Biophysical markers of the peripheral vasoconstriction response to pain in sickle cell disease
Khaleel, Maha; Sunwoo, John; Shah, Payal; Detterich, Jon A.; Kato, Roberta M.; Thuptimdang, Wanwara; Meiselman, Herbert J.; Sposto, Richard; Tsao, Jennie; Wood, John C.; Zeltzer, Lonnie; Coates, Thomas D.; Khoo, Michael C. K.
2017-01-01
Painful vaso-occlusive crisis (VOC), a complication of sickle cell disease (SCD), occurs when sickled red blood cells obstruct flow in the microvasculature. We postulated that exaggerated sympathetically mediated vasoconstriction, endothelial dysfunction and the synergistic interaction between these two factors act together to reduce microvascular flow, promoting regional vaso-occlusions, setting the stage for VOC. We previously found that SCD subjects had stronger vasoconstriction response to pulses of heat-induced pain compared to controls but the relative degrees to which autonomic dysregulation, peripheral vascular dysfunction and their interaction are present in SCD remain unknown. In the present study, we employed a mathematical model to decompose the total vasoconstriction response to pain into: 1) the neurogenic component, 2) the vascular response to blood pressure, 3) respiratory coupling and 4) neurogenic-vascular interaction. The model allowed us to quantify the contribution of each component to the total vasoconstriction response. The most salient features of the components were extracted to represent biophysical markers of autonomic and vascular impairment in SCD and controls. These markers provide a means of phenotyping severity of disease in sickle-cell anemia that is based more on underlying physiology than on genotype. The marker of the vascular component (BMv) showed stronger contribution to vasoconstriction in SCD than controls (p = 0.0409), suggesting a dominant myogenic response in the SCD subjects as a consequence of endothelial dysfunction. The marker of neurogenic-vascular interaction (BMn-v) revealed that the interaction reinforced vasoconstriction in SCD but produced vasodilatory response in controls (p = 0.0167). This marked difference in BMn-v suggests that it is the most sensitive marker for quantifying combined alterations in autonomic and vascular function in SCD in response to heat-induced pain. PMID:28542469
Endothelium dysfunction markers in patients with diabetic retinopathy.
Siemianowicz, Krzysztof; Francuz, Tomasz; Gminski, Jan; Telega, Alicja; Syzdól, Marcin
2005-03-01
Diabetes mellitus leads to endothelium dysfunction and an accelerated progression of atherosclerosis. Vascular complications of diabetes mellitus can affect not only large and medium arteries resulting in coronary heart disease and peripheral arteries diseases, but also small vessels leading to retinopathy and nephropathy. Intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), E-selectin and von Willebrand factor (vWF) are considered as markers of endothelium dysfunction. The aim of our study was to evaluate plasma levels of ICAM-1, VCAM-1, E-selectin and vWF in patients with type 2 diabetes mellitus receiving insulin therapy and who had diabetic non-proliferative retinopathy, proliferative retinopathy, or did not develop diabetic retinopathy. There were no statistically significant differences between studied groups in any of evaluated endothelium dysfunction markers. There was no statistically significant correlation between measured parameters and a period of diabetic history. None of the studied markers presented a significant correlation with a period of insulin treatment.
Noninvasive Retinal Markers in Diabetic Retinopathy: Advancing from Bench towards Bedside
Blindbæk, Søren Leer; Torp, Thomas Lee; Lundberg, Kristian; Soelberg, Kerstin; Vergmann, Anna Stage; Poulsen, Christina Døfler; Frydkjaer-Olsen, Ulrik; Broe, Rebecca; Rasmussen, Malin Lundberg; Wied, Jimmi; Lind, Majbrit; Vestergaard, Anders Højslet; Peto, Tunde
2017-01-01
The retinal vascular system is the only part of the human body available for direct, in vivo inspection. Noninvasive retinal markers are important to identity patients in risk of sight-threatening diabetic retinopathy. Studies have correlated structural features like retinal vascular caliber and fractals with micro- and macrovascular dysfunction in diabetes. Likewise, the retinal metabolism can be evaluated by retinal oximetry, and higher retinal venular oxygen saturation has been demonstrated in patients with diabetic retinopathy. So far, most studies have been cross-sectional, but these can only disclose associations and are not able to separate cause from effect or to establish the predictive value of retinal vascular dysfunction with respect to long-term complications. Likewise, retinal markers have not been investigated as markers of treatment outcome in patients with proliferative diabetic retinopathy and diabetic macular edema. The Department of Ophthalmology at Odense University Hospital, Denmark, has a strong tradition of studying the retinal microvasculature in diabetic retinopathy. In the present paper, we demonstrate the importance of the retinal vasculature not only as predictors of long-term microvasculopathy but also as markers of treatment outcome in sight-threatening diabetic retinopathy in well-established population-based cohorts of patients with diabetes. PMID:28491870
Urine albumin to creatinine ratio: A marker of early endothelial dysfunction in youth
USDA-ARS?s Scientific Manuscript database
The urine albumin-to-creatinine ratio (UACR) is a useful predictor of cardiovascular (CV) events in adults. Its relationship to vascular function in children is not clear. We investigated whether UACR was related to insulin resistance and endothelial function, a marker of subclinical atherosclerosis...
Iba, Toshiaki; Gando, Satoshi; Murata, Atsuo; Kushimoto, Shigeki; Saitoh, Daizoh; Eguchi, Yutaka; Ohtomo, Yasuhiro; Okamoto, Kohji; Koseki, Kazuhide; Mayumi, Toshihiko; Ikeda, Toshiaki; Ishhikura, Hiroyasu; Ueyama, Masashi; Ogura, Yuji; Endo, Shigeatsu; Shimazaki, Shuji
2007-11-01
The changes in biomarkers of coagulation or fibrinolysis, anticoagulation, inflammation, and endothelial damage occur in patients with systemic inflammatory response syndrome (SIRS). The purpose of this study is to assess the prognostic value of these markers in patients with SIRS-associated hypercoagulopathy. Sixty-six SIRS patients with a platelet count less than 15.0 x 10(4)/mm3 in three university hospital intensive care units were enrolled in this prospective, comparative study. Blood samples were obtained on day 0 and day 2. Twelve hemostatic, inflammatory, and vascular endothelial indices were measured and the data were compared between the severe group (patients with a total maximum Sequential Organ Failure Assessment score of 10 or more and nonsurvivors; n = 25) and the less-severe group (Sequential Organ Failure Assessment score <10; n = 41). Significant changes between the groups were observed in platelet count, fibrin or fibrinogen degradation products, interleukin-6, soluble thrombomodulin, antithrombin (AT) activity, and protein C activity, both on day 0 and on day 2. In contrast, the d-dimer, soluble fibrin, plasmin-[alpha]2-antiplasmin complex, and E-selectin levels were higher in the severe group only on day 2. No significant difference was seen regarding the thrombin-AT complex and total plasminogen activator inhibitor on both days. A comparison of the areas under the receiver operating characteristic curve revealed the AT activity to be the best predictor of a progression of organ dysfunction. The changes in some hemostatic molecular markers and vascular endothelial markers were conspicuous in patients with organ dysfunction. The AT activity is considered to be the most useful predictor of organ dysfunction.
Lee, Dustin M; Battson, Micah L; Jarrell, Dillon K; Hou, Shuofei; Ecton, Kayl E; Weir, Tiffany L; Gentile, Christopher L
2018-04-27
Type 2 diabetes (T2D) is associated with generalized vascular dysfunction characterized by increases in large artery stiffness, endothelial dysfunction, and vascular smooth muscle dysfunction. Sodium glucose cotransporter 2 inhibitors (SGLT2i) represent the most recently approved class of oral medications for the treatment of T2D, and have been shown to reduce cardiovascular and overall mortality. Although it is currently unclear how SGLT2i decrease cardiovascular risk, an improvement in vascular function is one potential mechanism. The aim of the current study was to examine if dapagliflozin, a widely prescribed STLT2i, improves generalized vascular dysfunction in type 2 diabetic mice. In light of several studies demonstrating a bi-directional relation between orally ingested medications and the gut microbiota, a secondary aim was to determine the effects of dapagliflozin on the gut microbiota. Male diabetic mice (Db, n = 24) and control littermates (Con; n = 23) were randomized to receive either a standard diet or a standard diet containing dapagliflozin (60 mg dapagliflozin/kg diet; 0.006%) for 8 weeks. Arterial stiffness was assessed by aortic pulse wave velocity; endothelial function and vascular smooth muscle dysfunction were assessed by dilatory responses to acetylcholine and sodium nitroprusside, respectively. Compared to untreated diabetic mice, diabetic mice treated with dapagliflozin displayed significantly lower arterial stiffness (Db = 469 cm/s vs. Db + dapa = 435 cm/s, p < 0.05), and improvements in endothelial dysfunction (area under the curve [AUC] Db = 57.2 vs. Db + dapa = 117.0, p < 0.05) and vascular smooth muscle dysfunction (AUC, Db = 201.7 vs. Db + dapa = 285.5, p < 0.05). These vascular improvements were accompanied by reductions in hyperglycemia and circulating markers of inflammation. The microbiota of Db and Con mice were distinctly different, and dapagliflozin treatment was associated with minor alterations in gut microbiota composition, particularly in Db mice, although these effects did not conclusively mediate the improvements in vascular function. Dapagliflozin treatment improves arterial stiffness, endothelial dysfunction and vascular smooth muscle dysfunction, and subtly alters microbiota composition in type 2 diabetic mice. Collectively, the improvements in generalized vascular function may represent an important mechanism underlying the cardiovascular benefits of SGLT2i treatment.
