model of representing pulmonary acinar regions at several age points during a child's development. Our numerical simulations examine respiratory flows and particle deposition maps within the acinar model, accounting for varying age dependant anatomical considerations and ventilation patterns. Resulting deposition maps of aerosols alter with age, such findings might suggest that medication protocols of inhalation therapy in young children should be considered to be accordingly amended with the child's development. Additionally to understanding basic scientific concepts of age effects on aerosol deposition, our research can potentially contribute practical guidelines to therapy protocols, and its' necessary modifications with age. We acknowledge the support of the ISF and the Israeli ministry of Science.
Peraman, Ramalingam; Nayakanti, Devanna; Dugga, Hari Hara Theja; Kodikonda, Sudhakara
2013-01-01
A validated stability-indicating RP-HPLC method for etofenamate (ETF) was developed by separating its degradation products on a C18 (250 mm × 4.6 mm 5 μm) Qualisil BDS column using a phosphate buffer (pH-adjusted to 6.0 with orthophosphoric acid) and methanol in the ratio of 20:80 % v/v as the mobile phase at a flow rate of 1.0 mL/min. The column effluents were monitored by a photodiode array detector set at 286 nm. The method was validated in terms of specificity, linearity, accuracy, precision, detection limit, quantification limit, and robustness. Forced degradation of etofenamate was carried out under acidic, basic, thermal, photo, and peroxide conditions and the major degradation products of acidic and basic degradation were isolated and characterized by 1H-NMR, 13C-NMR, and mass spectral studies. The mass balance of the method varied between 92–99%. PMID:24482770
CFD Approach To Investigate The Flow Characteristics In Bi-Directional Ventilated Disc Brake
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Yusoff, Mohd. Zamri; Shuaib, Norshah Hafeez; Thangaraju, Savithry K.
2010-06-01
This paper presents experimental and Computational Fluids Dynamics (CFD) investigations of the flow in ventilated brake discs. Development of an experiment rig with basic measuring devices are detailed out and following a validation study, the possible improvement in the brake cooling can be further analyzed using CFD analysis. The mass flow rate is determined from basic flow measurement technique following that the conventional bi-directional passenger car is simulated using commercial CFD software FLUENT™. The CFD simulation is used to investigate the flow characteristics in between blade flow of the bi-directional ventilated disc brake.
Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe
2006-01-01
Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051
NASA Astrophysics Data System (ADS)
Liu, L.; Neretnieks, I.
Canisters with spent nuclear fuel will be deposited in fractured crystalline rock in the Swedish concept for a final repository. The fractures intersect the canister holes at different angles and they have variable apertures and therefore locally varying flowrates. Our previous model with fractures with a constant aperture and a 90° intersection angle is now extended to arbitrary intersection angles and stochastically variable apertures. It is shown that the previous basic model can be simply amended to account for these effects. More importantly, it has been found that the distributions of the volumetric and the equivalent flow rates are all close to the Normal for both fractal and Gaussian fractures, with the mean of the distribution of the volumetric flow rate being determined solely by the hydraulic aperture, and that of the equivalent flow rate being determined by the mechanical aperture. Moreover, the standard deviation of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of the aperture field, and so does that of the equivalent flow rates. Thus, two simple statistical relations can be developed to describe the stochastic properties of fluid flow and solute transport through a single fracture with spatially variable apertures. This obviates, then, the need to simulate each fracture that intersects a canister in great detail, and allows the use of complex fractures also in very large fracture network models used in performance assessment.
BOREHOLE FLOWMETERS: FIELD APPLICATION AND DATA ANALYSIS
This paper reviews application of borehole flowmeters in granular and fractured rocks. Basic data obtained in the field are the ambient flow log and the pumping-induced flow log. These basic logs may then be used to calculate other quantities of interest. The paper describes the ...
Operational integration in primary health care: patient encounters and workflows.
Sifaki-Pistolla, Dimitra; Chatzea, Vasiliki-Eirini; Markaki, Adelais; Kritikos, Kyriakos; Petelos, Elena; Lionis, Christos
2017-11-29
Despite several countrywide attempts to strengthen and standardise the primary healthcare (PHC) system, Greece is still lacking a sustainable, policy-based model of integrated services. The aim of our study was to identify operational integration levels through existing patient care pathways and to recommend an alternative PHC model for optimum integration. The study was part of a large state-funded project, which included 22 randomly selected PHC units located across two health regions of Greece. Dimensions of operational integration in PHC were selected based on the work of Kringos and colleagues. A five-point Likert-type scale, coupled with an algorithm, was used to capture and transform theoretical framework features into measurable attributes. PHC services were grouped under the main categories of chronic care, urgent/acute care, preventive care, and home care. A web-based platform was used to assess patient pathways, evaluate integration levels and propose improvement actions. Analysis relied on a comparison of actual pathways versus optimal, the latter ones having been identified through literature review. Overall integration varied among units. The majority (57%) of units corresponded to a basic level. Integration by type of PHC service ranged as follows: basic (86%) or poor (14%) for chronic care units, poor (78%) or basic (22%) for urgent/acute care units, basic (50%) for preventive care units, and partial or basic (50%) for home care units. The actual pathways across all four categories of PHC services differed from those captured in the optimum integration model. Certain similarities were observed in the operational flows between chronic care management and urgent/acute care management. Such similarities were present at the highest level of abstraction, but also in common steps along the operational flows. Existing patient care pathways were mapped and analysed, and recommendations for an optimum integration PHC model were made. The developed web platform, based on a strong theoretical framework, can serve as a robust integration evaluation tool. This could be a first step towards restructuring and improving PHC services within a financially restrained environment.
A Study on Water Surface Profiles of Rivers with Constriction
NASA Astrophysics Data System (ADS)
Qian, Chaochao; Yamada, Tadashi
2013-04-01
Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even in practice.
NASA Technical Reports Server (NTRS)
Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric
2014-01-01
We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.
Performance evaluation of cross-flow single-phase liquid-to-gas polymer tube heat exchanger
NASA Astrophysics Data System (ADS)
Dewanjee, Sujan; Hossain, Md. Rakibul; Rahman, Md. Ashiqur
2017-06-01
Reduced core weight and material cost, higher corrosion resistance are some of the major eye catching properties to study polymers over metal in heat exchanger applications in spite of the former's relatively low thermal conductivity and low strength. In the present study, performance of polymer parallel thin tube heat exchanger is numerically evaluated for cross flow liquid to air applications for a wide range of design and operating parameters such as tube diameter, thickness, fluid velocity and temperature, etc. using Computational Fluid Dynamics (CFD). Among a range of available polymeric materials, those with a moderate to high thermal conductivity and strength are selected for this study. A 90 cm × 1 cm single unit of polymer tubes, with appropriate number of tubes such that at least a gap of 5 mm is maintained in between the tubes, is used as a basic unit and multiple combination in the transverse direction of this single unit is simulated to measure the effect. The tube inner diameter is varied from 2 mm to 4 mm and the pressure drop is measured to have a relative idea of pumping cost. For each inner diameter the thickness is varied from .5 mm to 2.5 mm. The water velocity and the air velocity are varied from 0.4 m/s to 2 m/s and 1 m/s to 5 m/s, respectively. The performance of the polymer heat exchanger is compared with that of metal heat exchanger through and an optimum design for polymer heat exchanger is sought out.
NASA Astrophysics Data System (ADS)
Nathan, Terrence
1991-09-01
Over the past forty years, numerous linear stability studies have been performed in order to explain the origin and structure of observed waves in the atmosphere. Of these studies, only a small fraction have considered the stability of time-dependent, zonally varying flow or the influence of radiative-photochemical feedbacks on the stability of zonally uniform flow. The stability of such flows is described, and these flows may yield important information concerning the origin, structure, and transient time scales of free waves in the atmosphere. During the period 1990 to 1991, a beta-plane model that couples radiative transfer, ozone advection, and ozone photochemistry with the quasigeostrophic dynamical circulation was developed in order to study the diabatic effects of Newtonian cooling and ozone-dynamics interaction on the linear stability of free planetary waves in the atmosphere. The stability of a basic state consisting of a westward-moving wave and a zonal mean jet was examined using a linearized, nondivergent barotropic model on sphere. The sensitivity of the stability of the flow to the strength and structure of the zonal jet was emphasized. The current research is focused on the following problems: (1) examination of the finite amplitude interactions among radiation, ozone, and dynamics; and (2) examination of the role of seasonal forcing in short-term climate variability. The plans for next year are presented.
Hey, Jody; Nielsen, Rasmus
2004-01-01
The genetic study of diverging, closely related populations is required for basic questions on demography and speciation, as well as for biodiversity and conservation research. However, it is often unclear whether divergence is due simply to separation or whether populations have also experienced gene flow. These questions can be addressed with a full model of population separation with gene flow, by applying a Markov chain Monte Carlo method for estimating the posterior probability distribution of model parameters. We have generalized this method and made it applicable to data from multiple unlinked loci. These loci can vary in their modes of inheritance, and inheritance scalars can be implemented either as constants or as parameters to be estimated. By treating inheritance scalars as parameters it is also possible to address variation among loci in the impact via linkage of recurrent selective sweeps or background selection. These methods are applied to a large multilocus data set from Drosophila pseudoobscura and D. persimilis. The species are estimated to have diverged approximately 500,000 years ago. Several loci have nonzero estimates of gene flow since the initial separation of the species, with considerable variation in gene flow estimates among loci, in both directions between the species. PMID:15238526
Unit Planning Grids for Music: Grade 9-12 Basic.
ERIC Educational Resources Information Center
Delaware State Dept. of Education, Dover.
This unit planning grid outlines the expectations of Delaware high school students for basic music studies. The grid identifies nine standards for music: (1) students will sing, independently and with others, a varied repertoire of music; (2) students will perform on instruments, independently and with others, a varied repertoire of music; (3)…
Aerothermodynamics and Turbulence
2013-03-08
Surface Heat Transfer and Detailed Flow Structure Fuel Injection in a Scramjet Combustor Reduced Uncertainty in Complex Flows Addressing... hypersonic flight data to capture shock interaction unsteadiness National Hypersonic Foundational Research Plan Joint Technology Office... Hypersonics Basic Science Roadmap Assessment of SOA and Future Research Directions Ongoing Basic Research for Understanding and Controlling Noise
Static investigation of several yaw vectoring concepts on nonaxisymmetric nozzles
NASA Technical Reports Server (NTRS)
Mason, M. L.; Berrier, B. L.
1985-01-01
A test has been conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the flow-turning capability and the effects on nozzle internal performance of several yaw vectoring concepts. Nonaxisymmetric convergent-divergent nozzles with throat areas simulating dry and afterburning power settings and single expansion ramp nozzles with a throat area simulating a dry power setting were modified for yaw thrust vectoring. Forward-thrust and pitch-vectored nozzle configurations were tested with each yaw vectoring concept. Four basic yaw vectoring concepts were investigated on the nonaxisymmetric convergent-divergent nozzles: (1) translating sidewall; (2) downstream (of throat) flaps; (3) upstream (of throat) port/flap; and (4) powered rudder. Selected combinations of the rudder with downstream flaps or upstream port/flap were also tested. A single yaw vectoring concept, post-exit flaps, was investigated on the single expansion ramp nozzles. All testing was conducted at static (no external flow) conditions and nozzle pressure ratios varied from 2.0 up to 10.0.
Sugar export limits size of conifer needles
NASA Astrophysics Data System (ADS)
Rademaker, Hanna; Zwieniecki, Maciej A.; Bohr, Tomas; Jensen, Kaare H.
2017-04-01
Plant leaf size varies by more than three orders of magnitude, from a few millimeters to over one meter. Conifer leaves, however, are relatively short and the majority of needles are no longer than 6 cm. The reason for the strong confinement of the trait-space is unknown. We show that sugars produced near the tip of long needles cannot be exported efficiently, because the pressure required to drive vascular flow would exceed the greatest available pressure (the osmotic pressure). This basic constraint leads to the formation of an inactive region of stagnant fluid near the needle tip, which does not contribute to sugar flow. Remarkably, we find that the size of the active part does not scale with needle length. We predict a single maximum needle size of 5 cm, in accord with data from 519 conifer species. This could help rationalize the recent observation that conifers have significantly smaller leaves than angiosperms, and provide a biophysical explanation for this intriguing difference between the two largest groups of plants.
NASA Technical Reports Server (NTRS)
Hackett, J. E.; Sampath, S.; Phillips, C. G.
1981-01-01
A new, fast, non-iterative version of the "Wall Pressure Signature Method" is described and used to determine blockage and angle-of-attack wind tunnel corrections for highly-powered jet-flap models. The correction method is complemented by the application of tangential blowing at the tunnel floor to suppress flow breakdown there, using feedback from measured floor pressures. This tangential blowing technique was substantiated by subsequent flow investigations using an LV. The basic tests on an unswept, knee-blown, jet flapped wing were supplemented to include the effects of slat-removal, sweep and the addition of unflapped tips. C sub mu values were varied from 0 to 10 free-air C sub l's in excess of 18 were measured in some cases. Application of the new methods yielded corrected data which agreed with corresponding large tunnel "free air" resuls to within the limits of experimental accuracy in almost all cases. A program listing is provided, with sample cases.
Convection without eddy viscosity: An attempt to model the interiors of giant planets
NASA Technical Reports Server (NTRS)
Ingersoll, A. P.
1986-01-01
In the theory of hydrostatic quasi-geostrophic flow in the Earth's atmosphere the principal results do not depend on the eddy viscosity. This contrasts with published theories of convection in deep rotating fluid spheres, where the wavelength of the fastest growing disturbance varies as E sup 1/3, where E, the Ekman number, is proportional to the eddy viscosity. A new theory of quasi-columnar motions in stably stratified fluid spheres attempts to capture the luck of the meteorologists. The theory allows one to investigate the stability of barotropic and baroclinic zonal flows that extend into the planetary interior. It is hypothesized that the internal heat Jupiter and Saturn comes out not radially but on sloping surfaces defined by the internal entropy distribution. To test the hypothesis one searches for basic states in which the wavelength of the fastest-growing disturbance remains finite as E tends to zero, and is which the heat flux vector is radially outward and poleward.
Continuous removal of ore floatation reagents by an anaerobic-aerobic biological filter.
Cheng, Huang; Lin, Hai; Huo, Hanxin; Dong, Yingbo; Xue, Qiuyu; Cao, Lixia
2012-06-01
A laboratory scale up-flow anaerobic-aerobic biological filter was constructed to treat synthetic ore floatation wastewater. Volcanic stone was applied as packing media for aerobic section. Biodegradation of some common ore floatation reagents as potassium ethyl xanthate dithiophosphate and turpentine were evaluated. An average COD reduction rate of 88.7% for potassium ethyl xanthate by the biofilter was obtained at HRT of 6h, air water flow ratio of 10:1 and pH of 7. Its effluent COD concentration varied between 17 and 43 mg/L. Xanthates and dithiophosphate were found to be easily biodegradable, whereas turpentine was not favorable for microorganism to digest. The performance of the reactor fluctuated slightly within the temperature range of 10-35 °C. Operation of the biofilter was sensitive to influent pH values. A neutral to weak basic influent was preferred for biofilter to maintain an efficient operation. Anaerobic treatment was able to enhance the biodegradability of influents significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.
On the large eddy simulation of turbulent flows in complex geometry
NASA Technical Reports Server (NTRS)
Ghosal, Sandip
1993-01-01
Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.
A pattern-based analysis of clinical computer-interpretable guideline modeling languages.
Mulyar, Nataliya; van der Aalst, Wil M P; Peleg, Mor
2007-01-01
Languages used to specify computer-interpretable guidelines (CIGs) differ in their approaches to addressing particular modeling challenges. The main goals of this article are: (1) to examine the expressive power of CIG modeling languages, and (2) to define the differences, from the control-flow perspective, between process languages in workflow management systems and modeling languages used to design clinical guidelines. The pattern-based analysis was applied to guideline modeling languages Asbru, EON, GLIF, and PROforma. We focused on control-flow and left other perspectives out of consideration. We evaluated the selected CIG modeling languages and identified their degree of support of 43 control-flow patterns. We used a set of explicitly defined evaluation criteria to determine whether each pattern is supported directly, indirectly, or not at all. PROforma offers direct support for 22 of 43 patterns, Asbru 20, GLIF 17, and EON 11. All four directly support basic control-flow patterns, cancellation patterns, and some advance branching and synchronization patterns. None support multiple instances patterns. They offer varying levels of support for synchronizing merge patterns and state-based patterns. Some support a few scenarios not covered by the 43 control-flow patterns. CIG modeling languages are remarkably close to traditional workflow languages from the control-flow perspective, but cover many fewer workflow patterns. CIG languages offer some flexibility that supports modeling of complex decisions and provide ways for modeling some decisions not covered by workflow management systems. Workflow management systems may be suitable for clinical guideline applications.
Measurements and computations of mass flow and momentum flux through short tubes in rarefied gases
NASA Astrophysics Data System (ADS)
Lilly, T. C.; Gimelshein, S. F.; Ketsdever, A. D.; Markelov, G. N.
2006-09-01
Gas flows through orifices and short tubes have been extensively studied from the 1960s through the 1980s for both fundamental and practical reasons. These flows are a basic and often important element of various modern gas driven instruments. Recent advances in micro- and nanoscale technologies have paved the way for a generation of miniaturized devices in various application areas, from clinical analyses to biochemical detection to aerospace propulsion. The latter is the main area of interest of this study, where rarefied gas flow into a vacuum through short tubes with thickness-to-diameter ratios varying from 0.015 to 1.2 is investigated both experimentally and numerically with kinetic and continuum approaches. Helium and nitrogen gases are used in the range of Reynolds numbers from 0.02 to 770 (based on the tube diameter), corresponding to Knudsen numbers from 40 down to about 0.001. Propulsion properties of relatively thin and thick tubes are examined. Good agreement between experimental and numerical results is observed for mass flow rate and momentum flux, the latter being corrected for the experimental facility background pressure. For thick-to-thin tube ratios of mass flow and momentum flux versus pressure, a minimum is observed at a Knudsen number of about 0.5. A short tube propulsion efficiency is shown to be much higher than that of a thin orifice. The effect of surface specularity on a thicker tube specific impulse was found to be relatively small.
Effect of colloidal silica on rheological properties of common pharmaceutical excipients.
Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr
2016-09-01
In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kacimov, A. R.; Kayumov, I. R.; Al-Maktoumi, A.
2016-11-01
An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A ;basic; solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and ;basic; boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.
NASA Astrophysics Data System (ADS)
Teng, Yanguo; Hu, Bin; Zheng, Jieqiong; Wang, Jinsheng; Zhai, Yuanzheng; Zhu, Chen
2018-03-01
Investigation of surface water and groundwater interaction (SW-GW interaction) provides basic information for regional water-resource protection, management, and development. In this survey of a 10-km-wide area along both sides of the Songhua River, northeast China, the hydrogeochemical responses to different SW-GW interactions were studied. Three types of SW-GW interactions were identified—"recharge", "discharge", and "flow-through"—according to the hydraulic connection between the surface water and groundwater. The single factor index, principal component analysis, and hierarchical cluster analysis of the hydrogeochemistry and pollutant data illuminated the hydrogeochemical response to the various SW-GW interactions. Clear SW-GW interactions along the Songhua River were revealed: (1) upstream in the study area, groundwater usually discharges into the surface water, (2) groundwater is recharged by surface water downstream, and (3) discharge and flow-through coexist in between. Statistical analysis indicated that the degree of hydrogeochemical response in different types of hydraulic connection varied, being clear in recharge and flow-through modes, and less obvious in discharge mode. During the interaction process, dilution, adsorption, redox reactions, nitrification, denitrification, and biodegradation contributed to the pollutant concentration and affected hydrogeochemical response in the hyporheic zone.
NASA Astrophysics Data System (ADS)
Sever, Gokhan
A series of systematic two/three-dimensional (2D/3D) idealized numerical experiments were conducted to investigate the combined effects of dynamical and physical processes on orographic precipitation (OP) with varying incoming basic flow speed (U) and CAPE in a conditionally unstable uniform flow. The three moist flow regimes identified by Chu and Lin are reproduced using the CM1 model in low resolution (Deltax = 1 km) 2D simulations. A new flow regime, namely Regime IV (U > 36 m s-1) is characterized by gravity waves, heavy precipitation, lack of upper-level wave breaking and turbulence over the lee slope. The regime transition from III to IV at about 36 m s -1 can be explained by the transition from upward propagating gravity waves to evanescent flow, which can be predicted using a moist mountain wave theory. Although the basic features are captured well in low grid resolutions, high resolution (Deltax = 100 m) 2D/3D simulations are required to resolve precipitation distribution and intensity at higher basic winds (U > 30 m s -1). These findings may be applied to examine the performance of moist and turbulence parameterization schemes. Based on 3D simulations, gravity wave-induced severe downslope winds and turbulent mixing within hydraulic jump reduce OP in Regime III. Then in Regime IV, precipitation amount and spatial extent are intensified as the upper-level wave breaking vanishes and updrafts strengthen. Similar experiments were performed with a low CAPE sounding to assess the evolution of OP in an environment similar to that observed in tropical cyclones. These low CAPE simulations show that precipitation is nearly doubled at high wind speeds compared to high CAPE results. Based on a microphysics budget analysis, two factors are identified to explain this difference: 1) warm-rain formation processes (auto-conversion and accretion), which are more effective in low CAPE environment, and 2) even though rain production (via graupel and snow melting) is intense in high CAPE, strong downdrafts and advection induced evaporation tend to deplete precipitation before reaching the ground. Overall, both in 2D/3D high wind speed simulations, the pattern of the precipitation distribution resembles to the bell-shaped mountain profile with maximum located over the mountain peak. This result has a potential to simplify the parameterization of OP in terms of two control parameters and might applicable to global weather and climate modeling.
NASA Astrophysics Data System (ADS)
Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar; Adithyakumar, C. R.
2018-02-01
At present, energy consumption is to such an extent that if the same trend goes on then in the future at some point of time, the energy sources will all be exploited. Energy conservation in a hydraulic power pack refers to the reduction in the energy consumed by the power pack. Many experiments have been conducted to reduce the energy consumption and one of those methods is by introducing a variable frequency drive. The main objective of the present work is to reduce the energy consumed by the hydraulic power pack using variable frequency drive. Variable Frequency drive is used to vary the speed of the motor by receiving electrical signals from the pressure switch which acts as the feedback system. Using this concept, the speed of the motor can be varied between the specified limits. In the present work, a basic hydraulic power pack and a variable frequency drive based hydraulic power pack were designed and compared both of them with the results obtained. The comparison was based on the power consumed, rise in temperature, noise levels, and flow of oil through pressure relief valve, total oil flow during loading cycle. By comparing both the circuits, it is found that for the proposed system, consumption of power reduces by 78.4% and is as powerful as the present system.
Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids
NASA Astrophysics Data System (ADS)
Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo
2012-09-01
Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, J.E.A.
1984-01-01
The book treats the basic fundamentals of compressible flow and gas dynamics using a wide breadth of topical coverage. It emphasizes the clear, logical development of basic theory and applies theory to real engineering systems. New in this edition is a complete changeover from English units to SI units. New charts for computing flows containing conical shock waves and expanded tables for isentropic flow and normal shocks are featured. The text emphasizes one dimensional and internal flow, and contains: improved illustrations; many new homework problems; examples and problems involving current applications; and new Mollier diagrams for computing real gas effects.
The Goertler vortex instability mechanism in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.
1984-01-01
The two dimensional boundary layer on a concave wall is centrifugally unstable with respect to vortices aligned with the basic flow for sufficiently high values of the Goertler number. However, in most situations of practical interest the basic flow is three dimensional and previous theoretical investigations do not apply. The linear stability of the flow over an infinitely long swept wall of variable curvature is considered. If there is no pressure gradient in the boundary layer the instability problem can always be related to an equivalent two dimensional calculation. However, in general, this is not the case and even for small values of the crossflow velocity field dramatic differences between the two and three dimensional problems emerge. When the size of the crossflow is further increased, the vortices in the neutral location have their axes locally perpendicular to the vortex lines of the basic flow.
Basic Color Terms in Estonian Sign Language
ERIC Educational Resources Information Center
Hollman, Liivi; Sutrop, Urmas
2011-01-01
The article is written in the tradition of Brent Berlin and Paul Kay's theory of basic color terms. According to this theory there is a universal inventory of eleven basic color categories from which the basic color terms of any given language are always drawn. The number of basic color terms varies from 2 to 11 and in a language having a fully…
Nonparallel stability of three-dimensional compressible boundary layers. Part 1: Stability analysis
NASA Technical Reports Server (NTRS)
El-Hady, N. M.
1980-01-01
A compressible linear stability theory is presented for nonparallel three-dimensional boundary-layer flows, taking into account the normal velocity component as well as the streamwise and spanwise variations of the basic flow. The method of multiple scales is used to account for the nonparallelism of the basic flow, and equations are derived for the spatial evolution of the disturbance amplitude and wavenumber. The numerical procedure for obtaining the solution of the nonparallel problem is outlined.
An Introduction to Turbulent Flow
NASA Astrophysics Data System (ADS)
Mathieu, Jean; Scott, Julian
2000-06-01
In recent years, turbulence has become a very lively area of scientific research and application, attracting many newcomers who need a basic introduction to the subject. Turbulent Flows ably meets this need, developing both physical insight and the mathematical framework needed to express the theory. The authors present basic theory and illustrate it with examples of simple turbulent flows and classical models of jets, wakes, and boundary layers. A deeper understanding of turbulence dynamics is provided by their treatment of spectral analysis and its applications.
Advanced Transportation Systems, Alternate Propulsion Subsystem Concepts
NASA Technical Reports Server (NTRS)
1997-01-01
An understanding of the basic flow of of the subject hybrid model has been gained through this series of testing. Changing injectors (axial vs. radial) and inhibiting the flow between the upstream plenum and the CP section changes the basic flow structure, as evidenced by streamline and velocity contour plots. Numerous shear layer structures were identified in the test configurations; these structures include both standing and traveling vortices which may affect combustion ion stability. Standing vortices may play a role in the heat addition process as the oxidizer enters the motor, while traveling vortices may be instability mechanisms in themselves. Finally, the flow visualization and LVD measurements give insight into determining the effects of flow induced shear layers.
Stability results for multi-layer radial Hele-Shaw and porous media flows
NASA Astrophysics Data System (ADS)
Gin, Craig; Daripa, Prabir
2015-01-01
Motivated by stability problems arising in the context of chemical enhanced oil recovery, we perform linear stability analysis of Hele-Shaw and porous media flows in radial geometry involving an arbitrary number of immiscible fluids. Key stability results obtained and their relevance to the stabilization of fingering instability are discussed. Some of the key results, among many others, are (i) absolute upper bounds on the growth rate in terms of the problem data; (ii) validation of these upper bound results against exact computation for the case of three-layer flows; (iii) stability enhancing injection policies; (iv) asymptotic limits that reduce these radial flow results to similar results for rectilinear flows; and (v) the stabilizing effect of curvature of the interfaces. Multi-layer radial flows have been found to have the following additional distinguishing features in comparison to rectilinear flows: (i) very long waves, some of which can be physically meaningful, are stable; and (ii) eigenvalues can be complex for some waves depending on the problem data, implying that the dispersion curves for one or more waves can contact each other. Similar to the rectilinear case, these results can be useful in providing insight into the interfacial instability transfer mechanism as the problem data are varied. Moreover, these can be useful in devising smart injection policies as well as controlling the complexity of the long-term dynamics when drops of various immiscible fluids intersperse among each other. As an application of the upper bound results, we provide stabilization criteria and design an almost stable multi-layer system by adding many layers of fluid with small positive jumps in viscosity in the direction of the basic flow.
Why replication is important in landscape genetics: American black bear in the Rocky Mountains
Short, Bull R.A.; Cushman, S.A.; MacE, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, Maurice L.; McKelvey, K.; Allendorf, F.W.; Luikart, G.
2011-01-01
We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note – that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species’ movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.
Evolution of convection vortices associated with sudden impulses observed by SuperDARN
NASA Astrophysics Data System (ADS)
Hori, T.; Shinbori, A.; Nishitani, N.; Fujita, S.
2014-12-01
Spatial evolution of transient ionospheric convection induced by sudden impulses (SIs) recorded by ground magnetometers is studied statistically by using SuperDARN (SD) data. An advantage of using SD data instead of ground magnetic fields is that ionospheric flows measured by the radars are not virtually biased by the spatially-varying ionospheric conductance or the magnetospheric currents. First we surveyed the Sym-H index for Jan., 2007 to Dec., 2012 to identify SI events with a peak amplitude |dSym-H| greater than 10 nT. Next we searched all SD data over the northern hemisphere during the SI events for ionospheric backscatters which give us the light-of-sight velocity of horizontal ionospheric flows. For each SI event, the collected ionospheric flow data were sorted into the four periods: the pre-SI period, the pre-Main Impulse (MI), middle-MI, and post-MI periods. In the present study, we examine the differences in flow velocity between the pre-SI period and the three MI periods to clarify how ionospheric flows change in association with SIs. As a result, the ionospheric flow shifts eastward on the dusk side and westward on the dawn side at the higher latitudes during positive SIs (SI+), while it shows a roughly westward/eastward shift on the dusk/dawn side, respectively, during negative SIs (SI-). These polarities of flow shifts are basically consistent with the higher latitude portions of the DP current for the MI phase as shown by Araki [1994] and Araki and Nagano [1988]. In terms of temporal evolution, the SI-induced transient flows remain slightly longer for SI- than for SI+. These findings suggest that the compression and expansion of the magnetosphere affect in different manners the magnetosphere-ionosphere coupled convection system.
The location of planetary bow shocks: A critical overview of theory and observations
NASA Technical Reports Server (NTRS)
Spreiter, J. R.; Stahara, S. S.
1995-01-01
A bow shock (BS has been observed in the collisionless solar wind upstream of every planet except Pluto, which has yet to be visited by a spacecraft. They are all of similar character, but their size relative to the planet varies widely, e.g., the planeto-centric distance to the BS nose ranges from about 1.4 R(sub V) for Venus to 88 R(sub J) or more for Jupiter. Comparisons are reviewed that show its location may be represented satisfactorily by a gasdynamic (GD) model, provided the properties of the solar wind and planetary magnetic field and ionosphere are known and used as input in the application. Factors that determine the location are discussed, and examples are presented to illustrate effects of their variation, including which part of a BS is influenced by a local variation of the magneto/ionopause (MIP) shape. The interplanetary magnetic field (IMF) has no influence on the BS location in the GD model, but is shown to have a small effect in corresponding solutions of the basic MHD model from which the GD model is derived as the limit for weak IMF. Nearly all GD and MHD solutions are for steady flow, but a solution for unsteady flow associated with the passage of an interplanetary shock is also presented. It shows that the BS moves rapidly from its initial to final location, e.g., in about minute for the earth. Since many changes in the solar wind occur over longer intervals, these results help explain the success of quasi-stationary solutions in modeling the BS in time-varying solar wind flows.
Decker, A J
1982-03-01
The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.
NASA Technical Reports Server (NTRS)
Decker, A. J.
1982-01-01
The use of a Nd:YAG laser to record holographic motion pictures of time-varying reflecting objects and time-varying phase objects is discussed. Sample frames from both types of holographic motion pictures are presented. The holographic system discussed is intended for three-dimensional flow visualization of the time-varying flows that occur in jet-engine components.
Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications
NASA Technical Reports Server (NTRS)
Somers, D. M.
1981-01-01
A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.
Use of a Stanton Tube for Skin-Friction Measurements
NASA Technical Reports Server (NTRS)
Abarbanel, S. S.; Hakkinen, R. J.; Trilling, L.
1959-01-01
A small total-pressure tube resting against a flat-plate surface was used as a Stanton tube and calibrated as a skin-friction meter at various subsonic and supersonic speeds. Laminar flow was maintained for the supersonic runs at a Mach number M(sub infinity) of 2. At speeds between M(sub infinity) = 1.33 and M(sub infinity) = 1.87, the calibrations were carried-out in a turbulent boundary layer. The subsonic flows were found to be in transition. The skin-friction readings of a floating-element type of balance served as the reference values against which the Stanton tube was calibrated. A theoretical model was developed which, for moderate values of the shear parameter tau, accurately predicts the performance of the Stanton tube in subsonic and supersonic flows. A "shear correction factor" was found to explain the deviations from the basic model when T became too large. Compressibility effects were important only in the case of turbulent supersonic flows, and they did not alter the form of the calibration curve. The test Reynolds numbers, based on the distance from the leading edge and free-stream conditions, ranged from 70,000 to 875,000. The turbulent-boundary-layer Reynolds numbers, based on momentum thickness, varied between 650 and 2,300. Both laminar and turbulent velocity profiles were taken and the effect of pressure gradient on the calibration was investigated.
Variable flow gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroem, S.
1986-11-25
This patent describes a variable flow gas turbine engine of the type having a combustor for generating combustion gases and a turbine rotor for receiving and expanding the hot combustion gases, comprising: duct means for defining a channel for directing the flow of combustion gases from the combustor to the rotor; vane means in the channel forming at least one throat; means for varying the effective flow area for combustion gases flowing through the throat and impinging on the rotor. The varying means includes winglet means fixedly mounted in the throat for separating the gases flowing through the throat intomore » first and second streams; and means for injecting high pressure fluid into the throat for varying the flow of combustion gases in one of the streams.« less
Flow cytometry: basic principles and applications.
Adan, Aysun; Alizada, Günel; Kiraz, Yağmur; Baran, Yusuf; Nalbant, Ayten
2017-03-01
Flow cytometry is a sophisticated instrument measuring multiple physical characteristics of a single cell such as size and granularity simultaneously as the cell flows in suspension through a measuring device. Its working depends on the light scattering features of the cells under investigation, which may be derived from dyes or monoclonal antibodies targeting either extracellular molecules located on the surface or intracellular molecules inside the cell. This approach makes flow cytometry a powerful tool for detailed analysis of complex populations in a short period of time. This review covers the general principles and selected applications of flow cytometry such as immunophenotyping of peripheral blood cells, analysis of apoptosis and detection of cytokines. Additionally, this report provides a basic understanding of flow cytometry technology essential for all users as well as the methods used to analyze and interpret the data. Moreover, recent progresses in flow cytometry have been discussed in order to give an opinion about the future importance of this technology.
Studies on nonequilibrium phenomena in supersonic chemically reacting flows
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Chandrasekhar, Rajnish
1993-01-01
This study deals with a systematic investigation of nonequilibrium processes in supersonic combustion. The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with nonequilibrium chemistry and thermodynamics, coupled with radiation, for hydrogen-air systems. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved. For a basic understanding of the flow physics, premixed flows undergoing finite rate chemical reactions are investigated. Results obtained for specific conditions indicate that the radiative interactions vary substantially, depending on reactions involving HO2 and NO species, and that this can have a noticeable influence on the flowfield. The second part of this study deals with premixed reacting flows under thermal nonequilibrium conditions. Here, the critical problem is coupling of the vibrational relaxation process with the radiative heat transfer. The specific problem considered is a premixed expanding flow in a supersonic nozzle. Results indicate the presence of nonequilibrium conditions in the expansion region of the nozzle. This results in reduction of the radiative interactions in the flowfield. Next, the present study focuses on investigation of non-premixed flows under chemical nonequilibrium conditions. In this case, the main problem is the coupled turbulence-chemistry interaction. The resulting formulation is validated by comparison with experimental data on reacting supersonic coflowing jets. Results indicate that the effect of heat release is to lower the turbulent shear stress and the mean density. The last part of this study proposes a new theoretical formulation for the coupled turbulence-radiation interactions. Results obtained for the coflowing jets experiment indicate that the effect of turbulence is to enhance the radiative interactions.
Launch Vehicle Control Center Architectures
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom
2014-01-01
Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.
Launch Vehicle Control Center Architectures
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom
2014-01-01
This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.
Periodic water- and air-temperature records for Utah streams, 1966-70
Whitaker, G.L.
1971-01-01
Since 1967, all Geological Survey hydrographers have been instructed to observe and record the water and air temperatures at times when water-discharge measurements were being made at stream-gaging stations in Utah. The frequency of these observations generally varies from I to 5 weeks, depending upon the magnitude of the stream flow.This report summarizes the periodic water and air temperatures that have been recorded in Utah since that effort began. This information may be of value to individuals or agencies concerned with thermal pollution of streams, or with enforcement of water-quality standards.A compilation of all daily water-temperature records recorded for streams in Utah by the U. S. Geological Survey during the period 1944-68 is contained in Utah Basic-Data Release No. 19.
Productive and Participatory: Basic Education for High-Performing and Actively Engaged Workers
ERIC Educational Resources Information Center
Jurmo, Paul
2010-01-01
The adult basic education field in the United States has experienced an ebb and flow of interest and investment in "worker education" over the past three decades. Although the rhetoric around workplace basic skills tends to focus on such outcomes as productivity and competitiveness, some proponents of worker basic education see it as a…
Nonlinear optimal control policies for buoyancy-driven flows in the built environment
NASA Astrophysics Data System (ADS)
Nabi, Saleh; Grover, Piyush; Caulfield, Colm
2017-11-01
We consider optimal control of turbulent buoyancy-driven flows in the built environment, focusing on a model test case of displacement ventilation with a time-varying heat source. The flow is modeled using the unsteady Reynolds-averaged equations (URANS). To understand the stratification dynamics better, we derive a low-order partial-mixing ODE model extending the buoyancy-driven emptying filling box problem to the case of where both the heat source and the (controlled) inlet flow are time-varying. In the limit of a single step-change in the heat source strength, our model is consistent with that of Bower et al.. Our model considers the dynamics of both `filling' and `intruding' added layers due to a time-varying source and inlet flow. A nonlinear direct-adjoint-looping optimal control formulation yields time-varying values of temperature and velocity of the inlet flow that lead to `optimal' time-averaged temperature relative to appropriate objective functionals in a region of interest.
