Electrospray ionization from a gap with adjustable width.
Ek, Patrik; Sjödahl, Johan; Roeraade, Johan
2006-01-01
In this paper, we present a new concept for electrospray ionization mass spectrometry, where the sample is applied in a gap which is formed between the edges of two triangular-shaped tips. The size of the spray orifice can be changed by varying the gap width. The tips were fabricated from polyethylene terephthalate film with a thickness of 36 microm. To improve the wetting of the gap and sample confinement, the edges of the tips forming the gap were hydrophilized by means of silicon dioxide deposition. Electrospray was performed with gap widths between 1 and 36 microm and flow rates down to 75 nL/min. The gap width could be adjusted in situ during the mass spectrometry experiments and nozzle clogging could be managed by simply widening the gap. Using angiotensin I as analyte, the signal-to-noise ratio increased as the gap width was decreased, and a shift towards higher charge states was observed. The detection limit for angiotensin I was in the low nM range. Copyright (c) 2006 John Wiley & Sons, Ltd.
Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)
2017-01-01
We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon’s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate’s band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate. PMID:29049879
Adiabatic Nanofocusing in Hybrid Gap Plasmon Waveguides on the Silicon-on-Insulator Platform.
Nielsen, Michael P; Lafone, Lucas; Rakovich, Aliaksandra; Sidiropoulos, Themistoklis P H; Rahmani, Mohsen; Maier, Stefan A; Oulton, Rupert F
2016-02-10
We present an experimental demonstration of a new class of hybrid gap plasmon waveguides on the silicon-on-insulator (SOI) platform. Created by the hybridization of the plasmonic mode of a gap in a thin metal sheet and the transverse-electric (TE) photonic mode of an SOI slab, this waveguide is designed for efficient adiabatic nanofocusing simply by varying the gap width. For gap widths greater than 100 nm, the mode is primarily photonic in character and propagation lengths can be many tens of micrometers. For gap widths below 100 nm, the mode becomes plasmonic in character with field confinement predominantly within the gap region and with propagation lengths of a few microns. We estimate the electric field intensity enhancement in hybrid gap plasmon waveguide tapers at 1550 nm by three-photon absorption of selectively deposited CdSe/ZnS quantum dots within the gap. Here, we show electric field intensity enhancements of up to 167 ± 26 for a 24 nm gap, proving the viability of low loss adiabatic nanofocusing on a commercially relevant photonics platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Yan, H; Jia, X
2014-06-01
Purpose: A moving blocker based strategy has shown promising results for scatter correction in cone-beam computed tomography (CBCT). Different parameters of the system design affect its performance in scatter estimation and image reconstruction accuracy. The goal of this work is to optimize the geometric design of the moving block system. Methods: In the moving blocker system, a blocker consisting of lead strips is inserted between the x-ray source and imaging object and moving back and forth along rotation axis during CBCT acquisition. CT image of an anthropomorphic pelvic phantom was used in the simulation study. Scatter signal was simulated bymore » Monte Carlo calculation with various combinations of the lead strip width and the gap between neighboring lead strips, ranging from 4 mm to 80 mm (projected at the detector plane). Scatter signal in the unblocked region was estimated by cubic B-spline interpolation from the blocked region. Scatter estimation accuracy was quantified as relative root mean squared error by comparing the interpolated scatter to the Monte Carlo simulated scatter. CBCT was reconstructed by total variation minimization from the unblocked region, under various combinations of the lead strip width and gap. Reconstruction accuracy in each condition is quantified by CT number error as comparing to a CBCT reconstructed from unblocked full projection data. Results: Scatter estimation error varied from 0.5% to 2.6% as the lead strip width and the gap varied from 4mm to 80mm. CT number error in the reconstructed CBCT images varied from 12 to 44. Highest reconstruction accuracy is achieved when the blocker lead strip width is 8 mm and the gap is 48 mm. Conclusions: Accurate scatter estimation can be achieved in large range of combinations of lead strip width and gap. However, image reconstruction accuracy is greatly affected by the geometry design of the blocker.« less
Influence of the gap size on the wind loading on heliostats
NASA Astrophysics Data System (ADS)
Poulain, Pierre E.; Craig, Ken J.; Meyer, Josua P.
2016-05-01
Generally built in desert areas, heliostat fields undergo various wind loading conditions. An ANSYS Fluent CFD model of an isolated heliostat in worst-case orientation for the drag force is realized via numerical simulations using the realizable k-ɛ turbulence model. This paper focuses on the gap width between the panels and its influence on the wind loading that heliostats are subjected to. An atmospheric boundary layer profile is generated based on a wind tunnel experiment. For a heliostat in upright and tilted orientations with the wind angle being zero degrees, the gap width is varied and the force and moment coefficients are calculated. In the range tested, all the coefficients globally increase with the widening of the gaps.
NASA Astrophysics Data System (ADS)
Kaur, Avneet; Bakhshi, A. K.
2010-04-01
The interest in copolymers stems from the fact that they present interesting electronic and optical properties leading to a variety of technological applications. In order to get a suitable copolymer for a specific application, genetic algorithm (GA) along with negative factor counting (NFC) method has recently been used. In this paper, we study the effect of change in the ratio of conduction band discontinuity to valence band discontinuity (Δ Ec/Δ Ev) on the optimum solution obtained from GA for model binary copolymers. The effect of varying bandwidths on the optimum GA solution is also investigated. The obtained results show that the optimum solution changes with varying parameters like band discontinuity and band width of constituent homopolymers. As the ratio Δ Ec/Δ Ev increases, band gap of optimum solution decreases. With increasing band widths of constituent homopolymers, the optimum solution tends to be dependent on the component with higher band gap.
NASA Technical Reports Server (NTRS)
Hunt, L. Roane; Notestine, Kristopher K.
1990-01-01
Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.
Spatial variation of dosimetric leaf gap and its impact on dose delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaraswamy, Lalith K., E-mail: Lalith.Kumaraswamy@roswellpark.org; Schmitt, Jonathan D.; Bailey, Daniel W.
Purpose: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. Methods: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicularmore » to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. Results: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3–0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. Conclusions: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need to correct the TPS plans, especially those with high modulation (narrow dynamic MLC gap), with 2D variation of DLG.« less
Radial widths, optical depths, and eccentricities of the Uranian rings
NASA Technical Reports Server (NTRS)
Nicholson, P. D.; Matthews, K.; Goldreich, P.
1982-01-01
Observations of the stellar occultation by the Uranian rings of 15/16 August 1980 are used to estimate radial widths and normal optical depths for segments of rings 6, 5, 4, alpha, beta, eta, gamma, and delta. Synthetic occultation profiles are generated to match the observed light curves. A review of published data confirms the existence of width-radius relations for rings alpha and beta, and indicates that the optical depths of these two rings vary inversely with their radial widths. Masses are obtained for rings alpha and beta, on the assumption that differential precession is prevented by their self-gravity. A quantitative comparison of seven epsilon-ring occultation profiles obtained over a period of 3.4 yr reveals a consistent structure, which may reflect the presence of unresolved gaps and subrings.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1976-01-01
An experimental investigation is presented that was performed to determine the effect of a surface-to-gap wall temperature discontinuity on the heat transfer within space shuttle, reusable surface insulation, tile gaps submerged in a thick turbulent boundary layer. Heat-transfer measurements were obtained on a flat-plate, single-gap model submerged in a turbulent tunnel wall boundary layer at a nominal free-stream Mach number of 10.3 and free-stream Reynolds numbers per meter of 1.5 million, 3.3 million and 7.8 million. Surface-to-gap wall temperature discontinuities of varying degree were created by heating the surface of the model upstream of the instrumented gap. The sweep angle of the gap was varied between 0 deg and 60 deg; gap width and depth were held constant. A surface-to-gap wall temperature discontinuity (surface temperature greater than gap wall temperature) results in increased heat transfer to the near-surface portion of the gap, as compared with the heat transfer under isothermal conditions, while decreasing the heat transfer to the deeper portions of the gap. The nondimensionalized heat transfer to the near-surface portion of the gap is shown to decrease with increasing Reynolds number; in the deeper portion of the gap, the heat transfer increases with Reynolds number.
Experiment to verify the permeability of Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartline, B.K.; Lister, C.R.B.
1978-04-01
A fluid layer sandwiched between 2 flat plates (Hele-Shaw cell) has been assumed to model a saturated porous medium with permeability, D2/12, dependent only on the gap width, D. For situations where the properties of the porous matrix are important, such as thermal convection, the total cross section (Y) of the sandwich should enter into the computation of permeability. To decide which of these approaches is valid, the onset of convection was observed in a Hele-Shaw cell with constant gap width but spatially varying wall thickness. Convection begins in the thin-walled section at a lower temperature difference than it doesmore » where the walls are thick. Data confirm that D3/12Y is the permeability of Hele-Shaw cells used to model thermal convection in porous layers.« less
Tuning the Energy Gap of SiCH3 Nanomaterials Under Elastic Strain
NASA Astrophysics Data System (ADS)
Ma, Shengqian; Li, Feng; Geng, Jiguo; Zhu, Mei; Li, Suyan; Han, Juguang
2018-05-01
SiCH3 nanomaterials have been studied using the density functional theory. When the nanosheets and nanoribbons (armchair and zigzag) are introduced, their energy gap is modulated under elastic strain and width. The results show that the band gap of SiCH3 nanomaterials can be easily tuned using elastic strains and widths. Surprisingly, the band gap can be modulated along two directions, namely, compressing and stretching. The band gap decreases when increasing stretching strain or decreasing compressing strain. In addition, the band gap decreases when increasing the nanoribbon width. For energy gap engineering, the band gap can be tuned by strains and widths. Therefore, the SiCH3 nanomaterials play important roles in potential applications for strain sensors, electronics, and optical electronics.
An Experimental Determination of Losses in a 3-Port Wave Rotor
NASA Technical Reports Server (NTRS)
Wilson, Jack
1996-01-01
Wave rotors, used in a gas turbine topping cycle, offer a potential route to higher specific power and lower specific fuel consumption. In order to exploit this potential properly, it is necessary to have some realistic means of calculating wave rotor performance, taking losses into account, so that wave rotors can be designed for good performance. This in turn requires a knowledge of the loss mechanisms. The experiment reported here was designed as a statistical experiment to identify the losses due to finite passage opening time, friction, and leakage. For simplicity, the experiment used a 3-port, flow divider, wave cycle, but the results should be applicable to other cycles. A 12 inch diameter rotor was used, with two different lengths, 9 inches and 18 inches, and two different passage widths, 0.25 inch and 0.54 inch, in order to vary friction and opening time. To vary leakage, moveable end-walls were provided so that the rotor to end-wall gap could be adjusted. The experiment is described, and the results are presented, together with a parametric fit to the data. The fit shows that there will be an optimum passage width for a given wave rotor, since, as the passage width increases, friction losses decrease, but opening-time losses increase, and vice-versa. Leakage losses can be made small at reasonable gap sizes.
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)
2012-01-01
A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.
Ring head recording on perpendicular media: Output spectra for CoCr and CoCr/NiFe media
NASA Astrophysics Data System (ADS)
Stubbs, D. P.; Whisler, J. W.; Moe, C. D.; Skorjanec, J.
1985-04-01
The recording density response for sputtered CoCr (thickness=0.5 μm) and CoCr/NiFe (t=0.25 μm/0.5 μm) as well as evaporated CoNi (t=0.12 μm) and Co surface-doped iron oxide particulate media has been measured by reading and writing with Mn-Zn ferrite heads (gap length=0.375 μm, track width=37 μm) in contact with the media. Measurements to 200 kfc/i (thousand flux changes per inch) show a gap null around 115 kfc/i. The data have been normalized by dividing out the head sensitivity to obtain the value of spacing plus transition width (d+a) for the various media. For the CoCr media this value varied from 0.075-0.088 μm; for CoNi, 0.100 μm, and for the particulate medium, 0.163 μm. In addition, testing with a larger gapped Mn-Zn ferrite head (g=2.43 μm) shows that the head fields are distorted by the soft magnetic underlayer in dual layer CoCr/NiFe samples when the gap length is large compared to the distance to the underlayer.
The section TiInSe/sub 2/-TiSbSe/sub 2/ of the system Ti-In-Sb-Se
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guseinov, G.D.; Chapanova, L.M.; Mal'sagov, A.U.
1985-09-01
The ternary compounds A /SUP I/ B /SUP III/ C/sub 2/ /SUP VI/ (A /SUP I/ is univalent Ti; B /SUP III/ is Ga or In; and C /SUP VI/ is S, Se or Te) form a class of semiconductors with a large number of different gap widths. The compounds crystallize in the chalcopyrite structure. Solid solutions based on these compounds, which permit varying smoothly the gap width and other physical parameters over wide limits, are of great interest. The authors synthesized the compounds TiInSe/sub 2/ and TiSbSe/sub 2/ from the starting materials Ti-000, In-000, Sb-000 and Se-OSCh-17-4 by directmore » fusion of the components, taken in a stoichiometric ratio, in quartz ampules evacuated to 1.3 X 10/sup -3/ Pa and sealed.« less
The measurement of medial knee gap width using ultrasound.
Slane, Laura C; Slane, Josh A; Scheys, Lennart
2017-08-01
Medial knee instability is a key clinical parameter for assessing ligament injury and arthroplasty success, but current methods for measuring stability are typically either qualitative or involve ionizing radiation. The purpose of this study was to perform a preliminary analysis of whether ultrasound (US) could be used as an alternate approach for quantifying medial instability by comparing an US method with an approach mimicking the current gold standard fluoroscopy method. US data from the medial knee were collected, while cadaveric lower limbs (n = 8) were loaded in valgus (10 Nm). During post-processing, the US gap width was measured by identifying the medial edges of the femur and tibia and computing the gap width between these points. For comparison, mimicked fluoroscopy (mFluoro) images were created from specimen-specific bone models, developed from segmented CT scans, and from kinematic data collected during testing. Then, gap width was measured in the mFluoro images based on two different published approaches with gap width measured either at the most medial or at the most distal aspect of the femur. Gap width increased significantly with loading (p < 0.001), and there were no significant differences between the US method (unloaded: 8.7 ± 2.4 mm, loaded: 10.7 ± 2.2 mm) and the mFluoro method that measured gap width at the medial femur. In terms of the change in gap width with load, no correlation with the change in abduction angle was observed, with no correlation between the various methods. Inter-rater reliability for the US method was high (0.899-0.952). Ultrasound shows promise as a suitable alternative for quantifying medial instability without radiation exposure. However, the outstanding limitations of existing approaches and lack of true ground-truth data require that further validation work is necessary to better understand the clinical viability of an US approach for measuring medial knee gap width.
Band gap engineering in finite elongated graphene nanoribbon heterojunctions: Tight-binding model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tayo, Benjamin O.
2015-08-15
A simple model based on the divide and conquer rule and tight-binding (TB) approximation is employed for studying the role of finite size effect on the electronic properties of elongated graphene nanoribbon (GNR) heterojunctions. In our model, the GNR heterojunction is divided into three parts: a left (L) part, middle (M) part, and right (R) part. The left part is a GNR of width W{sub L}, the middle part is a GNR of width W{sub M}, and the right part is a GNR of width W{sub R}. We assume that the left and right parts of the GNR heterojunction interactmore » with the middle part only. Under this approximation, the Hamiltonian of the system can be expressed as a block tridiagonal matrix. The matrix elements of the tridiagonal matrix are computed using real space nearest neighbor orthogonal TB approximation. The electronic structure of the GNR heterojunction is analyzed by computing the density of states. We demonstrate that for heterojunctions for which W{sub L} = W{sub R}, the band gap of the system can be tuned continuously by varying the length of the middle part, thus providing a new approach to band gap engineering in GNRs. Our TB results were compared with calculations employing divide and conquer rule in combination with density functional theory (DFT) and were found to agree nicely.« less
NASA Astrophysics Data System (ADS)
Song, Chaoqun; Dong, Shiyun; Yan, Shixing; He, Jiawu; Xu, Binshi; He, Peng
2017-10-01
Ultra-narrow gap laser welding is a novel method for thick high strength aluminum alloy plate for its lower heat input, less deformation and higher efficiency. To obtain a perfect welding quality, it is vital to control the more complex droplet transfer behavior under the influence of ultra-narrow gap groove. This paper reports the effects of gap width of groove on droplet transfer behavior in ultra-narrow gap laser welding of 7A52 aluminum alloy plates by a high speed camera, using an ER 5356 filler wire. The results showed that the gap width had directly effects on droplet transfer mode and droplet shape. The droplet transfer modes were, in order, both-sidewall transfer, single-sidewall transfer, globular droplet transfer and bridging transfer, with different droplet shape and transition period, as the gap width increased from 2 mm to 3.5mm. The effect of gap width on lack of fusion was also studied to analyze the cause for lack of fusion at the bottom and on the sidewall of groove. Finally, with a 2.5 mm U-type parallel groove, a single-pass joint with no lack of fusion and other macro welding defects was successfully obtained in a single-sidewall transfer mode.
NASA Astrophysics Data System (ADS)
Terao, Takamichi
2018-04-01
Vibrational properties of elastic composites containing a mass-in-mass microstructure embedded in a solid matrix are numerically studied. Using a lattice model, we investigate the vibrational density of states in three-dimensional composite structures where resonant particles are randomly dispersed. By dispersing such particles in the system, a sonic band gap appears. It is confirmed that this band gap can be introduced in a desired frequency regime by changing the parameters of resonant particles and the frequency width of this band gap can be controlled by varying the concentration of the resonant particles to be dispersed. In addition, multiple sonic band gaps can be realized using different species of resonant particles. These results enable us to suggest an alternative method to fabricate devices that can inhibit the propagation of elastic waves with specific frequencies using acoustic metamaterials.
Method and Apparatus for Separating Particles by Dielectrophoresis
NASA Technical Reports Server (NTRS)
Pant, Kapil (Inventor); Wang, Yi (Inventor); Bhatt, Ketan (Inventor); Prabhakarpandian, Balabhasker (Inventor)
2014-01-01
Particle separation apparatus separate particles and particle populations using dielectrophoretic (DEP) forces generated by one or more pairs of electrically coupled electrodes separated by a gap. Particles suspended in a fluid are separated by DEP forces generated by the at least one electrode pair at the gap as they travel over a separation zone comprising the electrode pair. Selected particles are deflected relative to the flow of incoming particles by DEP forces that are affected by controlling applied potential, gap width, and the angle linear gaps with respect to fluid flow. The gap between an electrode pair may be a single, linear gap of constant gap, a single linear gap having variable width, or a be in the form of two or more linear gaps having constant or variable gap width having different angles with respect to one another and to the flow.
NASA Technical Reports Server (NTRS)
Letko, W; Denaci, H. G.; Freed, C
1943-01-01
Hinge-moment, lift, and pressure-distribution measurements were made in the two-dimensional test section of the NACA stability tunnel on a blunt-nose balance-type aileron on an NACA 66,2-216 airfoil at speeds up to 360 miles per hour corresponding to a Mach number of 0.475. The tests were made primarily to determine the effect of speed on the action of this type of aileron. The balance-nose radii of the aileron were varied from 0 to 0.02 of the airfoil chord and the gap width was varied from 0.0005 to 0.0107 of the airfoil chord. Tests were also made with the gap sealed.
Jaeger, Marcos; Braga-Silva, Jefferson; Gehlen, Daniel; Sato, Yuki; Zuker, Ronald; Fisher, David
2007-11-01
The use of the nasoalveolar molding technique (NAM) aims to reduce passively the width of the alveolar gap, while improving the AP discrepancy but also focusing on the nose. We developed a within-subjects study in which 11 infants with unilateral lip deformity and varying degrees of alveolar gaps were treated by NAM. Patients included in the study presented alveolar gap at the first appointment to configure the molding device. Alveolar gap was then measured again at the time of lip repair to evaluate the impact of the appliance utilization, and the nostril shape was reassessed to verify the benefit relative to nose symmetry. All patients obtained significant reduction of the alveolar gap. The appliance also facilitated primary nasal positioning, significantly improving nasal symmetry and nostril shape. NAM constitutes an important adjunct to ameliorate the results of primary definitive lip repair while also improving the surgeon's ability to provide nasal symmetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang
2015-09-21
Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rodmore » gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.« less
NASA Astrophysics Data System (ADS)
Kumar, Anil; Kumar, Raj; Maithani, Rajesh; Chauhan, Ranchan; Kumar, Sushil; Nadda, Rahul
2017-12-01
This work aims at studying the effect of broken multi type V-baffles on heat transfer, pressure drop, and thermal hydraulic performance characteristics in an air channel is experimentally investigated. The air channel had aspect ratio of 10.0 and the Reynolds number (Re) based upon the mass flow rate of air ( m a ) at entrance of the channel varied from 3000 to 8000. The discrete baffle distance ( D d / L v ) varied from 0.27 to 0.77, relative baffle gap width ( G w / H B ) varied from 0.50 to 1.5, relative baffle height ( H B / H D ) varied from 0.25 to 1.0, relative baffle pitch ( P B / H B ) varied from 8.0 to 12, relative baffle width ( W D / H D ) varied from 1.0 to 6.0, and flow attack angle ( α a )varied from 30° to 70°. It has been found that performance of broken multi type V-baffles air channel is better than the performance of smooth surface air channel for the range of geometrical parameters investigated. Experimental results observed that maximum enhancement in overall thermal performance have been found at Dd/Lv value of 0.67, Gw/HB value of 1.0, HB/HD value of 0.50, P B / H B value of 10, and αavalue of 60°.
Effect of Display Technology on Perceived Scale of Space.
Geuss, Michael N; Stefanucci, Jeanine K; Creem-Regehr, Sarah H; Thompson, William B; Mohler, Betty J
2015-11-01
Our goal was to evaluate the degree to which display technologies influence the perception of size in an image. Research suggests that factors such as whether an image is displayed stereoscopically, whether a user's viewpoint is tracked, and the field of view of a given display can affect users' perception of scale in the displayed image. Participants directly estimated the size of a gap by matching the distance between their hands to the gap width and judged their ability to pass unimpeded through the gap in one of five common implementations of three display technologies (two head-mounted displays [HMD] and a back-projection screen). Both measures of gap width were similar for the two HMD conditions and the back projection with stereo and tracking. For the displays without tracking, stereo and monocular conditions differed from each other, with monocular viewing showing underestimation of size. Display technologies that are capable of stereoscopic display and tracking of the user's viewpoint are beneficial as perceived size does not differ from real-world estimates. Evaluations of different display technologies are necessary as display conditions vary and the availability of different display technologies continues to grow. The findings are important to those using display technologies for research, commercial, and training purposes when it is important for the displayed image to be perceived at an intended scale. © 2015, Human Factors and Ergonomics Society.
NASA Technical Reports Server (NTRS)
Cristensen, H. E.
1975-01-01
Heat transfer data measured in gaps representative of those being employed for joints in the space shuttle reusable surface insulation (RSI) thermal protection systems (TPS) were assimilated, analyzed, and correlated. Several types of gap were investigated with emphasis on simple butt joints. Gap widths ranged from 0.0 to 0.76 cm and depths ranged from 1 to 6 cm. Laminar, transitional, and turbulent boundary layer flows over the gap opening were investigated. The angle between gap axis and external flow was varied between 0 and pi/2 radians. The contoured cross section gap performed significantly better than all other wide gaps and slightly better than all other narrow gap geometries. Three dimensional heating variations were observed within gaps in the absence of external flow pressure gradients. Interactions between heating within gaps and heating of adjacent top tile surfaces were observed. Gaps aligned with the flow were observed to promote boundary layer transition. Heat transfer correlation equations were obtained for many of the tests. The TPS thickness requirements with and without gaps were computed for a current shuttle entry trajectory. Experimental data employed in the study are summarized. A description of each test facility, run schedule and test conditions, model descriptive information, and heat flux data are included.
Influence of the Gap Width on the Geometry of the Welded Joint in Hybrid Laser-Arc Welding
NASA Astrophysics Data System (ADS)
Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Mildebrath, M.; Hassel, T.
The aim of this research was the experimental investigation of the influence of the gap width and speed of the welding wire on the changes of the geometry in the welded joint in the hybrid laser-arc welding of shipbuilding steel RS E36. The research was divided into three parts. First, in order to understand the influence of the gap width on the welded joint geometry, experimental research was done using continuous wave fiber laser IPG YLS-15000 with arc rectifier VDU-1500DC. The second part involved study of the geometry of the welded joint and hardness test results. Three macrosections from each welded joint were obtained. Influence of the gap width and welding wire speed on the welded joint geometry was researched in the three lines: in the right side of the plates, middle welded joint and in the root welded joint.
NASA Astrophysics Data System (ADS)
Jin, Gui; Huang, Xiaoyi
2018-02-01
We propose and demonstrate a metal-dielectric-metal(MDM) waveguide side coupled with two stubs to realize plasmon induced transparency (PIT) effect. The dispersion relation of the structure has been plotted by solving the dispersion equation of MDM three layer structure, the transmission spectrum is investigated by coupled mode theory (CMT) and Finite Element Method (FEM) simulation, the CMT results can. The surface plasmon device can also be used as a EIT-like filter with a variable full width of half-maximum (FWHM) and highest transmission over 88%. The maximum group index ng is 42 with a group velocity of 0.023ܿ and transmission of 48%, The normalized delay-bandwidth product (NDBP) can be modulated through changing the gap width of resonators and waveguide bus, the highest is 0.641 at gap width 10 nm, and lowest is 0.246 at 30 nm. The dispersion of group velocity (GVD) changes drastically at narrow gap width and becomes more and more flat at broader gap width, this opens up an avenue for designing optical buffers, switches and modulators.
Kesterson, Melissa A; Luck, Joe D; Sama, Michael P
2015-12-17
An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.
Kesterson, Melissa A.; Luck, Joe D.; Sama, Michael P.
2015-01-01
An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array. PMID:26694417
SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popple, R; Brezovich, I; Wu, X
2014-06-01
Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantommore » containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.« less
Dependence of paranodal junctional gap width on transverse bands.
Rosenbluth, Jack; Petzold, Chris; Peles, Elior
2012-08-15
Mouse mutants with paranodal junctional (PNJ) defects display variable degrees of neurological impairment. In this study we compare control paranodes with those from three mouse mutants that differ with respect to a conspicuous PNJ component, the transverse bands (TBs). We hypothesize that TBs link the apposed junctional membranes together at a fixed distance and thereby determine the width of the junctional gap, which may in turn determine the extent to which nodal action currents can be short-circuited underneath the myelin sheath. Electron micrographs of aldehyde-fixed control PNJs, in which TBs are abundant, show a consistent junctional gap of ∼3.5 nm. In Caspr-null PNJs, which lack TBs entirely, the gap is wider (∼6-7 nm) and more variable. In CST-null PNJs, which have only occasional TBs, the mean PNJ gap width is comparable to that in Caspr-null mice. In the shaking mutant, in contrast, which has approximately 60% of the normal complement of TBs, mean PNJ gap width is not significantly different from that in controls. Correspondingly, shaking mice are much less impaired neurologically than either Caspr-null or CST-null mice. We conclude that in the absence or gross diminution of TBs, mean PNJ gap width increases significantly and suggest that this difference could underlie some of the neurological impairment seen in those mutants. Surprisingly, even in the absence of TBs, paranodes are to some extent maintained in their usual form, implying that in addition to TBs, other factors govern the formation and maintenance of overall paranodal structure. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi
2012-06-01
Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.
NASA Astrophysics Data System (ADS)
Salehi, H.; Aryadoust, M.; Shoushtari, M. Zargar
2014-07-01
In this paper, the propagation of acoustic waves in the phononic crystal of 3D with rhombohedral(I) lattice is studied theoretically. The crystal composite constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of Brillouin zone. In the present work, we have investigated the effect of lattice angle on the band structure and width of the band gap rhombohedral(I) lattice in the irreducible part of the first Brillouin zone and its planes separately. The results show that more than one complete band gape are formed in the four planes of the irreducible part. The most complete band gaps are formed in the (111) plane and the widest complete band gap in (443) with an angle greater than 80. So, if the sound passes through the (111) and (443) planes for the lattice angle close to 90, the crystal phononic displays the excellent insulation behavior. Moreover, in the other planes, the lattice angle does not affect on the width and the number of band gaps. Also, for the filling fraction 5 %, the widest complete band gap is formed. These results are consistent with the effect of symmetry on the band gap width, because the (111) plane has the most symmetry.
Complete band gaps of phononic crystal plates with square rods.
El-Naggar, Sahar A; Mostafa, Samia I; Rafat, Nadia H
2012-04-01
Much of previous work has been devoted in studying complete band gaps for bulk phononic crystal (PC). In this paper, we theoretically investigate the existence and widths of these gaps for PC plates. We focus our attention on steel rods of square cross sectional area embedded in epoxy matrix. The equations for calculating the dispersion relation for square rods in a square or a triangular lattice have been derived. Our analysis is based on super cell plane wave expansion (SC-PWE) method. The influence of inclusions filling factor and plate thickness on the existence and width of the phononic band gaps has been discussed. Our calculations show that there is a certain filling factor (f=0.55) below which arrangement of square rods in a triangular lattice is superior to the arrangement in a square lattice. A comparison between square and circular cross sectional rods reveals that the former has superior normalized gap width than the latter in case of a square lattice. This situation is switched in case of a triangular lattice. Moreover, a maximum normalized gap width of 0.7 can be achieved for PC plate of square rods embedded in a square lattice and having height 90% of the lattice constant. Copyright © 2011 Elsevier B.V. All rights reserved.
Morphometry of medial gaps of human brain artery branches.
Canham, Peter B; Finlay, Helen M
2004-05-01
The bifurcation regions of the major human cerebral arteries are vulnerable to the formation of saccular aneurysms. A consistent feature of these bifurcations is a discontinuity of the tunica media at the apex of the flow divider. The objective was to measure the 3-dimensional geometry of these medial gaps or "medial defects." Nineteen bifurcations and 2 junctions of human cerebral arteries branches (from 4 male and 2 female subjects) were formalin-fixed at physiological pressure and processed for longitudinal serial sectioning. The apex and adjacent regions were examined and measurements were made from high-magnification photomicrographs, or projection microscope images, of the gap dimensions at multiple levels through the bifurcation. Plots were made of the width of the media as a function of distance from the apex. The media at each edge of the medial gap widened over a short distance, reaching the full width of the media of the contiguous daughter vessel. Medial gap dimensions were compared with the planar angle of the bifurcation, and a strong negative correlation was found, ie, the acute angled branches have the more prominent medial gaps. A discontinuity of the media at the apex was seen in all the bifurcations examined and was also found in the junction regions of brain arteries. We determined that the gap width is continuous with well-defined dimensions throughout its length and average length-to-width ratio of 6.9. The gaps were generally centered on the prominence of the apical ridge.
BISON Modeling of Reactivity-Initiated Accident Experiments in a Static Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folsom, Charles P.; Jensen, Colby B.; Williamson, Richard L.
2016-09-01
In conjunction with the restart of the TREAT reactor and the design of test vehicles, modeling and simulation efforts are being used to model the response of Accident Tolerant Fuel (ATF) concepts under reactivity insertion accident (RIA) conditions. The purpose of this work is to model a baseline case of a 10 cm long UO2-Zircaloy fuel rodlet using BISON and RELAP5 over a range of energy depositions and with varying reactor power pulse widths. The results show the effect of varying the pulse width and energy deposition on both thermal and mechanical parameters that are important for predicting failure ofmore » the fuel rodlet. The combined BISON/RELAP5 model captures coupled thermal and mechanical effects on the fuel-to-cladding gap conductance, cladding-to-coolant heat transfer coefficient and water temperature and pressure that would not be capable in each code individually. These combined effects allow for a more accurate modeling of the thermal and mechanical response in the fuel rodlet and thermal-hydraulics of the test vehicle.« less
Electronic Structure and I- V Characteristics of InSe Nanoribbons
NASA Astrophysics Data System (ADS)
Yao, A.-Long; Wang, Xue-Feng; Liu, Yu-Shen; Sun, Ya-Na
2018-04-01
We have studied the electronic structure and the current-voltage ( I-V) characteristics of one-dimensional InSe nanoribbons using the density functional theory combined with the nonequilibrium Green's function method. Nanoribbons having bare or H-passivated edges of types zigzag (Z), Klein (K), and armchair (A) are taken into account. Edge states are found to play an important role in determining their electronic properties. Edges Z and K are usually metallic in wide nanoribbons as well as their hydrogenated counterparts. Transition from semiconductor to metal is observed in hydrogenated nanoribbons HZZH as their width increases, due to the strong width dependence of energy difference between left and right edge states. Nevertheless, electronic structures of other nanoribbons vary with the width in a very limited scale. The I-V characteristics of bare nanoribbons ZZ and KK show strong negative differential resistance, due to spatial mismatch of wave functions in energy bands around the Fermi energy. Spin polarization in these nanoribbons is also predicted. In contrast, bare nanoribbons AA and their hydrogenated counterparts HAAH are semiconductors. The band gaps of nanoribbons AA (HAAH) are narrower (wider) than that of two-dimensional InSe monolayer and increase (decrease) with the nanoribbon width.
NASA Astrophysics Data System (ADS)
Taravati, Sajjad
2018-06-01
This article presents a class of space-time-varying media with giant linear nonreciprocity, zero space-time local reflections, and zero photonic band gap. This is achieved via equilibrium in the electric and magnetic properties of unidirectionally space-time-modulated media. The enhanced nonreciprocity is accompanied by a larger sonic regime interval which provides extra design freedom for achieving strong nonreciprocity by a weak pumping strength. We show that the width of photonic band gaps in general periodic space-time permittivity- and permeability-modulated media is proportional to the absolute difference between the electric and magnetic pumping strengths. We derive a rigorous analytical solution for investigation of wave propagation and scattering from general periodic space-time permittivity- and permeability-modulated media. In contrast with weak photonic transitions, from the excited mode to its two adjacent modes, in conventional space-time permittivity-modulated media, in an equilibrated space-time-varying medium, strong photonic transitions occur from the excited mode to its four adjacent modes. We study the enhanced nonreciprocity and zero band gap in equilibrated space-time-modulated media by analysis of their dispersion diagrams. In contrast to conventional space-time permittivity-modulated media, equilibrated space-time media exhibit different phase and group velocities for forward and backward harmonics. Furthermore, the numerical simulation scheme of general space-time permittivity- and permeability-modulated media is presented, which is based on the finite-difference time-domain technique. Our analytical and numerical results provide insights into general space-time refractive-index-modulated media, paving the way toward optimal isolators, nonreciprocal integrated systems, and subharmonic frequency generators.
Electronic structure of semiconducting alkali-metal silicides and germanides
NASA Astrophysics Data System (ADS)
Tegze, M.; Hafner, J.
1989-11-01
We present self-consistent linearized-muffin-tin-orbital calculations of the electronic structure of three alkali-metal germanides and silicides (KGe, NaGe, and NaSi). Like the alkali-metal-lead compounds investigated in our earlier work [M. Tegze and J. Hafner, Phys. Rev. B 39, 8263 (1989)] the Ge and Si compounds of the alkali metals form complex structures based on the packing of tetrahedral Ge4 and Si4 clusters. Our calculations show that all three compounds are narrow-gap semiconductors. The width of the energy gap depends on two main factors: the ratio of the intracluster to the intercluster interactions between the group-IV elements (which increases from Pb to Si) and the strength of the interactions between the alkali-metal atoms (which varies with the size ratio).
Engineering two-wire optical antennas for near field enhancement
NASA Astrophysics Data System (ADS)
Yang, Zhong-Jian; Zhao, Qian; Xiao, Si; He, Jun
2017-07-01
We study the optimization of near field enhancement in the two-wire optical antenna system. By varying the nanowire sizes we obtain the optimized side-length (width and height) for the maximum field enhancement with a given gap size. The optimized side-length applies to a broadband range (λ = 650-1000 nm). The ratio of extinction cross section to field concentration size is found to be closely related to the field enhancement behavior. We also investigate two experimentally feasible cases which are antennas on glass substrate and mirror, and find that the optimized side-length also applies to these systems. It is also found that the optimized side-length shows a tendency of increasing with the gap size. Our results could find applications in field-enhanced spectroscopies.
A novel compact heat exchanger using gap flow mechanism.
Liang, J S; Zhang, Y; Wang, D Z; Luo, T P; Ren, T Q
2015-02-01
A novel, compact gap-flow heat exchanger (GFHE) using heat-transfer fluid (HTF) was developed in this paper. The detail design of the GFHE coaxial structure which forms the annular gap passage for HTF is presented. Computational fluid dynamics simulations were introduced into the design to determine the impacts of the gap width and the HTF flow rate on the GFHE performance. A comparative study on the GFHE heating rate, with the gap widths ranged from 0.1 to 1.0 mm and the HTF flow rates ranged from 100 to 500 ml/min, was carried out. Results show that a narrower gap passage and a higher HTF flow rate can yield a higher average heating rate in GFHE. However, considering the compromise between the GFHE heating rate and the HTF pressure drop along the gap, a 0.4 mm gap width is preferred. A testing loop was also set up to experimentally evaluate the GFHE capability. The testing results show that, by using 0.4 mm gap width and 500 ml/min HTF flow rate, the maximum heating rate in the working chamber of the as-made GFHE can reach 18 °C/min, and the average temperature change rates in the heating and cooling processes of the thermal cycle test were recorded as 6.5 and 5.4 °C/min, respectively. These temperature change rates can well satisfy the standard of IEC 60068-2-14:2009 and show that the GFHE developed in this work has sufficient heat exchange capacity and can be used as an ideal compact heat exchanger in small volume desktop thermal fatigue test apparatus.
Estimation of photonic band gap in the hollow core cylindrical multilayer structure
NASA Astrophysics Data System (ADS)
Chourasia, Ritesh Kumar; Singh, Vivek
2018-04-01
The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.
Free energy barriers to evaporation of water in hydrophobic confinement.
Sharma, Sumit; Debenedetti, Pablo G
2012-11-08
We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.
The characteristic of gap FBG and its application
NASA Astrophysics Data System (ADS)
Yang, Yuanhong; Hu, Jun; Liu, Xuejing; Jin, Wei
2015-07-01
A gap fiber Bragg grating (g-FBG) is fabricated by cutting a uniform FBG in the middle to introduce a small air gap between the two sections. Numerical and experimental investigations show that the g-FBG has the characteristics of both a phase shifted FBG and a Fizeau interferometer. The influence of the air-gap shift longitudinally or transversely with respect to the fiber central axis and temperature to g-FBG's spectrums are investigated with numerical simulation and experiments, and the mathematic models are made. Based on g-FBG's different sensitivity to gap width and temperature, a micro-gap and temperature simultaneous measurement sensor was demonstrated. And a g-FBG based tunable fiber ring laser with a narrow line-width is demonstrated.
Band gaps in periodically magnetized homogeneous anisotropic media
NASA Astrophysics Data System (ADS)
Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.
2010-11-01
In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.
What is the Mass of a Gap-opening Planet?
NASA Astrophysics Data System (ADS)
Dong, Ruobing; Fung, Jeffrey
2017-02-01
High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity Mp2/α, where Mp is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10‑3, the derived planet masses in all cases are roughly between 0.1 and 1 MJ.
NASA Astrophysics Data System (ADS)
Zeng, Y. D.; Wang, F.
2018-02-01
In this paper, we propose an experimental model for forming an air gap at the casting/mold interface during the solidification process of the casting, with the size and formation time of the air gap able to be precisely and manually controlled. Based on this model, experiments of gravity casting were performed, and on the basis of the measured temperatures at different locations inside the casting and the mold, the inverse analysis method of heat transfer was applied to solve for the heat-transfer coefficient at the casting/mold interface during the solidification process. Furthermore, the impacts of the width and formation time of the air gap on the interface heat-transfer coefficient (IHTC) were analyzed. The results indicate that the experimental model succeeds in forming an air gap having a certain width at any moment during solidification of the casting, thus allowing us to conveniently and accurately study the impact of the air gap on IHTC using the model. In addition, the casting/mold IHTC is found to first rapidly decrease as the air gap forms and then slowly decrease as the solidification process continues. Moreover, as the width of the air gap and the formation time of the air gap increase, the IHTC decreases.
NASA Astrophysics Data System (ADS)
Pan, Margaret; Chiang, Eugene
2010-10-01
"Propellers" in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the "frog" resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Blériot in Saturn's A ring, our theory predicts a libration period of ~4 years, similar to the ~3.7 year period over which Blériot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Margaret; Chiang, Eugene, E-mail: mpan@astro.berkeley.ed
2010-10-20
'Propellers' in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of themore » co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the 'frog' resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Bleriot in Saturn's A ring, our theory predicts a libration period of {approx}4 years, similar to the {approx}3.7 year period over which Bleriot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.« less
Calculation of Vertical and Horizontal Mobilities in InAs/GaSb Superlattices (Postprint)
2011-10-13
width 2a and GaSb having width 2b, with the period = 2a + 2b. For energies near the band gap edges, the carrier wave function can be approximated by a...online) Electron energy bands along the growth direction for three combinations of InAs/ GaSb layer widths. For typical carrier densities, at low...Fermi energies , parallel masses, and band gaps from the 8×8 EFA model. Sheet carrier Calculated Measured Calculated InAs GaSb concentration per period
NASA Astrophysics Data System (ADS)
Coscia, U.; Ambrosone, G.; Basa, D. K.
2008-03-01
The nanocrystalline silicon embedded in amorphous silicon carbide matrix was prepared by varying rf power in high vacuum plasma enhanced chemical vapor deposition system using silane methane gas mixture highly diluted in hydrogen. In this paper, we have studied the evolution of the structural, optical, and electrical properties of this material as a function of rf power. We have observed visible photoluminescence at room temperature and also have discussed the role played by the Si nanocrystallites and the amorphous silicon carbide matrix. The decrease of the nanocrystalline size, responsible for quantum confinement effect, facilitated by the amorphous silicon carbide matrix, is shown to be the primary cause for the increase in the PL intensity, blueshift of the PL peak position, decrease of the PL width (full width at half maximum) as well as the increase of the optical band gap and the decrease of the dark conductivity.
Cooperative Search of Autonomous Vehicles for Unknown Targets
NASA Astrophysics Data System (ADS)
Yang, Sheng Qing; Yu, Jian Qiao; Zhang, Si Yu
2013-01-01
We study the orbital-dependent superconducting pairing in a five-orbital t-J1-J2 model for iron pnictides. Depending on the orbital selectivity of electron correlations and the orbital characters along the Fermi surface, the superconducting gap in an A_{1g} pairing state may exhibit anisotropy. This anisotropy varies with the degree of J1-J2 magnetic frustration. We have also calculated the dynamical spin susceptibility in the superconducting state. The frequency dependence of the susceptibility at the antiferromagnetic wavevector (\\pi,0) shows a resonance, whose width is enhanced by the orbital dependence of the superconducting gap; when the latter is sufficiently strong, the resonance peak may be split into two. We discuss the implications of our results on the recent angle-resolved photoemission and neutron-scattering measurements in several superconducting iron pnictides.
What is the Mass of a Gap-opening Planet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Ruobing; Fung, Jeffrey, E-mail: rdong@email.arizona.edu
High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, wemore » obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h , and to constrain the quantity M {sub p}{sup 2}/ α , where M {sub p} is the mass of the gap-opening planet and α characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming α = 10{sup −3}, the derived planet masses in all cases are roughly between 0.1 and 1 M {sub J}.« less
Spin-resolved conductance of Dirac electrons through multibarrier arrays
NASA Astrophysics Data System (ADS)
Dahal, Dipendra; Gumbs, Godfrey; Iurov, Andrii
We use a transfer matrix method to calculate the transmission coefficient of Dirac electrons through an arbitrary number of square potential barrier in gapped monolayer graphene(MLG) and bilayer graphene (BLG). The widths of barriers may not be chosen equal. The shift in the angle of incidence and the width of the barrier required for resonance are investigated numerically for both MLG and BLG. We compare the effects due to energy gap on these two transmission coefficient for each of these two structures (MLG and BLG). We present our results as functions of barrier width, height as well as incoming electron energy as well as band gap and examine the conditions for which perfect reflection or transmission occurs. Our transmission data are further used to calculate conductivity.
Cr:SnO2 thin films-synthesis and characterization
NASA Astrophysics Data System (ADS)
Varghese, Anitta Rose; B. Bhadrapriya, C.; Amarendra, G.; Hussain, Shamima
2018-04-01
Thin films of pure and Chromium doped SnO2 were synthesized using sol-gel method by spin coating technique. XRD studies confirmed the formation of tetragonal structure for SnO2 thin films. Variations in peak width and position were identified with doping. The optical band gap of the undoped films was found to be 3.8eV and varied with doping. Raman spectrum gave signature peaks of Sn-O and Cr-O bonds for undoped and doped films. The uniformity of the samples and formation of aggregates were observed from FESEM analysis.
[Loudness optimized registration of compound action potential in cochlear implant recipients].
Berger, Klaus; Hocke, Thomas; Hessel, Horst
2017-11-01
Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.
Aerodynamic pressures and heating rates on surfaces between split elevons at Mach 6.6
NASA Technical Reports Server (NTRS)
Hunt, L. Roane
1988-01-01
An aerothermal study was performed in the Langley 8-Foot High Temperature Tunnel at Mach number 6.6 to define the pressures and heating rates on the surfaces between split elevons similar to those used on the Space Shuttle. Tests were performed with both laminar and turbulent boundary layers on the wing surface upstream of the elevons. The flow in the chordwise gap between the elevons was characterized by flow separation at the gap entrance and flow reattachment at a depth into the gap inversely proportional to the gap width. The gap pressure and heating rate increased significantly with decrease of elevon gap width, and the maximum gap heating rate was proportional to the maximum gap pressure. Correlation of the present results indicate that the gap heating was directly proportional to the elevon windward surface pressure and was not dependent upon whether the boundary layer on the windward elevon surface was laminar or turbulent.
Origin of multiple band gap values in single width nanoribbons
Goyal, Deepika; Kumar, Shailesh; Shukla, Alok; Kumar, Rakesh
2016-01-01
Deterministic band gap in quasi-one-dimensional nanoribbons is prerequisite for their integrated functionalities in high performance molecular-electronics based devices. However, multiple band gaps commonly observed in graphene nanoribbons of the same width, fabricated in same slot of experiments, remain unresolved, and raise a critical concern over scalable production of pristine and/or hetero-structure nanoribbons with deterministic properties and functionalities for plethora of applications. Here, we show that a modification in the depth of potential wells in the periodic direction of a supercell on relative shifting of passivating atoms at the edges is the origin of multiple band gap values in nanoribbons of the same width in a crystallographic orientation, although they carry practically the same ground state energy. The results are similar when calculations are extended from planar graphene to buckled silicene nanoribbons. Thus, the findings facilitate tuning of the electronic properties of quasi-one-dimensional materials such as bio-molecular chains, organic and inorganic nanoribbons by performing edge engineering. PMID:27808172
Research | Research Site Name | NREL
laboris nisi ut aliquip ex ea commodo consequat. Research Topic Images should have a width of 768 - height can vary. Lorem Ipsum Images should have a width of 768 - height can vary. Lorem Ipsum dolor sit amet consectetur Images should have a width of 768 - height can vary. Lorem Ipsum Lorem ipsum dolor sit amet
Large-scale transport across narrow gaps in rod bundles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guellouz, M.S.; Tavoularis, S.
1995-09-01
Flow visualization and how-wire anemometry were used to investigate the velocity field in a rectangular channel containing a single cylindrical rod, which could be traversed on the centreplane to form gaps of different widths with the plane wall. The presence of large-scale, quasi-periodic structures in the vicinity of the gap has been demonstrated through flow visualization, spectral analysis and space-time correlation measurements. These structures are seen to exist even for relatively large gaps, at least up to W/D=1.350 (W is the sum of the rod diameter, D, and the gap width). The above measurements appear to compatible with the fieldmore » of a street of three-dimensional, counter-rotating vortices, whose detailed structure, however, remains to be determined. The convection speed and the streamwise spacing of these vortices have been determined as functions of the gap size.« less
Theoretical aspects of photonic band gap in 1D nano structure of LN: MgLN periodic layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisodia, Namita, E-mail: namitasisodiya@gmail.com
2015-06-24
By using the transfer matrix method, we have analyzed the photonic band gap properties in a periodic layer of LN:MgLN medium. The Width of alternate layers of LN and MgLN is in the range of hundred nanometers. The birefringent and ferroelectric properties of the medium (i.e ordinary, extraordinary refractive indices and electric dipole moment) is given due considerations in the formulation of photonic band gap. Effect of electronic transition dipole moment of the medium on photonic band gap is also taken into account. We find that photonic band gap can be modified by the variation in the ratio of themore » width of two medium. We explain our findings by obtaining numerical values and the effect on the photonic band gap due to variation in the ratio of alternate medium is shown graphically.« less
Ghosh, Pintu; Lu, Jinsheng; Luo, Hao; Xu, Ziquan; Yan, Xiaoyuan; Wang, Yewu; Lu, Jun; Qiu, Min; Li, Qiang
2018-05-15
A technique to fabricate nanogaps with controllably variable gap width in silver (Ag) nanowires (NWs) by photothermal-induced stress utilizing a focused continuous-wave laser (532 nm) is presented. For the case of an Ag NW on gold thin film, a gap width starting from ∼20 nm is achieved with a critical minimum power (CMP) of about 160 mW, whereas in the case of an Ag NW placed on top of a zinc oxide NW, the attained gap width is as small as a few nm (<10 nm) with a CMP of only ∼100 mW. In both cases, the CMP is much lower as compared to the required CMP (∼280 mW) for an Ag NW placed on a bare silica substrate. The photothermal-induced stress combined with Rayleigh instability, melting, and sublimation of Ag aids in breaking the Ag NW. In particular, the former one plays a key role in attaining an extremely narrow gap. This technique to fabricate sub-100 nm nanogaps in metal NWs can be extensively implemented in fabrication and maintenance of nanomechanical, nanoplasmonic, and nanoelectronic devices.