Saffi, Marco Aurélio Lumertz; Furtado, Mariana Vargas; Polanczyk, Carisi Anne; Montenegro, Márlon Munhoz; Ribeiro, Ingrid Webb Josephson; Kampits, Cassio; Haas, Alex Nogueira; Rösing, Cassiano Kuchenbecker; Rabelo-Silva, Eneida Rejane
2015-01-01
Inflammation and endothelial dysfunction are linked to the pathogenesis of atherosclerotic disease. Recent studies suggest that periodontal infection and the ensuing increase in the levels of inflammatory markers may be associated with myocardial infarction, peripheral vascular disease and cerebrovascular disease. The present article aimed at reviewing contemporary data on the pathophysiology of vascular endothelium and its association with periodontitis in the scenario of cardiovascular disease. PMID:25632316
Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica
2018-01-01
We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farjam, Reza; Pramanik, Priyanka; Aryal, Madhava P.
Purpose: We aimed to develop a hippocampal vascular injury surrogate marker for early prediction of late neurocognitive dysfunction in patients receiving brain radiation therapy (RT). Methods and Materials: Twenty-seven patients (17 males and 10 females, 31-80 years of age) were enrolled in an institutional review board-approved prospective longitudinal study. Patients received diagnoses of low-grade glioma or benign tumor and were treated by (3D) conformal or intensity-modulated RT with a median dose of 54 Gy (50.4-59.4 Gy in 1.8-Gy fractions). Six dynamic-contrast enhanced MRI scans were performed from pre-RT to 18-month post-RT, and quantified for vascular parameters related to blood-brain barrier permeability, K{sup trans},more » and the fraction of blood plasma volume, V{sub p}. The temporal changes in the means of hippocampal transfer constant K{sup trans} and V{sub p} after starting RT were modeled by integrating the dose effects with age, sex, hippocampal laterality, and presence of tumor or edema near a hippocampus. Finally, the early vascular dose response in hippocampi was correlated with neurocognitive dysfunction at 6 and 18 months post-RT. Results: The mean K{sup trans} Increased significantly from pre-RT to 1-month post-RT (P<.0004), which significantly depended on sex (P<.0007) and age (P<.00004), with the dose response more pronounced in older females. Also, the vascular dose response in the left hippocampus of females correlated significantly with changes in memory function at 6 (r=−0.95, P<.0006) and 18-months (r=−0.88, P<.02) post-RT. Conclusions: The early hippocampal vascular dose response could be a predictor of late neurocognitive dysfunction. A personalized hippocampus sparing strategy may be considered in the future.« less
Koning, N J; de Lange, F; van Meurs, M; Jongman, R M; Ahmed, Y; Schwarte, L A; van Nieuw Amerongen, G P; Vonk, A B A; Niessen, H W; Baufreton, C; Boer, C
2018-06-01
Cardiopulmonary bypass during cardiac surgery leads to impaired microcirculatory perfusion. We hypothesized that vascular leakage is an important contributor to microcirculatory dysfunction. Imatinib, a tyrosine kinase inhibitor, has been shown to reduce vascular leakage in septic mice. We investigated whether prevention of vascular leakage using imatinib preserves microcirculatory perfusion and reduces organ injury markers in a rat model of cardiopulmonary bypass. Male Wistar rats underwent cardiopulmonary bypass after treatment with imatinib or vehicle (n=8 per group). Cremaster muscle microcirculatory perfusion and quadriceps microvascular oxygen saturation were measured using intravital microscopy and reflectance spectroscopy. Evans Blue extravasation was determined in separate experiments. Organ injury markers were determined in plasma, intestine, kidney, and lungs. The onset of cardiopulmonary bypass decreased the number of perfused microvessels by 40% in the control group [9.4 (8.6-10.6) to 5.7 (4.8-6.2) per microscope field; P<0.001 vs baseline], whereas this reduction was not seen in the imatinib group. In the control group, the number of perfused capillaries remained low throughout the experiment, whilst perfusion remained normal after imatinib administration. Microvascular oxygen saturation was less impaired after imatinib treatment compared with controls. Imatinib reduced vascular leakage and decreased fluid resuscitation compared with control [3 (3-6) vs 12 ml (7-16); P=0.024]. Plasma neutrophil-gelatinase-associated-lipocalin concentrations were reduced by imatinib. Prevention of endothelial barrier dysfunction using imatinib preserved microcirculatory perfusion and oxygenation during and after cardiopulmonary bypass. Moreover, imatinib-induced protection of endothelial barrier integrity reduced fluid-resuscitation requirements and attenuated renal and pulmonary injury markers. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
de la Cuesta, Fernando; Baldan-Martin, Montserrat; Moreno-Luna, Rafael; Alvarez-Llamas, Gloria; Gonzalez-Calero, Laura; Mourino-Alvarez, Laura; Sastre-Oliva, Tamara; López, Juan A.; Vázquez, Jesús; Ruiz-Hurtado, Gema; Segura, Julian; Vivanco, Fernando; Ruilope, Luis M.; Barderas, Maria G.
2017-01-01
Despite of the great advances in anti-hypertensive therapies, many patients under Renin-Angiotensin- System (RAS) suppression develop albuminuria, which is a clear indicator of therapeutic inefficiency. Hence, indicators of vascular function are needed to assess patients’ condition and help deciding future therapies. Proteomic analysis of circulating extracellular vesicles (EVs) showed two proteins, kalirin and chromodomain-helicase-DNA-binding protein 7 (CHD7), increased in albuminuric patients. A positive correlation of both with the expression of the endothelial activation marker E-selectin was found in EVs. In vitro analysis using TNFα-treated adult human endothelial cells proved their involvement in endothelial cell activation. Hence, we propose protein levels of kalirin and CHD7 in circulating EVs as novel endothelial dysfunction markers to monitor vascular condition in hypertensive patients with albuminuria. PMID:28152519
Alkatan, Mohammed; Machin, Daniel R; Baker, Jeffrey R; Akkari, Amanda S; Park, Wonil; Tanaka, Hirofumi
2016-01-01
Swimming exercise is an ideal and excellent form of exercise for patients with osteoarthritis (OA). However, there is no scientific evidence that regular swimming reduces vascular dysfunction and inflammation and elicits similar benefits compared with land-based exercises such as cycling in terms of reducing vascular dysfunction and inflammation in patients with OA. Forty-eight middle-aged and older patients with OA were randomly assigned to swimming or cycling training groups. Cycling training was included as a non-weight-bearing land-based comparison group. After 12 weeks of supervised exercise training, central arterial stiffness, as determined by carotid-femoral pulse wave velocity, and carotid artery stiffness, through simultaneous ultrasound and applanation tonometry, decreased significantly after both swimming and cycling training. Vascular endothelial function, as determined by brachial flow-mediated dilation, increased significantly after swimming but not after cycling training. Both swimming and cycling interventions reduced interleukin-6 levels, whereas no changes were observed in other inflammatory markers. In conclusion, these results indicate that regular swimming exercise can exert similar or even superior effects on vascular function and inflammatory markers compared with land-based cycling exercise in patients with OA who often has an increased risk of developing cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Trebicka, Jonel; Wix, Cyrus; von Heydebrand, Matthias; Hittatiya, Kanishka; Reiberger, Thomas; Klein, Sabine; Schierwagen, Robert; Kristiansen, Glen; Peck-Radosavljevic, Markus; Fischer, Hans-Peter; Møller, Søren; Bendtsen, Flemming; Krag, Aleksander; Sauerbruch, Tilman
2015-04-01
Patients with cirrhosis display hypocontractility of splanchnic vessels because of dysregulation of vasoactive proteins, such as decreased effect of RhoA/ROCK and increased activity of β-Arrestin-2 and eNOS. However, it is unknown whether the dysregulation of vasoactive proteins is displayed in other vessels. We investigated whether expression of vasoactive proteins can be evaluated in gastric mucosa vessels. Biopsies from the gastric mucosa of 111 patients with cirrhosis were collected at three different centres and from 13 controls. Forty-nine patients had received TIPS. Portal pressure gradient was measured in 49 patients with TIPS and in 16 patients without TIPS. Biopsies from the antrum were conserved in formaldehyde for immunohistochemistry or shock-frozen for PCR and Western blot. The mucosal transcription of vascular markers (αSMA, CD31) was higher in cirrhotic patients than controls, which was confirmed by immunohistochemistry. On average, relative mucosal levels of RhoA and ROCK were lower, while β-Arrestin-2 levels were higher in cirrhotic patients compared to controls. Transcriptional levels of eNOS increased with presence of ascites and grade of oesophageal varices. Patients with TIPS showed less pronounced markers of vascular dysfunction in gastric mucosa. This is the first evidence that the expression of vasoactive proteins in mucosa from the gastric antrum of patients with cirrhosis reflects their vascular dysfunction and possibly changes after therapeutic interventions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Negrean, Monica; Stirban, Alin; Stratmann, Bernd; Gawlowski, Thomas; Horstmann, Tina; Götting, Christian; Kleesiek, Knut; Mueller-Roesel, Michaela; Koschinsky, Theodor; Uribarri, Jaime; Vlassara, Helen; Tschoepe, Diethelm
2007-05-01
An advanced glycation endproducts (AGEs)-rich diet induces significant increases in inflammatory and endothelial dysfunction markers in type 2 diabetes mellitus (T2DM). The aim was to investigate the acute effects of dietary AGEs on vascular function in T2DM patients. Twenty inpatients with T2DM [x (+/-SEM) age: 55.4 +/- 2.2 y; glycated hemoglobin: 8.8 +/- 0.5%] were investigated. In a randomized crossover design, the effects of a low-AGE (LAGE) and high-AGE (HAGE) meal on macrovascular [by flow-mediated dilatation (FMD)] and microvascular (by Laser-Doppler flowmetry) function, serum markers of endothelial dysfunction (E-selectin, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), oxidative stress, and serum AGE were assessed. The meals had identical ingredients but different AGE amounts (15.100 compared with 2.750 kU AGE for the HAGE and LAGE meals, respectively), which were obtained by varying the cooking temperature and time. The measurements were performed at baseline and 2, 4, and 6 h after each meal. After the HAGE meal, FMD decreased by 36.2%, from 5.77 +/- 0.65% (baseline) to 3.93 +/- 0.48 (2 h), 3.70 +/- 0.42 (4 h), and 4.42 +/- 0.54% (6 h) (P<0.01 for all compared with baseline). After the LAGE meal, FMD decreased by 20.9%, from 6.04 +/- 0.68% (baseline) to 4.75 +/- 0.48% (2 h), 4.69 +/- 0.51% (4 h), and 5.62 +/- 0.63% (6 h), respectively (P<0.01 for all compared with baseline; P<0.001 for all compared with the HAGE meal). This impairment of macrovascular function after the HAGE meal was paralleled by an impairment of microvascular function (-67.2%) and increased concentrations of serum AGE and markers of endothelial dysfunction and oxidative stress. In patients with T2DM, a HAGE meal induces a more pronounced acute impairment of vascular function than does an otherwise identical LAGE meal. Therefore, chemical modifications of food by means of cooking play a major role in influencing the extent of postprandial vascular dysfunction.