Unexpected consequences of bedload diffusion
NASA Astrophysics Data System (ADS)
Devauchelle, O.; Abramian, A.; Lajeunesse, E.
2017-12-01
Sedimentary grains transported as bedload bump and bounce on the rough bed of the river that entrains them. The succession of these random events causes bedload particles to diffuse across the flow, towards the less active areas of the bed. In a fashion reminiscent of that proposed by Parker (1978) for suspended load, this mechanism opposes gravity to maintain the banks of alluvial rivers. In fact, diffusion is so tightly linked to bedload that it appears in the most basic sediment transport experiment--the straight channel we use to calibrate transport laws. Indeed, the fixed sides of the channel cause the flow, and thus the bed shear stress, to vary across the flume. This variation induces bedload diffusion, which in turn deforms the bed. As a consequence, to reliably calibrate a transport law, we need to measure the full profiles of shear stress and bedload transport, rather than bulk-average these quantities. Unfortunately, using a larger channel does not solve the problem, as a large aspect ratio favors the growth of streaks caused by a diffusion-induced instability. Based on these observations, we propose a different design for sediment transport experiments.
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.
2010-01-01
Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.
NASA Technical Reports Server (NTRS)
Vittek, J. F.
1972-01-01
A discussion of the basic measures of corporate financial strength, and the sources of the information is reported. Considered are: balance sheet, income statement, funds and cash flow, and financial ratios.
Numerical study on self-cleaning canister filter with modified filter cap
NASA Astrophysics Data System (ADS)
Mohammed, Akmal Nizam; Zolkhaely, Mohd Hafiz; Sahrudin, Mohd Sahrizan; Razali, Mohd Azahari; Sapit, Azwan; Hushim, Mohd Faisal
2017-04-01
Air filtration system plays an important role in getting good quality air into turbo machinery such as gas turbine. The filtration system and filters improve the quality of air and protect the gas turbine parts from contaminants which could bring damage. This paper is focused on the configuration of the self-cleaning canister filter in order to obtain the minimal pressure drop along the filter. The configuration includes a modified canister filter cap that is based on the basic geometry that conforms to industry standard. This paper describes the use of CFD to simulate and analyze the flow through the filter. This tool is also used to monitor variables such as pressure and velocity along the filter and to visualize them in the form of contours, vectors and streamlines. In this study, the main parameter varied is the inlet velocity set in the boundary condition during simulations, which are 0.032, 0.063, 0.094 and 0.126 m/s respectively. The data obtained from simulations are then validated with reference data sourced from the industry, and comparisons have subsequently been made for these two filters. As a result, the improvement of the pressure drop for the modified filter is found to be 11.47% to 14.82% compared to the basic filter at the inlet velocity from 0.032 to 0.126 m/s. the total pressure drop produced is 292.3 Pa by the basic filter and 251.11 Pa for modified filter. The pressure drop reduction is 41.19 Pa, which is 14.1% from the basic filter.
A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow
NASA Technical Reports Server (NTRS)
Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.
2005-01-01
An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.
A Spreadsheet for the Mixing of a Row of Jets with a Confined Crossflow. Supplement
NASA Technical Reports Server (NTRS)
Holderman, J. D.; Smith, T. D.; Clisset, J. R.; Lear, W. E.
2005-01-01
An interactive computer code, written with a readily available software program, Microsoft Excel (Microsoft Corporation, Redmond, WA) is presented which displays 3 D oblique plots of a conserved scalar distribution downstream of jets mixing with a confined crossflow, for a single row, double rows, or opposed rows of jets with or without flow area convergence and/or a non-uniform crossflow scalar distribution. This project used a previously developed empirical model of jets mixing in a confined crossflow to create an Microsoft Excel spreadsheet that can output the profiles of a conserved scalar for jets injected into a confined crossflow given several input variables. The program uses multiple spreadsheets in a single Microsoft Excel notebook to carry out the modeling. The first sheet contains the main program, controls for the type of problem to be solved, and convergence criteria. The first sheet also provides for input of the specific geometry and flow conditions. The second sheet presents the results calculated with this routine to show the effects on the mixing of varying flow and geometric parameters. Comparisons are also made between results from the version of the empirical correlations implemented in the spreadsheet and the versions originally written in Applesoft BASIC (Apple Computer, Cupertino, CA) in the 1980's.
NASA Astrophysics Data System (ADS)
Krautkramer, C.; Rend, R. R.
2014-12-01
Menstrual flow, which is a result of shedding of uterus endometrium, occurs periodically in sync with a women's hormonal cycle. Management of this flow while allowing women to pursue their normal daily lives is the purpose of many commercial products. Some of these products, e.g. feminine hygiene pads and tampons, utilize porous materials in achieving their goal. In this paper we will demonstrate different phenomena that have been observed in flow of menstrual fluid through these porous materials, share some of the advances made in experimental and analytical study of these phenomena, and also present some of the unsolved challenges and difficulties encountered while studying this kind of flow. Menstrual fluid is generally composed of four main components: blood plasma, blood cells, cervical mucus, and tissue debris. This non-homogeneous, multiphase fluid displays very complex rheological behavior, e. g., yield stress, thixotropy, and visco-elasticity, that varies throughout and between menstrual cycles and among women due to various factors. Flow rates are also highly variable during menstruation and across the population and the rheological properties of the fluid change during the flow into and through the product. In addition to these phenomena, changes to the structure of the porous medium within the product can also be seen due to fouling and/or swelling of the material. This paper will, also, share how the fluid components impact the flow and the consequences for computer simulation, the creation of a simulant fluid and testing methods, and for designing products that best meet consumer needs. We hope to bring to light the challenges of managing this complex flow to meet a basic need of women all over the world. An opportunity exists to apply learnings from research in other disciplines to improve the scientific knowledge related to the flow of this complex fluid through the porous medium that is a sanitary product.
A water tunnel flow visualization study of the F-15
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1978-01-01
Water tunnel studies were performed to qualitatively define the flow field of the F-15 aircraft. Two lengthened forebodies, one with a modified cross-sectional shape, were tested in addition to the basic forebody. Particular emphasis was placed on defining vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop diagnostic water tunnel using a 1/48-scale model of the F-15. Flow visualization pictures were obtained over an angle-of-attack range to 55 deg and sideslip angles up to 10 deg. The basic aircraft configuration was investigated in detail to determine the vortex flow field development, vortex path, and vortex breakdown characteristics as a function of angle of attack and sideslip. Additional tests showed that the wing upper surface vortex flow fields were sensitive to variations in inlet mass flow ratio and inlet cowl deflection angle. Asymmetries in the vortex systems generated by each of the three forebodies were observed in the water tunnel at zero sideslip and high angles of attack.
ERIC Educational Resources Information Center
Hughes, Stephen
2001-01-01
Explains the basic principles of ultrasound using everyday physics. Topics include the generation of ultrasound, basic interactions with material, and the measurement of blood flow using the Doppler effect. (Author/MM)
Global characteristics of stream flow seasonality and variability
Dettinger, M.D.; Diaz, Henry F.
2000-01-01
Monthly stream flow series from 1345 sites around the world are used to characterize geographic differences in the seasonality and year-to-year variability of stream flow. Stream flow seasonality varies regionally, depending on the timing of maximum precipitation, evapotranspiration, and contributions from snow and ice. Lags between peaks of precipitation and stream flow vary smoothly from long delays in high-latitude and mountainous regions to short delays in the warmest sectors. Stream flow is most variable from year to year in dry regions of the southwest United States and Mexico, the Sahel, and southern continents, and it varies more (relatively) than precipitation in the same regions. Tropical rivers have the steadiest flows. El Nin??o variations are correlated with stream flow in many parts of the Americas, Europe, and Australia. Many stream flow series from North America, Europe, and the Tropics reflect North Pacific climate, whereas series from the eastern United States, Europe, and tropical South America and Africa reflect North Atlantic climate variations.
Numerical simulations of an impinging liquid spray in a cross-flow
NASA Astrophysics Data System (ADS)
Gomatam, Sreekar; Vengadesan, S.; Chakravarthy, S. R.
2017-11-01
The characteristics of a liquid spray in a uniform cross-flow field are numerically simulated in this study. A hollow cone liquid spray is injected perpendicular to the air stream flowing through a rectangular duct under room temperature and pressure. An Eulerian-Lagrangian framework is adopted to simulate the spray in cross-flow phenomenon. The cross-flow velocity is varied from 6-12 m/s while the liquid injection pressure is varied from 0.3-0.6 MPa. The liquid droplets from the injected spray undergo breakup and/or coalescence further in the cross-flow. Moreover, the spray injected into the cross-flow impinges on the opposite wall resulting in the formation of a liquid film. This liquid film disintegrates further into discrete droplets because of the impingement of the droplets from the spray and the shear from the cross-flow. The overall distribution of the droplets in the cross-flow for varying conditions is studied in detail. The evolution of the liquid film with space and time for varying conditions is also investigated. Suitable sub-models are used to numerically model the droplet break-up, coalescence, liquid film formation and disintegration, splashing of the droplets on the film and subsequent formation of daughter droplets. Department of Applied Mechanics, Indian Inst of Tech-Madras.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.
1975-01-01
The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.
NASA Technical Reports Server (NTRS)
Mirels, Harold
1959-01-01
A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.
Basic Electricity--a Novel Analogy.
ERIC Educational Resources Information Center
Grant, Richard
1996-01-01
Uses the analogy of water flow to introduce concepts in basic electricity. Presents a demonstration that uses this analogy to help students grasp the relationship between current, voltage, and resistance. (JRH)
ERIC Educational Resources Information Center
Department of the Interior, Denver, CO. Engineering and Research Center.
Subjects covered in this text are controlling the hydroelectric generator, generator excitation, basic principles of direct current generation, direction of current flow, basic alternating current generator, alternating and direct current voltage outputs, converting alternating current to direct current, review of the basic generator and…
NASA Technical Reports Server (NTRS)
Barger, R. L.
1974-01-01
A method has been developed for designing families of airfoils in which the members of a family have the same basic type of pressure distribution but vary in thickness ratio or lift, or both. Thickness ratio and lift may be prescribed independently. The method which is based on the Theodorsen thick-airfoil theory permits moderate variations from the basic shape on which the family is based.
The expected results from this research include: i) the quantification of the proportion of surface water comprising spring discharge under varying flow conditions; ii) the characterization of surface watersheds under varying antecedent moisture conditions, and evaluation of ...
Barnes, Kimberlee K.
2001-01-01
Basic water-quality differences related to physiographic differences and seasonality were evident in streams and rivers in the Eastern Iowa Basins. Of the three major landforms, water samples from sites within the Des Moines Lobe, the youngest landform in the study area, had significantly higher median concentrations of calcium (85 mg/L), magnesium (28 mg/L), sulfate (28 mg/L), fluoride (0.31 mg/L), and silica (16 mg/L). The Des Moines Lobe region is calcium magnesium bicarbonate-rich due to the Paleozoic source rocks (limestones and shales) in the bedrock. Water samples from sites within the Southern Iowa Drift Plain had higher median concentrations of sodium (12 mg/L), potassium (3.2 mg/L), and chloride (21 mg/L). Concentrations also varied according to the time of year. Grouping the data into four seasonal periods, water samples collected during the months of October, November, and December, had higher median concentrations of calcium, magnesium, and chloride, then samples collected during other quarters of the year. Water quality in the streams during this low-flow period (October through December) is representative of that in the contributing aquifers.
A staggered conservative scheme for every Froude number in rapidly varied shallow water flows
NASA Astrophysics Data System (ADS)
Stelling, G. S.; Duinmeijer, S. P. A.
2003-12-01
This paper proposes a numerical technique that in essence is based upon the classical staggered grids and implicit numerical integration schemes, but that can be applied to problems that include rapidly varied flows as well. Rapidly varied flows occur, for instance, in hydraulic jumps and bores. Inundation of dry land implies sudden flow transitions due to obstacles such as road banks. Near such transitions the grid resolution is often low compared to the gradients of the bathymetry. In combination with the local invalidity of the hydrostatic pressure assumption, conservation properties become crucial. The scheme described here, combines the efficiency of staggered grids with conservation properties so as to ensure accurate results for rapidly varied flows, as well as in expansions as in contractions. In flow expansions, a numerical approximation is applied that is consistent with the momentum principle. In flow contractions, a numerical approximation is applied that is consistent with the Bernoulli equation. Both approximations are consistent with the shallow water equations, so under sufficiently smooth conditions they converge to the same solution. The resulting method is very efficient for the simulation of large-scale inundations.
Assessment of turbulent models for scramjet flowfields
NASA Technical Reports Server (NTRS)
Sindir, M. M.; Harsha, P. T.
1982-01-01
The behavior of several turbulence models applied to the prediction of scramjet combustor flows is described. These models include the basic two equation model, the multiple dissipation length scale variant of the two equation model, and the algebraic stress model (ASM). Predictions were made of planar backward facing step flows and axisymmetric sudden expansion flows using each of these approaches. The formulation of each of these models are discussed, and the application of the different approaches to supersonic flows is described. A modified version of the ASM is found to provide the best prediction of the planar backward facing step flow in the region near the recirculation zone, while the basic ASM provides the best results downstream of the recirculation. Aspects of the interaction of numerica modeling and turbulences modeling as they affect the assessment of turbulence models are discussed.
Basic hydraulic principles of open-channel flow
Jobson, Harvey E.; Froehlich, David C.
1988-01-01
The three basic principles of open-channel-flow analysis--the conservation of mass, energy, and momentum--are derived, explained, and applied to solve problems of open-channel flow. These principles are introduced at a level that can be comprehended by a person with an understanding of the principles of physics and mechanics equivalent to that presented in the first college level course of the subject. The reader is assumed to have a working knowledge of algebra and plane geometry as well as some knowledge of calculus. Once the principles have been derived, a number of example applications are presented that illustrate the computation of flow through culverts and bridges, and over structures, such as dams and weirs. Because resistance to flow is a major obstacle to the successful application of the energy principle to open-channel flow, procedures are outlined for the rational selection of flow resistance coefficients. The principle of specific energy is shown to be useful in the prediction of water-surface profiles both in the qualitative and quantitative sense. (USGS)
Individualized Human CAD Models: Anthropmetric Morphing and Body Tissue Layering
2014-07-31
Part Flow Chart of the Interaction among VBA Macros, Excel® Spreadsheet, and SolidWorks Front View of the Male and Female Soldier CAD Model...yellow highlighting. The spreadsheet is linked to the CAD model by macros created with the Visual Basic for Application ( VBA ) editor in Microsoft Excel...basically three working parts to the anthropometric morphing that are all interconnected ( VBA macros, Excel spreadsheet, and SolidWorks). The flow
Analysis of Ballast Water Sampling Port Designs Using Computational Fluid Dynamics
2008-02-01
straight, vertical, upward-flowing pipe having a sample port diameter between 1.5 and 2.0 times the basic isokinetic diameter as defined in this report...water, flow modeling, sample port, sample pipe, particle trajectory, isokinetic sampling 18. Distribution Statement This document is available to...2.0 times the basic isokinetic diameter as defined in this report. Sample ports should use ball valves for isolation purposes and diaphragm or
A study of two cases of comma-cloud cyclogenesis using a semigeostrophic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, G.C.; Cho, Hanru
1992-12-01
The linear stability of two atmospheric flows is studied, with basic-state data taken from environments where comma clouds are observed to flow. Each basic state features a baroclinic zone associated with an upper-level jet, with conditional instability on the north side. The semigeostrophic approximation is utilized, along with a simple parameterization for cumulus heating, and the eigenvalue problem is solved employing a Chebyshev spectral technique. 47 refs.
Stream channels: The link between forests and fishes
Kathleen Sullivan; Thomas E. Lisle; C. Andrew Dolloff; Gordon E. Grant; Leslie M. Reid
1987-01-01
Abstract - The hydraulic characteristics of flow through channels are an important component of fish habitat. Salmonids have evolved in stream systems in which water velocity and flow depth vary spatially within the watershed and temporally on a daily, seasonal, and annual basis. Flow requirements vary during different phases of the freshwater life cycle of salmonids...
Implicit motives and basic need satisfaction in extreme endurance sports.
Schüler, Julia; Wegner, Mirko; Knechtle, Beat
2014-06-01
Previous research has shown that the effects of basic psychological needs on the flow experience in sports are moderated by implicit motives. However, so far, only leisure and health-oriented sports have been analyzed. In a pilot study and a main study (N = 29, 93), we tested whether the implicit achievement and affiliation motives interact with the need for competence and the need for social relatedness satisfaction, respectively, to predict flow experience and well-being in extreme endurance athletes. Results showed that highly achievement-motivated individuals benefited more from the need for competence satisfaction in terms of flow than individuals with a low achievement motive did. In addition, highly affiliation-motivated individuals whose need for social relatedness is satisfied reported higher positive affect and lower exercise addiction scores than athletes with a low motive. We discuss the differential effects of the interplay between the achievement and affiliation motives and basic needs on different outcome variables.
Cation exchange in a temporally fluctuating thin freshwater lens on top of saline groundwater
NASA Astrophysics Data System (ADS)
Eeman, S.; De Louw, P. G. B.; Van der Zee, S. E. A. T. M.
2017-01-01
In coastal-zone fields with a high groundwater level and sufficient rainfall, freshwater lenses are formed on top of saline or brackish groundwater. The fresh and the saline water meet at shallow depth, where a transition zone is found. This study investigates the mixing zone that is characterized by this salinity change, as well as by cation exchange processes, and which is forced by seepage and by rainfall which varies as a function of time. The processes are first investigated for a one-dimensional (1D) stream tube perpendicular to the interface concerning salt and major cation composition changes. The complex sequence of changes is explained with basic cation exchange theory. It is also possible to show that the sequence of changes is maintained when a two-dimensional field is considered where the upward saline seepage flows to drains. This illustrates that for cation exchange, the horizontal component (dominant for flow of water) has a small impact on the chemical changes in the vertical direction. The flow's horizontal orientation, parallel to the interface, leads to changes in concentration that are insignificant compared with those that are found perpendicular to the interface, and are accounted for in the 1D flow tube. Near the drains, differences with the 1D considerations are visible, especially in the longer term, exceeding 100 years. The simulations are compared with field data from the Netherlands which reveal similar patterns.
External vortex pumping by oscillating plate arrays of mayfly nymphs
NASA Astrophysics Data System (ADS)
Sensenig, Andrew; Kiger, Ken; Shultz, Jeffrey
2009-11-01
Mayfly nymphs are aquatic insects, many of which can generate ventilation currents by beating two linear arrays of external plate-like gills. The oscillation Reynolds number associated with the gill motion changes with animal size, varying from Re ˜ 2 to 50 depending on age and species. Thus mayflies provide a novel system model for studying ontogenetic changes in pumping mechanisms associated with transitions from a more viscous- to inertia-dominated flow. Observation of the 3-D kinematics of the gill motion of the species C. triangulifer reveal that the mayfly makes a transition in stroke motion when Re>5, with a corresponding shift in mean flow from the ventral to the dorsal direction. Time-resolved PIV measurements within the inter-gill space reveal the basic elements of the flow consist of vortex rings generated by the strokes of the individual gills. For the larger Re case, the phasing of the plate motion generates a complex array of small vortices that interact to produce an intermittent dorsally directed jet. For Re<5, distinct vortices are still observed, but increased diffusion creates vortices that simultaneously envelope several gills, forcing a new flow pattern to emerge and preventing the effective use of the high Re stroke kinematics. Thus we argue the transition in the kinematics is a reflection of a single mechanism adapted over the traversed Re range, rather than a shift to a completely new mechanism. This work is supported by the NSF under grant CBET-0730907.
Impact of boundaries on velocity profiles in bubble rafts.
Wang, Yuhong; Krishan, Kapilanjan; Dennin, Michael
2006-03-01
Under conditions of sufficiently slow flow, foams, colloids, granular matter, and various pastes have been observed to exhibit shear localization, i.e., regions of flow coexisting with regions of solidlike behavior. The details of such shear localization can vary depending on the system being studied. A number of the systems of interest are confined so as to be quasi two-dimensional, and an important issue in these systems is the role of the confining boundaries. For foams, three basic systems have been studied with very different boundary conditions: Hele-Shaw cells (bubbles confined between two solid plates); bubble rafts (a single layer of bubbles freely floating on a surface of water); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often, it is assumed that the impact of the boundaries is not significant in the "quasistatic limit," i.e., when externally imposed rates of strain are sufficiently smaller than internal kinematic relaxation times. In this paper, we directly test this assumption for rates of strain ranging from 10(-3) to 10(-2) s(-1). This corresponds to the quoted rate of strain that had been used in a number of previous experiments. It is found that the top plate dramatically alters both the velocity profile and the distribution of nonlinear rearrangements, even at these slow rates of strain. When a top is present, the flow is localized to a narrow band near the wall, and without a top, there is flow throughout the system.
Topographic Controls on Landslide and Debris-Flow Mobility
NASA Astrophysics Data System (ADS)
McCoy, S. W.; Pettitt, S.
2014-12-01
Regardless of whether a granular flow initiates from failure and liquefaction of a shallow landslide or from overland flow that entrains sediment to form a debris flow, the resulting flow poses hazards to downslope communities. Understanding controls on granular-flow mobility is critical for accurate hazard prediction. The topographic form of granular-flow paths can vary significantly across different steeplands and is one of the few flow-path properties that can be readily altered by engineered control structures such as closed-type check dams. We use grain-scale numerical modeling (discrete element method simulations) of free-surface, gravity-driven granular flows to investigate how different topographic profiles with the same mean slope and total relief can produce notable differences in flow mobility due to strong nonlinearities inherent to granular-flow dynamics. We describe how varying the profile shape from planar, to convex up, to concave up, as well how varying the number, size, and location of check dams along a flow path, changes flow velocity, thickness, discharge, energy dissipation, impact force and runout distance. Our preliminary results highlight an important path dependence for this nonlinear system, show that caution should be used when predicting flow dynamics from path-averaged properties, and provide some mechanics-based guidance for engineering control structures.
Facilitating Naval Knowledge Flow
2001-07-01
flow theory and its application to very-large enterprises such as the Navy. Without such basic understanding, one cannot expect to design effective...understanding knowledge flow? Informed by advances in knowledge-flow theory , this work can propel knowledge management toward the methods and tools...address the phenomenology of knowledge flow well, nor do we have the benefit of knowledge-flow theory and its application to very-large enterprises
Research in Natural Laminar Flow and Laminar-Flow Control, part 2
NASA Technical Reports Server (NTRS)
Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)
1987-01-01
Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.
Moving and adaptive grid methods for compressible flows
NASA Technical Reports Server (NTRS)
Trepanier, Jean-Yves; Camarero, Ricardo
1995-01-01
This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.
Flow Measurement. Training Module 3.315.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the principles of liquid flow and the methods of measuring open channel and fuel pipe flow rates. Included are objectives, instructor guides, student handouts, and transparency masters. The module addresses the basic flow formula, and…
Nonlinear Theory of The Geostrophic Adjustment
NASA Astrophysics Data System (ADS)
Zeitlin, V.
Nonlinear geostrophic adjustment and splitting of the fast and slow dynamical vari- ables are analysed in the framework of multi-layer and continuously stratified prim- itive equations by means of the multi-scale perturbation theory in the Rossby num- ber applied to localized initial disturbances. Two basic dynamical regimes: the quasi- geostrophic (QG) and the frontal geostrophic (FG) with small and large deviations of the isopycnal surfaces, respectively, are considered and differences in corresponding adjustment scenarios are displayed. Decoupling of the fast component of the flow is proven up to the third order in Rossby number and long-time corrections to the stan- dard balanced QG and FG models are found. Peculiarities of splitting in the FG regime due to the quasi-inertial oscillations are displayed and a Schrodinger-like modulation equations for the envelope of these latter are derived.
NASA Technical Reports Server (NTRS)
Rao, Dhanvada M.; Bhat, M. K.
1992-01-01
A proposed concept to alleviate high alpha asymmetry and lateral/directional instability by decoupling of forebody and wing vortices was studied on a generic chine forebody/ 60 deg. delta configuration in the NASA Langley 7 by 10 foot High Speed Tunnel. The decoupling technique involved inboard leading edge flaps of varying span and deflection angle. Six component force/moment characteristics, surface pressure distributions and vapor-screen flow visualizations were acquired, on the basic wing-body configuration and with both single and twin vertical tails at M sub infinity = 0.1 and 0.4, and in the range alpha = 0 to 50 deg and beta = -10 to +10 degs. Results are presented which highlight the potential of vortex decoupling via leading edge flaps for enhanced high alpha lateral/directional characteristics.
NASA Technical Reports Server (NTRS)
Zuk, J.
1976-01-01
The fundamental principles governing dynamic sealing operation are discussed. Different seals are described in terms of these principles. Despite the large variety of detailed construction, there appear to be some basic principles, or combinations of basic principles, by which all seals function, these are presented and discussed. Theoretical and practical considerations in the application of these principles are discussed. Advantages, disadvantages, limitations, and application examples of various conventional and special seals are presented. Fundamental equations governing liquid and gas flows in thin film seals, which enable leakage calculations to be made, are also presented. Concept of flow functions, application of Reynolds lubrication equation, and nonlubrication equation flow, friction and wear; and seal lubrication regimes are explained.
Computation of Flow Through Water-Control Structures Using Program DAMFLO.2
Sanders, Curtis L.; Feaster, Toby D.
2004-01-01
As part of its mission to collect, analyze, and store streamflow data, the U.S. Geological Survey computes flow through several dam structures throughout the country. Flows are computed using hydraulic equations that describe flow through sluice and Tainter gates, crest gates, lock gates, spillways, locks, pumps, and siphons, which are calibrated using flow measurements. The program DAMFLO.2 was written to compute, tabulate, and plot flow through dam structures using data that describe the physical properties of dams and various hydraulic parameters and ratings that use time-varying data, such as lake elevations or gate openings. The program uses electronic computer files of time-varying data, such as lake elevation or gate openings, retrieved from the U.S. Geological Survey Automated Data Processing System. Computed time-varying flow data from DAMFLO.2 are output in flat files, which can be entered into the Automated Data Processing System database. All computations are made in units of feet and seconds. DAMFLO.2 uses the procedures and language developed by the SAS Institute Inc.
Assessment of CFD Estimation of Aerodynamic Characteristics of Basic Reusable Rocket Configurations
NASA Astrophysics Data System (ADS)
Fujimoto, Keiichiro; Fujii, Kozo
Flow-fields around the basic SSTO-rocket configurations are numerically simulated by the Reynolds-averaged Navier-Stokes (RANS) computations. Simulations of the Apollo-like configuration is first carried out, where the results are compared with NASA experiments and the prediction ability of the RANS simulation is discussed. The angle of attack of the freestream ranges from 0° to 180° and the freestream Mach number ranges from 0.7 to 2.0. Computed aerodynamic coefficients for the Apollo-like configuration agree well with the experiments under a wide range of flow conditions. The flow simulations around the slender Apollo-type configuration are carried out next and the results are compared with the experiments. Computed aerodynamic coefficients also agree well with the experiments. Flow-fields are dominated by the three-dimensional massively separated flow, which should be captured for accurate aerodynamic prediction. Grid refinement effects on the computed aerodynamic coefficients are investigated comprehensively.
Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy
NASA Astrophysics Data System (ADS)
Liu, Chunwei; Guo, Muxing; Pandelaers, Lieven; Blanpain, Bart; Huang, Shuigen
Slag valorization in added value construction applications can contribute substantially to the sustainability of steel industry. The present work aims to investigate the crystallization behavior of a typical industrial Basic Oxygen Furnace (BOF) slag (CaO-FeOx-SiO2-based slag) by varying the basicity through hot stage engineering. A sample of industry Basic Oxygen Slag (BOF) was mixed with different quantities of silica (SiO2) to modify basicity. The effect of basicity on solidification microstructure and mineralogy was studied. The results suggest that the mineralogy of the solidified slag can be manipulated to enhance its suitability as raw material for construction applications.
ERIC Educational Resources Information Center
Hart, Vincent G.
1981-01-01
Two examples are given of ways traffic engineers estimate traffic flow. The first, Floating Car Method, involves some basic ideas and the notion of relative velocity. The second, Maximum Traffic Flow, is viewed to involve simple applications of calculus. The material provides insight into specialized applications of mathematics. (MP)
An Optical Study of Processes in Hydrogen Flame in a Tube
2002-07-01
growth of the hydrogen- flame length with the hydrogen flow rate was observed, whereas for a turbulent hydrogen jet (Reynolds number Re > 104 [5]), the... flame length remained almost constant and varied only weakly with the flow rate of hydrogen. For a subsonic jet flow, flame images display an...There are some data in the literature which show how the diffusive- flame length varies with the rate of hydrogen flow [4, 7]. The length of a
Tissue cohesion and the mechanics of cell rearrangement.
David, Robert; Luu, Olivia; Damm, Erich W; Wen, Jason W H; Nagel, Martina; Winklbauer, Rudolf
2014-10-01
Morphogenetic processes often involve the rapid rearrangement of cells held together by mutual adhesion. The dynamic nature of this adhesion endows tissues with liquid-like properties, such that large-scale shape changes appear as tissue flows. Generally, the resistance to flow (tissue viscosity) is expected to depend on the cohesion of a tissue (how strongly its cells adhere to each other), but the exact relationship between these parameters is not known. Here, we analyse the link between cohesion and viscosity to uncover basic mechanical principles of cell rearrangement. We show that for vertebrate and invertebrate tissues, viscosity varies in proportion to cohesion over a 200-fold range of values. We demonstrate that this proportionality is predicted by a cell-based model of tissue viscosity. To do so, we analyse cell adhesion in Xenopus embryonic tissues and determine a number of parameters, including tissue surface tension (as a measure of cohesion), cell contact fluctuation and cortical tension. In the tissues studied, the ratio of surface tension to viscosity, which has the dimension of a velocity, is 1.8 µm/min. This characteristic velocity reflects the rate of cell-cell boundary contraction during rearrangement, and sets a limit to rearrangement rates. Moreover, we propose that, in these tissues, cell movement is maximally efficient. Our approach to cell rearrangement mechanics links adhesion to the resistance of a tissue to plastic deformation, identifies the characteristic velocity of the process, and provides a basis for the comparison of tissues with mechanical properties that may vary by orders of magnitude. © 2014. Published by The Company of Biologists Ltd.
Status of Pulsed Inductive Thruster Research
NASA Technical Reports Server (NTRS)
Hrbud, Ivana; LaPointe, Michael; Vondra, Robert; Lovberg, Ralph; Dailey, C. Lee; Schafer, Charles (Technical Monitor)
2002-01-01
The TRW Pulsed Inductive Thruster (PIT) is an electromagnetic propulsion system that can provide high thrust efficiency over a wide range of specific impulse values. In its basic form, the PIT consists of a flat spiral coil covered by a thin dielectric plate. A pulsed gas injection nozzle distributes a thin layer of gas propellant across the plate surface at the same time that a pulsed high current discharge is sent through the coil. The rising current creates a time varying magnetic field, which in turn induces a strong azimuthal electric field above the coil. The electric field ionizes the gas propellant and generates an azimuthal current flow in the resulting plasma. The current in the plasma and the current in the coil flow in opposite directions, providing a mutual repulsion that rapidly blows the ionized propellant away from the plate to provide thrust. The thrust and specific impulse can be tailored by adjusting the discharge power, pulse repetition rate, and propellant mass flow, and there is minimal if any erosion due to the electrodeless nature of the discharge. Prior single-shot experiment,; performed with a Diameter diameter version of the PIT at TRW demonstrated specific impulse values between 2,000 seconds and 8,000 seconds, with thruster efficiencies of about 52% for ammonia. This paper outlines current and planned activities to transition the single shot device into a multiple repetition rate thruster capable of supporting NASA strategic enterprise missions.
Flow reversal and thermal limit in a heated rectangular channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L.Y.; Tichler, P.R.; Yang, B.W.
The thermal limit in a vertical rectangular channel was determined in a series of experiments whereby the internal coolant underwent a change in flow direction from forced downflow to upward natural circulation. The tests were designed to simulate the flow reversal transient in the High Flux Beam Reactor. A number of parameters were varied in the flow reversal experiments to examine their effects on the thermal limit. Among the parameters varied were the rate of flow coastdown, inlet subcooling, water level in the upper plenum, bypass ratio (ratio of initial flow through the heated section to initial flow through themore » bypass orifice), and single- verses double-sided heating.« less
Flow Structures and Interactions of a Fail-Safe Actuator
NASA Astrophysics Data System (ADS)
Khan, Wasif; Elimelech, Yoseph; Amitay, Michael
2010-11-01
Vortex generators are passive devices that are commonly used in many aerodynamic applications. In their basic concept, they enhance mixing, reduce or mitigate flow separation; however, they cause drag penalties at off design conditions. Micro vanes implement the same basic idea of vortex generators but their physical dimensions are much smaller. To achieve the same effect on the baseline flow field, micro vanes are combined with an active flow control device, so their net effect is comparable to that of vortex generators when the active device is energized. As a result of their small size, micro vanes have significantly less drag penalty at off design conditions. This concept of "dual-action" is the reason why such actuation is commonly called hybrid or fail-safe actuation. The present study explores experimentally the flow interaction of a synthetic-jet with a micro vane in a zero pressure gradient flow over a flat plate. Using the stereo particle image velocimetry technique a parametric study was conducted, where the effects of the micro vane shape, height and its angle with respect to the flow were examined, at several blowing ratios and synthetic-jet configurations.
NASA Technical Reports Server (NTRS)
Penland, J. A.; Marcum, D. C., Jr.; Stack, S. H.
1983-01-01
Results are presented from two separate tests on the same blended wing-body hydrogen fueled transport model at a Mach number of about 8 and a range of Reynolds numbers (based on theoretical body length) of 0.597 x 10 to the 6th power to about 156.22 x 10 to the 6th power. Tests were made in conventional hypersonic blowdown tunnel and a hypersonic shock tunnel at angles of attack of -2 deg to about 8 deg, with an extensive study made at a constant angle of attack of 3 deg. The model boundary-layer flow varied from laminar at the lower Reynolds numbers to predominantly turbulent at the higher Reynolds numbers. Model wall temperatures and stream static temperatures varied widely between the two tests, particularly at the lower Reynolds numbers. These temperature differences resulted in marked variations of the axial-force coefficients between the two tests, due in part to the effects of induced pressure and viscous interaction variations. The normal-force coefficient was essentially independent of Reynolds number. Analysis of results utilized current theoretical computer programs and basic boundary-layer theory.
Reducing flow-induced resonance in a cavity
NASA Technical Reports Server (NTRS)
Cattafesta, III, Louis N. (Inventor); Wlezien, Richard W. (Inventor); Won, Chin C. (Inventor); Garg, Sanjay (Inventor)
1998-01-01
A method and system are provided for reducing flow-induced resonance in a structure's cavity. A time-varying disturbance is introduced into the flow along a leading edge of the cavity. The time-varying disturbance can be periodic and can have the same or different frequency of the natural resonant frequency of the cavity. In one embodiment of the system, flaps are mounted flush with the surface of the structure along the cavity's leading edge. A piezoelectric actuator is coupled to each flap and causes a portion of each flap to oscillate into and out of the flow in accordance with the time-varying function. Resonance reduction can be achieved with both open-loop and closed-loop configurations of the system.
ERIC Educational Resources Information Center
ROBINAULT, ISABEL P.
THIS PUBLICATION LISTS 127 FILMS AND FILMSTRIPS RELATED TO THE DIAGNOSIS AND HABILITATION OF CEREBRAL PALSIED PERSONS WITH VARYING AGES, NEEDS, AND CIRCUMSTANCES. THE TITLES ARE LISTED ALPHABETICALLY IN SECTIONS--BASIC SCIENCES AND BASIC INFORMATION, ACTIVITIES OF DAILY LIVING, MEDICAL ASPECTS AND THERAPEUTIC MANAGEMENT, EVALUATION AND…
Precision non-contact polishing tool
Taylor, John S.
1997-01-01
A non-contact polishing tool that combines two orthogonal slurry flow geometries to provide flexibility in altering the shape of the removal footprint. By varying the relative contributions of the two flow geometries, the footprint shape can be varied between the characteristic shapes corresponding to the two independent flow regimes. In addition, the tool can include a pressure activated means by which the shape of the brim of the tool can be varied. The tool can be utilized in various applications, such as x-ray optical surfaces, x-ray lithography, lenses, etc., where stringent shape and finish tolerances are required.
Precision non-contact polishing tool
Taylor, J.S.
1997-01-07
A non-contact polishing tool is disclosed that combines two orthogonal slurry flow geometries to provide flexibility in altering the shape of the removal footprint. By varying the relative contributions of the two flow geometries, the footprint shape can be varied between the characteristic shapes corresponding to the two independent flow regimes. In addition, the tool can include a pressure activated means by which the shape of the brim of the tool can be varied. The tool can be utilized in various applications, such as x-ray optical surfaces, x-ray lithography, lenses, etc., where stringent shape and finish tolerances are required. 5 figs.
Cylindrical Asymmetrical Capacitors for Use in Outer Space
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W.
2007-01-01
A report proposes that cylindrical asymmetrical capacitors (CACs) be used to generate small thrusts for precise maneuvering of spacecraft on long missions. The report notes that it has been known for decades that when high voltages are applied to CACs in air, thrusts are generated - most likely as a result of ionization of air molecules and acceleration of the ions by the high electric fields. The report goes on to discuss how to optimize the designs of CACs for operation as thrusters in outer space. Components that could be used to enable outerspace operation include a supply of gas and a shroud, partly surrounding a CAC, into which the gas would flow. Other elements of operation and design discussed in the report include variation of applied voltage and/or of gas flow to vary thrust, effects of CAC and shroud dimensions on thrust and weight, some representative electrode configurations, and several alternative designs, including one in which the basic CAC configuration would be modified into something shaped like a conventional rocket engine with converging/diverging nozzle and an anode with gas feed in the space that, in a conventional rocket engine, would be the combustion chamber.