40 CFR 60.113a - Testing and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... every five years thereafter. All primary seal inspections or gap measurements which require the removal... the gap areas and maximum gap widths between the primary seal and the tank wall and between the secondary seal and the tank wall according to the following frequency: (A) For primary seals, gap...
40 CFR 60.113a - Testing and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... every five years thereafter. All primary seal inspections or gap measurements which require the removal... the gap areas and maximum gap widths between the primary seal and the tank wall and between the secondary seal and the tank wall according to the following frequency: (A) For primary seals, gap...
Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Wang, Bin; Liu, Xiaowei
2017-07-01
A quantitative method based on the electronic portal imaging system (EPID) and film was developed for MLC position and speed testing; this method was used for three MLC types (Millennium, MLCi, and Agility MLC). To determine the leaf position, a picket fence designed by the dynamic (DMLC) model was used. The full-width half-maximum (FWHM) values of each gap measured by EPID and EBT3 were converted to the gap width using the FWHM versus nominal gap width relationship. The algorithm developed for the picket fence analysis was able to quantify the gap width, the distance between gaps, and each individual leaf position. To determine the leaf speed, a 0.5 × 20 cm 2 MLC-defined sliding gap was applied across a 14 × 20 cm 2 symmetry field. The linacs ran at a fixed-dose rate. The use of different monitor units (MUs) for this test led to different leaf speeds. The effect of leaf transmission was considered in a speed accuracy analysis. The difference between the EPID and film results for the MLC position is less than 0.1 mm. For the three MLC types, twice the standard deviation (2 SD) is provided; 0.2, 0.4, and 0.4 mm for gap widths of three MLC types, and 0.1, 0.2, and 0.2 mm for distances between gaps. The individual leaf positions deviate from the preset positions within 0.1 mm. The variations in the speed profiles for the EPID and EBT3 results are consistent, but the EPID results are slightly better than the film results. Different speeds were measured for each MLC type. For all three MLC types, speed errors increase with increasing speed. The analysis speeds deviate from the preset speeds within approximately 0.01 cm s -1 . This quantitative analysis of MLC position and speed provides an intuitive evaluation for MLC quality assurance (QA). © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Influence of the Strength Mismatch of a Narrow Gap Welded Joint of SA508 on the Plastic η Factor
NASA Astrophysics Data System (ADS)
Koo, J. M.; Huh, Y.; Seok, C. S.
2012-11-01
In this article, the influence of the strength mismatch of a narrow gap welded joint of SA508 on the η factor was evaluated. The η factor is the principal parameter that determines the plastic portion of the J-integral. The specimens for tensile and hardness tests were collected from piping with narrow gap welding and the stress-strain curve and hardness were obtained from those. From these results, the Ramberg-Osgood (R-O) constant was obtained. Also, the finite element analysis was performed with variations in the strength mismatch and the weld width. The η factor equation considering the strength mismatch and the weld width of a narrow gap welded joint was suggested.
Irie, M; Suzuki, K; Watts, D C
2004-11-01
The purpose of this study was to evaluate the performance of both single and double applications of (Adper Prompt L-Pop) self-etching dental adhesive, when used with three classes of light-activated restorative materials, in comparison to the performance of each restorative system adhesive. Evaluation parameters to be considered for the adhesive systems were (a) immediate marginal adaptation (or gap formation) in tooth cavities, (b) free setting shrinkage-strain determined by the immediate marginal gap-width in a non-bonding Teflon cavity, and (c) their immediate shear bond-strengths to enamel and to dentin. The maximum marginal gap-width and the opposing-width (if any) in the tooth cavities and in the Teflon cavities were measured immediately (3 min) after light-activation. The shear bond-strengths to enamel and to dentin were also measured at 3 min. For light-activated restorative materials during early setting (<3 min), application of Adper Prompt L-Pop exhibited generally superior marginal adaptation to most system adhesives. But there was no additional benefit from double application. The marginal-gaps in tooth cavities and the marginal-gaps in Teflon cavities were highly correlated (r = 0.86-0.89, p < 0.02-0.01). For enamel and dentin shear bond-strengths, there were no significant differences between single and double applications, for all materials tested except Toughwell and Z 250 with enamel. Single application of a self-etch adhesive was a feasible and beneficial alternative to system adhesives for several classes of restorative. Marginal gap-widths in tooth cavities correlated more strongly with free shrinkage-strain magnitudes than with bond-strengths to tooth structure.
Computational Analysis of a Wells Turbine with Flexible Trailing Edges
NASA Astrophysics Data System (ADS)
Kincaid, Kellis; Macphee, David
2017-11-01
The Wells turbine is often used to produce a net positive power from an oscillating air column excited by ocean waves. It has been parametrically studied quite thoroughly in the past, both experimentally and numerically. The effects of various characteristics such as blade count and profile, solidity, and tip gap are well known. Several three-dimensional computational studies have been carried out using commercial code to investigate many phenomena detected in experiments: hysteresis, tip-gap drag, and post-stall behavior for example. In this work, the open-source code Foam-Extend is used to examine the effect of flexible blades on the performance of the Wells turbine. A new solver is created to integrate fluid-structure interaction into the code, allowing an accurate solution for both the solid and fluid domains. Reynolds-averaged governing equations are employed in a fully transient solution model. The elastic modulus of the flexible portion of the blade and the tip-gap width are varied, and the resulting flow fields are investigated to determine the cause of any performance differences. NSF Grant EEC 1659710.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andueza, Ángel; Sevilla, Joaquín; Smart Cities Institute, Universidad Pública de Navarra, 31006 Pamplona
2016-08-28
Light confinement induced by resonant states in aperiodic photonic structures is interesting for many applications. A particular case of these resonances can be found in 2D quasicrystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper, we study the transmission properties of a slab of glass cylinders arranged in approximants of the decagonal quasicrystalline structure. In particular, we investigate the influence of the slabmore » width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around three times the radiation wavelength. The transmission in the band gap region is mediated by the resonances of the photonic molecules. If the samples are thin enough, they become transparent except around a resonance of the photonic molecule which reflects the incoming light.« less
Enhanced absorption of graphene strips with a multilayer subwavelength grating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jin-Hua; Huang, Yong-Qing, E-mail: yqhuang@bupt.edu.cn; Duan, Xiao-Feng
2014-12-01
The optical absorption of graphene strips covered on a multilayer subwavelength grating (MSG) surface is theoretically investigated. The absorption of graphene strips with MSG is enhanced in the wavelength range of 1500 nm to 1600 nm by critical coupling, which is associated with the combined effects of a guided resonance of MSG and its photonic band gap effect. The critical coupling of the graphene strips can be controlled by adjusting the incident angle without changing the structural parameters of MSG. The absorption of graphene strips can also be tuned by varying key parameters, such as grating period, strip width, and incident angle.
Aerodynamic and acoustic effects of ventricular gap.
Alipour, Fariborz; Karnell, Michael
2014-03-01
Supraglottic compression is frequently observed in individuals with dysphonia. It is commonly interpreted as an indication of excessive circumlaryngeal muscular tension and ventricular medialization. The purpose of this study was to describe the aerodynamic and acoustic impact of varying ventricular medialization in a canine model. Subglottal air pressure, glottal airflow, electroglottograph, acoustic signals, and high-speed video images were recorded in seven excised canine larynges mounted in vitro for laryngeal vibratory experimentation. The degree of gap between the ventricular folds was adjusted and measured using sutures and weights. Data were recorded during phonation when the ventricular gap was narrow, neutral, and large. Glottal resistance was estimated by measures of subglottal pressure and glottal flow. Glottal resistance increased systematically as ventricular gap became smaller. Wide ventricular gaps were associated with increases in fundamental frequency and decreases in glottal resistance. Sound pressure level did not appear to be impacted by the adjustments in ventricular gap used in this research. Increases in supraglottic compression and associated reduced ventricular width may be observed in a variety of disorders that affect voice quality. Ventricular compression may interact with true vocal fold posture and vibration resulting in predictable changes in aerodynamic, physiological, acoustic, and perceptual measures of phonation. The data from this report supports the theory that narrow ventricular gaps may be associated with disordered phonation. In vitro and in vivo human data are needed to further test this association. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Wu, Yu Ling; Brand, Joost H J; van Gemert, Josephus L A; Verkerk, Jaap; Wisman, Hans; van Blaaderen, Alfons; Imhof, Arnout
2007-10-01
We developed and tested a parallel plate shear cell that can be mounted on top of an inverted microscope to perform confocal real-space measurements on complex fluids under shear. To follow structural changes in time, a plane of zero velocity is created by letting the plates move in opposite directions. The location of this plane is varied by changing the relative velocities of the plates. The gap width is variable between 20 and 200 microm with parallelism better than 1 microm. Such a small gap width enables us to examine the total sample thickness using high numerical aperture objective lenses. The achieved shear rates cover the range of 0.02-10(3) s(-1). This shear cell can apply an oscillatory shear with adjustable amplitude and frequency. The maximum travel of each plate equals 1 cm, so that strains up to 500 can be applied. For most complex fluids, an oscillatory shear with such a large amplitude can be regarded as a continuous shear. We measured the flow profile of a suspension of silica colloids in this shear cell. It was linear except for a small deviation caused by sedimentation. To demonstrate the excellent performance and capabilities of this new setup we examined shear induced crystallization and melting of concentrated suspensions of 1 microm diameter silica colloids.
Temperature effects on the band gaps of Lamb waves in a one-dimensional phononic-crystal plate (L).
Cheng, Y; Liu, X J; Wu, D J
2011-03-01
This study investigates the temperature-tuned band gaps of Lamb waves in a one-dimensional phononic-crystal plate, which is formed by alternating strips of ferroelectric ceramic Ba(0.7)Sr(0.3)TiO(3) and epoxy. The sensitive and continuous temperature-tunability of Lamb wave band gaps is demonstrated using the analyses of the band structures and the transmission spectra. The width and position of Lamb wave band gaps shift prominently with variation of temperature in the range of 26 °C-50 °C. For example, the width of the second band gap increases from 0.066 to 0.111 MHz as the temperature is increased from 26 °C to 50 °C. The strong shift promises that the structure could be suitable for temperature-tuned multi-frequency Lamb wave filters. © 2011 Acoustical Society of America
Tailoring of the partial magnonic gap in three-dimensional magnetoferritin-based magnonic crystals
NASA Astrophysics Data System (ADS)
Mamica, S.
2013-07-01
We investigate theoretically the use of magnetoferritin nanoparticles, self-assembled in the protein crystallization process, as the basis for the realization of 3D magnonic crystals in which the interparticle space is filled with a ferromagnetic material. Using the plane wave method we study the dependence of the width of the partial band gap and its central frequency on the total magnetic moment of the magnetoferritin core and the lattice constant of the magnetoferritin crystal. We show that by adjusting the combination of these two parameters the partial gap can be tailored in a wide frequency range and shifted to sub-terahertz frequencies. Moreover, the difference in the width of the partial gap for spin waves propagating in planes parallel and perpendicular to the external field allows for switching on and off the partial magnonic gap by changing the direction of the applied field.
Wood, Billy E [Livermore, CA; Groves, Scott E [Brentwood, CA; Larsen, Greg J [Brentwood, CA; Sanchez, Roberto J [Pleasanton, CA
2006-11-14
A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.
NASA Astrophysics Data System (ADS)
Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang
2016-10-01
Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.
NASA Astrophysics Data System (ADS)
Kameyama, Tatsuya; Ishigami, Yujiro; Yukawa, Hiroshi; Shimada, Taisuke; Baba, Yoshinobu; Ishikawa, Tetsuya; Kuwabata, Susumu; Torimoto, Tsukasa
2016-03-01
Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region.Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region. Electronic supplementary information (ESI) available: A detailed synthesis procedure of DSPC-AgInTe2 and analytical data of AgInTe2 NCs. See DOI: 10.1039/c5nr07532g
Density fingering in spatially modulated Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Tamara; Horvath, Dezso; Toth, Agota
Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.
Skyrmion dynamics in width-varying nanotracks and implications for skyrmionic applications
NASA Astrophysics Data System (ADS)
Chen, Xing; Kang, Wang; Zhu, Daoqian; Zhang, Xichao; Lei, Na; Zhang, Youguang; Zhou, Yan; Zhao, Weisheng
2017-11-01
A comprehensive study of the magnetic skyrmion dynamics in terms of size, velocity, energy, and stability in width-varying nanotracks is reported by micromagnetic simulations. We find that the diameter of a skyrmion reduces with the decrease in the nanotrack width in the spin Hall effect (SHE)-induced skyrmion motion. Accordingly, the skyrmion energy increases giving rise to the growing instability of the skyrmion. It is also numerically demonstrated that the velocity of the skyrmion varies during the motion, since the repulsive force of the nanotrack edges acting on the skyrmion as well as the driving force created by the SHE associated with the size of the skyrmion have a joint impact on the skyrmion motion dynamics in the width-varying nanotrack. In addition, one interesting finding reveals that skyrmions with small sizes, which may be inaccessible to typical approaches by means of directly injecting a spin-polarized current, could be obtained by utilizing this structure. This finding is potential for generating nanoscale skyrmions in skyrmionic applications with ultra-dense density. Finally, inspired by the skyrmion dynamics in the width-varying nanotrack, a general summary on the tradeoff between the nanotrack width (storage density) and the skyrmion velocity (data access speed) is given by further analyzing the skyrmion dynamics in parallel nanotracks with different widths, which may provide guidelines in designing racetrack-type skyrmionic applications.
NASA Astrophysics Data System (ADS)
Vatanabe, Sandro L.; Silva, Emílio C. N.
2011-04-01
One of the properties of composite materials is the possibility of having phononic band gaps, within which sound and vibrations at certain frequencies do not propagate. These materials are called Phononic Crystals (PCs). PCs with large band gaps are of great interest for many applications, such as transducers, elastic/ acoustic filters, noise control, and vibration shields. Most of previous works concentrates on PCs made of elastic isotropic materials; however, band gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Since the main property of PCs is the presence of band gaps, one possible way to design structures which have a desired band gap is through Topology Optimization Method (TOM). TOM is a computational technique that determines the layout of a material such that a prescribed objective is maximized. Functionally Graded Materials (FGM) are composite materials whose properties vary gradually and continuously along a specific direction within the domain of the material. One of the advantages of applying the FGM concept to TOM is that it is not necessary a discrete 0-1 result, once the material gradation is part of the solution. Therefore, the interpretation step becomes easier and the dispersion diagram obtained from the optimization is not significantly modified. In this work, the main objective is to optimize the position and width of piezocomposite materials band gaps. Finite element analysis is implemented with Bloch-Floquet theory to solve the dynamic behavior of two-dimensional functionally graded unit cells. The results demonstrate that phononic band gaps can be designed by using this methodology.
Facility Name | Research Site Name | NREL
ex ea commodo consequat. Images should have a width of 1746px - height can vary Capabilities Capability 1 Capability 2 Capability 3 Testing Facilities and Laboratories Laboratory Name Images should have a width of 768px - height can vary Download fact sheet Laboratory Name Images should have a width of
Pattern selection in an anisotropic Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloud, K.V.; Maher, J.V.
1995-02-01
The selection of steady-state viscous fingers has been measured in Hele-Shaw cells that are perturbed by having rectangular and square lattices etched on one of their plates. The strength of the perturbation was varied by varying the cell gap, and over a wide range of observable tip velocities this local perturbation was also made microscopic in the sense that the capillary length of the flow was large in comparison to the cell size of the underlying lattice. Above threshold the microscopic perturbation results in the selection of wider fingers than those selected in the unperturbed flow for all channel orientationsmore » in the experiment. All observed solutions are symmetric, centered in the channel, and have the relation between tip curvature and finger width expected of members of the Saffman-Taylor family of solutions. Selected solutions narrow again at tip velocities where the perturbations can no longer be considered microscopic.« less
Modification and Utilization of Nanoporous Gold for Loading and Release of Drugs
NASA Astrophysics Data System (ADS)
Al-badri, Ibtisam
Nanoporous gold (np-Au) is a sponge-like structure of gold, which can be created by removing the less noble element from the precursor alloy, most typically silver or copper, using different chemical or electrochemical methods. It consists of interconnected ligaments and gaps between the ligaments, whose width can range from a few nanometers to a few hundreds of nanometers, creating a high surface area-to-volume ratio. Due to its many important properties (e.g., conductivity, high surface area-to-volume ratio, plasmonic response, biocompatibility, chemically inertness, and physically robustness), np-Au is suitable for different types of applications, including as a transducer for biosensors, in catalysis, for biomolecule separation, as a substrate for enzyme immobilization, and in drug delivery. The widths of the ligaments and gaps of np-Au can be easily tuned by varying conditions during the pre- or post-production process, for example, time kept in an acid bath and post-annealing (e.g. thermal, chemical, and electrochemical), depending on the requirement of the study. Thermal annealing is a commonly used process for tuning the ligaments and pore size of np-Au. However, the effects of thermal annealing on modification of ligaments and gaps sizes are not completely understood and more research needs to be done. Herein, we have explored the effect of annealing time and thickness of the np-Au sample on modification of ligaments and gaps. Furthermore, we used the electroless plating method to cover the pores or gaps partially on the surface without modifying the interior of np-Au. As-prepared np-Au was then studied as a platform for molecular loading and releasing kinetics for the possible use in drug delivery. We have found that simply applying the electroless deposition for 1 to 5 min can drastically decrease the rate of release of the molecules, and flow cell-based loading is the preferred way to load the molecules inside np-Au compared to the static method. The structure of the np-Au monoliths before and after the modification was characterized using Energy-Dispersive X-ray Spectroscopy (EDS) and scanning electron microscopy (SEM), whereas the molecular loading and releasing studies were performed using UV-Vis spectrophotometer.
Nanoengineering of strong field processes in solids
NASA Astrophysics Data System (ADS)
Almalki, S.; Parks, A. M.; Brabec, T.; McDonald, C. R.
2018-04-01
We present a theoretical investigation of the effect of quantum confinement on high harmonic generation in semiconductor materials by systematically varying the confinement width along one or two directions transverse to the laser polarization. Our analysis shows a growth in high harmonic efficiency concurrent with a reduction of ionization. This decrease in ionization comes as a consequence of an increased band gap resulting from the confinement. The increase in harmonic efficiency results from a restriction of wave packet spreading, leading to greater recollision probability. Consequently, nanoengineering of one and two-dimensional nanosystems may prove to be a viable means to increase harmonic yield and photon energy in semiconductor materials driven by intense laser fields.
Lo Giudice, G; Cicciù, M; Cervino, G; Lizio, A; Visco, A M
2012-01-01
The aim of this study is to investigate the presence and the extent of a possible marginal gap after the interposition of a flowable composite between the composite restoration and the dental structures (enamel and cementum). This technique is also used to eliminate the infiltration in a zone of the cavity preparation that is frequently at a risk of secondary decay. Fifteen human premolars extracted for orthodontic reasons were used for the study. A cavity with mesial and distal margin in enamel and cementum was realized in every tooth. The cavities were then restored with an adhesive system (ScotchBond 3MÔ) and composite (Filtek Supreme 3MÔ); and, a fine layer of flowable composite was applied in the distal margin of each cavity. Scanning electron microscopy (SEM) in secondary electron imaging (S.E.I.) modality was used for the study and identifying the marginal gaps in the composite restorations. Data was investigated on the mesial and distal margin of each cavity at the restoration-enamel interface, and at the restoration-cementum interface. The interfaces were divided in four groups: Group A (enamel/composite); Group B (enamel/flow/composite); Group C (cementum/composite); and, Group D (cementum/flow/composite). By the comparison of the gap's average width found in each group, it is evidenced that the average width of the gap increases when the interface moves from the coronal to the radicular end (Group A 0,1 ± 0,4 μm Vs Group C 12,3 ± 11,6 μm; Group B 0,2 ± 0,8 μm Vs Group D 2,8 ± 6,6 μm). Correlating the measurements of the marginal gap's average width among the Group A and Group B, no significant variations were obtained; and instead, on comparing Group C with Group D, the gap's average width decreases. The interposition of a low elastic modulus composite between the adhesive layer and the composite resin allows an improvement of the cementum-restoration interface by the means of a lower shrinkage stress during polymerization.
Three-dimensional Bragg diffraction in growth-disordered opals
NASA Astrophysics Data System (ADS)
Baryshev, A. V.; Kaplyanskii, Alexander A.; Kosobukin, Vladimir A.; Limonov, M. F.; Samusev, K. B.; Usvyat, D. E.
2003-06-01
After artificial opals as well as opal-based infilled and inverted composites are considered to be promising representatives of photonic crystal materials. Earlier, photonic stop gaps in opals were studied mainly in transmission or specular reflection geometries corresponding to "one-dimensional" Bragg diffraction. On the contrary, this work was aimed at observing the typical patterns of optical Bragg diffraction in which phenomenon opal crystal structure acts as a three-dimensional diffraction grating. Although our experiments were performed for artificial opals possessing unavoidable imperfections a well-pronounced diffraction peaks were observed characteristic of a crystal structure. Each of the diffraction maxima reveals a photonic stop gap in the specified direction, while the spectral width of the peak is a measure of the photonic stop gap width.
Effect of neutron-irradiation on optical properties of SiO2-Na2O-MgO-Al2O3 glasses
NASA Astrophysics Data System (ADS)
Sandhu, Amanpreet Kaur; Singh, Surinder; Pandey, Om Prakash
2009-07-01
Silica based glasses are used as nuclear shielding materials. The effect of radiation on these glasses varies as per the constituents used in these glasses. Glasses of different composition of SiO2-Na2OMgO-Al2O3 were made by melt casting techniques. These glasses were irradiated with neutrons of different fluences. Optical absorption measurements of neutron-irradiated silica based glasses were performed at room temperature (RT) to detect and characterize the induced radiation damage in these materials. The absorption band found for neutron-irradiated glasses are induced by hole type color centers related to non-bridging oxygen ions (NBO) located in different surroundings of glass matrix. Decrease in the transmittance indicates the formation of color-center defects. Values for band gap energy and the width of the energy tail above the mobility gap have been measured before and after irradiation. The band gap energy has been found to decrease with increasing fluence while the Urbach energy shows an increase. The effects of the composition of the glasses on these parameters have been discussed in detail in this paper.
Friction on a granular-continuum interface: Effects of granular media
NASA Astrophysics Data System (ADS)
Ecke, Robert; Geller, Drew
We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.
Adjustable high emittance gap filler. [reentry shielding for space shuttle vehicles
NASA Technical Reports Server (NTRS)
Leiser, D. B.; Stewart, D. A.; Smith, M.; Estrella, C. A.; Goldstein, H. E. (Inventor)
1981-01-01
A flexible, adjustable refractory filler is disclosed for filling gaps between ceramic tiles forming the heat shield of a space shuttle vehicle, to protect its aluminum skin during atmospheric reentry. The easily installed and replaced filler consists essentially of a strip of ceramic cloth coated, at least along both its longitudinal edges with a room temperature vulcanizable silicone rubber compound with a high emittance colored pigment. The filler may have one or more layers as the gap width requires. Preferred materials are basket weave aluminoborosilicate cloth, and a rubber compounded with silicon tetraboride as the emittance agent and finely divided borosilicate glass containing about 7.5% B2O3 as high temperature binder. The filler cloth strip or tape is cut to proper width and length, inserted into the gap, and fastened with previously applied drops of silicone rubber adhesive.
CSEM-Steel hybrid wiggler/undulator magnetic field studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbach, K.; Hoyer, E.; Marks, S.
1985-06-01
Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 KOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in placemore » of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields. 3 refs., 6 figs.« less
Volumetric CT with sparse detector arrays (and application to Si-strip photon counters).
Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H
2016-01-07
Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8 × higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging.
Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)
NASA Astrophysics Data System (ADS)
Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Fredenberg, E.; Lundqvist, Mats; Siewerdsen, J. H.
2016-01-01
Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8 × higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging.
Volumetric CT with sparse detector arrays (and application to Si-strip photon counters)
Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H
2016-01-01
Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in the volume compared to the constant penalty (both penalties applied at optimal regularization strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the spatially varying penalty, showing a 25% improvement in image uniformity and 1.8 × higher CNR (at matched spatial resolution) compared to the constant penalty. The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in CT imaging. PMID:26611740
Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology.
Borba, Márcia; Miranda, Walter Gomes; Cesar, Paulo Francisco; Griggs, Jason Allan; Bona, Alvaro Della
2013-01-01
The objective of the study was to measure the marginal and internal fit of zirconia-based all-ceramic three-unit fixed partial dentures (FPDs) (Y-TZP - LAVA, 3M-ESPE), using a novel methodology based on micro-computed tomography (micro-CT) technology. Stainless steel models of prepared abutments were fabricated to design FPDs. Ten frameworks were produced with 9 mm2 connector cross-sections using a LAVATM CAD-CAM system. All FPDs were veneered with a compatible porcelain. Each FPD was seated on the original model and scanned using micro-CT. Files were processed using NRecon and CTAn software. Adobe Photoshop and Image J software were used to analyze the cross-sectional images. Five measuring points were selected, as follows: MG - marginal gap; CA - chamfer area; AW - axial wall; AOT - axio-occlusal transition area; OA - occlusal area. Results were statistically analyzed by Kruskall-Wallis and Tukey's post hoc test (α= 0.05). There were significant differences for the gap width between the measurement points evaluated. MG showed the smallest median gap width (42 µm). OA had the highest median gap dimension (125 µm), followed by the AOT point (105 µm). CA and AW gap width values were statistically similar, 66 and 65 µm respectively. Thus, it was possible to conclude that different levels of adaptation were observed within the FPD, at the different measuring points. In addition, the micro-CT technology seems to be a reliable tool to evaluate the fit of dental restorations.
Performance analysis of axial flow pump on gap changing between impeller and guide vane
NASA Astrophysics Data System (ADS)
Wang, W. J.; Liang, Q. H.; Wang, Y.; Yang, Y.; Yin, G.; Shi, X. X.
2013-12-01
In order to study the influence on gap changing of the static and dynamic components in axial flow pump, the axial flow pump model (TJ04-ZL-06) that used in the eastern of south-to-north water diversion project was selected. Steady turbulence field with different gaps was simulated by standard κ-ε turbulence model and double-time stepping methods. Information on the pressure distribution and velocity distribution of impeller surfaces were obtained. Then, calculated results were compared with the test results and analyzed. The results show that the performance of pump is not sensitive with the axial gap width under design conditions and the large flow rate condition. With increasing gap width, it will be improved in low flow rate condition. The attack angle of impeller inlet in small flow rate condition become small and the flow separation phenomenon can be observed in this condition. The axial velocity distribution of impeller outlet is nonlinear and to increase the axial gap is to improve the flow pattern near the hub effectively. The trend of calculating results is identical with test. It will play a guiding role to the axial pump operation and design in south-to-north water diversion project.
Mind the gap - tip leakage vortex in axial turbines
NASA Astrophysics Data System (ADS)
Dreyer, M.; Decaix, J.; Münch-Alligné, C.; Farhat, M.
2014-03-01
The tendency of designing large Kaplan turbines with a continuous increase of output power is bringing to the front the cavitation erosion issue. Due to the flow in the gap between the runner and the discharge ring, axial turbine blades may develop the so called tip leakage vortex (TLV) cavitation with negative consequences. Such vortices may interact strongly with the wake of guide vanes leading to their multiple collapses and rebounds. If the vortex trajectory remains close to the blade tip, these collapses may lead to severe erosion. One is still unable today to predict its occurrence and development in axial turbines with acceptable accuracy. Numerical flow simulations as well as the actual scale-up rules from small to large scales are unreliable. The present work addresses this problematic in a simplified case study representing TLV cavitation to better understand its sensitivity to the gap width. A Naca0009 hydrofoil is used as a generic blade in the test section of EPFL cavitation tunnel. A sliding mounting support allowing an adjustable gap between the blade tip and wall was manufactured. The vortex trajectory is visualized with a high speed camera and appropriate lighting. The three dimensional velocity field induced by the TLV is investigated using stereo particle image velocimetry. We have taken into account the vortex wandering in the image processing to obtain accurate measurements of the vortex properties. The measurements were performed in three planes located downstream of the hydrofoil for different values of the flow velocity, the incidence angle and the gap width. The results clearly reveal a strong influence of the gap width on both trajectory and intensity of the tip leakage vortex.
Detection and Evaluation of Pre-Preg Gaps and Overlaps in Glare Laminates
NASA Astrophysics Data System (ADS)
Nardi, Davide; Abouhamzeh, Morteza; Leonard, Rob; Sinke, Jos
2018-03-01
Gaps and overlaps between pre-preg plies represent common flaws in composite materials that can be introduced easily in an automated fibre placement manufacturing process and are potentially detrimental for the mechanical performances of the final laminates. Whereas gaps and overlaps have been addressed for full composite material, the topic has not been extended to a hybrid composite material such as Glare, a member of the family of Fibre Metal Laminates (FMLs). In this paper/research, the manufacturing, the detection, and the optical evaluation of intraply gaps and overlaps in Glare laminates are investigated. As part of an initial assessment study on the effect of gaps and overlaps on Glare, only the most critical lay-up has been considered. The experimental investigation started with the manufacturing of specimens having gaps and overlaps with different widths, followed by a non-destructive ultrasonic-inspection. An optical evaluation of the gaps and overlaps was performed by means of microscope image analysis of the cross sections of the specimens. The results from the non-destructive evaluations show the effectiveness of the ultrasonic detection of gaps and overlaps both in position, shape, width, and severity. The optical inspections confirm the accuracy of the non-destructive evaluation also adding useful insights about the geometrical features due to the presence of gaps and overlaps in the final Glare laminates. All the results justify the need for a further investigation on the effect of gaps and overlaps on the mechanical properties.
Structural and electronic properties of armchair graphene nanoribbons under uniaxial strain
NASA Astrophysics Data System (ADS)
Qu, Li-Hua; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent
2014-02-01
We theoretically investigate the structures, relative stabilities and electronic properties of the armchair graphene nanoribbons (AGNRs) under uniaxial strain via first-principles calculations. The results show that, although each bond length decreases (increases) with increasing compression (tension) strain especially for the axial bonds a1, a4 and a7, the ribbon geometrical width d increases (decreases) with increasing compression (tension) strain due to the rotation of the zigzag bonds a2, a3, a5 and a6. For each nanoribbon, as expected, the lowest average energy corresponds to the unstrained state and the larger contract (elongate) deformation corresponds to the higher average energy. At a certain strain, the average energy increases with decreasing the ribbon width n. The average energy increases quadratically with the absolute value of the uniaxial strain, showing an elastic behavior. The dependence of the band gap on the strain is sensitive to the ribbon width n which can be classified into three distinct families n=3I, 3I+1 and 3I+2, where I is an integer. The ribbon width leads to oscillatory band gaps due to quantum confinement effect.
NASA Astrophysics Data System (ADS)
Zhang, Xiaojiao; Zhang, Dan; Xie, Fang; Zheng, Xialian; Wang, Haiyan; Long, Mengqiu
2017-07-01
Using the first-principles calculations, we investigate the geometric structure, electronic and magnetic properties of armchair silicene nanoribbons (ASiNRs) doped with aluminum (Al) or phosphorus (P) atoms. Total energy analysis shows that both Al and P atoms are preferentially doping at the edge site of ASiNRs. And the magnetism can be found in both Al and P doped systems. For Al doped ASiNRs, we find that the magnetic moment and band gap are dependent on the ribbon width. While for P doped ASiNRs, the magnetic moment always keeps 1μB and is independent of the ribbon width, meanwhile the band gap oscillates with a period of three with the ribbon width increasing. Our results present a new avenue for band engineering of SiNRs and benefit for the designing of silicone-based nano-spin-devices in nanoelectronics.
NASA Astrophysics Data System (ADS)
Stegmann, Thomas; Franco-Villafañe, John A.; Kuhl, Ulrich; Mortessagne, Fabrice; Seligman, Thomas H.
2017-01-01
Electron transport in small graphene nanoribbons is studied by microwave emulation experiments and tight-binding calculations. In particular, it is investigated under which conditions a transport gap can be observed. Our experiments provide evidence that armchair ribbons of width 3 m +2 with integer m are metallic and otherwise semiconducting, whereas zigzag ribbons are metallic independent of their width. The contact geometry, defining to which atoms at the ribbon edges the source and drain leads are attached, has strong effects on the transport. If leads are attached only to the inner atoms of zigzag edges, broad transport gaps can be observed in all armchair ribbons as well as in rhomboid-shaped zigzag ribbons. All experimental results agree qualitatively with tight-binding calculations using the nonequilibrium Green's function method.
Jörn, Daniela; Kohorst, Philipp; Besdo, Silke; Borchers, Lothar; Stiesch, Meike
2016-01-01
Since bacterial leakage along the implant-abutment interface may be responsible for peri-implant infections, a realistic estimation of the interface gap width during function is important for risk assessment. The purpose of this study was to compare two methods for investigating microgap formation in a loaded dental implant, namely, microcomputed tomography (micro-CT) and three-dimensional (3D) nonlinear finite element analysis (FEA); additionally, stresses to be expected during loading were also evaluated by FEA. An implant-abutment complex was inspected for microgaps between the abutment and implant in a micro-CT scanner under an oblique load of 200 N. A numerical model of the situation was constructed; boundary conditions and external load were defined according to the experiment. The model was refined stepwise until its load-displacement behavior corresponded sufficiently to data from previous load experiments. FEA of the final, validated model was used to determine microgap widths. These were compared with the widths as measured in micro-CT inspection. Finally, stress distributions were evaluated in selected regions. No microgaps wider than 13 μm could be detected by micro-CT for the loaded implant. FEA revealed gap widths up to 10 μm between the implant and abutment at the side of load application. Furthermore, FEA predicted plastic deformation in a limited area at the implant collar. FEA proved to be an adequate method for studying microgap formation in dental implant-abutment complexes. FEA is not limited in gap width resolution as are radiologic techniques and can also provide insight into stress distributions within the loaded complex.
NASA Technical Reports Server (NTRS)
Murray, Harry E.; Erwin, Mary A.
1945-01-01
The results of a theoretical analysis of the hinge-moment characteristics of various sealed-internal-balance arrangements for control surfaces are presented. The analysis considered overhands sealed to various types of wing structure by flexible seals spanning gaps of various widths or sealed to the wing structure by a flexible system of linked plates. Leakage was not considered; the seal was assumed to extend the full spanwise length of the control surface. The effect of the developed width of the flexible seal and of the geometry of the structure to which the seal was anchored was investigated, as well as the effect of the gap width that is sealed. The results of the investigation indicated that the most nearly linear control-surface hinge-moment characteristics can probably be obtained from a flexible seal over a narrow gap (about 0.1 of the overhang chord), which is so installed that the motion of the seal is restricted to a region behind the point of attachment of the seal to the wing structure. Control-surface hinge moments that tend to be high at large deflections and low or overbalanced at small deflections will result if a very narrow seal is used.
Gebisa, Aboma Wagari; Lemu, Hirpa G
2018-03-27
Fused-deposition modeling (FDM), one of the additive manufacturing (AM) technologies, is an advanced digital manufacturing technique that produces parts by heating, extruding and depositing filaments of thermoplastic polymers. The properties of FDM-produced parts apparently depend on the processing parameters. These processing parameters have conflicting advantages that need to be investigated. This article focuses on an investigation into the effect of these parameters on the flexural properties of FDM-produced parts. The investigation is carried out on high-performance ULTEM 9085 material, as this material is relatively new and has potential application in the aerospace, military and automotive industries. Five parameters: air gap, raster width, raster angle, contour number, and contour width, with a full factorial design of the experiment, are considered for the investigation. From the investigation, it is revealed that raster angle and raster width have the greatest effect on the flexural properties of the material. The optimal levels of the process parameters achieved are: air gap of 0.000 mm, raster width of 0.7814 mm, raster angle of 0°, contour number of 5, and contour width of 0.7814 mm, leading to a flexural strength of 127 MPa, a flexural modulus of 2400 MPa, and 0.081 flexural strain.
Gebisa, Aboma Wagari
2018-01-01
Fused-deposition modeling (FDM), one of the additive manufacturing (AM) technologies, is an advanced digital manufacturing technique that produces parts by heating, extruding and depositing filaments of thermoplastic polymers. The properties of FDM-produced parts apparently depend on the processing parameters. These processing parameters have conflicting advantages that need to be investigated. This article focuses on an investigation into the effect of these parameters on the flexural properties of FDM-produced parts. The investigation is carried out on high-performance ULTEM 9085 material, as this material is relatively new and has potential application in the aerospace, military and automotive industries. Five parameters: air gap, raster width, raster angle, contour number, and contour width, with a full factorial design of the experiment, are considered for the investigation. From the investigation, it is revealed that raster angle and raster width have the greatest effect on the flexural properties of the material. The optimal levels of the process parameters achieved are: air gap of 0.000 mm, raster width of 0.7814 mm, raster angle of 0°, contour number of 5, and contour width of 0.7814 mm, leading to a flexural strength of 127 MPa, a flexural modulus of 2400 MPa, and 0.081 flexural strain. PMID:29584674
A Finite Element Analysis of a Carbon Fiber Composite Micro Air Vehicle Wing
2012-03-22
3. Errors in the manufacturing of the laminate resulting in errors in ply orientation. Each of these was examined in order to determine a root ...material properties. 4.2.4. Vein Width The widths of the individual veins of the manufactured wing were varied linearly from root to tip of the...wing. In the sizing of the engineered wing, the width of the veins were varied linearly from the root of the vein to the tip. For manufacturing
NASA Astrophysics Data System (ADS)
Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Liakhov, Yuriy F.; Tomchuk, Anastasiya V.; Haftel, Michael; Pinchuk, Anatoliy O.
2017-10-01
Effects of plasmonic coupling between metal nanoparticles and thin metal films separated by thin dielectric film-spacers have been studied by means of light extinction in three-layer planar Au NPs monolayer/dielectric (shellac) film/Al film nanostructure. The influence of coupling on the spectral characteristics of the Au NPs SPR extinction peak has been analyzed with spacer thickness, varied from 3 to 200 nm. The main observed features are a strong red shift (160 nm), and non-monotonical behavior of the magnitude and width of Au NPs SPR, as the spacer thickness decreased. The appearance of an intensive gap mode peak was observed at a spacer thickness smaller than approximately 30 nm, caused by the hybridization of the Au NPs SPR mode and gap mode in the presence of the Al film. Additionally, the appreciable enhancement (5.6 times) of light extinction by the Au NPs monolayer in the presence of Al film has been observed. A certain value of dielectric spacer thickness (70 nm) exists at which such enhancement is maximal.
Electronic thermometry in tunable tunnel junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maksymovych, Petro
A tunable tunnel junction thermometry circuit includes a variable width tunnel junction between a test object and a probe. The junction width is varied and a change in thermovoltage across the junction with respect to the change in distance across the junction is determined. Also, a change in biased current with respect to a change in distance across the junction is determined. A temperature gradient across the junction is determined based on a mathematical relationship between the temperature gradient, the change in thermovoltage with respect to distance and the change in biased current with respect to distance. Thermovoltage may bemore » measured by nullifying a thermoelectric tunneling current with an applied voltage supply level. A piezoelectric actuator may modulate the probe, and thus the junction width, to vary thermovoltage and biased current across the junction. Lock-in amplifiers measure the derivatives of the thermovoltage and biased current modulated by varying junction width.« less
NASA Astrophysics Data System (ADS)
Du, Zhiyuan; Hu, Bin; Cyril, Planchon; Liu, Juan; Wang, Yongtian
2017-10-01
Local surface plasmonic resonance (LSPR) produced by metallic nano-structures is often sensitive to the refractive index of the surrounding media and can be applied for sensing. However, it often suffers from large line width caused by large plasmonic radiative damping, especially in the infrared (IR) frequencies, which reduces the sensitivity. Here we propose a hybrid structure consists of a graphene stripe and a gold gap-ring at short-IR frequencies (1-3 µm). Due to the low loss and high plasmonic confinement of graphene, LSPR line width of 6 nm is obtained. In addition, due to the strong coupling of the gold gap-ring with graphene stripe, the intensity of graphene LSPR is enhanced by 100 times. Simulation results show that the sensitivity of the sensor is ~1000 nm/RIU (refractive index unit) and the figure of merit (FoM) can reach up to 383.
Fugolin, Ana Paula Piovezan; Correr-Sobrinho, Lourenço; Correr, Américo Bortolazzo; Sinhoreti, Mário Alexandre Coelho; Guiraldo, Ricardo Danil; Consani, Simonides
2016-01-01
The purpose of this study was to investigate the influence of the irradiance emitted by a light-curing unit on microhardness, degree of conversion (DC), and gaps resulting from shrinkage of 2 dental composite resins. Cylinders of nanofilled and microhybrid composites were fabricated and light cured. After 24 hours, the tops and bottoms of the specimens were evaluated via indentation testing and Fourier transform infrared spectroscopy to determine Knoop hardness number (KHN) and DC, respectively. Gap width (representing polymerization shrinkage) was measured under a scanning electron microscope. The nanofilled composite specimens presented significantly greater KHNs than did the microhybrid specimens (P < 0.05). The microhybrid composite resin exhibited significantly greater DC and gap width than the nanofilled material (P < 0.05). Irradiance had a mostly material-dependent influence on the hardness and DC, but not the polymerization shrinkage, of composite resins.
Strongly-Refractive One-Dimensional Photonic Crystal Prisms
NASA Technical Reports Server (NTRS)
Ting, David Z. (Inventor)
2004-01-01
One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.
Triode for Magnetic Flux Quanta.
Vlasko-Vlasov, V K; Colauto, F; Benseman, T; Rosenmann, D; Kwok, W-K
2016-11-15
In an electronic triode, the electron current emanating from the cathode is regulated by the electric potential on a grid between the cathode and the anode. Here we demonstrate a triode for single quantum magnetic field carriers, where the flow of individual magnetic vortices in a superconducting film is regulated by the magnetic potential of striae of soft magnetic strips deposited on the film surface. By rotating an applied in-plane field, the magnetic strip potential can be varied due to changes in the magnetic charges at the strip edges, allowing accelerated or retarded motion of magnetic vortices inside the superconductor. Scaling down our design and reducing the gap width between the magnetic stripes will enable controlled manipulation of individual vortices and creation of single flux quantum circuitry for novel high-speed low-power superconducting electronics.
Plasmonic resonance in planer split ring trimer
NASA Astrophysics Data System (ADS)
Xu, Haiqing; Li, Hongjian; Xiao, Gang
2014-12-01
We have numerically investigated the plasmon properties supported by asymmetry planer split ring trimer structures. We investigate the modification of gap distance, thickness and gap width on the transmission properties of the weak coupling model (g is larger than or equal to 120 nm, d=48 nm, t is larger than 30 nm, w1=200 nm, and w2=40 nm), as the coupling becomes weaker, the first peak sharply attenuates, the second peak slightly decreases, the transmission dip in the near-infrared region becomes shallow, and they are very sensitive to the gap distance between two small split ring pairs and the thickness and gap width of the big split ring. We also study the change of gap distance on the strong coupling model (g is smaller than or equal to 40 nm, d=24 nm, t=10 nm, w1=80 nm, and w2=20 nm), there exists a new Fano resonance peak, the strongest peak in visible region becomes symmetry, while the peak in near-infrared region becomes asymmetry. The resonator design strategy opens up a rich pathway for the implementation of optimized optical properties for specific applications.
Haralur, Satheesh B; Hamdi, Osama A; Al-Shahrani, Abdulaziz A; Alhasaniah, Sultan
2017-01-01
To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups ( n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. The dry cellulose ring liners provided better marginal adaptation in comparison to prewet cellulose ring liners. Accurate cuspal height was obtained with shorter ring liner in comparison to full-length cellulose ring liners.
Haralur, Satheesh B.; Hamdi, Osama A.; Al-Shahrani, Abdulaziz A.; Alhasaniah, Sultan
2017-01-01
Aim: To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. Materials and Methods: The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups (n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. Results: The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. Conclusion: The dry cellulose ring liners provided better marginal adaptation in comparison to prewet cellulose ring liners. Accurate cuspal height was obtained with shorter ring liner in comparison to full-length cellulose ring liners. PMID:28316950
Pre-test CFD Calculations for a Bypass Flow Standard Problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich Johnson
The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacentmore » graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available.« less
Nelson, Tammie R; Prezhdo, Oleg V
2013-03-06
Graphane and its derivatives are stable and extremely thin, wide band gap semiconductors that promise to replace conventional semiconductors in electronics, catalysis, and energy applications, greatly reducing device size and power consumption. In order to be useful, band-gap excitations in these materials should be long lived and nonradiative energy losses to heat should be slow. We use state-of-the-art nonadiabatic molecular dynamics combined with time-dependent density functional theory in order to determine the nonradiative lifetime and radiative line width of the lowest energy singlet excitations in pure and oxidized graphanes. We predict that pure graphane has a very long nonradiative decay time, on the order of 100 ns, while epoxy- and hydroxy-graphanes lose electronic excitation energy to heat 10-20 times faster. The luminescence line width is 1.5 times larger in pristine graphane compared to its oxidized forms, and at room temperature, it is on the order of 50 meV. Hydroxylation lowers graphane's band gap, while epoxidation increases the gap. The nonradiative decay and luminescence line width of pure graphane are governed by electron coupling to the 1200 cm(-1) vibrational mode. In the oxidized forms of graphane, the electronic excitations couple to a broad range of vibrational modes, rationalizing the more rapid nonradiative decay in these systems. The slow electron-phonon energy losses in graphane compared to other graphene derivatives, such as carbon nanotubes and nanoribbons, indicate that graphanes are excellent candidates for semiconductor applications.
Klipstein, P C
2018-07-11
For 2D topological insulators with strong electron-hole hybridization, such as HgTe/CdTe quantum wells, the widely used 4 × 4 k · p Hamiltonian based on the first electron and heavy hole sub-bands yields an equal number of physical and spurious solutions, for both the bulk states and the edge states. For symmetric bands and zero wave vector parallel to the sample edge, the mid-gap bulk solutions are identical to the edge solutions. In all cases, the physical edge solution is exponentially localized to the boundary and has been shown previously to satisfy standard boundary conditions for the wave function and its derivative, even in the limit of an infinite wall potential. The same treatment is now extended to the case of narrow sample widths, where for each spin direction, a gap appears in the edge state dispersions. For widths greater than 200 nm, this gap is less than half of the value reported for open boundary conditions, which are called into question because they include a spurious wave function component. The gap in the edge state dispersions is also calculated for weakly hybridized quantum wells such as InAs/GaSb/AlSb. In contrast to the strongly hybridized case, the edge states at the zone center only have pure exponential character when the bands are symmetric and when the sample has certain characteristic width values.
Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang
2014-12-01
Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.
Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako
2012-01-01
The tolerance of the Backup diaphragm (Backup JAW) setting in Elekta linac was specified as 2 mm according to the AAPM TG-142 report. However, the tolerance and the quality assurance procedure for volumetric modulated arc therapy (VMAT) was not provided. This paper describes positional accuracy and quality assurance procedure of the Backup JAWs required for VMAT. It was found that a gap-width error of the Backup JAW by a sliding window test needed to be less than 1.5 mm for prostate VMAT delivery. It was also confirmed that the gap-widths had been maintained with an error of 0.2 mm during the past one year.
Easterling, W.E.; Brandle, J.R.; Hays, C.J.; Guo, Q.; Guertin, D.S.
2001-01-01
The expansion and contraction of marginal cropland in the Great Plains often involves small forested strips of land that provide important ecological benefits. The effect of human disturbance on these forests is not well known. Because of their unique structure such forests are not well-represented by forest gap models. In this paper, the development, testing and application of a new model known as Seedscape are described. Seedscape is a modification of the JABOWA-II model, and it uses a spatially-explicit landscape to resolve small-scale features of highly fragmented forests in the eastern Great Plains. It was tested and evaluated with observations from two sites, one in Nebraska and a second in eastern Iowa. Seedscape realistically simulates succession at the Nebraska site, but is less successful at the Iowa site. Seedscape was also applied to the Nebraska site to simulate the effect that varying forest corridor widths, in response to the presumed expansion/contraction of adjacent agricultural land, has on succession properties. Results suggest that small differences in widths have negligible effects on forest composition, but large differences in widths may cause statistically-significant changes in the relative importance of some species. We assert that long-term ecological change in human dominated landscapes is not well understood, in part, because of inadequate modeling techniques. Seedscape provides a much-needed tool for assessing the ecological implications of land use change in forests of predominately agricultural landscapes.
Evolution of the Shape of Detached GeSi Crystals in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2013-01-01
A series of GeSi crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. An objective of these experiments is to understand the mechanisms of detached Bridgman growth, a process in which a gap exists between the growing semiconductor crystal and the crucible wall. Crystals grown without wall contact have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus.
ERIC Educational Resources Information Center
Binder, Philippe; Cunnyngham, Ian
2012-01-01
In a recent note in this journal, Gluck presents a beautiful demonstration of the standing wave generated by a strip of material with linearly varying width (a trapezoid). As expected, the resulting wave envelope (and its shadow) showed a varying wavelength--smaller as the strip width gets larger.
Tissue effects of Ho:YAG laser with varying fluences and pulse widths
NASA Astrophysics Data System (ADS)
Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.
1994-02-01
We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.
Comparing fixed and variable-width Gaussian networks.