[How does chocolate impact vascular function?].
Flammer, Andreas J; Sudano, Isabella
2014-11-12
For thousands of years, cocoa have been a very popular food and has been linked to various beneficial health effects. Observational and epidemiological studies point towards a beneficial effect of dark chocolate on cardiovascular morbidity. Several small, albeit controlled studies indeed demonstrate an amelioration of endothelial dysfunction - the dysfunction of the inner layer of the vessels - after intake of dark, flavanol-rich chocolate. This is important, as endothelial dysfunction is an important marker of the development of atherosclerosis and an important prognosticator of future cardiovascular events. This article summarizes the actual literature in this respect.
Zhang, Yanan; Zhang, Chunlian; Li, Haiou; Hou, Jingdong
2017-10-14
Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is associated with endothelial dysfunction. The prevalence of OSA is linked to an epidemic of obesity. CIH has recently been reported to cause endothelial dysfunction in diet-induced obese animals by exaggerating oxidative stress and inflammation, but the underlying mechanism remains unclear. PPAR-γ, a ligand-inducible transcription factor that exerts anti-oxidant and anti-inflammatory effects, is down-regulated in the peripheral tissues in diet-induce obesity. We tested the hypothesis that down-regulation of vascular PPAR-γ in diet-induced obesity enhances inflammation and oxidative stress in response to CIH, resulting in endothelial dysfunction. Male C57BL/6 mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) and simultaneously exposed to CIH or intermittent air for 6 weeks. An additional HFD group received a combination of CIH and PPAR-γ agonist pioglitazone for 6 weeks. Endothelial-dependent vasodilation was impaired only in HFD group exposed to CIH, compared with other groups, but was restored by concomitant pioglitazone treatment. Molecular studies revealed that vascular PPAR-γ expression and activity were reduced in HFD groups, compared with LFD groups, but were reversed by pioglitazone treatment. In addition, CIH elevated vascular expression of NADPH oxidase 4 and dihydroethidium fluorescence, and increased expression of proinflammatory cytokines TNF-α and IL-1β in both LFD and HFD groups, but these increases was significantly greater in HFD group, along with decreased vascular eNOS activity. Pioglitazone treatment of HFD group prevented CIH-induced changes in above molecular markers. The results suggest that HFD-induced obesity down-regulates vascular PPAR-γ, which results in exaggerated oxidative stress and inflammation in response to CIH, contributing to endothelial dysfunction. This finding may provide new insights into the mechanisms by which OSA induces endothelial dysfunction and other cardiovascular disease in patients with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.
Agabiti-Rosei, Claudia; Favero, Gaia; De Ciuceis, Carolina; Rossini, Claudia; Porteri, Enzo; Rodella, Luigi Fabrizio; Franceschetti, Lorenzo; Maria Sarkar, Anna; Agabiti-Rosei, Enrico; Rizzoni, Damiano; Rezzani, Rita
2017-01-01
Some reports have suggested that inflammation in perivascular adipose tissue (PVAT) may be implicated in vascular dysfunction by causing the disappearance of an anticontractile effect. The aim of this study was to investigate the effects of chronic melatonin treatment on the functional responses of the small mesenteric arteries and on the expression of markers of inflammation/oxidative stress in the aortas of senescence-accelerated prone mice (SAMP8), a model of age-related vascular dysfunction. We investigated seven SAMP8 and seven control senescence-accelerated resistant mice (SAMR1) treated for 10 months with melatonin, as well as equal numbers of age-matched untreated SAMP8 and SAMR1. The mesenteric small resistance arteries were dissected and mounted on a wire myograph, and the concentration-response to norepinephrine was evaluated in vessels with intact PVAT and after the removal of the PVAT. The expression of markers of oxidative stress, inflammation and aging in the aortas was evaluated by immunostaining. In addition, the adiponectin content and the expression of adiponectin receptor 1 were evaluated in the visceral adipose tissue. In untreated SAMP8 mice, we observed an overexpression of oxidative stress and inflammatory markers in the vasculature compared with the controls. No anticontractile effect of the PVAT was observed in untreated SAMP8 mice. Long-term treatment of SAMP8 mice with melatonin increased the expression of some markers of vasoprotection, decreased oxidative stress and inflammation and restored the anticontractile effect of the PVAT. Decreased expression of adiponectin and adiponectin receptor 1 was also observed in visceral fat of untreated SAMP8, whereas a significant increase was observed after melatonin treatment.
Miller, Tracie L.; Borkowsky, William; DiMeglio, Linda A.; Dooley, Laurie; Geffner, Mitchell E.; Hazra, Rohan; McFarland, Elizabeth J.; Mendez, Armando J.; Patel, Kunjal; Siberry, George K.; Van Dyke, Russell B.; Worrell, Carol J.; Jacobson, Denise L.
2011-01-01
Objectives Human immunodeficiency virus (HIV)-infected children may be at risk for premature cardiovascular disease. We compared levels of biomarkers of vascular dysfunction among HIV-infected children with and without hyperlipidemia to HIV-exposed, uninfected children (HEU) enrolled in the Pediatric HIV/AIDS Cohort Study (PHACS), and determined factors associated with these biomarkers. Design Prospective cohort study Methods Biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP1)); coagulant dysfunction (fibrinogen and P-selectin); endothelial dysfunction (soluble intracellular cell adhesion molecule-1 (sICAM), soluble vascular cell adhesion molecule-1 (sVCAM), and E-selectin); and metabolic dysfunction (adiponectin) were measured in 226 HIV-infected and 140 HEU children. Anthropometry, body composition, lipids, glucose, insulin, HIV disease severity, and antiretroviral therapy were recorded. Results The median ages were 12.3 y (HIV-infected) and 10.1 y (HEU). Body mass index (BMI) Z-scores, waist and hip circumference, and percent body fat were lower among HIV-infected. Total and non-HDL cholesterol and triglycerides were higher in HIV-infected children. HIV-infected children had higher MCP-1, fibrinogen, sICAM, and sVCAM levels. In multivariable analyses in the HIV-infected children alone, BMI z-score was associated with higher CRP and fibrinogen, but lower MCP-1 and sVCAM. Unfavorable lipid profiles were positively associated with IL6, MCP1, fibrinogen, and P- and E-selectin, whereas increased HIV viral load was associated with markers of inflammation (MCP1 and CRP) and endothelial dysfunction (sICAM and sVCAM). Conclusions HIV-infected children have higher levels of biomarkers of vascular dysfunction than do HEU children. Risk factors associated with higher biomarkers include unfavorable lipid levels and active HIV replication. PMID:22136114
Futrakul, Narisa; Butthep, Punnee; Vongthavarawat, Varaphon; Futrakul, Prasit; Sirisalipoch, Sasitorn; Chaivatanarat, Tawatchai; Suwanwalaikorn, Sompongse
2006-01-01
This paper was aimed to investigate (1) the early marker of endothelial injury in type 2 diabetes, (2) the intrarenal hemodynamics and renal function, and (3) the therapeutic strategy aiming to restore renal function. Fifty patients (35 normoalbuminuric and 15 albuminuric type 2 diabetes) were examined. Blood was collected for determination of circulating vascular endothelial cells (CEC) and the serum was prepared for determination of transforming growth factor beta (TGFbeta), ratio of CEC/TGFbeta, and soluble vascular cell adhesion molecule. Intrarenal hemodynamics and renal function were also assessed. The results showed that increased number of circulating EC, elevated TGFbeta and depleted ratio of CEC/TGFbeta were significantly observed. Intrarenal hemodynamic study revealed a hemodynamic maladjustment characterized by preferential constriction of the efferent arteriole, intraglomerular hypertension and reduction in peritubular capillary flow. It was concluded that early marker of endothelial injury is reflected by increasing number of CEC. Such markers correlate with the glomerular endothelial dysfunction associated with hemodynamic maladjustment. Early detection of endothelial injury and appropriate correction of hemodynamic maladjustment by multidrug vasodilators can effectively restore renal function in type 2 diabetic nephropathy.