A Basic Experiment on the Aerodynamics of Sniffing
NASA Astrophysics Data System (ADS)
Settles, Gary S.; Kester, Douglas A.
1999-11-01
Our previous work (APS/DFD97:Ii1 and 98:FA10) used flow visualization to observe canine olfaction. The results raised some basic questions about the aerodynamics of sniffing, e.g. what flow rate is required, as a function of distance from a scent source, to acquire a detectable scent? Commercial sampler technology does not address such questions. A basic experiment was thus designed to investigate the aerodynamic phenomena and performance of sniffing. A stable thermal layer on a horizontal plane was used as a "scent" source per Reynolds Analogy. The detector was a thermocouple inside a sniffer tube. Flow patterns were observed by schlieren. Results show the importance of sniffer proximity to localize a scent source. A transient scent spike occurs at the sniff onset, followed by signal decline due to source depletion. Sniffing shows extreme sensitivity to disruptive air currents. Unstably-stratified scent sources (thermal plumes) are also considered. These results help us understand evolved sniffing behavior, and they suggest sampler design criteria for electronic-nose devices. (Research supported by DARPA.)
Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices
NASA Astrophysics Data System (ADS)
Martín, Juan A.; Paredes, Pedro
2017-12-01
A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.
BASIC Language Flow Charting Program (BASCHART). Technical Note 3-82.
ERIC Educational Resources Information Center
Johnson, Charles C.; And Others
This document describes BASCHART, a computer aid designed to decipher and automatically flow chart computer program logic; it also provides the computer code necessary for this process. Developed to reduce the labor intensive manual process of producing a flow chart for an undocumented or inadequately documented program, BASCHART will…
A novel simulation theory and model system for multi-field coupling pipe-flow system
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu
2017-09-01
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.
IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E
2017-10-09
To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.
Path Flow Estimation Using Time Varying Coefficient State Space Model
NASA Astrophysics Data System (ADS)
Jou, Yow-Jen; Lan, Chien-Lun
2009-08-01
The dynamic path flow information is very crucial in the field of transportation operation and management, i.e., dynamic traffic assignment, scheduling plan, and signal timing. Time-dependent path information, which is important in many aspects, is nearly impossible to be obtained. Consequently, researchers have been seeking estimation methods for deriving valuable path flow information from less expensive traffic data, primarily link traffic counts of surveillance systems. This investigation considers a path flow estimation problem involving the time varying coefficient state space model, Gibbs sampler, and Kalman filter. Numerical examples with part of a real network of the Taipei Mass Rapid Transit with real O-D matrices is demonstrated to address the accuracy of proposed model. Results of this study show that this time-varying coefficient state space model is very effective in the estimation of path flow compared to time-invariant model.
Physical habitat simulation system reference manual: version II
Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.
1989-01-01
There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.
Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method
NASA Astrophysics Data System (ADS)
Guo, Xin; Wang, Qiang
The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.
An in vitro experimental study of flow past aortic valve under varied pulsatile conditions
NASA Astrophysics Data System (ADS)
Zhang, Ruihang; Zhang, Yan
2017-11-01
Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).
Fluid flow in a spiral microfluidic duct
NASA Astrophysics Data System (ADS)
Harding, Brendan; Stokes, Yvonne
2018-04-01
We consider the steady, pressure driven flow of a viscous fluid through a microfluidic device having the geometry of a planar spiral duct with a slowly varying curvature and height smaller than width. For this problem, it is convenient to express the Navier-Stokes equations in terms of a non-orthogonal coordinate system. Then, after applying appropriate scalings, the leading order equations admit a relatively simple solution in the central region of the duct cross section. First-order corrections with respect to the duct curvature and aspect ratio parameters are also obtained for this region. Additional correction terms are needed to ensure that no slip and no penetration conditions are satisfied on the side walls. Our solutions allow for a top wall shape that varies with respect to the radial coordinate which allows us to study the flow in a variety of cross-sectional shapes, including trapezoidal-shaped ducts that have been studied experimentally. At leading order, the flow is found to depend on the local height and slope of the top wall within the central region. The solutions are compared with numerical approximations of a classical Dean flow and are found to be in good agreement for a small duct aspect ratio and a slowly varying and small curvature. We conclude that the slowly varying curvature typical of spiral microfluidic devices has a negligible impact on the flow in the sense that locally the flow does not differ significantly from the classical Dean flow through a duct having the same curvature.
Fluorescence Visualization of Hypersonic Flow Past Triangular and Rectangular Boundary-layer Trips
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Garcia, A. P.; Borg, Stephen E.; Dyakonov, Artem A.; Berry, Scott A.; Inman, Jennifer A.; Alderfer, David W.
2007-01-01
Planar laser-induced fluorescence (PLIF) flow visualization has been used to investigate the hypersonic flow of air over surface protrusions that are sized to force laminar-to-turbulent boundary layer transition. These trips were selected to simulate protruding Space Shuttle Orbiter heat shield gap-filler material. Experiments were performed in the NASA Langley Research Center 31-Inch Mach 10 Air Wind Tunnel, which is an electrically-heated, blowdown facility. Two-mm high by 8-mm wide triangular and rectangular trips were attached to a flat plate and were oriented at an angle of 45 degrees with respect to the oncoming flow. Upstream of these trips, nitric oxide (NO) was seeded into the boundary layer. PLIF visualization of this NO allowed observation of both laminar and turbulent boundary layer flow downstream of the trips for varying flow conditions as the flat plate angle of attack was varied. By varying the angle of attack, the Mach number above the boundary layer was varied between 4.2 and 9.8, according to analytical oblique-shock calculations. Computational Fluid Dynamics (CFD) simulations of the flowfield with a laminar boundary layer were also performed to better understand the flow environment. The PLIF images of the tripped boundary layer flow were compared to a case with no trip for which the flow remained laminar over the entire angle-of-attack range studied. Qualitative agreement is found between the present observed transition measurements and a previous experimental roughness-induced transition database determined by other means, which is used by the shuttle return-to-flight program.
Efficient parallel architecture for highly coupled real-time linear system applications
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Homaifar, Abdollah; Barua, Soumavo
1988-01-01
A systematic procedure is developed for exploiting the parallel constructs of computation in a highly coupled, linear system application. An overall top-down design approach is adopted. Differential equations governing the application under consideration are partitioned into subtasks on the basis of a data flow analysis. The interconnected task units constitute a task graph which has to be computed in every update interval. Multiprocessing concepts utilizing parallel integration algorithms are then applied for efficient task graph execution. A simple scheduling routine is developed to handle task allocation while in the multiprocessor mode. Results of simulation and scheduling are compared on the basis of standard performance indices. Processor timing diagrams are developed on the basis of program output accruing to an optimal set of processors. Basic architectural attributes for implementing the system are discussed together with suggestions for processing element design. Emphasis is placed on flexible architectures capable of accommodating widely varying application specifics.
Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows
NASA Technical Reports Server (NTRS)
Lane, David A.
1996-01-01
Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.
Grain-size-independent plastic flow at ultrahigh pressures and strain rates.
Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T
2015-02-13
A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100 GPa) and strain rate (∼10(7) s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25 μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion.
Kanagawa, Tetsuya
2015-05-01
This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.
Air flow in the boundary layer near a plate
NASA Technical Reports Server (NTRS)
Dryden, Hugh L
1937-01-01
The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions.
Effects of rainfall and surface flow on chemical diffusion from soil to runoff water
USDA-ARS?s Scientific Manuscript database
Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...
An Ion-Selective Electrode/Flow-Injection Analysis Experiment: Determination of Potassium in Serum.
ERIC Educational Resources Information Center
Meyerhoff, Mark E.; Kovach, Paul M.
1983-01-01
Describes a low-cost, senior-level, instrumental analysis experiment in which a home-made potassium tubular flow-through electrode is constructed and incorporated into a flow injection analysis system (FIA). Also describes experiments for evaluating the electrode's response properties, examining basic FIA concepts, and determining potassium in…
Van Metre, P.C.
1990-01-01
A computer-program interface between a geographic-information system and a groundwater flow model links two unrelated software systems for use in developing the flow models. The interface program allows the modeler to compile and manage geographic components of a groundwater model within the geographic information system. A significant savings of time and effort is realized in developing, calibrating, and displaying the groundwater flow model. Four major guidelines were followed in developing the interface program: (1) no changes to the groundwater flow model code were to be made; (2) a data structure was to be designed within the geographic information system that follows the same basic data structure as the groundwater flow model; (3) the interface program was to be flexible enough to support all basic data options available within the model; and (4) the interface program was to be as efficient as possible in terms of computer time used and online-storage space needed. Because some programs in the interface are written in control-program language, the interface will run only on a computer with the PRIMOS operating system. (USGS)
NASA Astrophysics Data System (ADS)
Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin
2016-08-01
Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.
Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section
NASA Astrophysics Data System (ADS)
Lind, Andrew H.; Jones, Anya R.
2016-07-01
Wind tunnel experiments were performed on a sinusoidally oscillating NACA 0012 blade section in reverse flow. Time-resolved particle image velocimetry and unsteady surface pressure measurements were used to characterize the evolution of reverse flow dynamic stall and its sensitivity to pitch and flow parameters. The effects of a sharp aerodynamic leading edge on the fundamental flow physics of reverse flow dynamic stall are explored in depth. Reynolds number was varied up to Re = 5 × 105, reduced frequency was varied up to k = 0.511, mean pitch angle was varied up to 15∘, and two pitch amplitudes of 5∘ and 10∘ were studied. It was found that reverse flow dynamic stall of the NACA 0012 airfoil is weakly sensitive to the Reynolds numbers tested due to flow separation at the sharp aerodynamic leading edge. Reduced frequency strongly affects the onset and persistence of dynamic stall vortices. The type of dynamic stall observed (i.e., number of vortex structures) increases with a decrease in reduced frequency and increase in maximum pitch angle. The characterization and parameter sensitivity of reverse flow dynamic stall given in the present work will enable the development of a physics-based analytical model of this unsteady aerodynamic phenomenon.
Free turbulent shear flows. Volume 2: Summary of data
NASA Technical Reports Server (NTRS)
Birch, S. F.
1973-01-01
The proceedings of a conference on free turbulent shear flows are presented. Objectives of the conference are as follows: (1) collect and process data for a variety of free mixing problems, (2) assess present theoretical capability for predicting mean velocity, concentration, and temperature distributions in free turbulent flows, (3) identify and recommend experimental studies to advance knowledge of free shear flows, and (4) increase understanding of basic turbulent mixing process for application to free shear flows. Examples of specific cases of jet flow are included.
Insights from field observations into controls on flow front speed in submarine sediment flows
NASA Astrophysics Data System (ADS)
Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.
2017-12-01
Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.
Experimental investigation of two-phase heat transfer in a porous matrix.
NASA Technical Reports Server (NTRS)
Von Reth, R.; Frost, W.
1972-01-01
One-dimensional two-phase flow transpiration cooling through porous metal is studied experimentally. The experimental data is compared with a previous one-dimensional analysis. Good agreement with calculated temperature distribution is obtained as long as the basic assumptions of the analytical model are satisfied. Deviations from the basic assumptions are caused by nonhomogeneous and oscillating flow conditions. Preliminary derivation of nondimensional parameters which characterize the stable and unstable flow conditions is given. Superheated liquid droplets observed sputtering from the heated surface indicated incomplete evaporation at heat fluxes well in access of the latent energy transport. A parameter is developed to account for the nonequilibrium thermodynamic effects. Measured and calculated pressure drops show contradicting trends which are attributed to capillary forces.
Tracing Thermal Creep Through Granular Media
NASA Astrophysics Data System (ADS)
Steinpilz, Tobias; Teiser, Jens; Koester, Marc; Schywek, Mathias; Wurm, Gerhard
2017-08-01
A temperature gradient within a granular medium at low ambient pressure drives a gas flow through the medium by thermal creep. We measured the resulting air flow for a sample of glass beads with particle diameters between 290 μ m and 420 μ m for random close packing. Ambient pressure was varied between 1 Pa and 1000 Pa. The gas flow was quantified by means of tracer particles during parabolic flights. The flow varies systematically with pressure between 0.2 cm/s and 6 cm/s. The measured flow velocities are in quantitative agreement to model calculations that treat the granular medium as a collection of linear capillaries.
Foundations of radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Mihalas, D.; Mihalas, B. W.
This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.
Relaminarization of fluid flows
NASA Technical Reports Server (NTRS)
Narasimha, R.; Sreenivasan, K. R.
1979-01-01
The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.
Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho
2009-07-01
A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.
Flow Cytometry Technician | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture
Exploring the role of flood transience in coarse bed load sediment transport
NASA Astrophysics Data System (ADS)
Phillips, C. B.; Singer, M. B.; Hill, K. M.; Paola, C.
2015-12-01
The rate of bed load transport under steady flow is known to vary both spatially and temporally due to various hydrologic and granular phenomena. Grain size distributions and riverbed properties (packing, imbrication, etc.) are known to affect flux for a particular value of applied flow stress, while hydrology is mainly assumed to control the magnitude of the applied bed stress above the threshold for bed material entrainment. The prediction of bed load sediment transport in field settings is further complicated by the inherent transience in flood hydrology, but little is known about how such flood transience influences bed load flux over a range of applied bed stress. Here we investigate the role of flood transience for gravel bed load transport through controlled laboratory experiments in a 28 m long 0.5 meter wide flume. We explore transient flow as the combination of unsteady and intermittent flow, where unsteady flow varies in magnitude over a given duration, and intermittent flow is characterized by turning the flow on and off. We systematically vary these details of flood hydrographs from one experiment to the next, and monitor the bed load as it varies with water discharge in real time by measuring sediment flux and tracking particles. We find that even with a narrow unimodal grain size distribution and constant sediment supply we observe hysteresis in bed load flux, different thresholds for entrainment and distrainment for the rising and falling limbs of a flood, and a threshold of entrainment that can vary one flood hydrograph to the next. Despite these complex phenomena we find that the total bed load transported for each flood plots along a linear trend with the integrated excess stress, consistent with prior field results. These results suggest that while the effects of transient flow and the shape of the hydrograph are measurable, they are second-order compared to the integrated excess stress.
Fuel pumping system and method
Shafer, Scott F [Morton, IL; Wang, Lifeng ,
2006-12-19
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Fuel Pumping System And Method
Shafer, Scott F.; Wang, Lifeng
2005-12-13
A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.
Basic study on hot-wire flow meter in forced flow of liquid hydrogen
NASA Astrophysics Data System (ADS)
Oura, Y.; Shirai, Y.; Shiotsu, M.; Murakami, K.; Tatsumoto, H.; Naruo, Y.; Nonaka, S.; Kobayashi, H.; Inatani, Y.; Narita, N.
2014-01-01
Liquid hydrogen (LH2) is a key issue in a carbon-free energy infrastructure at the energy storage and transportation stage. The typical features of LH2 are low viscosity, large latent heat and small density, compared with other general liquids. It is necessary to measure a mass flow of liquid hydrogen with a simple and compact method, especially in a two phase separate flow condition. We have proposed applying a hot-wire type flow meter, which is usually used a for gas flow meter, to LH2 flow due to the quite low viscosity and density. A test model of a compact LH2 hot-wire flow meter to measure local flow velocities near and around an inside perimeter of a horizontal tube by resistance thermometry was designed and made. The model flow meter consists of two thin heater wires made of manganin fixed in a 10 mm-diameter and 40 mm-length tube flow path made of GFRP. Each rigid heater wire was set twisted by 90 degrees from the inlet to the outlet along the inner wall. In other words, the wires were aslant with regard to the LH2 stream line. The heated wire was cooled by flowing LH2, and the flow velocity was obtained by means of the difference of the cooling characteristic in response to the flow velocity. In this report, we show results on the basic experiments with the model LH2 hot-wire flow meter. First, the heat transfer characteristics of the two heater wires for several LH2 flow velocities were measured. Second, the heating current was controlled to keep the wire temperature constant for various flow velocities. The relations between the flow velocity and the heating current were measured. The feasibility of the proposed model was confirmed.
Back to Basics: Teaching the Statement of Cash Flows
ERIC Educational Resources Information Center
Cecil, H. Wayne; King, Teresa T.; Andrews, Christine P.
2011-01-01
A conceptual foundation for the Statement of Cash Flows based on the ten elements of financial statements provides students with a deep understanding of core accounting concepts. Traditional methods of teaching the statement of cash flows tend to focus on statement preparation rules, masking the effect of business events on the change in cash.…
Parameters of the plasma of a dc pulsating discharge in a supersonic air flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A.
A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.
NASA Astrophysics Data System (ADS)
Pringle, James E.; King, Andrew
2003-07-01
Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas
Simulation and phases of macroscopic particles in vortex flow
NASA Astrophysics Data System (ADS)
Rice, Heath Eric
Granular materials are an interesting class of media in that they exhibit many disparate characteristics depending on conditions. The same set of particles may behave like a solid, liquid, gas, something in-between, or something completely unique depending on the conditions. Practically speaking, granular materials are used in many aspects of manufacturing, therefore any new information gleaned about them may help refine these techniques. For example, learning of a possible instability may help avoid it in practical application, saving machinery, money, and even personnel. To that end, we intend to simulate a granular medium under tornado-like vortex airflow by varying particle parameters and observing the behaviors that arise. The simulation itself was written in Python from the ground up, starting from the basic simulation equations in Poschel [1]. From there, particle spin, viscous friction, and vertical and tangential airflow were added. The simulations were then run in batches on a local cluster computer, varying the parameters of radius, flow force, density, and friction. Phase plots were created after observing the behaviors of the simulations and the regions and borders were analyzed. Most of the results were as expected: smaller particles behaved more like a gas, larger particles behaved more like a solid, and most intermediate simulations behaved like a liquid. A small subset formed an interesting crossover region in the center, and under moderate forces began to throw a few particles at a time upward from the center in a fountain-like effect. Most borders between regions appeared to agree with analysis, following a parabolic critical rotational velocity at which the parabolic surface of the material dips to the bottom of the mass of particles. The fountain effects seemed to occur at speeds along and slightly faster than this division. [1] Please see thesis for references.
Dynamic model including piping acoustics of a centrifugal compression system
NASA Astrophysics Data System (ADS)
van Helvoirt, Jan; de Jager, Bram
2007-04-01
This paper deals with low-frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the presence of acoustic pulsations in the compression system under study. It is argued that these acoustic phenomena are common for full-scale compression systems where pipe system dynamics have a significant influence on the overall system behavior. The main objective of this paper is to extend the basic compressor model in order to include the relevant pipe system dynamics. For this purpose a pipeline model is proposed, based on previous developments for fluid transmission lines. The connection of this model to the lumped parameter model is accomplished via the selection of appropriate boundary conditions. Validation results will be presented, showing a good agreement between simulation and measurement data. The results indicate that the damping of piping transients depends on the nominal, time-varying pressure and flow velocity. Therefore, model parameters are made dependent on the momentary pressure and a switching nonlinearity is introduced into the model to vary the acoustic damping as a function of flow velocity. These modifications have limited success and the results indicate that a more sophisticated model is required to fully describe all (nonlinear) acoustic effects. However, the very good qualitative results show that the model adequately combines compressor and pipe system dynamics. Therefore, the proposed model forms a step forward in the analysis and modeling of surge in full-scale centrifugal compression systems and opens the path for further developments in this field.
A pressure flux-split technique for computation of inlet flow behavior
NASA Technical Reports Server (NTRS)
Pordal, H. S.; Khosla, P. K.; Rubin, S. G.
1991-01-01
A method for calculating the flow field in aircraft engine inlets is presented. The phenomena of inlet unstart and restart are investigated. Solutions of the reduced Navier-Stokes (RNS) equations are obtained with a time consistent direct sparse matrix solver that computes the transient flow field both internal and external to the inlet. Time varying shocks and time varying recirculation regions can be efficiently analyzed. The code is quite general and is suitable for the computation of flow for a wide variety of geometries and over a wide range of Mach and Reynolds numbers.
Viscoelastic stability in a single-screw channel flow
NASA Astrophysics Data System (ADS)
Agbessi, Y.; Bu, L. X.; Béreaux, Y.; Charmeau, J.-Y.
2018-05-01
In this work, we perform a linear stability analysis on pressure and drag flows of an Upper Convected Maxwell viscoelastic fluid. We use the well-recognised method of expanding the disturbances in Chebyschev polynomials and solve the resulting generalized eigenvalues problem with a collocation spectra method. Both the level of elasticity and the back-pressure vary. In a second stage, recent analytic solutions of viscoelastic fluid flows in slowly varying sections [1] are used to extend this stability analysis to flows in a compression or in a diverging section of a single screw channel, for example a wave mixing screw.
Tear dynamics in healthy and dry eyes.
Cerretani, Colin F; Radke, C J
2014-06-01
Dry-eye disease, an increasingly prevalent ocular-surface disorder, significantly alters tear physiology. Understanding the basic physics of tear dynamics in healthy and dry eyes benefits both diagnosis and treatment of dry eye. We present a physiological-based model to describe tear dynamics during blinking. Tears are compartmentalized over the ocular surface; the blink cycle is divided into three repeating phases. Conservation laws quantify the tear volume and tear osmolarity of each compartment during each blink phase. Lacrimal-supply and tear-evaporation rates are varied to reveal the dependence of tear dynamics on dry-eye conditions, specifically tear osmolarity, tear volume, tear-turnover rate (TTR), and osmotic water flow. Predicted periodic-steady tear-meniscus osmolarity is 309 and 321 mOsM in normal and dry eyes, respectively. Tear osmolarity, volume, and TTR all match available clinical measurements. Osmotic water flow through the cornea and conjunctiva contribute 10 and 50% to the total tear supply in healthy and dry-eye conditions, respectively. TTR in aqueous-deficient dry eye (ADDE) is only half that in evaporative dry eye (EDE). The compartmental periodic-steady tear-dynamics model accurately predicts tear behavior in normal and dry eyes. Inclusion of osmotic water flow is crucial to match measured tear osmolarity. Tear-dynamics predictions corroborate the use of TTR as a clinical discriminator between ADDE and EDE. The proposed model is readily extended to predict the dynamics of aqueous solutes such as drugs or fluorescent tags.
Convection Induced by Traveling Magnetic Fields in Semiconductor Melts
NASA Technical Reports Server (NTRS)
Konstantin, Mazuruk
2000-01-01
Axisymmetric traveling magnetic fields (TMF) can be beneficial for crystal growth applications. such as the vertical Bridgman, float zone or traveling heater methods. TMF induces a basic flow in the form of a single roll. This type of flow can enhance mass and heat transfer to the growing crystal. More importantly, the TMF Lorentz body force induced in the system can counterbalance the buoyancy forces, so the resulting convection can be much smaller and even the direction of it can be changed. In this presentation, we display basic features of this novel technique. In particular, numerical calculations of the Lorentz force for arbitrary frequencies will be presented along with induced steady-state fluid flow profiles. Also, numerical modeling of the TMF counter-balancing natural convection in vertical Bridgman systems will be demonstrated.
Device Management and Flow Optimization on Left Ventricular Assist Device Support.
Tchoukina, Inna; Smallfield, Melissa C; Shah, Keyur B
2018-07-01
The authors discuss principles of continuous flow left ventricular assist device (LVAD) operation, basic differences between the axial and centrifugal flow designs and hemodynamic performance, normal LVAD physiology, and device interaction with the heart. Systematic interpretation of LVAD parameters and recognition of abnormal patterns of flow and pulsatility on the device interrogation are necessary for clinical assessment of the patient. Optimization of pump flow using LVAD parameters and echocardiographic and hemodynamics guidance are reviewed. Copyright © 2018 Elsevier Inc. All rights reserved.
Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production
NASA Astrophysics Data System (ADS)
Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani
2018-02-01
This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.
Several examples where turbulence models fail in inlet flow field analysis
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1993-01-01
Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.
Iverson, R.M.; Denlinger, R.P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.; Denlinger, Roger P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
From cat's eyes to disjoint multicellular natural convection flow in tall tilted cavities
NASA Astrophysics Data System (ADS)
Nicolás, Alfredo; Báez, Elsa; Bermúdez, Blanca
2011-07-01
Numerical results of two-dimensional natural convection problems, in air-filled tall cavities, are reported to study the change of the cat's eyes flow as some parameters vary, the aspect ratio A and the angle of inclination ϕ of the cavity, with the Rayleigh number Ra mostly fixed; explicitly, the range of the variation is given by 12⩽A⩽20 and 0°⩽ϕ⩽270°; about Ra=1.1×10. A novelty contribution of this work is the transition from the cat's eyes changes, as A varies, to a disjoint multicellular flow, as ϕ varies. These flows may be modeled by the unsteady Boussinesq approximation in stream function and vorticity variables which is solved with a fixed point iterative process applied to the nonlinear elliptic system that results after time discretization. The validation of the results relies on mesh size and time-step independence studies.
Fractional vector calculus for fractional advection dispersion
NASA Astrophysics Data System (ADS)
Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.
2006-07-01
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.
Microwave/Sonic Apparatus Measures Flow and Density in Pipe
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Ngo, Phong; Carl, J. R.; Byerly, Kent A.
2004-01-01
An apparatus for measuring the rate of flow and the mass density of a liquid or slurry includes a special section of pipe instrumented with microwave and sonic sensors, and a computer that processes digitized readings taken by the sensors. The apparatus was conceived specifically for monitoring a flow of oil-well-drilling mud, but the basic principles of its design and operation are also applicable to monitoring flows of other liquids and slurries.
Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device.
Holland, C; Yu, J H; James, A; Nishijima, D; Shimada, M; Taheri, N; Tynan, G R
2006-05-19
An azimuthally symmetric radially sheared plasma fluid flow is observed to spontaneously form in a cylindrical magnetized helicon plasma device with no external sources of momentum input. A turbulent momentum conservation analysis shows that this shear flow is sustained by the Reynolds stress generated by collisional drift turbulence in the device. The results provide direct experimental support for the basic theoretical picture of drift-wave-shear-flow interactions.
Application of the Moment Method in the Slip and Transition Regime for Microfluidic Flows
2011-01-01
systems ( MEMS ), fluid flow at the micro- and nano-scale has received considerable attention [1]. A basic understanding of the nature of flow and heat ...Couette Flow Many MEMS devices contain oscillating parts where air (viscous) damping plays an important role. To understand the damping mechanisms...transfer in these devices is considered essential for efficient design and control of MEMS . Engineering applications for gas microflows include
Simulation of spiral instabilities in wide-gap spherical Couette flow
NASA Astrophysics Data System (ADS)
Abbas, Suhail; Yuan, Li; Shah, Abdullah
2018-04-01
We numerically study the wide-gap spherical Couette flow between two concentric spheres with the inner sphere rotating and the outer one stationary. Two wide-gap clearance ratios, β =({R}2-{R}1)/{R}1=0.33 and 0.50, are chosen to investigate the transition scenarios of the spiral instabilities with increasing Reynolds number ({{Re}}). For β =0.33, we first obtain the steady 1-vortex flow at {{Re}} = 700 by using the 1-vortex flow for a medium gap β =0.18 at {{Re}} = 700 as the initial condition. The 1-vortex flow for β =0.33 exists for {Re} \\in [450,2050] and it collapses back to the basic flow when {Re} > 2050. We then detect spiral instabilities by increasing the Reynolds number gradually. The basic flow becomes unstable at {{Re}}{{c}1} = 2900 where spiral waves of wavenumber m = 6 appear first. Increasing the Reynolds number further, the wavenumber decreases to 5 and 4 at {{Re}}{{c}2} = 3000 and {{Re}}{{c}3} = 4000 respectively. The flow becomes turbulent when {Re} > 4500. For β =0.50, no Taylor vortices are found. The basic flow becomes unstable at {{Re}}{{c}1} = 1280 where spiral waves of wavenumber m = 5 occur first. As the Reynolds number is increased, the wavenumber becomes 4 at {{Re}}{{c}2} = 1700, 5 again at {{Re}}{{c}3} = 1800, 4 at {{Re}}{{c}4} = 2000, and becomes 3 at {{Re}}{{c}5} = 2200 while the flow becomes turbulent for {Re} > 2200. The computed rotational frequencies as a function of the Reynolds number for spiral waves of wavenumber m = 5, 4 and 3 are in good agreement with previous experimental results. The present transition scenario of the spiral wavenumber with increasing Reynolds number for β =0.33 is the same as that of Egbers and Rath (1995 Acta Mech. 111 125-40), while for β =0.50, it is only partially similar to those of Wulf et al (1999 Phys. Fluids 11 1359-72) and Egbers and Rath (1995 Acta Mech. 111 125-40).
NASA Astrophysics Data System (ADS)
Woo, C.; Kang, M.; Seo, J.; Kim, D.; Lee, C.
2017-12-01
As the mountainous urbanization has increased the concern about landslides in the living area, it is essential to develop the technology to minimize the damage through quick identification and sharing of the disaster occurrence information. In this study, to establish an effective system of alert evacuation that has influence on the residents, we used the debris flow combination degree of risk to predict the risk of the disaster and the level of damage and to select evacuation priorities. Based on the GIS information, the physical strength and social vulnerability were determined by following the debris flow combination of the risk formula. The results classify the physical strength hazard rating of the debris flow combination of the through the normalization process. Debris flow the estimated residential population included in the damage range of the damage prediction map is based on the area and the unit size data. Prediction of occupant formula was calculated by applying different weighting to the resident population and users, and the result was classified into 5 classes as the debris flow physical strength. The debris flow occurrence physical strength and social and psychological vulnerability were classified into the classifications to be reflected in the debris flow integrated risk map using the matrix technique. In addition, to supplement the risk of incorporation of debris flow, we added weight to disaster vulnerable facilities that require a lot of time and manpower to evacuate. The basic model of welfare facilities was supplemented by using basic data, population density, employment density and GDP. First, evacuate areas with high integrated degree of risk level, and evacuate with consideration of physical class differences if classification difficult because of the same or similar grade among the management areas. When the physical hazard class difference is similar, the population difference of the area including the welfare facility is considered first, and the priority is decided in order of age distribution, population density by period, and class difference of residential facility. The results of this study are expected be used as basic data for establishing a safety net for landslide by evacuation systems for disasters. Keyword: Landslide, Debris flow, Early warning system, evacuation
Vortex flows with suspended separation regions and long-range untwisted central jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramovich, G.N.; Trofimov, R.S.
1988-05-01
A study is made of possible physicoaerodynamic configurations of vortical flow with suspended separation regions and untwisted central jets. Such flows are encountered in power plants (heat exchangers, combustion chambers, and chemical reactors) and in nature (tornadoes). The basic configurations of several flows of this type are described, including the structure of a flow formed by coaxial cocurrent twisted jets, the flow in a conical swirl chamber with the formation of an untwisted long-range axial jet, the flow pattern in a gas turbine engine chamber, and some considerations regarding the aerodynamics of a tornado.
The Hitchhiker's Guide to Flow Chemistry ∥.
Plutschack, Matthew B; Pieber, Bartholomäus; Gilmore, Kerry; Seeberger, Peter H
2017-09-27
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Elementary Hemodynamic Principles Based on Modified Bernoulli's Equation.
ERIC Educational Resources Information Center
Badeer, Henry S.
1985-01-01
Develops and expands basic concepts of Bernoulli's equation as it applies to vascular hemodynamics. Simple models are used to illustrate gravitational potential energy, steady nonturbulent flow, pump-driven streamline flow, and other areas. Relationships to the circulatory system are also discussed. (DH)
Combining Basic Business Math and Electronic Calculators.
ERIC Educational Resources Information Center
Merchant, Ronald
As a means of alleviating math anxiety among business students and of improving their business machine skills, Spokane Falls Community College offers a course in which basic business math skills are mastered through the use of desk top calculators. The self-paced course, which accommodates varying student skill levels, requires students to: (1)…
Visualization of Concrete Slump Flow Using the Kinect Sensor
Park, Minbeom
2018-01-01
Workability is regarded as one of the important parameters of high-performance concrete and monitoring it is essential in concrete quality management at construction sites. The conventional workability test methods are basically based on length and time measured by a ruler and a stopwatch and, as such, inevitably involves human error. In this paper, we propose a 4D slump test method based on digital measurement and data processing as a novel concrete workability test. After acquiring the dynamically changing 3D surface of fresh concrete using a 3D depth sensor during the slump flow test, the stream images are processed with the proposed 4D slump processing algorithm and the results are compressed into a single 4D slump image. This image basically represents the dynamically spreading cross-section of fresh concrete along the time axis. From the 4D slump image, it is possible to determine the slump flow diameter, slump flow time, and slump height at any location simultaneously. The proposed 4D slump test will be able to activate research related to concrete flow simulation and concrete rheology by providing spatiotemporal measurement data of concrete flow. PMID:29510510
Visualization of Concrete Slump Flow Using the Kinect Sensor.
Kim, Jung-Hoon; Park, Minbeom
2018-03-03
Workability is regarded as one of the important parameters of high-performance concrete and monitoring it is essential in concrete quality management at construction sites. The conventional workability test methods are basically based on length and time measured by a ruler and a stopwatch and, as such, inevitably involves human error. In this paper, we propose a 4D slump test method based on digital measurement and data processing as a novel concrete workability test. After acquiring the dynamically changing 3D surface of fresh concrete using a 3D depth sensor during the slump flow test, the stream images are processed with the proposed 4D slump processing algorithm and the results are compressed into a single 4D slump image. This image basically represents the dynamically spreading cross-section of fresh concrete along the time axis. From the 4D slump image, it is possible to determine the slump flow diameter, slump flow time, and slump height at any location simultaneously. The proposed 4D slump test will be able to activate research related to concrete flow simulation and concrete rheology by providing spatiotemporal measurement data of concrete flow.
Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters
NASA Technical Reports Server (NTRS)
Jentink, Henk W.; Bogue, Rodney K.
2005-01-01
Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.
Paul, Parneet
2013-01-01
A dead-end filtration model that includes the three main fouling mechanisms mentioned in Hermia (i.e., cake build-up, complete pore blocking, and pore constriction) and that was based on a constant trans-membrane pressure (TMP) operation was extensively modified so it could be used for a sidestream configuration membrane bioreactor (MBR) situation. Modifications and add-ons to this basic model included: alteration so that it could be used for varying flux and varying TMP operations; inclusion of a backwash mode; it described pore constriction (i.e., irreversible fouling) in relation to the concentration of soluble microbial products (SMP) in the liquor; and, it could be used in a cross flow scenario by the addition of scouring terms in the model formulation. The additional terms in this modified model were checked against an already published model to see if they made sense, physically speaking. Next this modified model was calibrated and validated in Matlab© using data collected by carrying out flux stepping tests on both a pilot sidestream MBR plant, and then a pilot membrane filtration unit. The model fit proved good, especially for the pilot filtration unit data. In conclusion, this model formulation is of the right level of complexity to be used for most practical MBR situations. PMID:24958618
Hydraulics of epiphreatic flow of a karst aquifer
NASA Astrophysics Data System (ADS)
Gabrovšek, Franci; Peric, Borut; Kaufmann, Georg
2018-05-01
The nature of epiphreatic flow remains an important research challenge in karst hydrology. This study focuses on the flood propagation along the epiphreatic system of Reka-Timavo system (Kras/Carso Plateau, Slovenia/Italy). It is based on long-term monitoring of basic physical parameters (pressure/level, temperature, specific electric conductivity) of ground water in six active caves belonging to the flow system. The system vigorously responds to flood events, with stage rising >100 m in some of the caves. Besides presenting the response of the system to flood events of different scales, the work focuses on the interpretation of recorded hydrographs in view of the known distribution and size of conduits and basic hydraulic relations. Furthermore, the hydrographs were used to infer the unknown geometry between the observation points. This way, the main flow restrictors, overflow passages and large epiphreatic storages were identified. The assumptions were tested with a hydraulic model, where the inversion procedure was used for an additional parameter optimisation. Time series of temperature and specific electric conductivity were used to assess the apparent velocities of flow between consecutive points.
Basic data for some recent Australian heat-flow measurements
Munroe, Robert J.; Sass, J.H.; Milburn, G.T.; Jaeger, J.C.; Tammemagi, H.Y.
1975-01-01
This report has been compiled to provide background information and detailed temperature and thermal conductivity data for the heat-flow values reported in Sass, Jaeger, and Munroe (in press). The data were collected as part of a joint heat-flow study by the Australian National University (ANU) and the U.S. Geological Survey (USGS) under the direction of J. C. Jaeger (ANU) and J. H. Sass (USGS). The format is similar to that used for basic data from United States heat-flow determinations (Sass and Munroe, 1974). Each section contains a state map showing the geographic distribution of heat-flow data followed by tables which list individual temperatures, thermal conductivities, and radiogenic heat production values. A companion volume (Bunker and others, 1975) gives details of the heat-production measurements together with individual radioelement concentrations. Localities are arranged in alphabetical order within each state. The methods and techniques of measurements have been described by Sass and others (1971a, b). Unusual methods or procedures which differ markedly from these techniques are noted and described in the comments sections of the tables.
Varied Practice in Laparoscopy Training: Beneficial Learning Stimulation or Cognitive Overload?
Spruit, Edward N; Kleijweg, Luca; Band, Guido P H; Hamming, Jaap F
2016-01-01
Determining the optimal design for surgical skills training is an ongoing research endeavor. In education literature, varied practice is listed as a positive intervention to improve acquisition of knowledge and motor skills. In the current study we tested the effectiveness of a varied practice intervention during laparoscopy training. Twenty-four trainees (control group) without prior experience received a 3 weeks laparoscopic skills training utilizing four basic and one advanced training task. Twenty-eight trainees (experimental group) received the same training with a random training task schedule, more frequent task switching and inverted viewing conditions on the four basic training tasks, but not the advanced task. Results showed inferior performance of the experimental group on the four basic laparoscopy tasks during training, at the end of training and at a 2 months retention session. We assume the inverted viewing conditions have led to the deterioration of learning in the experimental group because no significant differences were found between groups on the only task that had not been practiced under inverted viewing conditions; the advanced laparoscopic task. Potential moderating effects of inter-task similarity, task complexity, and trainee characteristics are discussed.