Kůrková, Věra; Kainen, Paul C
2014-09-01
The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jianming, Yuan; Ying, Tang; Feng, Pan; Weixing, Xu
2016-12-01
This study aims to compare the marginal accuracy of single crowns fabricated using self-curing resin, Luxatemp, and computer aided design/computer aided manufacturing (CAD/CAM) methods in clinical application. A total of 30 working dies, which were obtained from 30 clinical teeth prepared with full crown as standard, were created and made into 30 self-curing resin, Luxatemp, and CAD/CAM single crowns. The restorations were seated on the working dies, and stereomicroscope was used to observe and measure the thickness of reference points. One-way analysis of variance, which was performed using SPSS 19.0 software package, compared the marginal gap widths of self-curing resin, Luxatemp, and CAD/CAM provisional crowns. The mean marginal gap widths of the fabricated self-curing resin, Luxatemp, and CAD/CAM were (179.06±33.24), (88.83±9.56), and (43.61±7.27) μm, respectively. A significant difference was observed among the three provisional crowns (P<0.05). The marginal gap width of CAD/CAM provisional crown was lower than that of the self-curing resin and Luxatemp. Thus, the CAD/CAM provisional crown offers a better remediation effect in clinical application.
Dark gap solitons in exciton-polariton condensates in a periodic potential.
Cheng, Szu-Cheng; Chen, Ting-Wei
2018-03-01
We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.
Dark gap solitons in exciton-polariton condensates in a periodic potential
NASA Astrophysics Data System (ADS)
Cheng, Szu-Cheng; Chen, Ting-Wei
2018-03-01
We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabler, S.; Rack, T.; Nelson, K.
2010-10-15
Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 {mu}m are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system beingmore » 4 {mu}m in absorption mode and {approx}14 {mu}m in phase contrast mode (z{sub 2}=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.« less
NASA Astrophysics Data System (ADS)
Wen, Yan-Ni; Xia, Ming-Gang; Zhang, Sheng-Li
2016-05-01
By using the VASP, we studied the magnetic and electronic properties of the monolayer lateral hetero-junction WS2-MoS2-nanoribbons (WS2-MoS2-NRs). Our results show that the NRs' edge chirality and width affect significantly its magnetic and electronic properties. The monolayer lateral hetero-junction ZZ-WS2-MoS2-NRs(ZZ: zigzag) exhibitmetallic behavior and have considerable magnetic moment. Their magnetic moments decrease in the order of Nz = 2, 6 and 4 (the width of NRs). While, the magnetic moment decreases with the increased rz (the number of the Mo-S chains, rz ≠ 0 and rz ≠ Nz) at the same width Nz. The NA-AC-WS2-NR (AC: armchair) and NA-AC-WS2-MoS2-NR-1 (the number of the Mo-S chain is 1) show metallic behavior when NA = 3 (the width of NRs). The other monolayer lateral hetero-junction AC-WS2-MoS2-NRs remain the nonmagnetic and semiconductingbehavior as bulk. But they are indirect band-gap except for the NA = 3, rA = 2 (the number of the Mo-S chains) and NA = 7, rA = 0 when NA < 9. However they are direct band-gap when NA ≥ 9. Their lowest and highest band gaps are 0.150 eV and 0.581 eV, respectively. These unique magnetic and electronic properties will provide guidanceon the WS2-MoS2 hetero-junction application in nanodevice.
Optical waveguide device with an adiabatically-varying width
Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM
2011-05-10
Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.
Chiral zero energy modes in two-dimensional disordered Dirac semimetals
NASA Astrophysics Data System (ADS)
Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen
2018-04-01
The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.
Optical response of bowtie antennas
NASA Astrophysics Data System (ADS)
Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao
2010-10-01
Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.
Sprouse, Kenneth M
2014-11-25
A pump system includes a pump that includes a first belt and a second belt that are spaced apart from each other to provide generally straight sides of a passage there between. There is an inlet at one end of the passage and an outlet at an opposite end of the passage, with a passage length that extends between the inlet and the outlet. The passage defines a gap distance in a width direction between the straight sides at the passage inlet. A hopper includes an interior space that terminates at a mouth at the passage inlet. At least one screw is located within the interior space of the hopper and includes a screw diameter in the width direction that is less than or equal to the gap distance.
Sensory and short-term memory formations observed in a Ag2S gap-type atomic switch
NASA Astrophysics Data System (ADS)
Ohno, Takeo; Hasegawa, Tsuyoshi; Nayak, Alpana; Tsuruoka, Tohru; Gimzewski, James K.; Aono, Masakazu
2011-11-01
Memorization caused by the change in conductance in a Ag2S gap-type atomic switch was investigated as a function of the amplitude and width of input voltage pulses (Vin). The conductance changed little for the first few Vin, but the information of the input was stored as a redistribution of Ag-ions in the Ag2S, indicating the formation of sensory memory. After a certain number of Vin, the conductance increased abruptly followed by a gradual decrease, indicating the formation of short-term memory (STM). We found that the probability of STM formation depends strongly on the amplitude and width of Vin, which resembles the learning behavior of the human brain.
Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling
NASA Astrophysics Data System (ADS)
Melvin, Thomas
2018-02-01
Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.
Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures
Warmuth, Franziska; Körner, Carolin
2015-01-01
The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented. PMID:28793713
Coulomb gap triptych in a periodic array of metal nanocrystals.
Chen, Tianran; Skinner, Brian; Shklovskii, B I
2012-09-21
The Coulomb gap in the single-particle density of states (DOS) is a universal consequence of electron-electron interaction in disordered systems with localized electron states. Here we show that in arrays of monodisperse metallic nanocrystals, there is not one but three identical adjacent Coulomb gaps, which together form a structure that we call a "Coulomb gap triptych." We calculate the DOS and the conductivity in two- and three-dimensional arrays using a computer simulation. Unlike in the conventional Coulomb glass models, in nanocrystal arrays the DOS has a fixed width in the limit of large disorder. The Coulomb gap triptych can be studied via tunneling experiments.
Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.
Warmuth, Franziska; Körner, Carolin
2015-12-02
The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.
Eddy current testing probe with dual half-cylindrical coils
NASA Astrophysics Data System (ADS)
Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong
2000-02-01
We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.
Triode for Magnetic Flux Quanta
Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; ...
2016-11-15
In an electronic triode, the electron current emanating from the cathode is regulated by the electric potential on a grid between the cathode and the anode. Here we demonstrate a triode for single quantum magnetic field carriers, where the flow of individual magnetic vortices in a superconducting film is regulated by the magnetic potential of striae of soft magnetic strips deposited on the film surface. By rotating an applied in-plane field, the magnetic strip potential can be varied due to changes in the magnetic charges at the strip edges, allowing accelerated or retarded motion of magnetic vortices inside the superconductor.more » Scaling down our design and reducing the gap width between the magnetic stripes will enable controlled manipulation of individual vortices and creation of single flux quantum circuitry for novel high-speed low-power superconducting electronics.« less
Cai, Shuiming; Hao, Junjun; Liu, Zengrong
2011-06-01
This paper studies the synchronization of coupled chaotic systems with time-varying delays in the presence of parameter mismatches by means of periodically intermittent control. Some novel and useful quasisynchronization criteria are obtained by using the methods which are different from the techniques employed in the existing works, and the derived results are less conservative. Especially, a strong constraint on the control width that the control width should be larger than the time delay imposed by the current references is released in this paper. Moreover, our results show that the synchronization criteria depend on the ratio of control width to control period, but not the control width or the control period. Finally, some numerical simulations are given to show the effectiveness of the theoretical results.
Sound absorption by clamped poroelastic plates.
Aygun, H; Attenborough, K
2008-09-01
Measurements and predictions have been made of the absorption coefficient and the surface acoustic impedance of poroelastic plates clamped in a large impedance tube and separated from the rigid termination by an air gap. The measured and predicted absorption coefficient and surface impedance spectra exhibit low frequency peaks. The peak frequencies observed in the absorption coefficient are close to those predicted and measured in the deflection spectra of the clamped poroelastic plates. The influences of the rigidity of the clamping conditions and the width of the air gap have been investigated. Both influences are found to be important. Increasing the rigidity of clamping reduces the low frequency absorption peaks compared with those measured for simply supported plates or plates in an intermediate clamping condition. Results for a closed cell foam plate and for two open cell foam plates made from recycled materials are presented. For identical clamping conditions and width of air gap, the results for the different materials differ as a consequence mainly of their different elasticity, thickness, and cell structure.
Analytic theory for the selection of Saffman-Taylor fingers in the presence of thin film effects
NASA Technical Reports Server (NTRS)
Tanveer, S.
1990-01-01
The present analytic theory for the width selection of Saffman-Taylor (1958) fingers in the presence of the thin film effect establishes that, in the limit of a small capillary number and a small gap-to-width ratio, fingers whose relative width is smaller than 1/2 are possible. It is established that a fully nonlinear analysis is required for this problem in order to obtain even the correct (and rather preliminary) scaling law. The way in which the selection rule for arbitrary small capillary number is obtainable is also presented.
1943-06-01
which includes effectelof boundary layer at the tunnel wall and of gaps at the ends of the aileron as well as the effects of any cross flow over the...the gap width cauaed a d? urease in the slope except at the highest speed tested where an increase in gap resulted in an increase in the slope. Figure 13
From 1D to 3D: Tunable Sub-10 nm Gaps in Large Area Devices.
Zhou, Ziwei; Zhao, Zhiyuan; Yu, Ye; Ai, Bin; Möhwald, Helmuth; Chiechi, Ryan C; Yang, Joel K W; Zhang, Gang
2016-04-20
Tunable sub-10 nm 1D nanogaps are fabricated based on nanoskiving. The electric field in different sized nanogaps is investigated theoretically and experimentally, yielding nonmonotonic dependence and an optimized gap-width (5 nm). 2D nanogap arrays are fabricated to pack denser gaps combining surface patterning techniques. Innovatively, 3D multistory nanogaps are built via a stacking procedure, processing higher integration, and much improved electric field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2012-03-22
location is varied from the aft end of the detonation tube to the middle of the detonation tube while the crossover width is varied from 2.5 in to 0.5...the other end where the tube is connected to a source of fuel, oxidizer, and ignition .7 The engine cycle is divided into three equal phases: fill...location and width of the crossover duct for hydrogen, ethylene and an n-alkane. The crossover location is varied from the aft end of the
Heintze, Siegward D; Forjanic, Monika; Roulet, François-Jean
2007-08-01
Using an optical sensor, to automatically evaluate the marginal seal of restorations placed with 21 adhesive systems of all four adhesive categories in cylindrical cavities of bovine dentin applying different outcome variables, and to evaluate their discriminatory power. Twenty-one adhesive systems were evaluated: three 3-step etch-and-rinse systems, three 2-step etch-and-rinse systems, five 2-step self-etching systems, and ten 1-step self-etching systems. All adhesives were applied in cylindrical cavities in bovine dentin together with Tetric Ceram (n=8). In the control group, no adhesive system was used. After 24 h of storage in water at 37 degrees C, the surface was polished with 4000-grit SiC paper, and epoxy resin replicas were produced. An optical sensor (FRT MicroProf) created 100 profiles of the restoration margin, and an algorithm detected gaps and calculated their depths and widths. The following evaluation criteria were used: percentage of specimens without gaps, the percentage of gap-free profiles in relation to all profiles per specimen, mean gap width, mean gap depth, largest gap, modified marginal integrity index MI. The statistical analysis was carried out on log-transformed data for all variables with ANOVA and post-hoc Tukey's test for multiple comparisons. The correlation between the variables was tested with regression analysis, and the pooled data accordingto the four adhesive categories were compared by applying the Mann-Whitney nonparametric test (p < 0.05). For all the variables that characterized the marginal adaptation, there was a great variation from material to material. In general, the etch-and-rinse adhesive systems demonstrated the best marginal adaptation, followed by the 2-step self-etching and the 1-step self-etching adhesives; the latter showed the highest variability in test results between materials and within the same material. The only exception to this rule was Xeno IV, which showed a marginal adaptation that was comparable to that of the best 3-step etch-and-rinse systems. Except for the variables "largest gap" and "mean gap depth", all the other variables had a similar ability to discriminate between materials. Pooled data according to the four adhesive categories revealed statistically significant differences between the one-step self-etching systems and the other three systems as well as between two-step self-etching and three-step etch-and-rinse systems. With one exception, the one-step self-etching systems yielded the poorest marginal adaptation results and the highest variability between materials and within the same material. Except for the variable "largest gap", the percentage of continuous margin, mean gap width, mean gap depth, and the marginal integrity index MI were closely related to one another and showed--with the exception of "mean gap depth"--similar discriminatory power.
Ludewigt, Bernhard; Bercovitz, John; Nyman, Mark; Chu, William
1995-01-01
A method is disclosed for selecting the minimum width of individual leaves of a multileaf adjustable collimator having sawtooth top and bottom surfaces between adjacent leaves of a first stack of leaves and sawtooth end edges which are capable of intermeshing with the corresponding sawtooth end edges of leaves in a second stack of leaves of the collimator. The minimum width of individual leaves in the collimator, each having a sawtooth configuration in the surface facing another leaf in the same stack and a sawtooth end edge, is selected to comprise the sum of the penetration depth or range of the particular type of radiation comprising the beam in the particular material used for forming the leaf; plus the total path length across all the air gaps in the area of the joint at the edges between two leaves defined between lines drawn across the peaks of adjacent sawtooth edges; plus at least one half of the length or period of a single sawtooth. To accomplish this, in accordance with the method of the invention, the penetration depth of the particular type of radiation in the particular material to be used for the collimator leaf is first measured. Then the distance or gap between adjoining or abutting leaves is selected, and the ratio of this distance to the height of the sawteeth is selected. Finally the number of air gaps through which the radiation will pass between sawteeth is determined by selecting the number of sawteeth to be formed in the joint. The measurement and/or selection of these parameters will permit one to determine the minimum width of the leaf which is required to prevent passage of the beam through the sawtooth joint.
Evaluation of ion collection area in Faraday probes.
Brown, Daniel L; Gallimore, Alec D
2010-06-01
A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.
Histology of 8 atypical femoral fractures: remodeling but no healing.
Schilcher, Jörg; Sandberg, Olof; Isaksson, Hanna; Aspenberg, Per
2014-06-01
The pathophysiology behind bisphosphonate-associated atypical femoral fractures remains unclear. Histological findings at the fracture site itself may provide clues. Between 2008 and 2013, we collected bone biopsies including the fracture line from 4 complete and 4 incomplete atypical femoral fractures. 7 female patients reported continuous bisphosphonate use for 10 years on average. 1 patient was a man who was not using bisphosphonates. Dual-energy X-ray absorptiometry of the hip and spine showed no osteoporosis in 6 cases. The bone biopsies were evaluated by micro-computed tomography, infrared spectroscopy, and qualitative histology. Incomplete fractures involved the whole cortical thickness and showed a continuous gap with a mean width of 180 µm. The gap contained amorphous material and was devoid of living cells. In contrast, the adjacent bone contained living cells, including active osteoclasts. The fracture surfaces sometimes consisted of woven bone, which may have formed in localized defects caused by surface fragmentation or resorption. Atypical femoral fractures show signs of attempted healing at the fracture site. The narrow width of the fracture gap and its necrotic contents are compatible with the idea that micromotion prevents healing because it leads to strains within the fracture gap that preclude cell survival.
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Kipp, H. W.
1974-01-01
Heat transfer data measured in gaps typical of those under consideration for joints in space shuttle reusable surface insulation protection systems have been assimilated, analyzed and correlated. The data were obtained in four NASA facilities. Several types of gaps were investigated with emphasis on simple butt joints. Gap widths ranged from 0.07 to 0.7 cm and depths ranged from 1 to 6 cm. Laminar, transitional and turbulent boundary layer flows over the gap opening were investigated. Three-dimensional heating variations were observed within gaps in the absence of external flow pressure gradients. Heat transfer correlation equations were obtained for several of the tests. Thermal protection system performance with and without gaps was compared for a representative shuttle entry trajectory.
NASA Astrophysics Data System (ADS)
Sargsyan, A.; Amiryan, A.; Cartaleva, S.; Sarkisyan, D.
2017-07-01
A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0-1 atm, the NC thickness is smoothly varied in the range L = 140-1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.
Fechler, K; Holtkamp, D; Neusel, G; Sanguinetti-Scheck, J I; Budelli, R; von der Emde, G
2012-12-01
In a food-rewarded two-alternative forced-choice procedure, it was determined how well the weakly electric elephantnose fish Gnathonemus petersii can sense gaps between two objects, some of which were placed in front of complex backgrounds. The results show that at close distances, G. petersii is able to detect gaps between two small metal cubes (2 cm × 2 cm × 2 cm) down to a width of c. 1·5 mm. When larger objects (3 cm × 3 cm × 3 cm) were used, gaps with a width of 2-3 mm could still be detected. Discrimination performance was better (c. 1 mm gap size) when the objects were placed in front of a moving background consisting of plastic stripes or plant leaves, indicating that movement in the environment plays an important role for object identification. In addition, the smallest gap size that could be detected at increasing distances was determined. A linear relationship between object distance and gap size existed. Minimal detectable gap sizes increased from c. 1·5 mm at a distance of 1 cm, to 20 mm at a distance of 7 cm. Measurements and simulations of the electric stimuli occurring during gap detection revealed that the electric images of two close objects influence each other and superimpose. A large gap of 20 mm between two objects induced two clearly separated peaks in the electric image, while a 2 mm gap caused just a slight indentation in the image. Therefore, the fusion of electric images limits spatial resolution during active electrolocation. Relative movements either between the fish and the objects or between object and background might improve spatial resolution by accentuating the fine details of the electric images. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Stabilizing detached Bridgman melt crystal growth: Model-based nonlinear feedback control
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.
2012-12-01
The dynamics and operability limits of a nonlinear-proportional-integral controller designed to stabilize detached vertical Bridgman crystal growth are studied. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. The controller consists of a model-based nonlinear component coupled with a standard proportional-integral controller. The nonlinear component is based on a capillary model of shape stability. Perturbations to gap width, pressure difference, wetting angle, and growth angle are studied under both shape stable and shape unstable conditions. The nonlinear-PI controller allows a wider operating range of gain than a standard PI controller used alone, is easier to tune, and eliminates solution multiplicity from closed-loop operation.
Magnetic Nature of Light Transmission through a 5-nm Gap.
Yang, Hyosim; Kim, Dai-Sik; Kim, Richard H Joon-Yeon; Ahn, Jae Sung; Kang, Taehee; Jeong, Jeeyoon; Lee, Dukhyung
2018-02-09
Slot antennas have been exploited as important building blocks of optical magnetism because their radiations are invoked by the magnetic fields along the axes, as vectorial Babinet principle predicts. However, optical magnetism of a few-nanometer-width slit, for which fascinating applications are found due to the colossal field enhancement but Babinet principle fails due to the nonnegligible thickness, has not been investigated. In this paper, we demonstrated that the magnetic field plays a dominant role in light transmission through a 5-nm slit on a 150-nm-thick gold film. The 5-nm slit was fabricated by atomic layer lithography, and the transmission was investigated for various incident angles by experiment and simulation at 785-nm wavelength. We found that, due to the deep subwavelength gap width, the transmission has the same incident angle dependence as the tangential magnetic field on the metal surface and this magnetic nature of a nanogap holds up to ~100-nm width. Our analysis establishes conditions for nanogap optical magnetism and suggests new possibilities in realizing magnetic-field-driven optical nonlinearities.
Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model.
Diercke, K; Lussi, A; Kersten, T; Seemann, R
2009-12-01
The study conducted in a bacterial-based in vitro caries model aimed to determine whether typical inner secondary caries lesions can be detected at cavity walls of restorations with selected gap widths when the development of outer lesions is inhibited. Sixty bovine tooth specimens were randomly assigned to the following groups: test group 50 (TG50; gap, 50 microm), test group 100 (TG100; gap, 100 microm), test group 250 (TG250; gap, 250 microm) and a control group (CG; gap, 250 microm). The outer tooth surface of the test group specimens was covered with an acid-resistant varnish to inhibit the development of an outer caries lesion. After incubation in the caries model, the area of demineralization at the cavity wall was determined by confocal laser scanning microscopy. All test group specimens demonstrated only wall lesions. The CG specimens developed outer and wall lesions. The TG250 specimens showed significantly less wall lesion area compared to the CG (p < 0.05). In the test groups, a statistically significant increase (p < 0.05) in lesion area could be detected in enamel between TG50 and TG250 and in dentine between TG50 and TG100. In conclusion, the inner wall lesions of secondary caries can develop without the presence of outer lesions and therefore can be regarded as an entity on their own. The extent of independently developed wall lesions increased with gap width in the present setting.
William Lakel; Wallace Aust; M. Aust; Chad Bolding; C. Dolloff; Patrick Keyser; Robert Feldt
2010-01-01
Recommended widths for streamside management zones (SMZs) for sediment protection vary. The objectives of this study were to compare the effects of SMZ widths and thinning levels on sediment moving through SMZs. Four SMZ treatments were installed within 16 harvested watersheds where intermittent streams graded into small perennial streams. Sites were clearcut,...
NASA Astrophysics Data System (ADS)
Sewell, Tanzania S.; Piacsek, Kelly L.; Heckel, Beth A.; Sabol, John M.
2011-03-01
The current imaging standard for diagnosis and monitoring of knee osteoarthritis (OA) is projection radiography. However radiographs may be insensitive to markers of early disease such as osteophytes and joint space narrowing (JSN). Relative to standard radiography, digital X-ray tomosynthesis (DTS) may provide improved visualization of the markers of knee OA without the interference of superimposed anatomy. DTS utilizes a series of low-dose projection images over an arc of +/-20 degrees to reconstruct tomographic images parallel to the detector. We propose that DTS can increase accuracy and precision in JSN quantification. The geometric accuracy of DTS was characterized by quantifying joint space width (JSW) as a function of knee flexion and position using physical and anthropomorphic phantoms. Using a commercially available digital X-ray system, projection and DTS images were acquired for a Lucite rod phantom with known gaps at various source-object-distances, and angles of flexion. Gap width, representative of JSW, was measured using a validated algorithm. Over an object-to-detector-distance range of 5-21cm, a 3.0mm gap width was reproducibly measured in the DTS images, independent of magnification. A simulated 0.50mm (+/-0.13) JSN was quantified accurately (95% CI 0.44-0.56mm) in the DTS images. Angling the rods to represent knee flexion, the minimum gap could be precisely determined from the DTS images and was independent of flexion angle. JSN quantification using DTS was insensitive to distance from patient barrier and flexion angle. Potential exists for the optimization of DTS for accurate radiographic quantification of knee OA independent of patient positioning.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin
2017-11-01
A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.
Capable Copper Electrodeposition Process for Integrated Circuit - substrate Packaging Manufacturing
NASA Astrophysics Data System (ADS)
Ghanbari, Nasrin
This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20microm to 100microm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20microm - 200microm, fine traces with varying widths of 3microm - 30microm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead to show "smart" control of deposition rate at the top and bottom of via to avoid void formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical characteristics of bulk copper is also shown to enable high reliability substrate packages for the IC packaging industry.
Repetsky, S P; Vyshyvana, I G; Kruchinin, S P; Bellucci, Stefano
2018-06-14
In the one-band model of strong coupling, the influence of substitutional impurity atoms on the energy spectrum and electrical conductance of graphene is studied. It is established that the ordering of substitutional impurity atoms on nodes of the crystal lattice causes the appearance of a gap in the energy spectrum of graphene with width η|δ| centered at the point yδ, where η is the parameter of ordering, δ is the difference of the scattering potentials of impurity atoms and carbon atoms, and y is the impurity concentration. The maximum value of the parameter of ordering is [Formula: see text]. For the complete ordering of impurity atoms, the energy gap width equals [Formula: see text]. If the Fermi level falls in the region of the mentioned gap, then the electrical conductance [Formula: see text] at the ordering of graphene, i.e., the metal-dielectric transition arises. If the Fermi level is located outside the gap, then the electrical conductance increases with the parameter of order η by the relation [Formula: see text]. At the concentration [Formula: see text], as the ordering of impurity atoms η →1, the electrical conductance of graphene [Formula: see text], i.e., the transition of graphene in the state of ideal electrical conductance arises.
Ates, Sabit Melih; Yesil Duymus, Zeynep; Caglar, Ipek; Hologlu, Bilal
2017-11-01
This in vitro study investigated the marginal fit of metal and zirconia copings before and after veneering on dies with shoulder/chamfer (s/c) finish lines. Using CAD/CAM, ten (n = 10) each s/c zirconia (NZ) copings and ten (n = 10) each s/c metal (MM) copings were generated. As controls, ten (n = 10) each s/c zirconia copings were copy-milled (ZZ) and ten (n = 10) each s/c metal copings were cast (CC). The vertical marginal discrepancy of the copings was measured at 20 predefined spots of the circular shoulder and chamfer finish lines in microns (μm) before and after a first and a second veneering firing using a stereomicroscope at ×40 magnification. Data were statistically analyzed, and the comparisons of CAD/CAM-milled (NZ, MM), copy-milled (ZZ), and cast (CC) copings before and after veneering were made at a significance level of p < 0.05. Gap width at s/c finish lines of ZZ was (91 ± 11/100 ± 28) and increased significantly (109 ± 21/141 ± 18) after the first firing (ZZ1). NZ showed significantly smaller gaps than ZZ (36 ± 6/46 ± 12) and (NZ1) after the first firing (61 ± 16/71 ± 29). Gap widths of CC groups (36 ± 8/25 ± 4) were not significantly different from NZ but were significantly lower after the (CC1) first veneering firing (40 ± 8/42 ± 7). MM copings showed gap values similar to NZ. Second firings did not significantly increase gaps in all groups except ZZ2 of chamfer finish line. Veneering increased the marginal gap width of copings. Within the limits of this in vitro study, aesthetic ceramic veneering of CAD/CAM-generated copings caused a statistically significant but tolerable loss of marginal fit precision.
Spectrum Gaps of Spin Waves Generated by Interference in a Uniform Nanostripe Waveguide
Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Tang, Xiaoli; Zhong, Zhiyong
2014-01-01
We studied spin waves excited by two or more excitation sources in a uniform nanostripe waveguide without periodic structures. Several distinct spectrum gaps formed by spin waves interference rather than by Bragg reflection were observed. We found the center frequency and the number of spectrum gaps of spin waves can be controlled by modulating the distance, number and width of the excitation sources. The results obtained by micromagnetic simulations agree well with that of analytical calculations. Our work therefore paves a new way to control the spectrum gaps of spin waves, which is promising for future spin wave-based devices. PMID:25082001
Effects of window size and shape on accuracy of subpixel centroid estimation of target images
NASA Technical Reports Server (NTRS)
Welch, Sharon S.
1993-01-01
A new algorithm is presented for increasing the accuracy of subpixel centroid estimation of (nearly) point target images in cases where the signal-to-noise ratio is low and the signal amplitude and shape vary from frame to frame. In the algorithm, the centroid is calculated over a data window that is matched in width to the image distribution. Fourier analysis is used to explain the dependency of the centroid estimate on the size of the data window, and simulation and experimental results are presented which demonstrate the effects of window size for two different noise models. The effects of window shape were also investigated for uniform and Gaussian-shaped windows. The new algorithm was developed to improve the dynamic range of a close-range photogrammetric tracking system that provides feedback for control of a large gap magnetic suspension system (LGMSS).
Melvin, Elizabeth M; Moore, Brandon R; Gilchrist, Kristin H; Grego, Sonia; Velev, Orlin D
2011-09-01
The recent development of microfluidic "lab on a chip" devices requiring sample sizes <100 μL has given rise to the need to concentrate dilute samples and trap analytes, especially for surface-based detection techniques. We demonstrate a particle collection device capable of concentrating micron-sized particles in a predetermined area by combining AC electroosmosis (ACEO) and dielectrophoresis (DEP). The planar asymmetric electrode pattern uses ACEO pumping to induce equal, quadrilateral flow directed towards a stagnant region in the center of the device. A number of system parameters affecting particle collection efficiency were investigated including electrode and gap width, chamber height, applied potential and frequency, and number of repeating electrode pairs and electrode geometry. The robustness of the on-chip collection design was evaluated against varying electrolyte concentrations, particle types, and particle sizes. These devices are amenable to integration with a variety of detection techniques such as optical evanescent waveguide sensing.
NASA Astrophysics Data System (ADS)
Wilczek, Sebastian; Trieschmann, Jan; Schulze, Julian; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Derzsi, Aranka; Korolov, Ihor; Donkó, Zoltan
2013-09-01
The electron heating in capacitive discharges at very low pressures (~1 Pa) is dominated by stochastic heating. In this regime electrons are accelerated by the oscillating sheaths, traverse through the plasma bulk and interact with the opposite sheath. By varying the driving frequency or the gap size of the discharge, energetic electrons reach the sheath edge at different temporal phases, i.e., the collapsing or expanding phase, or the moment of minimum sheath width. This work reports numerical experiments based on Particle-In-Cell simulations which show that at certain frequencies the discharge switches abruptly from a low density mode in a high density mode. The inverse transition is also abrupt, but shows a significant hysteresis. This behavior is explained by the complex interaction of the bulk and the sheath. This work is supported by the German Research Foundation in the frame of TRR 87.
Studies of isolated and interacting ferromagnetic gapped nanorings
NASA Astrophysics Data System (ADS)
Li, Jie; Zhang, Sheng; Bartell, Jason; Grigas, Chris; Nisoli, Cristiano; Lammert, Paul; Crespi, Vincent; Schiffer, Peter
2011-03-01
We have used micromagnetic simulation and magnetic force microscopy (MFM) to study isolated and interacting permalloy nanorings that are lithographically fabricated with gaps that prevent a rotationally symmetric magnetic state. The gapped nanorings have inner and outer radii of 200 and 300 nm respectively, and the gap has a subtended width of ~ 20 degrees. The nanorings generate a strong magnetic field only in the gap, and thus the magnetization states of gapped nanorings are much more accessible to MFM imaging than complete rings. We have investigated the properties of these gapped nanorings, including the anisotropy in their coercive field and the relative alignment of the magnetic polarization in coupled pairs. We acknowledge the financial support from DOE and Army Research Office.We are grateful to Professor Chris Leighton and Mike Erickson for assistance with sample preparation.
Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo
2006-01-12
The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.
Band gap structures for 2D phononic crystals with composite scatterer
NASA Astrophysics Data System (ADS)
Qi, Xiao-qiao; Li, Tuan-jie; Zhang, Jia-long; Zhang, Zhen; Tang, Ya-qiong
2018-05-01
We investigated the band gap structures in two-dimensional phononic crystals with composite scatterer. The composite scatterers are composed of two materials (Bragg scattering type) or three materials (locally resonance type). The finite element method is used to calculate the band gap structure, eigenmodes and transmission spectrum. The variation of the location and width of band gap are also investigated as a function of material ratio in the scatterer. We have found that the change trends the widest band gap of the two phononic crystals are different as the material ratio changing. In addition to this, there are three complete band gaps at most for the Bragg-scattering-type phononic crystals in the first six bands; however, the locally resonance-type phononic crystals exist only two complete band gap at most in the first six bands. The gap-tuning effect can be controlled by the material ratio in the scatterer.
Groundlayer vegetation gradients across oak woodland canopy gaps
Pavlovic, N.B.; Grundel, R.; Sluis, W.
2006-01-01
Frequency of groundlayer plants was measured across oak woodland canopy gaps at three sites in northwest Indiana to examine how vegetation varied with gap size, direction along the gap edge, and microhabitat. Microhabitats were defined as under the canopy adjacent to the gap, along the gap edge, and within the gap. Gap-sites consisted of gaps plus adjacent tree canopy. Gaps were classified as small (16 ± 1 m2), medium (97 ± 8), and large (310 ± 32). Neither richness nor diversity differed among microhabitats, gap sizes, or edges. Similarity between microhabitats wthin a gap-site increased as the distance between plots decreased and as the difference in PAR decreased, the latter explaining twice the variation in percent dissimilarity compared to Mg concentration, A horizon depth, and litter cover. Diervilla lonicera, Frageria virginiana, Helianthus divaricatus, Polygonatum pubescens, Quercus velutina, Smilacena stellata, and Tradescantia ohiensis decreased, whileTephrosia virginiana and legumes increased in frequency, from canopy to gap, and C4 grasses peaked at the gap edge, independent of gap size. Additional species frequency varied across the microhabitat gradient within specific sites. Sorghastrum nutans was three times more frequent in gaps at large sites than elsewhere. The vegetation in medium-sized gap-sites was more variable than within small and large gap-sites, suggesting greater environmental heterogeneity at that scale. Within gap-sites, vegetation was more heterogeneous within edges and canopies than in gaps. Edges were more similar in composition to gaps than to canopy groundlayer within gap-sites. Few species varied significantly in frequency around the gap edge. The oak woodland groundlayer on sandy substrates can be characterized as a mosaic of forb dominated vegetation that varies across light gradients associated with canopy gaps, transitioning to islands of grassland vegetation when gaps exceed 160 m2.
Analysis of a Multi-Machine Database on Divertor Heat Fluxes
NASA Astrophysics Data System (ADS)
Makowski, M. A.
2011-10-01
A coordinated effort to measure divertor heat flux characteristics in fully attached, similarly shaped H-mode plasmas on C-Mod, DIII-D and NSTX was carried out in 2010 in order to construct a predictive scaling relation applicable to next step devices including ITER, FNSF, and DEMO. Few published scaling laws are available and those that have been published were obtained under widely varying conditions and divertor geometries, leading to conflicting predictions for this critically important quantity. This study was designed to overcome these deficiencies. Corresponding plasma parameters were systematically varied in each tokamak, resulting in a combined data set in which Ip varies by a factor 3, Bt varies by a factor of 14.5, and major radius varies by a factor of 2.6. The derived scaling relation consistently predicts narrower heat flux widths than relations currently in use. Analysis of the combined data set reveals that the primary dependence of the parallel heat flux width is robustly inverse with Ip. All three tokamaks independently demonstrate this dependence. The midplane SOL profiles in DIII-D are also found to steepen with higher Ip, similar to the divertor heat flux profiles. Weaker dependencies on the toroidal field and normalized Greenwald density, fGW, are also found, but vary across devices and with the measure of the heat flux width used, either FWHM or integral width. In the combined data set, the strongest size scaling is with minor radius resulting in an approximately linear dependence on a /Ip . This suggests a scaling correlated with the inverse of the poloidal field, as would be expected for critical gradient or drift-based transport. Supported by the US DOE under DE-AC52-07NA27344 and DE-FC02-04ER54698.
Pressure effects on band structures in dense lithium
NASA Astrophysics Data System (ADS)
Goto, Naoyuki; Nagara, Hitose
2012-07-01
We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.
Fluorescence enhancement and strong-coupling in faceted plasmonic nanocavities
NASA Astrophysics Data System (ADS)
Kongsuwan, Nuttawut; Demetriadou, Angela; Chikkaraddy, Rohit; Baumberg, Jeremy J.; Hess, Ortwin
2018-06-01
Emission properties of a quantum emitter can be significantly modified inside nanometre-sized gaps between two plasmonic nanostructures. This forms a nanoscopic optical cavity which allows single-molecule detection and single-molecule strong-coupling at room temperature. However, plasmonic resonances of a plasmonic nanocavity are highly sensitive to the exact gap morphology. In this article, we shed light on the effect of gap morphology on the plasmonic resonances of a faceted nanoparticle-on-mirror (NPoM) nanocavity and their interaction with quantum emitters. We find that with increasing facet width the NPoM nanocavity provides weaker field enhancement and thus less coupling strength to a single quantum emitter since the effective mode volume increases with the facet width. However, if multiple emitters are present, a faceted NPoM nanocavity is capable of accommodating a larger number of emitters, and hence the overall coupling strength is larger due to the collective and coherent energy exchange from all the emitters. Our findings pave the way to more efficient designs of nanocavities for room-temperature light-matter strong-coupling, thus providing a big step forward to a non-cryogenic platform for quantum technologies.
Facial recognition using simulated prosthetic pixelized vision.
Thompson, Robert W; Barnett, G David; Humayun, Mark S; Dagnelie, Gislin
2003-11-01
To evaluate a model of simulated pixelized prosthetic vision using noncontiguous circular phosphenes, to test the effects of phosphene and grid parameters on facial recognition. A video headset was used to view a reference set of four faces, followed by a partially averted image of one of those faces viewed through a square pixelizing grid that contained 10x10 to 32x32 dots separated by gaps. The grid size, dot size, gap width, dot dropout rate, and gray-scale resolution were varied separately about a standard test condition, for a total of 16 conditions. All tests were first performed at 99% contrast and then repeated at 12.5% contrast. Discrimination speed and performance were influenced by all stimulus parameters. The subjects achieved highly significant facial recognition accuracy for all high-contrast tests except for grids with 70% random dot dropout and two gray levels. In low-contrast tests, significant facial recognition accuracy was achieved for all but the most adverse grid parameters: total grid area less than 17% of the target image, 70% dropout, four or fewer gray levels, and a gap of 40.5 arcmin. For difficult test conditions, a pronounced learning effect was noticed during high-contrast trials, and a more subtle practice effect on timing was evident during subsequent low-contrast trials. These findings suggest that reliable face recognition with crude pixelized grids can be learned and may be possible, even with a crude visual prosthesis.
Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes
NASA Astrophysics Data System (ADS)
Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.
2013-12-01
Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.
Quasiparticle Energies and Band Gaps in Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Yang, Li; Park, Cheol-Hwan; Son, Young-Woo; Cohen, Marvin L.; Louie, Steven G.
2007-11-01
We present calculations of the quasiparticle energies and band gaps of graphene nanoribbons (GNRs) carried out using a first-principles many-electron Green’s function approach within the GW approximation. Because of the quasi-one-dimensional nature of a GNR, electron-electron interaction effects due to the enhanced screened Coulomb interaction and confinement geometry greatly influence the quasiparticle band gap. Compared with previous tight-binding and density functional theory studies, our calculated quasiparticle band gaps show significant self-energy corrections for both armchair and zigzag GNRs, in the range of 0.5 3.0 eV for ribbons of width 2.4 0.4 nm. The quasiparticle band gaps found here suggest that use of GNRs for electronic device components in ambient conditions may be viable.
Fitts' Law is modulated by movement history.
Tang, Rixin; Shen, Bingyao; Sang, Zhiqin; Song, Aixia; Goodale, Melvyn A
2017-08-24
Fitts' Law is one of the most robust and well-studied principles in psychology. It holds that movement time (MT) for target-directed aiming movements increases as a function of target distance and decreases as a function of target width. The purpose of this study was to determine whether Fitts' Law is affected not only by the demands of the target on the current trial but also by the requirements for performance on the previous trial. Experiments 1 and 2 examined trial-to-trial effects of varying target width; Experiment 3 examined trial-to-trial effects of varying target distance. The findings from Experiments 1 and 2 showed that moving a finger or cursor towards a large object on a previous trial shortened the movement time on the current trial, whereas the opposite occurred with a small object. In contrast, target distance on the previous trial had no effect on movement time on the current trial. These findings suggest that performance on trial n has a clear and predictable effect on trial n+1 (at least for target width) and that Fitts' Law as it is normally expressed does not accurately predict performance when the width of the target varies from trial to trial.
Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Tao; Hong, Jisang, E-mail: hongj@pknu.ac.kr
2015-08-07
We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same asmore » that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.« less
High speed superconducting flywheel system for energy storage
NASA Astrophysics Data System (ADS)
Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.
1994-12-01
A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.
Electronic properties of prismatic modifications of single-wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.
2018-01-01
The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.
NASA Astrophysics Data System (ADS)
Konishi, Mihoko; Hashimoto, Jun; Hori, Yasunori
2018-06-01
We search for signatures of a distant planet around the two million-year-old classical T-Tauri star CI Tau hosting a hot-Jupiter candidate ({M}{{p}}\\sin i∼ 8.1 {M}Jupiter}) in an eccentric orbit (e ∼ 0.3). To probe the existence of an outer perturber, we reanalyzed 1.3 mm dust continuum observations of the protoplanetary disk around CI Tau obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). We found a gap structure at ∼0.″8 in CI Tau’s disk. Our visibility fitting assuming an axisymmetric surface brightness profile suggested that the gap is located at a deprojected radius of 104.5 ± 1.6 au and has a width of 36.9 ± 2.9 au. The brightness temperature around the gap was calculated to be ∼2.3 K lower than that of the ambient disk. Gap-opening mechanisms such as secular gravitational instability (GI) and dust trapping can explain the gap morphology in the CI Tau disk. The scenario that an unseen planet created the observed gap structure cannot be ruled out, although the coexistence of an eccentric hot Jupiter and a distant planet around the young CI Tau would be challenging for gravitational scattering scenarios. The mass of the planet was estimated to be between ∼0.25 M Jupiter and ∼0.8 M Jupiter from the gap width and depth ({0.41}-0.06+0.04) in the modeled surface brightness image, which is lower than the current detection limits of high-contrast direct imaging. The young classical T-Tauri CI Tau may be a unique system for exploring the existence of a potential distant planet as well as the origin of an eccentric hot Jupiter.
Band Gap Optimization Design of Photonic Crystals Material
NASA Astrophysics Data System (ADS)
Yu, Y.; Yu, B.; Gao, X.
2017-12-01
The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.
Research on local resonance and Bragg scattering coexistence in phononic crystal
NASA Astrophysics Data System (ADS)
Dong, Yake; Yao, Hong; Du, Jun; Zhao, Jingbo; Jiang, Jiulong
2017-04-01
Based on the finite element method (FEM), characteristics of the local resonance band gap and the Bragg scattering band gap of two periodically-distributed vibrator structures are studied. Conditions of original anti-resonance generation are theoretically derived. The original anti-resonance effect leads to localization of vibration. Factors which influence original anti-resonance band gap are analyzed. The band gap width and the mass ratio between two vibrators are closely correlated to each other. Results show that the original anti-resonance band gap has few influencing factors. In the locally resonant structure, the Bragg scattering band gap is found. The mass density of the elastic medium and the elasticity modulus have an important impact on the Bragg band gap. The coexistence of the two mechanisms makes the band gap larger. The band gap covered 90% of the low frequencies below 2000 Hz. All in all, the research could provide references for studying the low-frequency and broad band gap of phononic crystal.
A frequency-based window width optimized two-dimensional S-Transform profilometry
NASA Astrophysics Data System (ADS)
Zhong, Min; Chen, Feng; Xiao, Chao
2017-11-01
A new scheme is proposed to as a frequency-based window width optimized two-dimensional S-Transform profilometry, in which parameters pu and pv are introduced to control the width of a two-dimensional Gaussian window. Unlike the standard two-dimensional S-transform using the Gaussian window with window width proportional to the reciprocal local frequency of the tested signal, the size of window width for the optimized two-dimensional S-Transform varies with the pu th (pv th) power of the reciprocal local frequency fx (fy) in x (y) direction. The paper gives a detailed theoretical analysis of optimized two-dimensional S-Transform in fringe analysis as well as the characteristics of the modified Gauss window. Simulations are applied to evaluate the proposed scheme, the results show that the new scheme has better noise reduction ability and can extract phase distribution more precise in comparison with the standard two-dimensional S-transform even though the surface of the measured object varies sharply. Finally, the proposed scheme is demonstrated on three-dimensional surface reconstruction for a complex plastic cat mask to show its effectiveness.
Well-behaved dynamics in a dissipative nonideal periodically kicked rotator.
Chacón, R; Martínez García-Hoz, A
2003-12-01
Well-behaved dynamical properties are found in a dissipative kicked rotator subjected to a periodic string of asymmetric pulses of finite amplitude and width. The stability boundaries of the equilibrium are determined to arbitrary approximation for trigonometric pulses by means of circular harmonic balance, and to first approximation for general elliptic pulses by means of an elliptic harmonic balance method. The bifurcation behavior at the stability boundaries is determined numerically. We show how the extension of the instability region of the equilibrium in pulse parameter space reaches a maximum as the pulse width is varied. We also characterize the dependence of the mean duration of the transients to the equilibrium on the pulse width. The evolution of the basins of attraction of chaotic attractors when solely the pulse width is varied is characterized numerically. Finally, we show that the order-chaos route when solely the width of the pulses is altered appears to be especially rich, including different types of crises. The mechanism underlying these reshaping-induced crises is discussed with the aid of a two-dimensional map.
NASA Astrophysics Data System (ADS)
Fedele, D.; Tazzari, M.; Booth, R.; Testi, L.; Clarke, C. J.; Pascucci, I.; Kospal, A.; Semenov, D.; Bruderer, S.; Henning, Th.; Teague, R.
2018-02-01
This paper presents new high angular resolution ALMA 1.3 mm dust continuum observations of the protoplanetary system AS 209 in the Ophiuchus star forming region. The dust continuum emission is characterized by a main central core and two prominent rings at r = 75 au and r = 130 au intervaled by two gaps at r = 62 au and r = 103 au. The two gaps have different widths and depths, with the inner one being narrower and shallower. We determined the surface density of the millimeter dust grains using the 3D radiative transfer disk code DALI. According to our fiducial model the inner gap is partially filled with millimeter grains while the outer gap is largely devoid of dust. The inferred surface density is compared to 3D hydrodynamical simulations (FARGO-3D) of planet-disk interaction. The outer dust gap is consistent with the presence of a giant planet (Mplanet 0.7 MSaturn); the planet is responsible for the gap opening and for the pile-up of dust at the outer edge of the planet orbit. The simulations also show that the same planet could be the origin of the inner gap at r = 62 au. The relative position of the two dust gaps is close to the 2:1 resonance and we have investigated the possibility of a second planet inside the inner gap. The resulting surface density (including location, width and depth of the two dust gaps) are in agreement with the observations. The properties of the inner gap pose a strong constraint to the mass of the inner planet (Mplanet < 0.1 MJ). In both scenarios (single or pair of planets), the hydrodynamical simulations suggest a very low disk viscosity (α < 10‑4). Given the young age of the system (0.5-1 Myr), this result implies that the formation of giant planets occurs on a timescale of ≲1 Myr. The reduced image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A24
Ou, Jian de; Wu, Zhi Zhuang; Luo, Ning
2016-10-01
In order to clarify the effects of forest gap size on the growth and stem form quality of Taxus wallichina var. mairei and effectiveness of the precious timbers cultivation, 25 sample plots in Cunninghamia lanceolata forest gaps were established in Mingxi County, Fujian Province, China to determine the indices of the growth, stem form and branching indices of T. wallichina var. mairei seedlings. The relationships between the gap size and growth, stem form and branching were investigated. The 25 sample plots were located at five microhabitats which were classified based on gap size as follows: Class1, 2, 3, 4 and 5, which had a gap size of 25-50 m 2 , 50-75 m 2 , 75-100 m 2 , 100-125 m 2 and 125-150 m 2 , respectively. The evaluation index system of precious timbers was built by using hierarchical analysis. The 5 classes of forest gaps were evaluated comprehensively by using the multiobjective decision making method. The results showed that gap size significantly affected 11 indices, i.e., height, DBH, crown width, forking rate, stem straightness, stem fullness, taperingness, diameter height ratio, height under living branch, interval between branches, and max-branch base diameter. Class1and 2 both significantly promoted the growth of height, DBH and crown width, and both significantly inhibited forking rate and taperingness, and improved stem straightness. Class2 significantly improved stem fullness and diameter height ratio. Class1and 2 significantly improved height under living branch and reduced max-branch base diameter. Class 1 significantly increased interval between branches. Class1and2 significantly improved the comprehensive evaluation score of precious timbers. This study suggested that controlled cutting intensity could be used to create forest gaps of 25-75 m 2 , which improved the precious timber cultivating process of T. wallichina var. mairei in C. lanceolata forests.
NASA Astrophysics Data System (ADS)
Zapryagaev, Ivan I.; Timoshevskiy, Mikhail V.; Pervunin, Konstantin S.
2017-09-01
Tip-clearance cavitation is one of the most aggressive forms of cavitation as it can cause surface erosion of hydraulic machinery elements and, as a result, their fatigue damage and disturb designed operating conditions. At present, the literature lacks for detailed experimental data on the inception and development of this type of cavitation at various flow conditions. In the paper, a tip-leakage cavitation occurring in the clearance between an end face of a 2D hydrofoil (a scaled-down model of guide vanes (GV) of a Francis turbine) and a transparent wall of the test section was studied. The experiments were carried out for different cavitating regimes on the cavitation number and two attack angles of 3° and 9°, with the gap size (tip clearance width) varied in the range from 0.4 to 0.8 mm. In order to determine the cavitation inception conditions and investigate the dynamics of the tip-leakage cavitation, a high-speed visualization was applied. A modified PIV/PTV technique with a diverging laser beam instead of a laser light sheet was used to measure the mean velocity distributions within the gap. It was shown that the cavitation pattern on the suction side of the GV model impacts the dynamics of the leakage flow in the gap but does not affect the sheet cavity formed close to the foil leading edge in the clearance as well as its size and dynamics. When the gap size is increased, the tip-leakage cavitation initiates at higher cavitation numbers or, in other words, conditions for the cavitation occurrence become more favorable.
NASA Technical Reports Server (NTRS)
Anderson, G. E.; Fell, D. M.; Tesinsky, J. S.
1977-01-01
Brushlike material insulates variable-width gaps where severe thermal stress is present. Weave-and-tuft strip has low thermal conductivity, working temperature range from -454 to 2,000 F, low load compressibility, and good inhibition of plasma flow.
Growth and analysis of anaerobic wastewater methanogens using microfluidics
NASA Astrophysics Data System (ADS)
Steinhaus, Ben
2005-11-01
A micro-bioreactor (μBR) with a total system volume of 5 μl was developed using microfluidics and used to study the anaerobic waste-water methanogen methanosaeta concilli. The μBR was contained inside of an anaerobic chamber designed to be placed directly under an inverted light microscope while maintaining the reactor under a N2/CO2 gas mixture. Methanogens were cultured for periods of up to 3 months inside channels of varying width. The varying channel widths created varying fluid velocities and hence varying shear-rates inside the μBR. This allowed for direct study of the behavior and response of the anaerobe to varying shear-rates. After completion of the study, fluorescent in situ hybridization (FISH) was performed directly inside the microchannels to allow for further analysis and identification of the methanogens.