Della Corte, Vittoriano; Tuttolomondo, Antonino; Pecoraro, Rosaria; Di Raimondo, Domenico; Vassallo, Valerio; Pinto, Antonio
2016-01-01
In the last decades, many factors thought to be associated with the atherosclerotic process and cardiovascular events have been studied, and some of these have been shown to correlate with clinical outcome, such as arterial stiffness, endothelial dysfunction and immunoinflammatory markers. Arterial stiffness is an important surrogate marker that describes the capability of an artery to expand and contract in response to pressure changes. It can be assessed with different techniques, such as the evaluation of PWV and AIx. It is related to central systolic pressure and it is an independent predictor of cardiovascular morbidity and mortality in hypertensive patients, type 2 diabetes, end-stage renal disease and in elderly populations. The endothelium has emerged as the key regulator of vascular homeostasis, in fact, it has not merely a barrier function but also acts as an active signal transducer for circulating influences that modify the vessel wall phenotype. When its function is lost, it predisposes the vasculature to vasoconstriction, leukocyte adherence, platelet activation, thrombosis and atherosclerosis. Non-invasive methods were developed to evaluate endothelial function, such as the assesment of FMD, L-FMC and RHI. Moreover in the last years, a large number of studies have clarified the role of inflammation and the underlying cellular and molecular mechanisms that contribute to atherogenesis. For clinical purposes, the most promising inflammatory biomarker appears to be CRP and a variety of population-based studies have showed that baseline CRP levels predict future cardiovascular events. Each of the markers listed above has its importance from the pathophysiological and clinical point of view, and those can also be good therapeutic targets. However, it must be stressed that assessments of these vascular markers are not mutually exclusive, but rather complementary and those can offer different views of the same pathology. The purpose of this review is to analyze the role of arterial stiffness, endothelial dysfunction and immunoinflammatory markers as surrogate endpoint, assessing the correlations between these markers and evaluating the therapeutic perspectives that these offer.
Baker, Nathaniel L; Hunt, Kelly J; Stevens, Danielle R; Jarai, Gabor; Rosen, Glenn D; Klein, Richard L; Virella, Gabriel; Lopes-Virella, Maria F
2018-01-01
To determine whether biomarkers of inflammation and endothelial dysfunction are associated with the development of kidney dysfunction and the time frame of their association. Biomarkers were measured at four time points during 28 years of treatment and follow-up in patients with type 1 diabetes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort. In addition to traditional biomarkers of inflammation (C-reactive protein and fibrinogen), we measured interleukin-6 (IL-6) and soluble tumor necrosis factor receptors 1 and 2 (sTNFR-1/2), markers of endothelial dysfunction (soluble intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin [sE-selectin]), and fibrinolysis (total and active plasminogen activator inhibitor-1 [PAI-1]). Renal outcomes were defined as progression to incident chronic kidney disease (stage 3 or more severe) or macroalbuminuria (albumin excretion rate ≥300 mg/24 h). Prospective multivariate event-time analyses were used to determine the association of each biomarker with each subsequent event within prespecified intervals (3-year and 10-year windows). Multivariate event-time models indicated that several markers of inflammation (sTNFR-1/2), endothelial dysfunction (sE-selectin), and clotting/fibrinolysis (fibrinogen and PAI-1) are significantly associated with subsequent development of kidney dysfunction. Although some markers showed variations in the associations between the follow-up windows examined, the results indicate that biomarkers (sTNFR-1/2, sE-selectin, PAI-1, and fibrinogen) are associated with progression to chronic kidney disease in both the 3-year and the 10-year windows. Plasma markers of inflammation, endothelial dysfunction, and clotting/fibrinolysis are associated with progression to kidney dysfunction in type 1 diabetes during both short-term and long-term follow-up. © 2017 by the American Diabetes Association.
Esser, Diederik; Oosterink, Els; op 't Roodt, Jos; Henry, Ronald M A; Stehouwer, Coen D A; Müller, Michael; Afman, Lydia A
2013-01-01
High fat meal challenges are known to induce postprandial low-grade inflammation and endothelial dysfunction. This assumption is largely based on studies performed in older populations or in populations with a progressed disease state and an appropriate control meal is often lacking. Young healthy individuals might be more resilient to such challenges. We therefore aimed to characterize the vascular and inflammatory response after a high fat meal in young healthy individuals. In a double-blind randomized cross-over intervention study, we used a comprehensive phenotyping approach to determine the vascular and inflammatory response after consumption of a high fat shake and after an average breakfast shake in 20 young healthy subjects. Both interventions were performed three times. Many features of the vascular postprandial response, such as FMD, arterial stiffness and micro-vascular skin blood flow were not different between shakes. High fat/high energy shake consumption was associated with a more pronounced increase in blood pressure, heart rate, plasma concentrations of IL-8 and PBMCs gene expression of IL-8 and CD54 (ICAM-1), whereas plasma concentrations of sVCAM1 were decreased compared to an average breakfast. Whereas no difference in postprandial response were observed on classical markers of endothelial function, we did observe differences between consumption of a HF/HE and an average breakfast meal on blood pressure and IL-8 in young healthy volunteers. IL-8 might play an important role in dealing with high fat challenges and might be an early marker for endothelial stress, a stage preceding endothelial dysfunction.
Dimitroulas, Theodoros; Sandoo, Aamer; Kitas, George D.
2012-01-01
The last few decades have witnessed an increased life expectancy of patients suffering with systemic rheumatic diseases, mainly due to improved management, advanced therapies and preventative measures. However, autoimmune disorders are associated with significantly enhanced cardiovascular morbidity and mortality not fully explained by traditional cardiovascular disease (CVD) risk factors. It has been suggested that interactions between high-grade systemic inflammation and the vasculature lead to endothelial dysfunction and atherosclerosis, which may account for the excess risk for CVD events in this population. Diminished nitric oxide synthesis—due to down regulation of endothelial nitric oxide synthase—appears to play a prominent role in the imbalance between vasoactive factors, the consequent impairment of the endothelial hemostasis and the early development of atherosclerosis. Asymmetric dimethylarginine (ADMA) is one of the most potent endogenous inhibitors of the three isoforms of nitric oxide synthase and it is a newly discovered risk factor in the setting of diseases associated with endothelial dysfunction and adverse cardiovascular events. In the context of systemic inflammatory disorders there is increasing evidence that ADMA contributes to the vascular changes and to endothelial cell abnormalities, as several studies have revealed derangement of nitric oxide/ADMA pathway in different disease subsets. In this article we discuss the role of endothelial dysfunction in patients with rheumatic diseases, with a specific focus on the nitric oxide/ADMA system and we provide an overview on the literature pertaining to ADMA as a surrogate marker of subclinical vascular disease. PMID:23202900
Diet, inflammation and prediabetes-impact of quality of diet.
Uusitupa, Matti; Schwab, Ursula
2013-10-01
Low grade inflammation has been linked to risk of type 2 diabetes and atherosclerotic vascular diseases. Obesity and, in particular, abdominal obesity increase the risk of diabetes and atherosclerotic vascular diseases. One of the mechanisms could be low grade inflammation and vascular endothelial dysfunction. Permanent weight reduction is the first line of treatment both for obese individuals at increased risk of diabetes and for newly onset type 2 diabetes. Weight reduction lowers the level of several inflammatory factors in the body while increasing the level of adiponectin. Besides weight reduction the quality of diet and physical activity also modifies low grade inflammation. Based on the literature survey and our own studies in humans, it is possible to have dietary patterns that reduce inflammatory stress in the body and improves vascular endothelial dysfunction. There is strong evidence to suggest that IL-1 Ra is a very sensitive marker of low grade inflammation in obesity and related phenotypes; however, its level is markedly lowered by weight reduction and by choosing foods that have been shown to reduce inflammatory stress in the body. Copyright © 2013. Published by Elsevier Inc.
Does vitamin D deficiency contribute to erectile dysfunction?
Sorenson, Marc; Grant, William B.
2012-01-01
Erectile dysfunction (ED) is a multifactorial disease, and its causes can be neurogenic, psychogenic, hormonal and vascular. ED is often an important indicator of cardiovascular disease (CVD) and a powerful early marker for asymptomatic CVD. Erection is a vascular event, and ED is often a vascular disease caused by endothelial damage and subsequent inhibition of vasodilation. We show here that risk factors associated with a higher CVD risk also associate with a higher ED risk. Such factors include diabetes mellitus, hypertension, arterial calcification and Inflammation in the vascular endothelium. Vitamin D deficiency is one of several dynamics that associates with increased CVD risk, but to our knowledge, it has not been studied as a possible contributor to ED. Here we examine research linking ED and CVD and discuss how vitamin D influences CVD and its classic risk factors—factors that also associate to increased ED risk. We also summarize research indicating that vitamin D associates with reduced risk of several nonvascular contributing factors for ED. We conclude that VDD contributes to ED. This hypothesis should be tested through observational and intervention studies. PMID:22928068
Vatseba, M O
2013-09-01
Under observation were 40 hypertensive patients with coronary heart disease, gout and obesity I and II degree. Patients with hypertension in combination with coronary heart disease, gout and obesity, syndrome of early vascular aging is shown by increased stiffness of arteries, increased peak systolic flow velocity, pulse blood presure, the thickness of the intima-media complex, higher level endotelinemia and reduced endothelial vasodilation. Obtained evidence that losartan in complex combination with basic therapy and metamaks in complex combination with basic therapy positively affect the elastic properties of blood vessels and slow the progression of early vascular aging syndrome.