Varied Practice in Laparoscopy Training: Beneficial Learning Stimulation or Cognitive Overload?
Spruit, Edward N.; Kleijweg, Luca; Band, Guido P. H.; Hamming, Jaap F.
2016-01-01
Determining the optimal design for surgical skills training is an ongoing research endeavor. In education literature, varied practice is listed as a positive intervention to improve acquisition of knowledge and motor skills. In the current study we tested the effectiveness of a varied practice intervention during laparoscopy training. Twenty-four trainees (control group) without prior experience received a 3 weeks laparoscopic skills training utilizing four basic and one advanced training task. Twenty-eight trainees (experimental group) received the same training with a random training task schedule, more frequent task switching and inverted viewing conditions on the four basic training tasks, but not the advanced task. Results showed inferior performance of the experimental group on the four basic laparoscopy tasks during training, at the end of training and at a 2 months retention session. We assume the inverted viewing conditions have led to the deterioration of learning in the experimental group because no significant differences were found between groups on the only task that had not been practiced under inverted viewing conditions; the advanced laparoscopic task. Potential moderating effects of inter-task similarity, task complexity, and trainee characteristics are discussed. PMID:27242599
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubina, Sean Hyun, E-mail: sdubin2@uic.edu; Wedgewood, Lewis Edward, E-mail: wedge@uic.edu
2016-07-15
Ferrofluids are often favored for their ability to be remotely positioned via external magnetic fields. The behavior of particles in ferromagnetic clusters under uniformly applied magnetic fields has been computationally simulated using the Brownian dynamics, Stokesian dynamics, and Monte Carlo methods. However, few methods have been established that effectively handle the basic principles of magnetic materials, namely, Maxwell’s equations. An iterative constraint method was developed to satisfy Maxwell’s equations when a uniform magnetic field is imposed on ferrofluids in a heterogeneous Brownian dynamics simulation that examines the impact of ferromagnetic clusters in a mesoscale particle collection. This was accomplished bymore » allowing a particulate system in a simple shear flow to advance by a time step under a uniformly applied magnetic field, then adjusting the ferroparticles via an iterative constraint method applied over sub-volume length scales until Maxwell’s equations were satisfied. The resultant ferrofluid model with constraints demonstrates that the magnetoviscosity contribution is not as substantial when compared to homogeneous simulations that assume the material’s magnetism is a direct response to the external magnetic field. This was detected across varying intensities of particle-particle interaction, Brownian motion, and shear flow. Ferroparticle aggregation was still extensively present but less so than typically observed.« less
Comparative Application of Dimensionless Bankfull Hydraulic Relations for Earth and Titan
NASA Astrophysics Data System (ADS)
Parker, G.
2005-12-01
Recent evidence from the Huygens Probe of the Cassini Mission suggests that Titan, a satellite of Saturn, has rivers of flowing liquid methane which transport disaggregated crustal sediment in the form of ice. Surface images from the Huygens Probe show gravel-sized ice clasts that appear to be well-rounded by fluvial processes. If river morphodynamics on Earth is truly understood at a physical level, then relations that provide reasonable results on Earth ought to provide similarly reasonable results on Titan. These basic relations should be expressed in terms of dimensionless variabes. At least three dimensioned parameters that would be used to form the relevant dimensionless variables can be expected to vary notably between Earth and Titan. These are a) the acceleration of gravity, the kinematic viscosity of the flowing fluid and the submerged specific gravity of the sediment. Dimensionless relations for the threshold of motion, the threshold of significant suspension and bankfull hydraulic geometry that are known to work on Earth are used to predict features of rivers on Titan. Wildcards that make the predictions tentative include the formation of hydrocarbons on Titan that might add a kind of cohesivity not encountered on Earth and a freeze-thaw process of methane that might not be analogous to freeze-thaw processes in high-latitude rivers on Earth.
Measurement of the resistivity of porous materials with an alternating air-flow method.
Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A
2011-02-01
Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.
An investigation of chaotic Kolmogorov flows
NASA Technical Reports Server (NTRS)
Platt, N.; Sirovich, L.; Fitzmaurice, N.
1990-01-01
A two dimensional flow governed by the incompressible Navier-Stokes equations with a steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated. The behavior of the flow and its transition states as the Reynolds number (Re) varies is investigated in detail, as well as a number of the flow features. A sequence of bifurcations is shown to take place in the flow as Re varied. Two main regimes of the flow were observed: small and large scale structure regimes corresponding to different ranges of Re. Each of the regimes includes a number of quasiperiodic, chaotic, and relaminarization windows. In addition, each range contains a chaotic window with non-ergodic chaotic attractors. Spatially disordered, but temporally steady states were discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and, where possible, Lyapunov exponents and Kaplan-Yorke dimension.
NASA Astrophysics Data System (ADS)
Daya Sagar, B. S.
2005-01-01
Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.
Improvement of Subsonic Basic Research Tunnel Flow Quality as Applied to Wall Mounted Testing
NASA Technical Reports Server (NTRS)
Howerton, Brian M.
1995-01-01
A survey to determine the characteristics of a boundary layer that forms on the wall of the Subsonic Basic Research Tunnel has been performed. Early results showed significant differences in the velocity profiles as measured spanwise across the wall. An investigation of the flow in the upstream contraction revealed the presence of a separation bubble at the beginning of the contraction which caused much of the observed unsteadiness. Vortex generators were successfully applied to the contraction inlet to alleviate the separation. A final survey of the wall boundary layer revealed variations in the displacement and momentum thicknesses to be less than +/- 5% for all but the most upper portion of the wall. The flow quality was deemed adequate to continue the planned follow-on tests to help develop the semi-span test technique.
Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model
NASA Astrophysics Data System (ADS)
Zhu, Wen-Xing; Zhang, H. M.
2018-04-01
We investigated the mixed traffic flow with human-driving and autonomous cars. A new mathematical model with adjustable sensitivity and smooth factor was proposed to describe the autonomous car's moving behavior in which smooth factor is used to balance the front and back headway in a flow. A lemma and a theorem were proved to support the stability criteria in traffic flow. A series of simulations were carried out to analyze the mixed traffic flow. The fundamental diagrams were obtained from the numerical simulation results. The varying sensitivity and smooth factor of autonomous cars affect traffic flux, which exhibits opposite varying tendency with increasing parameters before and after the critical density. Moreover, the sensitivity of sensors and smooth factors play an important role in stabilizing the mixed traffic flow and suppressing the traffic jam.
A simple model of variable residence time flow and nutrient transport in the chalk
NASA Astrophysics Data System (ADS)
Jackson, Bethanna M.; Wheater, Howard S.; Mathias, Simon A.; McIntyre, Neil; Butler, Adrian P.
2006-10-01
SummaryA basic problem of modelling flow and transport in Chalk catchments arises from the existence of a deep unsaturated zone, with complex interactions between flow in fractures and water held in the fine pores of the rock matrix. The response of the water table to major infiltration episodes is rapid (of the order of days). However, chemical signals are strongly damped, suggesting that this water is of varying age, with a corresponding mixed history of nutrient loading. Clearly this effect should be represented in any model of nutrients in Chalk systems. The applicability of simplified physically-based model formulations to represent the dual response in an integrated way has been investigated by a variety of researchers, but it has been shown that these approximations break down in application to the Chalk. Mathias et al. [Mathias, S., Butler, A.P., Jackson, B.M., Wheater, H.S., this issue. Characterising flow in the Chalk unsaturated zone. In: Wheater, H.S., Peach, D., Neal, C, editors, Hydrology on LOCAR in the Pang/Lambourn, special issue of J. Hydrol, doi:10.1016/j.jhydrol.2006.04.010] present a dual permeability model that explains the observed response, but such complex formulations are not readily incorporated in catchment-scale nutrient models. This paper reviews previous approaches to modelling the Chalk and then presents a pragmatic approach, with transport of solute and water through the unsaturated zone treated separately, and combined at the water table. Varying residence times are included through considering the distance between the water table and the soil surface, and the history of nutrient application at the surface. If an average rate of downwards migration of the nutrients is assumed, it is possible to derive a travel time distribution of nitrate transport to the water table using a DTM (digital terrain model) map of elevation and information on groundwater levels. This distribution can then be implemented through difference equations. The rationale behind the model and the resulting algorithm is described, and the algorithm then applied to a hypothetical case study of nutrient loading located in the Lambourn, a groundwater-dominated Chalk catchment in Southern England. Simulated groundwater concentrations are very similar in magnitude and variability to observed Chalk groundwater series, suggesting that this simple conceptual model may well be able to capture the dominant responses of nutrient transport through the Chalk.
The Board's Role in Fund-Raising. The Fundamentals. Board Basics.
ERIC Educational Resources Information Center
Legon, Richard D.
1997-01-01
Fund-raising is one of the college or university governing board's most basic and important responsibilities: The annual fund is the platform from which all other fund-raising activities flow, and the board plays a key role in planning, implementing, and monitoring comprehensive campaigns, which are major efforts, focused on long-range financial…
Monnier, Stéphanie; Cox, David G; Albion, Tim; Canzian, Federico
2005-01-01
Background Single Nucleotide Polymorphism (SNP) genotyping is a major activity in biomedical research. The Taqman technology is one of the most commonly used approaches. It produces large amounts of data that are difficult to process by hand. Laboratories not equipped with a Laboratory Information Management System (LIMS) need tools to organize the data flow. Results We propose a package of Visual Basic programs focused on sample management and on the parsing of input and output TaqMan files. The code is written in Visual Basic, embedded in the Microsoft Office package, and it allows anyone to have access to those tools, without any programming skills and with basic computer requirements. Conclusion We have created useful tools focused on management of TaqMan genotyping data, a critical issue in genotyping laboratories whithout a more sophisticated and expensive system, such as a LIMS. PMID:16221298
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.
ERIC Educational Resources Information Center
Cuadra, Ernesto; Crouch, Luis
Student promotion, repetition, and dropout rates constitute the basic data needed to forecast future enrollment and new resources. Information on student flow is significantly related to policy formulation aimed at improving internal efficiency, because dropping out and grade repetition increase per pupil cost, block access to eligible school-age…
Basic aerodynamic research facility for comparative studies of flow diagnostic techniques
NASA Technical Reports Server (NTRS)
Jones, Gregory S.; Gartrell, Luther R.; Stainback, P. Calvin
1987-01-01
Current flow diagnostic research efforts are focusing on higher order flow field data bases, such as those generated by laser velocimetry (LV), hot-wire anemometry, and multi-hole pressure probes. Recent low-speed comparisons of results obtained with LV and hot wires have revealed strengths and weaknesses of each instrument. A seeding study will be initiated to determine particulate tracking ability.
A Gas-Kinetic Scheme for Reactive Flows
NASA Technical Reports Server (NTRS)
Lian,Youg-Sheng; Xu, Kun
1998-01-01
In this paper, the gas-kinetic BGK scheme for the compressible flow equations is extended to chemical reactive flow. The mass fraction of the unburnt gas is implemented into the gas kinetic equation by assigning a new internal degree of freedom to the particle distribution function. The new variable can be also used to describe fluid trajectory for the nonreactive flows. Due to the gas-kinetic BGK model, the current scheme basically solves the Navier-Stokes chemical reactive flow equations. Numerical tests validate the accuracy and robustness of the current kinetic method.
Preliminary analyses of SIB-B radar data for recent Hawaii lava flows
NASA Technical Reports Server (NTRS)
Kaupp, V. H.; Derryberry, B. A.; Macdonald, H. C.; Gaddis, L. R.; Mouginis-Mark, P. J.
1986-01-01
The Shuttle Imaging Radar (SIR-B) experiment acquired two L-band (23 cm wavelength) radar images (at about 28 and 48 deg incidence angles) over the Kilauea Volcano area of southeastern Hawaii. Geologic analysis of these data indicates that, although aa lava flows and pyroclastic deposits can be discriminated, pahoehoe lava flows are not readily distinguished from surrounding low return materials. Preliminary analysis of data extracted from isolated flows indicates that flow type (i.e., aa or pahoehoe) and relative age can be determined from their basic statistics and illumination angle.
Compilation of Information on the Transonic Attachment of Flows at the Leading Edges of Airfoils
NASA Technical Reports Server (NTRS)
Lindsey, Walter F; Landrum, Emma Jean
1958-01-01
Schlieren photographs have been compiled of the two-dimensional flow at transonic speeds past 37 airfoils. These airfoils have variously shaped profiles, and some are related in thickness and camber. The data for these airfoils were analyzed to provide basic information on the flow changes involved and to determine factors affecting transonic-flow attachment, which is a transition from separated to unseparated flow at the leading edges of two-dimensional airfoils at fixed angles as the subsonic Mach number is increased.
Using Study Guides To Help Students Focus Their Reading in the Basic Course.
ERIC Educational Resources Information Center
Blakeman, David A.; Young, Raymond W.
One problem that surfaced with the speech communication basic course (COM 105) at Valdosta State University (Georgia) was that the actual content covered by individual instructors varied widely, so widely that two given sections taught by different instructors may bear little resemblance to one another. This problem was addressed first through a…
Applied vs Basic Research: On Maintaining Your Balance with a Foot in Each Camp.
ERIC Educational Resources Information Center
Martin, David W.
The paper discusses a number of issues concerning the practical usefulness of cognitive psychology research, and presents a case study of pilot training methods to illustrate a model of research processes that produces outcomes which contribute to both basic and applied research goals. Research studies are described as varying in the degree to…
Impact of the Basic Education Program on Educational Spending and Equity in Tennessee.
ERIC Educational Resources Information Center
Goldhaber, Dan; Callahan, Karen
2001-01-01
Examines state- and district-level spending patterns in Tennessee to assess the extent to which the Basic Education Program (BEP) funding formula has affected spending in the state and spending in districts with varying characteristics, for example, poverty status of students, school district size. Suggests that BEP led to greater education…
Back to Basics. New Horizons in Nutrition.
ERIC Educational Resources Information Center
Arnold, Justine; Grogan, Jane, Ed.
This instructional handbook is one of a series of ten packets designed to form a comprehensive course in nutrition for secondary students. This unit discusses the basic concept in nutrition education that if one eats a varied, well-balanced diet it is likely that one's nutritional needs will be met. Information on the fat soluble vitamins is…
Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.
Rao, Prasada; Hromadka, Theodore V
2016-01-01
The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.
BOREHOLE FLOWMETERS: FIELD APPLICATION AND DATA ANALYSIS
This paper reviews application of borehole flowmeters in granular and fractured rocks. asic data obtained in the field are the ambient flow log and the pumping-induced flow log. hese basic logs may then be used to calculate other quantities of interest. he paper describes the app...
NASA Astrophysics Data System (ADS)
Benzi, Roberto; Ching, Emily S. C.
2018-03-01
The interaction of flexible polymers with fluid flows leads to a number of intriguing phenomena observed in laboratory experiments, namely drag reduction, elastic turbulence, and heat transport modification in natural convection, and is one of the most challenging subjects in soft matter physics. In this review, we examine our present knowledge on the subject. Our present knowledge is mostly based on direct numerical simulations performed in the last twenty years, which have successfully explained, at least qualitatively, most of the experimental results. Our goal is to disentangle as much as possible the basic mechanisms acting in the system in order to capture the basic features underlying different theoretical approaches and explanations.
The nature of the sunspot phenomenon. I - Solutions of the heat transport equation
NASA Technical Reports Server (NTRS)
Parker, E. N.
1974-01-01
It is pointed out that sunspots represent a disruption in the uniform flow of heat through the convective zone. The basic sunspot structure is, therefore, determined by the energy transport equation. The solutions of this equation for the case of stochastic heat transport are examined. It is concluded that a sunspot is basically a region of enhanced, rather than inhibited, energy transport and emissivity. The heat flow equations are discussed and attention is given to the shallow depth of the sunspot phenomenon. The sunspot is seen as a heat engine of high efficiency which converts most of the heat flux into hydromagnetic waves.
A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.
1985-01-01
Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.
Kefayati, Sarah; Amans, Matthew; Faraji, Farshid; Ballweber, Megan; Kao, Evan; Ahn, Sinyeob; Meisel, Karl; Halbach, Van; Saloner, David
2016-01-01
Aberrations in flow in the cerebral venous outflow tract (CVOT) have been implicated as the cause of several pathologic conditions including idiopathic intracranial hypertension (IIH), multiple sclerosis (MS), and pulsatile tinnitus (PT). The advent of 4D Flow magnetic resonance imaging (4D-Flow MRI) has recently allowed researchers to evaluate blood flow patterns in the arterial structures with great success. We utilized similar imaging techniques and found several distinct flow characteristics in the CVOT of subjects with and without lumenal irregularities. We present the flow patterns of 8 out of 38 subjects who have varying heights of the internal jugular bulb and varying lumenal irregularities including stenosis and diverticulum. In the internal jugular vein (IJV) with an elevated jugular bulb (JB), 4DFlow MRI revealed a characteristic spiral flow that was dependent on the level of JB elevation. Vortical flow was also observed in the diverticula of the venous sinuses and IJV. The diversity of flow complexity in the CVOT illustrates the potential importance of hemodynamic investigations in elucidating venous pathologies. PMID:27894675
Groundwater Flow Through a Constructed Treatment Wetland
2002-03-01
sediments or has the water found preferential flow paths? (2) Does the behavior of groundwater flow change with varying loading rates or environmental...surface of the wetland. Water flows through a subsurface flow wetland in a similar fashion as groundwater flows through an aquifer. The concept is...circuiting of the wetland media. Groundwater Flow Various physical properties influence the flow of water through soil. In wetlands, the type of soil
NASA Technical Reports Server (NTRS)
Chung, S.
1973-01-01
Heat transfer phenomena of rarefied gas flows is discussed based on a literature survey of analytical and experimental rarefied gas dynamics. Subsonic flows are emphasized for the purposes of meteorological thermometry in the high atmosphere. The heat transfer coefficients for three basic geometries are given in the regimes of free molecular flow, transition flow, slip flow, and continuum flow. Different types of heat phenomena, and the analysis of theoretical and experimental data are presented. The uncertainties calculated from the interpolation rule compared with the available experimental data are discussed. The recovery factor for each geometry in subsonic rarefied flows is also given.
NASA Astrophysics Data System (ADS)
Bose, Sayan; Banerjee, Moloy
2015-07-01
Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels.
NASA Astrophysics Data System (ADS)
Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.
2015-12-01
A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel plates set at an angle. The HS analogy is extended to power-law fluid flow in porous media with variable properties parallel or transverse to the flow direction. Comparison with experimental results show that the proposed models capture the propagation of the current front and the current profile at intermediate and late time.
A reciprocal effects model of the temporal ordering of basic psychological needs and motivation.
Martinent, Guillaume; Guillet-Descas, Emma; Moiret, Sophie
2015-04-01
Using self-determination theory as the framework, we examined the temporal ordering between satisfaction and thwarting of basic psychological needs and motivation. We accomplished this goal by using a two-wave 7-month partial least squares path modeling approach (PLS-PM) among a sample of 94 adolescent athletes (Mage = 15.96) in an intensive training setting. The PLS-PM results showed significant paths leading: (a) from T1 satisfaction of basic psychological need for competence to T2 identified regulation, (b) from T1 external regulation to T2 thwarting and satisfaction of basic psychological need for competence, and (c) from T1 amotivation to T2 satisfaction of basic psychological need for relatedness. Overall, our results suggest that the relationship between basic psychological need and motivation varied depending on the type of basic need and motivation assessed. Basic psychological need for competence predicted identified regulation over time whereas amotivation and external regulation predicted basic psychological need for relatedness or competence over time.
The Lakshmi Plateau structure as an indicator of asthenosphere horizontal flows on Venus
NASA Technical Reports Server (NTRS)
Pronin, A. A.
1986-01-01
The structure of Lakshmi Planum in the western part of Ishtar Terra in a fold-fault setting which conforms to the basic massif of the plateau with eruptive centers is constructed concentrically and is interpreted from the point of view of the subsurface flow of materials in the form of horizontally diverging asthenospheric flows and gravitational creep. The surrounding structures are formed by the deformation of the more rigid lithosphere as it breaks away from the asthenospheric flow.
Videos and images from 25 years of teaching compressible flow
NASA Astrophysics Data System (ADS)
Settles, Gary
2008-11-01
Compressible flow is a very visual topic due to refractive optical flow visualization and the public fascination with high-speed flight. Films, video clips, and many images are available to convey this in the classroom. An overview of this material is given and selected examples are shown, drawn from educational films, the movies, television, etc., and accumulated over 25 years of teaching basic and advanced compressible-flow courses. The impact of copyright protection and the doctrine of fair use is also discussed.
Goode, D.J.; Appel, C.A.
1992-01-01
More accurate alternatives to the widely used harmonic mean interblock transmissivity are proposed for block-centered finite-difference models of ground-water flow in unconfined aquifers and in aquifers having smoothly varying transmissivity. The harmonic mean is the exact interblock transmissivity for steady-state one-dimensional flow with no recharge if the transmissivity is assumed to be spatially uniform over each finite-difference block, changing abruptly at the block interface. However, the harmonic mean may be inferior to other means if transmissivity varies in a continuous or smooth manner between nodes. Alternative interblock transmissivity functions are analytically derived for the case of steady-state one-dimensional flow with no recharge. The second author has previously derived the exact interblock transmissivity, the logarithmic mean, for one-dimensional flow when transmissivity is a linear function of distance in the direction of flow. We show that the logarithmic mean transmissivity is also exact for uniform flow parallel to the direction of changing transmissivity in a two- or three-dimensional model, regardless of grid orientation relative to the flow vector. For the case of horizontal flow in a homogeneous unconfined or water-table aquifer with a horizontal bottom and with areally distributed recharge, the exact interblock transmissivity is the unweighted arithmetic mean of transmissivity at the nodes. This mean also exhibits no grid-orientation effect for unidirectional flow in a two-dimensional model. For horizontal flow in an unconfined aquifer with no recharge where hydraulic conductivity is a linear function of distance in the direction of flow the exact interblock transmissivity is the product of the arithmetic mean saturated thickness and the logarithmic mean hydraulic conductivity. For several hypothetical two- and three-dimensional cases with smoothly varying transmissivity or hydraulic conductivity, the harmonic mean is shown to yield the least accurate solution to the flow equation of the alternatives considered. Application of the alternative interblock transmissivities to a regional aquifer system model indicates that the changes in computed heads and fluxes are typically small, relative to model calibration error. For this example, the use of alternative interblock transmissivities resulted in an increase in computational effort of less than 3 percent. Numerical algorithms to compute alternative interblock transmissivity functions in a modular three-dimensional flow model are presented and documented.
Basic Considerations in the Combustion of Hydrocarbon Fuels with Air
NASA Technical Reports Server (NTRS)
Barnett, Henry C; Hibbard, Robert R
1957-01-01
Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented.
Fuel cell and membrane therefore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aindow, Tai-Tsui
A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially alignedmore » with the high value direction of the flow field plate.« less
Time-dependent limited penetrable visibility graph analysis of nonstationary time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong
2017-06-01
Recent years have witnessed the development of visibility graph theory, which allows us to analyze a time series from the perspective of complex network. We in this paper develop a novel time-dependent limited penetrable visibility graph (TDLPVG). Two examples using nonstationary time series from RR intervals and gas-liquid flows are provided to demonstrate the effectiveness of our approach. The results of the first example suggest that our TDLPVG method allows characterizing the time-varying behaviors and classifying heart states of healthy, congestive heart failure and atrial fibrillation from RR interval time series. For the second example, we infer TDLPVGs from gas-liquid flow signals and interestingly find that the deviation of node degree of TDLPVGs enables to effectively uncover the time-varying dynamical flow behaviors of gas-liquid slug and bubble flow patterns. All these results render our TDLPVG method particularly powerful for characterizing the time-varying features underlying realistic complex systems from time series.
NASA Astrophysics Data System (ADS)
McCave, I. N.; Thornalley, D. J. R.; Hall, I. R.
2017-09-01
Fine grain-size parameters have been used for inference of palaeoflow speeds of near-bottom currents in the deep-sea. The basic idea stems from observations of varying sediment size parameters on a continental margin with a gradient from slower flow speeds at shallower depths to faster at deeper. In the deep-sea, size-sorting occurs during deposition after benthic storm resuspension events. At flow speeds below 10-15 cm s-1 mean grain-size in the terrigenous non-cohesive 'sortable silt' range (denoted by SS bar , mean of 10-63 μm) is controlled by selective deposition, whereas above that range removal of finer material by winnowing is also argued to play a role. A calibration of the SS bar grain-size flow speed proxy based on sediment samples taken adjacent to sites of long-term current meters set within 100 m of the sea bed for more than a year is presented here. Grain-size has been measured by either Sedigraph or Coulter Counter, in some cases both, between which there is an excellent correlation for SS bar (r = 0.96). Size-speed data indicate calibration relationships with an overall sensitivity of 1.36 ± 0.19 cm s-1/μm. A calibration line comprising 12 points including 9 from the Iceland overflow region is well defined, but at least two other smaller groups (Weddell/Scotia Sea and NW Atlantic continental rise/Rockall Trough) are fitted by sub-parallel lines with a smaller constant. This suggests a possible influence of the calibre of material supplied to the site of deposition (not the initial source supply) which, if depleted in very coarse silt (31-63 μm), would limit SS bar to smaller values for a given speed than with a broader size-spectrum supply. Local calibrations, or a core-top grain-size and local flow speed, are thus necessary to infer absolute speeds from grain-size. The trend of the calibrations diverges markedly from the slope of experimental critical erosion and deposition flow speeds versus grain-size, making it unlikely that the SS bar (or any deposit size for that matter) is simply predicted by the deposition threshold. A more probable control is the rate of deposition of the different size fractions under changing flows over several tens of years (the typical averaging period of a centimetre of deposited sediment). This suggestion is supported by a simple depositional model for which the deposited SS bar is calculated from measured currents with a size-varying depositional threshold. More surficial sediment samples taken near long-term current meter sites are needed to make calibrations more robust and explore regional differences.
Boeing engineers perform air flow balance testing.
2017-10-05
Boeing engineers, Chris Chapman, left, Greg Clark, center, and Ashesh Patel, right, perform air flow balance testing on NASA's new Basic Express Racks. The racks, developed at Marshall, will expand the capabilities for science research aboard the International Space Station. Delivery to the station is scheduled for late 2018.
Designing Biomedical Informatics Infrastructure for Clinical and Translational Science
ERIC Educational Resources Information Center
La Paz Lillo, Ariel Isaac
2009-01-01
Clinical and Translational Science (CTS) rests largely on information flowing smoothly at multiple levels, in multiple directions, across multiple locations. Biomedical Informatics (BI) is seen as a backbone that helps to manage information flows for the translation of knowledge generated and stored in silos of basic science into bedside…
5 CFR 550.707 - Computation of severance pay fund.
Code of Federal Regulations, 2010 CFR
2010-01-01
... hours in the employee's basic work schedule (excluding overtime hours) varies during the year because of part-time work requirements, compute the weekly average of those hours and multiply that average by the... differential pay under 5 U.S.C. 5343(f) varies from week to week under a regularly recurring cycle of work...
NASA Technical Reports Server (NTRS)
Bryan, William B.; Fleeter, Sanford
1987-01-01
The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.
Interaction of two-dimensional transverse jet with a supersonic mainstream
NASA Technical Reports Server (NTRS)
Kraemer, G. O.; Tiwari, S. N.
1983-01-01
The interaction of a two dimensional sonic jet injected transversely into a confined main flow was studied. The main flow consisted of air at a Mach number of 2.9. The effects of varying the jet parameters on the flow field were examined using surface pressure and composition data. Also, the downstream flow field was examined using static pressure, pitot pressure, and composition profile data. The jet parameters varied were gapwidth, jet static pressure, and injectant species of either helium or nitrogen. The values of the jet parameters used were 0.039, 0.056, and 0.109 cm for the gapwidth and 5, 10, and 20 for the jet to mainstream static pressure ratios. The features of the flow field produced by the mixing and interaction of the jet with the mainstream were related to the jet momentum. The data were used to demonstrate the validity of an existing two dimensional elliptic flow code.
Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels
NASA Astrophysics Data System (ADS)
Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi
2009-04-01
Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel.
Partially Ventilated Transom Flow Elevations-Unsteady Analysis
2016-06-30
family of hulls that have a common fore-body with varying after-bodies. This project expands the investigation into unsteady transom flow elevations two...incident waves on the stream wise discontinuity in hull geometry due to varying transom configurations ranging from round bilge to deep-vee sections...transom. Turbulence Stimulation Hama strips were used for turbulence stimulation on the hull . Four strips of electrical tape with a combined
The Generation of Three-Dimensional Body-Fitted Coordinate Systems for Viscous Flow Problems.
1982-07-01
Geometries," NASA TM X-3206, 1975. iq p] Papers Written Under The Contract 1. "Basic Differential Models For Coordinate Generation ", Z . U. A. Warsi...8217 Ii (C) (4’) p Figure 1. Coordinate Surfaces fr. I • BASIC DIFFERENTIAL MODELS FOR COORDINATE GENERATION Z . U. A. WARSI* Department of Aerospace
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.
This curriculum guide is designed to assist industrial arts teachers, counselors, and administrators in improving instruction in the areas of electricity and basic electronics. Included in the first part of the guide are a course flow chart, a course description, a discussion of target grade levels and prerequisites, course goals and objectives,…
Physically absorbable reagents-collectors in elementary flotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.A. Kondrat'ev; I.G. Bochkarev
2007-09-15
Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.
Aspects of the "Design Space" in high pressure liquid chromatography method development.
Molnár, I; Rieger, H-J; Monks, K E
2010-05-07
The present paper describes a multifactorial optimization of 4 critical HPLC method parameters, i.e. gradient time (t(G)), temperature (T), pH and ternary composition (B(1):B(2)) based on 36 experiments. The effect of these experimental variables on critical resolution and selectivity was carried out in such a way as to systematically vary all four factors simultaneously. The basic element is a gradient time-temperature (t(G)-T) plane, which is repeated at three different pH's of the eluent A and at three different ternary compositions of eluent B between methanol and acetonitrile. The so-defined volume enables the investigation of the critical resolution for a part of the Design Space of a given sample. Further improvement of the analysis time, with conservation of the previously optimized selectivity, was possible by reducing the gradient time and increasing the flow rate. Multidimensional robust regions were successfully defined and graphically depicted. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Rangewide landscape genetics of an endemic Pacific northwestern salamander.
Trumbo, Daryl R; Spear, Stephen F; Baumsteiger, Jason; Storfer, Andrew
2013-03-01
A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal-limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another. © 2013 Blackwell Publishing Ltd.
Active thermal isolation for temperature responsive sensors
NASA Technical Reports Server (NTRS)
Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)
1994-01-01
The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.
NASA Astrophysics Data System (ADS)
Toro, P. G. P.; Minucci, M. A. S.; Chanes, J. B.; Pereira, A. L.; Nagamatsu, H. T.
2006-05-01
A new 0.6-m. diameter Hypersonic Shock Tunnel is been designed, fabricated and will be installed at the Laboratory of Aerothermodynamics and Hypersonics IEAv-CTA, Brazil. The brand new hypersonic facility, designated as T3, is primarily intended to be used as an important tool in the investigation of supersonic combustion management and of electromagnetic energy addition for flow control. The design of the runnel enables relatively long test times, 2-10 milliseconds, suitable for basic supersonic combustion and energy addition by laser experiments. Free stream Mach numbers ranging from 6 to 25 can be produced and stagnation pressures and temperatures of 200 atm. and 5,500 K, respectively, can be generated. Shadowgraph and schlieren optical techniques will be used for flow visualization and the new facility is expected to be commissioned by the end of 2006.
Fuel control for gas turbine engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stearns, C.F.; Tutherly, H.W.
1983-12-27
The basic gas turbine engine hydromechanical fuel control is adaptable to different engine configurations such as turbofan, turboprop and turboshaft engines by incorporating in the main housing those elements having a commonality to all engine configurations and providing a removable block for each configuration having the necessary control elements and flow passages required for that particular configuration. That is to say, a block with the elements peculiar to a turbofan engine could be replaced by a mating block that includes those elements peculiar to a turboshaft engine in adapting the control for a turboshaft configuration. Similarly another block with thosemore » elements peculiar to a turboprop engine could replace any of the other blocks in adapting the control to a turboprop configuration. Obviously the basic control has the necessary flow passages terminating at the interface with the block and these flow passages mate with corresponding passages in the block.« less
Control of the probe influence on the flow field in LP steam turbine
NASA Astrophysics Data System (ADS)
Kolovratník, Michal; Yun, Kukchol; Bartoš, Ondřej
For measuring the fine droplets properties in the wet steam expanding in the steam turbines the light extinction probes are usually used. The paper presents CFD modelling of the extinction probe influence on the wet steam flow field at the measurement position. The aim is to get a basic information about the influence of the flow field deviation on the measured data, in other words, of necessity to correct the measured data. The basic modelling procedure is described, as well as the supposed simplifications and the factor considering the change in the steam density in the measuring slot of the probe. The model is based on the experimental data that were achieved during the developmental measurements in the steam turbine 1090 MW in the power station Temelín. The experimental measurement was done in the cooperation with the Doosan Škoda Power s.r.o.
NASA Astrophysics Data System (ADS)
Geneva, Nicholas; Wang, Lian-Ping
2015-11-01
In the past 25 years, the mesoscopic lattice Boltzmann method (LBM) has become an increasingly popular approach to simulate incompressible flows including turbulent flows. While LBM solves more solution variables compared to the conventional CFD approach based on the macroscopic Navier-Stokes equation, it also offers opportunities for more efficient parallelization. In this talk we will describe several different algorithms that have been developed over the past 10 plus years, which can be used to represent the two core steps of LBM, collision and streaming, more effectively than standard approaches. The application of these algorithms spans LBM simulations ranging from basic channel to particle laden flows. We will cover the essential detail on the implementation of each algorithm for simple 2D flows, to the challenges one faces when using a given algorithm for more complex simulations. The key is to explore the best use of data structure and cache memory. Two basic data structures will be discussed and the importance of effective data storage to maximize a CPU's cache will be addressed. The performance of a 3D turbulent channel flow simulation using these different algorithms and data structures will be compared along with important hardware related issues.
ERIC Educational Resources Information Center
In, Fan-yu; Liao, Hui-Chuan
2008-01-01
Course designs for Basic English Writing classes vary from one course to another. The objective of this study was to investigate the semantic misinterpretation of English words found in the English compositions written by native-Chinese-speaking undergraduate students and to overcome if such a barrier occurred in the process of writing. First,…
Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands
Lihu Cui; Ying Ouyang; Weizhi Yang; Zhujian Huang; Qiaoling Xu; Guangwei Yu
2015-01-01
Three new baffle flow constructed wetlands (CWs), namely the baffle horizontal flow CW (Z1), baffle vertical flow CW (Z2) and baffle hybrid flow CW (Z3), along with one traditional horizontal subsurface flow CW (Z4) were designed to test the removal efficiency of nitrogen (N) and phosphorus (P) from the septic tank effluent under varying hydraulic retention times (HRTs...
Peristaltic pump noise: A nemesis conquered
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, D.A.
1994-12-31
Continuous-flow analyzers (CFA), and especially Segmented Flow Analyzers (SFA), typically employ peristaltic pumps to generate a carrier stream and add reagents thereto. The resulting pump {open_quotes}noise{close_quotes} usually limits precision, and is generally deemed unavoidable. Although the problem is partially solved by hydraulic debubbling, most modern instruments employ bubble thru the flow-cell (BTTFC) technology and electronic debubbling. The authors have developed an algorithm that can significantly reduce this source of noise, even when the individual segments in the SFA stream are of varying volumes and/or concentrations. It does this, without any modifications to the pump, by examining each individual segment asmore » it passes thru the flowcell. The Alpkem model 304 multichannel pump, for example, can be set to produce 90 bubbles/minutes (and therefore 90 segments/minute), so one has 667 msec in which to gather sufficient information to identify a {open_quotes}bad{close_quotes} segment and modify its value. This hardware includes a Hewlett Packard model 8452A diode array spectrophotometer fitted with fiber optics leading to/from a flowcell (5 mm path length X 1mm ID). Each segment remains in the flowcell 300-500 msec. With a data sampling rate of 10/sec (100 msec integration time), the authors can acquire 3-5 intensity values for each segment and convert these to absorbance values. The software to perform all this was written in QuickBASIC 4.5 and incorporates a few routines from Hewlett Packard`s library. The program will be described in some detail so that analytical chemists who use BTTFC can obtain higher precision.« less
A study of methods to estimate debris flow velocity
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.
Zhao, Chenhui; Zhang, Guangcheng; Wu, Yibo
2012-01-01
The resin flow behavior in the vacuum assisted resin infusion molding process (VARI) of foam sandwich composites was studied by both visualization flow experiments and computer simulation. Both experimental and simulation results show that: the distribution medium (DM) leads to a shorter molding filling time in grooved foam sandwich composites via the VARI process, and the mold filling time is linearly reduced with the increase of the ratio of DM/Preform. Patterns of the resin sources have a significant influence on the resin filling time. The filling time of center source is shorter than that of edge pattern. Point pattern results in longer filling time than of linear source. Short edge/center patterns need a longer time to fill the mould compared with Long edge/center sources.
The effect of spatially varying velocity field on the transport of radioactivity in a porous medium.
Sen, Soubhadra; Srinivas, C V; Baskaran, R; Venkatraman, B
2016-10-01
In the event of an accidental leak of the immobilized nuclear waste from an underground repository, it may come in contact of the flow of underground water and start migrating. Depending on the nature of the geological medium, the flow velocity of water may vary spatially. Here, we report a numerical study on the migration of radioactivity due to a space dependent flow field. For a detailed analysis, seven different types of velocity profiles are considered and the corresponding concentrations are compared. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thrust and pumping characteristics of cylindrical ejectors using afterburning turbojet gas generator
NASA Technical Reports Server (NTRS)
Samanich, N. E.; Huntley, S. C.