Automated inspection of gaps on the free-form shape parts by laser scanning technologies
NASA Astrophysics Data System (ADS)
Zhou, Sen; Xu, Jian; Tao, Lei; An, Lu; Yu, Yan
2018-01-01
In industrial manufacturing processes, the dimensional inspection of the gaps on the free-form shape parts is critical and challenging, and is directly associated with subsequent assembly and terminal product quality. In this paper, a fast measuring method for automated gap inspection based on laser scanning technologies is presented. The proposed measuring method consists of three steps: firstly, the relative position is determined according to the geometric feature of measuring gap, which considers constraints existing in a laser scanning operation. Secondly, in order to acquire a complete gap profile, a fast and effective scanning path is designed. Finally, the range dimension of the gaps on the free-form shape parts including width, depth and flush, correspondingly, is described in a virtual environment. In the future, an appliance machine based on the proposed method will be developed for the on-line dimensional inspection of gaps on the automobile or aerospace production line.
A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids.
Alonso-Redondo, E; Schmitt, M; Urbach, Z; Hui, C M; Sainidou, R; Rembert, P; Matyjaszewski, K; Bockstaller, M R; Fytas, G
2015-09-22
The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.
Ultra-wide acoustic band gaps in pillar-based phononic crystal strips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffy, Etienne, E-mail: etienne.coffy@femto-st.fr; Lavergne, Thomas; Addouche, Mahmoud
2015-12-07
An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distributionmore » within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.« less
Numerical simulation of supersonic gap flow.
Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo
2015-01-01
Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
Light intensification effect of trailing indent crack in fused silica subsurface
NASA Astrophysics Data System (ADS)
Zhang, ChunLai; Xu, Ming; Wang, ChunDong
2015-03-01
A finite-difference time-domain algorithm was applied to solve Maxwell's equations to obtain the redistribution of an electromagnetic plane wave in the vicinity of a trailing indent crack (TIC). The roles of five geometrical parameters playing in light intensification were calculated numerically under the irradiation of a 355-nm normal incidence laser. The results show that the light intensity enhancements between the nearest neighbor pits were remarkable, which may lead to damage. The calculated results reveal that the light intensity enhancement factor ( LIEF) can be up to 11.2 when TIC is on the rear-surface. With the increase of the length as well as the depth of pits, LIEF increased. Conversely, with the increase of the axis of pits, LIEF gradually declined to a stable status. It was observed that there exists an optima width or gap, which enables LIEF to be increased dramatically and then decreased gently. By comparison, results suggest that the worst cases occur when the depth and the length are both very large, especially if the width equals to 2 l and the gap equals the width. This work provides a recommended theoretical criterion for defect inspection and classification.
Designing broad phononic band gaps for in-plane modes
NASA Astrophysics Data System (ADS)
Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong
2018-03-01
Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.
Optical band gap of thermally deposited Ge-S-Ga thin films
NASA Astrophysics Data System (ADS)
Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman
2018-05-01
Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.
NASA Astrophysics Data System (ADS)
Finnegan, N. J.; Roe, G.; Montgomery, D. R.; Hallet, B.
2004-12-01
The fundamental role of bedrock channel incision on the evolution of mountainous topography has become a central concept in tectonic geomorphology over the past decade. During this time the stream power model of bedrock river incision has immerged as a valuable tool for exploring the dynamics of bedrock river incision in time and space. In most stream power analyses, river channel width--a necessary ingredient for calculating power or shear stress per unit of bed area--is assumed to scale solely with discharge. However, recent field-based studies provide evidence for the alternative view that channel width varies locally, much like channel slope does, in association with spatial changes in rock uplift rate and erodibility. This suggests that simple scaling relations between width and discharge, and hence estimates of stream power, don't apply in regions where rock uplift and erodibility vary spatially. It also highlights the need for an alternative to the traditional assumptions of hydraulic geometry to further investigation of the coupling between bedrock river incision and tectonic processes. Based on Manning's equation, basic mass conservation principles, and an assumption of self-similarity for channel cross sections, we present a new relation for scaling the steady-state width of bedrock river channels as a function of discharge (Q), channel slope (S), and roughness (Ks): W \\propto Q3/8S-3/16Ks1/16. In longitudinally simple, uniform-concavity rivers from the King Range in coastal Northern California, the model emulates traditional width-discharge relations that scale channel width with the square root of discharge. More significantly, our relation describes river width trends for the Yarlung Tsangpo in SE Tibet and the Wenatchee River in the Washington Cascades, both rivers that narrow considerably as they incise terrain with spatially varied rock uplift rates and/or lithology. We suggest that much of observed channel width variability is a simple consequence of the tendency for water to flow faster in steeper reaches and therefore maintain smaller channel cross sections. We demonstrate that using conventional scaling relations for bedrock channel width can significantly underestimate stream power variability in bedrock channels, and that our model improves estimates of spatial patterns of bedrock incision rates.
Analysis of Contraction Joint Width Influence on Load Stress of Pavement Panels
NASA Astrophysics Data System (ADS)
Gao, Wei; Cui, Wei; Sun, Wei
2018-05-01
The width of transverse contraction joint of the cement road varies with temperatures, which leads to changes in load transmission among plates of the road surface and affects load stress of the road plates. Three-dimensional element analysis software EverFE is used to address the relation between the contraction joint width and road surface load stress, revealing the impact of reducing contraction joint width. The results could be of critical value in maintaining road functions and extending the service life of cement road surfaces.
Seismographic Networks: Problems and Outlook for the 1980s,
1983-01-01
network had four original stations around the summit of Kilauea Volcano with the information telemetered to the Hawaiian Volcano Observatory. By July...of California seismographic stations. The first telemetered network in the U.S was that of the USGS in Hawaii . Developed during the mid-1950s, the...the trench- volcano gap measures 500 + 100 km, more than twice the width of a typical trench- volcano gap. Despite these peculiarities, geologic
Photocurrent polarization anisotropy of randomly oriented nanowire networks.
Yu, Yanghai; Protasenko, Vladimir; Jena, Debdeep; Xing, Huili Grace; Kuno, Masaru
2008-05-01
While the polarization sensitivity of single or aligned NW ensembles is well-known, this article reports on the existence of residual photocurrent polarization sensitivities in random NW networks. In these studies, CdSe and CdTe NWs were deposited onto glass substrates and contacted with Au electrodes separated by 30-110 microm gaps. SEM and AFM images of resulting devices show isotropically distributed NWs between the electrodes. Complementary high resolution TEM micrographs reveal component NWs to be highly crystalline with diameters between 10 and 20 nm and with lengths ranging from 1 to 10 microm. When illuminated with visible (linearly polarized) light, such random NW networks exhibit significant photocurrent anisotropies rho = 0.25 (sigma = 0.04) [rho = 0.22 (sigma = 0.04)] for CdSe (CdTe) NWs. Corresponding bandwidth measurements yield device polarization sensitivities up to 100 Hz. Additional studies have investigated the effects of varying the electrode potential, gap width, and spatial excitation profile. These experiments suggest electrode orientation as the determining factor behind the polarization sensitivity of NW devices. A simple geometric model has been developed to qualitatively explain the phenomenon. The main conclusion from these studies, however, is that polarization sensitive devices can be made from random NW networks without the need to align component wires.
Measurement of ozone production scaling in a helium plasma jet with oxygen admixture
NASA Astrophysics Data System (ADS)
Sands, Brian; Ganguly, Biswa
2012-10-01
Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.
Effect of occlusal vertical dimension on lip positions at smile.
Chou, Jang-Ching; Thompson, Geoffrey A; Aggarwal, Harshit A; Bosio, Jose A; Irelan, Jon P
2014-09-01
In complete mouth reconstructive dentistry, the occlusal vertical dimension may be increased to provide adequate restorative space or to improve esthetics. The effect of increasing the occlusal vertical dimension on the smile is not well understood. The purpose of this study was to evaluate the effect of increasing the occlusal vertical dimension on the dimensions of the smile. Thirty dental students, 12 men and 18 women between the ages of 21 and 30 years old, participated in this study. Polyvinyl siloxane occlusal registrations 2, 4, 6, and 8 mm in thickness were fabricated from articulated stone casts. Posed smile images at occlusal vertical dimension +0, +2, +4, +6, and +8 mm were made with a digital single lens reflex camera mounted on a tripod. A wall-mounted head-positioning device, modified from a cephalometric unit, was used to stabilize the head position. Interlabial gap height, intercommissural width, incisal edge to upper lip, and incisal edge-to-lower lip measurements were made with computer software. The smile index was obtained by dividing width by height. The display zone area was measured by using computer software tracing. One-way repeated measures ANOVA (α=.05) was used for statistical analysis. With an increase in the occlusal vertical dimension, the interlabial gap height, incisal edge to lower lip distance, and display zone area increased significantly (P<.001), whereas the smile index decreased significantly (P<.001). No significant changes were observed in the intercommissural width and incisal edge to upper lip distance. The interlabial gap height, incisal edge-to-lower lip distance, and display zone area increase with increased occlusal vertical dimension. The smile index decreases with increased occlusal vertical dimension. However, the width of the smile and the length of the upper lip tend to remain unchanged. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
On the relationship between finger width, velocity, and fluxes in thermohaline convection
NASA Astrophysics Data System (ADS)
Sreenivas, K. R.; Singh, O. P.; Srinivasan, J.
2009-02-01
Double-diffusive finger convection occurs in many natural processes. The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (Rρ) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (RaT) has been systematically varied from 7×103 to 7×108. Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as RaT-1/3. Velocity in the finger varies as RaT1/3/Rρ. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.
NASA Astrophysics Data System (ADS)
Nagarajan, V.; Chandiramouli, R.
2018-03-01
The electronic properties of antimonene nanotubes and nanoribbons hydrogenated along the zigzag and armchair borders are investigated with the help of density functional theory (DFT) method. The structural stability of antimonene nanostructures is confirmed with the formation energy. The electronic properties of hydrogenated zigzag and armchair antimonene nanostructures are studied in terms of highest occupied molecular orbital (HOMO) & lowest unoccupied molecular orbital (LUMO) gap and density of states (DOS) spectrum. Moreover, due to the influence of buckled orientation, hydrogen passivation and width of antimonene nanostructures, the HOMO-LUMO gap widens in the range of 0.15-0.41 eV. The findings of the present study confirm that the electronic properties of antimonene nanostructures can be tailored with the influence of width, orientation of the edges, passivation with hydrogen and morphology of antimonene nanostructures (nanoribbons, nanotubes), which can be used as chemical sensor and for spintronic devices.
NASA Astrophysics Data System (ADS)
Mulyanti, B.; Ramza, H.; Pawinanto, R. E.; Rahman, J. A.; Ab-Rahman, M. S.; Putro, W. S.; Hasanah, L.; Pantjawati, A. B.
2017-05-01
The acid rain is an environmental disaster that it will be intimidates human life. The development micro-ring resonator sensor created from SOI (Silicon on insulator) and it used to detect acid rain index. In this study, the LUMERICAL software was used to simulate SOI material micro-ring resonator. The result shows the optimum values of fixed parameters from ring resonator have dependent variable in gap width. The layers under ring resonator with silicone (Si) and wafer layer of silicone material (Si) were added to seen three conditions of capability model. Model - 3 is an additional of bottom layer that gives the significant effect on the factor of quality. The optimum value is a peak value that given by the FSR calculation. FSR = 0, it means that is not shows the light propagation in the ring resonator and none of the light coming out on the bus - line.
NASA Astrophysics Data System (ADS)
Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.
2018-05-01
Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.
Resonant tunneling diode based on band gap engineered graphene antidot structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palla, Penchalaiah, E-mail: penchalaiah.palla@vit.ac.in; Ethiraj, Anita S.; Raina, J. P.
The present work demonstrates the operation and performance of double barrier Graphene Antidot Resonant Tunnel Diode (DBGA-RTD). Non-Equilibrium Green’s Function (NEGF) frame work with tight-binding Hamiltonian and 2-D Poisson equations were solved self-consistently for device study. The interesting feature in this device is that it is an all graphene RTD with band gap engineered graphene antidot tunnel barriers. Another interesting new finding is that it shows negative differential resistance (NDR), which involves the resonant tunneling in the graphene quantum well through both the electron and hole bound states. The Graphene Antidot Lattice (GAL) barriers in this device efficiently improved themore » Peak to Valley Ratio to approximately 20 even at room temperature. A new fitting model is developed for the number of antidots and their corresponding effective barrier width, which will help in determining effective barrier width of any size of actual antidot geometry.« less
Insects traversing grass-like vertical compliant beams
NASA Astrophysics Data System (ADS)
Li, Chen; Fearing, Ronald; Full, Robert
2014-03-01
Small running animals encounter many challenging terrains. These terrains can be filled with 3D, multi-component obstacles. Here, we study cockroaches (Blaberus discoidalis) moving through grass-like vertical compliant beams during escape. We created an apparatus to control and vary geometric parameters and mechanical properties of model grass including height, width, thickness, lateral and fore-aft spacings, angle, number of layers, stiffness, and damping. We observed a suite of novel locomotor behaviors not previously described on simpler 2D ground. When model grass height was >2 × body length and lateral spacing was <0.5 × body width, the animal primarily (probability P = 50%) rolled its body onto its side to rapidly (time t = 2.1 s) maneuver through the gaps between model grass. We developed a simple energy minimization model, and found that body roll reduces the energy barriers that the animal must overcome during traversal. We hypothesized that the animal's ellipsoidal body shape facilitated traversal. To test our hypothesis, we modified body shape by adding either a rectangular or an oval plate onto its dorsal surface, and found that P dropped by an order of magnitude and t more than doubled. Upon removal of either plate, both P and t recovered. Locomotor kinematics and geometry effectively coupled to terrain properties enables negotiation of 3D, multi-component obstacles, and provides inspiration for small robots to navigate such terrain with minimal sensing and control.
Effects of Elongation on Stochastic Layer and Magnetic Footprint in Divertor Tokamaks
NASA Astrophysics Data System (ADS)
Wadi, Hasina; Jones, Morgin; Ali, Halima; Punjabi, Alkesh
2007-11-01
An area-preserving map is constructed to calculate effects of elongation on the stochastic layer and magnetic footprint in divertor tokamaks. The generating function for the map is S(x,y) = -(1/2)α^2y^2 (1-y^2/2a^2)+(1/2)β^2x^2. Method of maps developed by Punjabi and Boozer [1,2] is used to construct the map and to calculate the stochastic layer and the magnetic footprints. The poloidal magnetic flux inside the ideal separatrix and the safety factor profile are held constant, and elongation is varied by (1) varying the width of separatrix surface in the midplane keeping the height fixed, and (2) varying the height keeping the width of separatrix surface fixed. As the width is increased, the stochastic layer and the footprint become narrower. As the height is increased, the width of stochastic layer and the footprint become narrower. Detailed results of this study will be presented. This work is supported by US DOE OFES DE-FG02-01ER54624 and DE-FG02-04ER54793. [1] A. Punjabi, A. Verma, and A. Boozer, Phys Rev Lett, 69, 3322-3325 (1992). [2] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A 364 140--145 (2007).
Pneumatic gap sensor and method
Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.
1992-01-01
An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.
Pneumatic gap sensor and method
Bagdal, K.T.; King, E.L.; Follstaedt, D.W.
1992-03-03
An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.
Figural Aftereffects: An Explanation in Terms of Multiple Mechanisms in the Human Visual System,
1983-04-19
increments. The width of the four TFs was held constant at 30 min (the width of the smallest IF) while tae height varied from 15 ( TF1 ) to 60 (TF4...in width from 15 ( TF1 ) to 30 (TF4) Min. of arc in 5 min. increments and were oriented at 00, or vertical. A range of 900 to 1800 min 2 of visual angle
Morphodynamics structures induced by variations of the channel width
NASA Astrophysics Data System (ADS)
Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo
2014-05-01
In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in alluvial rivers. References Crosato A. and Mosselman E., 2009. Simple physics-based predictor for the number of river bars and the transition between meandering and braiding. Water Resources Research, 45, W03424, doi: 10.1029/2008WR007242. Crosato A., Mosselman E., Desta F.B. and Uijttewaal W.S.J., 2011. Experimental and numerical evidence for intrinsic nonmigrating bars in alluvial channels. Water Resources Research, AGU, 47(3), W03511, doi 10.1029/2010WR009714. Frascati A. and Lanzoni S., 2013. A mathematical model for meandering rivers with varying width. J. Geophys. Res.Earth Surf., 118, doi:10.1002/jgrf.20084. Olesen K.W., 1984. Alternate bars in and meandering of alluvial rivers. In: River Meandering, Proc. of the Conf. Rivers '83, 24-26 Oct. 1983, New Orleans, Louisiana, U.S.A., ed. Elliott C.M., pp. 873-884, ASCE, New York. ISBN 0-87262-393-9. Repetto R., Tubino, M. and Paola C., 2002. Planimetric instability of channels with variable width. J. Fluid Mech., 457, 79-109. Struiksma N., Olesen K.W., Flokstra C. and De Vriend H.J., 1985. Bed deformation in curved alluvial channels. J. Hydraul. Res., 23(1), 57- 79. Wu F.-C. and Yeh T.-H., 2005. Forced bars induced by variations of channel width: Implications for incipient bifurcation. J. Geophys. Res., 110, F02009, doi:10.1029/2004JF000160. Zolezzi, G., R. Luchi, and M. Tubino (2012), Modeling morphodynamic processes in meandering rivers with spatial width variations, Rev. Geophys., 50, RG4005, doi:10.1029/2012RG000392.
Oude Lansink, I L B; van Kouwenhove, L; Dijkstra, P U; Postema, K; Hijmans, J M
2017-10-01
Step width is increased during dual-belt treadmill walking, in self-paced mode with virtual reality. Generally a familiarization period is thought to be necessary to normalize step width. The aim of this randomised study was to analyze the effects of two interventions on step width, to reduce the familiarization period. We used the GRAIL (Gait Real-time Analysis Interactive Lab), a dual-belt treadmill with virtual reality in the self-paced mode. Thirty healthy young adults were randomly allocated to three groups and asked to walk at their preferred speed for 5min. In the first session, the control-group received no intervention, the 'walk-on-the-line'-group was instructed to walk on a line, projected on the between-belt gap of the treadmill and the feedback-group received feedback about their current step width and were asked to reduce it. Interventions started after 1min and lasted 1min. During the second session, 7-10days later, no interventions were given. Linear mixed modeling showed that interventions did not have an effect on step width after the intervention period in session 1. Initial step width (second 30s) of session 1 was larger than initial step width of session 2. Step width normalized after 2min and variation in step width stabilized after 1min. Interventions do not reduce step width after intervention period. A 2-min familiarization period is sufficient to normalize and stabilize step width, in healthy young adults, regardless of interventions. A standardized intervention to normalize step width is not necessary. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nakanishi, Akitaka
2011-05-01
We implemented a self-interaction correction (SIC) into first-principles calculation code to go beyond local density approximation and applied it to CuAlO2. Our simulation shows that the valence band width calculated within the SIC is narrower than that calculated without the SIC because the SIC makes the d-band potential deeper. The energy gap calculated within the SIC expands and is close to experimental data.
Zanin, Esther; Desai, Arshad; Poser, Ina; Toyoda, Yusuke; Andree, Cordula; Moebius, Claudia; Bickle, Marc; Conradt, Barbara; Piekny, Alisa; Oegema, Karen
2014-01-01
SUMMARY During animal cell cytokinesis, the spindle directs contractile ring assembly by activating RhoA in a narrow equatorial zone. Rapid GTPase activating protein (GAP)-mediated inactivation (RhoA flux) is proposed to limit RhoA zone dimensions. Testing the significance of RhoA flux has been hampered by the fact that the GAP targeting RhoA is not known. Here, we identify M-phase GAP (MP-GAP) as the primary GAP targeting RhoA during mitosis/cytokinesis. MP-GAP inhibition caused excessive RhoA activation in M-phase leading to the uncontrolled formation of large cortical protrusions and late cytokinesis failure. RhoA zone width was broadened by attenuation of the centrosomal asters but was not affected by MP-GAP inhibition alone. Simultaneous aster attenuation and MP-GAP inhibition led to RhoA accumulation around the entire cell periphery. These results identify the major GAP restraining RhoA during cell division and delineate the relative contributions of RhoA flux and centrosomal asters in controlling RhoA zone dimensions. PMID:24012485
Energy band gaps in graphene nanoribbons with corners
NASA Astrophysics Data System (ADS)
Szczȩśniak, Dominik; Durajski, Artur P.; Khater, Antoine; Ghader, Doried
2016-05-01
In the present paper, we study the relation between the band gap size and the corner-corner length in representative chevron-shaped graphene nanoribbons (CGNRs) with 120° and 150° corner edges. The direct physical insight into the electronic properties of CGNRs is provided within the tight-binding model with phenomenological edge parameters, developed against recent first-principle results. We show that the analyzed CGNRs exhibit inverse relation between their band gaps and corner-corner lengths, and that they do not present a metal-insulator transition when the chemical edge modifications are introduced. Our results also suggest that the band gap width for the CGNRs is predominantly governed by the armchair edge effects, and is tunable through edge modifications with foreign atoms dressing.
Strip casting apparatus and method
Williams, R.S.; Baker, D.F.
1988-09-20
Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.
Strip casting apparatus and method
Williams, Robert S.; Baker, Donald F.
1988-01-01
Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip.
Spatial limitations of fast temporal segmentation are best modeled by V1 receptive fields.
Goodbourn, Patrick T; Forte, Jason D
2013-11-22
The fine temporal structure of events influences the spatial grouping and segmentation of visual-scene elements. Although adjacent regions flickering asynchronously at high temporal frequencies appear identical, the visual system signals a boundary between them. These "phantom contours" disappear when the gap between regions exceeds a critical value (g(max)). We used g(max) as an index of neuronal receptive-field size to compare with known receptive-field data from along the visual pathway and thus infer the location of the mechanism responsible for fast temporal segmentation. Observers viewed a circular stimulus reversing in luminance contrast at 20 Hz for 500 ms. A gap of constant retinal eccentricity segmented each stimulus quadrant; on each trial, participants identified a target quadrant containing counterphasing inner and outer segments. Through varying the gap width, g(max) was determined at a range of retinal eccentricities. We found that g(max) increased from 0.3° to 0.8° for eccentricities from 2° to 12°. These values correspond to receptive-field diameters of neurons in primary visual cortex that have been reported in single-cell and fMRI studies and are consistent with the spatial limitations of motion detection. In a further experiment, we found that modulation sensitivity depended critically on the length of the contour and could be predicted by a simple model of spatial summation in early cortical neurons. The results suggest that temporal segmentation is achieved by neurons at the earliest cortical stages of visual processing, most likely in primary visual cortex.
NASA Technical Reports Server (NTRS)
Quan, M.; Lockman, W. K.
1975-01-01
Results are presented which were obtained from tests in a hypersonic wind tunnel to determine aerodynamic heating rates in a gap running parallel or slightly askew to the flow direction. The model used was a flat plate instrumented in thin-skin sections with chromelconstantan thermocouples. Heating rate profiles lengthwise along and down into the gap were obtained, and additional data were obtained from a total temperature probe and rake fabricated during the test to investigate an apparent aerodynamic cooling trend in the gap. Model variables were width, depth, length, and orientation of the gap relative to the flow direction. The tests were conducted at Mach 5.1 and Reynolds numbers per foot of 500,000, 1,000,000, and 2,000,000.
Jurmu, Michael C
2002-12-01
Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.
Cogging Torque Reduction in a Permanent Magnet Wind Turbine Generator: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, E.; Green, J.
2002-01-01
In this paper, we investigate three design options to minimize cogging torque: uniformity of air gap, pole width, and skewing. Although the design improvement is intended for small wind turbines, it is also applicable to larger wind turbines.
Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides
NASA Astrophysics Data System (ADS)
Wei, Yuxin; Li, Guoyi; Hao, Yinlei; Li, Yubo; Yang, Jianyi; Wang, Minghua; Jiang, Xiaoqing
2011-08-01
The undercut long-wave infrared (LWIR) waveguide components with air-gap beneath are analyzed and fabricated on the Si-wafer with simple manufacturing process. A 1 × 2 multimode interference (MMI) splitter based on this structure is presented and measured under the 10.6μm wavelength experimental setup. The uniformity of the MMI fabricated is 0.76 dB. The relationship among the output power, slab thickness and air-gap width is also fully discussed. Furthermore, undercut straight waveguides based on SOI platform are fabricated for propagation loss evaluation. Ways to reduce the loss are discussed either.
A new approach to high-efficiency multi-band-gap solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnham, K.W.J.; Duggan, G.
1990-04-01
The advantages of using multi-quantum-well or superlattice systems as the absorbers in concentrator solar cells are discussed. By adjusting the quantum-well width, an effective band-gap variation that covers the high-efficiency region of the solar spectrum can be obtained. Higher efficiencies should result from the ability to optimize separately current and voltage generating factors. Suitable structures to ensure good carrier separation and collection and to obtain higher open-circuit voltages are presented using the (AlGa)As/GaAs/(InGa)As system. Efficiencies above existing single-band-gap limits should be achievable, with upper limits in excess of 40%.
Mo100 to Mo99 Target Cooling Enhancements Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard
2016-02-16
Target design requirements changed significantly over the past year to a much higher beam current on larger diameter disks, and with a beam impingement on both ends of the target. Scaling from the previous design, that required significantly more mass flow rate of helium coolant, and also thinner disks. A new Aerzen GM12.4 blower was selected that can deliver up to 400 g/s at 400 psi, compared to about 100 g/s possible with the Tuthill blower previously selected.Further, to accommodate the 42 MeV, 2.7 mA beam on each side of the target, the disk thickness and the coolant gaps weremore » halved to create the current baseline design: 0.5 mm disk thickness (at 29 mm diameter) and 0.25 mm coolant gap. Thermal-hydraulic analysis of this target, presented below for reference, gave very good results, suggesting that the target could be improved with fewer, thicker disks and with disk thickness increasing toward the target center. The total thickness of Mo100 in the target remaining the same, that reduces the number of coolant gaps. This allows for the gap width to be increased, increasing the mass flow in each gap and consequently increasing heat transfer. A preliminary geometry was selected and analyzed with variable disk thickness and wider coolant gaps. The result of analysis of this target shows that disk thickness increase near the window was too aggressive and further resizing of the disks is necessary, but it does illustrate the potential improvements that are possible. Experimental and analytical study of diffusers on the target exit has been done. This shows modest improvement in requcing pressure drop, as will be summarized below. However, the benefit is not significant, and implementation becomes problematic when disk thickness is varying. A bull nose at the entrance does offer significant benefit and is relatively easy to incorporate. A bull nose on both ends is now a feature of the baseline design, and will be a feature of any redesign or enhanced designs that follow.« less
A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids
Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C. M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M. R.; Fytas, G.
2015-01-01
The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to ‘manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the ‘anisotropic elasticity' across the particle–polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies. PMID:26390851
Numerical Simulation of Supersonic Gap Flow
Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo
2015-01-01
Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles. PMID:25635395
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca
2016-02-20
The gravitational influence of a planet on a nearby disk provides a powerful tool for detecting and studying extrasolar planetary systems. Here we demonstrate that gaps can be opened in dynamically cold debris disks at the mean-motion resonances of an orbiting planet. The gaps are opened away from the orbit of the planet itself, revealing that not all disk gaps need contain a planetary body. These gaps are large and deep enough to be detectable in resolved disk images for a wide range of reasonable disk-planet parameters, though we are not aware of any such gaps detected to date. Themore » gap shape and size are diagnostic of the planet location, eccentricity and mass, and allow one to infer the existence of unseen planets, as well as many important parameters of both seen and unseen planets in these systems. We present expressions to allow the planetary mass and semimajor axis to be calculated from observed gap width and location.« less
Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics
NASA Astrophysics Data System (ADS)
Esposito, Larry W.; Rehnberg, Morgan; Colwell, Joshua E.; Sremcevic, Miodrag
2017-10-01
We compare two methods for determining the size of self-gravity wakes in Saturn’s rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives:W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find:W ~ 10m and infer the wavelength of the fastest growing instabilityLambda(TOOMRE) = S + W ~ 30m.This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.
Size of Self-Gravity Wakes from Cassini UVIS Tracking Occultations and Ring Transparency Statistics
NASA Astrophysics Data System (ADS)
Esposito, L. W.; Rehnberg, M.; Colwell, J. E.; Sremcevic, M.
2017-12-01
We compare two methods for determining the size of self-gravity wakes in Saturn's rings. Analysis of gaps seen in UVIS occultations gives a power law distribution from 10-100m (Rehnberg etal 2017). Excess variance from UVIS occultations can be related to characteristic clump widths, a method which extends the work of Showalter and Nicholson (1990) to more arbitrary shadow distributions. In the middle A ring, we use results from Colwell etal (2017) for the variance and results from Jerousek etal (2016) for the relative size of gaps and wakes to estimate the wake width consistent with the excess variance observed there. Our method gives: W= sqrt (A) * E/T2 * (1+ S/W)Where A is the area observed by UVIS in an integration period, E is the measured excess variance above Poisson statistics, T is the mean transparency, and S and W are the separation and width of self-gravity wakes in the granola bar model of Colwell etal (2006). We find: W 10m and infer the wavelength of the fastest growing instability lamdaT = S + W 30m. This is consistent with the calculation of the Toomre wavelength from the surface mass density of the A ring, and with the highest resolution UVIS star occultations.
Li, Ying; Liu, Dan; Xu, Kailiang; Le, Lawrence H.; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S0 and A0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S0 and A0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A0, while the amplitude of S0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S0 and A0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S0 and A0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring. PMID:28182135
Li, Ying; Liu, Dan; Xu, Kailiang; Ta, Dean; Le, Lawrence H; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S 0 and A 0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S 0 and A 0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A 0, while the amplitude of S 0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S 0 and A 0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S 0 and A 0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring.
Brand, Andrew; Bradley, Michael T
2016-02-01
Confidence interval ( CI) widths were calculated for reported Cohen's d standardized effect sizes and examined in two automated surveys of published psychological literature. The first survey reviewed 1,902 articles from Psychological Science. The second survey reviewed a total of 5,169 articles from across the following four APA journals: Journal of Abnormal Psychology, Journal of Applied Psychology, Journal of Experimental Psychology: Human Perception and Performance, and Developmental Psychology. The median CI width for d was greater than 1 in both surveys. Hence, CI widths were, as Cohen (1994) speculated, embarrassingly large. Additional exploratory analyses revealed that CI widths varied across psychological research areas and that CI widths were not discernably decreasing over time. The theoretical implications of these findings are discussed along with ways of reducing the CI widths and thus improving precision of effect size estimation.
Intraflow width variations in Martian and terrestrial lava flows
NASA Astrophysics Data System (ADS)
Peitersen, Matthew N.; Crown, David A.
1997-03-01
Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.
Method of forming a variable width channel
NASA Technical Reports Server (NTRS)
Andrews, James T. (Inventor)
1989-01-01
A method of forming a channel of varying width in a body comprises the steps of forming a plurality of masking elements having an opening therethrough intersecting a plurality of the elements on a surface of the body, partially flowing the elements into the opening to form a masking pattern having a variable width opening therethrough, and removing portions of the exposed body to form the channel with a sidewall having a surface contour corresponding to an edge of the masking pattern.
NASA Astrophysics Data System (ADS)
Aizin, G. R.; Mikalopas, J.; Shur, M.
2016-05-01
An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.
Sailer, Benjamin F; Geibel, Margrit-Ann
2013-01-01
Variations in angulation of the x-ray tube affect the appearance of insufficient approximal crown margins on intraoral radiographs. This study examines the impact of such angular variation on the assessment of digital radiographs using three different X-ray tubes--Heliodent DS (Sirona), Gendex Expert DC (KaVo Dental) and Focus (KaVo Dental)--as well as the Gendex Visualix eHD CCD sensor (KaVo Dental). The test specimens, crowned teeth 46 from two mandibles provided by the Institute of Anatomy and Cell Biology, were examined with each tube. The results indicate great differences in the angles indicative of insufficient crown margins on X-ray images. Because of beam divergence and the crown marginal gap, the length and width of which frequently varies, it is difficult to infer any optimum angle from the data. This leads to the conclusion that at present, it is not possible to establish ideal angles for visualization of insufficient approximal crown margins.
Melvin, Elizabeth M.; Moore, Brandon R.; Gilchrist, Kristin H.; Grego, Sonia; Velev, Orlin D.
2011-01-01
The recent development of microfluidic “lab on a chip” devices requiring sample sizes <100 μL has given rise to the need to concentrate dilute samples and trap analytes, especially for surface-based detection techniques. We demonstrate a particle collection device capable of concentrating micron-sized particles in a predetermined area by combining AC electroosmosis (ACEO) and dielectrophoresis (DEP). The planar asymmetric electrode pattern uses ACEO pumping to induce equal, quadrilateral flow directed towards a stagnant region in the center of the device. A number of system parameters affecting particle collection efficiency were investigated including electrode and gap width, chamber height, applied potential and frequency, and number of repeating electrode pairs and electrode geometry. The robustness of the on-chip collection design was evaluated against varying electrolyte concentrations, particle types, and particle sizes. These devices are amenable to integration with a variety of detection techniques such as optical evanescent waveguide sensing. PMID:22662040
Direct Measurement of Lateral Correlations under Controlled Nanoconfinement
NASA Astrophysics Data System (ADS)
Kékicheff, P.; Iss, J.; Fontaine, P.; Johner, A.
2018-03-01
Lateral correlations along hydrophobic surfaces whose separation can be varied continuously are measured by x-ray scattering using a modified surface force apparatus coupled with synchrotron radiation, named SFAX. A weak isotropic diffuse scattering along the equatorial plane is revealed for mica surfaces rendered hydrophobic and charge neutral by immersion in cationic surfactant solutions at low concentrations. The peak corresponds to a lateral surface correlation length ξ ≈12 nm , without long-range order. These findings are compatible with the atomic force microscopy imaging of a single surface, where adsorbed surfactant stripes appear surrounded by bare mica zones. Remarkably, the scattering patterns remain stable for gap widths D larger than the lateral period but change in intensity and shape (to a lesser extent) as soon as D <ξ . This evolution codes for a redistribution of counterions (counterion release from antagonistic patches) and the associated new x-ray labeling of the patterns. The redistribution of counterions is also the key mechanism to the long-range electrostatic attraction between similar, overall charge-neutral walls, reported earlier.
Miscible viscous fingering with chemical reaction involving precipitation.
NASA Astrophysics Data System (ADS)
Bae, Si-Kyun; Nagatsu, Yuichiro; Kato, Yoshihito; Tada, Yutaka
2007-11-01
When a reactive and miscible less-viscous liquid displaces a more-viscous liquid in a Hele-Shaw cell, reactive miscible viscous fingering takes place. The present study has experimentally examined how precipitation produced by chemical reaction affects miscible viscous fingering pattern. A 97 wt % glycerin solution containing iron(III) nitrate (yellow) and a solution containing potassium hexacyano ferrate(II) (colorless) were used as the more- and less-viscous liquids, respectively. In this case, the chemical reaction instantaneously takes place and produces the precipitation being dark blue in color. The experiments were done by varying reactant concentrations, the cell's gap width, and the displacement speed. We compared the patterns involving the precipitation reaction with those in the non-reactive cases. We have found fylfot-like pattern is observed, depending on the experimental condition, which has never been formed in the non-reactive experiments. As the reactant concentrations are increased or the displacement speed is decreased, the effects of the precipitation on the patterns are more pronounced.
Evolution of mixing width induced by general Rayleigh-Taylor instability.
Zhang, You-Sheng; He, Zhi-Wei; Gao, Fu-Jie; Li, Xin-Liang; Tian, Bao-Lin
2016-06-01
Turbulent mixing induced by Rayleigh-Taylor (RT) instability occurs ubiquitously in many natural phenomena and engineering applications. As the simplest and primary descriptor of the mixing process, the evolution of mixing width of the mixing zone plays a notable role in the flows. The flows generally involve complex varying acceleration histories and widely varying density ratios, two dominant factors affecting the evolution of mixing width. However, no satisfactory theory for predicting the evolution has yet been established. Here a theory determining the evolution of mixing width in general RT flows is established to reproduce, first, all of the documented experiments conducted for diverse (i.e., constant, impulsive, oscillating, decreasing, increasing, and complex) acceleration histories and all density ratios. The theory is established in terms of the conservation principle, with special consideration given to the asymmetry of the volume-averaged density fields occurring in actual flows. The results reveal the sensitivity or insensitivity of the evolution of a mixing front of a neighboring light or heavy fluid to the degree of asymmetry and thus explain the distinct evolutions in two experiments with the same configurations.
NASA Astrophysics Data System (ADS)
Sharma, Tarun Kumar; Ranganath, Praveen; Nambiar, Siddharth; Selvaraja, Shankar Kumar
2018-03-01
A horizontally asymmetric transverse magnetic (TM) pass polarizer is presented. The device passes only TM mode and rejects transverse electric (TE) mode. The proposed device has an asymmetricity in the horizontal direction comprising a direction coupler region with a silicon waveguide, silicon nitride waveguide, and an air gap, all residing on silica. Between three equal width Si waveguides, we have one region filled with air and the other with SiN with unequal optimized widths. The device with its optimal dimensions yields an extremely low insertion loss (IL) of 0.16 dB for TM→TM, while TE is rejected by an IL of >48 dB. The proposed polarizer is operated between C&L bands with a high extinction ratio and broadband width of about 110 nm.
Analytic theory for the selection of Saffman-Taylor fingers in the presence of thin film effects
NASA Technical Reports Server (NTRS)
Tanveer, S.
1989-01-01
An analytic theory is presented for the width selection of Saffman-Taylor fingers in the presence of thin film effect. In the limit of small capillary number Ca and small gap to width ratio epsilon, such that epsilon much less than Ca much less than 1, it is found that fingers with relative width lambda less than 1/2 are possible such that lambda squared (1-lambda)/(1-2 lambda) = k epsilon/Ca(sup 3/2), where the positive constant k depends on the branch of solution and equals 2.776 for the first branch. A fully nonlinear analysis is necessary in this problem even to obtain the correct scaling law. It is also shown how in principle, the selection rule for arbitrary Ca can be obtained.
Age-related differences in gap detection: effects of task difficulty and cognitive ability.
Harris, Kelly C; Eckert, Mark A; Ahlstrom, Jayne B; Dubno, Judy R
2010-06-01
Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap location remained constant across trials. Taken together, these results suggest that age-related differences in complex measures of auditory temporal processing may be explained, in part, by age-related deficits in processing speed and attention. Copyright 2009 Elsevier B.V. All rights reserved.
Age-related differences in gap detection: Effects of task difficulty and cognitive ability
Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.
2009-01-01
Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap-detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap location remained constant across trials. Taken together, these results suggest that age-related differences in complex measures of auditory temporal processing may be explained, in part, by age-related deficits in processing speed and attention. PMID:19800958
A novel vascular clip design for the reliable induction of 2-kidney, 1-clip hypertension in the rat
Chelko, Stephen P.; Schmiedt, Chad W.; Lewis, Tristan H.; Lewis, Stephen J.
2012-01-01
The 2-kidney, 1-clip (2K1C) model has provided many insights into the pathogenesis of renovascular hypertension. However, studies using the 2K1C model often report low success rates of hypertension, with typical success rates of just 40–60%. We hypothesized that these low success rates are due to fundamental design flaws in the clips traditionally used in 2K1C models. Specifically, the gap widths of traditional silver clips may not be maintained during investigator handling and these clips may also be easily dislodged from the renal artery following placement. Therefore, we designed and tested a novel vascular clip possessing design features to maintain both gap width and position around the renal artery. In this initial study, application of these new clips to the left renal artery produced reliable and consistent levels of hypertension in rats. Nine-day application of clips with gap widths of 0.27, 0.25, and 0.23 mm elicited higher mean arterial blood pressures of 112 ± 4, 121 ± 6, and 135 ± 7 mmHg, respectively (n = 8 for each group), than those of sham-operated controls (95 ± 2 mmHg, n = 8). Moreover, 8 out of 8 rats in each of the 0.23 and 0.25 mm 2K1C groups were hypertensive, whereas 7 out of 8 rats in the 0.27 mm 2K1C group were hypertensive. Plasma renin concentrations were also increased in all 2K1C groups compared with sham-operated controls. In summary, this novel clip design may help eliminate the large degree of unreliability commonly encountered with the 2K1C model. PMID:22074718
A novel vascular clip design for the reliable induction of 2-kidney, 1-clip hypertension in the rat.
Chelko, Stephen P; Schmiedt, Chad W; Lewis, Tristan H; Lewis, Stephen J; Robertson, Tom P
2012-02-01
The 2-kidney, 1-clip (2K1C) model has provided many insights into the pathogenesis of renovascular hypertension. However, studies using the 2K1C model often report low success rates of hypertension, with typical success rates of just 40-60%. We hypothesized that these low success rates are due to fundamental design flaws in the clips traditionally used in 2K1C models. Specifically, the gap widths of traditional silver clips may not be maintained during investigator handling and these clips may also be easily dislodged from the renal artery following placement. Therefore, we designed and tested a novel vascular clip possessing design features to maintain both gap width and position around the renal artery. In this initial study, application of these new clips to the left renal artery produced reliable and consistent levels of hypertension in rats. Nine-day application of clips with gap widths of 0.27, 0.25, and 0.23 mm elicited higher mean arterial blood pressures of 112 ± 4, 121 ± 6, and 135 ± 7 mmHg, respectively (n = 8 for each group), than those of sham-operated controls (95 ± 2 mmHg, n = 8). Moreover, 8 out of 8 rats in each of the 0.23 and 0.25 mm 2K1C groups were hypertensive, whereas 7 out of 8 rats in the 0.27 mm 2K1C group were hypertensive. Plasma renin concentrations were also increased in all 2K1C groups compared with sham-operated controls. In summary, this novel clip design may help eliminate the large degree of unreliability commonly encountered with the 2K1C model.
Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams
NASA Astrophysics Data System (ADS)
Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.
2018-05-01
For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.
Dispersion-free radial transmission lines
Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA
2011-04-12
A dispersion-free radial transmission line ("DFRTL") preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material ("EPM") between the two conductors and surrounding a channel connecting the two holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the EPM is varied as a function of radius, so that the characteristic impedance of the DFRTL is held substantially constant, and pulse transmission therethrough is substantially dispersion-free. Preferably, the EPM is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied between sections as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected to minimize traversal error.
NASA Astrophysics Data System (ADS)
Zhang, J.; Lang, X. Y.; Jiang, Q.
2018-07-01
A systematic density functional theory calculation has been carried out to study the effect of edge terminating of F and S elements with different edge natures on the structure and electronic properties of armchair stanene nanoribbons (ASnNRs). Moreover, the corresponding size (ribbon width Na) dependence on these properties is also considered. The energy gap was found to be oscillated as a function of Na and could be classified into three distinct groups of 3m, 3m + 1 and 3m + 2. In addition, the energy gaps of ASnNRs saturated by S atoms differ from that did by F and H atoms in vibration trends as well VBM and CBM changes, where the energy gap is a direct energy gap with a moderate size.
Characterizing Detonating LX-17 Charges Crossing a Transverse Air Gap with Experiments and Modeling
NASA Astrophysics Data System (ADS)
Lauderbach, Lisa M.; Souers, P. Clark; Garcia, Frank; Vitello, Peter; Vandersall, Kevin S.
2009-12-01
Experiments were performed using detonating LX-17 (92.5% TATB, 7.5% Kel-F by weight) charges with various width transverse air gaps with manganin peizoresistive in-situ gauges present. The experiments, performed with 25 mm diameter by 25 mm long LX-17 pellets with the transverse air gap in between, showed that transverse gaps up to about 3 mm could be present without causing the detonation wave to fail to continue as a detonation. The Tarantula/JWL++ code was utilized to model the results and compare with the in-situ gauge records with some agreement to the experimental data with additional work needed for a better match to the data. This work will present the experimental details as well as comparison to the model results.
High-Voltage Breakdown Penalties for the Beam-Breakup Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August
2016-11-22
The strength of the dangerous beam breakup (BBU) instability in linear induction accelerators (LIAs) is determined by the transverse coupling impedance Z ⊥ of the induction cell cavity. For accelerating gap width w less than the beam pipe radius b, the transverse impedance is theoretically proportional to w/b, favoring narrow gaps to suppress BBU. On the other hand, cells with narrow gaps cannot support high accelerating gradients, because of electrical breakdown and shorting of the gap. Thus, there is an engineering trade-off between BBU growth and accelerating gradient, which must be considered for next generation LIAs now being designed. Inmore » this article this tradeoff is explored, using a simple pillbox cavity as an illustrative example. For this model, widening the gap to reduce the probability of breakdown increases BBU growth, unless higher magnetic focusing fields are used to further suppress the instability.« less
Dual-probe near-field fiber head with gap servo control for data storage applications.
Fang, Jen-Yu; Tien, Chung-Hao; Shieh, Han-Ping D
2007-10-29
We present a novel fiber-based near-field optical head consisting of a straw-shaped writing probe and a flat gap sensing probe. The straw-shaped probe with a C-aperture on the end face exhibits enhanced transmission by a factor of 3 orders of magnitude over a conventional fiber probe due to a hybrid effect that excites both propagation modes and surface plasmon waves. In the gap sensing probe, the spacing between the probe and the disk surface functions as an external cavity. The high sensitivity of the output power to the change in the gap width is used as a feedback control signal. We characterize and design the straw-shaped writing probe and the flat gap sensing probe. The dual-probe system is installed on a conventional biaxial actuator to demonstrate the capability of flying over a disk surface with nanometer position precision.
Marginal adaptation of ceramic veneers investigated with en face optical coherence tomography
NASA Astrophysics Data System (ADS)
Sinescu, Cosmin; Negruţiu, Meda-Lavinia; Petrescu, Emanuela; Rominu, Mihai; Marcauteanu, Corina; Rominu, Roxana; Hughes, Michael; Bradu, Adrian; Dobre, George; Podoleanu, Adrian G.
2009-07-01
The aim of this study was to analyze the quality of marginal adaptation and gap width of Empress veneers using en-face optical coherence tomography. The results prove the necessity of investigating the marginal adaptation after each veneer bonding process.
Investigation of the short argon arc with hot anode. II. Analytical model
NASA Astrophysics Data System (ADS)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.
2018-01-01
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes to the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. Good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.
Investigation of the short argon arc with hot anode. II. Analytical model
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...
2018-01-22
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
Investigation of the short argon arc with hot anode. II. Analytical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.
A short atmospheric pressure argon arc is studied numerically and analytically. In a short arc with an inter-electrode gap of several millimeters, non-equilibrium effects in plasma play an important role in operation of the arc. High anode temperature leads to electron emission and intensive radiation from its surface. A complete, self-consistent analytical model of the whole arc comprising of models for near-electrode regions, arc column, and a model of heat transfer in cylindrical electrodes was developed. The model predicts the width of non-equilibrium layers and arc column, voltages and plasma profiles in these regions, and heat and ion fluxes tomore » the electrodes. Parametric studies of the arc have been performed for a range of the arc current densities, inter-electrode gap widths, and gas pressures. The model was validated against experimental data and verified by comparison with numerical solution. In conclusion, good agreement between the analytical model and simulations and reasonable agreement with experimental data were obtained.« less
CFD study of leakage flows in shroud cavities of a compressor impeller
NASA Astrophysics Data System (ADS)
Soldatova, K.
2017-08-01
The flow character in a gap between shroud disc of an impeller and a stator surface (shroud cavity) influences disc friction loss, labyrinth seal loss (parasitic losses) and thrust force. Flow calculations inside the shroud cavity of a model of centrifugal compressor stage and its labyrinth seal in a range of flow rates and axial width and radial gap are presented. The results are presented in terms of non-dimensional coefficients of flow, disc friction and seal leakage losses coefficients and pressure coefficient. The distributions meridional and tangential flow velocities correspond to the continuity and equilibrium equations - flow radial circulation exists in wide cavity and is absent in narrow cavities. The radial pressure distributions as measured and calculated are not fully comparable. The possible reason is that CFD-calculated leakage coefficient is less than calculated by A.Stodola formula. The influence of a cavity width on the losses and the thrust force requires a balanced design.
Salem Milani, Amin; Rahimi, Saeed; Froughreyhani, Mohammad; Vahid Pakdel, Mahdi
2013-01-01
In various clinical situations, mineral trioxide aggregate (MTA) may come into direct contact or even be mixed with blood. The aim of the present study was to evaluate the effect of exposure to blood on marginal adaptation and surface microstructure of MTA. Thirty extracted human single-rooted teeth were used. Standard root canal treatment was carried out. Root-ends were resected, and retrocavities were prepared. The teeth were randomly divided into two groups (n = 15): in group 1, the internal surface of the cavities was coated with fresh blood. Then, the cavities were filled with MTA. The roots were immersed in molds containing fresh blood. In group 2, the aforementioned procedures were performed except that synthetic tissue fluid (STF) was used instead of blood. To assess the marginal adaptation, "gap perimeter" and "maximum gap width" were measured under scanning electron microscope. The surface microstructure was also examined. Independent samples t-test and Mann-Whitney U test were used to analyze the data. Maximum gap width and gap perimeter in the blood-exposed group were significantly larger than those in the STF-exposed group (p < 0.01). In the blood-exposed group, the crystals tended to be more rounded and less angular compared with the STF-exposed group, and there was a general lack of needle-like crystals. Exposure to blood during setting has a negative effect on marginal adaptation of MTA, and blood-exposed MTA has a different surface microstructure compared to STF-exposed MTA.