Avendaño, María S; García-Redondo, Ana B; Zalba, Guillermo; González-Amor, María; Aguado, Andrea; Martínez-Revelles, Sonia; Beltrán, Luis M; Camacho, Mercedes; Cachofeiro, Victoria; Alonso, María J; Salaices, Mercedes; Briones, Ana M
2018-06-11
mPGES-1 (microsomal prostaglandin E synthase-1), the downstream enzyme responsible for PGE 2 (prostaglandin E 2 ) synthesis in inflammatory conditions and oxidative stress are increased in vessels from hypertensive animals. We evaluated the role of mPGES-1-derived PGE 2 in the vascular dysfunction and remodeling in hypertension and the possible contribution of oxidative stress. We used human peripheral blood mononuclear cells from asymptomatic patients, arteries from untreated and Ang II (angiotensin II)-infused mPGES-1 -/- and mPGES-1 +/+ mice, and vascular smooth muscle cells exposed to PGE 2 In human cells, we found a positive correlation between mPGES-1 mRNA and carotid intima-media thickness ( r =0.637; P <0.001) and with NADPH oxidase-dependent superoxide production ( r =0.417; P <0.001). In Ang II-infused mice, mPGES-1 deletion prevented all of the following: (1) the augmented wall:lumen ratio, vascular stiffness, and altered elastin structure; (2) the increased gene expression of profibrotic and proinflammatory markers; (3) the increased vasoconstrictor responses and endothelial dysfunction; (4) the increased NADPH oxidase activity and the diminished mitochondrial membrane potential; and (5) the increased reactive oxygen species generation and reduced NO bioavailability. In vascular smooth muscle cells or aortic segments, PGE 2 increased NADPH oxidase expression and activity and reduced mitochondrial membrane potential, effects that were abolished by antagonists of the PGE 2 receptors (EP), EP1 and EP3, and by JNK (c-Jun N-terminal kinase) and ERK1/2 (extracellular-signal-regulated kinases 1/2) inhibition. Deletion of mPGES-1 augmented vascular production of PGI 2 suggesting rediversion of the accumulated PGH 2 substrate. In conclusion, mPGES-1-derived PGE 2 is involved in vascular remodeling, stiffness, and endothelial dysfunction in hypertension likely through an increase of oxidative stress produced by NADPH oxidase and mitochondria. © 2018 American Heart Association, Inc.
Gohar, Aisha; de Kleijn, Dominique P V; Hoes, Arno W; Rutten, Frans H; Hilfiker-Kleiner, Denise; Ferdinandy, Péter; Sluijter, Joost P G; den Ruijter, Hester M
2018-05-25
Left ventricular diastolic dysfunction, the main feature of heart failure with preserved ejection fraction (HFpEF), is thought to be primarily caused by comorbidities affecting the endothelial function of the coronary microvasculature. Circulating extracellular vesicles, released by the endothelium have been postulated to reflect endothelial damage. Therefore, we reviewed the role of extracellular vesicles, in particularly endothelium microparticles, in these comorbidities, including obesity and hypertension, to identify if they may be potential markers of the endothelial dysfunction underlying left ventricular diastolic dysfunction and HFpEF. Copyright © 2017. Published by Elsevier Inc.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-06-15
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-01-01
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093
Kolesnikova, E; Potapenko, A
2017-09-01
The article presents the analysis of the relationship between thyroid function abnormality -subclinical hypothyroidism (SH) and non-alcoholic fatty liver disease (NAFLD), depending on age peculiarities (>50 years and <50 years), and the risk of cardiovascular complications in this category of patients. Research of early predictors of cardiovascular complications: dyslipidemia, insulin resistance, inflammatory marker- C-reactive protein, marker of vascular aging-telomerase activity and marker of endothelial dysfunction (ED) - CDECs and VEGF-A that have been analyzed are on the front burner. In this regard, the effect of the given values on the formation of cardiac risk in patients with NAFLD combined with SH was studied. 74 patients (29 men (39.2%) and 45 women (60.8%)), with verified NAFLD and SH have been examined. Patients were divided into two clinical groups: group 1 (n=31) - patients with NAFLD, with the mean age 47.2±2.6 years; group 2 (n=43) patients with NAFLD in combination with SH, with the mean age 56,8±6,5 years. Results of the performed tests have shown that patients with NAFLD combined with SH aged over 50 years have pro-atherogenic lipid profile and significantly more pronounced manifestations of endothelial dysfunction. The process of age-dependent shortening of telomere length predominantly in the buccal epithelium is an important point to be made. Consequently, the total effect of cardiometabolic risk factors in patients with NAFLD combined with SH probably is the determining factor of the rate of progression of vascular aging.
Beer, Sandra; Feihl, François; Ruiz, Juan; Juhan-Vague, Irène; Aillaud, Marie-Françoise; Wetzel, Sandrine Golay; Liaudet, Lucas; Gaillard, Rolf C; Waeber, Bernard
2008-01-01
Aim: Patients with non-insulin-dependent diabetes mellitus (NIDDM) are at increased cardiovascular risk due to an accelerated atherosclerotic process. The present study aimed to compare skin microvascular function, pulse wave velocity (PWV), and a variety of hemostatic markers of endothelium injury [von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (t-PA), tissue factor pathway inhibitor (TFPI), and the soluble form of thrombomodulin (s-TM)] in patients with NIDDM. Methods: 54 patients with NIDDM and 38 sex- and age-matched controls were studied. 27 diabetics had no overt micro- and/or macrovascular complications, while the remainder had either or both. The forearm skin blood flow was assessed by laser-Doppler imaging, which allowed the measurement of the response to iontophoretically applied acetylcholine (endothelium-dependent vasodilation) and sodium nitroprusside (endothelium-independent vasodilation), as well as the reactive hyperemia triggered by the transient occlusion of the circulation. Results: Both endothelial and non-endothelial reactivity were significantly blunted in diabetics, regardless of the presence or the absence of vascular complications. Plasma vWF, TFPI and s-TM levels were significantly increased compared with controls only in patients exhibiting vascular complications. Concentrations of t-PA and PAI-1 were significantly increased in the two groups of diabetics versus controls. Conclusion: In NIDDM, both endothelium-dependent and -independent microvascular skin reactivity are impaired, whether or not underlying vascular complications exist. It also appears that microvascular endothelial dysfunction is not necessarily associated in NIDDM with increased circulating levels of hemostatic markers of endothelial damage known to reflect a hypercoagulable state. PMID:19337558
Matsumoto, Sachiko; Shimabukuro, Michio; Fukuda, Daiju; Soeki, Takeshi; Yamakawa, Ken; Masuzaki, Hiroaki; Sata, Masataka
2014-01-31
Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. (1) Vascular endothelium-dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan's higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox.
Matsumoto, Takayuki; Watanabe, Shun; Ando, Makoto; Yamada, Kosuke; Iguchi, Maika; Taguchi, Kumiko; Kobayashi, Tsuneo
2016-02-01
To study the time-course relationship between vascular functions and endoplasmic reticulum (ER) stress in type 2 diabetes, we investigated vascular function and associated protein expression, including cyclo-oxygenase (COX), ER stress, and apoptotic markers, in renal arteries (RA) from type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats at the young adult (4 months old) and aged (18 months old) stages. In the RA of aged OLETF (vs. young OLETF), we found: (1) Increased contractions induced by uridine adenosine tetraphosphate (Up4A) and phenylephrine, (2) decreased relaxation and increased contraction induced by acetylcholine (ACh) at lower and higher concentrations, respectively, and (3) increased expression of COX-1 and C/EBP-homologous protein (CHOP, a pro-apoptotic protein). In aged rats, the expression of COX-1, COX-2, PDI (an ER protein disulfide isomerase), Bax (a proapoptotic marker), and CHOP were increased in RA from OLETF rats (vs. age-matched control Long-Evans Tokushima Otsuka [LETO] rats). Up-regulation of PDI and Bax were seen in the RA from young OLETF (vs. young LETO) rats. No age-related alterations were apparent in the above changes in RA from LETO rats, excluding ACh-induced contraction. Short-term treatment with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 100 mg/kg per day, intraperitoneally for 1 week) to OLETF rats at the chronic stage of the disease (12 months old) could suppress renal arterial contractions induced by Up4A and ACh. These results suggest that a long-term duration of disease may be important for the development of vascular dysfunction rather than aging per se. The early regulation of ER stress may be important against the development of diabetes-associated vascular dysfunction.