1969-01-01
Static tests of cylindrical ejectors having ejector to primary diameter ratios from 1.1 to 1.6 and ejector length to primary nozzle diameter ratios from 0.9 to 2.1 are reported. Power setting of the J85-13 turbojet engine was varied from part power to maximum afterburning. Corrected secondary weight flow ratio was varied from 0.02 to 0.08 over a range of exhaust nozzle pressure ratios from 2.0 to 9.0. Secondary flow temperature rise and pressure drop characteristics through the nacelle secondary flow passage were also obtained.
NASA Astrophysics Data System (ADS)
Báez, Elsa; Nicolás, Alfredo
2013-11-01
Natural convection fluid flow in air-filled tall tilted cavities is studied numerically with a new direct projection method on the Boussinesq approximation in primitive variables. The study deals with “cat's eyes” instabilities and multiple disjoint cells as the aspect ratio A and the angle of inclination ϕ of the cavity vary. The flows are validated with those reported before using the stream function-vorticity variables. New cases, A=12 and 20 varying ϕ, lead to get more insight on the physical phenomenon.
Nandi, Soumyadeep; Mehra, Nipun; Lynn, Andrew M; Bhattacharya, Alok
2005-09-09
Theoretical proteome analysis, generated by plotting theoretical isoelectric points (pI) against molecular masses of all proteins encoded by the genome show a multimodal distribution for pI. This multimodal distribution is an effect of allowed combinations of the charged amino acids, and not due to evolutionary causes. The variation in this distribution can be correlated to the organisms ecological niche. Contributions to this variation maybe mapped to individual proteins by studying the variation in pI of orthologs across microorganism genomes. The distribution of ortholog pI values showed trimodal distributions for all prokaryotic genomes analyzed, similar to whole proteome plots. Pairwise analysis of pI variation show that a few COGs are conserved within, but most vary between, the acidic and basic regions of the distribution, while molecular mass is more highly conserved. At the level of functional grouping of orthologs, five groups vary significantly from the population of orthologs, which is attributed to either conservation at the level of sequences or a bias for either positively or negatively charged residues contributing to the function. Individual COGs conserved in both the acidic and basic regions of the trimodal distribution are identified, and orthologs that best represent the variation in levels of the acidic and basic regions are listed. The analysis of pI distribution by using orthologs provides a basis for resolution of theoretical proteome comparison at the level of individual proteins. Orthologs identified that significantly vary between the major acidic and basic regions maybe used as representative of the variation of the entire proteome.
Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry
NASA Astrophysics Data System (ADS)
Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.
2004-04-01
A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.
Experimental study of time-dependent flows in laboratory atmospheric flow models
NASA Technical Reports Server (NTRS)
Rush, J. E.
1982-01-01
Baroclinic waves in a rotating, differentially-heated annulus of liquid were studied in support of the Atmospheric General Circulation Experiment. Specific objectives were to determine: (1) the nature of the flow at shallow depths, (2) the effect of a rigid lid vs. free surface, and (3) the nature of fluctuations in the waves as a function of rotation rate, depth, and type of surface. It is found that flows with a rigid lid are basically the same as those with a free surface, except for a decrease in flow rate. At shallow depths steady flows are found in essentially the same form, but the incidence of unsteady flows is greatly diminished.
NASA Astrophysics Data System (ADS)
Astashev, M. G.; Panfilov, D. I.; Seregin, D. A.; Chernyshev, A. A.
2017-12-01
The features of using the bridge voltage inverter in small-size stand-alone series controllers of power flows (PFSC) for overhead power transmission lines (OPTL) are examined. The basic processes in the converter during transient and steady state modes were analyzed. The basic relations for calculating the electromagnetic processes taking into account the energy loss in the circuit and without it were received. A simulation model is proposed of a converter that makes it possible to study its operating modes during the formation of reactance introduced into the overhead power transmission line. The results of simulation of operating modes of the PFSC are presented.
On an interface of the online system for a stochastic analysis of the varied information flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorshenin, Andrey K.; MIREA, MGUPI; Kuzmin, Victor Yu.
The article describes a possible approach to the construction of an interface of an online asynchronous system that allows researchers to analyse varied information flows. The implemented stochastic methods are based on the mixture models and the method of moving separation of mixtures. The general ideas of the system functionality are demonstrated on an example for some moments of a finite normal mixture.
Effect of Free Stream Turbulence on Flow Past a Circular Cylinder at Low Reynolds Numbers
NASA Astrophysics Data System (ADS)
Kumar, Vinoth; Singh, Mrityunjay; Thangadurai, Murugan; Chatterjee, P. K.
2018-01-01
Circular cylinders experiencing different upstream flow conditions have been studied for low Reynolds numbers using hot-wire anemometry and smoke flow visualizations. The upstream condition of the cylinder in the test section is varied using a wire mesh placed at the entrance of the test section. The Reynolds number is varied by varying the diameter of the cylinder and the mean velocity in the test section. Smooth cylinders of diameter varying from 1.25 to 25 mm are used in the present study. A multi-channel hot-wire anemometry is used for measuring the fluctuating velocities in the test section and the wake behind the cylinder. The sectional views of the wake behind the cylinder are obtained using a 4 MP CCD camera, 200 mJ pulsed laser and a fog generator. The flow quality in the test section is examined using higher order turbulence statistics. The effect of free stream turbulence levels and their frequencies on wake structures and the shedding frequencies of circular cylinders are studied in detail. It has been observed that the alteration in wake structure and the shedding frequency depend strongly on the frequencies and the amplitudes of upstream disturbances besides the diameter of the circular cylinder.
NASA Technical Reports Server (NTRS)
Wing, David J.; Mills, Charles T. L.; Mason, Mary L.
1997-01-01
The thrust efficiency and vectoring performance of a convergent-divergent nozzle were investigated at static conditions in the model preparation area of the Langley 16-Foot Transonic Tunnel. The diamond-shaped nozzle was capable of varying the internal contour of each quadrant individually by using cam mechanisms and retractable drawers to produce pitch and yaw thrust vectoring. Pitch thrust vectoring was achieved by either retracting the lower drawers to incline the throat or varying the internal flow-path contours to incline the throat. Yaw thrust vectoring was achieved by reducing flow area left of the nozzle centerline and increasing flow area right of the nozzle centerline; a skewed throat deflected the flow in the lateral direction.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... customer and proprietary order flow. Given the portability of order flow from one trading venue to another... reduce costs for the Exchange's customers. The following basic principles underlie this proposal. A... customers or to distribute the data internally. In addition, the Exchange will require each professional end...
19. MOLTEN IRON FLOWS INTO A 'BOTTLE' AT FURNACE NO. ...
19. MOLTEN IRON FLOWS INTO A 'BOTTLE' AT FURNACE NO. 1. THE IRON WILL BE TRANSPORTED BY RAIL TO THE OPEN HEARTH OR BASIC OXYGEN FURNACES, WHERE IT IS A MAJOR COMPONENT IN THE PRODUCTION OF STEEL. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... has been adopted by AHRI--``ANSI/AHRI 1230--2010: Performance Rating of Variable Refrigerant Flow (VRF... Refrigerant Flow (VRF) Multi-Split Systems, because the basic model contains design characteristics which... line of commercial (3- phase) VRF multi-split ``AIRSTAGE V-II''. 2. The Design Characteristics FUJITSU...
CAMUS: Automatically Mapping Cyber Assets to Mission and Users (PREPRINT)
2009-10-01
which machines regularly use a particular mail server. Armed with these basic data sources – LDAP, NetFlow traffic and user logs – fuselets were created... NetFlow traffic used in the demonstration has over ten thousand unique IP Addresses and is over one gigabyte in size. A number of high performance
Geometry: A Flow Proof Approach.
ERIC Educational Resources Information Center
McMurray, Robert
The inspiration for this text was provided by an exposure to the flow proof approach to a proof format as opposed to the conventional two-column approach. Historical background is included, to provide a frame of reference to give the student an appreciation of the subject. The basic constructions are introduced early and briefly, to aid the…
Chimaera simulation of complex states of flowing matter
2016-01-01
We discuss a unified mesoscale framework (chimaera) for the simulation of complex states of flowing matter across scales of motion. The chimaera framework can deal with each of the three macro–meso–micro levels through suitable ‘mutations’ of the basic mesoscale formulation. The idea is illustrated through selected simulations of complex micro- and nanoscale flows. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698031
Experimental Study on Impact Load on a Dam Due to Debris Flow
lwao Miyoshi
1991-01-01
When a dam is struck by mud or debris flow, it is put under a great impact load and sometimes is destroyed. To prevent such destruction, it is important to perform basic research about the impact load on a dam due to debris flow. Thus, we have made an experimental study and tried to establish a method to estimate such a impact load on the dam. The experiment was...
The Application of the NFW Design Philosophy to the HSR Arrow Wing Configuration
NASA Technical Reports Server (NTRS)
Bauer, Steven X. S.; Krist, Steven E.
1999-01-01
The Natural Flow Wing design philosophy was developed for improving performance characteristics of highly-swept fighter aircraft at cruise and maneuvering conditions across the Mach number range (from Subsonic through Supersonic). The basic philosophy recognizes the flow characteristics that develop on highly swept wings and contours the surface to take advantage of those flow characteristics (e.g., forward facing surfaces in low pressure regions and aft facing surfaces in higher pressure regions for low drag). Because the wing leading edge and trailing edge have multiple sweep angles and because of shocks generated on nacelles and diverters, a viscous code was required to accurately define the surface pressure distributions on the wing. A method of generating the surface geometry to take advantage of those surface pressures (as well as not violating any structural constraints) was developed and the resulting geometries were analyzed and compared to a baseline configuration. This paper will include discussions of the basic Natural Flow Wing design philosophy, the application of the philosophy to an HSCT vehicle, and preliminary wind-tunnel assessment of the NFW HSCT vehicle.
Aerodynamics of High-Lift Configuration Civil Aircraft Model in JAXA
NASA Astrophysics Data System (ADS)
Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Yamamoto, Kazuomi
This paper presents basic aerodynamics and stall characteristics of the high-lift configuration aircraft model JSM (JAXA Standard Model). During research process of developing high-lift system design method, wind tunnel testing at JAXA 6.5m by 5.5m low-speed wind tunnel and Navier-Stokes computation on unstructured hybrid mesh were performed for a realistic configuration aircraft model equipped with high-lift devices, fuselage, nacelle-pylon, slat tracks and Flap Track Fairings (FTF), which was assumed 100 passenger class modern commercial transport aircraft. The testing and the computation aimed to understand flow physics and then to obtain some guidelines for designing a high performance high-lift system. As a result of the testing, Reynolds number effects within linear region and stall region were observed. Analysis of static pressure distribution and flow visualization gave the knowledge to understand the aerodynamic performance. CFD could capture the whole characteristics of basic aerodynamics and clarify flow mechanism which governs stall characteristics even for complicated geometry and its flow field. This collaborative work between wind tunnel testing and CFD is advantageous for improving or has improved the aerodynamic performance.
Analysis of the Structure of Surgical Activity for a Suturing and Knot-Tying Task
Vedula, S. Swaroop; Malpani, Anand O.; Tao, Lingling; Chen, George; Gao, Yixin; Poddar, Piyush; Ahmidi, Narges; Paxton, Christopher; Vidal, Rene; Khudanpur, Sanjeev; Hager, Gregory D.; Chen, Chi Chiung Grace
2016-01-01
Background Surgical tasks are performed in a sequence of steps, and technical skill evaluation includes assessing task flow efficiency. Our objective was to describe differences in task flow for expert and novice surgeons for a basic surgical task. Methods We used a hierarchical semantic vocabulary to decompose and annotate maneuvers and gestures for 135 instances of a surgeon’s knot performed by 18 surgeons. We compared counts of maneuvers and gestures, and analyzed task flow by skill level. Results Experts used fewer gestures to perform the task (26.29; 95% CI = 25.21 to 27.38 for experts vs. 31.30; 95% CI = 29.05 to 33.55 for novices) and made fewer errors in gestures than novices (1.00; 95% CI = 0.61 to 1.39 vs. 2.84; 95% CI = 2.3 to 3.37). Transitions among maneuvers, and among gestures within each maneuver for expert trials were more predictable than novice trials. Conclusions Activity segments and state flow transitions within a basic surgical task differ by surgical skill level, and can be used to provide targeted feedback to surgical trainees. PMID:26950551
NASA Technical Reports Server (NTRS)
Chambers, J. R.; Grafton, S. B.; Lutze, F. H.
1981-01-01
Dynamic stability derivatives are evaluated on the basis of rolling-flow, curved-flow and snaking tests. Attention is given to the hardware associated with curved-flow, rolling-flow and oscillatory pure-yawing wind-tunnel tests. It is found that the snaking technique, when combined with linear- and forced-oscillation methods, yields an important method for evaluating beta derivatives for current configurations at high angles of attack. Since the rolling flow model is fixed during testing, forced oscillations may be imparted to the model, permitting the measurement of damping and cross-derivatives. These results, when coupled with basic rolling-flow or rotary-balance data, yield a highly accurate mathematical model for studies of incipient spin and spin entry.
A research on wave equation on inclined channel and observation for intermittent debris flow
NASA Astrophysics Data System (ADS)
Arai, Muneyuki
2014-05-01
Phenomenon of intermittent surges is known a debris flow called viscous debris flow in China, and recently is observed in the European Alps and other mountains region. A purpose of this research is to obtain a wave equation for wave motion of intermittent surges with sediment on inclined channel, especially to evaluate influence of momentum correction factor on flow mechanism. Using non-dimensional basic equations as Laplace equation, δ2φ'/δx'2 + δ2φ'/δy'2 = 0 , boundary condition at bottom of flow, δφ'/δy' = 0, (y' = -1; at bottom of mean depth h0 ), surface condition ( conservation condition of flow surface ), ' ' ' ' - δφ-+ δη- + δφ-δη-= 0 (y' = 0;atsurfaceofmean depth h0 ), δy' δt' δt'δx' and momentum equation, ' ( ')2 '2 δφ-+ 1 (2β - 1) δφ- - c0'2 tanθx ' +c0'2 (1+ η')+ tan θ c0-φ' δt' 2 δx' u0' δ« ( δφ')2 δη' ' ' u0 ' c0 + (β - 1) δx' δx'dx = 0, here,u0 = v-, c0 = v- p0 p0 where, x : coordinate axis of flow direction, x' = x/h0, y : coordinate axis of depth direction, y' = y/h0, h : depth of flow, h0 : mean depth, t : time, t' = tvp0/h0, u0 : mean velocity, vp0 : velocity parameter in G-M transfer, φ = φ(x,y,t) : potential function, φ' = φ/(h0 vp0), g : acceleration due to gravity, θ : slope angle of the channel, c0 = ---- gh0cosθ. From these basic equation, a wave equation is obtained as follow by perturbation method, here neglecting the term of φ' with tanθ ≪ 1, δη' 1 '2 ' δη' 1 c0'2 δ2η' 1( 1 ) δ3η' δτ' + 2 (2β + 1) c0 η δξ' - 2 tanθ u-'-δξ'2-+ 2 c-'2- 1-δξ'3 = 0, 0 0 where η : deflection from h0 (h = h0 + η), η' = η/h0, ξ = ɛ1/2(x - vp0t), ξ' = ξ/h0, τ = ɛ3/2t, τ' = tvp0/h0, ɛ: parameter of perturbation method. In this equation, second term of left side is non-linear term which generates waves of various periods, third is dissipation term which disappear high frequency wave and forth is dispersion term which has a characteristic of a soliton on KdV equation. In a case using vp0 = c0, above equation is expressed as δη' 1 ' δη' 1tanθ-δ2η' δτ' + 2 (2β + 1) η δξ' - 2 u0' δξ'2 = 0. Usually β varies from 1 to 1.2, then it is expected that the influence of β for wave formation η' is small by above equation. For observation on wave characteristic of intermittent surges, it is indicated to measure phase velocity of wave, mean velocity of the flow, depth fluctuation and other usual terms.
Water tunnel flow visualization using a laser
NASA Technical Reports Server (NTRS)
Beckner, C.; Curry, R. E.
1985-01-01
Laser systems for flow visualization in water tunnels (similar to the vapor screen technique used in wind tunnels) can provide two-dimensional cross-sectional views of complex flow fields. This parametric study documents the practical application of the laser-enhanced visualization (LEV) technique to water tunnel testing. Aspects of the study include laser power levels, flow seeding (using flourescent dyes and embedded particulates), model preparation, and photographic techniques. The results of this study are discussed to provide potential users with basic information to aid in the design and setup of an LEV system.
Training Aids for Basic Combat Skills: A Procedure for Training-Aid Development
2011-02-01
aids is a constant in training and education. Researchers in fields as varied as disability education, business, firefighting, vocal performance...the aids should (a) address tasks with which many Soldiers have difficulty mastering, (b) address tasks that are critical to basic combat training...candidates because of other practical considerations such as low cost, potential impact to critical IET tasks, etc
Structure and Properties of Energetic Materials
1992-12-02
basic research is needed. First, a quantitative study of friction effects on propellants with varying particle sizes can be conducted. Second, using...Army position, policy, or decision, unless so designated by other documentation. Mat. Res. Soc. Symp. Proc. Vol. 296. t 1993 Materials Research Society...further observations and analysis. INTRODUCTION Recently, a study group sponsored by the Army Research Office developed and published an overall basic
Tracer-Test Planning Using the Efficient Hydrologic Tracer ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be
EFFICIENT HYDROLOGICAL TRACER-TEST DESIGN (EHTD ...
Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to
Some Effects of Compressibility on the Flow Through Fans and Turbines
NASA Technical Reports Server (NTRS)
Perl, W.; Epstein, H. T.
1946-01-01
The laws of conservation of mass, momentum, and energy are applied to the compressible flow through a two-dimensional cascade of airfoils. A fundamental relation between the ultimate upstream and downstream flow angles, the inlet Mach number, and the pressure ratio across the cascade is derived. Comparison with the corresponding relation for incompressible flow shows large differences. The fundamental relation reveals two ranges of flow angles and inlet Mach numbers, for which no ideal pressure ratio exists. One of these nonideal operating ranges is analogous to a similar type in incompressible flow. The other is characteristic only of compressible flow. The effect of variable axial-flow area is treated. Some implications of the basic conservation laws in the case of nonideal flow through cascades are discussed.
The Canadian elder standard - pricing the cost of basic needs for the Canadian elderly.
MacDonald, Bonnie-Jeanne; Andrews, Doug; Brown, Robert L
2010-03-01
We determined the after-tax income required to finance basic needs for Canadian elders living with different circumstances in terms of age, gender, city of residence, household size, homeowner or renter status, means of transportation, and health status. Using 2001 as our base year, we priced the typical expenses for food, shelter, medical, transportation, miscellaneous basic living items and home-based long-term care for elders living in five Canadian cities. This is the first Canadian study of basic living expenses tailored to elders instead of adults in general, prepared on an absolute rather than a relative basis. We also accounted for an individual's unique life circumstances and established the varying effect that they have on the cost of basic expenses, particularly for home care. We found that the maximum Guaranteed Income Supplement and Old Age Security benefit did not meet the cost of basic needs for an elder living in poor circumstances.
A three-dimensional semianalytical model of hydraulic fracture growth through weak barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luiskutty, C.T.; Tomutes, L.; Palmer, I.D.
1989-08-01
The goal of this research was to develop a fracture model for length/height ratio {le}4 that includes 2D flow (and a line source corresponding to the perforated interval) but makes approximations that allow a semianalytical solution, with large computer-time savings over the fully numerical mode. The height, maximum width, and pressure at the wellbore in this semianalytical model are calculated and compared with the results of the fully three-dimensional (3D) model. There is reasonable agreement in all parameters, the maximum discrepancy being 24%. Comparisons of fracture volume and leakoff volume also show reasonable agreement in volume and fluid efficiencies. Themore » values of length/height ratio, in the four cases in which agreement is found, vary from 1.5 to 3.7. The model offers a useful first-order (or screening) calculation of fracture-height growth through weak barriers (e.g., low stress contrasts). When coupled with the model developed for highly elongated fractures of length/height ratio {ge}4, which are also found to be in basic agreement with the fully numerical model, this new model provides the capability for approximating fracture-height growth through barriers for vertical fracture shapes that vary from penny to highly elongated. The computer time required is estimated to be less than the time required for the fully numerical model by a factor of 10 or more.« less
Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets
NASA Technical Reports Server (NTRS)
Pasumarthi, Kasyap Sriramachandra
2004-01-01
A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations establhing buoyancy as the primary instability mechanism in self-excited low-density jets.
Effects of Gravel Bars on Nutrient Spiraling in Bedrock-Alluvium Streams
NASA Astrophysics Data System (ADS)
Iobst, B. R.; Carroll, E. P.; Furbish, D. J.
2007-05-01
The importance of the connection between nutrient transport and local stream geomorphology is becoming increasingly important. Studies have shown that the interconnectivity of nutrient cycles in the downstream direction is in part controlled by the distribution and size of gravel bars in low order streams, as hyporheic flow occurs dominantly through alternate and mid-channel gravel bars. For this investigation multiple gravel bars in a 3rd order bedrock-alluvium stream were studied to determine general relationships between nutrient spiraling and hyporheic flow. The first goal was to understand (1) the extent to which water moves through hyporheic zones and (2) the basic chemistry of the hyporheic water. The second part of the study was to understand how nutrients, notably nitrogen, are affected in their cycling by the relatively long residence times encountered in gravel bars during hyporheic flow. Wells were installed along a 600 m reach of Panther Creek, KY in selected bars, as well as in a secondary location involving a grid installation pattern in one large bar. Results have shown that hyporheic flow through gravel bars is an important factor in influencing stream chemistry. Background water chemistry surveys have shown that certain parameters, specifically ammonium and nitrogen concentrations vary downstream, and that the dominant control over these changes is gravel bar location. Rhodamine WT was used in field tracer tests to track the travel times of water through bars as well as partitioning of water between the open channel and hyporheic flows. Further tests will be conducted utilizing a stable isotope study to determine how nitrogen is affected by hyporheic flow, and what implications this has for nutrient transport. We expect results to show that the spacing and size of gravel bars is a dominant control in key nutrient spiraling parameters, namely uptake lengths and overall nitrogen cycling rates. This has implications for how natural systems will respond to human impacts, both through the modification of the physical template of stream systems as well as increased anthropogenic loading of nitrogen.
Mamatsashvili, G; Khujadze, G; Chagelishvili, G; Dong, S; Jiménez, J; Foysi, H
2016-08-01
To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies, but always remains quite large (equal to 36, 86, and 209) in the considered here three aspect ratios. This implies that the self-sustenance of subcritical turbulence cannot be described by low-order models.
Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis
NASA Astrophysics Data System (ADS)
Reynolds, Z. A.
2015-12-01
Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how to remove problematic natural dams that increase flooding risks; they can also investigate possibilities to mimic the ecosystem state generated by natural dams in places where these dams are regularly removed.
NASA Astrophysics Data System (ADS)
Mamatsashvili, G.; Khujadze, G.; Chagelishvili, G.; Dong, S.; Jiménez, J.; Foysi, H.
2016-08-01
To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies, but always remains quite large (equal to 36, 86, and 209) in the considered here three aspect ratios. This implies that the self-sustenance of subcritical turbulence cannot be described by low-order models.
Development of a prototype two-phase thermal bus system for Space Station
NASA Technical Reports Server (NTRS)
Myron, D. L.; Parish, R. C.
1987-01-01
This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.
Study of dynamics of glucose-glucose oxidase-ferricyanide reaction
NASA Astrophysics Data System (ADS)
Nováková, A.; Schreiberová, L.; Schreiber, I.
2011-12-01
This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.
Design and optimization of mixed flow pump impeller blades by varying semi-cone angle
NASA Astrophysics Data System (ADS)
Dash, Nehal; Roy, Apurba Kumar; Kumar, Kaushik
2018-03-01
The mixed flow pump is a cross between the axial and radial flow pump. These pumps are used in a large number of applications in modern fields. For the designing of these mixed flow pump impeller blades, a lot number of design parameters are needed to be considered which makes this a tedious task for which fundamentals of turbo-machinery and fluid mechanics are always prerequisites. The semi-cone angle of mixed flow pump impeller blade has a specified range of variations generally between 45o to 60o. From the literature review done related to this topic researchers have considered only a particular semi-cone angle and all the calculations are based on this very same semi-cone angle. By varying this semi-cone angle in the specified range, it can be verified if that affects the designing of the impeller blades for a mixed flow pump. Although a lot of methods are available for designing of mixed flow pump impeller blades like inverse time marching method, the pseudo-stream function method, Fourier expansion singularity method, free vortex method, mean stream line theory method etc. still the optimized design of the mixed flow pump impeller blade has been a cumbersome work. As stated above since all the available research works suggest or propose the blade designs with constant semi-cone angle, here the authors have designed the impeller blades by varying the semi-cone angle in a particular range with regular intervals for a Mixed-Flow pump. Henceforth several relevant impeller blade designs are obtained and optimization is carried out to obtain the optimized design (blade with optimal geometry) of impeller blade.
Markstaller, Klaus; Rudolph, Annette; Karmrodt, Jens; Gervais, Hendrik W; Goetz, Rolf; Becher, Anja; David, Matthias; Kempski, Oliver S; Kauczor, Hans-Ulrich; Dick, Wolfgang F; Eberle, Balthasar
2008-10-01
The importance of ventilatory support during cardiac arrest and basic life support is controversial. This experimental study used dynamic computed tomography (CT) to assess the effects of chest compressions only during cardiopulmonary resuscitation (CCO-CPR) on alveolar recruitment and haemodynamic parameters in porcine model of ventricular fibrillation. Twelve anaesthetized pigs (26+/-1 kg) were randomly assigned to one of the following groups: (1) intermittent positive pressure ventilation (IPPV) both during basic life support and advanced cardiac life support, or (2) CCO during basic life support and IPPV during advanced cardiac life support. Measurements were acquired at baseline prior to cardiac arrest, during basic life support, during advanced life support, and after return of spontaneous circulation (ROSC), as follows: dynamic CT series, arterial and central venous pressures, blood gases, and regional organ blood flow. The ventilated and atelectatic lung area was quantified from dynamic CT images. Differences between groups were analyzed using the Kruskal-Wallis test, and a p<0.05 was considered statistically significant. IPPV was associated with cyclic alveolar recruitment and de-recruitment. Compared with controls, the CCO-CPR group had a significantly larger mean fractional area of atelectasis (p=0.009), and significantly lower PaO2 (p=0.002) and mean arterial pressure (p=0.023). The increase in mean atelectatic lung area observed during basic life support in the CCO-CPR group remained clinically relevant throughout the subsequent advanced cardiac life support period and following ROSC, and was associated with prolonged impaired haemodynamics. No inter-group differences in myocardial and cerebral blood flow were observed. A lack of ventilation during basic life support is associated with excessive atelectasis, arterial hypoxaemia and compromised CPR haemodynamics. Moreover, these detrimental effects remain evident even after restoration of IPPV.
BORNSTEIN, MARC H.; HENDRICKS, CHARLENE
2013-01-01
Using the Multiple Indicator Cluster Survey, language comprehension and production were compared in a sample of 101,250 children aged 2;00 to 9;11 and a focus subsample of 38,845 children aged 2;00 to 4;11 from sixteen under-researched developing nations. In the whole sample, comprehension slightly exceeded production; correlations between comprehension and production by country were positive and significant, but varied in size, and the average correlation was positive, significant, and small to medium. Mean comprehension and production varied with child age, reaching an asymptote at 5;00, and correlations between comprehension and production by age were positive, significant, and similar at each age. In the focus subsample, comprehension exceeded production; correlations between comprehension and production by country were positive and significant, but varied in size, and the average correlation was positive, significant, and medium in size. Children in countries with lower standards of living were less likely to demonstrate basic language comprehension or production. PMID:22129486
The effect of the chopper on granules from wet high-shear granulation using a PMA-1 granulator.
Briens, Lauren; Logan, Ryan
2011-12-01
Chopper presence and then chopper speed was varied during wet high shear granulation of a placebo formulation using a PMA-1 granulator while also varying the impeller speed. The granules were extensively analyzed for differences due to the chopper. The effect of the chopper on the granules varied with impeller speed from no effect at a low impeller speed of 300 rpm to flow interruptions at an impeller speed of 700 rpm to minimal impact at very high impeller speeds as caking at the bowl perimeter obscured the effect of the chopper on the flow pattern. Differences in the granule flowability were minimal. However, it was concluded that the largest fraction of optimal granules would be obtained at an impeller speed of 700 rpm with the chopper at 1,000 rpm allowing balances between flow establishment, segregation, and centrifugal forces.
Local Stable and Unstable Manifolds and Their Control in Nonautonomous Finite-Time Flows
NASA Astrophysics Data System (ADS)
Balasuriya, Sanjeeva
2016-08-01
It is well known that stable and unstable manifolds strongly influence fluid motion in unsteady flows. These emanate from hyperbolic trajectories, with the structures moving nonautonomously in time. The local directions of emanation at each instance in time is the focus of this article. Within a nearly autonomous setting, it is shown that these time-varying directions can be characterised through the accumulated effect of velocity shear. Connections to Oseledets spaces and projection operators in exponential dichotomies are established. Availability of data for both infinite- and finite-time intervals is considered. With microfluidic flow control in mind, a methodology for manipulating these directions in any prescribed time-varying fashion by applying a local velocity shear is developed. The results are verified for both smoothly and discontinuously time-varying directions using finite-time Lyapunov exponent fields, and excellent agreement is obtained.
NASA Astrophysics Data System (ADS)
Tarao, H.; Kuisti, H.; Korpinen, L.; Hayashi, N.; Isaka, K.
2012-05-01
Contact currents flow through the human body when a conducting object with different potential is touched. There are limited reports on numerical dosimetry for contact current exposure compared with electromagnetic field exposures. In this study, using an anatomical human adult male model, we performed numerical calculation of internal electric fields resulting from 60 Hz contact current flowing from the left hand to the left foot as a basis case. Next, we performed a variety of similar calculations with varying tissue conductivity and contact area, and compared the results with the basis case. We found that very low conductivity of skin and a small electrode size enhanced the internal fields in the muscle, subcutaneous fat and skin close to the contact region. The 99th percentile value of the fields in a particular tissue type did not reliably account for these fields near the electrode. In the arm and leg, the internal fields for the muscle anisotropy were identical to those in the isotropy case using a conductivity value longitudinal to the muscle fibre. Furthermore, the internal fields in the tissues abreast of the joints such as the wrist and the elbow, including low conductivity tissues, as well as the electrode contact region, exceeded the ICNIRP basic restriction for the general public with contact current as the reference level value.
Hysteresis of mode transition in a dual-struts based scramjet
NASA Astrophysics Data System (ADS)
Yan, Zhang; Shaohua, Zhu; Bing, Chen; Xu, Xu
2016-11-01
Tests and numerical simulations were performed to investigate the combustion performance of a dual-staged scramjet combustor. High enthalpy vitiated inflow at a total temperature of 1231 K was supplied using a hydrogen-combustion heater. The inlet Mach number was 2.0. Liquid kerosene was injected into the combustor using the dual crossed struts. Three-dimensional Reynolds averaged reacting flow was solved using a two-equation k-ω SST turbulence model to calculate the effect of turbulent stress, and a partial-premixed flamelet model to model the effects of turbulence-chemistry interactions. The discrete phase model was utilized to simulate the fuel atomization and vaporization. For simplicity, the n-decane was chosen as the surrogate fuel with a reaction mechanism of 40 species and 141 steps. The predicted wall pressure profiles at three fuel injection schemes basically captured the axial varying trend of the experimental data. With the downstream equivalence ratio held constant, the upstream equivalence ratio was numerically increased from 0.1 to 0.4 until a steady combustion was obtained. Subsequently, the upstream equivalence ratio was decreased from 0.4 to 0.1 once again. Two ramjet modes with different wall pressure profiles and corresponding flow structures were captured under the identical upstream equivalence ratio of 0.1, illustrating an obvious hysteresis phenomenon. The mechanism of this hysteresis was explained by the transition hysteresis of the pre-combustion shock train in the isolator.
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Wilkes, Jennifer A.; Aderfer, David W.; Jones, Stephen B.; Robbins, Anthony W.; Pantry, Danny P.; Schwartz, Richard J.
2006-01-01
Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize four different hypersonic flowfields in the NASA Langley Research Center 31-Inch Mach 10 Air wind tunnel. The four configurations were: (1) the wake flowfield of a fuselage-only X-33 lifting body, (2) flow over a flat plate containing a rectangular cavity, (3) flow over a 70deg blunted cone with a cylindrical afterbody, formerly studied by an AGARD working group, and (4) an Apollo-geometry entry capsule - relevant to the Crew Exploration Vehicle currently being developed by NASA. In all cases, NO was seeded into the flowfield through tubes inside or attached to the model sting and strut. PLIF was used to visualize the NO in the flowfield. In some cases pure NO was seeded into the flow while in other cases a 5% NO, 95% N2 mix was injected. Several parameters were varied including seeding method and location, seeding mass flow rate, model angle of attack and tunnel stagnation pressure, which varies the unit Reynolds number. The location of the laser sheet was as also varied to provide three dimensional flow information. Virtual Diagnostics Interface (ViDI) technology developed at NASA Langley was used to visualize the data sets in post processing. The measurements demonstrate some of the capabilities of the PLIF method for studying hypersonic flows.
Effects of wall friction on flow in a quasi-2D hopper
NASA Astrophysics Data System (ADS)
Shah, Neil; Birwa, Sumit; Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Tewari, Shubha
Our experiments on the gravity-driven flow of spherical particles in a vertical hopper examine how the flow rate varies with opening size and wall friction. We report here on a model simulation using LAMMPS of the experimental geometry, a quasi-2D hopper. Keeping inter-particle friction fixed, the coefficient of friction at the walls is varied from 0.0 to 0.9 for a range of opening sizes. Our simulations find a steady rate of flow at each wall friction and outlet size. The Janssen effect attributes the constant rate of flow of a granular column to the column height independence of the pressure at the base, since the weight of the grains is borne in part by friction at the walls. However, we observe a constant flow regime even in the absence of wall friction, suggesting that wall friction may not be a necessary condition for pressure saturation. The observed velocities of particles near the opening are used to extrapolate their starting positions had they been in free fall. In contrast to scaling predictions, our data suggest that the height of this free-fall arch does not vary with opening size for higher frictional coefficients. We analyze the velocity traces of particles to see the range over which contact interactions remain collisional as they approach the hopper outlet.
Simulation of Cold Flow in a Truncated Ideal Nozzle with Film Cooling
NASA Technical Reports Server (NTRS)
Braman, K. E.; Ruf, J. H.
2015-01-01
Flow transients during rocket start-up and shut-down can lead to significant side loads on rocket nozzles. The capability to estimate these side loads computationally can streamline the nozzle design process. Towards this goal, the flow in a truncated ideal contour (TIC) nozzle has been simulated using RANS and URANS for a range of nozzle pressure ratios (NPRs) aimed to match a series of cold flow experiments performed at the NASA MSFC Nozzle Test Facility. These simulations were performed with varying turbulence model choices and for four approximations of the supersonic film injection geometry, each of which was created with a different simplification of the test article geometry. The results show that although a reasonable match to experiment can be obtained with varying levels of geometric fidelity, the modeling choices made do not fully represent the physics of flow separation in a TIC nozzle with film cooling.
Basic and Applied Studies of the RAM Accelerator as a Hypervelocity Projectile Launcher
1993-12-10
The quasi-steady, one-dimensional "blackbox" model of thermally choked ram accelerator performance 18 that has been widely used by the authors and...the thermal choke point is assumed to be in equilibrium, the conditions can be determined by an equilibrium chemistry combustion routine. This model ...to operation, the details of the flow field must be examined. I The simplest model of the thermally choked ram accelerator flow field treats the flow
Chimaera simulation of complex states of flowing matter.
Succi, S
2016-11-13
We discuss a unified mesoscale framework (chimaera) for the simulation of complex states of flowing matter across scales of motion. The chimaera framework can deal with each of the three macro-meso-micro levels through suitable 'mutations' of the basic mesoscale formulation. The idea is illustrated through selected simulations of complex micro- and nanoscale flows.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Arterial Blood Flow Measurement Using Digital Subtraction Angiography (DSA)
NASA Astrophysics Data System (ADS)
Swanson, David K.; Myerowitz, P. David; Van Lysel, Michael S.; Peppler, Walter W.; Fields, Barry L.; Watson, Kim M.; O'Connor, Julia
1984-08-01
Standard angiography demonstrates the anatomy of arterial occlusive disease but not its physiological signficance. Using intravenous digital subtraction angiography (DSA), we investigated transit-time videodensitometric techniques in measuring femoral arterial flows in dogs. These methods have been successfully applied to intraarterial DSA but not to intravenous DSA. Eight 20 kg dogs were instrumented with an electromagnetic flow probe and a balloon occluder above an imaged segment of femoral artery. 20 cc of Renografin 76 was power injected at 15 cc/sec into the right atrium. Flow in the femoral artery was varied by partial balloon occlusion or peripheral dilatation following induced ischemia resulting in 51 flow measurements varying from 15 to 270 cc/min. Three different transit-time techniques were studied: crosscorrelation, mean square error, and two leading edge methods. Correlation between videodensitometry and flowmeter measurements using these different techniques ranged from 0.78 to 0.88 with a mean square error of 29 to 37 cc/min. Blood flow information using several different transit-time techniques can be obtained with intravenous DSA.
The drift force on an object in an inviscid weakly-varying rotational flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallis, G.B.
The force on any stationary object in an inviscid incompressible extensive steady flow is derived in terms of the added mass tensor and gradient of velocity of the undisturbed fluid. Taylor`s theorem is extended to flows with weak vorticity. There are possible applications to constitutive equations for two-phase flow.
NASA Technical Reports Server (NTRS)
Re, R. J.