NASA Astrophysics Data System (ADS)
Zhang, Yuhui; Ning, Wenjun; Dai, Dong
2018-03-01
A systematic investigation on the dynamics and evolution mechanisms of multiple-current-pulse (MCP) behavior in homogeneous dielectric barrier discharge (HDBD) is carried out via fluid modelling. Inspecting the simulation results, two typical discharge regimes, namely the MCP-Townsend regime and MCP-glow regime, are found prevailing in MCP discharges, each with distinctive electrical and dynamic properties. Moreover, the evolution of MCP behavior with external parameters altering are illustrated and explicitly discussed. It is revealed that the discharge undergoes some different stages as external parameters vary, and the discharge in each stage follows a series of distinctive pattern in morphological characteristics and evolution trends. Among those stages, the pulse number per half cycle is perceived to observe non-monotonic variations with applied voltage amplitude (Vam) and gap width (dg) increasing, and a merging effect among pulses, mainly induced by the enhanced contribution of sinusoidal component to the total current, is considered responsible for such phenomenon. The variation of incipient discharge peak phase (Φpm) is dominated by the value of Vam as well as the proportion of total applied voltage that drops across the gas gap. Moreover, an abnormal, dramatic elevation in Jpm with dg increasing is observed, which could be evinced by the strengthened glow discharge structure and therefore enhanced space charge effect.
NASA Astrophysics Data System (ADS)
Yang, Ming; Ji, Qizheng; Gao, Zhiliang; Zhang, Shufeng; Lin, Zhaojun; Yuan, Yafei; Song, Bo; Mei, Gaofeng; Lu, Ziwei; He, Jihao
2017-11-01
For the fabricated AlGaN/GaN heterostructure field-effect transistors (HFETs) with different gate widths, the gate-channel carrier mobility is experimentally obtained from the measured current-voltage and capacitance-voltage curves. Under each gate voltage, the mobility gets lower with gate width increasing. Analysis shows that the phenomenon results from the polarization Coulomb field (PCF) scattering, which originates from the irregularly distributed polarization charges at the AlGaN/GaN interface. The device with a larger gate width is with a larger PCF scattering potential and a stronger PCF scattering intensity. As a function of gate width, PCF scattering potential shows a same trend with the mobility variation. And the theoretically calculated mobility values fits well with the experimentally obtained values. Varying gate widths will be a new perspective for the improvement of device characteristics by modulating the gate-channel carrier mobility.
Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot
NASA Astrophysics Data System (ADS)
Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang
2015-01-01
In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.
Park, Choul Yong; Marando, Catherine M; Liao, Jason A; Lee, Jimmy K; Kwon, Jiwon; Chuck, Roy S
2016-10-01
To investigate the architecture and distribution of collagen and elastin in human limbal conjunctiva, Tenon's capsule, and sclera. The limbal conjunctiva, Tenon's capsule, and sclera of human donor corneal buttons were imaged with an inverted two-photon excited fluorescence microscope. No fixation process was necessary. The laser (Ti:sapphire) was tuned at 850 nm for two-photon excitation. Backscatter signals of second harmonic generation (SHG) and autofluorescence (AF) were collected through a 425/30-nm and a 525/45-nm emission filter, respectively. Multiple, consecutive, and overlapping (z-stack) images were acquired. Collagen signals were collected with SHG, whereas elastin signals were collected with AF. The size and density of collagen bundles varied widely depending on depth: increasing from conjunctiva to sclera. In superficial image planes, collagen bundles were <10 μm in width, in a loose, disorganized arrangement. In deeper image planes (episclera and superficial sclera), collagen bundles were thicker (near 100 μm in width) and densely packed. Comparatively, elastin fibers were thinner and sparse. The orientation of elastin fibers was independent of collagen fibers in superficial layers; but in deep sclera, elastin fibers wove through collagen interbundle gaps. At the limbus, both collagen and elastin fibers were relatively compact and were distributed perpendicular to the limbal annulus. Two-photon excited fluorescence microscopy has enabled us to understand in greater detail the collagen and elastin architecture of the human limbal conjunctiva, Tenon's capsule, and sclera.
Optimization and experimental validation of electrostatic adhesive geometry
NASA Astrophysics Data System (ADS)
Ruffatto, D.; Shah, J.; Spenko, M.
This paper introduces a method to optimize the electrode geometry of electrostatic adhesives for robotic gripping, attachment, and manipulation applications. Electrostatic adhesion is achieved by applying a high voltage potential, on the order of kV, to a set of electrodes, which generates an electric field. The electric field polarizes the substrate material and creates an adhesion force. Previous attempts at creating electro-static adhesives have shown them to be effective, but researchers have made no effort to optimize the electrode configuration and geometry. We have shown that by optimizing the geometry of the electrode configuration, the electric field strength, and therefore the adhesion force, is enhanced. To accomplish this, Comsol Multiphysics was utilized to evaluate the average electric field generated by a given electrode geometry. Several electrode patterns were evaluated, including parallel conductors, concentric circles, Hilbert curves (a fractal geometry) and spirals. The arrangement of the electrodes in concentric circles with varying electrode widths proved to be the most effective. The most effective sizing was to use the smallest gap spacing allowable coupled with a variable electrode width. These results were experimentally validated on several different surfaces including drywall, wood, tile, glass, and steel. A new manufacturing process allowing for the fabrication of thin, conformal electro-static adhesive pads was utilized. By combining the optimized electrode geometry with the new fabrication process we are able to demonstrate a marked improvement of up to 500% in shear pressure when compared to previously published values.
Comparison of Various Supersonic Turbine Tip Designs to Minimize Aerodynamic Loss and Tip Heating
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali
2012-01-01
The rotor tips of axial turbines experience high heat flux and are the cause of aerodynamic losses due to tip clearance flows, and in the case of supersonic tips, shocks. As stage loadings increase, the flow in the tip gap approaches and exceeds sonic conditions. This introduces effects such as shock-boundary layer interactions and choked flow that are not observed for subsonic tip flows that have been studied extensively in literature. This work simulates the tip clearance flow for a flat tip, a diverging tip gap and several contoured tips to assess the possibility of minimizing tip heat flux while maintaining a constant massflow from the pressure side to the suction side of the rotor, through the tip clearance. The Computational Fluid Dynamics (CFD) code GlennHT was used for the simulations. Due to the strong favorable pressure gradients the simulations assumed laminar conditions in the tip gap. The nominal tip gap width to height ratio for this study is 6.0. The Reynolds number of the flow is 2.4 x 10(exp 5) based on nominal tip width and exit velocity. A wavy wall design was found to reduce heat flux by 5 percent but suffered from an additional 6 percent in aerodynamic loss coefficient. Conventional tip recesses are found to perform far worse than a flat tip due to severe shock heating. Overall, the baseline flat tip was the second best performer. A diverging converging tip gap with a hole was found to be the best choice. Average tip heat flux was reduced by 37 percent and aerodynamic losses were cut by over 6 percent.
[Application of rapid prototyping technology on nasoalveolar molding for cleft lip and palate].
Shen, Congcong; Chai, Gang
2017-12-01
To apply rapid prototyping (RP) technology on pre-fabricating nasoalveolar molding (NAM) appliances, and compare clinical outcomes and complications with traditional NAM appliances. Between June 2014 and September 2016, 39 children with unilateral cleft lip and palate were included in study. Seventeen children (test group) had received novel NAM protocol by pre-fabricating NAM appliances using RP technology, and the other 22 children (control group) had received traditional NAM protocol. There was no significant difference in gender, age, the side of cleft lip and palate, and the width of the alveolar cleft gap before treatment between 2 groups ( P >0.05). The change of width of the alveolar cleft gap, number of clinic visit, treatment time, and complications were compared between 2 groups. The number of clinic visit was less in test group than in control group ( P <0.05). There was no significant difference in treatment time between 2 groups ( P >0.05). During treatment, there was 16 children (72.2%) of skin irritation, 3 (13.6%) of mucosal ulceration, 1 (4.5%) of intraoral bleeding, 1 (4.5%) of alveolar arch T-shap asymmetry in control group. And there were 11 children (64.7%) of skin irritation, 3 (17.6%) of mucosal ulceration in test group. There was no significant difference in the incidence of complications between 2 groups ( P >0.05). After treatment, the anterior alveolar cleft width, horizontal cleft width, sagittal cleft width, antero-medial alveolar ridges angle of the healthy side, angle between anterior alveolar and posterior alveolar baseline of the healthy side, perpendicular distance from buccal frenum point to sagittal line were significantly reduced when compared with the values before treatment ( P <0.05). The angle between the anterior segments of two sides, angle between buccal frenum point and posterior baseline were significant increased when compared with the values before treatment ( P <0.05). There was no significant difference in the differences between pre- and post-treatment of above indexes between 2 groups ( P >0.05). There also was no significant difference in posterior alveolar width, the width between the middle parts of alveolar, vertical cleft width, antero-medial alveolar ridges angle of the affected side, and angle between anterior alveolar and posterior alveolar baseline of the affected side between pre- and post-treatment in each group ( P >0.05). Clinical outcome of novel approach was equivalent to traditional protocol; however, the number of clinic visit decreased. With improving of RP technology, it would provide a more consistency and convenient way for sequential treatment with cleft lip and palate.
Gap formation by inclined massive planets in locally isothermal three-dimensional discs
NASA Astrophysics Data System (ADS)
Chametla, Raúl O.; Sánchez-Salcedo, F. J.; Masset, F. S.; Hidalgo-Gámez, A. M.
2017-07-01
We study gap formation in gaseous protoplanetary discs by a Jupiter mass planet. The planet's orbit is circular and inclined relative to the mid-plane of the disc. We use the impulse approximation to estimate the gravitational tidal torque between the planet and the disc, and infer the gap profile. For low-mass discs, we provide a criterion for gap opening when the orbital inclination is ≤30°. Using the fargo3d code, we simulate the disc response to an inclined massive planet. The dependence of the depth and width of the gap obtained in the simulations on the inclination of the planet is broadly consistent with the scaling laws derived in the impulse approximation. Although we mainly focus on planets kept on fixed orbits, the formalism permits to infer the temporal evolution of the gap profile in the cases where the inclination of the planet changes with time. This study may be useful to understand the migration of massive planets on inclined orbit, because the strength of the interaction with the disc depends on whether a gap is opened or not.
Photonic band gap properties of one-dimensional Thue-Morse all-dielectric photonic quasicrystal
NASA Astrophysics Data System (ADS)
Yue, Chenxi; Tan, Wei; Liu, Jianjun
2018-05-01
In this paper, the photonic band gap (PBG) properties of one-dimensional (1D) Thue-Morse photonic quasicrystal (PQC) S4 structure are theoretically investigated by using transfer matrix method in Bragg condition. The effects of the center wavelength, relative permittivity and incident angle on PBG properties are elaborately analyzed. Numerical results reveal that, in the case of normal incidence, the symmetry and periodicity properties of the photonic band structure are presented. As the center wavelength increases, the PBG center frequency and PBG width decrease while the photonic band structure is always symmetrical about the central frequency and the photonic band structure repeats periodically in the expanding observation frequency range. With the decrease of relative permittivity contrast, the PBG width and the relative PBG width gradually decreases until PBG disappears while the symmetry of the photonic band structure always exists. In the case of oblique incidence, as the incident angle increases, multiple narrow PBGs gradually merge into a wide PBG for the TE mode while for the TM mode, the number of PBG continuously decreases and eventually disappears, i.e., multiple narrow PBGs become a wide passband for the TM mode. The research results will provide a reference for the choice of the material, the incident angle for the PBG properties and its applications of 1D Thue-Morse PQC.
Singh, Shivam; Li, Cheng; Panzer, Fabian; Narasimhan, K L; Graeser, Anna; Gujar, Tanaji P; Köhler, Anna; Thelakkat, Mukundan; Huettner, Sven; Kabra, Dinesh
2016-08-04
In this Letter, we investigate the temperature dependence of the optical properties of methylammonium lead iodide (MAPbI3 = CH3NH3PbI3) from room temperature to 6 K. In both the tetragonal (T > 163 K) and the orthorhombic (T < 163 K) phases of MAPbI3, the band gap (from both absorption and photoluminescence (PL) measurements) decreases with decrease in temperature, in contrast to what is normally seen for many inorganic semiconductors, such as Si, GaAs, GaN, etc. We show that in the perovskites reported here, the temperature coefficient of thermal expansion is large and accounts for the positive temperature coefficient of the band gap. A detailed analysis of the exciton line width allows us to distinguish between static and dynamic disorder. The low-energy tail of the exciton absorption is reminiscent of Urbach absorption. The Urbach energy is a measure of the disorder, which is modeled using thermal and static disorder for both the phases separately. The static disorder component, manifested in the exciton line width at low temperature, is small. Above 60 K, thermal disorder increases the line width. Both these features are a measure of the high crystal quality and low disorder of the perovskite films even though they are produced from solution.
NASA Technical Reports Server (NTRS)
Bellavia, J., Jr.; Kane, J. O. (Inventor)
1980-01-01
An apparatus is described for providing thermal and pressure sealing in an elongated space of varying width between adjacent surface of two members. The apparatus is mounted for at least limited lateral movement between the members and may comprise: an elongated support attached to one of the adjacent surfaces; a second elongated support member attached to the other of the adjacent surfaces, and an elongated seal member sandwiched between the first and second support members. In its non-deformed state, the elongated seal member may be substantially cylindrical but capable of deformation to accommodate limited lateral movement between the adjacent surfaces and varying widths of the space.
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions. PMID:28076418
Sensorless Modeling of Varying Pulse Width Modulator Resolutions in Three-Phase Induction Motors.
Marko, Matthew David; Shevach, Glenn
2017-01-01
A sensorless algorithm was developed to predict rotor speeds in an electric three-phase induction motor. This sensorless model requires a measurement of the stator currents and voltages, and the rotor speed is predicted accurately without any mechanical measurement of the rotor speed. A model of an electric vehicle undergoing acceleration was built, and the sensorless prediction of the simulation rotor speed was determined to be robust even in the presence of fluctuating motor parameters and significant sensor errors. Studies were conducted for varying pulse width modulator resolutions, and the sensorless model was accurate for all resolutions of sinusoidal voltage functions.
Sizable band gap in organometallic topological insulator
NASA Astrophysics Data System (ADS)
Derakhshan, V.; Ketabi, S. A.
2017-01-01
Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.
Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.
Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P
2017-12-01
The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.
External control of photonic bands in a magnetized cold plasma
NASA Astrophysics Data System (ADS)
Kumar, N.; Singh, P. P.; Suthar, B.; Kumar, A.; Thapa, K. B.
2018-05-01
In this analysis, the effect of external rectangle-wave-like periodic magnetic field, on photonic bandgaps (PBGs) exhibited by bulk cold plasma, has been illustrated. It is found that the forbidden gap for normal incidence decreases with a decrease in the thickness ratio for a constant magnetic field. A new gap appears for TM polarization at oblique incidence that is attributed to the Bragg's interference of plasma layers and this new gap width depends on the incident angle as well as the magnitude of the magnetic field. There is also a shifting in gap locations depending on the magnitude of the magnetic field. It is demonstrated that external parameters like magnetic field strength and the ratio of two parts of spatial period along with incident angle can tune the PBGs in a magnetized cold plasma.
CHARACTERIZING DETONATING LX-17 CHARGES CROSSING A TRANSVERSE AIR GAP WITH EXPERIMENTS AND MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauderbach, L M; Souers, P C; Garcia, F
2009-06-26
Experiments were performed using detonating LX-17 (92.5% TATB, 7.5% Kel-F by weight) charges with various width transverse air gaps with manganin peizoresistive in-situ gauges present. The experiments, performed with 25 mm diameter by 25 mm long LX-17 pellets with the transverse air gap in between, showed that transverse gaps up to about 3 mm could be present without causing the detonation wave to fail to continue as a detonation. The Tarantula/JWL{sup ++} code was utilized to model the results and compare with the in-situ gauge records with some agreement to the experimental data with additional work needed for a bettermore » match to the data. This work will present the experimental details as well as comparison to the model results.« less
Murashige, Tomotaka; Kosaka, Ryo; Sakota, Daisuke; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu
2015-08-01
The purpose of this study is to evaluate a spiral groove geometry for a thrust bearing to improve the hemolysis level in a hydrodynamically levitated centrifugal blood pump. We compared three geometric models: (i) the groove width is the same as the ridge width at any given polar coordinate (conventional model); (ii) the groove width contracts inward from 9.7 to 0.5 mm (contraction model); and (iii) the groove width expands inward from 0.5 to 4.2 mm (expansion model). To evaluate the hemolysis level, an impeller levitation performance test and in vitro hemolysis test were conducted using a mock circulation loop. In these tests, the driving conditions were set at a pressure head of 200 mm Hg and a flow rate of 4.0 L/min. As a result of the impeller levitation performance test, the bottom bearing gaps of the contraction and conventional models were 88 and 25 μm, respectively. The impeller of the expansion model touched the bottom housing. In the hemolysis test, the relative normalized index of hemolysis (NIH) ratios of the contraction model in comparison with BPX-80 and HPM-15 were 0.6 and 0.9, respectively. In contrast, the relative NIH ratios of the conventional model in comparison with BPX-80 and HPM-15 were 9.6 and 13.7, respectively. We confirmed that the contraction model achieved a large bearing gap and improved the hemolysis level in a hydrodynamically levitated centrifugal blood pump. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Lovich, Jeffrey E.; Madrak, Sheila V.; Drost, Charles A.; Monatesti, Anthony J.; Casper, Dennis; Znari, Mohammed
2012-01-01
We studied the reproductive ecology of female Sonora mud turtles (Kinosternon sonoriense) at Montezuma Well, a chemically-challenging natural wetland in central Arizona, USA. Females matured between 115.5 and 125 mm carapace length (CL) and 36-54% produced eggs each year. Eggs were detected in X-radiographs from 23 April-28 September (2007-2008) and the highest proportion (56%) of adult females with eggs occurred in June and July. Clutch frequency was rarely more than once per year. Clutch size was weakly correlated with body size, ranged from 1-8 (mean = 4.96) and did not differ significantly between years. X-ray egg width ranged from 17.8-21.7 mm (mean 19.4 mm) and varied more among clutches than within. Mean X-ray egg width of a clutch did not vary significantly with CL of females, although X-ray pelvic aperture width increased with CL. We observed no evidence of a morphological constraint on egg width. In addition, greater variation in clutch size, relative to egg width, suggests that egg size is optimized in this hydrologically stable but chemically-challenging habitat. We suggest that the diversity of architectures exhibited by the turtle pelvis, and their associated lack of correspondence to taxonomic or behavioral groupings, explains some of the variation observed in egg size of turtles.
Valente, Daniel L.; Braasch, Jonas; Myrbeck, Shane A.
2012-01-01
Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audiovisual environment in which participants were instructed to make auditory width judgments in dynamic bi-modal settings. The results of these psychophysical tests suggest the importance of congruent audio visual presentation to the ecological interpretation of an auditory scene. Supporting data were accumulated in five rooms of ascending volumes and varying reverberation times. Participants were given an audiovisual matching test in which they were instructed to pan the auditory width of a performing ensemble to a varying set of audio and visual cues in rooms. Results show that both auditory and visual factors affect the collected responses and that the two sensory modalities coincide in distinct interactions. The greatest differences between the panned audio stimuli given a fixed visual width were found in the physical space with the largest volume and the greatest source distance. These results suggest, in this specific instance, a predominance of auditory cues in the spatial analysis of the bi-modal scene. PMID:22280585
NASA Astrophysics Data System (ADS)
Chávez, Yoshua; Chacón-Acosta, Guillermo; Dagdug, Leonardo
2018-05-01
Axial diffusion in channels and tubes of smoothly-varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with a position-dependent effective diffusion coefficient, by means of the modified Fick–Jacobs equation. In this work, we derive analytical expressions for the position-dependent effective diffusivity for two-dimensional asymmetric varying-width channels, and for three-dimensional curved midline tubes, formed by straight walls. To this end, we use a recently developed theoretical framework using the Frenet–Serret moving frame as the coordinate system (2016 J. Chem. Phys. 145 074105). For narrow tubes and channels, an effective one-dimensional description reducing the diffusion equation to a Fick–Jacobs-like equation in general coordinates is used. From this last equation, one can calculate the effective diffusion coefficient applying Neumann boundary conditions.
Obstacle traversal and route choice in flying honeybees: Evidence for individual handedness
Ong, Marielle; Bulmer, Michael; Groening, Julia
2017-01-01
Flying insects constantly face the challenge of choosing efficient, safe and collision-free routes while navigating through dense foliage. We examined the route-choice behavior of foraging honeybees when they encountered a barrier which could be traversed by flying through one of two apertures, positioned side by side. When the bees’ choice behavior was averaged over the entire tested population, the two apertures were chosen with equal frequency when they were equally wide. When the apertures were of different width, the bees, on average, showed a preference for the wider aperture, which increased sharply with the difference between the aperture widths. Thus, bees are able to discriminate the widths of oncoming gaps and choose the passage which is presumably safer and quicker to transit. Examination of the behavior of individual bees revealed that, when the two apertures were equally wide, ca. 55% of the bees displayed no side bias in their choices. However, the remaining 45% showed varying degrees of bias, with one half of them preferring the left-hand aperture, and the other half the right-hand aperture. The existence of distinct individual biases was confirmed by measuring the times required by biased bees to transit various aperture configurations: The transit time was longer if a bee’s intrinsic bias forced it to engage with the narrower aperture. Our results show that, at the population level, bees do not exhibit ‘handedness’ in choosing routes; however, individual bees display an idiosyncratic bias that can range from a strong left bias, through zero bias, to a strong right bias. In honeybees, previous studies of olfactory and visual learning have demonstrated clear biases at the population level. To our knowledge, our study is the first to uncover the existence of individually distinct biases in honeybees. We also show how a distribution of biases among individual honeybees can be advantageous in facilitating rapid transit of a group of bees through a cluttered environment, without any centralized decision-making or control. PMID:29095830
Probing the Band Structure of Ultrathin MoTe2 via Strain
NASA Astrophysics Data System (ADS)
Aslan, Burak; Datye, Isha; Kuo, Hsueh-Hui; Mleczko, Michal; Fisher, Ian; Pop, Eric; Heinz, Tony
Molybdenum ditelluride (MoTe2) is a semiconducting layered group VI transition metal dichalcogenide with an optical band gap of 1.1 and 0.9 eV in the monolayer and bulk, respectively. The bulk crystal possesses an indirect gap whereas the monolayer has a direct one. It is still under debate whether the direct-to-indirect gap crossover occurs at the monolayer or bilayer limit at room temperature, resulting from the fact that the two gaps are very close to one another in ultrathin crystals. We take advantage of this closeness by tuning the two gaps with in-plane tensile strain. In particular, we employ photoluminescence and absorption spectroscopy to probe the near-band-edge optical transitions and study their line-shapes to distinguish the direct and indirect gaps in few-layer MoTe2. We observe that the applied strain redshifts the direct and indirect gaps at different rates and strongly affects the spectral widths of the optical transitions. Our observations help us understand what contributes to the broadening of the A exciton peak in ultrathin MoTe2 and how the direct-to-indirect gap crossover occurs with decreasing thickness.
On a two-phase Hele-Shaw problem with a time-dependent gap and distributions of sinks and sources
NASA Astrophysics Data System (ADS)
Savina, Tatiana; Akinyemi, Lanre; Savin, Avital
2018-01-01
A two-phase Hele-Shaw problem with a time-dependent gap describes the evolution of the interface, which separates two fluids sandwiched between two plates. The fluids have different viscosities. In addition to the change in the gap width of the Hele-Shaw cell, the interface is driven by the presence of some special distributions of sinks and sources located in both the interior and exterior domains. The effect of surface tension is neglected. Using the Schwarz function approach, we give examples of exact solutions when the interface belongs to a certain family of algebraic curves and the curves do not form cusps. The family of curves are defined by the initial shape of the free boundary.
Harnessing the bistable composite shells to design a tunable phononic band gap structure
NASA Astrophysics Data System (ADS)
Li, Yi; Xu, Yanlong
2018-02-01
By proposing a system composed of an array of bistable composite shells immersed in air, we develop a new class of periodic structure to control the propagation of sound. Through numerical investigation, we find that the acoustic band gap of this system can be switched on and off by triggering the snap through deformation of the bistable composite shells. The shape of cross section and filling fraction of unit cell can be altered by different number of bistable composite shells, and they have strong impact on the position and width of the band gap. The proposed concept paves the way of using the bistable structures to design a new class of metamaterials that can be enable to manipulate sound.
Electronic and Optical properties of Graphene Nanoribbons
NASA Astrophysics Data System (ADS)
Molinari, Elisa; Ferretti, Andrea; Cardoso, Claudia; Prezzi, Deborah; Ruini, Alice
Narrow graphene nanoribbons (GNRs) exhibit substantial electronic band gaps, and optical properties expected to be fundamentally different from the ones of their parent material graphene. Unlike graphene the optical response of GNRs may be tuned by the ribbon width and the directly related electronic band gap. We have addressed the optical properties of chevron-like and finite-size armchair nanoribbons by computing the fundamental and optical gap from ab initio methods. Our results are in very good agreement with the experimental values obtained by STS, ARPES, and differential reflectance spectroscopy, indicating that this computational scheme can be quantitatively predictive for electronic and optical spectroscopies of nanostructures. These study has been partly supported by the EU Centre of Excellence ''MaX - MAterials design at the eXascale''.
Acoustic band gaps of the woodpile sonic crystal with the simple cubic lattice
NASA Astrophysics Data System (ADS)
Wu, Liang-Yu; Chen, Lien-Wen
2011-02-01
This study theoretically and experimentally investigates the acoustic band gap of a three-dimensional woodpile sonic crystal. Such crystals are built by blocks or rods that are orthogonally stacked together. The adjacent layers are perpendicular to each other. The woodpile structure is embedded in air background. Their band structures and transmission spectra are calculated using the finite element method with a periodic boundary condition. The dependence of the band gap on the width of the stacked rods is discussed. The deaf bands in the band structure are observed by comparing with the calculated transmission spectra. The experimental transmission spectra for the Γ-X and Γ-X' directions are also presented. The calculated results are compared with the experimental results.
Delay-tunable gap-soliton-based slow-light system
NASA Astrophysics Data System (ADS)
Mok, Joe T.; de Sterke, C. Martijn; Eggleton, Benjamin J.
2006-12-01
We numerically and analytically evaluate the delay of solitons propagating slowly, and without broadening, in an apodized Bragg grating. Simulations indicate that a 100 mm Bragg grating with Δn = 10-3 can delay sub-nanosecond pulses by nearly 20 pulse widths without any change in the output pulse width. Delay tunability is achieved by simultaneously adjusting the launch power and detuning. A simple analytic model is developed to describe the monotonic dependence of delay on Δn and compared with simulations. As the intensity may be greatly enhanced due to a reduced velocity, a procedure for improving the delay while avoiding material damage is outlined.
Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehdi Aghaei, Sadegh; Calizo, Irene, E-mail: icalizo@fiu.edu
2015-09-14
The popularity of graphene owing to its unique and exotic properties has triggered a great deal of interest in other two-dimensional nanomaterials. Among them silicene shows considerable promise for electronic devices with a carrier mobility comparable to graphene, flexible buckled structure, and expected compatibility with silicon electronics. Using first-principle calculations based on density functional theory, the electronic properties of armchair silicene nanoribbons perforated with periodic nanoholes (ASiNRPNHs) are investigated. Two different configurations of mono-hydrogenated (:H) and di-hydrogenated (:2H) silicene edges are considered. Pristine armchair silicene nanoribbons (ASiNRs) can be categorized into three branches with width W = 3P − 1, 3P, andmore » 3P + 1, P is an integer. The order of their energy gaps change from “E{sub G} (3P − 1) < E{sub G} (3P) < E{sub G} (3P + 1)” for W-ASiNRs:H to “E{sub G} (3P + 1) < E{sub G} (3P − 1) < E{sub G} (3P)” for W-ASiNRs:2H. We found the band gaps of W-ASiNRs:H and (W + 2)-ASiNRs:2H are slightly different, giving larger band gaps for wider ASiNRs:2H. ASiNRPNHs' band gaps changed based on the nanoribbon's width, nanohole's repeat periodicity and position relative to the nanoribbon's edge compared to pristine ASiNRs because of changes in quantum confinement strength. ASiNRPNHs:2H are more stable than ASiNRPNHs:H and their band gaps are noticeably greater than ASiNRPNHs:H. We found that the value of energy band gap for 12-ASiNRPNHs:2H with repeat periodicity of 2 is 0.923 eV. This value is about 2.2 times greater than pristine ASiNR:2H and double that of the 12-ASiNRPNHs:H with repeat periodicity of 2.« less
NASA Astrophysics Data System (ADS)
Srivastava, Sanjeev K.; Aghajamali, Alireza
2016-05-01
Theoretical investigation of photonic band gaps or reflection bands in one-dimensional annular photonic crystal (APC) containing double negative (DNG) metamaterials and air has been presented. The proposed structure consists of the alternate layers of dispersive DNG material and air immersed in free space. In order to study photonic band gaps we obtain the reflectance spectrum of the annular PC by employing the transfer matrix method (TMM) in the cylindrical waves for both TE and TM polarizations. In this work we study the effect of azimuthal mode number (m) and starting radius (ρ0) on the three band gaps viz. zero averaged refractive index (zero-nbar) gap, zero permittivity (zero- ε) and zero permeability (zero- μ) gaps. It is found that for m ≥ 1 , zero- μ gap appears in TE mode and zero- ε gap appears in TM mode. The width of both zero- μ and zero- ε gap increases by increasing m values, but the enhancement of zero- μ gap is more appreciable. Also, the effect of ρ0 on the three band gaps (reflection bands) of annular PC structure at the given m-number has been studied, for both TE and TM polarizations. The result shows that in both polarizations zero- ε and zero- μ gaps decreases when ρ0 increases, whereas zero-nbar gap remains invariant.
Dennis, B. S.; Haftel, M. I.; Czaplewski, D. A.; ...
2015-03-30
Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This ismore » achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Here, such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.« less
NASA Astrophysics Data System (ADS)
Kryshtal, R. G.; Medved, A. V.
2015-12-01
Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW - magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW - magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW - magnonic crystals are promising for signal processing in the GHz range.
A Twenty-Five-Year Review of Knowledge Gap Research.
ERIC Educational Resources Information Center
Gaziano, Cecilie
Evidence from 34 studies published since a 1983 review of 58 earlier studies underscores knowledge inequalities as an enduring phenomenon and emphasizes that interest in the knowledge gap phenomenon is accelerating. All 10 studies which varied "media publicity" supported the hypothesis. Eleven of 12 studies which varied some aspect of…
Bauman, Stephen J.; Brawley, Zachary T.; Darweesh, Ahmad A.; Herzog, Joseph B.
2017-01-01
This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness. PMID:28665308
Wang, Qing; Kitaura, Ryo; Suzuki, Shoji; Miyauchi, Yuhei; Matsuda, Kazunari; Yamamoto, Yuta; Arai, Shigeo; Shinohara, Hisanori
2016-01-26
Edge-dependent electronic properties of graphene nanoribbons (GNRs) have attracted intense interests. To fully understand the electronic properties of GNRs, the combination of precise structural characterization and electronic property measurement is essential. For this purpose, two experimental techniques using free-standing GNR devices have been developed, which leads to the simultaneous characterization of electronic properties and structures of GNRs. Free-standing graphene has been sculpted by a focused electron beam in transmission electron microscope (TEM) and then purified and narrowed by Joule heating down to several nanometer width. Structure-dependent electronic properties are observed in TEM, and significant increase in sheet resistance and semiconducting behavior become more salient as the width of GNR decreases. The narrowest GNR width we obtained with the present method is about 1.6 nm with a large transport gap of 400 meV.
Figures of merit for laser beam quality
NASA Technical Reports Server (NTRS)
Milster, T. D.; Walker, E. P.
1993-01-01
It was shown how full-width at half maximum (FWHM), full-width at 1/e(sup 2) (FW1/e(sup 2)), Strehl ratio, and encircled energy figures of merit vary with different types of aberration and measurement methods. The array sampling method and the slit-scan method are examined in detail. Our irradiance in the exit pupil of the optical system is a simple gaussian. It was found that in general the slit-scan method and the array method do not yield the same result. The width measurements for the central lobe of the diffraction pattern are very insensitive to aberration.
NASA Technical Reports Server (NTRS)
Gibbons, D. F.
1977-01-01
The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.
El-Serehy, Hamed A.; Al-Rasheid, Khaled A.; Ibrahim, Nesreen K.; Al-Misned, Fahad A.
2015-01-01
A reproductive biology study of the spider crab Schizophrys aspera (H. Milne Edwards, 1834) was conducted in the Suez Canal from July 2012 to June 2013. The annual sex ratio (Male:Female) of S. aspera was female biased with values of 1:1.25. Out of the four ovarian development stages of this crab, two stages were observed in the Suez Canal throughout the whole year. The ovigerous crab’s carapace width varied from 28 to 52 mm. This crab species can spawn during most of the year in the canal water, with a peak during late spring and early winter. The fecundity of ovigerous females ranged between 2349 and 13600 eggs with a mean of 5494 ± 1486 eggs. Female crabs that reached sexual maturity exhibited a minimum carapace width varying between 22 and 46 mm, and fifty percentage of all ovigerous females showed a carapace width of 36 mm. PMID:26587008
El-Serehy, Hamed A; Al-Rasheid, Khaled A; Ibrahim, Nesreen K; Al-Misned, Fahad A
2015-11-01
A reproductive biology study of the spider crab Schizophrys aspera (H. Milne Edwards, 1834) was conducted in the Suez Canal from July 2012 to June 2013. The annual sex ratio (Male:Female) of S. aspera was female biased with values of 1:1.25. Out of the four ovarian development stages of this crab, two stages were observed in the Suez Canal throughout the whole year. The ovigerous crab's carapace width varied from 28 to 52 mm. This crab species can spawn during most of the year in the canal water, with a peak during late spring and early winter. The fecundity of ovigerous females ranged between 2349 and 13600 eggs with a mean of 5494 ± 1486 eggs. Female crabs that reached sexual maturity exhibited a minimum carapace width varying between 22 and 46 mm, and fifty percentage of all ovigerous females showed a carapace width of 36 mm.
Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan
2017-01-26
Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV 0.2 , indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections.
Zhang, Chen; Li, Geng; Gao, Ming; Zeng, XiaoYan
2017-01-01
Both laser-arc hybrid welding and narrow gap welding have potential for the fabrication of thick sections, but their combination has been seldom studied. In this research, 40 mm thick mild steel was welded by narrow gap laser-arc hybrid welding. A weld with smooth layer transition, free of visible defects, was obtained by nine passes at a 6 mm width narrow gap. The lower part of the weld has the lowest mechanical properties because of the lowest amount of acicular ferrite, but its ultimate tensile strength and impact absorbing energy is still 49% and 60% higher than those of base metal, respectively. The microhardness deviation of all filler layers along weld thickness direction is no more than 15 HV0.2, indicating that no temper softening appeared during multiple heat cycles. The results provide an alternative technique for improving the efficiency and quality of welding thick sections. PMID:28772469
NASA Astrophysics Data System (ADS)
Hoang, Bao; Wong, Frankie; Redick, Tod; Masui, Hirokazu; Endo, Taishi; Toyoda, Kazuhiro; Cho, Mengu
2011-10-01
A series of electrostatic discharge (ESD) tests was performed on solar array test coupons consisting of Advanced Triple Junction InGaP2/InGaAs/Ge solar cells. The motivation for these tests was to evaluate the effects of ESD on solar array design without room temperature vulcanized (RTV) adhesive grout between the string-to-string parallel gaps. To investigate the threshold of permanently sustained secondary arcs, various combinations of gap width, load voltage and string current were tested in a vacuum chamber equipped with an electron beam gun. This ESD test program included the ESD test circuit with simulated panel coverglass flashover. Although ESD events did not result in permanent sustained arcs, the insulation resistance between strings was found to decrease as the number of secondary arcs accumulated in the gap.
Characterizing Detonating LX-17 Charges Crossing a Transverse Air Gap with Experiments and Modeling
NASA Astrophysics Data System (ADS)
Lauderbach, Lisa M.; Souers, P. Clark; Garcia, Frank; Vitello, Peter; Vandersall, Kevin S.
2009-06-01
Experiments were performed using detonating LX-17 (92.5% TATB, 7.5% Kel-f by weight) charges with various width transverse air gaps both with and without manganin peizoresistive in-situ gauges present. The experiments, performed with 25 mm diameter by 25 mm long LX-17 pellets with the transverse air gap in between, showed that transverse gaps up to about 3 mm could be present without causing the detonation wave to fail to continue as a detonation. A JWL++/Tarantula code was utilized to model the results and compare with the in-situ gauge records with reasonable agreement to the experimental data. This work will present the experimental details as well as comparison to the model results. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Johnson, Roger Neal; Longfritz, William David
2001-01-01
A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.
Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narra, Sneha P.; Cunningham, Ross; Beuth, Jack
Relationships between prior beta grain size in solidified Ti-6Al-4V and melting process parameters in the Electron Beam Melting (EBM) process are investigated. Samples are built by varying a machine-dependent proprietary speed function to cover the process space. Optical microscopy is used to measure prior beta grain widths and assess the number of prior beta grains present in a melt pool in the raster region of the build. Despite the complicated evolution of beta grain sizes, the beta grain width scales with melt pool width. The resulting understanding of the relationship between primary machine variables and prior beta grain widths ismore » a key step toward enabling the location specific control of as-built microstructure in the EBM process. Control of grain width in separate specimens and within a single specimen is demonstrated.« less
Giambini, Hugo; Ikeda, Jun; Amadio, Peter C.; An, Kai-Nan; Zhao, Chunfeng
2012-01-01
Loss of experimental animals due to tendon repair failure results in the need for additional animals to complete the study. We designed a relief proximal to the flexor digitorum profundus (FDP) tendon repair site to serve as a “safety incision” to prevent repair site ruptures and maximize safety incision-to-suture strength. The FDP tendons were dissected in 24 canine forepaws. The 2nd and 5th tendons were lacerated at the proximal interphalangeal joint level and sutured using a modified Kessler technique and peripheral running suture. Tendon width was measured where the FDP tendon separates into each individual digit and a safety incision, equal to the 2nd and 5th tendon widths, was performed 3, 4, or 5 mm (Groups 1, 2, and 3) proximal to the separation. The tendons were pulled at a rate of 1 mm/s until either the “safety incision” ruptured or the repair failed. There was no gap formation at the repair site in Groups 1 and 2. However, all Group 3 tendons failed by repair site rupture with the safety incision intact. An adequate safety incision to protect repair gap and rupture and maintain tendon tension for the FDP animal model should be about 4 mm from where the FDP tendon separates. PMID:20872585
NASA Astrophysics Data System (ADS)
Xin, Wang; Jiexing, Lin; Xiaozhou, Liu; Jiehui, Liu; Xiufen, Gong
2016-04-01
We used the spheroidal beam equation to calculate the sound field created by focusing a transducer with a wide aperture angle to obtain the heat deposition, and then we used the Pennes bioheat equation to calculate the temperature field in biological tissue with ribs and to ascertain the effects of rib parameters on the temperature field. The results show that the location and the gap width between the ribs have a great influence on the axial and radial temperature rise of multilayer biological tissue. With a decreasing gap width, the location of the maximum temperature rise moves forward; as the ribs are closer to the transducer surface, the sound energy that passes through the gap between the ribs at the focus decreases, the maximum temperature rise decreases, and the location of the maximum temperature rise moves forward with the ribs. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the Fund from State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), China Postdoctoral Science Foundation (Grant No. 2013M531313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and SRF for ROCS, SEM.
Distinctive fingerprints of erosional regimes in terrestrial channel networks
NASA Astrophysics Data System (ADS)
Grau Galofre, A.; Jellinek, M.
2017-12-01
Satellite imagery and digital elevation maps capture the large scale morphology of channel networks attributed to long term erosional processes, such as fluvial, glacial, groundwater sapping and subglacial erosion. Characteristic morphologies associated with each of these styles of erosion have been studied in detail, but there exists a knowledge gap related to their parameterization and quantification. This knowledge gap prevents a rigorous analysis of the dominant processes that shaped a particular landscape, and a comparison across styles of erosion. To address this gap, we use previous morphological descriptions of glaciers, rivers, sapping valleys and tunnel valleys to identify and measure quantitative metrics diagnostic of these distinctive styles of erosion. From digital elevation models, we identify four geometric metrics: The minimum channel width, channel aspect ratio (longest length to channel width at the outlet), presence of undulating longitudinal profiles, and tributary junction angle. We also parameterize channel network complexity in terms of its stream order and fractal dimension. We then perform a statistical classification of the channel networks using a Principal Component Analysis on measurements of these six metrics on a dataset of 70 channelized systems. We show that rivers, glaciers, groundwater seepage and subglacial meltwater erode the landscape in rigorously distinguishable ways. Our methodology can more generally be applied to identify the contributions of different processes involved in carving a channel network. In particular, we are able to identify transitions from fluvial to glaciated landscapes or vice-versa.
NASA Astrophysics Data System (ADS)
Li, Jian; Xia, Guodong; Li, Yifan; Tian, Xinping
2013-07-01
We provide three-dimensional numerical simulations of mixing performance in a newly proposed micromixer with different structural parameters. The same amount of gaps and baffles are arranged along the curved channel within a certain distance. The effects of their structural parameters on mixing efficiency are presented, which include either the position and feature size of gaps and baffles, or the curvature radius of curved channel. The high efficiency mixing mechanism of the curved channel with gaps and baffles can attribute to the interaction of the increased contact area for premixed liquids, the jet and throttling effect over every unit of gap and baffle, the developing of the multidirectional vortices along the curved channel. The mixing index is sensitive to the width of the gaps and baffles for some Reynolds number ranges, but is not sensitive to the curvature radius of the curved channel. The characteristic of the pressure drop depending on Reynolds number is also investigated in order to keep an appropriate balance with mixing property.
NASA Astrophysics Data System (ADS)
Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok
2017-06-01
This paper presents a new hysteresis model based on the force-displacement characteristics of magnetorheological (MR) fluid actuators (or devices) subjected to squeeze mode operation. The idea of the proposed model is originated from experimental observation of the field-dependent hysteretic behavior of MR fluids, which shows that from a view of rate-independence of hysteresis, a gap width-dependent hysteresis is occurred in the force-displacement relationship instead of the typical relationship of the force-velocity. To effectively and accurately portray the hysteresis behavior, the gap width-dependent hysteresis elements, the nonlinear viscous effect and the inertial effect are considered for the formulation of the hysteresis model. Then, a model-based feedforward force tracking control scheme is established through an observer which can estimate the virtual displacement. The effectiveness of the proposed hysteresis model is validated through the identification and prediction of the damping force of MR fluids in the squeeze mode. In addition, it is shown that superior force tracking performance of the feedforward control associated with the proposed hysteresis mode is evaluated by adopting several tracking trajectories.
Evidence of forward-backward multiplicity correlation at SPS energy
NASA Astrophysics Data System (ADS)
Bhoumik, Gopa; Bhattacharyya, Swarnapratim; Deb, Argha; Ghosh, Dipak
In this paper, a detailed study of two-particle rapidity correlation has been presented by measuring the dynamical fluctuation variable σc2 in forward and backward pseudo-rapidity window of shower particles produced in the relativistic heavy ion collision, 16O-AgBr interactions at 60AGeV and 32S-AgBr interactions at 200AGeV. Variations of σc2 with rapidity gap between forward and backward zones and with the width of each zone have been studied. For both cases, σc2 increase with increasing either width of the zone or gap between the zones. Our findings show the presence of strong long-range correlation. Comparison of experimental results with MC-RAND events confirms the present correlation to be dynamical in nature. We have also compared our results with FRITIOF and UrQMD events. Such events also show the presence of correlation, but found to fail to reproduce the experimental results both quantitatively and qualitatively. Strength of correlation is dependent on the centrality of collision for experimental events, it decreases with centrality.
Design to Improve Visibility: Impact of Corridor Width and Unit Shape.
Hadi, Khatereh; Zimring, Craig
2016-07-01
This study analyzes 10 intensive care units (ICUs) to understand the associations between design features of space layout and nurse-to-patient visibility parameters. Previous studies have explored how different hospital units vary in their visibility relations and how such varied visibility relations result in different nurse behaviors toward patients. However, more limited research has examined the specific design attributes of the layouts that determine the varied visibility relations in the unit. Changes in size, geometry, or other attributes of design elements in nursing units, which might affect patient observation opportunities, require more research. This article reviews the literature to indicate evidence for the impact of hospital unit design on nurse/patient visibility relations and to identify design parameters shown to affect visibility. It further focuses on 10 ICUs to investigate how different layouts diverge regarding their visibility relations using a set of metrics developed by other researchers. Shape geometry and corridor width, as two selected design features, are compared. Corridor width and shape characteristics of ICUs are positively correlated with visibility. Results suggest that floor plans, which are repeatedly broken down into smaller convex (higher convex fragmentation values), or units, which have longer distances between their rooms or between their two opposite ends (longer relative grid distances), might have lower visibility levels across the unit. The findings of this study also suggest that wider corridors positively affect visibility of patient rooms. Changes in overall shape configuration and corridor width of nursing units may have important effects on patient observation and monitoring opportunities. © The Author(s) 2016.
Trenkel, Verena M.; Daurès, Fabienne; Rochet, Marie-Joëlle; Lorance, Pascal
2013-01-01
According to portfolio theory applied to fisheries management, economic returns are stabilised by harvesting in a portfolio stocks of species whose returns are negatively correlated and for which the portfolio economic return variance is smaller than the sum of stock specific return variances. Also, variability is expected to decrease with portfolio width. Using a range of indicators, these predictions were tested for the French fishing fleets in the Bay of Biscay (Northeast Atlantic) during the period 2001–2009. For this, vessels were grouped into eight fishing fleets based on the gears used and exploited species were grouped into five functional groups. The portfolio width of fleets ranged from 1–3 functional groups, or 4–19 species. Economic fleet returns (sale revenues minus fishing costs) varied strongly between years; the interannual variability was independent of portfolio width (species or functional groups). Energy ratio expressed by the ratio between fuel energy used for fishing and energy contained in landings varied from 0.3 for purse seines to 9.7 for trawlers using bottom trawls alone or in combination with pelagic trawls independent of portfolio width. Interannual variability in total sale revenues was larger than the sum of species specific sales revenue variability, except for fleets using hooks and pelagic trawlers; it increased with the number of species exploited. In conclusion, the interannual variability of economic returns or energy ratios of French fisheries in the Bay of Biscay did not decrease with the number of species or functional groups exploited, though it varied between fleets. PMID:23922951
An experimental study of non-isothermal miscible displacements in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatsu, Yuichiro; Fujita, Norihito; Kato, Yoshihito
Non-isothermal miscible displacements in a radial Hele-Shaw cell were experimentally investigated using a scheme in which room temperature liquids of relatively high viscosity were displaced by high-temperature (80 C), less-viscous liquids. Fundamental characteristics have been presented regarding how the effect of a non-isothermal field on miscible displacement patterns varies in terms of factors such as the viscosity ratio of the more- and less-viscous liquids at 20 C, M{sub 20}, the rate of an increase in the pattern's area, R, and the gap width of the cell, b. The concept of area density was used to quantitatively evaluate the effect ofmore » the non-isothermal fields on the patterns. We have found that the effect of the non-isothermal field on the patterns does not monotonically vary with M{sub 20} and b. In contrast, it increases with R in the present experimental condition. The experimental results can be explained by introducing an assumption in which heat is transferred mainly to the plates of the cell, in other words, the temperature of the more-viscous liquid remains constant, whereas that of the less-viscous liquid spatiotemporally decreases and the viscosity of it increases along with the temperature decrease. Visualization of non-isothermal field in the cell has been done by means of a thermo sheet and the results support the assumption mentioned above. (author)« less
Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters
NASA Astrophysics Data System (ADS)
Panaseti, Pandelitsa; Damianou, Yiolanda; Georgiou, Georgios C.; Housiadas, Kostas D.
2018-03-01
The lubrication flow of a Herschel-Bulkley fluid in a symmetric long channel of varying width, 2h(x), is modeled extending the approach proposed by Fusi et al. ["Pressure-driven lubrication flow of a Bingham fluid in a channel: A novel approach," J. Non-Newtonian Fluid Mech. 221, 66-75 (2015)] for a Bingham plastic. Moreover, both the consistency index and the yield stress are assumed to be pressure-dependent. Under the lubrication approximation, the pressure at zero order depends only on x and the semi-width of the unyielded core is found to be given by σ(x) = -(1 + 1/n)h(x) + C, where n is the power-law exponent and the constant C depends on the Bingham number and the consistency-index and yield-stress growth numbers. Hence, in a channel of constant width, the width of the unyielded core is also constant, despite the pressure dependence of the yield stress, and the pressure distribution is not affected by the yield-stress function. With the present model, the pressure is calculated numerically solving an integro-differential equation and then the position of the yield surface and the two velocity components are computed using analytical expressions. Some analytical solutions are also derived for channels of constant and linearly varying widths. The lubrication solutions for other geometries are calculated numerically. The implications of the pressure-dependence of the material parameters and the limitations of the method are discussed.
Defect, Kinetics and Heat Transfer of CDTE Bridgman Growth without Wall Contact
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.; Zhang, H.
2003-01-01
A detached growth mechanism has been proposed, which is similar to that proposed by Duffar et al. and used to study the current detached growth system. From numerical results, we can conclude that detached growth will more likely appear if the growth and wetting angles are large and meniscus is flat. Detached thickness is dependent on growth angle, wetting angle, and gap width and shape of the fins. The model can also explain why the detached growth will not happen for metals in which the growth angle is almost zero. Since the growth angle of CdZnTe cannot be changed, to promote detached growth, the number density of the fins should be low and the wetting angle should be high. Also, a much smaller gap width of the fins should be used in the ground experiment and the detached gap width is much smaller. The shape of the fins has minor influence on detached growth. An integrated numerical model for detached solidification has been developed combining a global heat transfer sub-model and a wall contact sub-model. The global heat transfer sub-model accounts for heat and mass transfer in the multiphase system, convection in the melt, macro-segregation, and interface dynamics. The location and dynamics of the solidification interface are accurately tracked by a multizone adaptive grid generation scheme. The wall contact sub-model accounts for the meniscus dynamics at the three-phase boundary. Simulations have been performed for crystal growth in a conventional ampoule and a designed ampoule to understand the benefits of detached solidification and its impacts on crystalline structural quality, e.g., stoichiometry, macro-segregation, and stress. From simulation results, both the Grashof and Marangoni numbers will have significant effects on the shape of growth front, Zn concentration distribution, and radial segregation. The integrated model can be used in designing apparatus and determining the optimal geometry for detached solidification in space and on the ground.