Tantawy, Azza Abdel Gawad; Adly, Amira Abdel Moneam; Ismail, Eman Abdel Rahman; Youssef, Omneya Ibrahim; Ali, Mohamed ElSayed
2017-11-01
Endothelial damage has been implicated in the pathogenesis of vascular complications in β-thalassemia intermedia (β-TI). Soluble fms-like tyrosine kinase 1 (sFLT-1) is a member of the vascular endothelial growth factor receptor (VEGFR) family. Soluble fms-like tyrosine kinase 1 is an antiangiogenic protein that induces endothelial dysfunction by adhering to and inhibiting VEGF and placenta growth factor. The aim of this study was to assess the level of sFLT-1 in 35 children and adolescents with β-TI, correlating it with markers of hemolysis and iron overload as well as cardiopulmonary complications. Patients were studied focusing on the history of cardiac disease, splenectomy, transfusion, chelation/hydroxyurea therapy, serum ferritin, and sFLT-1 levels. Echocardiography and measurement of carotid intima-media thickness (CIMT) were done for all participants. Soluble fms-like tyrosine kinase 1 was significantly higher in TI patients compared to the control group (median [interquartile range], 110 [80-155] pg/mL versus 70 [60-90] pg/mL; P < .001). Splenectomized patients and those who had pulmonary hypertension risk or heart disease had higher sFLT-1 levels than those without ( P < .001). The sFLT-1 cutoff value that differentiates patients with and without pulmonary hypertension risk or heart disease was determined. Soluble fms-like tyrosine kinase 1 was lower among patients who received chelation therapy and/or hydroxyurea. Significant positive relations were observed between sFLT-1 and lactate dehydrogenase, serum ferritin, liver iron concentration, tricuspid regurgitant jet velocity, and CIMT. We suggest that sFLT-1 represents a link between angiogenesis, endothelial dysfunction, and subclinical atherosclerosis. Measurement of sFLT-1 as a marker of vascular dysfunction in β-TI may provide utility for early identification of patients at increased risk of cardiopulmonary complications.
Biomarkers of Endothelial Activation Are Associated with Poor Outcome in Critical Illness.
Mikacenic, Carmen; Hahn, William O; Price, Brenda L; Harju-Baker, Susanna; Katz, Ronit; Kain, Kevin C; Himmelfarb, Jonathan; Liles, W Conrad; Wurfel, Mark M
2015-01-01
Endothelial activation plays a role in organ dysfunction in the systemic inflammatory response syndrome (SIRS). Angiopoietin-1 (Ang-1) promotes vascular quiescence while angiopoietin-2 (Ang-2) mediates microvascular leak. Circulating levels of Ang-1 and Ang-2 in patients with SIRS could provide insight on risks for organ dysfunction and death distinct from inflammatory proteins. In this study, we determined if biomarkers of endothelial activation and inflammation exhibit independent associations with poor outcomes in SIRS. We studied 943 critically ill patients with SIRS admitted to an Intensive Care Unit (ICU) of an academic medical center. We measured plasma levels of endothelial markers (Ang-1, Ang-2, soluble vascular cell adhesion molecule-1 (sVCAM-1)) and inflammatory markers (interleukin-6 (IL-6), interleukin-8 (IL-8), granulocyte-colony stimulating factor (G-CSF), soluble tumor necrosis factor receptor-1 (sTNFR-1)) within 24 hours of enrollment. We tested for associations between each marker and 28 day mortality, shock, and day 3 sequential organ failure assessment (SOFA) score. For 28 day mortality, we performed sensitivity analysis for those subjects with sepsis and those with sterile inflammation. We used multivariate models to adjust for clinical covariates and determine if associations identified with endothelial activation markers were independent of those observed with inflammatory markers. Higher levels of all biomarkers were associated with increased 28 day mortality except levels of Ang-1 which were associated with lower mortality. After adjustment for comorbidities and sTNFR-1 concentration, a doubling of Ang-1 concentration was associated with lower 28 day mortality (Odds ratio (OR) = 0.81; p<0.01), shock (OR = 0.82; p<0.001), and SOFA score (β = -0.50; p<0.001), while Ang-2 concentration was associated with increased mortality (OR = 1.55; p<0.001), shock (OR = 1.51; p<0.001), and SOFA score (β = +0.63; p<0.001). sVCAM-1 was not independently associated with SIRS outcomes. In critically ill patients with SIRS, early measurements of Ang-1 and Ang-2 are associated with death and organ dysfunction independently of simultaneously-measured markers of inflammation.
Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A.; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J.; de Cabo, Rafael
2016-01-01
Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress. PMID:27070252
Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J; de Cabo, Rafael
2016-05-01
Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress.
Prevalence of arterial stiffness and the risk of myocardial diastolic dysfunction in women.
Seeland, Ute; Brecht, Anna; Nauman, Ahmad T; Oertelt-Prigione, Sabine; Ruecke, Mirjam; Knebel, Fabian; Stangl, Verena; Regitz-Zagrosek, Vera
2016-10-01
The present study determines the prevalence of vascular dysfunction and arterial stiffness (ASt) in a female urban population by measuring the brachial augmentation index (AIx) and aortic pulse wave velocity (PWV). The study tests the hypothesis that the measurement of AIx and PWV is useful in addition to that of traditional cardiovascular risk factors when assessing the risk for left ventricular diastolic dysfunction (LVDD). This cross-sectional study recruited 965 women aged 25-75 years from 12 districts of Berlin. The ASt indices, brachial AIx, aortic PWV and the central blood pressure were measured by an oscillometric method. A randomly selected subgroup (n=343) was examined by echocardiography. Trans-mitral inflow E/A ratio and diastolic mitral annulus velocity (é) were assessed. Questionnaires, medical history and blood sampling were used for the evaluation of individual risk factors. Normal vascular function was found in 55% of the women included. The prevalence of women with pathological AIx only (AIx ⩾ -10%, PWV normal) was 21.5%, whereas 17.9% were affected by increased AIx and PWV (AIx ⩾ -10%, PWV ⩾9.7 m/s), and 6% with only pathological PWV values. The prevalence of LVDD was 31.7%. LVDD was significantly associated with pathological PWV ⩾ 9.7 m/s [OR: 1.27, 95%CI: 1.02-1.57], age [OR: 4.17, 95%CI: 2.87-6.07] and a waist circumference >80 cm [OR: 3.61, 95%CI: 1.85-7.04] in multiple regression analysis. The high prevalence of markers for vascular dysfunction and ASt in a general female population and their importance as a mediator of diastolic dysfunction should encourage implementation of aortic PWV measurement to improve cardiovascular-risk assessment in particular to identify subclinical myocardial diastolic dysfunction. © 2016 The Author(s).
Gössl, Mario; Mödder, Ulrike I; Atkinson, Elizabeth J; Lerman, Amir; Khosla, Sundeep
2008-10-14
This study was designed to test whether patients with coronary atherosclerosis have increases in circulating endothelial progenitor cells (EPCs) expressing an osteogenic phenotype. Increasing evidence indicates a link between bone and the vasculature, and bone marrow and circulating osteogenic cells have been identified by staining for the osteoblastic marker, osteocalcin (OCN). Endothelial progenitor cells contribute to vascular repair, but repair of vascular injury may result in calcification. Using cell surface markers (CD34, CD133, kinase insert domain receptor [KDR]) to identify EPCs, we examined whether patients with coronary atherosclerosis had increases in the percentage of EPCs expressing OCN. We studied 72 patients undergoing invasive coronary assessment: control patients (normal coronary arteries and no endothelial dysfunction, n = 21) versus 2 groups with coronary atherosclerosis-early coronary atherosclerosis (normal coronary arteries but with endothelial dysfunction, n = 22) and late coronary atherosclerosis (severe, multivessel coronary artery disease, n = 29). Peripheral blood mononuclear cells were analyzed using flow cytometry. Compared with control patients, patients with early or late coronary atherosclerosis had significant increases (approximately 2-fold) in the percentage of CD34+/KDR+ and CD34+/CD133+/KDR+ cells costaining for OCN. Even larger increases were noted in the early and late coronary atherosclerosis patients in the percentage of CD34+/CD133-/KDR+ cells costaining for OCN (5- and 2-fold, p < 0.001 and 0.05, respectively). A higher percentage of EPCs express OCN in patients with coronary atherosclerosis compared with subjects with normal endothelial function and no structural coronary artery disease. These findings have potential implications for the mechanisms of vascular calcification and for the development of novel markers for coronary atherosclerosis.
Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.
Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W
2014-12-01
The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.