1974-01-01
An investigation was conducted in the Langley 16-foot transonic tunnel to determine the performance of seven inlets having NACA 1-series contours and one inlet having an elliptical contour over a range of mass-flow ratios and at angle of attack. The inlet diameter ratio varied from 0.81 to 0.89; inlet length ratio varied from 0.75 to 1.25; and internal contraction ratio varied from 1.009 to 1.093. Reynolds number based on inlet maximum diameter varied from 3.4 million at a Mach number of 0.4 to 5.6 million at a Mach number of 1.29.
REVIEWS OF TOPICAL PROBLEMS: Axisymmetric stationary flows in compact astrophysical objects
NASA Astrophysics Data System (ADS)
Beskin, Vasilii S.
1997-07-01
A review is presented of the analytical results available for a large class of axisymmetric stationary flows in the vicinity of compact astrophysical objects. The determination of the two-dimensional structure of the poloidal magnetic field (hydrodynamic flow field) faces severe difficulties, due to the complexity of the trans-field equation for stationary axisymmetric flows. However, an approach exists which enables direct problems to be solved even within the balance law framework. This possibility arises when an exact solution to the equation is available and flows close to it are investigated. As a result, with the use of simple model problems, the basic features of supersonic flows past real compact objects are determined.
Modeling the effect of varying swim speeds on fish passage through velocity barriers
Castro-Santos, T.
2006-01-01
The distance fish can swim through zones of high-velocity flow is an important factor limiting the distribution and conservation of riverine and diadromous fishes. Often, these barriers are characterized by nonuniform flow conditions, and it is likely that fish will swim at varying speeds to traverse them. Existing models used to predict passage success, however, typically include the unrealistic assumption that fish swim at a constant speed regardless of the speed of flow. This paper demonstrates how the maximum distance of ascent through velocity barriers can be estimated from the swim speed-fatigue time relationship, allowing for variation in both swim speed and water velocity.
A New Reynolds Stress Algebraic Equation Model
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.
1994-01-01
A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.
Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory
ERIC Educational Resources Information Center
Westera, Wim
2018-01-01
This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing…
Control of Melt Conversion Using Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Mazurruk, Konstantin; Rose, M. Franklin (Technical Monitor)
2000-01-01
An axisymmetric traveling magnetic wave induces a meridional base flow in a cylindrical zone of an electrically conducting liquid. This remotely induced flow can be conveniently controlled, in magnitude and direction, and can have benefits for crystal growth applications. In particular, it can be used to significantly offset natural convection. Theoretical basics of this new technological method are presented.
Hillslope threshold response to rainfall: (1) a field based forensic approach
Chris B. Graham; Ross A. Woods; Jeffrey J. McDonnell
2010-01-01
Hillslope threshold response to storm rainfall is poorly understood. Basic questions regarding the type, location, and flow dynamics of lateral, subsurface flow remain unanswered, even at our most intensively studied field sites. Here we apply a forensic approach where we combined irrigation and excavation experiments at the well studied Maimai hillslope to determine...
Control of Melt Convection Using Traveling Magnetic Fields
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin
2000-01-01
An axisymmetric traveling magnetic wave induces a meridional base flow in a cylindrical zone of an electrically conducting liquid. This remotely induced flow can be conveniently controlled, in magnitude and direction, and can have benefits for crystal growth applications. In particular, it can be used to offset natural convection. Theoretical basics of this new technological method are presented.
Back to Basics: Algebraic Foundations of the Statement of Cash Flows
ERIC Educational Resources Information Center
Joyner, Donald T.; Banatte, Jean-Marie; Dondeti, V. Reddy
2014-01-01
The indirect method for preparing the statement of cash flows, as described in many standard textbooks, involves an item-by-item approach, telling you to add to or subtract from the net income, the increases or decreases in the balance sheet items, such as accounts payable or accounts receivable. Many business students, especially at the…
Functional language and data flow architectures
NASA Technical Reports Server (NTRS)
Ercegovac, M. D.; Patel, D. R.; Lang, T.
1983-01-01
This is a tutorial article about language and architecture approaches for highly concurrent computer systems based on the functional style of programming. The discussion concentrates on the basic aspects of functional languages, and sequencing models such as data-flow, demand-driven and reduction which are essential at the machine organization level. Several examples of highly concurrent machines are described.
NASA Technical Reports Server (NTRS)
Johnson, S. M.
1976-01-01
Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, S.; Sites, J.R.
A Kaufman-type broad beam ion source, used for sputtering and etching purposes, has been operated with Ar, Kr,O/sub 2/ and N/sub 2/ gas inputs over a wide range of beam energies (200-1200 eV) and gas flow rates (1-10 sccm). The maximum ion beam current density for each gas saturates at about 2.5 mA/sq. cm. as gas flow is increased. The discharge threshold voltage necessary to produce a beam and the beam efficiency (beam current/molecular current), however, varied considerably. Kr had the lowest threshold and highest efficiency, Ar next, then N/sub 2/ and O/sub 2/. The ion beam current varied onlymore » weakly with beam energy for low gas flow rates, but showed a factor of two increase when the gas flow was higher.« less
Premixed Edge-Flames in Spatially-Varying Straining Flows
NASA Technical Reports Server (NTRS)
Liu, Jian-Bang; Ronney, Paul D.
1999-01-01
Flames subject to temporally and spatially uniform hydrodynamic strain are frequently used to model the local interactions of flame fronts with turbulent flow fields (Williams, 1985; Peters, 1986; Bradley, 1992). The applicability of laminar flamelet models in strongly turbulent flows have been questioned recently (Shay and Ronney, 1998) because in turbulent flows the strain rate (sigma) changes at rates comparable to sigma itself and the scale over which the flame front curvature and sigma changes is comparable to the curvature scale itself. Therefore quasi-static, local models of turbulent strain and curvature effects on laminar flamelets may not be accurate under conditions where the strain and curvature effects are most significant. The purpose of this study is to examine flames in spatially-varying strain and compare their properties to those of uniformly strained flames.
Fang, Jian-Qiao; Zhang, Le-Le; Shao, Xiao-Mei
2012-11-01
To observe the intervention of transcutaneous electrical acupoint stimulation (TEAS) on the renal blood flow at different levels of mean arterial pressure (MAP) in controlled hypotension. Forty-two male beagle dogs were randomly divided into seven groups, i. e., the general anesthesia group, the 50% controlled group, the 40% controlled group, the 30% controlled group, the 50% experimental group, the 40% experimental group, and the 30% experimental group, 6 in each group. Beagles in the general anesthesia group were not treated with controlled hypotension, and the target MAP was achieved in those of the rest groups and maintained for 60 min. In the experimental groups, TEAS was applied to bilateral Hegu (LI4), Zusanli (ST36), Sanyinjiao (SP6), and Quchi (LI11) at 2/100 Hz with the stimulation strength of (4 +/- 1) mA starting from the stability of their physiological conditions to 60 min of maintaining the target MAP level. The changes of the renal blood flow were monitored at different time points using laser Doppler. From starting pressure control to the target MAP level, the renal blood flow was significantly lower in the 30% controlled group than in the general anesthesia group and the basic level of the same group (P < 0.05), while there was no obvious change in the 30% experimental group. In maintaining the blood pressure, the renal blood flow was significantly lower in the 50% controlled group, the 40% controlled group, the 30% controlled group, and the 30% experimental group than in the general anesthesia group (P < 0.05), while there was no obvious change in the 50% experimental group or the 40% experimental group. By the end of blood pressure recovery, the renal blood flow restored to the basic level in the 50% controlled group, the 50% experimental group, and the 40% experimental group (P > 0.05), while it was not restored to the basic level in the 40% controlled group, the 30% controlled group, and the 30% experimental group (P < 0.05). TEAS combined general anesthesia in controlled hypotension could effectively improve the renal blood flow, thus protecting the kidney.
An investigation of the unsteady flow associated with plume induced flow separation
NASA Technical Reports Server (NTRS)
Boggess, A. L., Jr.
1972-01-01
A wind tunnel study of the basic nature of plume induced flow separation is reported with emphasis on the unsteady aspects of the flow. Testing was conducted in a 6 inch by 6 inch blow-down supersonic wind tunnel. A cone-cylinder model with a pluming jet was used as the test model. Tests were conducted with a systematic variation in Mach number and plume pressure. Results of the tests are presented in the form of root-mean-squared surface pressure levels, power spectral densities, photographs of the flow field from which shock angles and separation lengths were taken, and time-averaged surface pressure profiles.
A Computer Program for Flow-Log Analysis of Single Holes (FLASH)
Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.
2011-01-01
A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.
Singular flow dynamics in three space dimensions driven by advection
NASA Astrophysics Data System (ADS)
Karimov, A. R.; Schamel, H.
2002-03-01
The initial value problem of an ideal, compressible fluid is investigated in three space dimensions (3D). Starting from a situation where the inertia terms dominate over the force terms in Euler's equation we explore by means of the Lagrangian flow description the basic flow properties. Special attention is drawn to the appearance of singularities in the flow pattern at finite time. Classes of initial velocity profiles giving rise to collapses of density and vorticity are found. This paper, hence, furnishes evidence of focused singularities for coherent structures obeying the 3D Euler equation and applies to potential as well as vortex flows.
NASA Astrophysics Data System (ADS)
Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.
2018-04-01
River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.
ERIC Educational Resources Information Center
Virginia State Dept. of Education, Richmond. Adult Education Service.
This conference proceedings report contains abstracts of seven 1977-78 Virginia Adult Basic Education (ABE) projects presented at a dissemination conference for ABE administrators and teachers. The abstracts vary in length (two to seven pages) and format and focus on program objectives, procedures or strategies, expected results, findings,…
Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section
NASA Astrophysics Data System (ADS)
Nissan, Alon; Wang, Qiuling; Wallach, Rony
2016-11-01
A mathematical model for slug (finite liquid volume) motion in not-fully-wettable capillary tubes with sinusoidally varying cross-sectional areas was developed. The model, based on the Navier-Stokes equation, accounts for the full viscous terms due to nonuniform geometry, the inertial term, the slug's front and rear meniscus hysteresis effect, and dependence of contact angle on flow velocity (dynamic contact angle). The model includes a velocity-dependent film that is left behind the advancing slug, reducing its mass. The model was successfully verified experimentally by recording slug movement in uniform and sinusoidal capillary tubes with a gray-scale high-speed camera. Simulation showed that tube nonuniformity has a substantial effect on slug flow pattern: in a uniform tube it is monotonic and depends mainly on the slug's momentary mass/length; an undulating tube radius results in nonmonotonic flow characteristics. The static nonzero contact angle varies locally in nonuniform tubes owing to the additional effect of wall slope. Moreover, the nonuniform cross-sectional area induces slug acceleration, deceleration, blockage, and metastable-equilibrium locations. Increasing contact angle further amplifies the geometry effect on slug propagation. The developed model provides a modified means of emulating slug flow in differently wettable porous media for intermittent inlet water supply (e.g., raindrops on the soil surface).
Nandi, Soumyadeep; Mehra, Nipun; Lynn, Andrew M; Bhattacharya, Alok
2005-01-01
Background Theoretical proteome analysis, generated by plotting theoretical isoelectric points (pI) against molecular masses of all proteins encoded by the genome show a multimodal distribution for pI. This multimodal distribution is an effect of allowed combinations of the charged amino acids, and not due to evolutionary causes. The variation in this distribution can be correlated to the organisms ecological niche. Contributions to this variation maybe mapped to individual proteins by studying the variation in pI of orthologs across microorganism genomes. Results The distribution of ortholog pI values showed trimodal distributions for all prokaryotic genomes analyzed, similar to whole proteome plots. Pairwise analysis of pI variation show that a few COGs are conserved within, but most vary between, the acidic and basic regions of the distribution, while molecular mass is more highly conserved. At the level of functional grouping of orthologs, five groups vary significantly from the population of orthologs, which is attributed to either conservation at the level of sequences or a bias for either positively or negatively charged residues contributing to the function. Individual COGs conserved in both the acidic and basic regions of the trimodal distribution are identified, and orthologs that best represent the variation in levels of the acidic and basic regions are listed. Conclusion The analysis of pI distribution by using orthologs provides a basis for resolution of theoretical proteome comparison at the level of individual proteins. Orthologs identified that significantly vary between the major acidic and basic regions maybe used as representative of the variation of the entire proteome. PMID:16150155
Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.
Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B
2002-10-01
The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).
The importance of flow history in mixed shear and extensional flows
NASA Astrophysics Data System (ADS)
Wagner, Caroline; McKinley, Gareth
2015-11-01
Many complex fluid flows of experimental and academic interest exhibit mixed kinematics with regions of shear and elongation. Examples include flows through planar hyperbolic contractions in microfluidic devices and through porous media or geometric arrays. Through the introduction of a ``flow-type parameter'' α which varies between 0 in pure shear and 1 in pure elongation, the local velocity fields of all such mixed flows can be concisely characterized. It is tempting to then consider the local stress field and interpret the local state of stress in a complex fluid in terms of shearing or extensional material functions. However, the material response of such fluids exhibit a fading memory of the entire deformation history. We consider a dilute solution of Hookean dumbbells and solve the Oldroyd-B model to obtain analytic expressions for the entire stress field in any arbitrary mixed flow of constant strain rate and flow-type parameter α. We then consider a more complex flow for which the shear rate is constant but the flow-type parameter α varies periodically in time (reminiscent of flow through a periodic array or through repeated contractions and expansions). We show that the flow history and kinematic sequencing (in terms of whether the flow was initialized as shearing or extensional) is extremely important in determining the ensuing stress field and rate of dissipated energy in the flow, and can only be ignored in the limit of infinitely slow flow variations.
Study of gas-water flow in horizontal rectangular channels
NASA Astrophysics Data System (ADS)
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.
Dynamics of comb-of-comb-network polymers in random layered flows
NASA Astrophysics Data System (ADS)
Katyal, Divya; Kant, Rama
2016-12-01
We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.
Preliminary Study of Electron Emission for Use in the PIC Portion of MAFIA
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
2001-01-01
This memorandum summarizes a study undertaken to apply the program MAFIA to the modeling of an electron gun in a traveling wave tube (TWT). The basic problem is to emit particles from the cathode in the proper manner. The electrons are emitted with the classical Maxwell-Boltzmann (M-B) energy distribution; and for a small patch of emitting surface; the distribution with angle obeys Lambert's law. This states that the current density drops off as the cosine of the angle from the normal. The motivation for the work is to extend the analysis beyond that which has been done using older codes. Some existing programs use the Child-Langmuir, or 3/2 power law, for the description of the gun. This means the current varies as the 3/2 power of the anode voltage. The proportionality constant is termed the perveance of the gun. This is limited, however, since the 3/2 variation is only an approximation. Also, if the cathode is near saturation, the 3/2 law definitely will not hold. In most of the older codes, the electron beam is decomposed into current tubes, which imply laminar flow in the beam; even though experiments show the flow to be turbulent. Also, the proper inclusion of noise in the beam is not possible. These older methods of calculation do, however, give reasonable values for parameters of the electron beam and the overall gun, and these values will be used as the starting point for a more precise particle-in-cell (PIC) calculation. To minimize the time needed for a given computer run, all beams will use the same number of particles in a simulation. This is accomplished by varying the mass and charge of the emitted particles (macroparticles) in a certain manner, to be consistent with the desired beam current.
Flow Cytometry Scientist | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) in the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of the immune system, cancer, and inflammation processes. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Scientist will be responsible for: Daily management of the Flow Cytometry Core, to include the supervision and guidance of technical staff members Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Provide scientific expertise to the user community and facilitate the development of cutting edge technologies Interact with Flow Core users and customers, and provide technical and scientific advice, and guidance regarding their experiments, including possible collaborations Train staff and scientific end users on the use of flow cytometry in their research, as well as teach them how to operate and troubleshoot the bench-top analyzer instruments Prepare and deliver lectures, as well as one-on-one training sessions, with customers/users Ensure that protocols are up-to-date, and appropriately adhered to Experience with sterile technique and tissue culture
Evolution and transition mechanisms of internal swirling flows with tangential entry
NASA Astrophysics Data System (ADS)
Wang, Yanxing; Wang, Xingjian; Yang, Vigor
2018-01-01
The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.
Imagining and Imaging Borders: Understanding Borderlands for Global Sustainability
NASA Astrophysics Data System (ADS)
Konrad, V.
2013-11-01
Borders are increasingly complex human responses and social constructions in a world where globalizing forces confront basic human concerns for security and certainty. In an effort to provide a background to assess research directions for imaging borders, this paper explores what we know about borders, and what we do not know well about borders. Borders in globalization are the meeting points of globalizing forces of security, trade and migration flows with emerging technologies, self determination and regionalization around the world. We need to know more about how: self determination fuels secessions and new borders; borders result from complex rather than simple policy and governance issues; borders depend on the political clout of borderland communities; market and migration flows impact borders; and borders are always in motion. The paper shows how these organizing principles underlie the basic themes of border governance, flows, culture, history, security and sustainability. Finally, the paper offers two brief illustrations of border imaging to link this presentation to the following discussion of the workshop.
A random distribution reacting mixing layer model
NASA Technical Reports Server (NTRS)
Jones, Richard A.; Marek, C. John; Myrabo, Leik N.; Nagamatsu, Henry T.
1994-01-01
A methodology for simulation of molecular mixing, and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Research Center Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and nonreacting shear layer present in the facility given basic assumptions about turbulence properties.
Synthetic Jet Interactions with Flows of Varying Separation Severity and Spanwise Flow Magnitude
NASA Astrophysics Data System (ADS)
Monastero, Marianne; Lindstrom, Annika; Amitay, Michael
2017-11-01
Flow physics associated with the interactions of synthetic jet actuators with a highly three-dimensional separated flow over a flapped airfoil were investigated experimentally and analyzed using stereo particle image velocimetry (SPIV) and surface pressure data. Increased understanding of active flow control devices in flows which are representative of airplane wings or tails can lead to actuator placement (i.e., chordwise location, spanwise spacing) with the greatest beneficial effect on performance. An array of discrete synthetic jets was located just upstream of the control surface hingeline and operated at a blowing ratio of 1 and non-dimensional frequency of 48. Detailed flowfield measurements over the control surface were conducted, where the airfoil's sweep angle and the control surface deflection angle were fixed at 20°. Focus was placed on the local and global flowfields as spanwise actuator spacing was varied. Moreover, surface pressure measurement for several sweep angles, control surface deflection angles, and angles of attack were also performed. Actuation resulted in an overall separation reduction and a dependence of local flowfield details (i.e. separation severity, spanwise flow magnitude, flow structures, and jet trajectory) on spanwise jet spacing. The Boeing Company.
Impacts of changing hydrology on permanent gully growth: experimental results
NASA Astrophysics Data System (ADS)
Day, Stephanie S.; Gran, Karen B.; Paola, Chris
2018-06-01
Permanent gullies grow through head cut propagation in response to overland flow coupled with incision and widening in the channel bottom leading to hillslope failures. Altered hydrology can impact the rate at which permanent gullies grow by changing head cut propagation, channel incision, and channel widening rates. Using a set of small physical experiments, we tested how changing overland flow rates and flow volumes alter the total volume of erosion and resulting gully morphology. Permanent gullies were modeled as both detachment-limited and transport-limited systems, using two different substrates with varying cohesion. In both cases, the erosion rate varied linearly with water discharge, such that the volume of sediment eroded was a function not of flow rate, but of total water volume. This implies that efforts to reduce peak flow rates alone without addressing flow volumes entering gully systems may not reduce erosion. The documented response in these experiments is not typical when compared to larger preexisting channels where higher flow rates result in greater erosion through nonlinear relationships between water discharge and sediment discharge. Permanent gullies do not respond like preexisting channels because channel slope remains a free parameter and can adjust relatively quickly in response to changing flows.
Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin
2017-01-01
Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person-artifact-task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants ( n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity.
Two-layer displacement flow of miscible fluids with viscosity ratio: Experiments
NASA Astrophysics Data System (ADS)
Etrati, Ali; Alba, Kamran; Frigaard, Ian A.
2018-05-01
We investigate experimentally the density-unstable displacement flow of two miscible fluids along an inclined pipe. This means that the flow is from the top to bottom of the pipe (downwards), with the more dense fluid above the less dense. Whereas past studies have focused on iso-viscous displacements, here we consider viscosity ratios in the range 1/10-10. Our focus is on displacements where the degree of transverse mixing is low-moderate, and thus a two-layer, stratified flow is observed. A wide range of parameters is covered in order to observe the resulting flow regimes and to understand the effect of the viscosity contrast. The inclination of the pipe (β) is varied from near horizontal β = 85° to near vertical β = 10°. At each angle, the flow rate and viscosity ratio are varied at fixed density contrast. Flow regimes are mapped in the (Fr, Re cos β/Fr)-plane, delineated in terms of interfacial instability, front dynamics, and front velocity. Amongst the many observations, we find that viscosifying the less dense fluid tends to significantly destabilize the flow. Different instabilities develop at the interface and in the wall-layers.
NASA Astrophysics Data System (ADS)
Wilson, Lee Alexander
Vertical Takeoff-and-Landing (VTOL) Micro Air Vehicles (MAVs) provide a versatile operational platform which combines the capabilities of fixed wing and rotary wing MAVs. In order to improve performance of these vehicles, a better understanding of the rapid transition between horizontal and vertical flight is required. This study examines the flow structures around the Mini-Vertigo VTOL MAV using flow visualization techniques. This will gives an understanding of the flow structures which dominate the flight dynamics of rapid pitching maneuvers. This study consists of three objectives: develop an experimental facility, use flow visualization to investigate the flow around the experimental subject during pitching, and analyze the results. The flow around the Mini-Vertigo VTOL MAV is dominated by the slipstream from its propellers. The slipstream delays LE separation and causes drastic deflection in the flow. While the frequency of the vortices shed from the LE and TE varies with flow speed, the non-dimensional frequency does not. It does, however, vary slightly with the pitching rate. These results are applicable across a wide range of flight conditions. The results correlate to previous research done to examine the aerodynamic forces on the MAV.
Tian, Yu; Bian, Yulong; Han, Piguo; Wang, Peng; Gao, Fengqiang; Chen, Yingmin
2017-01-01
Flow is the experience of effortless attention, reduced self-consciousness, and a deep sense of control that typically occurs during the optimal performance of challenging tasks. On the basis of the person–artifact–task model, we selected computer games (tasks) with varying levels of difficulty (difficult, medium, and easy) and shyness (personality) as flow precursors to study the physiological activity of users in a flow state. Cardiac and respiratory activity and mean changes in skin conductance (SC) were measured continuously while the participants (n = 40) played the games. Moreover, the associations between self-reported psychological flow and physiological measures were investigated through a series of repeated-measures analyses. The results showed that the flow experience is related to a faster respiratory rate, deeper respiration, moderate heart rate (HR), moderate HR variability, and moderate SC. The main effect of shyness was non-significant, whereas the interaction of shyness and difficulty influenced the flow experience. These findings are discussed in relation to current models of arousal and valence. The results indicate that the flow state is a state of moderate mental effort that arises through the increased parasympathetic modulation of sympathetic activity. PMID:28725206
NASA Technical Reports Server (NTRS)
Paegle, J.; Kalnay, E.; Baker, W. E.
1981-01-01
The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.
Dynamics of flexible fibers and vesicles in Poiseuille flow at low Reynolds number.
Farutin, Alexander; Piasecki, Tomasz; Słowicka, Agnieszka M; Misbah, Chaouqi; Wajnryb, Eligiusz; Ekiel-Jeżewska, Maria L
2016-09-21
The dynamics of flexible fibers and vesicles in unbounded planar Poiseuille flow at low Reynolds number is shown to exhibit similar basic features, when their equilibrium (moderate) aspect ratio is the same and vesicle viscosity contrast is relatively high. Tumbling, lateral migration, accumulation and shape evolution of these two types of flexible objects are analyzed numerically. The linear dependence of the accumulation position on relative bending rigidity, and other universal scalings are derived from the local shear flow approximation.
1981-04-30
fluid temperature should exceed 145°F. The flow control module contains all the hydraulic circuit elements necessary for both the pressure line to and...are contained in three basic modules : 1) the hydraulic power supply, 2) a flow control module containing valving, accumulators and filters, and 3) the...hydraulic transient overpressures, is located in the flow control module , as are the high and low pressure filters. The load frame (MTS Systems Corp
NASA Astrophysics Data System (ADS)
Paul, Surajit Kumar
2013-07-01
The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.
2015-07-01
for the fluid flow controlled MEMS metamaterial with PDMS chamber. (b)-(d) shows the cantilever deformation with respect to increasing fluid flow...Firstly the metamaterial was integrated with a polydimethylsiloxane fluidic channel and the injection flow rate was varied from 0 to 5 ml/min
Investigation of Separation of the Turbulent Boundary Layer
NASA Technical Reports Server (NTRS)
Schubauer, G B; Klebanoff, P S
1951-01-01
An investigation was conducted on a turbulent boundary layer near a smooth surface with pressure gradients sufficient to cause flow separation. The reynolds number was high, but the speeds were entirely within the incompressible flow range. The investigation consisted of measurements of mean flow, three components of turbulence intensity, turbulent shearing stress, and correlations between two fluctuation components at a point and between the same component of different points. The results are given in the form of tables and graphs. The discussion deals first with separation and then with the more fundamental question of basic concepts of turbulent flow.
NASA Technical Reports Server (NTRS)
Kwanka, K.; Ortinger, W.; Steckel, J.
1994-01-01
First experimental investigations performed on a new test rig are presented. For a staggered labyrinth seal with fourteen cavities the stiffness coefficient and the leakage flow are measured. The experimental results are compared to calculated results which are obtained by a one-volume bulk-flow theory. A perturbation analysis is made for seven terms. It is found out that the friction factors have great impact on the dynamic coefficients. They are obtained by turbulent flow computation by a finite-volume model with the Reynolds equations used as basic equations.
Richards, Jennifer H; Kuhn, David N; Bishop, Kristin
2012-12-01
Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.
Using Prosopagnosia to Test and Modify Visual Recognition Theory.
O'Brien, Alexander M
2018-02-01
Biederman's contemporary theory of basic visual object recognition (Recognition-by-Components) is based on structural descriptions of objects and presumes 36 visual primitives (geons) people can discriminate, but there has been no empirical test of the actual use of these 36 geons to visually distinguish objects. In this study, we tested for the actual use of these geons in basic visual discrimination by comparing object discrimination performance patterns (when distinguishing varied stimuli) of an acquired prosopagnosia patient (LB) and healthy control participants. LB's prosopagnosia left her heavily reliant on structural descriptions or categorical object differences in visual discrimination tasks versus the control participants' additional ability to use face recognition or coordinate systems (Coordinate Relations Hypothesis). Thus, when LB performed comparably to control participants with a given stimulus, her restricted reliance on basic or categorical discriminations meant that the stimuli must be distinguishable on the basis of a geon feature. By varying stimuli in eight separate experiments and presenting all 36 geons, we discerned that LB coded only 12 (vs. 36) distinct visual primitives (geons), apparently reflective of human visual systems generally.
Silva, Bruno F. B.; Zepeda-Rosales, Miguel; Venkateswaran, Neeraja; ...
2014-10-30
In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ~±11° in themore » velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen–Leslie–Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (~90 and 0°). Lastly, the technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC displays.« less
A geospatial evaluation of timely access to surgical care in seven countries
Banguti, Paulin; Chackungal, Smita; Chanthasiri, Traychit; Chao, Tiffany E; Dahn, Bernice; Derbew, Milliard; Dhar, Debashish; Esquivel, Micaela M; Evans, Faye; Hendel, Simon; LeBrun, Drake G; Notrica, Michelle; Saavedra-Pozo, Iracema; Shockley, Ross; Uribe-Leitz, Tarsicio; Vannavong, Boualy; McQueen, Kelly A; Spain, David A; Weiser, Thomas G
2017-01-01
Abstract: Objective To assess the consistent availability of basic surgical resources at selected facilities in seven countries. Methods In 2010–2014, we used a situational analysis tool to collect data at district and regional hospitals in Bangladesh (n = 14), the Plurinational State of Bolivia (n = 18), Ethiopia (n = 19), Guatemala (n = 20), the Lao People's Democratic Republic (n = 12), Liberia (n = 12) and Rwanda (n = 25). Hospital sites were selected by pragmatic sampling. Data were geocoded and then analysed using an online data visualization platform. Each hospital’s catchment population was defined as the people who could reach the hospital via a vehicle trip of no more than two hours. A hospital was only considered to show consistent availability of basic surgical resources if clean water, electricity, essential medications including intravenous fluids and at least one anaesthetic, analgesic and antibiotic, a functional pulse oximeter, a functional sterilizer, oxygen and providers accredited to perform surgery and anaesthesia were always available. Findings Only 41 (34.2%) of the 120 study hospitals met the criteria for the provision of consistent basic surgical services. The combined catchments of the study hospitals in each study country varied between 3.3 million people in Liberia and 151.3 million people in Bangladesh. However, the combined catchments of the study hospitals in each study country that met the criteria for the provision of consistent basic surgical services were substantially smaller and varied between 1.3 million in Liberia and 79.2 million in Bangladesh. Conclusion Many study facilities were deficient in the basic infrastructure necessary for providing basic surgical care on a consistent basis. PMID:28603310
ERIC Educational Resources Information Center
Liu, Tsung-Yu
2016-01-01
This study investigates how educational games impact on students' academic performance and multimedia flow experiences in a computer science course. A curriculum consists of five basic learning units, that is, the stack, queue, sort, tree traversal, and binary search tree, was conducted for 110 university students during one semester. Two groups…
Vertical Impact of a Sphere Falling into Water
ERIC Educational Resources Information Center
Cross, Rod
2016-01-01
The nature of the drag force on an object moving through a fluid is well documented and many experiments have been described to allow students to measure the force. For low speed flows the drag force is proportional to the velocity of the object, while at high flow speeds the drag force is proportional to the velocity squared. The basic physics…
ERIC Educational Resources Information Center
Meyer, Annika; Klingenberg, Konstantin; Wilde, Matthias
2016-01-01
Contact with living animals is an exceptional possibility within biology education to facilitate an intense immersion into the study topic and even allow for a flow experience (Csikszentmihalyi 2000). Further, it might affect the perceptions of the students' basic needs for autonomy and competence and thereby their quality of motivation (Deci and…
NASA Technical Reports Server (NTRS)
Johnson, S.
1976-01-01
This preliminary data report gives basic test results of a flat-plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficienty is correlated in terms of inlet temperature and flux level.
Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine
NASA Astrophysics Data System (ADS)
Jen, Coty N.; McMurry, Peter H.; Hanson, David R.
2014-06-01
This study experimentally explores how ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) affect the chemical formation mechanisms of electrically neutral clusters that contain two sulfuric acid molecules (dimers). Dimers may also contain undetectable compounds, such as water or bases, that evaporate upon ionization and sampling. Measurements were conducted using a glass flow reactor which contained a steady flow of humidified nitrogen with sulfuric acid concentrations of 107 to 109 cm-3. A known molar flow rate of a basic gas was injected into the flow reactor. The University of Minnesota Cluster Chemical Ionization Mass Spectrometer was used to measure the resulting sulfuric acid vapor and cluster concentrations. It was found that, for a given concentration of sulfuric acid vapor, the dimer concentration increases with increasing concentration of the basic gas, eventually reaching a plateau. The base concentrations at which the dimer concentrations saturate suggest NH3 < MA < TMA ≲ DMA in forming stabilized sulfuric acid dimers. Two heuristic models for cluster formation by acid-base reactions are developed to interpret the data. The models provide ranges of evaporation rate constants that are consistent with observations and leads to an analytic expression for nucleation rates that is consistent with atmospheric observations.
Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold
NASA Astrophysics Data System (ADS)
Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao
2018-06-01
A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.
Individual dispersal, landscape connectivity and ecological networks.
Baguette, Michel; Blanchet, Simon; Legrand, Delphine; Stevens, Virginie M; Turlure, Camille
2013-05-01
Connectivity is classically considered an emergent property of landscapes encapsulating individuals' flows across space. However, its operational use requires a precise understanding of why and how organisms disperse. Such movements, and hence landscape connectivity, will obviously vary according to both organism properties and landscape features. We review whether landscape connectivity estimates could gain in both precision and generality by incorporating three fundamental outcomes of dispersal theory. Firstly, dispersal is a multi-causal process; its restriction to an 'escape reaction' to environmental unsuitability is an oversimplification, as dispersing individuals can leave excellent quality habitat patches or stay in poor-quality habitats according to the relative costs and benefits of dispersal and philopatry. Secondly, species, populations and individuals do not always react similarly to those cues that trigger dispersal, which sometimes results in contrasting dispersal strategies. Finally, dispersal is a major component of fitness and is thus under strong selective pressures, which could generate rapid adaptations of dispersal strategies. Such evolutionary responses will entail spatiotemporal variation in landscape connectivity. We thus strongly recommend the use of genetic tools to: (i) assess gene flow intensity and direction among populations in a given landscape; and (ii) accurately estimate landscape features impacting gene flow, and hence landscape connectivity. Such approaches will provide the basic data for planning corridors or stepping stones aiming at (re)connecting local populations of a given species in a given landscape. This strategy is clearly species- and landscape-specific. But we suggest that the ecological network in a given landscape could be designed by stacking up such linkages designed for several species living in different ecosystems. This procedure relies on the use of umbrella species that are representative of other species living in the same ecosystem. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Stream Width Dynamics in a Small Headwater Catchment
NASA Astrophysics Data System (ADS)
Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.
2016-12-01
Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.
A simple model of fluid flow and electrolyte balance in the body
NASA Technical Reports Server (NTRS)
White, R. J.; Neal, L.
1973-01-01
The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.
NASA Astrophysics Data System (ADS)
Alqefl, Mahmood Hasan
In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense, cross-pitch flow on the contoured endwall side. Endwall adiabatic effectiveness values and coolant distribution thermal fields show minimal effects of varying slot film coolant MFR. This suggests the dominant effects of combustor liner coolant. show dominant effects of combustor liner coolant on cooling the endwall. A coolant vorticity correlation presenting the advective mixing of the coolant due to secondary flow vorticity at the exit plane is also discussed.
Revisiting the accuracy of peak flow meters: a double-blind study using formal methods of agreement.
Nazir, Z; Razaq, S; Mir, S; Anwar, M; Al Mawlawi, G; Sajad, M; Shehab, A; Taylor, R S
2005-05-01
There is widespread use of peak flow meters in both hospitals and general practice. Previous studies to assess peak flow meter accuracy have shown significant differences in the values obtained from different meters. However, many of these studies did not use human subjects for peak flow measurements and did not compare meters of varying usage. In this study human subjects have been used with meters of varying usage. Participants were tested using two new (meters A and C) and one old peak flow meter (meter B) in random order. The study was double-blinded. Participants were recruited from the university campus. Four hundred and nine individuals participated. The difference between peak flow means of A and B was -9.93 l/min (95% CI: -12.37 to -7.48, P<0.0001). The difference between peak flow means of B and C was 20.08 l/min (95% CI: 17.85-22.29, P<0.0001). The difference between peak flow means of A and C was 10.15 l/min (95% CI: 7.68-12.61, P<0.0001). There was a significant difference between the values obtained from the new and old peak flow meters and also between the two new peak flow meters. We conclude that there is need for caution in interchangeably using flow meters in clinical practice.
Flow plug with length-to-hole size uniformity for use in flow conditioning and flow metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2012-01-01
A flow plug of varying thickness has a plurality of holes formed therethrough. The plug fits in a conduit such that a fluid flow in the conduit passes through the plug's holes. Each hole is defined by a parameter indicative of size in terms of the cross-sectional area thereof. A ratio of hole length-to-parameter is approximately the same for all of the holes.
Risley, Jessica May; Chen, David Da Yong
2017-06-01
Post-column chemical environment modification can affect detection sensitivity and signal appearance when capillary electrophoresis is coupled through electrospray ionization to mass spectrometry (CE-ESI-MS). In this study, changes in the signal intensity and peak shape of N-Acetylneuraminic acid (Neu5Ac) were examined when the modifier solution used in a flow-through microvial interface for CE-ESI-MS was prepared using an acidic or basic background electrolyte (BGE) composition. The use of a basic modifier resulted in improved detection compared to the results obtained when an acidic modifier was used in negative ion mode. Increased sensitivity and more symmetrical peak shape were obtained. Using an acidic modifier, the LOD of Neu5Ac was 47.7 nM, whereas for a basic modifier, the LOD of Neu5Ac was 5.20 nM. The calculated asymmetry factor at 100 nM of Neu5Ac ranged from 0.71 to 1.5 when an acidic modifier was used, while the factor ranged from 1.0 to 1.1 when a basic modifier was used. Properly chosen post-column chemical modification can have a significant effect on the performance of the CE-MS system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2003-04-16
The surface textures observed in this NASA Mars Odyssey image of Ascraeus Mons are due to different volcanic flow types. Textural variations can be produced under a variety of different conditions such as varying cooling and flow rates.
NASA Technical Reports Server (NTRS)
Rudy, D. H.; Bushnell, D. M.
1973-01-01
Prandtl's basic mixing length model was used to compute 22 test cases on free turbulent shear flows. The calculations employed appropriate algebraic length scale equations and single values of mixing length constant for planar and axisymmetric flows, respectively. Good agreement with data was obtained except for flows, such as supersonic free shear layers, where large sustained sensitivity changes occur. The inability to predict the more gradual mixing in these flows is tentatively ascribed to the presence of a significant turbulence-induced transverse static pressure gradient which is neglected in conventional solution procedures. Some type of an equation for length scale development was found to be necessary for successful computation of highly nonsimilar flow regions such as jet or wake development from thick wall flows.
Iverson, R.M.; ,
2003-01-01
Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.
NASA. Marshall Space Flight Center Hydrostatic Bearing Activities
NASA Technical Reports Server (NTRS)
Benjamin, Theodore G.