NASA Astrophysics Data System (ADS)
Maaß, Friedrich; Utecht, Manuel; Stremlau, Stephan; Gille, Marie; Schwarz, Jutta; Hecht, Stefan; Klamroth, Tillmann; Tegeder, Petra
2017-07-01
Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized π -electron system.
Numerical modelling of torn boudinage
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Grasemann, Bernhard
2017-04-01
The seminal text book by J.G. Ramsay outlines the importance of the progressive development of torn boudinage structures because the shape of boudins may vary greatly and is mainly dependent on the viscosity contrast between the more competent layer and the enclosing material and the values of the principal extensions of the finite strain ellipsoid. In this work we demonstrate that another parameter, the initial boudin separation, has a significant influence on the progressive development of the finite boudin shape. We use finite element simulations to study the shape evolution of torn boudins under pure and simple shear. The boudins are initially rectangular and the gaps between them are prescribed. The boudin interfaces are resolved with high-resolution, body-fitting, unstructured computational meshes and a second-order ODE integrator is used to ensure the numerical accuracy of the results. Both the boudins and the host are treated as either linear or non-linear viscous fluids. We neglect any recrystallization processes and the boudin interfaces are considered as fully coherent. We were able to reproduce the typical shape of fish-mouth boudins for a wide range of viscosity ratios between the highly viscous boudins and the host. We have systematically studied the effects due to the boudin-host viscosity ratio and the fluid stress exponents. Our results show that the initial separation can have a profound effect on the final shape of the boudins and we document the formation of hitherto undescribed complex boudin shapes for an initially narrow gap width.
Peng, Lucheng; Geng, Jing; Ai, Lisha; Zhang, Ying; Xie, Renguo; Yang, Wensheng
2016-08-19
Phosphor with extremely narrow emission line widths, high brightness, and wide color emission tunability in visible regions is required for display and lighting applications, yet none has been reported in the literature so far. In the present study, single-sized lead halide perovskite (APbX 3; A = CH3NH3 and Cs; X = Cl, Br, and I) nanocrystalline (NC) phosphors were achieved for the first time in a one-pot reaction at room temperature (25 °C). The size-dependent samples, which included four families of CsPbBr3 NCs and exhibited sharp excitonic absorption peaks and pure band gap emission, were directly obtained by simply varying the concentration of ligands. The continuity of the optical spectrum can be successively tuned over the entire UV-visible spectral region (360-610 nm) by preparing CsPbCl3, CsPbI3, and CsPb(Y/Br)3 (Y = Cl and I) NCs with the use of CsPbBr3 NCs as templates by anion exchange while maintaining the size of NCs and high quantum yields of up to 80%. Notably, an emission line width of 10-24 nm, which is completely consistent with that of their single particles, indicates the formation of single-sized NCs. The versatility of the synthetic strategy was validated by extending it to the synthesis of single-sized CH3NH3PbX 3 NCs by simply replacing the cesium precursor by the CH3NH3 X precursor.
A compact nanosecond pulse generator for DBD tube characterization.
Rai, S K; Dhakar, A K; Pal, U N
2018-03-01
High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.
A compact nanosecond pulse generator for DBD tube characterization
NASA Astrophysics Data System (ADS)
Rai, S. K.; Dhakar, A. K.; Pal, U. N.
2018-03-01
High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.
NASA Astrophysics Data System (ADS)
Hussein, M. T.; Kasim, T.; Abdulsattar, M. A.
2013-11-01
In present work, we investigate electronic properties of alloying percentage of In x Ga1- x P compound with different sizes of superlattice large unit cell (LUC) method with 8, 16, 54, and 64 nanocrystals core atoms. The size and type of alloying compound are varied so that it can be tuned to a required application. To determine properties of indium gallium phosphide nanocrystals density functional theory at the generalized-gradient approximation level coupled with LUC method is used to simulate electronic structure of zinc blende indium gallium phosphide nanocrystals that have dimensions around 2-2.8 nm. The calculated properties include lattice constant, energy gap, valence band width, cohesive energy, density of states (DOS) etc. Results show that laws that are applied at microscale alloying percentage are no more applicable at the present nanoscale. Results also show that size, shape and quantum effects are strong. Many properties fluctuate at nanoscale while others converge to definite values. DOS summarizes many of the above quantities.
NASA Astrophysics Data System (ADS)
Kirschner, O.; Ruprecht, A.; Riedelbauch, S.
2014-03-01
In hydropower plants the axial thrust bearing takes up the hydraulic axial thrust of the runner and, in case of vertical shafts, the entire weight of all rotating masses. The use of water lubricated bearings can eliminate the oil leakage risk possibly contaminating the environment. A complex flow is generated by the smaller film thickness due to the lower viscosity of water compared with oil. Measurements on a simplified hydrostatic axial trust bearing model were accomplished for validating CFD analysis of water lubricated bearings. In this simplified model, fixed pads are implemented and the width of the gap was enlarged to create a higher resolution in space for the measurements. Most parts of the model were manufactured from acrylic glass to get optical access for measurement with PIV. The focus of these measurements is on the flow within the space between two pads. Additional to the PIV- measurement, the pressure on the wall of the rotating disk is captured by pressure transducers. The model bearing measurement results are presented for varied operating conditions.
Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.
2010-04-01
Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.
All-Graphene Planar Self-Switching MISFEDs, Metal-Insulator-Semiconductor Field-Effect Diodes
Al-Dirini, Feras; Hossain, Faruque M.; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios
2014-01-01
Graphene normally behaves as a semimetal because it lacks a bandgap, but when it is patterned into nanoribbons a bandgap can be introduced. By varying the width of these nanoribbons this band gap can be tuned from semiconducting to metallic. This property allows metallic and semiconducting regions within a single Graphene monolayer, which can be used in realising two-dimensional (2D) planar Metal-Insulator-Semiconductor field effect devices. Based on this concept, we present a new class of nano-scale planar devices named Graphene Self-Switching MISFEDs (Metal-Insulator-Semiconductor Field-Effect Diodes), in which Graphene is used as the metal and the semiconductor concurrently. The presented devices exhibit excellent current-voltage characteristics while occupying an ultra-small area with sub-10 nm dimensions and an ultimate thinness of a single atom. Quantum mechanical simulation results, based on the Extended Huckel method and Nonequilibrium Green's Function Formalism, show that a Graphene Self-Switching MISFED with a channel as short as 5 nm can achieve forward-to-reverse current rectification ratios exceeding 5000. PMID:24496307
Progressive addition spectacle lenses: Design preferences and head movements while reading
NASA Astrophysics Data System (ADS)
Preston, Julie Lynn
In a subjective preference study, two key progressive addition lens parameters, near zone width and corridor length, were varied in a double-masked, randomized, clinical trial of 49 patients. Each subject received a complete eye examination and a new frame. Each wore 6 pairs of lenses for one week at a time and completed questionnaires relating to vision, adaptation, and satisfaction. The preferred lens was identified from the three near zone width lenses and from the three corridor length lenses. Patient characteristics were analyzed for their effect on design preference. Satisfaction ratings following a brief experience with each design were compared to ratings after one week of wear in order to ascertain the predictability of initial impressions. One lens design appeared twice in the preference trial, providing an assessment of the repeatability of the rating instrument. The lens design with the widest near zone was rated significantly lower than the other near zone width designs for nearly every question relating to vision, adaptation, and satisfaction. This lens was also least preferred of all the designs. Preferences for corridor length were evenly distributed among the three designs. Of patient characteristics, years of progressive addition lens wear and gender significantly affected design preference in this population. Initial impressions were not predictive of satisfaction after a week of wear. The rating instrument was judged to have low repeatability. In the head movement portion of the study, 18 participants from the preference study wore the three near zone width designs while reading three paragraphs of varying print size. From a 20 second recording for each of three different paragraphs with each lens, measures of head rotation and posture were collected. The amplitude of head rotation was significantly affected by print size but not by lens design. The effective zone widths on the lenses scanned by the eyes and the locations of the reading levels were calculated from the head rotation and posture data. Effective zone widths were narrower than the contour plot widths for each condition.
Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons
NASA Astrophysics Data System (ADS)
Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang
2017-12-01
Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.
NASA Technical Reports Server (NTRS)
Karimbadi, H.; Krauss-Varban, D.
1992-01-01
A novel diffusion formalism that takes into account the finite width of resonances is presented. The resonance diagram technique is shown to reproduce the details of the particle orbits very accurately, and can be used to determine the acceleration/scattering in the presence of a given wave spectrum. Ways in which the nonlinear orbits can be incorporated into the diffusion equation are shown. The resulting diffusion equation is an extension of the Q-L theory to cases where the waves have large amplitudes and/or are coherent. This new equation does not have a gap at 90 deg in cases where the individual orbits can cross the gap. The conditions under which the resonance gap at 90-deg pitch angle exits are also examined.
Low-frequency vibration isolation in sandwich plates by piezoelectric shunting arrays
NASA Astrophysics Data System (ADS)
Chen, Shengbing; Wang, Gang; Song, Yubao
2016-12-01
Piezoelectric shunting arrays are proposed to isolate low-frequency vibrations transmitted in sandwich plates. The performance is characterized through application of finite element method. The numerical result shows that a complete band gap, whose width is about 20 Hz, is produced in the desired low-frequency ranges. The band gap is induced by local resonances of the shunting circuits, whose location is strongly related to the inductance, while the resistance can broaden the band gap to some extent. Vibration experiments are conducted on a 1200 × 1000 × 15 mm aluminum honeycomb plate with two arrays of 5 × 5 shunted piezoelectric patches bonded on the surface panels. Significant attenuation is found in the experimental results, which agree well with the theoretical predictions. Consequently, the proposed idea is feasible and effective.
Dynamic traversal of high bumps and large gaps by a small legged robot
NASA Astrophysics Data System (ADS)
Gart, Sean; Winey, Nastasia; de La Tijera Obert, Rafael; Li, Chen
Small animals encounter and negotiate diverse obstacles comparable in size or larger than themselves. In recent experiments, we found that cockroaches can dynamically traverse bumps up to 4 times hip height and gaps up to 1 body length. To better understand the physics that governs these locomotor transitions, we studied a small six-legged robot negotiating high bumps and large gaps and compared it to animal observations. We found that the robot was able to traverse bumps as large as 1 hip height and gaps as wide as 0.5 body length. For the bump, the robot often climbed over to traverse when initial body yaw was small, but was often deflected laterally and failed to traverse when initial body yaw was large. A simple locomotion energy landscape model explained these observations. For the gap, traversal probability decreased with gap width, which was well explained by a simple Lagrangian model of a forward-moving rigid body falling over the gap edge. For both the bump and the gap, animal performance far exceeded that of the robot, likely due to their relatively higher running speeds and larger rotational oscillations prior to and during obstacle traversal. Differences between animal and robot obstacle negotiation behaviors revealed that animals used active strategies to overcome potential energy barriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, J; Culberson, W; DeWerd, L
Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less
Measurement of plasma sheath overlap above a trench
NASA Astrophysics Data System (ADS)
Sheridan, T. E.; Steinberger, Thomas E.
2017-06-01
The plasma sheath above a rectangular trench has been experimentally characterized as the trench width is varied in a radio frequency (rf) plasma discharge for two different rf powers giving two different sets of plasma parameters. Measurements were made using the positions and all six normal mode frequencies of two dust particles floating just inside the sheath edge above the center of the trench. We find that sheath overlap occurs when the trench width ≲ 3 s 0 for a trench depth ≈0.7s0, where s0 is the planar sheath width. The electric field gradient inside the sheath edge increases with rf power.
Attentional Focus and Grip Width Influences on Bench Press Resistance Training.
Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, JuanCarlos; Andersen, Lars L
2018-04-01
This study evaluated the influence of different attentional foci for varied grip widths in the bench press. Eighteen resistance-trained men were familiarized with the procedure and performed a one-repetition maximum (1RM) test during Session 1. In Session 2, they used three different standardized grip widths (100%, 150%, and 200% of biacromial width distance) in random order at 50% of 1RM while also engaged in three different attention focus conditions (external focus on the bench press, internal focus on pectoralis major muscles, and internal focus on triceps brachii muscles). Surface electromyography (EMG) signals were recorded from the triceps brachii and pectoralis major, and peak EMG of the filtered signals were normalized to maximum EMG of each muscle. Both grip width and focus influenced the muscle activity level, but there were no significant interactions between these variables. Exploratory analyses suggested that an internal focus may slightly (4%-6%) increase pectoralis major activity at wider grip widths and triceps brachii activity at narrower grip widths, but this should be confirmed or rejected in a study with a larger sample size or through a meta-analysis of research to date.
Distribution of the Red Imported Ant, Solenopsis invicta, in Road and Powerline Habitats
Judith H. Stiles; Robert H. Jones
1998-01-01
For early-successional species, road and powerline cuts through forests provide refugia and source populations for invading adjacent forest gaps. Within an 800 km2 forest matrix in South Carolina, we determined if width disturbance frequency or linear features of road and powerline cuts influenced the mound distribution of the red imported fire...
NASA Astrophysics Data System (ADS)
Foucaud, Simon; Michon, Guilhem; Gourinat, Yves; Pelat, Adrien; Gautier, François
2014-07-01
An inhomogeneous fluid structure waveguide reproducing passive behaviour of the inner ear is modelled with the help of the Wentzel-Kramers-Brillouin method. A physical setup is designed and built. Experimental results are compared with a good correlation to theoretical ones. The experimental setup is a varying width plate immersed in fluid and terminated with an acoustic black hole. The varying width plate provides a spatial repartition of the vibration depending on the excitation frequency. The acoustic black hole is made by decreasing the plate's thickness with a quadratic profile and by covering this region with a thin film of viscoelastic material. Such a termination attenuates the flexural wave reflection at the end of the waveguide, turning standing waves into travelling waves.
Standing Waves in a Nonuniform Medium
ERIC Educational Resources Information Center
Gluck, Paul
2011-01-01
A recent note in this journal presented a demonstration of standing waves along a cord consisting of two parts having different material densities, showing different sized wavelengths in each part. A generalization of that experiment to a continuously varying linear mass density is to vibrate a strip of material with gradually varying width (mass…
Electro-optic device having a laterally varying region
NASA Technical Reports Server (NTRS)
Andrews, James T. (Inventor); Ladany, Ivan (Inventor)
1989-01-01
A distributed feedback laser comprising a semiconductor body having a channel which varies in width in the laterial direction and is periodic in the longitudinal direction. When the laser is electrically excited constructive interference of reflected light gives rise to a stable single wavelength output due to the periodic variations in the channel.
Applications of surface plasmon polaritons in terahertz spectral regime
NASA Astrophysics Data System (ADS)
Zhan, Hui
This thesis presents the experimental work on the applications of surface plasmon polariton (SPP) in terahertz (THz) spectral range. Apertureless near-field optical microscopy (ANSOM) has been widely used to study the localized SPP on various material surfaces. THz ANSOM technique was recently developed to combine the THz time-domain spectroscopy and the ANSOM technique to provide a near-field detection on the localized THz surface waves with improved spatial resolution and signal-noise ratio. We have studied the metal-insulator transition in vanadium dioxide (VO2) thin film using THz ANSOM. We observe a variation of the terahertz amplitude due to the phase transition induced by an applied voltage across the sample. The change of the terahertz signal is related to the abrupt change of the conductivity of the VO2 film at the metal-insulator transition. The subwavelength spatial resolution of this near-field microscopy makes it possible to detect signatures of metallic domains, which exist in the VO2 thin films in the vicinity of the phase transition. We experimentally investigate the propagation of guided waves in finite-width parallel-plate waveguides (PPWGs) in the terahertz spectral range. We observe the propagation of SPPs in this guiding structure, instead of the fundamental transverse electromagnetic (TEM) mode. We find that the two-dimensional (2-D) energy confinement within the finite-width PPWG increases exponentially as the plate separation is reduced. We speculate that edge plasmons play an important role in the energy confinement in this open-structure waveguide. For comparison, the infinite-width PPWGs, the plates of which are much wider than the THz beam size, are also studied with several plate separations. The free-space beam diffraction produces a Gaussian profile along the unconfined direction. The unusual electric field profiles along the vertical direction, perpendicular to the plate are observed. The field enhancement near the metal surfaces are also explained by the SPPs coupled to the metal surfaces. Based on the 2-D energy confinement in the finite-width PPWGs, we design the tapered slot waveguide by slowly tapering the plate width and slot gap. We first study the transverse component of the THz electric field, where a subwavelength 2-D energy confinement is observed. The output spot size strongly depends on the output facet size, where the slot gap and the tip width are in the same scale range. Subwavelength confinement is obtained, corresponding to lambda/4. Further confinement is limited by the spatial resolution of the detecting technique. To overcome this problem, we adapt the THz ASNOM setup to scattering-probe imaging technique, which has been proven to obtain deep subwavelength spatial resolution and great signal-noise ratio. Scattering-probe imaging setup measures the longitudinal component of the electric field of SPPs in the tapered slot waveguides. By slowly tapering the tip width and the slot gap, we squeeze a single-cycle THz pulse down to a size of 10 mum (lambda/260) by 18 mum (lambda/145), a mode area of only 2.6 x 10-5lambda2. We also observe a polarity reversal for the electric field between the guiding region near the upper and lower plates of the waveguide. This polarity flip is similar to that associated with the symmetric plasmon mode of slot waveguides.
Acoustically Evoked Different Vibration Pattern Across the Width of the Cochlea Partition
NASA Astrophysics Data System (ADS)
Zha, Dingjun; Chen, Fangyi; Friderberg, Anders; Choudhury, Niloy; Nuttall, Alfred
2011-11-01
Using optical low coherence interferometry, the acoustically evoked vibration patterns of the basilar membrane (BM) and reticular lamina (RL) in the first turn of living guinea pigs were measured as function of the radial location. It was demonstrated that the vibration of the BM varied widely in amplitude, but little in phase across the width of the partition, while the RL had a different vibration pattern compared with the BM.
Effects of Mixtures on Liquid and Solid Fragment Size Distributions
2016-05-01
bins, too few size bins, fixed bin widths, or inadequately- varying bin widths. Overpopulated bins – which typically occur for smaller fragments...2010 C. V. B. Cunningham, The Kuz-Ram Fragmentation Model – 20 Years On, In R. Holmberg et. al., Editors, Proceedings of the 3 rd World ...1992 P. K. Sahoo and T. Riedel, Mean Value Theorems and Functional Equations, World Scientific, 1998 K. A. Sallam, C. Aalburg, G.M. Faeth
ERIC Educational Resources Information Center
Kretch, Kari S.; Adolph, Karen E.
2013-01-01
Do infants, like adults, consider both the probability of falling and the severity of a potential fall when deciding whether to cross a bridge? Crawling and walking infants were encouraged to cross bridges varying in width over a small drop-off, a large drop-off, or no drop-off. Bridge width affects the probability of falling, whereas drop-off…
2012-06-01
Nanotube MWCNT Multi-Walled Carbon Nanotube PET Polyethylene Terephthalate 4H-SiC 4-H Silicon Carbide AlGaAs Aluminum Gallium Arsenide...nanotubes ( MWCNTs ). SWCNTs are structured with one layer of graphene rolled into a CNT. MWCNTs are contrastingly composed of 23 multiple layers...simulation 19 times to extract cell parameters at #varying widths set cellWidth=200 loop steps=19 go atlas #Constants which are used to set the
Don't Fence Me In: Free Meanders in a Confined River Valley
NASA Astrophysics Data System (ADS)
Eke, E. C.; Wilcock, P. R.
2015-12-01
The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.
Tunable terahertz reflection spectrum based on band gaps of GaP materials excited by ultrasonic
NASA Astrophysics Data System (ADS)
Cui, H.; Zhang, X. B.; Wang, X. F.; Wang, G. Q.
2018-02-01
Tunable terahertz (THz) reflection spectrum, ranged from 0.2 to 8 THz, in band gaps of gallium phosphide (GaP) materials excited by ultrasonic is investigated in the present paper, in which tunable ultrasonic and terahertz wave collinear transmission in the same direction is postulated. Numerical simulation results show that, under the acousto-optic interaction, band gaps of transverse optical phonon polariton dispersion curves are turned on, this leads to a dis-propagation of polariton in GaP bulk. On the other side, GaP material has less absorption to THz wave according to experimental studies, as indicates that THz wave could be reflected by the band gaps spontaneously. The band gaps width and acousto-optic coupling strength are proportional with ultrasonic frequency and its intensity in ultrasonic frequency range of 0-250 MHz, in which low-frequency branch of transverse optical phonon polariton dispersion curves demonstrate periodicity and folding as well as. With the increase of ultrasonic frequency, frequency of band gap is blue-shifted, and total reflectivity decreased with -1-order and -2-order reflectivity decrease. The band gaps converge to the restrahlen band infinitely with frequency of ultrasonic exceeding over 250 MHz, total reflectivity of which is attenuated. As is show above, reflection of THz wave can be accommodated by regulating the frequency and its intensity of ultrasonic frequency. Relevant technology may be available in tunable THz frequency selection and filtering.
Barton D. Clinton; Lindsay R. Boring; Wayne T. Swank
1994-01-01
Canopy gaps in southern Appalachian mixed-oak forests were assessed for the effects of topographic, gap and stand variables on density of wood seedlings. Seedling density was significantly correlated with percent slope and positively with gap age (l-5 yr). Density varied substantially among topographic positions and increased with gap size. Species richness...
Effect law of Damage Characteristics of Rock Similar Material with Pre-Existing Cracks
NASA Astrophysics Data System (ADS)
Li, S. G.; Cheng, X. Y.; Liu, C.
2017-11-01
In order to further study the failure mechanism for rock similar materials, this study established the damage model based on accumulative AE events, investigated the damage characteristics for rock similar material samples with pre-existing cracks of varying width under uniaxial compression load. The equipment used in this study is the self-developed YYW-II strain controlled unconfined compression apparatus and the PCIE-8 acoustic emission (AE) monitoring system. The influences of the width of the pre-existing cracks to the damage characteristics of rock similar materials are analyzed. Results show that, (1) the damage model can better describe the damage characteristics of rock similar materials; (2) the tested samples have three stages during failure: initial damage stage, stable development of damage stage, and accelerated development of damage stage; (3) with the width of pre-existing cracks vary from 3mm to 5mm, the damage of rock similar materials increases gradually. The outcomes of this study provided additional values to the research of the failure mechanism for geotechnical similar material models.
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Mendoza, J.
1995-01-01
This report documents the results of an experimental investigation on the response of a cavity to external flowfields. The primary objective of this research was to acquire benchmark of data on the effects of cavity length, width, depth, upstream boundary layer, and flow temperature on cavity noise. These data were to be used for validation of computational aeroacoustic (CAA) codes on cavity noise. To achieve this objective, a systematic set of acoustic and flow measurements were made for subsonic turbulent flows approaching a cavity. These measurements were conducted in the research facilities of the Georgia Tech research institute. Two cavity models were designed, one for heated flow and another for unheated flow studies. Both models were designed such that the cavity length (L) could easily be varied while holding fixed the depth (D) and width (W) dimensions of the cavity. Depth and width blocks were manufactured so that these dimensions could be varied as well. A wall jet issuing from a rectangular nozzle was used to simulate flows over the cavity.
Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based pH sensor
NASA Astrophysics Data System (ADS)
Lee, Ryoongbin; Kwon, Dae Woong; Kim, Sihyun; Kim, Sangwan; Mo, Hyun-Sun; Kim, Dae Hwan; Park, Byung-Gook
2017-12-01
In this study, we investigated the effects of nanowire size on the current sensitivity of silicon nanowire (SiNW) ion-sensitive field-effect transistors (ISFETs). The changes in on-current (I on) and resistance according to pH were measured in fabricated SiNW ISFETs of various lengths and widths. As a result, it was revealed that the sensitivity expressed as relative I on change improves as the width decreases. Through technology computer-aided design (TCAD) simulation analysis, the width dependence on the relative I on change can be explained by the observation that the target molecules located at the edge region along the channel width have a stronger effect on the sensitivity as the SiNW width is reduced. Additionally, the length dependence on the sensitivity can be understood in terms of the resistance ratio of the fixed parasitic resistance, including source/drain resistance, to the varying channel resistance as a function of channel length.
Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products.
Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren
2016-12-23
The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent.
Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products
Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren
2016-01-01
The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367
NASA Technical Reports Server (NTRS)
Leith, Andrew C.; Mckinnon, William B.
1991-01-01
The effective cohesion of the cratered region during crater collapse is determined via the widths of slump terraces of complex craters. Terrace widths are measured for complex craters on Mercury; these generally increase outward toward the rim for a given crater, and the width of the outermost major terrace is generally an increasing function of crater diameter. The terrace widths on Mercury and a gravity-driven slump model are used to estimate the strength of the cratered region immediately after impact (about 1-2 MPa). A comparison with the previous study of lunar complex craters by Pearce and Melosh (1986) indicates that the transient strength of cratered Mercurian crust is no greater than that of the moon. The strength estimates vary only slightly with the geometric model used to restore the outermost major terrace to its precollapse configuration and are consistent with independent strength estimates from the simple-to-complex crater depth/diameter transition.
Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; Kofler, James M; McCollough, Cynthia H
2015-01-01
To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise-based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects.
NASA Astrophysics Data System (ADS)
Tan, Guiping; Lu, Junzhe; Zhu, Hengjiang; Li, Fangfang; Ma, Miaomiao; Wang, Xiaoning
2018-07-01
Using density functional theory (DFT), we have studied the structure of a zigzag silicene nanoribbons (SiNRs) with periodically embedded with four- and eight-membered rings, and studied their electronic properties by calculating its band structures and density of states (DOS). The results showed that the zigzag SiNRs have a sp2 hybridization, in addition, the band gap gradually decreased with the increase of the width by layer, and gradually changed from semiconductor properties to metal properties. The existence of vacancy defects increased the band gap and energies, but their positions could not change the structure and the electronic properties.
NASA Technical Reports Server (NTRS)
Torbett, M.; Smoluchowski, R.
1982-01-01
The motion of the Jovian commensurability resonances during the early evolution of the solar system induced by the dissipation of the accretion disk results in fundamental differences in the celestial mechanics of objects over which a resonance passes from that observed for a stationary resonance. Objects experiencing resonance passage acquire irreversible increases of average eccentricity to large values accounting for the present-day random velocities of the asteroids. Semi-major axes are similarly irreversibly decreased by amounts capable of clearing the Kirkwood gaps. The gap widths are in agreement with observation.
Widely tunable chiral nematic liquid crystal optical filter with microsecond switching time.
Mohammadimasoudi, Mohammad; Beeckman, Jeroen; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan
2014-08-11
A wavelength shift of the photonic band gap of 141 nm is obtained by electric switching of a partly polymerized chiral liquid crystal. The devices feature high reflectivity in the photonic band gap without any noticeable degradation or disruption and have response times of 50 µs and 20 µs for switching on and off. The device consists of a mixture of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral dopant that has been polymerized with UV light. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.
Strain Modulation of Electronic and Heat Transport Properties of Bilayer Boronitrene
NASA Astrophysics Data System (ADS)
Yang, Ming; Sun, Fang-Yuan; Wang, Rui-Ning; Zhang, Hang; Tang, Da-Wei
2017-10-01
Strain engineering has been proven as an effective approach to modify electronic and thermal properties of materials. Recently, strain effects on two-dimensional materials have become important relevant topics in this field. We performed density functional theory studies on the electronic and heat transport properties of bilayer boronitrene samples under an isotropic strain. We demonstrate that the strain will reduce the band gap width but keep the band gap type robust and direct. The strain will enhance the thermal conductivity of the system because of the increase in specific heat. The thermal conductivity was studied as a function of the phonon mean-free path.
Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA
NASA Astrophysics Data System (ADS)
Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu
2015-04-01
The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.
Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing
Chen, Xiaoshu; Lindquist, Nathan C.; Klemme, Daniel J.; ...
2016-11-22
Here, we present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomicmore » layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ 3/10 6. Experimentally, Raman enhancement factors exceeding 10 7 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.« less
Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing
2016-01-01
We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527
Visible light photoreduction of CO.sub.2 using heterostructured catalysts
Matranga, Christopher; Thompson, Robert L; Wang, Congjun
2015-03-24
The method provides for use of sensitized photocatalyst for the photocatalytic reduction of CO.sub.2 under visible light illumination. The photosensitized catalyst is comprised of a wide band gap semiconductor material, a transition metal co-catalyst, and a semiconductor sensitizer. The semiconductor sensitizer is photoexcited by visible light and forms a Type II band alignment with the wide band gap semiconductor material. The wide band gap semiconductor material and the semiconductor sensitizer may be a plurality of particles, and the particle diameters may be selected to accomplish desired band widths and optimize charge injection under visible light illumination by utilizing quantum size effects. In a particular embodiment, CO.sub.2 is reduced under visible light illumination using a CdSe/Pt/TiO2 sensitized photocatalyst with H.sub.2O as a hydrogen source.
Electric and magnetic superlattices in trilayer graphene
NASA Astrophysics Data System (ADS)
Uddin, Salah; Chan, K. S.
2016-01-01
The properties of one dimensional Kronig-Penney type of periodic electric and vector potential on ABC-trilayer graphene superlattices are investigated. The energy spectra obtained with periodic vector potentials shows the emergence of extra Dirac points in the energy spectrum with finite energies. For identical barrier and well widths, the original as well as the extra Dirac points are located in the ky = 0 plane. An asymmetry between the barrier and well widths causes a shift in the extra Dirac points away from the ky = 0 plane. Extra Dirac points having same electron hole crossing energy as that of the original Dirac point as well as finite energy Dirac points are generated in the energy spectrum when periodic electric potential is applied to the system. By applying electric and vector potential together, the symmetry of the energy spectrum about the Fermi level is broken. A tunable band gap is induced in the energy spectrum by applying both electric and vector potential simultaneously with different barrier and well widths.
Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals
NASA Astrophysics Data System (ADS)
Yoshida, Hiroyuki; Anucha, Konkanok; Ogawa, Yasuhiro; Kawata, Yuto; Ozaki, Masanori; Fukuda, Jun-ichi; Kikuchi, Hirotsugu
2016-10-01
The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110 ] direction for BP I and the [100 ] direction for BP II. Finite difference time domain and 4 ×4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110 ] and [100 ] directions, respectively.
Finite Element Analysis of Composite Joint Configurations with Gaps and Overlaps
NASA Technical Reports Server (NTRS)
Krueger, Ronald
2014-01-01
The goal of the current study is to identify scenarios for which thermal and moisture effects become significant in the loading of a composite structure. In the current work, a simple configuration was defined, and material properties were selected. A Fortran routine was created to automate the mesh generation process. The routine was used to create the models for the initial mesh refinement study. A combination of element length and width suitable for further studies was identified. Also, the effect of the overlap length and gap length on computed shear and through-thickness stresses along the bondline of the joints was studied for the mechanical load case. Further, the influence of neighboring gaps and overlaps on these joint stresses was studied and was found to be negligible. The results suggest that for an initial study it is sufficient to focus on one configuration with fixed overlap and gap lengths to study the effects of mechanical, thermal and moisture loading and combinations thereof on computed joint stresses
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin
2012-05-01
The process parameters in the dip-pen nanolithography process, including tip-substrate gap, deposition temperature, holding time, and pull-off velocity are evaluated in terms of the mechanism of molecular transference, alkanethiol meniscus characteristic, surface adsorbed energy, and pattern formation using molecular dynamics simulations. The simulation results clearly show that the optimum deposition occurs at a smaller tip-substrate gap, a slower pull-off velocity, a higher temperature, and a longer holding time. The pattern area increases with decreasing tip-substrate gap and increasing deposition temperature and holding time. With an increase in deposition temperature, the molecular transfer ability significantly increases. Pattern height is a function of meniscus length. When the pull-off velocity is decreased, the pattern height increases. The height of the neck in meniscus decreases and the neck width increases with holding time. Meniscus size increases with increasing deposition temperature and holding time.
Lin, Zhuonan; Qin, Wei; Zeng, Jiang; Chen, Wei; Cui, Ping; Cho, Jun-Hyung; Qiao, Zhenhua; Zhang, Zhenyu
2017-07-12
Graphene is a promising material for designing next-generation electronic and valleytronic devices, which often demand the opening of a bandgap in the otherwise gapless pristine graphene. To date, several conceptually different mechanisms have been extensively exploited to induce bandgaps in graphene, including spin-orbit coupling and inversion symmetry breaking for monolayer graphene, and quantum confinement for graphene nanoribbons (GNRs). Here, we present a multiscale study of the competing gap opening mechanisms in a graphene overlayer and GNRs proximity-coupled to topological insulators (TIs). We obtain sizable graphene bandgaps even without inversion symmetry breaking and identify the Kekulé lattice distortions caused by the TI substrates to be the dominant gap opening mechanism. Furthermore, Kekulé distorted armchair GNRs display intriguing nonmonotonous gap dependence on the nanoribbon width, resulting from the coexistence of quantum confinement, edge passivation, and Kekulé distortions. The present study offers viable new approaches for tunable bandgap engineering in graphene and GNRs.
Energy gap in graphene nanoribbons with structured external electric potentials
NASA Astrophysics Data System (ADS)
Apel, W.; Pal, G.; Schweitzer, L.
2011-03-01
The electronic properties of graphene zigzag nanoribbons with electrostatic potentials along the edges are investigated. Using the Dirac-fermion approach, we calculate the energy spectrum of an infinitely long nanoribbon of finite width w, terminated by Dirichlet boundary conditions in the transverse direction. We show that a structured external potential that acts within the edge regions of the ribbon can induce a spectral gap and thus switch the nanoribbon from metallic to insulating behavior. The basic mechanism of this effect is the selective influence of the external potentials on the spinorial wave functions that are topological in nature and localized along the boundary of the graphene nanoribbon. Within this single-particle description, the maximal obtainable energy gap is Emax∝πℏvF/w, i.e., ≈0.12 eV for w=15 nm. The stability of the spectral gap against edge disorder and the effect of disorder on the two-terminal conductance is studied numerically within a tight-binding lattice model. We find that the energy gap persists as long as the applied external effective potential is larger than ≃0.55×W, where W is a measure of the disorder strength. We argue that there is a transport gap due to localization effects even in the absence of a spectral gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xuechen; Niu Dongying; Yin Zengqian
2012-08-15
The characteristics of dielectric barrier discharge excited by a saw-tooth voltage are simulated in atmospheric pressure helium based on a one-dimensional fluid model. A stepped discharge is obtained per half voltage cycle with gas gap width less than 2 mm by the simulation, which is different to the pulsed discharge excited by a sinusoidal voltage. For the stepped discharge, the plateau duration increases with increasing the voltage amplitude and decreasing the gas gap. Therefore, uniform discharge with high temporal duty ratio can be realized with small gap through increasing the voltage amplitude. The maximal densities of both electron and ionmore » appear near the anode and the electric field is almost uniformly distributed along the gap, which indicates that the stepped discharge belongs to a Townsend mode. In contrast to the stepped discharge with small gas gap, a pulsed discharge can be obtained with large gas gap. Through analyzing the spatial density distributions of electron and ion and the electric field, the pulsed discharge is in a glow mode. The voltage-current (V-I) characteristics are analyzed for the above mentioned discharges under different gas gaps, from which the different discharge modes are verified.« less
Deep and wide gaps by super Earths in low-viscosity discs
NASA Astrophysics Data System (ADS)
Ginzburg, Sivan; Sari, Re'em
2018-06-01
Planets can open cavities (gaps) in the protoplanetary gaseous discs in which they are born by exerting gravitational torques. Viscosity counters these torques and limits the depletion of the gaps. We present a simple one-dimensional scheme to calculate the gas density profile inside gaps by balancing the gravitational and viscous torques. By generalizing the results of Goodman & Rafikov (2001), our scheme properly accounts for the propagation of angular momentum by density waves. This method allows us to easily study low-viscosity discs, which are challenging for full hydrodynamical simulations. We complement our numerical integration by analytical equations for the gap's steady-state depth and width as a function of the planet's to star's mass ratio μ, the gas disc's aspect ratio h, and its Shakura & Sunyaev viscosity parameter α. Specifically, we focus on low-mass planets (μ < μth ≡ h3) and identify a new low-viscosity regime, α < h(μ/μth)5, in which the classical analytical scaling relations are invalid. Equivalently, this low-viscosity regime applies to every gap that is depleted by more than a factor of (μth/μ)3 relative to the unperturbed density. We show that such gaps are significantly deeper and wider than previously thought, and consequently take a longer time to reach equilibrium.
Very High Quality Crystals of Wide-Gap II-VI Semiconductors: What for?
2001-01-01
the reciprocal space mapping , by the etch pit density (EPD) measurements (to determine the density of dislocations) and by the measurement of the width...crystals. The EPD was in the range 5 x 1 + 104 cmn2 for Cdl.,ZnxTe crystals and about 104 cmz for ZnTe. The reciprocal space mapping of the crystals
Relating bat species presence to simple habitat measures in a central Appalachian forest
W. Mark Ford; Michael A. Menzel; Jane L. Rodrigue; Jennifer M. Menzel; Joshua B. Johnson; Joshua B. Johnson
2005-01-01
We actively sampled the bat community at 63 sites using detection and non- detection metrics on the Fernow Experimental Forest (FEF) in the central Appalachians of West Virginia using Anabat acoustical equipment May-June 2001-2003 to relate species presence to simple habitat measures such as proximity to riparian areas, forest canopy cover, forest canopy gap width, and...
Multifunctional Antenna Techniques
2015-11-25
the planar structure that can be sufficiently isolated from the radiation mechanism of the antenna and transformed into a TEM transmission line feed...an equivalent transmission line structure, and isolate the physical 5 | P a g e mechanisms responsible for impedance and radiation behavior...gap-fed Archimedean spiral antenna in free space with non-negligible metal width, insertion PMC boundaries to isolate the radiation and propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vipin, E-mail: vipinkumar28@yahoo.co.in; Sharma, D. K.; Agrawal, Sonalika
Cd{sub 1-X}Zn{sub X}S thin films (X = 0.2, 0.4, 0.6, 0.8) have been grown on glass substrate by spray pyrolysis technique using equimolar concentration aqueous solution of cadmium chloride, zinc acetate and thiourea. Prepared thin films have been characterized by UV-VIS spectrophotometer. The optical band gap of the films has been studied by transmission spectra in wavelength range 325-600nm. It has been observed that optical band gap increases with increasing zinc concentration. The optical band gap of these thin films varies from 2.59 to 3.20eV with increasing Zn content.
Granular dynamics under shear with deformable boundaries
NASA Astrophysics Data System (ADS)
Geller, Drew; Backhaus, Scott; Ecke, Robert
2015-03-01
Granular materials under shear develop complex patterns of stress as the result of granular positional rearrangements under an applied load. We consider the simple planar shear of a quasi two-dimensional granular material consisting of bi-dispersed nylon cylinders confined between deformable boundaries. The aspect ratio of the gap width to total system length is 50, and the ratio of particle diameter to gap width is about 10. This system, designed to model a long earthquake fault with long range elastic coupling through the plates, is an interesting model system for understanding effective granular friction because it essentially self tunes to the jamming condition owing to the hardness of the grains relative to that of the boundary material, a ratio of more than 1000 in elastic moduli. We measure the differential strain displacements of the plates, the inhomogeneous stress distribution in the plates, the positions and angular orientations of the individual grains, and the shear force, all as functions of the applied normal stress. There is significant stick-slip motion in this system that we quantify through our quantitative measurements of both the boundary and the grain motion, resulting in a good characterization of this sheared 2D hard sphere system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hojin; Strachan, Alejandro
2015-11-28
We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with priormore » direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.« less
Influence of preservative and mounting media on the size and shape of monogenean sclerites.
Fankoua, Severin-Oscar; Bitja Nyom, Arnold R; Bahanak, Dieu Ne Dort; Bilong Bilong, Charles F; Pariselle, Antoine
2017-08-01
Based on Cichlidogyrus sp. (Monogenea, Ancyrocephalidae) specimens from Hemichromis sp. hosts, we tested the influence of different methods to fix/preserve samples/specimens [frozen material, alcohol or formalin preserved, museum process for fish preservation (fixed in formalin and preserved in alcohol)] and different media used to mount the slides [tap water, glycerin ammonium picrate (GAP), Hoyer's one (HM)] on the size/shape of sclerotized parts of monogenean specimens. The results show that the use of HM significantly increases the size of haptoral sclerites [marginal hooks I, II, IV, V, and VI; dorsal bar length, width, distance between auricles and auricle length, ventral bar length and width], and changes their shape [angle opening between shaft and guard (outer and inner roots) in both ventral and dorsal anchors, ventral bar much wider, dorsal one less curved]. This influence seems to be reduced when specimens/samples are fixed in formalin. The systematics of Monogenea being based on the size and shape of their sclerotized parts, to prevent misidentifications or description of invalid new species, we recommend the use of GAP as mounting medium; Hoyer's one should be restricted to monogenean specimens fixed for a long time which are more shrunken.
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Jin, Wei; Su, Huan
2018-04-01
This paper deals with the synchronization problem of a class of coupled stochastic complex-valued drive-response networks with time-varying delays via aperiodically intermittent adaptive control. Different from the previous works, the intermittent control is aperiodic and adaptive, and the restrictions on the control width and time delay are removed, which lead to a larger application scope for this control strategy. Then, based on the Lyapunov method and Kirchhoff's Matrix Tree Theorem as well as differential inequality techniques, several novel synchronization conditions are derived for the considered model. Specially, impulsive control is also considered, which can be seen as a special case of the aperiodically intermittent control when the control width tends to zero. And the corresponding synchronization criteria are given as well. As an application of the theoretical results, a class of stochastic complex-valued coupled oscillators with time-varying delays is studied, and the numerical simulations are also given to demonstrate the effectiveness of the control strategies.
The Ontogeny of Gap Crossing Behaviour in Bornean Orangutans (Pongo pygmaeus wurmbii)
Chappell, Jackie; Phillips, Abigail C.; van Noordwijk, Maria A.; Mitra Setia, Tatang; Thorpe, Susannah K. S.
2015-01-01
For orangutans, the largest predominantly arboreal primates, discontinuous canopy presents a particular challenge. The shortest gaps between trees lie between thin peripheral branches, which offer the least stability to large animals. The affordances of the forest canopy experienced by orangutans of different ages however, must vary substantially as adult males are an order of magnitude larger in size than infants during the early stages of locomotor independence. Orangutans have developed a diverse range of locomotor behaviour to cross gaps between trees, which vary in their physical and cognitive demands. The aims of this study were to examine the ontogeny of orangutan gap crossing behaviours and to determine which factors influence the distance orangutans crossed. A non-invasive photographic technique was used to quantify forearm length as a measure of body size. We also recorded locomotor behaviour, support use and the distance crossed between trees. Our results suggest that gap crossing varies with both physical and cognitive development. More complex locomotor behaviours, which utilized compliant trunks and lianas, were used to cross the largest gaps, but these peaked in frequency much earlier than expected, between the ages of 4 and 5 years old, which probably reflects play behaviour to perfect locomotor techniques. Smaller individuals also crossed disproportionately large gaps relative to their size, by using support deformation. Our results suggest that orangutans acquire the full repertoire of gap crossing techniques, including the more cognitively demanding ones, before weaning, but adjust the frequency of the use of these techniques to their increasing body size. PMID:26154061
The Ontogeny of Gap Crossing Behaviour in Bornean Orangutans (Pongo pygmaeus wurmbii).
Chappell, Jackie; Phillips, Abigail C; van Noordwijk, Maria A; Mitra Setia, Tatang; Thorpe, Susannah K S
2015-01-01
For orangutans, the largest predominantly arboreal primates, discontinuous canopy presents a particular challenge. The shortest gaps between trees lie between thin peripheral branches, which offer the least stability to large animals. The affordances of the forest canopy experienced by orangutans of different ages however, must vary substantially as adult males are an order of magnitude larger in size than infants during the early stages of locomotor independence. Orangutans have developed a diverse range of locomotor behaviour to cross gaps between trees, which vary in their physical and cognitive demands. The aims of this study were to examine the ontogeny of orangutan gap crossing behaviours and to determine which factors influence the distance orangutans crossed. A non-invasive photographic technique was used to quantify forearm length as a measure of body size. We also recorded locomotor behaviour, support use and the distance crossed between trees. Our results suggest that gap crossing varies with both physical and cognitive development. More complex locomotor behaviours, which utilized compliant trunks and lianas, were used to cross the largest gaps, but these peaked in frequency much earlier than expected, between the ages of 4 and 5 years old, which probably reflects play behaviour to perfect locomotor techniques. Smaller individuals also crossed disproportionately large gaps relative to their size, by using support deformation. Our results suggest that orangutans acquire the full repertoire of gap crossing techniques, including the more cognitively demanding ones, before weaning, but adjust the frequency of the use of these techniques to their increasing body size.
Modelling of deep gaps created by giant planets in protoplanetary disks
NASA Astrophysics Data System (ADS)
Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Muto, Takayuki; Tanigawa, Takayuki
2017-12-01
A giant planet embedded in a protoplanetary disk creates a gap. This process is important for both theory and observation. Using results of a survey for a wide parameter range with two-dimensional hydrodynamic simulations, we constructed an empirical formula for the gap structure (i.e., the radial surface density distribution), which can reproduce the gap width and depth obtained by two-dimensional simulations. This formula enables us to judge whether an observed gap is likely to be caused by an embedded planet or not. The propagation of waves launched by the planet is closely connected to the gap structure. It makes the gap wider and shallower as compared with the case where an instantaneous wave damping is assumed. The hydrodynamic simulations show that the waves do not decay immediately at the launching point of waves, even when the planet is as massive as Jupiter. Based on the results of hydrodynamic simulations, we also obtained an empirical model of wave propagation and damping in cases of deep gaps. The one-dimensional gap model with our wave propagation model is able to reproduce the gap structures in hydrodynamic simulations well. In the case of a Jupiter-mass planet, we also found that the waves with a smaller wavenumber (e.g., m = 2) are excited and transport the angular momentum to a location far away from the planet. The wave with m = 2 is closely related with a secondary wave launched by a site opposite from the planet.
Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Tsujimura, Takuya; Matsuda, Yasuhiro; Okuno, Shota; Ohashi, Takuya; Tsuji, Aki; Mano, Toshiaki
2017-11-01
The reconnection of left atrial-pulmonary vein (LA-PV) conduction after the initial procedure of pulmonary vein (PV) isolation is not rare, and is one of the main cause of atrial fibrillation (AF) recurrence after PV isolation. We investigated feasibility of a new ultrahigh-resolution mapping system using a 64-pole small basket catheter for the identification of LA-PV conduction gaps. This prospective study included 31 consecutive patients (20 with persistent AF) undergoing a second ablation after a PV isolation procedure with LA-PV reconnected conduction at any of the 4 PVs. An LA-PV map was created using the mapping system, and ablation was performed at the estimated gap location. The propagation map identified 54 gaps from 39 ipsilateral PV pairs, requiring manual electrogram reannotation for 23 gaps (43%). Gaps at the anterior and carinal regions of left and right ipsilateral PVs required manual electrogram reannotation more frequently than the other regions. The voltage map could identify the gap only in 19 instances (35%). Electrophysiological properties of the gaps (multiple gaps in the same ipsilateral PVs, conduction time, velocity, width, and length) did not differ between those needing and not needing manual electrogram reannotation. During the gap ablation, either the activation sequence alteration or elimination of PV potentials was observed using a circular catheter placed in the PV, suggesting that all the identified gaps were correct. This new electroanatomic mapping system visualized all the LA-PV gaps in patients undergoing a second AF ablation. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Differences in delta13C and diameter growth among remnant Scots pine populations in Scotland.
Brendel, Oliver; Handley, Linda; Griffiths, Howard
2002-10-01
Published data suggest that differences in wood cellulose carbon isotope composition (delta13C) and xylem ring width among natural populations of Scots pine in Scotland (Pinus sylvestris L.) are attributable to the persistence of palaeotypes of various post-glacial migratory origins. We assessed differences in wood cellulose delta13C and ring width among Scottish Scots pine populations grown in a clone bank and in natural stands at various locations in northern and central Scotland. Ring width and wood cellulose delta13C varied significantly among natural stands. Potential water deficit was positively correlated with wood cellulose delta13C and xylem ring width in the natural stands. Neither wood cellulose delta13C nor xylem ring width of clone bank trees correlated with any climate variables at the sites from which the trees originated, indicating little adaptation to climate for these traits. Xylem ring width showed a site x population interaction for the growth sites (i.e., natural stands versus clone bank), but wood cellulose delta13C did not. These results suggest that climate variation in Scotland has not resulted in significant genetic variation in wood cellulose delta13C or xylem ring width in post-glacial populations.
NASA Astrophysics Data System (ADS)
J-Me, Teh; Noh, Norlaili Mohd.; Aziz, Zalina Abdul
2015-05-01
In the chip industry today, the key goal of a chip development organization is to develop and market chips within a short time frame to gain foothold on market share. This paper proposes a design flow around the area of parasitic extraction to improve the design cycle time. The proposed design flow utilizes the usage of metal fill emulation as opposed to the current flow which performs metal fill insertion directly. By replacing metal fill structures with an emulation methodology in earlier iterations of the design flow, this is targeted to help reduce runtime in fill insertion stage. Statistical design of experiments methodology utilizing the randomized complete block design was used to select an appropriate emulated metal fill width to improve emulation accuracy. The experiment was conducted on test cases of different sizes, ranging from 1000 gates to 21000 gates. The metal width was varied from 1 x minimum metal width to 6 x minimum metal width. Two-way analysis of variance and Fisher's least significant difference test were used to analyze the interconnect net capacitance values of the different test cases. This paper presents the results of the statistical analysis for the 45 nm process technology. The recommended emulated metal fill width was found to be 4 x the minimum metal width.