Majer, Marcin; Gackowski, Daniel; Różalski, Rafał; Siomek-Górecka, Agnieszka; Oliński, Ryszard; Budzyński, Jacek
2017-01-01
Introduction Endothelial dysfunction is recognized as the earliest disorder in the development of atherosclerosis, in the pathogenesis of which oxidative stress plays a crucial role. The aim of this study was to determine the relationships between non-invasive parameters of vascular dysfunction and oxidative stress. Material and methods Forty-eight individuals without clinical manifestation of atherosclerosis were studied. The plasma concentrations of the following were determined in all 48 subjects: retinol, ascorbic acid, α-tocopherol and uric acid, as well as the products of oxidative DNA damage repair: 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) in blood leukocytes and urine, and 8-oxo-7,8-dihydroguanine (8-oxoGua) in urine. The following parameters of vascular dysfunction were also examined: flow- (FMD) and nitroglycerin- (NMD) mediated dilatation of the brachial artery, pulse pressure (PP), distensibility coefficient (DC), pulsation (PI) and resistance (RI) index, carotid intima-media thickness (cIMT), and ankle-brachial index (ABI). Results Individuals with an FMD value of ≥ 8.8% had significantly higher blood concentrations of antioxidative vitamins and lower concentrations of 8-oxodG in their urine and blood leukocytes than their counterparts. Blood concentration of alpha-tocopherol or ascorbic acid positively correlated with FMD, PI, RI, DC and ABI and negatively with PP and cIMT. The reverse was the case for 8-oxodG in urine and leukocytes. In multiple regression analysis, markers of oxidative DNA damage positively determined the variance in PP and ABI. Conclusions In persons without clinical manifestation of atherosclerosis, oxidative stress was an independent factor associated with vascular wall dysfunction, and a better predictor than smoking and blood concentrations of glucose, lipids and creatinine. PMID:29242843
Penile involvement in Systemic Sclerosis: New Diagnostic and Therapeutic Aspects
Aversa, Antonio; Bruzziches, Roberto; Francomano, Davide; Rosato, Edoardo; Salsano, Felice; Spera, Giovanni
2010-01-01
Systemic Sclerosis (SSc) is a connective tissue disorder featuring vascular alterations and an immunological activation leading to a progressive and widespread fibrosis of several organs such as the skin, lung, gastrointestinal tract, heart, and kidney. Men with SSc are at increased risk of developing erectile dysfunction (ED) because of the evolution of early microvascular tissutal damage into corporeal fibrosis. The entity of penile vascular damage in SSc patients has been demonstrated by using Duplex ultrasonography and functional infra-red imaging and it is now clear that this is a true clinical entity invariably occurring irrespective of age and disease duration and constituting the ‘‘sclerodermic penis”. Once-daily phosphodiesterase type-5 (PDE5) inhibitors improve both sexual function and vascular measures of cavernous arteries by improving surrogate markers of endothelial dysfunction, that is, plasma endothelin-1 and adrenomedullin levels, which may play a potential role in preventing progression of penile fibrosis and ED. Also, the beneficial effect of long-term PDE5i add-on therapy to SSc therapy in the treatment of Raynaud's phenomenon is described. PMID:20981315
Leiva, Andrea; Pardo, Fabián; Ramírez, Marco A.; Farías, Marcelo; Casanello, Paola; Sobrevia, Luis
2011-01-01
Gestational diabetes mellitus (GDM) and obesity in pregnancy (OP) are pathological conditions associated with placenta vascular dysfunction coursing with metabolic changes at the fetoplacental microvascular and macrovascular endothelium. These alterations are seen as abnormal expression and activity of the cationic amino acid transporters and endothelial nitric oxide synthase isoform, that is, the “endothelial L-arginine/nitric oxide signalling pathway.” Several studies suggest that the endogenous nucleoside adenosine along with insulin, and potentially arginases, are factors involved in GDM-, but much less information regards their role in OP-associated placental vascular alterations. There is convincing evidence that GDM and OP prone placental endothelium to an “altered metabolic state” leading to fetal programming evidenced at birth, a phenomenon associated with future development of chronic diseases. In this paper it is suggested that this pathological state could be considered as a metabolic marker that could predict occurrence of diseases in adulthood, such as cardiovascular disease, obesity, diabetes mellitus (including gestational diabetes), and metabolic syndrome. PMID:22144986
Endothelial dysfunction, vascular disease and stroke: the ARTICO study.
Roquer, J; Segura, T; Serena, J; Castillo, J
2009-01-01
Endothelial dysfunction is a fundamental step in the atherosclerotic disease process. Its presence is a risk factor for the development of clinical events, and may represent a marker of atherothrombotic burden. Also, endothelial dysfunction contributes to enhanced plaque vulnerability, may trigger plaque rupture, and favors thrombus formation. The assessment of endothelial vasomotion is a useful marker of atherosclerotic vascular disease. There are different methods to assess endothelial function: endothelium-dependent vasodilatation brachial flow-mediated dilation, cerebrovascular reactivity to L-arginine, and the determination of some biomarkers such as microalbuminuria, platelet function, and C-reactive protein. Endothelial dysfunction has been observed in stroke patients and has been related to stroke physiopathology, stroke subtypes, clinical severity and outcome. Resting ankle-brachial index (ABI) is also considered an indicator of generalized atherosclerosis, and a low ABI is associated with an increase in stroke incidence in the elderly. Despite all these data, there are no studies analyzing the predictive value of ABI for new cardiovascular events in patients after suffering an acute ischemic stroke. ARTICO is an ongoing prospective, observational, multicenter study being performed in 50 Spanish hospitals. The aim of the ARTICO study is to evaluate the prognostic value of a pathological ABI (
Loss of Thrombomodulin in Placental Dysfunction in Preeclampsia.
Turner, Rosanne J; Bloemenkamp, Kitty W M; Bruijn, Jan A; Baelde, Hans J
2016-04-01
Preeclampsia is a pregnancy-specific syndrome characterized by placental dysfunction and an angiogenic imbalance. Systemically, levels of thrombomodulin, an endothelium- and syncytiotrophoblast-bound protein that regulates coagulation, inflammation, apoptosis, and tissue remodeling, are increased. We aimed to investigate placental thrombomodulin dysregulation and consequent downstream effects in the pathogenesis of preeclampsia. Placentas from 28 preeclampsia pregnancies, 30 uncomplicated pregnancies, and 21 pregnancies complicated by growth restriction as extra controls were included. Immunohistochemical staining of thrombomodulin, caspase-3, and fibrin was performed. Placental mRNA expression of thrombomodulin, inflammatory markers, matrix metalloproteinases 2 and 9, and soluble Flt-1 were measured with quantitative polymerase chain reaction. Thrombomodulin mRNA expression was determined in vascular endothelial growth factor-transfected trophoblast cell lines. Thrombomodulin protein and mRNA expression were decreased in preeclampsia as compared with both control groups (P=0.001). Thrombomodulin mRNA expression correlated with maternal body mass index (P<0.01) and diastolic blood pressure (P<0.05) in preeclampsia. An increase in placental apoptotic cells was associated with preeclampsia (P<0.001). Thrombomodulin expression correlated positively with matrix metalloproteinase expression (P<0.01) in preeclampsia, but not with fibrin deposits or inflammatory markers. Placental soluble Flt-1 expression correlated with decreased thrombomodulin expression. Vascular endothelial growth factor induced upregulation of thrombomodulin expression in trophoblast cells. Decreased thrombomodulin expression in preeclampsia may play a role in placental dysfunction in preeclampsia and is possibly caused by an angiogenic imbalance. Hypertension and obesity are associated with thrombomodulin downregulation. These results set the stage for further basic and clinical research on thrombomodulin in the pathogenesis of preeclampsia and other syndromes characterized by endothelial dysfunction. © 2016 American Heart Association, Inc.
2014-01-01
Background Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. Methods We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. Results (1) Vascular endothelium–dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. Conclusions These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan’s higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox. PMID:24485356
Chao, Chun; Song, Yiqing; Cook, Nancy; Tseng, Chi-Hong; Manson, JoAnn E.; Eaton, Charles; Margolis, Karen L.; Rodriguez, Beatriz; Phillips, Lawrence S.; Tinker, Lesley F.; Liu, Simin
2011-01-01
Background Recent studies have linked plasma markers of inflammation and endothelial dysfunction to type 2 diabetes mellitus (DM) development. However, the utility of these novel biomarkers for type 2 DM risk prediction remains uncertain. Methods The Women’s Health Initiative Observational Study (WHIOS), a prospective cohort, and a nested case-control study within the WHIOS of 1584 incident type 2 DM cases and 2198 matched controls were used to evaluate the utility of plasma markers of inflammation and endothelial dysfunction for type 2 DM risk prediction. Between September 1994 and December 1998, 93 676 women aged 50 to 79 years were enrolled in the WHIOS. Fasting plasma levels of glucose, insulin, white blood cells, tumor necrosis factor receptor 2, interleukin 6, high-sensitivity C-reactive protein, E-selectin, soluble intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 were measured using blood samples collected at baseline. A series of prediction models including traditional risk factors and novel plasma markers were evaluated on the basis of global model fit, model discrimination, net reclassification improvement, and positive and negative predictive values. Results Although white blood cell count and levels of interleukin 6, high-sensitivity C-reactive protein, and soluble intercellular adhesion molecule 1 significantly enhanced model fit, none of the inflammatory and endothelial dysfunction markers improved the ability of model discrimination (area under the receiver operating characteristic curve, 0.93 vs 0.93), net reclassification, or predictive values (positive, 0.22 vs 0.24; negative, 0.99 vs 0.99 [using 15% 6-year type 2 DM risk as the cutoff]) compared with traditional risk factors. Similar results were obtained in ethnic-specific analyses. Conclusion Beyond traditional risk factors, measurement of plasma markers of systemic inflammation and endothelial dysfunction contribute relatively little additional value in clinical type 2 DM risk prediction in a multiethnic cohort of postmenopausal women. PMID:20876407
Arterial ageing: from endothelial dysfunction to vascular calcification.
Tesauro, M; Mauriello, A; Rovella, V; Annicchiarico-Petruzzelli, M; Cardillo, C; Melino, G; Di Daniele, N
2017-05-01
Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed. © 2017 The Association for the Publication of the Journal of Internal Medicine.