1991-01-01
The basic approach for analyzing hydrostatic bearing flows at the Marshall Space Flight Center (MSFC) is briefly discussed. The Hydrostatic Bearing Team has responsibility for assessing and evaluating flow codes; evaluating friction, ignition, and galling effects; evaluating wear; and performing tests. The Office of Aerospace and Exploration Technology Turbomachinery Seals Tasks consist of tests and analysis. The MSFC in-house analyses utilize one-dimensional bulk-flow codes. Computational fluid dynamics (CFD) analysis is used to enhance understanding of bearing flow physics or to perform parametric analysis that are outside the bulk flow database. As long as the bulk flow codes are accurate enough for most needs, they will be utilized accordingly and will be supported by CFD analysis on an as-needed basis.
Thermoregulatory control of finger blood flow
NASA Technical Reports Server (NTRS)
Wenger, C. B.; Roberts, M. F.; Nadel, E. R.; Stolwijk, J. A. J.
1975-01-01
In the present experiment, exercise was used to vary internal temperature and ambient air heat control was used to vary skin temperature. Finger temperature was fixed at about 35.7 C. Esophageal temperature was measured with a thermocouple at the level of the left atrium, and mean skin temperature was calculated from a weighted mean of thermocouple temperatures at different skin sites. Finger blood flow was measured by electrocapacitance plethysmography. An equation in these quantities is given which accounts for the data garnered.
Villamagna, Amy M.; Angermeier, Paul L.; Bennett, Elena M.
2013-01-01
Ecosystem services provide an instinctive way to understand the trade-offs associated with natural resource management. However, despite their apparent usefulness, several hurdles have prevented ecosystem services from becoming deeply embedded in environmental decision-making. Ecosystem service studies vary widely in focal services, geographic extent, and in methods for defining and measuring services. Dissent among scientists on basic terminology and approaches to evaluating ecosystem services create difficulties for those trying to incorporate ecosystem services into decision-making. To facilitate clearer comparison among recent studies, we provide a synthesis of common terminology and explain a rationale and framework for distinguishing among the components of ecosystem service delivery, including: an ecosystem's capacity to produce services; ecological pressures that interfere with an ecosystem's ability to provide the service; societal demand for the service; and flow of the service to people. We discuss how interpretation and measurement of these four components can differ among provisioning, regulating, and cultural services. Our flexible framework treats service capacity, ecological pressure, demand, and flow as separate but interactive entities to improve our ability to evaluate the sustainability of service provision and to help guide management decisions. We consider ecosystem service provision to be sustainable when demand is met without decreasing capacity for future provision of that service or causing undesirable declines in other services. When ecosystem service demand exceeds ecosystem capacity to provide services, society can choose to enhance natural capacity, decrease demand and/or ecological pressure, or invest in a technological substitute. Because regulating services are frequently overlooked in environmental assessments, we provide a more detailed examination of regulating services and propose a novel method for quantifying the flow of regulating services based on estimates of ecological work. We anticipate that our synthesis and framework will reduce inconsistency and facilitate coherence across analyses of ecosystem services, thereby increasing their utility in environmental decision-making.
Effects of meridional flow variations on solar cycles 23 and 24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upton, Lisa; Hathaway, David H., E-mail: lisa.a.upton@vanderbilt.edu, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov
2014-09-10
The faster meridional flow that preceded the solar cycle 23/24 minimum is thought to have led to weaker polar field strengths, producing the extended solar minimum and the unusually weak cycle 24. To determine the impact of meridional flow variations on the sunspot cycle, we have simulated the Sun's surface magnetic field evolution with our newly developed surface flux transport model. We investigate three different cases: a constant average meridional flow, the observed time-varying meridional flow, and a time-varying meridional flow in which the observed variations from the average have been doubled. Comparison of these simulations shows that the variationsmore » in the meridional flow over cycle 23 have a significant impact (∼20%) on the polar fields. However, the variations produced polar fields that were stronger than they would have been otherwise. We propose that the primary cause of the extended cycle 23/24 minimum and weak cycle 24 was the weakness of cycle 23 itself—with fewer sunspots, there was insufficient flux to build a big cycle. We also find that any polar counter-cells in the meridional flow (equatorward flow at high latitudes) produce flux concentrations at mid-to-high latitudes that are not consistent with observations.« less
Milk Flow Rates from bottle nipples used after hospital discharge.
Pados, Britt Frisk; Park, Jinhee; Thoyre, Suzanne M; Estrem, Hayley; Nix, W Brant
To test the milk flow rates and variability in flow rates of bottle nipples used after hospital discharge. Twenty-six nipple types that represented 15 common brands as well as variety in price per nipple and store location sold (e.g., Babies R' Us, Walmart, Dollar Store) were chosen for testing. Ten of each nipple type (n = 260 total) were tested by measuring the amount of infant formula expressed in 1 minute using a breast pump. Mean milk flow rate (mL/min) and coefficient of variation (CV) were calculated. Flow rates of nipples within brand were compared statistically. Milk flow rates varied from 1.68 mL/min for the Avent Natural Newborn Flow to 85.34 mL/min for the Dr. Brown's Standard Y-cut. Variability between nipple types also varied widely, from .03 for the Dr. Brown's Standard Level 3 to .37 for MAM Nipple 1 Slow Flow. The extreme range of milk flow rates found may be significant for medically fragile infants being discharged home who are continuing to develop oral feeding skills. The name of the nipple does not provide clear information about the flow rate to guide parents in decision making. Variability in flow rates within nipples of the same type may complicate oral feeding for the medically fragile infant who may not be able to adapt easily to change in flow rates. Both flow rate and variability should be considered when guiding parents to a nipple choice.
Chekmarev, Sergei F
2013-03-01
The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of the flow to find this state.
Flow karyotyping and sorting of human chromosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J.W.; Lucas, J.; Peters, D.
1986-07-16
Flow cytometry and sorting are becoming increasingly useful as tools for chromosome classfication and for the detection of numerical and structural chromosome aberrations. Chromosomes of a single type can be purified with these tools to facilitate gene mapping or production of chromosome specific recombinant DNA libraries. For analysis of chromosomes with flow cytometry, the chromosomes are extracted from mitotic cells, stained with one or more fluorescent dyes and classified one-by-one according to their dye content(s). Thus, the flow approach is fundamentally different than conventional karyotyping where chromosomes are classified within the context of a metaphase spread. Flow sorting allows purificationmore » of chromosomes that can be distinguished flow cytometrically. The authors describe the basic principles of flow cytometric chromosome classification i.e. flow karyotyping, and chromosome sorting and describe several applications. 30 refs., 8 figs.« less
Flow separation on flapping and rotating profiles with spanwise gradients.
Wong, J G; laBastide, B P; Rival, D E
2017-02-15
The growth of leading-edge vortices (LEV) on analogous flapping and rotating profiles has been investigated experimentally. Three time-varying cases were considered: a two-dimensional reference case with a spanwise-uniform angle-of-attack variation α; a case with increasing α towards the profile tip (similar to flapping flyers); and a case with increasing α towards the profile root (similar to rotor blades experiencing an axial gust). It has been shown that the time-varying spanwise angle-of-attack gradient produces a vorticity gradient, which, in combination with spanwise flow, results in a redistribution of circulation along the profile. Specifically, when replicating the angle-of-attack gradient characteristic of a rotor experiencing an axial gust, the spanwise-vorticity gradient is aligned such that circulation increases within the measurement domain. This in turn increases the local LEV growth rate, which is suggestive of force augmentation on the blade. Reversing the relative alignment of the spanwise-vorticity gradient and spanwise flow, thereby replicating that arrangement found in a flapping flyer, was found to reduce local circulation. From this, we can conclude that spanwise flow can be arranged to vary LEV growth to prolong lift augmentation and reduce the unsteadiness of cyclic loads.
Pressure driven laminar flow of a power-law fluid in a T-channel
NASA Astrophysics Data System (ADS)
Dyakova, O. A.; Frolov, O. Yu
2017-10-01
Planar flow of a non-Newtonian fluid in a T-channel is investigated. The viscosity is determined by the Ostwald-de Waele power law. Motion of the fluid is caused by pressure drop given in boundary sections of the T-channel. On the solid walls, the no slip boundary condition is used. The problem is numerically solved with using a finite difference method based on the SIMPLE procedure. As a result of this study, characteristic flow regimes have been found. Influence of main parameters on the flow pattern has been demonstrated. Criteria dependences describing basic characteristics of the flow under conditions of the present work have been shown.
Asynchronous oscillations of rigid rods drive viscous fluid to swirl
NASA Astrophysics Data System (ADS)
Hayashi, Rintaro; Takagi, Daisuke
2017-12-01
We present a minimal system for generating flow at low Reynolds number by oscillating a pair of rigid rods in silicone oil. Experiments show that oscillating them in phase produces no net flow, but a phase difference alone can generate rich flow fields. Tracer particles follow complex trajectory patterns consisting of small orbital movements every cycle and then drifting or swirling in larger regions after many cycles. Observations are consistent with simulations performed using the method of regularized Stokeslets, which reveal complex three-dimensional flow structures emerging from simple oscillatory actuation. Our findings reveal the basic underlying flow structure around oscillatory protrusions such as hairs and legs as commonly featured on living and nonliving bodies.
The validity of flow approximations when simulating catchment-integrated flash floods
NASA Astrophysics Data System (ADS)
Bout, B.; Jetten, V. G.
2018-01-01
Within hydrological models, flow approximations are commonly used to reduce computation time. The validity of these approximations is strongly determined by flow height, flow velocity and the spatial resolution of the model. In this presentation, the validity and performance of the kinematic, diffusive and dynamic flow approximations are investigated for use in a catchment-based flood model. Particularly, the validity during flood events and for varying spatial resolutions is investigated. The OpenLISEM hydrological model is extended to implement both these flow approximations and channel flooding based on dynamic flow. The flow approximations are used to recreate measured discharge in three catchments, among which is the hydrograph of the 2003 flood event in the Fella river basin. Furthermore, spatial resolutions are varied for the flood simulation in order to investigate the influence of spatial resolution on these flow approximations. Results show that the kinematic, diffusive and dynamic flow approximation provide least to highest accuracy, respectively, in recreating measured discharge. Kinematic flow, which is commonly used in hydrological modelling, substantially over-estimates hydrological connectivity in the simulations with a spatial resolution of below 30 m. Since spatial resolutions of models have strongly increased over the past decades, usage of routed kinematic flow should be reconsidered. The combination of diffusive or dynamic overland flow and dynamic channel flooding provides high accuracy in recreating the 2003 Fella river flood event. Finally, in the case of flood events, spatial modelling of kinematic flow substantially over-estimates hydrological connectivity and flow concentration since pressure forces are removed, leading to significant errors.
Decorrelation Times of Photospheric Fields and Flows
NASA Technical Reports Server (NTRS)
Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.
2012-01-01
We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.
Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow
NASA Astrophysics Data System (ADS)
Cagney, Neil; Balabani, Stavroula
2017-11-01
Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.
Navier-Stokes simulations of slender axisymmetric shapes in supersonic, turbulent flow
NASA Astrophysics Data System (ADS)
Moran, Kenneth J.; Beran, Philip S.
1994-07-01
Computational fluid dynamics is used to study flows about slender, axisymmetric bodies at very high speeds. Numerical experiments are conducted to simulate a broad range of flight conditions. Mach number is varied from 1.5 to 8 and Reynolds number is varied from 1 X 10(exp 6)/m to 10(exp 8)/m. The primary objective is to develop and validate a computational and methodology for the accurate simulation of a wide variety of flow structures. Accurate results are obtained for detached bow shocks, recompression shocks, corner-point expansions, base-flow recirculations, and turbulent boundary layers. Accuracy is assessed through comparison with theory and experimental data; computed surface pressure, shock structure, base-flow structure, and velocity profiles are within measurement accuracy throughout the range of conditions tested. The methodology is both practical and general: general in its applicability, and practicaal in its performance. To achieve high accuracy, modifications to previously reported techniques are implemented in the scheme. These modifications improve computed results in the vicinity of symmetry lines and in the base flow region, including the turbulent wake.
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Mendoza, J.
1995-01-01
This report documents the results of an experimental investigation on the response of a cavity to external flowfields. The primary objective of this research was to acquire benchmark of data on the effects of cavity length, width, depth, upstream boundary layer, and flow temperature on cavity noise. These data were to be used for validation of computational aeroacoustic (CAA) codes on cavity noise. To achieve this objective, a systematic set of acoustic and flow measurements were made for subsonic turbulent flows approaching a cavity. These measurements were conducted in the research facilities of the Georgia Tech research institute. Two cavity models were designed, one for heated flow and another for unheated flow studies. Both models were designed such that the cavity length (L) could easily be varied while holding fixed the depth (D) and width (W) dimensions of the cavity. Depth and width blocks were manufactured so that these dimensions could be varied as well. A wall jet issuing from a rectangular nozzle was used to simulate flows over the cavity.
Global dynamics of zooplankton and harmful algae in flowing habitats
NASA Astrophysics Data System (ADS)
Hsu, Sze-Bi; Wang, Feng-Bin; Zhao, Xiao-Qiang
This paper is devoted to the study of two advection-dispersion-reaction models arising from the dynamics of harmful algae and zooplankton in flowing-water habitats where a main channel is coupled to a hydraulic storage zone, representing an ensemble of fringing coves on the shoreline. For the system modeling the dynamics of algae and their toxin that contains little limiting nutrient, we establish a threshold type result on the global attractivity in terms of the basic reproduction ratio for algae. For the model with zooplankton that eat the algae and are inhibited by the toxin produced by algae, we show that there exists a coexistence steady state and the zooplankton is uniformly persistent provided that two basic reproduction ratios for algae and zooplankton are greater than unity.
NASA Technical Reports Server (NTRS)
McKinzie, Daniel J., Jr.
1996-01-01
A vane oscillating about a fixed point at the inlet to a two-dimensional 20 deg rearward-facing ramp proved effective in delaying the detachment of a turbulent boundary layer. Flow-field, surface static pressure, and smoke-wire flow visualization measurements were made. Surface pressure coefficient distributions revealed that two different effects occurred with axial distance along the ramp surface. The surface pressure coefficient varied as a complex function of the vane oscillation frequency and its trailing edge displacement amplitude; that is, it varied as a function of the vane oscillation frequency throughout the entire range of frequencies covered during the test, but it varied over only a limited range of the trailing edge displacement amplitudes covered.The complexity of these findings prompted a detailed investigation, the results of which revealed a combination of phenomena that explain qualitatively how the mechanically generated, periodic, sinusoidal perturbing signal produced by the oscillating vane reacts with the fluid flow to delay the detachment of a turbulent boundary layer experiencing transitory detachment.
Unsteady density-current equations for highly curved terrain
NASA Technical Reports Server (NTRS)
Sivakumaran, N. S.; Dressler, R. F.
1989-01-01
New nonlinear partial differential equations containing terrain curvature and its rate of change are derived that describe the flow of an atmospheric density current. Unlike the classical hydraulic-type equations for density currents, the new equations are valid for two-dimensional, gradually varied flow over highly curved terrain, hence suitable for computing unsteady (or steady) flows over arbitrary mountain/valley profiles. The model assumes the atmosphere above the density current exerts a known arbitrary variable pressure upon the unknown interface. Later this is specialized to the varying hydrostatic pressure of the atmosphere above. The new equations yield the variable velocity distribution, the interface position, and the pressure distribution that contains a centrifugal component, often significantly larger than its hydrostatic component. These partial differential equations are hyperbolic, and the characteristic equations and characteristic directions are derived. Using these to form a characteristic mesh, a hypothetical unsteady curved-flow problem is calculated, not based upon observed data, merely as an example to illustrate the simplicity of their application to unsteady flows over mountains.
NASA Astrophysics Data System (ADS)
Johnson, Ryan Federick; Chelliah, Harsha Kumar
2017-01-01
For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.
Basic physics of laser interaction with vital tissue.
Wigdor, Harvey
2008-09-01
It is essential for any practitioner who uses lasers in their clinical practice to understand the basic physics of lasers. It is this knowledge that allows for an educated assessment of the clinical outcomes that lasers produce in our patients. It is also this understanding that provides a scientific basis for the visual feedback the clinician uses to vary parameters as needed to get the desired clinical results. It is the intent of this paper to discuss the very basic reasons why lasers affect tissues the way they do, and to synthesize the plethora of information dental practitioners are seeing regularly in dental journals.
NASA Astrophysics Data System (ADS)
Xiao, Yao; Chraibi, Mohcine; Qu, Yunchao; Tordeux, Antoine; Gao, Ziyou
2018-05-01
In a crowd, individuals make different motion choices such as "moving to destination," "following another pedestrian," and "making a detour." For the sake of convenience, the three direction choices are respectively called destination direction, following direction, and detour direction in this paper. Here, it is found that the featured direction choices could be inspired by the shape characteristics of the Voronoi diagram. To be specific, in the Voronoi cell of a pedestrian, the direction to a Voronoi node is regarded as a potential "detour" direction and the direction perpendicular to a Voronoi link is regarded as a potential "following" direction. A pedestrian generally owns several alternative Voronoi nodes and Voronoi links in a Voronoi cell, and the optimal detour and following direction are determined by considering related factors such as deviation. Plus the destination direction which is directly pointing to the destination, the three basic direction choices are defined in a Voronoi cell. In order to evaluate the Voronoi diagram based basic directions, the empirical trajectory data in both uni- and bi-directional flow experiments are extracted. A time series method considering the step frequency is used to reduce the original trajectories' swaying phenomena which might disturb the recognition of actual forward direction. The deviations between the empirical velocity direction and the basic directions are investigated, and each velocity direction is classified into a basic direction or regarded as an inexplicable direction according to the deviations. The analysis results show that each basic direction could be a potential direction choice for a pedestrian. The combination of the three basic directions could cover most empirical velocity direction choices in both uni- and bi-directional flow experiments.
A nonintrusive laser interferometer method for measurement of skin friction
NASA Technical Reports Server (NTRS)
Monson, D. J.
1982-01-01
A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows.
NASA Astrophysics Data System (ADS)
Lou, Wentao; Zhu, Miaoyong
2014-10-01
A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.
Dynamics of Active Nematic Liquid Crystals
NASA Astrophysics Data System (ADS)
DeCamp, Stephen J.
Active matter systems exist in a state far from equilibrium due to the motion of their constituent particles. They exhibit complex phenomena such as collective motion, internally driven flows, and spontaneous pattern formation. Understanding the basic rules which govern these materials is an extraordinarily difficult task due to the wide variety of phenomenology they exhibit and a lack of tunable and tractable experimental systems in the field. In this thesis, we use reconstituted biological components to build a model active matter system from the ground-up and explore two different classes of active matter systems; active gels and active nematics. First we examine a bulk, 3D active gel composed of extensile bundles of microtubules and kinesin motor clusters. Upon the addition of ATP, we find that the gel undergoes percolation dynamics through cycles of bundle extension, bending, buckling and merging. The motion of microtubule bundles generates large-scale flows which we characterize by embedding passive micron-sized tracer particles into the fluid. We demonstrate that the activity of the gel can be continuously tuned by varying the ATP concentration in the system. Mean squared displacements (MSDs) show that the tracer particles are ballistically transported through the sample at high ATP concentration and become diffusive at low ATP concentration. By measuring two-point spatial velocity-velocity correlations, a characteristic length scale representative of vorticity in the fluid and therefore buckling of the microtubule bundles is found to be independent of the ATP concentration. The active gel is composed of numerous components which affect the gel dynamics. We vary each component in turn and measure the resulting characteristic length and speed of the active gel. The length scale can be tuned between 100 mum to 200 mum and the speed from 0 to 4 mu/s by varying the concentration of PEG, kinesin motors, and microtubules. We then characterize an active nematic liquid crystal by assembling microtubule bundles into a quasi-2D film confined to a large, flat oil-water interface. Internal stresses generated by kinesin motors drive the system far from equilibrium which precludes a uniformly aligned nematic ground state through the continuous creation and annihilation of +/-1/2 motile defects. First, we demonstrate that the nematic is extensile by observing the deformation of a photobleached spot which undergoes extension along the nematic director and contraction perpendicular to the director. We map the experimentally tunable parameter, ATP concentration, to the intrinsic activity of the sample measured by the characteristic time of the contractile dynamics. Then, we characterize the flow of individual microtubules by measuring their relative velocity within the nematic and find a flow field consistent with a force dipole but where the magnitude of the extension and contraction velocity are proportional to the separation between the filaments. The extensile and contractile flow velocities can be tuned by the ATP concentration and can be as large as 6 mum/s. Then we spatially map microtubule concentration, alignment, and flow near topological defect cores. We test a theory which predicts that flows are directly proportional to the local alignment of the nematic and find our results inconsistent with that theory. Finally, we measure large scale velocity and vorticity distributions as well as vortex area distributions and find agreement with other recent theoretical predictions. Next, we turn our attention to the complex behavior of defects in the active nematic. Using defect tracking algorithms developed by Gabriel S. Redner, we measure the +/-1/2 defect velocity and lifetime distributions as well as MSD and average defect density. We find that average velocities, lifetimes, and densities are tunable by varying the ATP concentration. The MSDs reveal that motile +1/2 defects stream ballistically through the sample (up to 15 mum/s) while -1/2 defects are passive Brownian-like particles which receive random kicks by their +1/2 counterparts. Surprisingly, we discover a previously unknown phase in which motile +1/2 defects obtain nematic orientational order whereupon they have equal probability of pointing along a single axis in the sample. Our experiments show that the preferred direction of defect alignment is independent of the boundary conditions suggesting that it is the result of spontaneous symmetry breaking. We find that the extent of the alignment is continuously tuned from essentially isotropic to highly aligned by varying the thickness of the quasi-2D microtubule film. Interestingly, the order and alignment of defects, which is accompanied by nematic order of the constituent microtubules, persists for the sample lifetime (many hours). Finally, we assemble the 2D microtubule-based active nematic liquid crystal onto the inner leaflet of lipid bilayer vesicles. The activity drives the formation of 4x +1/2 defects which subsequently stream across the inner surface of the vesicle. The defects oscillate between a tetrahedral orientation and a state in which they reside on the great circle of the sphere with a periodicity that is directly tunable by varying ATP concentration. Remarkably, the activity of the nematic can drive large shape deformations of the vesicle producing filopodia-like protrusions.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming
2012-12-01
Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.
Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming
2012-12-01
Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.
Study of the Mixing Regimes of a Fluid and a Nanofluid in a T-shaped Micromixer
NASA Astrophysics Data System (ADS)
Lobasov, A. S.; Minakov, A. V.; Rudyak, V. Ya.
2018-01-01
In the present paper, the regimes of flow and mixing of water and a nanofluid with aluminum oxide nanoparticles in a T-shaped microchannel have been studied numerically. The Reynolds number was varied from 10 to 400, and the volume concentration of nanoparticles was varied from 0 to 10%. Nanofluids with mean sizes of particles from 50 to 150 nm were considered. The viscosity coefficient of the nanofluid was taken from experimental data. In all cases, it exceeded the viscosity coefficient of water and depended on not only the concentration of nanoparticles, but also on their sizes, and the viscosity of the nanofluid with smaller particles was higher than the viscosity of the nanofluid with large particles. It has been established that there exist regimes of steady irrotational flow, steady vortex flow with two horseshoe vortices, and steady flow with two vortices in the mixing channel. It has been shown that when the flow goes from the regime with horseshoe vortices to the flow conditions with two single vortices, the mixing efficiency increases several times. It has been established that the flow conditions and the mixing efficiency largely depend on the volume concentration of particles and their sizes.
Prediction of blood pressure and blood flow in stenosed renal arteries using CFD
NASA Astrophysics Data System (ADS)
Jhunjhunwala, Pooja; Padole, P. M.; Thombre, S. B.; Sane, Atul
2018-04-01
In the present work an attempt is made to develop a diagnostive tool for renal artery stenosis (RAS) which is inexpensive and in-vitro. To analyse the effects of increase in the degree of severity of stenosis on hypertension and blood flow, haemodynamic parameters are studied by performing numerical simulations. A total of 16 stenosed models with varying degree of stenosis severity from 0-97.11% are assessed numerically. Blood is modelled as a shear-thinning, non-Newtonian fluid using the Carreau model. Computational Fluid Dynamics (CFD) analysis is carried out to compute the values of flow parameters like maximum velocity and maximum pressure attained by blood due to stenosis under pulsatile flow. These values are further used to compute the increase in blood pressure and decrease in available blood flow to kidney. The computed available blood flow and secondary hypertension for varying extent of stenosis are mapped by curve fitting technique using MATLAB and a mathematical model is developed. Based on these mathematical models, a quantification tool is developed for tentative prediction of probable availability of blood flow to the kidney and severity of stenosis if secondary hypertension is known.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Bruno F. B.; Zepeda-Rosales, Miguel; Venkateswaran, Neeraja
In this work we investigate the interplay between flow and boundary condition effects on the orientation field of a thermotropic nematic liquid crystal under flow and confinement in a microfluidic device. Two types of experiments were performed using synchrotron small-angle X-ray-scattering (SAXS). In the first, a nematic liquid crystal flows through a square-channel cross section at varying flow rates, while the nematic director orientation projected onto the velocity/velocity gradient plane is measured using a 2D detector. At moderate-to-high flow rates, the nematic director is predominantly aligned in the flow direction, but with a small tilt angle of ~±11° in themore » velocity gradient direction. The director tilt angle is constant throughout most of the channel width but switches sign when crossing the center of the channel, in agreement with the Ericksen–Leslie–Parodi (ELP) theory. At low flow rates, boundary conditions begin to dominate, and a flow profile resembling the escaped radial director configuration is observed, where the director is seen to vary more smoothly from the edges (with homeotropic alignment) to the center of the channel. In the second experiment, hydrodynamic focusing is employed to confine the nematic phase into a sheet of liquid sandwiched between two layers of Triton X-100 aqueous solutions. The average nematic director orientation shifts to some extent from the flow direction toward the liquid boundaries, although it remains unclear if one tilt angle is dominant through most of the nematic sheet (with abrupt jumps near the boundaries) or if the tilt angle varies smoothly between two extreme values (~90 and 0°). Lastly, the technique presented here could be applied to perform high-throughput measurements for assessing the influence of different surfactants on the orientation of nematic phases and may lead to further improvements in areas such as boundary lubrication and clarifying the nature of defect structures in LC displays.« less
NASA Astrophysics Data System (ADS)
Behn, M. D.; Conrad, C. P.; Silver, P. G.
2005-12-01
Shear flow in the asthenosphere tends to align olivine crystals in the direction of shear, producing a seismically anisotropic asthenosphere that can be detected using a number of seismic techniques (e.g., shear-wave splitting (SWS) and surface waves). In the ocean basins, where the asthenosphere has a relatively uniform thickness and lithospheric anisotropy appears to be small, observed azimuthal anisotropy is well fit by asthenospheric shear flow in global flow models driven by a combination of plate motions and mantle density heterogeneity. In contrast, beneath the continents both the lithospheric ceiling and asthenospheric thickness may vary considerably across cratonic regions and ocean-continent boundaries. To examine the influence of a continental lithosphere with variable thickness on predictions of continental seismic anisotropy, we impose lateral variations in lithospheric viscosity in global models of mantle flow driven by plate motions and mantle density heterogeneity. For the North American continent, the Farallon slab descends beneath a deep cratonic root, producing downwelling flow in the upper mantle and convergent flow beneath the cratonic lithosphere. We evaluate both the orientation of the predicted azimuthal anisotropy and the depth dependence of radial anisotropy for this downwelling flow and find that the inclusion of a strong continental root provides an improved fit to observed SWS observations beneath the North American craton. Thus, we hypothesize that at least some continental anisotropy is associated with sub-lithospheric viscous shear, although fossil anisotropy in the lithospheric layer may also contribute significantly. Although we do not observe significant variations in the direction of predicted anisotropy with depth, we do find that the inclusion of deep continental roots pushes the depth of the anisotropy layer deeper into the upper mantle. We test several different models of laterally-varying lithosphere and asthenosphere viscosity. These models can be used to separate the contributions of asthenospheric flow and lithospheric fossil fabric in observations of continental anisotropy.
The nonlinear response in a baroclinic model to stationary forcings
NASA Technical Reports Server (NTRS)
Roads, J. O.
1982-01-01
Wave-zonal-flow interaction studies demonstrated that stratospheric warnings and blocking may be described by the same basic mechanisms although different results occurred for different horizontal scales.
Application of a Near-Field Water Quality Model.
1979-07-01
VERIFICATION 45 CENTERLINE TEMPERATURE DECRF~A7F 46 LATERAL VARIATION OF CONSTITUENTS 46 VARIATIOtN OF PLUME WIDTH 49 GENERAL ON VERIFICATION 49...40 4 SOME RESULTS OF VARYING THE ENTRAINMENT COEFFICIENT 4’ 5 RESULTS OF VARYING OTHER COEFFICEINT 42 6 GENERAL PLUME CHARACTERISITICS FOR VARIATION... plume ) axis. These profile forms are then integrated within the basic conservation equations. This integration reduces the problem to a one
The hierarchical structure and mechanics of plant materials.
Gibson, Lorna J
2012-11-07
The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency.
The hierarchical structure and mechanics of plant materials
Gibson, Lorna J.
2012-01-01
The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency. PMID:22874093
Vascular pattern formation in plants.
Scarpella, Enrico; Helariutta, Ykä
2010-01-01
Reticulate tissue systems exist in most multicellular organisms, and the principles underlying the formation of cellular networks have fascinated philosophers, mathematicians, and biologists for centuries. In particular, the beautiful and varied arrangements of vascular tissues in plants have intrigued mankind since antiquity, yet the organizing signals have remained elusive. Plant vascular tissues form systems of interconnected cell files throughout the plant body. Vascular cells are aligned with one another along continuous lines, and vascular tissues differentiate at reproducible positions within organ environments. However, neither the precise path of vascular differentiation nor the exact geometry of vascular networks is fixed or immutable. Several recent advances converge to reconcile the seemingly conflicting predictability and plasticity of vascular tissue patterns. A control mechanism in which an apical-basal flow of signal establishes a basic coordinate system for body axis formation and vascular strand differentiation, and in which a superimposed level of radial organizing cues elaborates cell patterns, would generate a reproducible tissue configuration in the context of an underlying robust, self-organizing structure, and account for the simultaneous regularity and flexibility of vascular tissue patterns. Copyright 2010 Elsevier Inc. All rights reserved.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1998-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.
Zhang, Guang; Liu, Changhong; Fan, Shoushan
2012-04-24
We directly measured the temperature dependence of thermal boundary resistances (TBRs) between multiwalled carbon nanotubes (MWCNTs) and different materials at elevated temperatures. Using the steady-state heat flow and the noncontacted measurement method, we could conveniently obtain the TBR-temperature relations. Our results indicate that the TBR-temperature relations vary distinctively with different contact materials when heating temperatures change from about 300 to 450 K; that is, the CNT-metal TBRs increase with increasing temperatures, whereas the CNT-insulator TBRs decrease. As a comparison, the TBRs between superaligned MWCNTs were measured and we found that the CNT-CNT TBRs remain basically unchanged as temperatures increase. We also found that the magnitude of TBRs between MWCNTs and different materials could differ from each other significantly. These results suggest that the choice of the right electrode may have an obvious influence on the thermal properties and other properties of the CNT-based devices. From another perspective, in view of some existing theoretical models about TBRs, our results support the validity of the molecular dynamics (MD) simulations in the calculation of CNT-solid TBRs at elevated temperatures.
Mirvis, D M
1988-11-01
Patients with acute inferior myocardial infarction commonly have ST segment depression in the anterior precordial leads. This may reflect either reciprocal changes from the inferior ST elevation or primary ST depression from additional anterior subendocardial ischemia. From a biophysical perspective reciprocal changes should be uniformly anticipated from basic dipole theory. Detection will vary with the size, location, orientation, and electrical intensity of the lesion and with the ECG lead system deployed to register the anterior changes. Alternatively, acute occlusion of the right coronary artery may produce ischemia in the anterior left ventricular wall supplied by a stenotic anterior descending coronary artery. Anterior ischemia may result from the abnormal hemodynamics or the reduced collateral flow produced by acute right coronary artery occlusion. Thus both mechanisms are based on sound physiologic principles. A review of the clinical literature suggests that such patients represent a heterogeneous group. In some instances coexistent anterior ischemia is present, whereas in others the anterior ST depression is the passive reflection of inferior ST elevation augmented in many cases by a large infarct size or more extensive posterobasal or septal involvement.
ERIC Educational Resources Information Center
Škorjanc, Aleš; Belušic, Gregor
2015-01-01
In the present study, a preparation of frog skin was presented, which can be used to demonstrate the basic concepts of blood flow regulation in a very clear and attractive way to high school and university students. In a freshly euthanized "Xenopus," a patch of abdominal skin was exposed from the internal side and viewed with a USB…
Theoretical flow regime diagrams for the AGCE
NASA Technical Reports Server (NTRS)
Fowlis, W. W.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.
1984-01-01
The major criterion for the design of the Atmospheric General Circulation Experiment is that it be possible to realize strong baroclinic instability in the apparatus. A spherical annulus configuration which allows only steady basic state flows was chosen for the first set of stability analyses. Baroclinic instability was found for this configuration and few results suggest a regime diagram very different from the cylindrical annulus regime diagram.
NASA Technical Reports Server (NTRS)
Racisz, Stanley F.
1946-01-01
Lift, drag, internal flow, and pressure distribution measurements were made on a low-drag airfoil incorporating various air inlet designs. Two leading-edge air inlets are developed which feature higher lift coefficients and critical Mach than the basic airfoil. Higher lift coefficients and critical speeds are obtained for leading half of these inlet sections but because of high suction pressures near exist, slightly lower critical speeds are obtained for the entire inlet section than the basic airfoil.
Detection of cavitation vortex in hydraulic turbines using acoustic techniques
NASA Astrophysics Data System (ADS)
Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.
2014-03-01
Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time is reduced, resulting in a faster detection of the unwanted effects. The paper will present an example of this new investigation technique on a vortex generator in the test facility that belongs to ICPE- CA.
NASA Astrophysics Data System (ADS)
Jensen, C.; McGuire, K. J.
2015-12-01
One of the most basic descriptions of streams is the presence of channelized flow. However, this seemingly simple query goes unanswered for the majority of headwater networks, as stream length expands and contracts with the wetness of catchments seasonally, interannually, and in response to storm events. Although streams are known to grow and shrink, a lack of information on longitudinal dynamics across different geographic regions precludes effective management. Understanding the temporal variation in temporary network length over a broad range of settings is critical for policy decisions that impact aquatic ecosystem health. This project characterizes changes in active stream length for forested headwater catchments spanning four physiographic provinces of the Appalachian Highlands: the New England at Hubbard Brook Experimental Forest, New Hampshire; Valley and Ridge at Poverty Creek and the North Fork of Big Stony Creek in Jefferson National Forest, Virginia; Blue Ridge at Coweeta Hydrologic Laboratory, North Carolina; and Appalachian Plateau at Fernow Experimental Forest, West Virginia. Multivariate statistical analysis confirms these provinces exhibit characteristic topographies reflecting differences in climate, geology, and environmental history and, thus, merit separate consideration. The active streams of three watersheds (<45 ha) in each study area were mapped six times to capture a variety of moderate flow conditions that can be expected most of the time (i.e., exceedance probabilities between 25 to 75%). The geomorphic channel and channel heads were additionally mapped to determine how active stream length variability relates to the development of the geomorphic network. We found that drainage density can vary up to four-fold with discharge. Stream contraction primarily proceeds by increasing disconnection and disintegration into pools, while the number of flow origins remains constant except at high and low extremes of discharge. This work demonstrates that streams can remain active in the form of isolated, disconnected sections along even the most upstream reaches during low flows. This finding suggests that we must consider the maximum stream extent for conservation and management strategies much more frequently than for just periods of high stream flow.
NASA Technical Reports Server (NTRS)
Kruse, R. L.; Lovette, G. H.; Spencer, B., Jr.
1977-01-01
The subsonic aerodynamic characteristics of a series of irregular planform wings were studied in wind tunnel tests conducted at M = 0.3 over a range of Reynolds numbers from 1.6 million to 26 million/m. The five basic wing planforms varied from a trapezoidal to a delta shape. Leading edge extensions, added to the basic shape, varied in approximately 5 deg increments from the wing leading edge sweep-back angle to a maximum 80 deg. Most of the tests were conducted using an NACA 0008 airfoil section with grit boundary layer trips. Tests were also conducted using an NACA 0012 airfoil section and an 8% thick wedge. In addition, the effect of free transition (no grit) was investigated. A body was used on all models.
Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolaou, G.; Livadiotis, G.
2017-03-20
We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying alongmore » the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.« less
Flow in curved ducts of varying cross-section
NASA Astrophysics Data System (ADS)
Sotiropoulos, F.; Patel, V. C.
1992-07-01
Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.
Sato, Emi; Matsuda, Kouhei
2018-06-11
The purpose of this study was to examine cerebral blood flow in the frontal cortex area during personality self-rating tasks. Our two hypotheses were (1) cerebral blood flow varies based on personality rating condition and (2) cerebral blood flow varies based on the personality traits. This experiment measured cerebral blood flow under 3 personal computer rating conditions and 2 questionnaire conditions. Comparing the rating conditions, the results of the t-test indicated that cerebral blood flow was higher in the questionnaire condition than it was in the personal computer condition. With respect to the Big Five, the result of the correlation coefficient, that is, cerebral blood flow during a personality rating task, changed according to the trait for agreeableness. The results of the analysis of the 5-cluster on individual differences indicated that certain personality traits were related to the factors that increased or decreased cerebral blood flow. An analysis of variance indicated that openness to experience and Behavioural Activation System-drive was significant given that participants with high intellectual curiosity were motivated in this experiment, thus, their cerebral blood flow may have increased. The significance of this experiment was that by employing certain performance measures we could examine differences in physical changes based on personality traits. © 2018 International Union of Psychological Science.