Shi, Peng; Zhou, Guangya; Deng, Jie; Tian, Feng; Chau, Fook Siong
2015-09-29
We report the observations of all-optical electromagnetically induced transparency in nanostructures using waveguide side-coupled with photonic crystal nanobeam cavities, which has measured linewidths much narrower than individual resonances. The quality factor of transparency resonance can be 30 times larger than those of measured individual resonances. When the gap between cavity and waveguide is reduced to 10 nm, the bandwidth of destructive interference region can reach 10 nm while the width of transparency resonance is 0.3 nm. Subsequently, a comb-drive actuator is introduced to tune the line shape of the transparency resonance. The width of the peak is reduced to 15 pm and the resulting quality factor exceeds 10(5).
Cleaved-edge-overgrowth nanogap electrodes.
Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc
2011-02-11
We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.
Disorder and Urbach energy in hydrogenated amorphous carbon: A phenomenological model
NASA Astrophysics Data System (ADS)
Fanchini, G.; Tagliaferro, A.
2004-08-01
We develop a phenomenological model describing the structural and topological effects of the disorder in hydrogenated amorphous carbons (a-C :H), through the analysis of the Raman G-peak width and the optical absorption spectra, providing information on the densities of electronic π ad π* states (πDOS). We show that the Urbach energy is not related to topological disorder but to the Gaussian width (σπ) of the πDOS, peaked at ±Eπ energies above/below the Fermi level. σπ, on its turn, is not related in a straightforward manner to the disorder. The disorder is better represented by the σπ/Eπ ratio, expressing the disorder-induced narrowing of the Tauc optical gap.
The Role of Work Function and Band Gap in Resistive Switching Behaviour of ZnTe Thin Films
NASA Astrophysics Data System (ADS)
Rowtu, Srinu; Sangani, L. D. Varma; Krishna, M. Ghanashyam
2018-02-01
Resistive switching behavior by engineering the electrode work function and band gap of ZnTe thin films is demonstrated. The device structures Au/ZnTe/Au, Au/ZnTe/Ag, Al/ZnTe/Ag and Pt/ZnTe/Ag were fabricated. ZnTe was deposited by thermal evaporation and the stoichiometry and band gap were controlled by varying the source-substrate distance. Band gap could be varied between 1.0 eV to approximately 4.0 eV with the larger band gap being attributed to the partial oxidation of ZnTe. The transport characteristics reveal that the low-resistance state is ohmic in nature which makes a transition to Poole-Frenkel defect-mediated conductivity in the high-resistance states. The highest R off-to- R on ratio achieved is 109. Interestingly, depending on stoichiometry, both unipolar and bipolar switching can be realized.
Influence of the Runner Gap on the Flow Field in the Draft Tube of a Low Head Turbine
NASA Astrophysics Data System (ADS)
Junginger, Bernd; Riedelbauch, Stefan
2016-11-01
The gap flow of axial turbines is usually neglected in the design process of hydraulic machines, although it can lead to a stabilization of the draft tube flow. Though, this negligence of the gap can falsify the flow field in the draft tube. Presented in this paper are simulations of an axial propeller turbine operated at Δγ = Δγ BEP with Q > Qbep . Simulations of four gap sizes, using a mesh with about 15 million elements for the entire machine, are performed. Additionally, two turbulence models are applied, the k-ω-SST and the SAS-SST model. At the evaluated operating point a full load vortex develops. Depending on the turbulence model the developing vortex rope can either arise from the hub in a straight shape or in a shape resembling a corkscrew. Integral quantities such as head and torque are compared with experimental model test results performed in the laboratory of the Institute. Flow field simulation results are evaluated for different gap widths. Furthermore, the impact of the gap flow respectively the gap size can be observed in velocity profiles evaluated at different positions downstream the runner until to the end of the draft tube cone. Moreover, the pressure signals recorded at the beginning of the draft tube cone are also affected by the gap flow.
Hölscher, Thilo; Raman, Rema; Fisher, David J; Ahadi, Golnaz; Zadicario, Eyal; Voie, Arne
2013-01-01
The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy.
2013-01-01
The goal was to test the effects of various combinations of pulse widths (PW) and duty cycles (DC) on high-intensity focused ultrasound (HIFU)-induced sonothrombolysis efficacy using an in vitro flow model. An ExAblate™ 4000 HIFU headsystem (InSightec, Inc., Israel) was used. Artificial blood clots were placed into test tubes inside a human calvarium and exposed to pulsatile flow. Four different duty cycles were tested against four different pulse widths. For all study groups, an increase in thrombolysis efficacy could be seen in association with increasing DC and/or PW (p < 0.0001). Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs in vitro. Longer duty cycles in combination with longer pulse widths seem to have the highest potential to optimize clot lysis efficacy. PMID:25512862
Ideal MHD stability of double transport barrier plasmas in DIII-D
NASA Astrophysics Data System (ADS)
Li, G. Q.; Wang, S. J.; Lao, L. L.; Turnbull, A. D.; Chu, M. S.; Brennan, D. P.; Groebner, R. J.; Zhao, L.
2008-01-01
The ideal MHD stability for double transport barrier (DTB or DB) plasmas with varying edge and internal barrier width and height was investigated, using the ideal MHD stability code GATO. A moderate ratio of edge transport barriers (ETB) height to internal transport barriers (ITBs) height is found to be beneficial to MHD stability and the βN is limited by global low n instabilities. For moderate ITB width DB plasmas, if the ETB is weak, the stability is limited by n = 1 (n is the toroidal mode number) global mode; whereas if the ETB is strong it is limited by intermediate-n edge peeling-ballooning modes. Broadening the ITB can improve stability if the ITB half width wi lsim 0.3. For very broad ITB width plasmas the stability is limited by stability to a low n (n > 1) global mode.
Dependence of pedestal properties on plasma parameters
NASA Astrophysics Data System (ADS)
Kim, S. K.; Na, Y.-S.; Saarelma, S.; Kwon, O.
2018-01-01
We have numerically investigated the dependence of pedestal properties such as the pedestal height and the pedestal width on various global parameters using the EURO-DEMO as the reference equilibrium. We have used EPED, a predictive model of the edge pedestal. Among global parameters, we have chosen to vary the triangularity, δ , the elongation, κ , and the poloidal beta, {{β }p} , which have larger effects on the pedestal properties. Improvement of pedestal properties can be achieved for more shaped plasma boundary. However, the increase in the pedestal height and the width with δ saturates around δ ∼ 0.6. Also, the pedestal width saturates and the pedestal temperature starts to decrease for κ >1.9 . Improvement of the pedestal properties due to δ is larger at higher poloidal beta. The pedestal width slightly increases with the electron density at the pedestal top and the effective charge number.
Christel C. Kern; Julia I. Burton; Patricia Raymond; Anthony W. D' Amato; William S. Keeton; Alex Royo; Michael B. Walters; Christopher R. Webster; John L. Willis
2017-01-01
Gap-based silvicultural systems were developed under the assumption that richness, and diversity of tree species and other biota positively respond to variation in size of harvest-created canopy gaps. However, varying gap size alone often does not meet diversity objectives and broader goals to address contemporary forest conditions. Recent research highlights the need...
Han, Weina; Jiang, Lan; Li, Xiaowei; Liu, Pengjun; Xu, Le; Lu, YongFeng
2013-07-01
Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.
NASA Astrophysics Data System (ADS)
Rajagopalan, N. R.; Krishnamoorthy, P.; Jayamoorthy, K.
2017-03-01
Good quality crystals of bis thiourea lead chloride (BTLC) have been grown by slow evaporation method from aqueous solution. Orthorhombic structure and Pna21 space group of the crystals have been identified by single crystal X-ray diffraction. Studies on nucleation kinetics of grown BTLC has been carried out from which meta-stable zone width, induction period, free energy change, critical radius, critical number and growth rate have been calculated. The experimental values of interfacial surface energy for the crystal growth process have been compared with theoretical models. Ultra violet transmittance studies resulted in a high transmittance and wide band gap energy suggested the required optical transparency of the crystal. The second harmonic generation (SHG) and phase matching nature of the crystal have been justified by Kurtz-Perry method. The SHG nature of the crystal has been further attested by the higher values of theoretical hyper polarizability. The dielectric nature of the crystals at different temperatures with varying frequencies has been thoroughly studied. The activation energy values of the electrical process have been calculated from ac conductivity study. Solid state parameters including valence electron plasma energy, Penn gap, Fermi energy and polarisability have been unveiled by theoretical approach and correlated with the crystal's SHG efficiency. The values of hardness number, elastic stiffness constant, Meyer's Index, minimum level of indentation load, load dependent constant, fracture toughness, brittleness index and corrected hardness obtained from Vicker's hardness test clearly showed that the BTLC crystal has good mechanical stability required for NLO device fabrication.
Wang, Jane; Margonis, Georgios Antonios; Amini, Neda; Andreatos, Nikolaos; Yuan, Chunhui; Damaskos, Christos; Antoniou, Efstathios; Garmpis, Nikolaos; Buettner, Stefan; Barbon, Carlotta; Deshwar, Amar; He, Jin; Burkhart, Richard; Pawlik, Timothy M; Wolfgang, Christopher L; Weiss, Matthew J
2018-04-09
Varying definitions of resection margin clearance are currently employed among patients with colorectal cancer liver metastases (CRLM). Specifically, a microscopically positive margin (R1) has alternatively been equated with an involved margin (margin width = 0 mm) or a margin width < 1 mm. Consequently, patients with a margin width of 0-1 mm (sub-mm) are inconsistently classified in either the R0 or R1 categories, thus obscuring the prognostic implications of sub-mm margins. Six hundred thirty-three patients who underwent resection of CRLM were identified. Both R1 definitions were alternatively employed and multivariable analysis was used to determine the predictive power of each definition, as well as the prognostic implications of a sub-mm margin. Five hundred thirty-nine (85.2%) patients had a margin width ≥ 1 mm, 42 had a sub-mm margin width, and 52 had an involved margin (0 mm). A margin width ≥ 1 mm was associated with improved survival vs. a sub-mm margin (65 vs. 36 months; P = 0.03) or an involved margin (65 vs. 33 months; P < 0.001). No significant difference in survival was detected between patients with involved vs. sub-mm margins (P = 0.31). A sub-mm margin and an involved margin were both independent predictors of worse OS (HR 1.66, 1.04-2.67; P = 0.04, and HR 2.14, 1.46-3.16; P < 0.001, respectively) in multivariable analysis. Importantly, after combining the two definitions, patients with either an involved margin or a sub-mm margin were associated with worse OS in multivariable analysis (HR 1.94, 1.41-2.65; P < 0.001). Patients with involved or sub-mm margins demonstrated a similar inferior OS vs. patients with a margin width > 1 mm. Consequently, a uniform definition of R1 as a margin width < 1 mm should perhaps be employed by future studies.
NASA Astrophysics Data System (ADS)
Gabersek, Sasa.; Durran, Dale R.
2004-12-01
Gap winds produced by a uniform airstream flowing over an isolated flat-top ridge cut by a straight narrow gap are investigated by numerical simulation. On the scale of the entire barrier, the proportion of the oncoming flow that passes through the gap is relatively independent of the nondimensional mountain height , even over that range of for which there is the previously documented transition from a “flow over the ridge” regime to a “flow around” regime.The kinematics and dynamics of the gap flow itself were investigated by examining mass and momentum budgets for control volumes at the entrance, central, and exit regions of the gap. These analyses suggest three basic behaviors: the linear regime (small ) in which there is essentially no enhancement of the gap flow; the mountain wave regime ( 1.5) in which vertical mass and momentum fluxes play a crucial role in creating very strong winds near the exit of the gap; and the upstream-blocking regime ( 5) in which lateral convergence generates the strongest winds near the entrance of the gap.Trajectory analysis of the flow in the strongest events, the mountain wave events, confirms the importance of net subsidence in creating high wind speeds. Neglect of vertical motion in applications of Bernoulli's equation to gap flows is shown to lead to unreasonable wind speed predictions whenever the temperature at the gap exit exceeds that at the gap entrance. The distribution of the Bernoulli function on an isentropic surface shows a correspondence between regions of high Bernoulli function and high wind speeds in the gap-exit jet similar to that previously documented for shallow-water flow.
Favazza, Christopher P.; Yu, Lifeng; Leng, Shuai; Kofler, James M.; McCollough, Cynthia H.
2015-01-01
Objective To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. Materials and Methods A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. Results For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise–based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Conclusions Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects. PMID:25938214
Bridging the Gap: Solving Spatial Means-Ends Relations in a Locomotor Task
ERIC Educational Resources Information Center
Berger, Sarah E.; Adolph, Karen E.; Kavookjian, Alisan E.
2010-01-01
Using a means-means-ends problem-solving task, this study examined whether 16-month-old walking infants (N = 28) took into account the width of a bridge as a means for crossing a precipice and the location of a handrail as a means for augmenting balance on a narrow bridge. Infants were encouraged to cross from one platform to another over narrow…
Shape Evolution of Detached Bridgman Crystals Grown in Microgravity
NASA Technical Reports Server (NTRS)
Volz, M. P.; Mazuruk, K.
2015-01-01
Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. In microgravity, the parameters that influence the existence of a stable gap are the growth angle of the solidifying crystal, the contact angle between the melt and the crucible wall, and the pressure difference across the meniscus. During actual crystal growth, the initial crystal radius will not have the precise value required for stable detached growth. Beginning with a crystal diameter that differs from stable conditions, numerical calculations are used to analyze the transient crystal growth process. Depending on the initial conditions and growth parameters, the crystal shape will either evolve towards attachment at the crucible wall, towards a stable gap width, or inwards towards eventual collapse of the meniscus. Dynamic growth stability is observed only when the sum of the growth and contact angles exceeds 180 degrees.
Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer
Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Asif, Syed Amanula Syed
2013-05-07
A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.
Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer
Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Syed Asif, Syed Amanula
2014-07-29
A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.
Studies on in-vessel debris coolability in ALPHA program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi
1997-02-01
In-vessel debris coolability experiments have been performed in ALPHA Program at JAERI. Aluminum oxide (Al{sub 2}O{sub 3}) produced by a thermite reaction was applied as a debris simulant. Two scoping experiments using approximately 30 kg or 50 kg of Al{sub 2}O{sub 3} were conducted. In addition to post-test observations, temperature histories of the debris simulant and the lower head experimental vessel were evaluated. Rapid temperature reduction observed on the outer surface of the experimental vessel may imply that water penetration into a gap between the solidified debris and the experimental vessel occurred resulting in an effective cooling of once heatedmore » vessel wall. Preliminary measurement of a gap width was made with an ultrasonic device. Signals to show the existence of gaps, ranging from 0.7 mm to 1.4 mm, were detected at several locations.« less
Two-dimensional tricycle arsenene with a direct band gap.
Ma, ShuangYing; Zhou, Pan; Sun, L Z; Zhang, K W
2016-03-28
Based on a comprehensive investigation including ab initio phonon and finite-temperature molecular dynamics calculations, we find that two-dimensional tricycle-shaped arsenene (T-As) is robust and even stable under high temperature. T-As is energetically comparable to previously reported chair-shaped arsenene (C-As) and more stable than stirrup-shaped arsenene (S-As). In contrast to C-As and S-As, the monolayer T-As is a direct band gap semiconductor with an energy gap of 1.377 eV. Our results indicate that the electronic structure of T-As can be effectively modulated by stacking, strain, and patterning, which shows great potential of T-As in future nano-electronics. Moreover, by absorbing H or F atoms on the surface of T-As along a specific direction, nanoribbons with desired edge type and even width can be obtained, which is suitable for the fabrication of nano-devices.
Exploring the charge localization and band gap opening of borophene: a first-principles study.
Kistanov, Andrey A; Cai, Yongqing; Zhou, Kun; Srikanth, Narasimalu; Dmitriev, Sergey V; Zhang, Yong-Wei
2018-01-18
Recently synthesized two-dimensional (2D) boron, borophene, exhibits a novel metallic behavior rooted in the s-p orbital hybridization, distinctively different from other 2D materials such as sulfides/selenides and semi-metallic graphene. This unique feature of borophene implies new routes for charge delocalization and band gap opening. Herein, using first-principles calculations, we explore the routes to localize the carriers and open the band gap of borophene via chemical functionalization, ribbon construction, and defect engineering. The metallicity of borophene is found to be remarkably robust against H- and F-functionalization and the presence of vacancies. Interestingly, a strong odd-even oscillation of the electronic structure with width is revealed for H-functionalized borophene nanoribbons, while an ultra-high work function (∼7.83 eV) is found for the F-functionalized borophene due to its strong charge transfer to the atomic adsorbates.
Raman spectra boron doped amorphous carbon thin film deposited by bias assisted-CVD
NASA Astrophysics Data System (ADS)
Ishak, A.; Fadzilah, A. N.; Dayana, K.; Saurdi, I.; Malek, M. F.; Nurbaya, Z.; Shafura, A. K.; Rusop, M.
2018-05-01
Boron doped amorphous carbon thin film carbon was deposited at 200°C-350°C by bias assisted-CVD using palm oil as a precursor material. The structural boron doped amorphous carbon films were discussed by Raman analysis through the evolution of D and G bands. The spectral evolution observed showed the increase of upward shift of D and G peaks as substrate deposition temperatures increased. These structural changes were further correlated with optical gap and the results obtained are discussed and compared. The estimated optical band gap is found to be 1.9 to 2.05 eV and conductivity is to be in the range of 10-5 Scm-1 to 10-4 Scm-1. The decrease of optical band gap is associated to conductivity increased which change the characteristic parameters of Raman spectra including the position of G peak, full width at half maximum of G peak, and ID/IG.
NASA Astrophysics Data System (ADS)
Ozkaya, Efe; Yilmaz, Cetin
2017-02-01
The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.
Gapped excitations in the high-pressure antiferromagnetic phase of URu2Si2
NASA Astrophysics Data System (ADS)
Williams, T. J.; Barath, H.; Yamani, Z.; Rodriguez-Riviera, J. A.; Leão, J. B.; Garrett, J. D.; Luke, G. M.; Buyers, W. J. L.; Broholm, C.
2017-05-01
We report a neutron scattering study of the magnetic excitation spectrum in each of the three temperature and pressure driven phases of URu2Si2 . We find qualitatively similar excitations throughout the (H 0 L ) scattering plane in the hidden-order and large-moment phases, with no changes in the ℏ ω widths of the excitations at the Σ =(1.407 ,0 ,0 ) and Z =(1 ,0 ,0 ) points, within our experimental resolution. There is, however, an increase in the gap at the Σ point from 4.2(2) meV to 5.5(3) meV, consistent with other indicators of enhanced antiferromagnetism under pressure.
H-tailored surface conductivity in narrow band gap In(AsN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velichko, A. V., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Patanè, A., E-mail: amalia.patane@nottingham.ac.uk, E-mail: anton.velychko@nottingham.ac.uk; Makarovsky, O.
2015-01-12
We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased within a thin (∼100 nm) channel below the surface by the controlled incorporation of H-atoms. This channel has a large electron sheet density of ∼10{sup 18 }m{sup −2} and a high electron mobility (μ > 0.1 m{sup 2}V{sup −1}s{sup −1} at low and room temperature). For a fixed dose of impinging H-atoms, its width decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor complexes near the surface.
Abnormal broadening of the optical transitions in (Ga,As)N/GaAs quantum wells
NASA Astrophysics Data System (ADS)
Turcotte, S.; Beaudry, J.-N.; Masut, R. A.; Desjardins, P.; Bentoumi, G.; Leonelli, R.
2012-01-01
We have measured the near band-gap absorption of structurally well characterized GaAs1-xNx quantum wells grown on GaAs(001) with x<0.014. The spectra were reproduced by a model that includes electron-hole correlations. We find that the width of the excitonic and band-to-band optical transitions are more than twice larger than what is found in conventional III-V alloy heterostructures. This confirms the presence of strong nitrogen-configuration induced band-gap fluctuations reported previously by Bentoumi [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.70.035315 70, 035315 (2004)] for bulk dilute GaAsN alloys.
Markov chain Monte Carlo linkage analysis: effect of bin width on the probability of linkage.
Slager, S L; Juo, S H; Durner, M; Hodge, S E
2001-01-01
We analyzed part of the Genetic Analysis Workshop (GAW) 12 simulated data using Monte Carlo Markov chain (MCMC) methods that are implemented in the computer program Loki. The MCMC method reports the "probability of linkage" (PL) across the chromosomal regions of interest. The point of maximum PL can then be taken as a "location estimate" for the location of the quantitative trait locus (QTL). However, Loki does not provide a formal statistical test of linkage. In this paper, we explore how the bin width used in the calculations affects the max PL and the location estimate. We analyzed age at onset (AO) and quantitative trait number 5, Q5, from 26 replicates of the general simulated data in one region where we knew a major gene, MG5, is located. For each trait, we found the max PL and the corresponding location estimate, using four different bin widths. We found that bin width, as expected, does affect the max PL and the location estimate, and we recommend that users of Loki explore how their results vary with different bin widths.
Magnetization dynamics of Ni80Fe20 nanowires with continuous width modulation
NASA Astrophysics Data System (ADS)
Xiong, L. L.; Kostylev, M.; Adeyeye, A. O.
2017-06-01
A systematic investigation of the magnetization reversal and the dynamic behaviors of uncoupled Ni80Fe20 nanowires (NWs) with artificial continuous width modulation is presented. In contrast with the single resonance mode observed in the homogeneous NWs from the broadband ferromagnetic resonance spectroscopy, the NWs with continuous width modulation display three to five distinct resonance modes with increasing wire thickness in the range from 5 to 70 nm due to the nonuniform demagnetizing field. The highest frequency mode and the frequency difference between the two distinct highest modes are shown to be markedly sensitive to the NW thickness. Interestingly, we found that these modes can be described in terms of the quantization of the standing spin waves due to confined varied width. In addition, the easy axis coercive field for the width modulated NWs is much higher than homogeneous NWs of the same thickness when less than 70 nm. Our experimental results are in good qualitative agreement with the micromagnetic simulations. The results may find potential applications in the design and optimization of tunable magnonic filters.
Yield Strength Testing in Human Cadaver Nasal Septal Cartilage and L-Strut Constructs.
Liu, Yuan F; Messinger, Kelton; Inman, Jared C
2017-01-01
To our knowledge, yield strength testing in human nasal septal cartilage has not been reported to date. An understanding of the basic mechanics of the nasal septum may help surgeons decide how much of an L-strut to preserve and how much grafting is needed. To determine the factors correlated with yield strength of the cartilaginous nasal septum and to explore the association between L-strut width and thickness in determining yield strength. In an anatomy laboratory, yield strength of rectangular pieces of fresh cadaver nasal septal cartilage was measured, and regression was performed to identify the factors correlated with yield strength. To measure yield strength in L-shaped models, 4 bonded paper L-struts models were constructed for every possible combination of the width and thickness, for a total of 240 models. Mathematical modeling using the resultant data with trend lines and surface fitting was performed to quantify the associations among L-strut width, thickness, and yield strength. The study dates were November 1, 2015, to April 1, 2016. The factors correlated with nasal cartilage yield strength and the associations among L-strut width, thickness, and yield strength in L-shaped models. Among 95 cartilage pieces from 12 human cadavers (mean [SD] age, 67.7 [12.6] years) and 240 constructed L-strut models, L-strut thickness was the only factor correlated with nasal septal cartilage yield strength (coefficient for thickness, 5.54; 95% CI, 4.08-7.00; P < .001), with an adjusted R2 correlation coefficient of 0.37. The mean (SD) yield strength R2 varied with L-strut thickness exponentially (0.93 [0.06]) for set widths, and it varied with L-strut width linearly (0.82 [0.11]) or logarithmically (0.85 [0.17]) for set thicknesses. A 3-dimensional surface model of yield strength with L-strut width and thickness as variables was created using a 2-dimensional gaussian function (adjusted R2 = 0.94). Estimated yield strengths were generated from the model to allow determination of the desired yield strength with different permutations of L-strut width and thickness. In this study of human cadaver nasal septal cartilage, L-strut thickness was significantly associated with yield strength. In a bonded paper L-strut model, L-strut thickness had a more important role in determining yield strength than L-strut width. Surgeons should consider the thickness of potential L-struts when determining the amount of cartilaginous septum to harvest and graft. NA.
Influence of the electrode gap separation on the pseudospark-sourced electron beam generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland
Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less
Binarization algorithm for document image with complex background
NASA Astrophysics Data System (ADS)
Miao, Shaojun; Lu, Tongwei; Min, Feng
2015-12-01
The most important step in image preprocessing for Optical Character Recognition (OCR) is binarization. Due to the complex background or varying light in the text image, binarization is a very difficult problem. This paper presents the improved binarization algorithm. The algorithm can be divided into several steps. First, the background approximation can be obtained by the polynomial fitting, and the text is sharpened by using bilateral filter. Second, the image contrast compensation is done to reduce the impact of light and improve contrast of the original image. Third, the first derivative of the pixels in the compensated image are calculated to get the average value of the threshold, then the edge detection is obtained. Fourth, the stroke width of the text is estimated through a measuring of distance between edge pixels. The final stroke width is determined by choosing the most frequent distance in the histogram. Fifth, according to the value of the final stroke width, the window size is calculated, then a local threshold estimation approach can begin to binaries the image. Finally, the small noise is removed based on the morphological operators. The experimental result shows that the proposed method can effectively remove the noise caused by complex background and varying light.
Almeida, F; Oliveira, F; Neves, R; Siqueira, N; Rodrigues-Silva, R; Daipert-Garcia, D; Machado-Silva, J R
2015-07-01
Polycystic echinococcosis, caused by the larval stage (metacestode) of the small-sized tapeworm, Echinococcus vogeli, is an emerging parasitic zoonosis of great public health concern in the humid tropical rainforests of South and Central America. Because morphological and morphometric characteristics of the metacestode are not well known, hydatid cysts from the liver and the mesentery were examined from patients following surgical procedures. Whole mounts of protoscoleces with rostellar hooks were examined under light and confocal laser scanning microscopy. Measurements were made of both large and small hooks, including the total area, total length, total width, blade area, blade length, blade width, handle area, handle length and handle width. The results confirmed the 1:1 arrangement of hooks in the rostellar pad and indicated, for the first time, that the morphometry of large and small rostellar hooks varies depending upon the site of infection. Light and confocal microscopy images displayed clusters of calcareous corpuscles in the protoscoleces. In conclusion, morphological features of large and small rostellar hooks of E. vogeli are adapted to a varied environment within the vertebrate host and such morphological changes in calcareous corpuscles occur at different stages in the maturation of metacestodes.
Zhang, Qing; Dong, Hua; Li, Yuli; Zhu, Ye; Zeng, Lei; Gao, Huichang; Yuan, Bo; Chen, Xiaofeng; Mao, Chuanbin
2015-10-21
Surface topography can affect cell adhesion, morphology, polarity, cytoskeleton organization, and osteogenesis. However, little is known about the effect of topography on the fracture healing in repairing nonunion and large bone defects. Microgrooved topography on the surface of bone implants may promote cell migration into the fracture gap to accelerate fracture healing. To prove this hypothesis, we used an in vitro fracture (wound) healing assay on the microgrooved polycaprolactone substrates to study the effect of microgroove widths and depths on the osteoblast-like cell (MG-63) migration and the subsequent healing. We found that the microgrooved substrates promoted MG-63 cells to migrate collectively into the wound gap, which serves as a fracture model, along the grooves and ridges as compared with the flat substrates. Moreover, the groove widths did not show obvious influence on the wound healing whereas the smaller groove depths tended to favor the collective cell migration and thus subsequent healing. The microgrooved substrates accelerated the wound healing by facilitating the collective cell migration into the wound gaps but not by promoting the cell proliferation. Furthermore, microgrooves were also found to promote the migration of human mesenchymal stem cells (hMSCs) to heal the fracture model. Though osteogenic differentiation of hMSCs was not improved on the microgrooved substrate, collagen I and minerals deposited by hMSCs were organized in a way similar to those in the extracellular matrix of natural bone. These findings suggest the necessity in using microgrooved implants in enhancing fracture healing in bone repair.
NASA Astrophysics Data System (ADS)
Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad
2017-02-01
A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.
Multiple Gaps in the Disk of the Class I Protostar GY 91
NASA Astrophysics Data System (ADS)
Sheehan, Patrick D.; Eisner, Josh A.
2018-04-01
We present the highest spatial resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations to date of the Class I protostar GY 91 in the ρ Ophiuchus L1688 molecular cloud complex. Our 870 μm and 3 mm dust continuum maps show that the GY 91 disk has a radius of ∼80 au, and an inclination of ∼40°, but most interestingly that the disk has three dark lanes located at 10, 40, and 70 au. We model these features assuming they are gaps in the disk surface density profile and find that their widths are 7, 30, and 10 au. These gaps bear a striking resemblance to the gaps seen in the HL Tau disk, suggesting that there may be Saturn-mass planets hiding in the disk. To constrain the relative ages of GY 91 and HL Tau, we also model the disk and envelope of HL Tau and find that they are of similar ages, although GY 91 may be younger. Although snow lines and magnetic dead zones can also produce dark lanes, if planets are indeed carving these gaps then Saturn-mass planets must form within the first ∼0.5 Myr of the lifetime of protoplanetary disks.
Seleim, S M; Hamdalla, Taymour A; Mahmoud, Mohamed E
2017-09-05
Nanosized (NS) cobalt (II) bis(5-phenyl-azo-8-hydroxyquinolate) (NS Co(II)-(5PA-8HQ) 2 ) thin films have been synthesized using static step-by-step soft surface reaction (SS-b-SSR) technique. Structural and optical characterizations of these thin films have been carried out using thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The HR-TEM results revealed that the assembled Co(II)-complex exhibited a uniformly NS structure particles in the form of nanorods with width and length up to 16.90nm and 506.38nm, respectively. The linear and nonlinear optical properties have been investigated. The identified energy gap of the designed thin film materials was found 4.01eV. The refractive index of deposited Co(II)-complex thin film was identified by thickness-dependence and found as 1.9 at wavelength 1100nm. In addition, the refractive index was varied by about 0.15 due to an increase in the thickness by 19nm. Copyright © 2017 Elsevier B.V. All rights reserved.
Topological crystalline insulator SnTe nanoribbons
NASA Astrophysics Data System (ADS)
Dahal, Bishnu R.; Dulal, Rajendra P.; Pegg, Ian L.; Philip, John
2017-03-01
Topological crystalline insulators are systems in which a band inversion that is protected by crystalline mirror symmetry gives rise to nontrivial topological surface states. SnTe is a topological crystalline insulator. It exhibits p-type conductivity due to Sn vacancies and Te antisites, which leads to high carrier density in the bulk. Thus growth of high quality SnTe is a prerequisite for understanding the topological crystalline insulating behavior. We have grown SnTe nanoribbons using a solution method. The width of the SnTe ribbons varies from 500 nm to 2 μm. They exhibit rock salt crystal structure with a lattice parameter of 6.32 Å. The solution method that we have adapted uses low temperature, so the Sn vacancies can be controlled. The solution grown SnTe nanoribbons exhibit strong semiconducting behavior with an activation energy of 240 meV. This activation energy matches with the calculated band gap for SnTe with a lattice parameter of 6.32 Å, which is higher than that reported for bulk SnTe. The higher activation energy makes the thermal excitation of bulk charges very difficult on the surface. As a result, the topological surfaces will be free from the disturbance caused by the thermal excitations
Confronting the Achievement Gap
ERIC Educational Resources Information Center
Gardner, David
2007-01-01
This article talks about the large achievement gap between children of color and their white peers. The reasons for the achievement gap are varied. First, many urban minorities come from a background of poverty. One of the detrimental effects of growing up in poverty is receiving inadequate nourishment at a time when bodies and brains are rapidly…
Does it get better? A quasi-cohort analysis of sexual minority wage gaps.
Waite, Sean
2015-11-01
With few exceptions, it has been found that gay men earn less and lesbians earn more than their heterosexual counterparts. Most of the current literature has used single cross-sectional datasets to test possible sources of these wage differentials. This study adds to this literature by presenting a theoretical framework, grounded in gender theory, to explore: (a) whether sexual minority wage gaps have attenuated over the last decade, (b) whether wage gaps vary by age group, and (c) if wage gaps vary with duration in the labor market. Using Canadian census and survey data, this study finds no evidence that wage gaps have attenuated for gay men and only small reductions for lesbians and heterosexual women, relative to heterosexual men. Wage gaps are larger for younger gay men than for older gay men, which may suggest a "coming out penalty". The lesbian wage premium, vis-á-vis heterosexual women, does not appear at initial labor market entry; rather it develops with duration in the labour market. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Polland, Hans J.; Kuhl, Jurgen; Gobel, Ernst O.
1988-08-01
Picosecond photoluminescence experiments at low temperature (6K) have been employed to study the trapping dynamics of photoexcited carriers in GaAs/AlGaAs single quantum wells for different shapes of the AlxGai_xAs confinement layers. We have obtained the following results by analyzing the spectral and temporal distribution of the photoluminescence after picosecond pulse excitation: Trapping efficiency is ==, 40% for a standard ungraded cladding layer (A10.3G1.7As with constant band gap and 5nm thick wells) but increases to ,-, 60% and 100% for samp es with a spatially parabolic or linear band gap profile of the confinement layers, respectively. Trapping times are appreciably shorter than the luminescence risetime which is between 60ps to 100ps. Thus carrier trapping does not impose severe limitations on the modulation speed of single quantum well devices up to frequencies in the order of 10GHz. Similar results are obtained for a well with a width of 1.2nm. Inhomogeneities in the carrier trapping mechanism due to well width fluctuations are not observed in our samples. In the second part we describe the photoluminescence properties of GaAs/A1,Gai_x As quantum wells (x=0.3) under the influence of electric fields perpendicular to the layers. We observe a drastic red shift and a concomitant strong increase of the electron-hole recombination lifetime for well widths > lOnm due to the quantum-confined Stark effect. At high fields (50-100kV/cm) field ionization due to tunneling leads to a decrease of both the photoluminescence yield and decay time, in accordance with a simple WKB theory
Emma L. Witt; Christopher D. Barton; Jeffrey W. Stringer; Randy Kolka; Mac A. Cherry
2016-01-01
Streamside management zones (SMZs) are a common best management practice (BMP) used to reduce water quality impacts from logging. The objective of this research was to evaluate the impact of varying SMZ configurations on water quality. Treatments (T1, T2, and T3) that varied in SMZ width, canopy retention within the SMZ, and BMP utilization were applied at the...
NASA Astrophysics Data System (ADS)
Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei
2014-05-01
This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.
Broadhurst, Matthew S; Akst, Lee M; Burns, James A; Kobler, James B; Heaton, James T; Anderson, R Rox; Zeitels, Steven M
2007-02-01
Selective vascular ablation (photoangiolysis) using pulsed lasers that target hemoglobin is an effective treatment strategy for many vocal fold lesions. However, vessel rupture with extravasation of blood reduces selectivity for vessels, which is frequently observed with the 0.45-ms, 585-nm pulsed dye laser. Previous studies have shown that vessel rupture is the result of vaporization of blood, an event that varies with laser pulse width and pulse fluence (energy per unit area). Clinical observations using a 532-nm wavelength pulsed potassium-titanyl-phosphate (KTP) laser revealed less laser-induced hemorrhage than the pulsed dye laser. This study investigated settings for the pulsed KTP laser to achieve selective vessel destruction without rupture using the avian chorioallantoic membrane under conditions similar to flexible laryngoscopic delivery of the laser in clinical practice. The chick chorioallantoic membrane offers convenient access to many small blood vessels similar in size to those targeted in human vocal fold. Using a 532-nm pulsed KTP laser, pulse width, pulse energy, and working distance from the optical delivery fiber were varied to assess influence on the ability to achieve vessel coagulation without vessel wall rupture. Third-order vessels (n = 135) were irradiated: Energy (471-550 mJ), pulse width (10, 15, 30 ms), and fiber-to-tissue distance (1 mm, 3 mm) were varied systematically. Selective vessel destruction without vessel wall rupture was more often achieved by increasing pulse width, increasing the fiber-to-tissue distance, and decreasing energy. Vessel destruction without rupture was consistently achieved using 15- or 30-ms pulses with a fiber-to-tissue distance of 3 mm (pulse fluence of 13-16 J/cm). This study substantiates our clinical observation that a 532-nm pulsed KTP laser was effective for ablating microcirculation while minimizing vessel wall rupture and hemorrhage.
SU-G-206-11: The Effect of Table Height On CTDIvol and SSDE in CT Scanning: A Phantom Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, R; Silosky, M
2016-06-15
Purpose: Localizer projection radiographs acquired prior to CT scans are used to estimate patient size, affecting the function of Automatic Tube Current Modulation (ATCM) and calculation of the Size Specific Dose Estimate (SSDE). Due to geometric effects, the projected patient size varies with scanner table height and with the orientation of the localizer (AP versus PA). Consequently, variations in scanner table height may affect both CTDIvol and the calculated size-corrected dose index (SSDE). This study sought to characterize these effects. Methods: An anthropomorphic phantom was imaged using an AP localizer, followed by a diagnostic scan using ATCM and our institution’smore » routine abdomen protocol. This was repeated at various scanner table heights, recording the scanner-reported CTDIvol for each diagnostic scan. The width of the phantom was measured from the localizer and diagnostic images using in-house software. The measured phantom width and scanner-reported CTDIvol were used to calculate SSDE. This was repeated using PA localizers followed by diagnostic scans. Results: 1) The localizer-based phantom width varied by up to 54% of the nominal phantom width between minimum and maximum table heights. 2) Changing the table height caused a variation in scanner-reported CTDIvol of a factor greater than 4.6 when using a PA localizer and almost 2 when using an AP localizer. 3) SSDE, calculated from measured phantom size and scanner-reported CTDIvol, varied by a factor of more than 2.8 when using a PA localizer and almost 1.5 when using an AP localizer. Conclusion: Our study demonstrates that off-center patient positioning affects the efficacy of ATCM, more severely when localizers are acquired in the PA rather than AP projection. Further, patient positioning errors can cause a large variation in the calculated SSDE. This hinders interpretation of SSDE for individual patients and aggregate SSDE data when evaluating CT protocols and clinical practices.« less
Ion flux enhancements and oscillations in spatially confined laser produced aluminum plasmas
NASA Astrophysics Data System (ADS)
Singh, S. C.; Fallon, C.; Hayden, P.; Mujawar, M.; Yeates, P.; Costello, J. T.
2014-09-01
Ion signals from laser produced plasmas (LPPs) generated inside aluminum rectangular cavities at a fixed depth d = 2 mm and varying width, x = 1.0, 1.6, and 2.75 mm were obtained by spatially varying the position of a negatively biased Langmuir probe. Damped oscillatory features superimposed on Maxwellian distributed ion signals were observed. Depending on the distance of the probe from the target surface, three to twelve fold enhancements in peak ion density were observed via confinement of the LPP, generated within rectangular cavities of varying width which constrained the plasma plume to near one dimensional expansion in the vertical plane. The effects of lateral spatial confinement on the expansion velocity of the LPP plume front, the temperature, density and expansion velocity of ions, enhancement of ion flux, and ion energy distribution were recorded. The periodic behavior of ion signals was analyzed and found to be related to the electron plasma frequency and electron-ion collision frequency. The effects of confinement and enhancement of various ion parameters and expansion velocities of the LPP ion plume are explained on the basis of shock wave theory.
Capacitor charging FET switcher with controller to adjust pulse width
Mihalka, Alex M.
1986-01-01
A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.
Two-phase model for prediction of cell-free layer width in blood flow
Namgung, Bumseok; Ju, Meongkeun; Cabrales, Pedro; Kim, Sangho
2014-01-01
This study aimed to develop a numerical model capable of predicting changes in the cell-free layer (CFL) width in narrow tubes with consideration of red blood cell aggregation effects. The model development integrates to empirical relations for relative viscosity (ratio of apparent viscosity to medium viscosity) and core viscosity measured on independent blood samples to create a continuum model that includes these two regions. The constitutive relations were derived from in vitro experiments performed with three different glass-capillary tubes (inner diameter = 30, 50 and 100 μm) over a wide range of pseudoshear rates (5-300 s−1). The aggregation tendency of the blood samples was also varied by adding Dextran 500 kDa. Our model predicted that the CFL width was strongly modulated by the relative viscosity function. Aggregation increased the width of CFL, and this effect became more pronounced at low shear rates. The CFL widths predicted in the present study at high shear conditions were in agreement with those reported in previous studies. However, unlike previous multi-particle models, our model did not require a high computing cost, and it was capable of reproducing results for a thicker CFL width at low shear conditions, depending on aggregating tendency of the blood. PMID:23116701
Genome-wide association study of rice grain width variation.
Zheng, Xiao-Ming; Gong, Tingting; Ou, Hong-Ling; Xue, Dayuan; Qiao, Weihua; Wang, Junrui; Liu, Sha; Yang, Qingwen; Olsen, Kenneth M
2018-04-01
Seed size is variable within many plant species, and understanding the underlying genetic factors can provide insights into mechanisms of local environmental adaptation. Here we make use of the abundant genomic and germplasm resources available for rice (Oryza sativa) to perform a large-scale genome-wide association study (GWAS) of grain width. Grain width varies widely within the crop and is also known to show climate-associated variation across populations of its wild progenitor. Using a filtered dataset of >1.9 million genome-wide SNPs in a sample of 570 cultivated and wild rice accessions, we performed GWAS with two complementary models, GLM and MLM. The models yielded 10 and 33 significant associations, respectively, and jointly yielded seven candidate locus regions, two of which have been previously identified. Analyses of nucleotide diversity and haplotype distributions at these loci revealed signatures of selection and patterns consistent with adaptive introgression of grain width alleles across rice variety groups. The results provide a 50% increase in the total number of rice grain width loci mapped to date and support a polygenic model whereby grain width is shaped by gene-by-environment interactions. These loci can potentially serve as candidates for studies of adaptive seed size variation in wild grass species.
Michael Zasada; Chris J. Cieszewski; Roger C. Lowe; Jarek Zawadzki; Mike Clutter; Jacek P. Siry
2005-01-01
Georgia Stream Management Zones (SMZ) are voluntary and have an unknown extent and impact. We use FIA data, Landsat TM imagery, and GAP and other GIS data to estimate the acreages and volumes of these buffers. We use stream data classified into trout, perennial, and intermittent, combined with DEM files containing elevation values, to assess buffers with widths...
NASA Astrophysics Data System (ADS)
Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc
2015-09-01
We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.
Microwave permeability of stripe patterned FeCoN thin film
NASA Astrophysics Data System (ADS)
Wu, Yuping; Yang, Yong; Ma, Fusheng; Zong, Baoyu; Yang, Zhihong; Ding, Jun
2017-03-01
Magnetic stripe patterns are of great importance for microwave applications owing to their highly tunable microwave permeability by adjusting the geometrical dimensions. In this work, stripe patterned FeCoN films with 160 nm thickness are fabricated by using standard UV photolithography. Their microwave permeability are investigated systematically via both experiment and micromagnetic simulation. The good agreement between experimental and simulation results suggests that stripe width is crucial for the microwave magnetic properties of the stripe pattern. It is demonstrated by simulation that with increasing stripe width from 1 to 80 μm the initial permeability shows a continuous growth from about 8-322, whiles the resonance frequency drops dramatically from 18.7 to 3.1 GHz at 4 μm gap size. Smaller gap size would result in slightly increased initial permeability due to larger magnetic volume ratio, accompanied by decreased resonance frequency because of stronger magnetostatic interaction. Moreover, the experimental investigation on stripe length effect indicates that the stripe length should be kept as long as possible to achieve uniform bulk resonance mode and high permeability value. Insufficient stripe length would result in low frequency edge mode and decayed bulk mode. This study could provide valuable guidelines on the selection of proper geometry dimensions of FeCoN stripe patterns for high frequency applications.
On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons
Talirz, Leopold; Söde, Hajo; Dumslaff, Tim; ...
2017-01-27
The bottom-up approach to synthesize graphene nanoribbons strives not only to introduce a band gap into the electronic structure of graphene but also to accurately tune its value by designing both the width and edge structure of the ribbons with atomic precision. Within this paper, we report the synthesis of an armchair graphene nanoribbon with a width of nine carbon atoms on Au(111) through surface-assisted aryl–aryl coupling and subsequent cyclodehydrogenation of a properly chosen molecular precursor. By combining high-resolution atomic force microscopy, scanning tunneling microscopy, and Raman spectroscopy, we demonstrate that the atomic structure of the fabricated ribbons is exactlymore » as designed. Angle-resolved photoemission spectroscopy and Fourier-transformed scanning tunneling spectroscopy reveal an electronic band gap of 1.4 eV and effective masses of ≈0.1 m e for both electrons and holes, constituting a substantial improvement over previous efforts toward the development of transistor applications. We use ab initio calculations to gain insight into the dependence of the Raman spectra on excitation wavelength as well as to rationalize the symmetry-dependent contribution of the ribbons’ electronic states to the tunneling current. Lastly, we propose a simple rule for the visibility of frontier electronic bands of armchair graphene nanoribbons in scanning tunneling spectroscopy.« less
NASA Technical Reports Server (NTRS)
Lee, Hsing-Chung; Kost, A.; Kawase, M.; Hariz, A.; Dapkus, P. Daniel
1988-01-01
The nonlinear absorption properties of the excitonic resonances associated with multiple quantum wells (MQWs) in AlGaAs/GaAs grown by metalorganic chemical vapor deposition are reported. The dependence of the saturation properties on growth parameters, especially growth temperature, and the well width are described. The minimum measured saturation intensity for these materials is 250 W/sq cm, the lowest reported value to date. The low saturation intensities are the result of excellent minority carrier properties. A systematic study of minority carrier lifetimes in quantum wells are reported. Lifetimes range from 50-350 ns depending on growth temperature and well width. When corrected for lateral diffusion effects and the measured minority carrier lifetime, the saturation data suggest that saturation intensities as low as 2.3 W/sq cm can be achieved in this system. The first measurements of the dependence of the exciton area and the magnitude of the excitonic absorption on well width are prsented. The growth of MQW structures on transparent GaP substrates is demonstrated and the electroabsorption properties of these structures are reviewed.
Dai, Daoxin; Bowers, John E
2011-09-12
A novel ultra-short polarization beam splitter (PBS) based on a bent directional coupler is proposed by utilizing the evanescent coupling between two bent optical waveguides with different core widths. For the bent directional coupler, there is a significant phase-mismatch for TE polarization while the phase-matching condition is satisfied for TM polarization. Therefore, the TM polarized light can be coupled from the narrow input waveguide to the adjacent wide waveguide while the TE polarization goes through the coupling region without significant coupling. An ultra-short (<10 μm-long) PBS is designed based on silicon-on-insulator nanowires and the length of the bent coupling region is as small as 4.5 μm while the gap width is chosen as 200 nm (large enough to simplify the fabrication). Numerical simulations show that the present PBS has a good fabrication tolerance for the variation of the waveguide width (more than ± 60 nm) and a very broad band (~200 nm) for an extinction ratio of >10 dB.
State-Building: Job Creation, Investment Promotion, and the Provision of Basic Services
2010-09-01
gap between what practitioners need to know and what research can currently show with reasonable confidence. There is a further wide gap between what...IRAs), which selectively rehired staff and paid higher wages in return for monitored performance. There may be scope for research on whether vari...rehired staff and paid higher wages in return for monitored performance. There may be scope for research on whether vari- ations in the costs of tax
Wavelength-tunable optical ring resonators
Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM
2009-11-10
Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.
Wavelength-tunable optical ring resonators
Watts, Michael R [Albuquerque, NM; Trotter, Douglas C [Albuquerque, NM; Young, Ralph W [Albuquerque, NM; Nielson, Gregory N [Albuquerque, NM
2011-07-19
Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.
Gap winds and their effects on regional oceanography Part II: Kodiak Island, Alaska
NASA Astrophysics Data System (ADS)
Ladd, Carol; Cheng, Wei; Salo, Sigrid
2016-10-01
Frequent gap winds, defined here as offshore-directed flow channeled through mountain gaps, have been observed near Kodiak Island in the Gulf of Alaska (GOA). Gap winds from the Iliamna Lake gap were investigated using QuikSCAT wind data. The influence of these wind events on the regional ocean was examined using satellite and in situ data combined with Regional Ocean Modeling System (ROMS) model runs. Gap winds influence the entire shelf width (> 200 km) northeast of Kodiak Island and extend an additional 150 km off-shelf. Due to strong gradients in the along-shelf direction, they can result in vertical velocities in the ocean of over 20 m d-1 due to Ekman pumping. The wind events also disrupt flow of the Alaska Coastal Current (ACC), resulting in decreased flow down Shelikof Strait and increased velocities on the outer shelf. This disruption of the ACC has implications for freshwater transport into the Bering Sea. The oceanographic response to gap winds may influence the survival of larval fishes as Arrowtooth Flounder recruitment is negatively correlated with the interannual frequency of gap-wind events, and Pacific Cod recruitment is positively correlated. The frequency of offshore directed winds exhibits a strong seasonal cycle averaging 7 days per month during winter and 2 days per month during summer. Interannual variability is correlated with the Pacific North America Index and shows a linear trend, increasing by 1.35 days per year. An accompanying paper discusses part I of our study (Ladd and Cheng, 2016) focusing on gap-wind events flowing out of Cross Sound in the eastern GOA.
Toward Excellence with Equity: An Emerging Vision for Closing the Achievement Gap
ERIC Educational Resources Information Center
Ferguson, Ronald F.