Fluid Flow and Mass Transfer in Micro/Nano-Channels
NASA Astrophysics Data System (ADS)
Conlisk, A. T.; McFerran, Jennifer; Hansford, Derek; Zheng, Zhi
2001-11-01
In this work the fluid flow and mass transfer due to the presence of an electric field in a rectangular channel is examined. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or somewhat greater than the width of the EDL(nanochannel). For the electroosmotic flow so induced, the velocity field and the potential are similar. The fluid is assumed to behave as a continuum and the Boltzmann distribution for the mole fractions of the ions emerges from the classical dilute mass transfer equation in the limiting case where the EDL thickness is much less than the channel height. Depending on the relative magnitude of the mole fractions at the walls of the channel, both forward and reversed flow may occur. The volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that power requirements for small channels are much greater for pressure driven flow. Supported by DARPA
The Debye-Huckel Approximation in Electroosmotic Flow in Micro- and Nano-channels
NASA Astrophysics Data System (ADS)
Conlisk, A. Terrence
2002-11-01
In this work we consider the electroosmotic flow in a rectangular channel. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride and other buffers for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or slightly greater than the width of the EDL(nanochannel). At small cation, anion concentration differences the Debye-Huckel approximation is appropriate; at larger concentration differences, the Gouy-Chapman picture of the electric double emerges naturally. In the symmetric case for the electroosmotic flow so induced, the velocity field and the potential are similar. We specifically focus in this paper on the limits of the Debye-Huckel approximation for a simplified version of a phosphate buffered saline(PBS) mixture. The fluid is assumed to behave as a continuum and the volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that very large pressure drops are required to drive flows in small channels. However, useful volume flow rates may be obtained at a very low driving voltage.
A Kinetic Study of the Effect of Basicity on the Mold Fluxes Crystallization
NASA Astrophysics Data System (ADS)
Zhou, Lejun; Wang, Wanlin; Ma, Fanjun; Li, Jin; Wei, Juan; Matsuura, Hiroyuki; Tsukihashi, Fumitaka
2012-04-01
The effect of basicity on the mold fluxes crystallization was investigated in this article. The time-temperature-transformation (TTT) diagrams and continuous-cooling-transformation (CCT) diagrams of mold fluxes with different basicity were constructed by using single, hot thermocouple technology (SHTT). The results showed that with the increase of basicity, the incubation time of isothermal crystallization became shorter, the crystallization temperature was getting higher, and the critical cooling rate of continuous cooling crystallization became faster. The X-ray diffraction analysis suggested that calcium silicate (CaO·SiO2) was precipitated at the upper part of the TTT diagram and cuspidine (Ca4Si2O7F2) was formed at the lower part, when the basicity of mold fluxes was within 1.0 to 1.2. However, when basicity was 0.8, only the cuspidine phase was formed. A kinetic study of isothermal crystallization process indicated that the increase of the basicity tended to enhance the mold flux crystallization, and the crystallization activation energy became smaller. The crystallization mechanism of cupsidine was changing from one-dimensional growth to three-dimensional growth with a constant number of nuclei, when the basicity of mold fluxes varied from 0.8 to 1.2.
Granular flow in a rotating drum: Experiments and theory
NASA Astrophysics Data System (ADS)
Hung, C. Y.; Stark, C. P.; Capart, H.; Li, L.; Smith, B.; Grinspun, E.
2015-12-01
Erosion at the base of a debris flow fundamentally controls how large the flow will become and how far it will travel. Experimental observations of this important phenomenon are rather limited, and this lack has led theoretical treatments to making ad hoc assumptions about the basal process. In light of this, we carried out a combination of laboratory experiments and theoretical analysis of granular flow in a rotating drum, a canonical example of steady grain motion in which entrainment rates can be precisely controlled. Our main result is that basal sediment is entrained as the velocity profile adjusts to imbalance in the flow of kinetic energy.Our experimental apparatus consisted of a 40cm-diameter drum, 4cm-deep, half-filled with 2.3mm grains. Rotation rates varied from 1-70 rpm. We varied the effective scale by varying effective gravity from 1g to 70g on a geotechnical centrifuge. The field of grain motion was recorded using high-speed video and mapped using particle tracking velocimetry. In tandem we developed a depth-averaged theory using balance equations for mass, momentum and kinetic energy. We assumed a linearized GDR Midi granular rheology [da Cruz, 2005] and a Coulomb friction law along the sidewalls [Jop et al., 2005]. A scaling analysis of our equations yields a dimensionless "entrainment number" En, which neatly parametrizes the flow geometry in the drum for a wide range of variables, e.g., rotation rate and effective gravity. At low En, the flow profile is planar and kinetic energy is balanced locally in the flow layer. At high En, the flow profile is sigmoidal (yin-yang shaped) and the kinetic energy is dominated by longitudinal, streamwise transfer. We observe different scaling behavior under each of these flow regimes, e.g., between En and kinetic energy, surface slope and flow depth. Our theory correctly predicts their scaling exponents and the value of En at which the regime transition takes place. We are also able to make corrections for Coriolis and dilation effects that improve the match between theory and experiment.
Interactive grid generation for turbomachinery flow field simulations
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eiseman, Peter R.; Reno, Charles
1988-01-01
The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids for turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.
Interactive grid generation for turbomachinery flow field simulations
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Reno, Charles; Eiseman, Peter R.
1988-01-01
The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids of turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.
NASA Technical Reports Server (NTRS)
Osher, S.
1984-01-01
The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented.
Computational System For Rapid CFD Analysis In Engineering
NASA Technical Reports Server (NTRS)
Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.
1995-01-01
Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.
Analysis of an entrainment model of the jet in a crossflow
NASA Technical Reports Server (NTRS)
Chang, H. S.; Werner, J. E.
1972-01-01
A theoretical model has been proposed for the problem of a round jet in an incompressible cross-flow. The method of matched asymptotic expansions has been applied to this problem. For the solution to the flow problem in the inner region, the re-entrant wake flow model was used with the re-entrant flow representing the fluid entrained by the jet. Higher order corrections are obtained in terms of this basic solution. The perturbation terms in the outer region was found to be a line distribution of doublets and sources. The line distribution of sources represents the combined effect of the entrainment and the displacement.
Siphon flows in isolated magnetic flux tubes. II - Adiabatic flows
NASA Technical Reports Server (NTRS)
Montesinos, Benjamin; Thomas, John H.
1989-01-01
This paper extends the study of steady siphon flows in isolated magnetic flux tubes surrounded by field-free gas to the case of adiabatic flows. The basic equations governing steady adiabatic siphon flows in a thin, isolated magnetic flux tube are summarized, and qualitative features of adiabatic flows in elevated, arched flux tubes are discussed. The equations are then cast in nondimensional form and the results of numerical computations of adiabatic siphon flows in arched flux tubes are presented along with comparisons between isothermal and adiabatic flows. The effects of making the interior of the flux tube hotter or colder than the surrounding atmosphere at the upstream footpoint of the arch is considered. In this case, is it found that the adiabatic flows are qualitatively similar to the isothermal flows, with adiabatic cooling producing quantitative differences. Critical flows can produce a bulge point in the rising part of the arch and a concentration of magnetic flux above the bulge point.
NASA Astrophysics Data System (ADS)
Shivamoggi, B. K.
This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.
NASA Technical Reports Server (NTRS)
Abid, R.; Speziale, C. G.
1993-01-01
Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.
NASA Technical Reports Server (NTRS)
Abid, R.; Speziale, C. G.
1992-01-01
Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.
Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Englert, Gerald W.; Kochendorfer, Fred D.
1959-01-01
The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.
Principles and application of shock-tubes and shock tunnels
NASA Technical Reports Server (NTRS)
Ried, R. C.; Clauss, H. G., Jr.
1963-01-01
The principles, theoretical flow equations, calculation techniques, limitations and practical performance characteristics of basic and high performance shock tubes and shock tunnels are presented. Selected operating curves are included.
Water in the Geosystem: Phase Relationships
ERIC Educational Resources Information Center
Geer, Ira W.
1974-01-01
Examines the hydrologic cycle, the overall flow of water in the geosystem. Reviews the basic phase relationships among water, ice, and water vapor which are integrat parts of the hydrologic cycle. (JR)
Computer programs for calculating potential flow in propulsion system inlets
NASA Technical Reports Server (NTRS)
Stockman, N. O.; Button, S. L.
1973-01-01
In the course of designing inlets, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved. The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL AND COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.
Using artificial intelligence to control fluid flow computations
NASA Technical Reports Server (NTRS)
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Flow chemistry vs. flow analysis.
Trojanowicz, Marek
2016-01-01
The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Resource requirements of inclusive urban development in India: insights from ten cities
NASA Astrophysics Data System (ADS)
Singh Nagpure, Ajay; Reiner, Mark; Ramaswami, Anu
2018-02-01
This paper develops a methodology to assess the resource requirements of inclusive urban development in India and compares those requirements to current community-wide material and energy flows. Methods include: (a) identifying minimum service level benchmarks for the provision of infrastructure services including housing, electricity and clean cooking fuels; (b) assessing the percentage of homes that lack access to infrastructure or that consume infrastructure services below the identified benchmarks; (c) quantifying the material requirements to provide basic infrastructure services using India-specific design data; and (d) computing material and energy requirements for inclusive development and comparing it with current community-wide material and energy flows. Applying the method to ten Indian cities, we find that: 1%-6% of households do not have electricity, 14%-71% use electricity below the benchmark of 25 kWh capita-month-1 4%-16% lack structurally sound housing; 50%-75% live in floor area less than the benchmark of 8.75 m2 floor area/capita; 10%-65% lack clean cooking fuel; and 6%-60% lack connection to a sewerage system. Across the ten cities examined, to provide basic electricity (25 kWh capita-month-1) to all will require an addition of only 1%-10% in current community-wide electricity use. To provide basic clean LPG fuel (1.2 kg capita-month-1) to all requires an increase of 5%-40% in current community-wide LPG use. Providing permanent shelter (implemented over a ten year period) to populations living in non-permanent housing in Delhi and Chandigarh would require a 6%-14% increase over current annual community-wide cement use. Conversely, to provide permanent housing to all people living in structurally unsound housing and those living in overcrowded housing (<5 m cap-2) would require 32%-115% of current community-wide cement flows. Except for the last scenario, these results suggest that social policies that seek to provide basic infrastructure provisioning for all residents would not dramatically increasing current community-wide resource flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, L.; Zhao, J.
The supercritical water mixing phenomenon is investigated with a wide range of conditions, i.e. the inlet temperature of the streams ranges from 323.15 K to 723.15 K and the pressure ranges from 25 MPa to 45 MPa. A sensitivity study is carried out for the jet and main flow velocity ratio (VR) which is varying from 1 to 40. In addition, the effect of the inject angles of branch flow to main flow on the mixing is conducted by varying the inject angle from 80 deg. to 100 deg.. The results show that the maximum temperature gradient appears on themore » wall of the upstream side in all the cases, and the inclined angles can be optimized to mitigate the thermal stress. (authors)« less
O Wave Interactions: Explosive Resonant Triads and Critical Layers.
NASA Astrophysics Data System (ADS)
Mahoney, Daniel J.
This thesis considers the phenomenon of explosive resonant triads in weakly nonlinear, dispersive wave systems. These are nearly linear waves with slowly varying amplitudes which become unbounded in finite time. It is shown that such interactions are much stronger than previously thought. These waves can be thought of as a nonlinear instability, in the sense that a weakly nonlinear perturbation to some system grows to such magnitudes that the behavior of the system is governed by strongly nonlinear effects. This may occur for systems which are linearly or neutrally stable. This is contrasted with previous resolutions of this problem, which treated such perturbations as being large amplitude, nearly linear waves. Analytical and numerical evidence is presented to support these claims. These waves represent a potentially important effect in a variety of physical systems, most notably plasma physics. Attention here is turned to their occurrence in fluid mechanics. Here previous work is extended to include flow systems with continuously varying basic velocities and densities. Many of the problems encountered here will be found to be of a singular nature themselves, and the techniques for analyzing these difficulties will be developed. This will involve the concept of a critical layer in a fluid, a level at which a wave phase speed equals the unperturbed fluid velocity in the direction of propagation. Examples of such waves in this context will be presented. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
The cost of preoperative urodynamics: A secondary analysis of the ValUE trial.
Norton, Peggy A; Nager, Charles W; Brubaker, Linda; Lemack, Gary E; Sirls, Larry T; Holley, Robert; Chai, Toby C; Kraus, Stephen R; Zyczynski, Halina; Smith, Bridget; Stoddard, Anne
2016-01-01
Urodynamic studies (UDS) are generally recommended prior to surgical treatment for stress urinary incontinence (SUI), despite insufficient evidence that it impacts treatment plans or outcomes in patients with uncomplicated SUI. This analysis aimed to calculate the cost incurred when UDS was performed as a supplement to a basic office evaluation and to extrapolate the potential savings of not doing UDS in this patient population on a national basis. This is a secondary analysis from the Value of Urodynamic Evaluation (ValUE) trial, a multicenter non-inferiority randomized trial to determine whether a basic office evaluation (OE) is non-inferior in terms of SUI surgery outcomes to office evaluation with addition of urodynamic studies (UDS). All participants underwent an OE; those patients who randomized to supplementary UDS underwent non-instrumented uroflowmetry, filling cystometry, and a pressure flow study. Costs associated with UDS were calculated using 2014 U.S. Medicare allowable fees. Models using various patient populations and payor mixes were created to obtain a range of potential costs of performing UDS in patients undergoing SUI surgery annually in the United States. Six hundred thirty women were randomized to OE or OE plus UDS. There was no difference in surgical outcomes between the two groups. The per patient cost of UDS varied from site to site, and included complex cystometrogram $314-$343 (CPT codes 51728-51729) plus complex uroflowmetry $16 (CPT code 51741). Extrapolating these costs for US women similar to our study population, 13-33 million US dollars could be saved annually by not performing preoperative urodynamics. For women with uncomplicated SUI and a confirmatory preoperative basic office evaluation, tens of millions of dollars US could be saved annually by not performing urodynamic testing. In the management of such women, eliminating this preoperative test has a major economic benefit. © 2014 Wiley Periodicals, Inc.
Evaluation of a Wedge on a Force Balance as a Flow Angle Probe
1975-02-01
pitot rake attached to the Captive Trajectory System (CTS), and (3) measurement of flow angles in the same region with a probe attached to the CTS...localized pressures. Although it was the characteristics of supersonic flow which led to this conclusion, and even though the wedge design was based...vary the open area from near zero to 10 percent. Suction through the porous walls is used to maximize flow uniformity and to develop supersonic flow
Milk flow rates from bottle nipples used after hospital discharge
Pados, Britt Frisk; Park, Jinhee; Thoyre, Suzanne M.; Estrem, Hayley; Nix, W. Brant
2016-01-01
Purpose To test the milk flow rates and variability in flow rates of bottle nipples used after hospital discharge. Study Design and Methods Twenty-six nipple types that represented 15 common brands as well as variety in price per nipple and store location sold (e.g., Babies R’ Us, Walmart, Dollar Store) were chosen for testing. Ten of each nipple type (n=260 total) were tested by measuring the amount of infant formula expressed in one minute using a breast pump. Mean milk flow rate (mL/min) and coefficient of variation (CV) were calculated. Flow rates of nipples within brand were compared statistically. Results Milk flow rates varied from 1.68 mL/min for the Avent Natural Newborn Flow to 85.34 mL/min for the Dr. Brown’s Standard Y-cut. Variability between nipple types also varied widely, from .03 for the Dr. Brown’s Standard Level 3 to .37 for MAM Nipple 1 Slow Flow. Clinical Implications The extreme range of milk flow rates found may be significant for medically fragile infants being discharged home who are continuing to develop oral feeding skills. The name of the nipple does not provide clear information about the flow rate to guide parents in decision-making. Variability in flow rates within nipples of the same type may complicate oral feeding for the medically fragile infant who may not be able to adapt easily to change in flow rates. Both flow rate and variability should be considered when guiding parents to a nipple choice. PMID:27008466
30 CFR 716.2 - Steep-slope mining.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...
30 CFR 716.2 - Steep-slope mining.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...
30 CFR 716.2 - Steep-slope mining.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...
30 CFR 716.2 - Steep-slope mining.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., will not vary in a way that adversely affects the ecology of any surface water or any existing or... flow during every season of the year shall not vary in a way that adversely affects the ecology of any...
A Synthetic Self-Oscillating Vocal Fold Model Platform for Studying Augmentation Injection
Murray, Preston R.; Thomson, Scott L.; Smith, Marshall E.
2013-01-01
Objective Design and evaluate a platform for studying the mechanical effects of augmentation injections using synthetic self-oscillating vocal fold models. Study Design Basic science. Methods Life-sized, synthetic, multi-layer, self-oscillating vocal fold models were created that simulated bowing via volumetric reduction of the body layer relative to that of a normal, unbowed model. Material properties of the layers were unchanged. Models with varying degrees of bowing were created and paired with normal models. Following initial acquisition of data (onset pressure, vibration frequency, flow rate, and high-speed image sequences), bowed models were injected with silicone that had material properties similar to those used in augmentation procedures. Three different silicone injection quantities were tested: sufficient to close the glottal gap, insufficient to close the glottal gap, and excess silicone to create convex bowing of the bowed model. The above-mentioned metrics were again taken and compared. Pre- and post-injection high-speed image sequences were acquired using a hemilarynx setup, from which medial surface dynamics were quantified. Results The models vibrated with mucosal wave-like motion and at onset pressures and frequencies typical of human phonation. The models successfully exhibited various degrees of bowing which were then mitigated by injecting filler material. The models showed general pre- to post-injection decreases in onset pressure, flow rate, and open quotient, and a corresponding increase in vibration frequency. Conclusion The model may be useful in further explorations of the mechanical consequences of augmentation injections. PMID:24476985
Modeling and new equipment definition for the vibration isolation box equipment system
NASA Technical Reports Server (NTRS)
Sani, Robert L.
1993-01-01
Our MSAD-funded research project is to provide numerical modeling support for the VIBES (Vibration Isolation Box Experiment System) which is an IML2 flight experiment being built by the Japanese research team of Dr. H. Azuma of the Japanese National Aerospace Laboratory. During this reporting period, the following have been accomplished: A semi-consistent mass finite element projection algorithm for 2D and 3D Boussinesq flows has been implemented on Sun, HP And Cray Platforms. The algorithm has better phase speed accuracy than similar finite difference or lumped mass finite element algorithms, an attribute which is essential for addressing realistic g-jitter effects as well as convectively-dominated transient systems. The projection algorithm has been benchmarked against solutions generated via the commercial code FIDAP. The algorithm appears to be accurate as well as computationally efficient. Optimization and potential parallelization studies are underway. Our implementation to date has focused on execution of the basic algorithm with at most a concern for vectorization. The initial time-varying gravity Boussinesq flow simulation is being set up. The mesh is being designed and the input file is being generated. Some preliminary 'small mesh' cases will be attempted on our HP9000/735 while our request to MSAD for supercomputing resources is being addressed. The Japanese research team for VIBES was visited, the current set up and status of the physical experiment was obtained and ongoing E-Mail communication link was established.
Edgelist phase unwrapping algorithm for time series InSAR analysis.
Shanker, A Piyush; Zebker, Howard
2010-03-01
We present here a new integer programming formulation for phase unwrapping of multidimensional data. Phase unwrapping is a key problem in many coherent imaging systems, including time series synthetic aperture radar interferometry (InSAR), with two spatial and one temporal data dimensions. The minimum cost flow (MCF) [IEEE Trans. Geosci. Remote Sens. 36, 813 (1998)] phase unwrapping algorithm describes a global cost minimization problem involving flow between phase residues computed over closed loops. Here we replace closed loops by reliable edges as the basic construct, thus leading to the name "edgelist." Our algorithm has several advantages over current methods-it simplifies the representation of multidimensional phase unwrapping, it incorporates data from external sources, such as GPS, where available to better constrain the unwrapped solution, and it treats regularly sampled or sparsely sampled data alike. It thus is particularly applicable to time series InSAR, where data are often irregularly spaced in time and individual interferograms can be corrupted with large decorrelated regions. We show that, similar to the MCF network problem, the edgelist formulation also exhibits total unimodularity, which enables us to solve the integer program problem by using efficient linear programming tools. We apply our method to a persistent scatterer-InSAR data set from the creeping section of the Central San Andreas Fault and find that the average creep rate of 22 mm/Yr is constant within 3 mm/Yr over 1992-2004 but varies systematically with ground location, with a slightly higher rate in 1992-1998 than in 1999-2003.
Liang, Jinyang; Zhou, Yong; Maslov, Konstantin I; Wang, Lihong V
2013-09-01
A cross-correlation-based method is proposed to quantitatively measure transverse flow velocity using optical resolution photoacoustic (PA) microscopy enhanced with a digital micromirror device (DMD). The DMD is used to alternately deliver two spatially separated laser beams to the target. Through cross-correlation between the slow-time PA profiles measured from the two beams, the speed and direction of transverse flow are simultaneously derived from the magnitude and sign of the time shift, respectively. Transverse flows in the range of 0.50 to 6.84 mm/s are accurately measured using an aqueous suspension of 10-μm-diameter microspheres, and the root-mean-squared measurement accuracy is quantified to be 0.22 mm/s. The flow measurements are independent of the particle size for flows in the velocity range of 0.55 to 6.49 mm/s, which was demonstrated experimentally using three different sizes of microspheres (diameters: 3, 6, and 10 μm). The measured flow velocity follows an expected parabolic distribution along the depth direction perpendicular to the flow. Both maximum and minimum measurable velocities are investigated for varied distances between the two beams and varied total time for one measurement. This technique shows an accuracy of 0.35 mm/s at 0.3-mm depth in scattering chicken breast, making it promising for measuring flow in biological tissue.
Minich, L L; Tani, L Y; Pantalos, G M
1997-01-01
To determine the accuracy of using power-weighted mean velocities for quantitating volumetric flow across a cardiac valve, we equipped pulsatile flow-tank systems with a 25 mm porcine or a 27 mm mechanical valve with various sizes of regurgitant orifices. Forward and reverse volumetric flows were measured over a range of hemodynamic conditions using two insonating angles (0 and 45 degrees). Pulsed Doppler power-weighted mean velocity measurements were obtained simultaneously with electromagnetic or ultrasonic transit-time probe measurements. For the porcine valve, Doppler measurements correlated well with electromagnetic flow measurements for all (r = 0.75 to 0.97, p < 0.05) except the smallest (2.7 mm) orifice (r = 0.19). For the mechanical valve, power-weighted mean velocity measurements correlated well with ultrasonic transit-time measurements for each hemodynamic condition defined by pulse rate, mean arterial pressure, and insonating angle (r = 0.93 to 0.99, p < 0.01), but equations varied unpredictably. Thus, although power-weighted mean velocity volumetric flow measurements correlate well with flow probe measurements, equations vary widely as hemodynamic conditions change. Because of this variation, power-weighted mean velocity data are not useful for quantitation of volumetric flow across a cardiac valve at this time. Further investigation may show how different hemodynamic conditions affect power-weighted mean velocity measurements of volumetric flow.
40 CFR 60.697 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates and... flow and volatile organic compound content under varying liquid level conditions (dynamic and static... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...
40 CFR 60.697 - Recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... specifications shall be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates..., including flow and volatile organic compound content under varying liquid level conditions (dynamic and... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...
40 CFR 60.697 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates and... flow and volatile organic compound content under varying liquid level conditions (dynamic and static... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...
Methods for determination of optic nerve blood flow.
Glazer, L. C.
1988-01-01
A variety of studies have been conducted over the past two decades to determine if decreased optic nerve blood flow has a role in the etiology of glaucomatous nerve damage. Five basic methods have been employed in examining blood flow. Invasive studies, utilizing electrodes placed in the optic nerve head, represent one of the first attempts to measure blood flow. More recently, the methodologies have included axoplasmic flow analysis, microspheres, radioactive tracers such as iodoantipyrine, and laser doppler measurements. The results of these studies are inconclusive and frequently contradictory. When the studies are grouped by methodology, only the iodoantipyrine data are consistent. While each of the experimental techniques has limitations, iodoantipyrine appears to have better resolution than either invasive studies or microspheres. PMID:3284212
Investigation of Mixing a Supersonic Stream with the Flow Downstream of a Wedge
NASA Technical Reports Server (NTRS)
Sheeley, Joseph
1997-01-01
The flow characteristics in the base region of a two-dimensional supersonic compression ramp are investigated. A stream-wise oriented air jet, M = 1.75, is injected through a thin horizontal slot into a supersonic air main flow, M = 2.3, at the end of a two-dimensional compression ramp. The velocity profile and basic characteristics of the flow in the base region immediately following the ramp are determined. Visualization of the flowfield for qualitative observations is accomplished via Dark Central Ground Interferometry (DCGI). Two-dimensional velocity profiles are obtained using Laser Doppler Velocimetry (LDV). The study is the initial phase of a four-year investigation of base flow mixing. The current study is to provide more details of the flowfield.
Turbulent structure in low-concentration drag-reducing channel flows
NASA Technical Reports Server (NTRS)
Luchik, T. S.; Tiederman, W. G.
1988-01-01
A two-component laser-Doppler velocimeter was used to obtain simultaneous measurements of the velocity components parallel and normal to the wall in two fully developed well-mixed low-concentration drag-reducing channel flows and one turbulent channel flow. For the drag-reducing flows, the average time between bursts was found to increase. Although the basic structure of the fundamental momentum transport event is shown to be the same in these drag-reducing flows, the lower-threshold Reynolds-stress-producing motions were found to be damped, while the higher-threshold motions were not. It is suggested that some strong turbulent motions are needed to maintain extended polymer molecules, which produce a solution with properties that can damp lower threshold turbulence and thereby reduce viscous drag.
The dynamic two-fluid model OLGA; Theory and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendiksen, K.H.; Maines, D.; Moe, R.
1991-05-01
Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons withmore » evaluated field data are also presented.« less
Fluctuation diagrams for hot-wire anemometry in subsonic compressible flows
NASA Technical Reports Server (NTRS)
Stainback, P. C.; Nagabushana, K. A.
1991-01-01
The concept of using 'fluctuation diagrams' for describing basic fluctuations in compressible flows was reported by Kovasznay in the 1950's. The application of this technique, for the most part, was restricted to supersonic flows. Recently, Zinovev and Lebiga published reports where they considered the fluctuation diagrams in subsonic compressible flows. For the above studies, the velocity and density sensitivities of the heated wires were equal. However, there are considerable data, much taken in the 1950's, which indicate that under some conditions the velocity and density sensitivities are not equal in subsonic compressible flows. Therefore, possible fluctuation diagrams are described for the cases where the velocity and density sensitivities are equal and the more general cases where they are unequal.
Three-dimensional turbulent near-wall flows in streamwise corners: Current state and questions
NASA Astrophysics Data System (ADS)
Kornilov, V. I.
2017-10-01
Current advances in experimental and computational studies of three-dimensional (3-D) near-wall turbulent flows in streamwise corners (SC) including the boundary-layer transition are reviewed. The focus is the structure, properties and main regularities of such flows in a wide range of variable conditions and basic parameters. A variety of different kinds of near-wall streamwise corner flows is displayed. Analysis of approaches for modeling of the near-wall corner flow in laboratory experiment is given. The problem of simulation of such flows where some ambiguities remain is discussed. The main factors on the structure of the flow in streamwise corners are analyzed. Also, the effectiveness of flow control by streamwise vortices in the junction regions of aerodynamic surfaces is shown. Finally, some important properties of the modified near-wall turbulent corner flows which have been revealed experimentally, in particular, for the flow near the wing/body junction (WBJ), can be used as an attractive alternative for real applications.
A nonintrusive laser interferometer method for measurement of skin friction
NASA Technical Reports Server (NTRS)
Monson, D. J.
1983-01-01
A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows, including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows. Previously announced in STAR as N83-12393
NASA Astrophysics Data System (ADS)
Paparrizos, Spyridon; Maris, Fotios
2017-05-01
The MIKE SHE model is able to simulate the entire stream flow which includes direct and basic flow. Many models either do not simulate or use simplistic methods to determine the basic flow. The MIKE SHE model takes into account many hydrological data. Since this study was directed towards the simulation of surface runoff and infiltration into saturated and unsaturated zone, the MIKE SHE is an appropriate model for reliable conclusions. In the current research, the MIKE SHE model was used to simulate runoff in the area of Sperchios River basin. Meteorological data from eight rainfall stations within the Sperchios River basin were used as inputs. Vegetation as well as geological data was used to perform the calibration and validation of the physical processes of the model. Additionally, ArcGIS program was used. The results indicated that the model was able to simulate the surface runoff satisfactorily, representing all the hydrological data adequately. Some minor differentiations appeared which can be eliminated with the appropriate adjustments that can be decided by the researcher's experience.
NASA Astrophysics Data System (ADS)
Chaudhuri, Anirban
Hybrid electro-hydraulic actuators using smart materials along with flow rectification have been widely reported in recent years. The basic operation of these actuators involves high frequency bidirectional operation of an active material that is converted into unidirectional fluid motion by a set of valves. While theoretically attractive, practical constraints limit the efficacy of the solid-fluid hybrid actuation approach. In particular, inertial loads, fluid viscosity and compressibility combine with loss mechanisms inherent in the active material to limit the effective bandwidth of the driving actuator and the total output power. A hybrid actuator was developed by using magnetostrictive TerFeNOL-D as the active driving element and hydraulic oil as the working fluid. Tests, both with and without an external load, were carried out to measure the unidirectional performance of the actuator at different pumping frequencies and operating conditions. The maximum no-load output velocity was 84 mm/s with a 51 mm long rod and 88 mm/s with a 102 mm long rod, both noted around 325 Hz pumping frequency, while the blocked force was close to 89 N. Dynamic tests were performed to analyze the axial vibration characteristics of the Terfenol-D rods and frequency responses of the magnetic circuits. A second prototype actuator employing the same actuation principle was then designed by using the electrostrictive material PMN-32%PT as the driving element. Tests were conducted to measure the actuator performance for varying electrical input conditions and fluid bias pressures. The peak output velocity obtained was 330 mm/s while the blocked force was 63 N. The maximum volume flow rate obtained with the PMN-based actuator was more than double that obtained from the Terfenol-D--based actuator. Theoretical modeling of the dynamics of the coupled structural-hydraulic system is extremely complex and several models have been proposed earlier. At high pumping frequencies, the fluid inertia dominates the viscous effects and the problem becomes unsteady in nature. Due to high pressures inside the actuator and the presence of entrained air, compressibility of the hydraulic fluid is important. A new mathematical model of the hydraulic hybrid actuator was formulated in time-domain to show the basic operational principle under varying operating conditions and to capture the phenomena affecting system performance. Linear induced strain behavior was assumed to model the active material. Governing equations for the moving parts were obtained from force equilibrium considerations, while the coupled inertiacompliance of the fluid passages was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. Compressibility of the working fluid was incorporated by using the bulk modulus. The model was then validated using the measured performance of both the magnetostrictive and electrostrictive-based hybrid actuators.
Buoyancy Effects on Flow Transition in Low-Density Inertial Gas Jets
NASA Technical Reports Server (NTRS)
Pasumarthi, Kasyap S.; Agrawal, Ajay K.
2005-01-01
Effects of buoyancy on transition from laminar to turbulent flow are presented for momentum-dominated helium jet injected into ambient air. The buoyancy was varied in a 2.2-sec drop tower facility without affecting the remaining operating parameters. The jet flow in Earth gravity and microgravity was visualized using the rainbow schlieren deflectometry apparatus. Results show significant changes in the flow structure and transition behavior in the absence of buoyancy.
Study of the Stability of Compressible Couette Flow.
NASA Astrophysics Data System (ADS)
Girard, Jeffrey John
This study is concerned with a two-dimensional disturbance of plane Couette flow. All reviewed analyses of the basic problem have led to the conclusion that the flow is unconditionally stable. All of the literature assumed the fluid was incompressible. The assumption that a fluid is incompressible neglects solutions to the problem. The motivation of the analysis presented herein is a hypothesis that some of the acoustic disturbances in the fluid, usually neglected, may interact with the mean vorticity to produce more sound. This hypothesis was discussed by Vaidya (1988). The fluid considered herein has been a viscous, heat-conducting, ideal gas. For the cases investigated in this study, most solutions exhibited stability. There were found, however, solutions at somewhat unrealistically high Mach numbers which exhibited unstable nature. Further, it was found that for even low Mach number flows, the sound solution was the least stable solution. It is thought that the interaction between the sound perturbation and the mean flow has fed energy to the disturbance from the mean flow. Enough energy was transferred to balance some of the viscous dissipation. At low Mach numbers, for the investigated cases, not enough energy was transferred to tip the flow to instability. The established theory has been challenged. All previous analysis of the basic infinitesimal perturbation problem has suggested unconditional stability. This work has shown some unstable regimes. This keeps the hope alive that analysis may one day explain the experimental evidence (which is at much lower Mach numbers). The future work should concentrate on the sound solution for this problem. It has been shown to be the least stable, though it is usually neglected. An attempt should be made to investigate the possibility of reducing the lowest Mach number for instability. Suggestions for this have been provided in Chapter 4.
Baroclinic instability with variable gravity: A perturbation analysis
NASA Technical Reports Server (NTRS)
Giere, A. C.; Fowliss, W. W.; Arias, S.
1980-01-01
Solutions for a quasigeostrophic baroclinic stability problem in which gravity is a function of height were obtained. Curvature and horizontal shear of the basic state flow were omitted and the vertical and horizontal temperature gradients of the basic state were taken as constant. The effect of a variable dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, baroclinic model for Spacelab was determined. Such modeling could not be performed in a laboratory on the Earth's surface because the body force could not be made strong enough to dominate terrestrial gravity. A consequence of the body force variation and the preceding assumptions was that the potential vorticity gradient of the basic state vanished. The problem was solved using a perturbation method. The solution gives results which are qualitatively similar to Eady's results for constant gravity; a short wavelength cutoff and a wavelength of maximum growth rate were observed. The averaged values of the basic state indicate that both the wavelength range of the instability and the growth rate at maximum instability are increased. Results indicate that the presence of the variable body force will not significantly alter the dynamics of the Spacelab experiment. The solutions are also relevant to other geophysical fluid flows where gravity is constant but the static stability or Brunt-Vaisala frequency is a function of height.
Design features of fans, blowers, and compressors
NASA Astrophysics Data System (ADS)
Cheremisinoff, N. P.; Cheremisinoff, P. N.
Fan engineering and compression machines are discussed. Basic aspects of fan performance and design are reviewed, and the design and performance characteristics of radial-flow fans, axial-flow fans, and controllable pitch fans are examined in detail. Air-conditioning systems are discussed, and noise, vibration, and mechanical considerations in fans are extensively examined. The thermodynamic principles governing compression machines are reviewed, and piston compressors, rotary compressors, blowers, and centrifugal compressors are discussed.
Extending Cross-Generational Knowledge Flow Research in Edge Organizations
2008-06-01
letting Protégé generate the basic user interface, and then gradually write widgets and plug-ins to customize its look-and- feel and behavior . 4 3.0...2007a) focused on cross-generational knowledge flows in edge organizations. We found that cross- generational biases affect tacit knowledge transfer...the software engineering field, many matured methodologies already exist, such as Rational Unified Process (Hunt, 2003) or Extreme Programming (Beck
Tug fleet and ground operations schedules and controls. Volume 2: Part 3, appendixes
NASA Technical Reports Server (NTRS)
1975-01-01
A space tug function description data sheet is prepared for each block of the space tug functional flow diagram. A summary of the basic information regarding the activities performed in its respective functional block is provided. The sheets are catalogued by functional flow block numbers with reference blocks at the end. The specific items of information contained in each data sheet are defined.
Justification of Shallow-Water Theory
NASA Astrophysics Data System (ADS)
Ostapenko, V. V.
2018-01-01
The basic conservation laws of shallow-water theory are derived from multidimensional mass and momentum integral conservation laws describing the plane-parallel flow of an ideal incompressible fluid above the horizontal bottom. This conclusion is based on the concept of hydrostatic approximation, which generalizes the concept of long-wavelength approximation and is used for justifying the applicability of the shallow-water theory in the simulation of wave flows of fluid with hydraulic bores.
Numerical analysis of ion wind flow using space charge for optimal design
NASA Astrophysics Data System (ADS)
Ko, Han Seo; Shin, Dong Ho; Baek, Soo Hong
2014-11-01
Ion wind flow has been widly studied for its advantages of a micro fluidic device. However, it is very difficult to predict the performance of the ion wind flow for various conditions because of its complicated electrohydrodynamic phenomena. Thus, a reliable numerical modeling is required to design an otimal ion wind generator and calculate velocity of the ion wind for the proper performance. In this study, the numerical modeling of the ion wind has been modified and newly defined to calculate the veloctiy of the ion wind flow by combining three basic models such as electrostatics, electrodynamics and fluid dynamics. The model has included presence of initial space charges to calculate transfer energy between space charges and air gas molecules using a developed space charge correlation. The simulation has been performed for a geometry of a pin to parallel plate electrode. Finally, the results of the simulation have been compared with the experimental data for the ion wind velocity to confirm the accuracy of the modified numerical modeling and to obtain the optimal design of the ion wind generator. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Hartke, G. J.; Battaglia, A.; Chasnov, J.; Albrecht, G. F.
1990-01-01
In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a non-linear equation; the two models employ the same source function but different closures. The source function is characterized by a rate n sub s (k) which is derived from the complex eigenvalues of the Orr-Sommerfeld (OS) equation in which the basic flow is taken to be of a Poiseuille type. The O-S equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0 sup L, is not to be identified with the U0 appearing in the experimental Reynolds number. The theoretical results are compared with two types of experimental data: (1) turbulence bulk properties, and (2) properties that depend strongly on the structure of the turbulence spectrum at low wave numbers. The only existing analytical expression for Pi (k) cannot be used in the present case because it applies to the case of a flat plate, not a finite channel.