2007-01-01
For the past 15 years, economist Ronald Ferguson has investigated the myriad factors that combine to create racial disparities in academic performance. Beginning with his analysis of the impact of test scores in predicting racial wage gaps, Ferguson has explored how rates of progress in narrowing gaps have varied over the recent decades, the roles…
The Geography of Racial/Ethnic Test Score Gaps. CEPA Working Paper No. 16-10
ERIC Educational Resources Information Center
Reardon, Sean F.; Kalogrides, Demetra; Shores, Ken
2017-01-01
We estimate racial/ethnic achievement gaps in several hundred metropolitan areas and several thousand school districts in the United States using the results of roughly 200 million standardized math and reading tests administered to public school students from 2009-2013. We show that achievement gaps vary substantially, ranging from nearly 0 in…
The Achievement Gap in Reading: Complex Causes, Persistent Issues, Possible Solutions
ERIC Educational Resources Information Center
Horowitz, Rosalind, Ed.; Samuels, S. Jay, Ed.
2017-01-01
In this volume prominent scholars, experts in their respective fields and highly skilled in the research they conduct, address educational and reading research from varied perspectives and address what it will take to close the achievement gap--with specific attention to reading. The achievement gap is redefined as a level at which all groups can…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobbins, T. J., E-mail: tdobbins@wisc.edu; Kumar, S. T. A.; Anderson, D. T.
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. In order to compare the experimental results with theoretical models it is important to accurately model the beam width effects. A synthetic diagnostic has been developed for this purpose. This synthetic diagnostic calculates the effect of spot sizemore » and beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.
2016-08-03
The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less
NASA Astrophysics Data System (ADS)
Carter, F. W.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Divan, R.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Kutepova, V.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stan, L.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.
2018-04-01
We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope's third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.
A Study of Chip Formation Feedrates of Various Steels in Low-Speed Milling Process
NASA Astrophysics Data System (ADS)
Prasetyo, L.; Tauviqirrahman, M.; Rusnaldy
2017-05-01
Milling is a process of metal removal by feeding the workpiece a rotating multitoothed cutter. The objective of the study was to investigate the chip characteristics (chip length, width, and thickness) during the milling process by varying the feedrates and the types of materials used based on an experimental approach. The chosen materials were AISI 1020, AISI 1045, AISI 1090, AISI D2, and AISI 4340 with a high-speed steel (HSS) as a cutter. In this work, the feedrates were varied of 5, 10, and 15 mm/minutes with the depth of cut of 0.5 mm and a low spindle speed of 70 rpm. The results show that, in general, increasing the feedrate will lead to the growth of chip length, width, and thickness for all types of materials used. Also, related to the chip shape, AISI 1020 produces the discontinuous chip which can be related to its hardness value.
Shock position sensor for supersonic inlets. [measuring pressure in the throat of a supersonic inlet
NASA Technical Reports Server (NTRS)
Dustin, M. O. (Inventor)
1975-01-01
Static pressure taps or ports are provided in the throat of a supersonic inlet, and signals indicative of the pressure at each of the ports is fed to respective comparators. Means are also provided for directing a signal indicative of the total throat pressure to the comparators. A periodic signal is superimposed on the total throat pressure so that the signal from the static pressure tabs is compared to a varying scan signal rather than to total throat pressure only. This type of comparison causes each comparator to provide a pulse width modulated output which may vary from 0% 'time on' to 100% 'time on'. The pulse width modulated outputs of the comparators are summed, filtered, and directed to a controller which operates a bypass valve such as a door whereby air is dumped from the inlet to prevent the shock wave from being expelled out the front.
Missing pulse detector for a variable frequency source
Ingram, Charles B.; Lawhorn, John H.
1979-01-01
A missing pulse detector is provided which has the capability of monitoring a varying frequency pulse source to detect the loss of a single pulse or total loss of signal from the source. A frequency-to-current converter is used to program the output pulse width of a variable period retriggerable one-shot to maintain a pulse width slightly longer than one-half the present monitored pulse period. The retriggerable one-shot is triggered at twice the input pulse rate by employing a frequency doubler circuit connected between the one-shot input and the variable frequency source being monitored. The one-shot remains in the triggered or unstable state under normal conditions even though the source period is varying. A loss of an input pulse or single period of a fluctuating signal input will cause the one-shot to revert to its stable state, changing the output signal level to indicate a missing pulse or signal.
Application of a Near-Field Water Quality Model.
1979-07-01
VERIFICATION 45 CENTERLINE TEMPERATURE DECRF~A7F 46 LATERAL VARIATION OF CONSTITUENTS 46 VARIATIOtN OF PLUME WIDTH 49 GENERAL ON VERIFICATION 49...40 4 SOME RESULTS OF VARYING THE ENTRAINMENT COEFFICIENT 4’ 5 RESULTS OF VARYING OTHER COEFFICEINT 42 6 GENERAL PLUME CHARACTERISITICS FOR VARIATION... plume ) axis. These profile forms are then integrated within the basic conservation equations. This integration reduces the problem to a one
Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens
Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; ...
2015-08-12
Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermore » slits.« less
NASA Astrophysics Data System (ADS)
da Silva Filho, J. G.; Freire, V. N.; Caetano, E. W. S.; Ladeira, L. O.; Fulco, U. L.; Albuquerque, E. L.
2013-11-01
In this letter, we study the electronic structure and optical properties of the active medicinal component γ-aminobutyric acid (GABA) and its cocrystals with oxalic (OXA) and benzoic (BZA) acid by means of the density functional theory formalism. It is shown that the cocrystallization strongly weakens the zwitterionic character of the GABA molecule leading to striking differences among the electronic band structures and optical absorption spectra of the GABA crystal and GABA:OXA, GABA:BZA cocrystals, originating from distinct sets of hydrogen bonds. Calculated band widths and Δ-sol band gap estimates indicate that both GABA and GABA:OXA, GABA:BZA cocrystals are indirect gap insulators.
Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons.
Culchac, F J; Capaz, Rodrigo B
2016-02-12
The effects of edge magnetism on the Kohn anomaly (KA) of the G-band phonons of zigzag graphene nanoribbons (ZGNRs) are studied using a combination of the tight-binding and mean-field Hubbard models. We show that the opening of an energy gap, induced by magnetic ordering, significantly changes the KA effects, particularly for narrow ribbons in which the gap is larger than the phonon energy. Therefore, the G-band phonon frequency and lifetime are altered for a magnetically-ordered edge state with respect to an unpolarized edge state. The effects of temperature, ZGNR width, doping and transverse electric fields are systematically investigated. We propose using this effect to probe the magnetic order of edge states in graphene nanoribbons using Raman spectroscopy.
Zhang, De-Long; Zhang, Pei; Zhou, Hao-Jiang; Pun, Edwin Yue-Bun
2008-10-01
We have demonstrated the possibility that near-stoichiometric Ti:LiNbO(3) strip waveguides are fabricated by carrying out vapor transport equilibration at 1060 degrees C for 12 h on a congruent LiNbO(3) substrate with photolithographically patterned 4-8 microm wide, 115 nm thick Ti strips. Optical characterizations show that these waveguides are single mode at 1.5 microm and show a waveguide loss of 1.3 dB/cm for TM mode and 1.1 dB/cm for TE mode. In the width/depth direction of the waveguide, the mode field follows the Gauss/Hermite-Gauss function. Secondary-ion-mass spectrometry (SIMS) was used to study Ti-concentration profiles in the depth direction and on the surface of the 6 microm wide waveguide. The result shows that the Ti profile follows a sum of two error functions along the width direction and a complementary error function in the depth direction. The surface Ti concentration, 1/e width and depth, and mean diffusivities along the width and depth directions of the guide are similar to 3.0 x 10(21) cm(-3), 3.8 microm, 2.6 microm, 0.30 and 0.14 microm(2)/h, respectively. Micro-Raman analysis was carried out on the waveguide endface to characterize the depth profile of Li composition in the guiding layer. The results show that the depth profile of Li composition also follows a complementary error function with a 1/e depth of 3.64 microm. The mean ([Li(Li)]+[Ti(Li)])/([Nb(Nb)]+[Ti(Nb)]) ratio in the waveguide layer is about 0.98. The inhomogeneous Li-composition profile results in a varied substrate index in the guiding layer. A two-dimensional refractive index profile model in the waveguide is proposed by taking into consideration the varied substrate index and assuming linearity between Ti-induced index change and Ti concentration. The net waveguide surface index increments at 1545 nm are 0.0114 and 0.0212 for ordinary and extraordinary rays, respectively. Based upon the constructed index model, the fundamental mode field profile was calculated using the beam propagation method, and the mode sizes and effective index versus the Ti-strip width were calculated for three lower TM and TE modes using the variational method. An agreement between theory and experiment is obtained.
Renne, Walter; Wolf, Bethany; Kessler, Raymond; McPherson, Karen; Mennito, Anthony S
2015-01-01
This study evaluated the marginal gap of crowns fabricated using two new chairside computer-aided design/computer-aided manufacturing systems on preparations completed by clinicians with varying levels of expertise to identify whether common preparation errors affect marginal fit. The null hypothesis is that there is no difference in the mean marginal gaps of restorations of varying qualities and no difference in the mean marginal gap size between restorations fabricated using the PlanScan (D4D, Richardson, TX, USA) and the CEREC Omnicam (Sirona, Bensheim, Germany). The fit of 80 lithium disilicate crowns fabricated with the E4D PlanScan or CEREC Omnicam systems on preparations of varying quality were examined for marginal fit by using the replica technique. These same preparations were then visually examined against common criteria for anterior all-ceramic restorations and placed in one of four categories: excellent, good, fair, and poor. Linear mixed modeling was used to evaluate associations between marginal gap, tooth preparation rating, and fabrication machine. The fit was not significantly different between both systems across all qualities of preparation. The average fit was 104 μm for poor-quality preparations, 87.6 μm for fair preparations, 67.2 μm for good preparations, and 36.6 μm for excellent preparations. The null hypothesis is rejected. It can be concluded that preparation quality has a significant impact on marginal gap regardless of which system is used. However, no significant difference was found when comparing the systems to each other. Within the limitations of this in vitro study, it can be concluded that crown preparation quality has a significant effect on marginal gap of the restoration when the clinician uses either CEREC Omnicam or E4D PlansScan. © 2015 Wiley Periodicals, Inc.
Effect of varying two key parameters in simulating evacuation for a dormitory in China
NASA Astrophysics Data System (ADS)
Lei, Wenjun; Li, Angui; Gao, Ran
2013-01-01
Student dormitories are both living and resting areas for students in their spare time. There are many small rooms in the dormitories. And the students are distributed densely in the dormitories. High occupant density is the main characteristic of student dormitories. Once there is an accident, such as fire or earthquake, the losses will be cruel. Computer evacuation models developed overseas are commonly applied in working out safety management schemes. The average minimum widths of corridor and exit are the two key parameters affecting the evacuation for the dormitory. The effect of varying these two parameters will be studied in this paper by taking a dormitory in our university as an example. Evacuation performance is predicted with the software FDS + Evac. The default values in the software are used and adjusted through a field survey. The effect of varying either of the two parameters is discussed. It is found that the simulated results agree well with the experimental results. From our study it seems that the evacuation time is not in proportion to the evacuation distance. And we also named a phenomenon of “the closer is not the faster”. For the building researched in this article, a corridor width of 3 m is the most appropriate. And the suitable exit width of the dormitory for evacuation is about 2.5 to 3 m. The number of people has great influence on the walking speed of people. The purpose of this study is to optimize the building, and to make the building in favor of personnel evacuation. Then the damage could be minimized.
Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM.
Eberl, Helmut; Ginina, Elena; Hidaka, Keisho
2017-01-01
We study the two-body decays of the gluino at full one-loop level in the Minimal Supersymmetric Standard Model with quark-flavour violation (QFV) in the squark sector. The renormalisation is done in the [Formula: see text] scheme. The gluon and photon radiations are included by adding the corresponding three-body decay widths. We discuss the dependence of the gluino decay widths on the QFV parameters. The main dependence stems from the [Formula: see text]-[Formula: see text] mixing in the decays to up-type squarks, and from the [Formula: see text]-[Formula: see text] mixing in the decays to down-type squarks due to the strong constraints from B-physics on the other quark-flavour-mixing parameters. The full one-loop corrections to the gluino decay widths are mostly negative and of the order of about -10%. The QFV part stays small in the total width but can vary up to -8% for the decay width into the lightest [Formula: see text] squark. For the corresponding branching ratio the effect is somehow washed out by at least a factor of two. The electroweak corrections can be as large as 35% of the SUSY QCD corrections.
Oberfeld, Daniel; Hecht, Heiko
2011-06-01
We compare expert opinion with perceptual judgment regarding the influence of color on the perceived height and width of interior rooms. We hypothesize that contrary to popular belief, ceiling and wall lightness have additive effects on perceived height, whereas the lightness contrast between these surfaces is less important. We assessed the intuitions of architectural experts as to which surface colors maximize apparent height and compared these intuitions with psychophysical height and width estimates for rooms differing in ceiling, floor, and wall lightness. Experiment 1 was a survey of architectural experts and nonexperts. Experiments 2 and 3 presented virtual rooms varying in physical height, physical width, and surface lightness. In Experiment 1, both experts and nonexperts erroneously assumed that the lightness contrast between ceiling and walls influences perceived height Experiment 2 showed that the lightness contrast does not determine apparent height but that ceiling and wall lightness have additive effects. Experiment 3 demonstrated a decrease in perceived width with physical height, whereas the perceived height was not related to physical width. Apparent width was unaffected by ceiling lightness. Light ceiling and light walls make a room appear higher, whereas floor color has a weaker effect. We also found evidence for an asymmetric interaction between height and width. The question of how to color walls and ceiling to maximize the apparent size of a room can be answered empirically. Aesthetic considerations may interfere with the correct assessment of the effects of color in experts.
Effect of strained Ge-based NMOSFETs with Ge0.93Si0.07 stressors on device layout
NASA Astrophysics Data System (ADS)
Hsu, Hung-Wen; Lee, Chang-Chun
2017-12-01
This research proposes a germanium (Ge)-based n-channel MOSFET with Ge0.93Si0.07 S/D stressor. A simulation technique is utilized to understand the layout effect of shallow trench isolation (STI) length, gate width, dummy active of diffusion (OD) length, and extended poly width on stress distribution in a channel region. Stress distribution in a channel region was simulated by ANSYS software based on finite element analysis. Furthermore, carrier mobility gain was evaluated by a second-order piezoresistance model. The piezoresistance coefficient of Ge nMOSFET varies from that of Si nMOSFET. The piezoresistance coefficient shows that longitudinal and transverse stresses are the dominant factors affecting the change in electron mobility in the channel region. For Ge-based nMOSFET, longitudinal stress tends to be tensile, whereas transverse stress tends to be compressive. Stress along channel length becomes more tensile when STI length decreases. By contrast, stress along the channel width becomes more compressive when gate width or extended poly width decreases. Electron mobility in Ge-based nMOSFET could be enhanced under the aforementioned conditions. The enhanced electron mobility becomes more significant as the device combines with a contact etching stop layer stressor. Moreover, the mobility can be improved by changing the STI length, gate width, dummy OD length, or extended poly width. This investigation systematically analyzed the relationship between layout factor and stress distribution.
Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling.
Thomas, Reshmi; Thomas, Anoop; Pullanchery, Saranya; Joseph, Linta; Somasundaran, Sanoop Mambully; Swathi, Rotti Srinivasamurthy; Gray, Stephen K; Thomas, K George
2018-01-23
Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wonneberger, Uta, E-mail: uta.wonneberger@charite.d; Schnackenburg, Bernhard, E-mail: bernhard.schnackenburg@philips.co; Streitparth, Florian, E-mail: florian.streitparth@charite.de
2010-04-15
In this article, we study in vitro evaluation of needle artefacts and image quality for musculoskeletal laser-interventions in an open high-field magnetic resonance imaging (MRI) scanner at 1.0T with vertical field orientation. Five commercially available MRI-compatible puncture needles were assessed based on artefact characteristics in a CuSO4 phantom (0.1%) and in human cadaveric lumbar spines. First, six different interventional sequences were evaluated with varying needle orientation to the main magnetic field B0 (0{sup o} to 90{sup o}) in a sequence test. Artefact width, needle-tip error, and contrast-to-noise ratio (CNR) were calculated. Second, a gradient-echo sequence used for thermometric monitoring wasmore » assessed and in varying echo times, artefact width, tip error, and signal-to-noise ratio (SNR) were measured. Artefact width and needle-tip error correlated with needle material, instrument orientation to B0, and sequence type. Fast spin-echo sequences produced the smallest needle artefacts for all needles, except for the carbon fibre needle (width <3.5 mm, tip error <2 mm) at 45{sup o} to B0. Overall, the proton density-weighted spin-echo sequences had the best CNR (CNR{sub Muscle/Needle} >16.8). Concerning the thermometric gradient echo sequence, artefacts remained <5 mm, and the SNR reached its maximum at an echo time of 15 ms. If needle materials and sequences are accordingly combined, guidance and monitoring of musculoskeletal laser interventions may be feasible in a vertical magnetic field at 1.0T.« less
Method for obtaining large levitation pressure in superconducting magnetic bearings
Hull, John R.
1997-01-01
A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.
Method for obtaining large levitation pressure in superconducting magnetic bearings
Hull, John R.
1996-01-01
A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.
Modulating optical properties of graphene oxide: role of prominent functional groups.
Johari, Priya; Shenoy, Vivek B
2011-09-27
To modulate the electronic and optical properties of graphene oxide via controlled deoxidation, a proper understanding of the role of the individual functional group in determining these properties is required. We, therefore, have performed ab initio density functional theory based calculations to study the electronic and optical properties of model structures of graphene oxide with different coverages and compositions. In particular, we considered various concentrations of major functional groups like epoxides, hydroxyls, and carbonyls, which mainly consititute the graphene oxide and the reduced graphene oxide. Our calculated electron energy loss spectra (EELS) demonstrate the π plasmon peak to be less sensitive, while π + σ plasmon is found to have a significant blue shift of about 1.0-3.0 eV, when the concentration of epoxy and hydroxyl functional groups in graphene oxide vary from 25% to 75%. However, the increase in carbonyl groups in the center of the graphene sheet creates holes, which lead to the red shift of the EELS. In the case of 37.5% of oxygen-to-carbon ratio, we find the π plasmon peak to be shifted by roughly 1.0 eV as compared to that of the pristine graphene. Our results agree well with the experimental findings which suggest a blue shift in the EELS of graphene oxide and an absorption feature due to a π electron transition of the carbonyl groups at a lower energy than that of epoxy and hydroxyl groups. We also show that the increase in the width of the hole created by the carbonyl groups significantly decreases the optical gap and opens the band gap, and thus, we argue that reduced graphene oxide with mostly carbonyl groups could be a useful material for developing tunable opto-electronic nanodevices. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Gleason, Colin J.; Smith, Laurence C.; Lee, Jinny
2014-12-01
Knowledge of river discharge is critically important for water resource management, climate modeling, and improved understanding of the global water cycle, yet discharge is poorly known in much of the world. Remote sensing holds promise to mitigate this gap, yet current approaches for quantitative retrievals of river discharge require in situ calibration or a priori knowledge of river hydraulics, limiting their utility in unmonitored regions. Recently, Gleason and Smith (2014) demonstrated discharge retrievals within 20-30% of in situ observations solely from Landsat TM satellite images through discovery of a river-specific geomorphic scaling phenomenon termed at-many-stations hydraulic geometry (AMHG). This paper advances the AMHG discharge retrieval approach via additional parameter optimizations and validation on 34 gauged rivers spanning a diverse range of geomorphic and climatic settings. Sensitivity experiments reveal that discharge retrieval accuracy varies with river morphology, reach averaging procedure, and optimization parameters. Quality of remotely sensed river flow widths is also important. Recommended best practices include a proposed global parameter set for use when a priori information is unavailable. Using this global parameterization, AMHG discharge retrievals are successful for most investigated river morphologies (median RRMSE 33% of in situ gauge observations), except braided rivers (median RRMSE 74%), rivers having low at-a-station hydraulic geometry b exponents (reach-averaged b < 0.1, median RRMSE 86%), and arid rivers having extreme discharge variability (median RRMSE > 1000%). Excluding such environments, 26-41% RRMSE agreement between AMHG discharge retrievals and in situ gauge observations suggests AMHG can meaningfully address global discharge knowledge gaps solely from repeat satellite imagery.
Influence of laser beam incidence angle on laser lap welding quality of galvanized steels
NASA Astrophysics Data System (ADS)
Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan
2017-11-01
Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.
Forward-backward multiplicity correlations in pp collisions at $$\\sqrt{s}$$ = 0.9, 2.76 and 7 TeV
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2015-05-20
The strength of forward-backward (FB) multiplicity correlations is measured by the ALICE detector in proton-proton (pp) collisions atmore » $$\\sqrt{s}$$ = 0.9, 2.76 and 7 TeV. The measurement is performed in the central pseudorapidity region (|η| < 0.8) for the transverse momentum p T > 0.3 GeV/c. Two separate pseudorapidity windows of width ($$\\delta$$η) ranging from 0.2 to 0.8 are chosen symmetrically around η = 0. The multiplicity correlation strength (b corr) is studied as a function of the pseudorapidity gap (η gap) between the two windows as well as the width of these windows. The correlation strength is found to decrease with increasing η gap and shows a non-linear increase with $$\\delta$$η. A sizable increase of the correlation strength with the collision energy, which cannot be explained exclusively by the increase of the mean multiplicity inside the windows, is observed. The correlation coefficient is also measured for multiplicities in different configurations of two azimuthal sectors selected within the symmetric FB η-windows. Two different contributions, the short-range (SR) and the long-range (LR), are observed. The energy dependence of b corr is found to be weak for the SR component while it is strong for the LR component. Moreover, the correlation coefficient is studied for particles belonging to various transverse momentum intervals chosen to have the same mean multiplicity. Both SR and LR contributions to b corr are found to increase with p T in this case. Results are compared to PYTHIA and PHOJET event generators and to a string-based phenomenological model. In conclusion, the observed dependencies of b corr add new constraints on phenomenological models.« less
NASA Astrophysics Data System (ADS)
Łepkowski, S. P.; Bardyszewski, W.
2017-02-01
Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.
Łepkowski, S P; Bardyszewski, W
2017-02-08
Combining the k · p method with the third-order elasticity theory, we perform a theoretical study of the pressure-induced topological phase transition and the pressure evolution of topologically protected edge states in InN/GaN and In-rich InGaN/GaN quantum wells. We show that for a certain range of the quantum well parameters, thanks to a negative band gap pressure coefficient, it is possible to continuously drive the system from the normal insulator state through the topological insulator into the semimetal phase. The critical pressure for the topological phase transition depends not only on the quantum well thickness but also on the width of the Hall bar, which determines the coupling between the edge states localized at the opposite edges. We also find that in narrow Hall bar structures, near the topological phase transition, a significant Rashba-type spin splitting of the lower and upper branches of the edge state dispersion curve appears. This effect originates from the lack of the mirror symmetry of the quantum well potential caused by the built-in electric field, and can be suppressed by increasing the Hall bar width. When the pressure increases, the energy dispersion of the edge states becomes more parabolic-like and the spin splitting decreases. A further increase of pressure leads to the transition to a semimetal phase, which occurs due to the closure of the indirect 2D bulk band gap. The difference between the critical pressure at which the system becomes semimetallic, and the pressure for the topological phase transition, correlates with the variation of the pressure coefficient of the band gap in the normal insulator state.
NASA Astrophysics Data System (ADS)
Vershubskii, A. V.; Tikhonov, A. N.
2017-05-01
This paper presents a theoretical study of the effects of topological factors (density of thylakoid packing in grana) on the efficiency of energy coupling in chloroplasts. The study is based on a mathematical model of electron and proton transport processes coupled to ATP synthesis in chloroplasts. The model was developed by the authors earlier, and the nonuniform distribution of electron transport and ATP synthase complexes in the membranes of granal and intergranal thylakoids was taken into account in the model. The results of numerical experiments enabled the analysis of the distribution of lateral profiles of the transmembrane pH difference and the concentrations of mobile plastoquinone and plastocyanin electron transporters in granal and intergranal thylakoids and the dependence of this distribution on the metabolic state of class B chloroplasts (photosynthetic control state or the conditions of intensive ATP synthesis). Moreover, the influence of topological factors (the density of thylakoid packing in grana and the degree of thylakoid swelling) that affect the rate of diffusion of protons and mobile electron carriers in the intrathylakoid space and in the interthylakoidal gap was investigated. The results of numerical experiments that involved the variation of geometric parameters of the system revealed the influence of thylakoid thickness and the distance between the granal thylakoids on the lateral pH profiles inside the thylakoids (pHi) and in the interthylakoidal gap (pHo). Acidification of the intrathylakoid space characterized by the pHi value increased concomitantly to the increase of the width of the interthylakoidal gap l o and decreased concomitantly to the increase of the width of the intrathylakoidal space l i.
Forward-backward multiplicity correlations in pp collisions at = 0.9, 2.76 and 7 TeV
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deloff, A.; Dénes, E.; D'Erasmo, G.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jacholkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.
2015-05-01
The strength of forward-backward (FB) multiplicity correlations is measured by the ALICE detector in proton-proton (pp) collisions at = 0 .9, 2 .76 and 7 TeV. The measurement is performed in the central pseudorapidity region (| η| < 0 .8) for the transverse momentum p T > 0 .3 GeV /c. Two separate pseudorapidity windows of width ( δη) ranging from 0.2 to 0.8 are chosen symmetrically around η = 0. The multiplicity correlation strength ( b corr) is studied as a function of the pseudorapidity gap ( η gap) between the two windows as well as the width of these windows. The correlation strength is found to decrease with increasing η gap and shows a non-linear increase with δη. A sizable increase of the correlation strength with the collision energy, which cannot be explained exclusively by the increase of the mean multiplicity inside the windows, is observed. The correlation coefficient is also measured for multiplicities in different configurations of two azimuthal sectors selected within the symmetric FB η-windows. Two different contributions, the short-range (SR) and the long-range (LR), are observed. The energy dependence of b corr is found to be weak for the SR component while it is strong for the LR component. Moreover, the correlation coefficient is studied for particles belonging to various transverse momentum intervals chosen to have the same mean multiplicity. Both SR and LR contributions to b corr are found to increase with p T in this case. Results are compared to PYTHIA and PHOJET event generators and to a string-based phenomenological model. The observed dependencies of b corr add new constraints on phenomenological models. [Figure not available: see fulltext.
Negative dysphotopsia: Causes and rationale for prevention and treatment.
Holladay, Jack T; Simpson, Michael J
2017-02-01
To determine the cause of negative dysphotopsia using standard ray-tracing techniques and identify the primary and secondary causative factors. Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA. Experimental study. Zemax ray-tracing software was used to evaluate pseudophakic and phakic eye models to show the location of retinal field images from various visual field objects. Phakic retinal field angles (RFAs) were used as a reference for the perceived field locations for retinal images in pseudophakic eyes. In a nominal acrylic pseudophakic eye model with a 2.5 mm diameter pupil, the maximum RFA from rays refracted by the intraocular lens (IOL) was 85.7 degrees and the minimum RFA for rays missing the optic of the IOL was 88.3 degrees, leaving a dark gap (shadow) of 2.6 degrees in the extreme temporal field. The width of the shadow was more prominent for a smaller pupil, a larger angle kappa, an equi-biconvex or plano-convex IOL shape, and a smaller axial distance from iris to IOL and with the anterior capsule overlying the nasal IOL. Secondary factors included IOL edge design, material, diameter, decentration, tilt, and aspheric surfaces. Standard ray-tracing techniques showed that a shadow is present when there is a gap between the retinal images formed by rays missing the optic of the IOL and rays refracted by the IOL. Primary and secondary factors independently affected the width and location of the gap (or overlap). The ray tracing also showed a constriction and double retinal imaging in the extreme temporal visual field. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Dahlin, Johanna; Härkönen, Juho
2013-12-01
Multiple studies have found that women report being in worse health despite living longer. Gender gaps vary cross-nationally, but relatively little is known about the causes of comparative differences. Existing literature is inconclusive as to whether gender gaps in health are smaller in more gender equal societies. We analyze gender gaps in self-rated health (SRH) and limiting longstanding illness (LLI) with five waves of European Social Survey data for 191,104 respondents from 28 countries. We use means, odds ratios, logistic regressions, and multilevel random slopes logistic regressions. Gender gaps in subjective health vary visibly across Europe. In many countries (especially in Eastern and Southern Europe), women report distinctly worse health, while in others (such as Estonia, Finland, and Great Britain) there are small or no differences. Logistic regressions ran separately for each country revealed that individual-level socioeconomic and demographic variables explain a majority of these gaps in some countries, but contribute little to their understanding in most countries. In yet other countries, men had worse health when these variables were controlled for. Cross-national variation in the gender gaps exists after accounting for individual-level factors. Against expectations, the remaining gaps are not systematically related to societal-level gender inequality in the multilevel analyses. Our findings stress persistent cross-national variability in gender gaps in health and call for further analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dombrovski, Viatcheslav V.; Driscoll, David I.; Shovkhet, Boris A.
2001-01-01
A superconducting electromechanical rotating (SER) device, such as a synchronous AC motor, includes a superconducting field winding and a one-layer stator winding that may be water-cooled. The stator winding is potted to a support such as the inner radial surface of a support structure and, accordingly, lacks hangers or other mechanical fasteners that otherwise would complicate stator assembly and require the provision of an unnecessarily large gap between adjacent stator coil sections. The one-layer winding topology, resulting in the number of coils being equal to half the number of slots or other mounting locations on the support structure, allows one to minimize or eliminate the gap between the inner radial ends of adjacent straight sections of the stator coilswhile maintaining the gap between the coil knuckles equal to at least the coil width, providing sufficient room for electrical and cooling element configurations and connections. The stator winding may be potted to the support structure or other support, for example, by a one-step VPI process relying on saturation of an absorbent material to fill large gaps in the stator winding or by a two-step process in which small gaps are first filled via a VPI or similar operation and larger gaps are then filled via an operation that utilizes the stator as a portion of an on-site mold.
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
Yoon, Joonseok; Kim, Howon; Chen, Xian; ...
2015-12-29
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Joonseok; Kim, Howon; Chen, Xian
Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less
A Continuous-Flow Polymerase Chain Reaction Microchip With Regional Velocity Control
Li, Shifeng; Fozdar, David Y.; Ali, Mehnaaz F.; Li, Hao; Shao, Dongbing; Vykoukal, Daynene M.; Vykoukal, Jody; Floriano, Pierre N.; Olsen, Michael; McDevitt, John T.; Gascoyne, Peter R.C.; Chen, Shaochen
2009-01-01
This paper presents a continuous-flow polymerase chain reaction (PCR) microchip with a serpentine microchannel of varying width for “regional velocity control.” Varying the channel width by incorporating expanding and contracting conduits made it possible to control DNA sample velocities for the optimization of the exposure times of the sample to each temperature phase while minimizing the transitional periods during temperature transitions. A finite element analysis (FEA) and semi-analytical heat transfer model was used to determine the distances between the three heating assemblies that are responsible for creating the denaturation (96 °C), hybridization (60 °C), and extension (72 °C) temperature zones within the microchip. Predictions from the thermal FEA and semi-analytical model were compared with temperature measurements obtained from an infrared (IR) camera. Flow-field FEAs were also performed to predict the velocity distributions in the regions of the expanding and contracting conduits to study the effects of the microchannel geometry on flow recirculation and bubble nucleation. The flow fields were empirically studied using micro particle image velocimetry (μ-PIV) to validate the flow-field FEA’s and to determine experimental velocities in each of the regions of different width. Successful amplification of a 90 base pair (bp) bacillus anthracis DNA fragment was achieved. PMID:19829760
Synthesis and Evaluation of Polymeric Materials
1993-07-01
Twin Screw Extruder Using a Blown Film Die ..................... 5 I 3. Twin Screw Extruder Using a Vertical...be done.6 They are then fed into a Twin Screw Mixer (T’SM) Extrusion Unit with either a blown film or ribbon die attached. The use of the ribbon die...width with a 0.020 inch gap)(See Figure 1). The extrusion system contained three (3) heated zones located on the twin screw barrel area
Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guole; Wu, Shuang; Zhang, Tingting
2016-08-01
Graphene nanostructures are potential building blocks for nanoelectronic and spintronic devices. However, the production of monolayer graphene nanostructures with well-defined zigzag edges remains a challenge. In this paper, we report the patterning of monolayer graphene nanostructures with zigzag edges on hexagonal boron nitride (h-BN) substrates by an anisotropic etching technique. We found that hydrogen plasma etching of monolayer graphene on h-BN is highly anisotropic due to the inert and ultra-flat nature of the h-BN surface, resulting in zigzag edge formation. The as-fabricated zigzag-edged monolayer graphene nanoribbons (Z-GNRs) with widths below 30 nm show high carrier mobility and width-dependent energy gaps atmore » liquid helium temperature. These high quality Z-GNRs are thus ideal structures for exploring their valleytronic or spintronic properties.« less
Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches
Chen, Lingxiu; He, Li; Wang, Hui Shan; Wang, Haomin; Tang, Shujie; Cong, Chunxiao; Xie, Hong; Li, Lei; Xia, Hui; Li, Tianxin; Wu, Tianru; Zhang, Daoli; Deng, Lianwen; Yu, Ting; Xie, Xiaoming; Jiang, Mianheng
2017-01-01
Graphene nanoribbons (GNRs) are ultra-narrow strips of graphene that have the potential to be used in high-performance graphene-based semiconductor electronics. However, controlled growth of GNRs on dielectric substrates remains a challenge. Here, we report the successful growth of GNRs directly on hexagonal boron nitride substrates with smooth edges and controllable widths using chemical vapour deposition. The approach is based on a type of template growth that allows for the in-plane epitaxy of mono-layered GNRs in nano-trenches on hexagonal boron nitride with edges following a zigzag direction. The embedded GNR channels show excellent electronic properties, even at room temperature. Such in-plane hetero-integration of GNRs, which is compatible with integrated circuit processing, creates a gapped channel with a width of a few benzene rings, enabling the development of digital integrated circuitry based on GNRs. PMID:28276532
Formation of moon induced gaps in dense planetary rings
NASA Astrophysics Data System (ADS)
Grätz, F.; Seiß, M.; Spahn, F.
2017-09-01
Recent works have shown that bodies embedded in planetary rings create S-shaped density modula- tions called propellers if their mass deceeds a certain threshold or cause a gap around the entire circumference of the disc if the embedded bodies mass exceeds it. Two counteracting physical processes govern the dynamics and determine what structure is created: The gravitational disturber excerts a torque on nearby disc particles, sweeping them away from itself on both sides thus depleting the discs density and forming a gap. Diffusive spreading of the disc material due to collisions counteracts the gravitational scattering and has the tendency to fill the gap. We develop a nonlinear diffusion model that accounts for those two counteracting processes and describes the azimutally averaged surface density profile an embedded moon creates in planetary rings. The gaps width depends on the moons mass, its radial position and the rings viscosity allowing us to estimate the rings viscosity in the vicinity of the Encke and Keeler gap in Saturns A-Ring and compare it to previous measurements. We show that for the Keeler gap the time derivative of the semi-major axis as derived by Goldreich and Tremaine 1980 is underestimated yielding an underestimated viscosity for the ring. We therefore derive a corrected expression for said time derivative by fitting the solutions of Hill's equations for an ensemble of test particles. Furthermore we estimate the masses for potentionally unseen moonlets in the C-Ring and Cassini division.
Bayer, Jörg; Neubauer, Jakob; Saueressig, Ulrich; Südkamp, Norbert P; Reising, Kilian
2016-11-01
There is little information on the pubic symphysis' normal CT appearance in children. We sought to generate age-, gender- and maturity-related symphyseal width appearances in CT scans. Pelvic CT scans performed for any reason during a 6-year period in patients younger than 18 years were retrospectively analyzed. The symphysis width was measured in the axial plane and the triradiate cartilage was classified as open or closed. Four hundred twenty-seven CT scans were evaluated and 350 remained for analysis. Age- and gender-related measurements of the symphysis width are illustrated on various centile graphs. When grouping children by age in years 0-6, 7-11, 12-15 and 16-17, mean (standard deviation) symphysis width was 5.4 mm (0.9), 5.3 mm (1.1), 4.1 mm (1.1) and 3.5 mm (1.0), respectively, in girls and 5.9 mm (1.3), 5.4 mm (1.2), 5.2 mm (1.1) and 4.0 mm (1.0), respectively, in boys. Boys and girls were significantly different in the age groups 12-15 years (P<0.001) and 16-17 years (P=0.04). In the mature pelvis, the symphyseal gap is significantly (P<0.001) shorter in both genders, and in girls compared to boys (P=0.04). The pubic symphysis width in children differs according to age, gender and maturity. The reference values published herein may help detect symphyseal injury.
NASA Astrophysics Data System (ADS)
Dabhi, Shweta D.; Jha, Prafulla K.
2017-09-01
The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.
Fragmented Canopies Control the Regimes of Gravity Current Development
NASA Astrophysics Data System (ADS)
Barcelona, Aina; Serra, Teresa; Colomer, Jordi
2018-03-01
Coastal ecosystems (marine littoral regions, wetlands, and deltas) are regions of high biological productivity. However, they are also one of the world's most threatened ecosystems. Wetlands are characterized by aquatic vegetation adapted to high salinity levels and climatic variations. Wetland canopies buffer these hydrodynamic and atmospheric variations and help retain sediment by reducing current velocity during sea storms or runoff after periods of rain. This work focuses on the effect of the presence of a gap (i.e., nonvegetated zone) parallel to the direction of the main current has on the sedimentation and hydrodynamics of a gravity current. The study aims to (1) address the behavior of a gravity current in a vegetated region compared to one without vegetation (i.e., the gap), (2) determine the effect gap size has on how a gravity current evolves, and 3) determine the effect gap sizes have on the sedimentary rates from a gravity current. Laboratory experiments were carried out in a flume using four different sediment concentrations, four different canopy densities (884, 354, 177, and 0 plants·m-2) and three different gap widths (H/2, H, and 1.5H, where H is the height of the water). This work shows that a gravity current's evolution and its sedimentary rates depend on the fractional volume occupied by the vegetation. While current dynamics in experiments with wider gaps are similar to the nonvegetated case, for smaller gaps the dynamics are closer to the fully vegetated case. Nonetheless, the gravity current exhibits the same behavior in both the vegetated region and the gap.
Testing Mylar Multi-Gap Resistive Plate Chambers
NASA Astrophysics Data System (ADS)
Towell, Cecily; EIC PID Consortium Collaboration
2016-09-01
Quantum Chromodynamics (QCD) is the fundamental theory that successfully explains strong force interactions. To continue the effective study of QCD in nuclear structure, plans are being made to construct an Electron Ion Collider (EIC). Part of the preparation for the EIC includes continued detector development to push beyond their current capabilities. This includes Time of Flight (TOF) detectors, which are used for particle identification. Multi-Gap Resistive Plate Chambers (mRPCs) are a type of TOF detector that typically use glass to make small gas gaps within the detector to produce fast signals when a high energy particle goes through the detector. These extremely thin gaps of 0.2mm are key in achieving the excellent timing resolution capability of these detectors. A new mRPC design is being tested with the goal of reaching a timing resolution of 10ps. This design uses sheets of mylar in place of the glass so that the width of the dividers is smaller, thus vastly increasing the number of gas gaps. Multiple versions of this mylar mRPC have been made and tested. The methods for producing these mRPCs and their performance will be discussed. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.
A likely planet-induced gap in the disc around T Cha
NASA Astrophysics Data System (ADS)
Hendler, Nathanial P.; Pinilla, Paola; Pascucci, Ilaria; Pohl, Adriana; Mulders, Gijs; Henning, Thomas; Dong, Ruobing; Clarke, Cathie; Owen, James; Hollenbach, David
2018-03-01
We present high-resolution (0.11 × 0.06 arcsec2) 3 mm ALMA observations of the highly inclined transition disc around the star T Cha. Our continuum image reveals multiple dust structures: an inner disc, a spatially resolved dust gap, and an outer ring. When fitting sky-brightness models to the real component of the 3 mm visibilities, we infer that the inner emission is compact (≤1 au in radius), the gap width is between 18 and 28 au, and the emission from the outer ring peaks at ˜36 au. We compare our ALMA image with previously published 1.6 μm VLT/SPHERE imagery. This comparison reveals that the location of the outer ring is wavelength dependent. More specifically, the peak emission of the 3 mm ring is at a larger radial distance than that of the 1.6 μm ring, suggesting that millimeter-sized grains in the outer disc are located farther away from the central star than micron-sized grains. We discuss different scenarios to explain our findings, including dead zones, star-driven photoevaporation, and planet-disc interactions. We find that the most likely origin of the dust gap is from an embedded planet, and estimate - for a single planet scenario - that T Cha's gap is carved by a 1.2MJup planet.
Hard diffraction and deep inelastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjorken, J.D.
1994-04-01
Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if theremore » is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the {open_quotes}lego{close_quotes} phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width {Delta}{eta} does not have a power-law decrease with increasing subenergy s=e{sup {Delta}{eta}}, but behaves at most like some power of pseudorapidity {Delta}{eta}{approx}log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space.« less
Lamb wave band gaps in a double-sided phononic plate
NASA Astrophysics Data System (ADS)
Wang, Peng; Chen, Tian-Ning; Yu, Kun-Peng; Wang, Xiao-Peng
2013-02-01
In this paper, we report on the theoretical investigation of the propagation characteristics of Lamb wave in a phononic crystal structure constituted by a square array of cylindrical stubs deposited on both sides of a thin homogeneous plate. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite-element method. We investigate the evolution of band gaps in the double-sided phononic plate with stub height on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Numerical results show that as the double stubs in a unit cell arranged more symmetrically on both sides, band width shifts, new band gaps appear, and the bands become flat due to localized resonant modes which couple with plate modes. Specially, more band gaps and flat bands can be found in the symmetrical system as a result of local resonances of the stubs which interact in a stronger way with the plate modes. Moreover, the symmetrical double-sided plate exhibits lower and smaller band gap than that of the asymmetrical plate. These propagation properties of elastic or acoustic waves in the double-sided plate can potentially be utilized to generate filters, slow the group velocity, low-frequency sound insulation, and design acoustic sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silosky, M; Marsh, R
Purpose: Localizer projection radiographs acquired prior to CT scans are used to estimate patient size, affecting the function of Automatic Tube Current Modulation (ATCM) and hence CTDIvol and SSDE. Due to geometric effects, the projected patient size varies with scanner table height and with the orientation of the localizer (AP versus PA). This study sought to determine if patient size estimates made from localizer scans is affected by variations in fat distribution, specifically when the widest part of the patient is not at the geometric center of the patient. Methods: Lipid gel bolus material was wrapped around an anthropomorphic phantommore » to simulate two different body mass distributions. The first represented a patient with fairly rigid fat and had a generally oval shape. The second was bell-shaped, representing corpulent patients more susceptible to gravity’s lustful tug. Each phantom configuration was imaged using an AP localizer and then a PA localizer. This was repeated at various scanner table heights. The width of the phantom was measured from the localizer and diagnostic images using in-house software. Results: 1) The projected phantom width varied up to 39% as table height changed.2) At some table heights, the width of the phantom, designed to represent larger patients, exceeded the localizer field of view, resulting in an underestimation of the phantom width.3) The oval-shaped phantom approached a normalized phantom width of 1 at a table height several centimeters lower (AP localizer) or higher (PA localizer) than did the bell-shaped phantom. Conclusion: Accurate estimation of patient size from localizer scans is dependent on patient positioning with respect to scanner isocenter and is limited in large patients. Further, patient size is more accurately measured on projection images if the widest part of the patient, rather than the geometric center of the patient, is positioned at scanner isocenter.« less
Operation Husky: Operational Art in Large Formation Combined Arms Maneuver
2013-12-10
mountain ranges; the character, position, and shape of frontiers; density of population and consequent refugee problem; transportation means; and the...About 10 percent of the population lived scattered throughout the countryside. The majority of the population was engaged in agriculture and had a...varied from 25 feet on the coast to 15 feet in the mountains . Provincial roads were not asphalted and they varied from 10 to 19 feet in width. Finally
The role of periodically varying discharge on river plume structure and transport
NASA Astrophysics Data System (ADS)
Yuan, Yeping; Horner-Devine, Alexander R.; Avener, Margaret; Bevan, Shaun
2018-04-01
We present results from laboratory experiments that simulate the effects of periodically varying discharge on buoyant coastal plumes. Freshwater is discharged into a two meter diameter tank filled with saltwater on a rotating table. The mean inflow rate, tank rotation period and density of the ambient salt water are varied to simulate a range of inflow Froude and Rossby numbers. The amplitude and the period of the inflow modulation are varied across a range that simulates variability due to tides and storms. Using the optical thickness method, we measure the width and depth of the plume, plume volume and freshwater retention rate in the plume. With constant discharge, freshwater is retained in a growing anticyclonic bulge circulation near the river mouth, as observed in previous studies. When the discharge is varied, the bulge geometry oscillates between a circular plume structure that extends mainly in the offshore direction, and a compressed plume structure that extends mainly in the alongshore direction. The oscillations result in periodic variations in the width and depth of the bulge and the incidence angle formed where the bulge flow re-attaches with the coastal wall. The oscillations are more pronounced for longer modulation periods, but are relatively insensitive to the modulation amplitude. A phase difference between the time varying transport within the bulge and bulge geometry determines the fraction of the bulge flow discharged into the coastal current. As a result, the modulation period determines the variations in amount of freshwater that returns to the bulge. Freshwater retention in the bulge is increased in longer modulation periods and more pronounced for larger modulation amplitudes.
NASA Astrophysics Data System (ADS)
Verba, Roman; Lisenkov, Ivan; Krivorotov, Ilya; Tiberkevich, Vasil; Slavin, Andrei
2018-06-01
Surface acoustic waves (SAWs) propagating in a piezoelectric substrate covered with a thin ferromagnetic-heavy-metal bilayer are found to exhibit a substantial degree of nonreciprocity, i.e., the frequencies of these waves are nondegenerate with respect to the inversion of the SAW propagation direction. The simultaneous action of the magnetoelastic interaction in the ferromagnetic layer and the interfacial Dzyaloshinskii-Moriya interaction in the ferromagnetic-heavy-metal interface results in the openings of magnetoelastic band gaps in the SAW spectrum, and the frequency position of these band gaps is different for opposite SAW propagation directions. The band-gap widths and the frequency separation between them can be controlled by a proper selection of the magnetization angle and the thickness of the ferromagnetic layer. Using numerical simulations, we demonstrate that the isolation between SAWs propagating in opposite directions in such a system can exceed the direct SAW propagation losses by more than 1 order of magnitude.
Electronic transport in disordered MoS2 nanoribbons
NASA Astrophysics Data System (ADS)
Ridolfi, Emilia; Lima, Leandro R. F.; Mucciolo, Eduardo R.; Lewenkopf, Caio H.
2017-01-01
We study the electronic structure and transport properties of zigzag and armchair monolayer molybdenum disulfide nanoribbons using an 11-band tight-binding model that accurately reproduces the material's bulk band structure near the band gap. We study the electronic properties of pristine zigzag and armchair nanoribbons, paying particular attention to the edges states that appear within the MoS2 bulk gap. By analyzing both their orbital composition and their local density of states, we find that in zigzag-terminated nanoribbons these states can be localized at a single edge for certain energies independent of the nanoribbon width. We also study the effects of disorder in these systems using the recursive Green's function technique. We show that for the zigzag nanoribbons, the conductance due to the edge states is strongly suppressed by short-range disorder such as vacancies. In contrast, the local density of states still shows edge localization. We also show that long-range disorder has a small effect on the transport properties of nanoribbons within the bulk gap energy window.
Asymptotics of surface-plasmon redshift saturation at subnanometric separations
NASA Astrophysics Data System (ADS)
Schnitzer, Ory; Giannini, Vincenzo; Craster, Richard V.; Maier, Stefan A.
2016-01-01
Many promising nanophotonics endeavors hinge upon the unique plasmonic properties of nanometallic structures with narrow nonmetallic gaps, which support superconcentrated bonding modes that singularly redshift with decreasing separations. In this Rapid Communication, we present a descriptive physical picture, complemented by elementary asymptotic formulas, of a nonlocal mechanism for plasmon redshift saturation at subnanometric gap widths. Thus, by considering the electron-charge and field distributions in the close vicinity of the metal-vacuum interface, we show that nonlocality is asymptotically manifested as an effective potential discontinuity. For bonding modes in the near-contact limit, the latter discontinuity is shown to be effectively equivalent to a widening of the gap. As a consequence, the resonance-frequency near-contact asymptotics are a renormalization of the corresponding local ones. Specifically, the renormalization furnishes an asymptotic plasmon-frequency lower bound that scales with the 1 /4 power of the Fermi wavelength. We demonstrate these remarkable features in the prototypical cases of nanowire and nanosphere dimers, showing agreement between our elementary expressions and previously reported numerical computations.
A Compact Microwave Microfluidic Sensor Using a Re-Entrant Cavity.
Hamzah, Hayder; Abduljabar, Ali; Lees, Jonathan; Porch, Adrian
2018-03-19
A miniaturized 2.4 GHz re-entrant cavity has been designed, manufactured and tested as a sensor for microfluidic compositional analysis. It has been fully evaluated experimentally with water and common solvents, namely methanol, ethanol, and chloroform, with excellent agreement with the expected behaviour predicted by the Debye model. The sensor's performance has also been assessed for analysis of segmented flow using water and oil. The samples' interaction with the electric field in the gap region has been maximized by aligning the sample tube parallel to the electric field in this region, and the small width of the gap (typically 1 mm) result in a highly localised complex permittivity measurement. The re-entrant cavity has simple mechanical geometry, small size, high quality factor, and due to the high concentration of electric field in the gap region, a very small mode volume. These factors combine to result in a highly sensitive, compact sensor for both pure liquids and liquid mixtures in capillary or microfluidic environments.