Choi, Soo-Kyoung; Lim, Mihwa; Yeon, Soo-In; Lee, Young-Ho
2016-06-01
What is the central question of this study? Endoplasmic reticulum (ER) stress has been reported to be involved in type 2 diabetes; however, the role of exacerbated ER stress in vascular dysfunction in type 2 diabetes remains unknown. What is the main finding and its importance? The main findings of this study are that ER stress is increased in the coronary arteries in type 2 diabetes, and inhibition of ER stress using taurine-conjugated ursodeoxycholic acid improves vascular function, which is associated with normalization of the myogenic response and endothelium-dependent relaxation. Vascular dysfunction is a major complication in type 2 diabetes. Although endoplasmic reticulum (ER) stress has been suggested to be a contributory factor in cardiovascular diseases, the relationship between ER stress and vascular dysfunction in type 2 diabetes remains unclear. Thus, in the present study, we examined whether ER stress contributes to coronary artery dysfunction and whether inhibition of ER stress ameliorates vascular function in type 2 diabetes. Type 2 diabetic mice and their control counterparts were treated with an ER stress inhibitor (taurine-conjugated ursodeoxycholic acid, 150 mg kg(-1) day(-1) , by i.p. injection) for 2 weeks or not treated. The myogenic response and endothelium-dependent relaxation were measured in pressurized coronary arteries. In type 2 diabetic mice, blood glucose and body weight were elevated compared with control mice. The myogenic response was potentiated and endothelium-dependent relaxation impaired in coronary arteries from the type 2 diabetic mice. Interestingly, treatment with the ER stress inhibitor normalized the myogenic responses and endothelium-dependent relaxation. These data were associated with an increase in ER stress marker expression or phosphorylation (IRE1-XBP-1 and PERK-eIF2α) in type 2 diabetic mice, which were reduced by treatment with the ER stress inhibitor. Inhibition of ER stress normalizes the myogenic response and improves vascular function in type 2 diabetes. Therefore, ER stress could be a potential target for cardiovascular diseases in diabetes mellitus. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo
2015-01-01
Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications. PMID:26447102
Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo
2015-01-01
Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.
Review of gestational diabetes mellitus effects on vascular structure and function.
Jensen, Louise A; Chik, Constance L; Ryan, Edmond A
2016-05-01
Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.
Sharma, Arpeeta; Rizky, Luddwi; Stefanovic, Nada; Tate, Mitchel; Ritchie, Rebecca H; Ward, Keith W; de Haan, Judy B
2017-03-03
Vascular dysfunction is a pivotal event in the development of diabetes-associated vascular disease. Increased inflammation and oxidative stress are major contributors to vascular dysfunction. Nrf2, a master regulator of several anti-oxidant genes and a suppressor of inflammatory NF-κB, has potential as a target to combat oxidative stress and inflammation. The aim of this study was to investigate the effects of a novel Nrf2 activator, the bardoxolone methyl derivative dh404, on endothelial function in vitro and in vivo. dh404 at 3 mg/kg was administered to male Akita mice, an established diabetic mouse model of insulin insufficiency and hyperglycemia, from 6 weeks of age. At 26 weeks of age, vascular reactivity was assessed by wire myography, pro-inflammatory expression was assessed in the aortas by qRT-PCR and immunohistochemistry, and systemic and vascular oxidative stress measurements were determined. Additionally, studies in human aortic endothelial cells (HAECs) derived from normal and diabetic patients in the presence or absence of dh404 included assessment of pro-inflammatory genes by qRT-PCR and western blotting. Oxidative stress was assessed by three methods; L-012, DCFDA and amplex red. Static adhesion assays were performed to determine the leukocyte-endothelial interaction in the presence or absence of dh404. Dh404 significantly attenuated endothelial dysfunction in diabetic Akita mice characterized by reduced contraction in response to phenylephrine and the downregulation of inflammatory genes (VCAM-1, ICAM-1, p65, IL-1β) and pro-oxidant genes (Nox1 and Nox2). Furthermore, reduced systemic and vascular oxidative stress levels were observed in diabetic Akita mice. dh404 exhibited cytoprotective effects in diabetic HAECs in vitro, reflected by significant upregulation of Nrf2-responsive genes, NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), reduction of oxidative stress markers (O 2 ·- and H 2 O 2 ), inhibition of inflammatory genes (VCAM-1 and the p65 subunit of NF-κB) and attenuation of leukocyte-endothelial interactions (P < 0.05 for all in vitro and in vivo parameters; one or two-way ANOVA as appropriate with post hoc testing). These studies demonstrate that upregulation of Nrf2 by dh404 represents a novel therapeutic strategy to limit diabetes-associated vascular injury.
Makulska, Irena; Szczepańska, Maria; Drożdż, Dorota; Polak-Jonkisz, Dorota; Zwolińska, Danuta
2015-05-01
Skin autofluorescence (sAF) was examined as a marker of the accumulation of advanced glycation end products (AGEs) in tissues of children with chronic kidney disease (CKD) in relation to renal function, dialysis modality and markers of endothelial inflammation and dysfunction. A total of 76 children with CKD were enrolled in the study, of whom 20 children were on hemodialysis (HD), 20 were on peritoneal dialysis (PD) and 36 were treated conservatively. A control group of 26 healthy subjects was also included in the study. In all children, sAF intensity, carotid intima-media (cIMT) thickness and plasma concentrations of sE-selectin, matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1), asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and plasminogen activator inhibitor type 1 (PAI-1) were measured. Compared to the controls, children with CKD had significantly elevated sAF levels. sAF in the children with CKD was positively correlated with sE-selectin, MMP-9, TIMP-1, ADMA, SDMA and PAI-1 levels. In the predialysis group (conservative treatment) sAF levels were positively correlated with sE-selectin and ADMA levels and negatively correlated with glomerular filtration rate. Multiple regression analysis showed a significant association of sAF with sE-selectin and MMP-9 in CKD children. The results reveal that AGEs were accumulated in the children with CKD. This accumulation was related to early vascular changes and a number of biochemical vascular risk markers. sAF measurement, as a noninvasive method, may be useful for identification of clinical risk factors of vascular disease in CKD children.
Myocardial Hypertrophy and Its Role in Heart Failure with Preserved Ejection Fraction
Heinzel, Frank R.; Hohendanner, Felix; Jin, Ge; Sedej, Simon; Edelmann, Frank
2015-01-01
Left ventricular hypertrophy (LVH) is the most common myocardial structural abnormality associated with heart failure with preserved ejection fraction (HFpEF). LVH is driven by neurohumoral activation, increased mechanical load and cytokines associated with arterial hypertension, chronic kidney disease, diabetes and other co-morbidities. Here we discuss the experimental and clinical evidence that links LVH to diastolic dysfunction and qualifies LVH as one diagnostic marker for HFpEF. Mechanisms leading to diastolic dysfunction in LVH are incompletely understood but may include extracellular matrix changes, vascular dysfunction as well as altered cardiomyocyte mechano-elastical properties. Beating cardiomyocytes from HFpEF patients have not yet been studied, but we and others have shown increased Ca2+ turnover and impaired relaxation in cardiomyocytes from hypertrophied hearts. Structural myocardial remodeling can lead to heterogeneity in regional myocardial contractile function, which contributes to diastolic dysfunction in HFpEF. In the clinical setting of patients with compound co-morbidities, diastolic dysfunction may occur independently of LVH. This may be one explanation why current approaches to reduce LVH have not been effective to improve symptoms and prognosis in HFpEF. Exercise training on the other hand, in clinical trials improved exercise tolerance and diastolic function but did not reduce LVH. Thus, current clinical evidence does not support regression of LVH as a surrogate marker for (short-term) improvement of HFpEF. PMID:26183480
Endothelial dysfunction in metabolic and vascular disorders.
Polovina, Marija M; Potpara, Tatjana S
2014-03-01
Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.
Aksoy, Sibel; Findikoglu, Gulin; Ardic, Fusun; Rota, Simin; Dursunoglu, Dursun
2015-10-01
Abnormal expression of cellular adhesion molecules may be related to endothelial dysfunction, a key feature in chronic heart failure. This study compares the effects of 10-wk supervised moderate-intensity continuous aerobic exercise (CAE) and intermittent aerobic exercise (IAE) programs on markers of endothelial damage, disease severity, functional and metabolic status, and quality-of-life in chronic heart failure patients. Fifty-seven patients between 41 and 81 yrs with New York Heart Association class II-III chronic heart failure and with a left ventricular ejection fraction of 35%-55% were randomized into three groups: nonexercising control, CAE, and IAE, which exercised three times a week for 10 wks. Endothelial damage was assessed by serum markers of vascular cell adhesion molecule-1, serum intercellular adhesion molecule-1, and nitric oxide; disease severity was measured by left ventricular ejection fraction and N-terminal probrain natriuretic peptide; metabolic status was evaluated by body composition analysis and lipid profile levels; functional status was evaluated by cardiorespiratory exercise stress test and 6-min walking distance; quality-of-life was assessed with Left Ventricular Dysfunction-36 and Short-Form 36 questionnaires at the baseline and at the end of the 10th week. Significant decreases in serum vascular cell adhesion molecule-1 or serum intercellular adhesion molecule-1 in IAE and CAE groups after training were found, respectively. Resting systolic and diastolic blood pressure, peak systolic and diastolic blood pressure, 6-min walking distance, and the mental health and vitality components of Short-Form 36 improved in the CAE group, whereas left ventricular ejection fraction and 6-min walking distance improved in the IAE group compared with the control group. Both moderate-intensity CAE and IAE programs significantly reduced serum markers of adhesion molecules and prevented the change in VO2 in patients with chronic heart failure.
Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming
2016-07-01
Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4-phenylbutyrate increased the nuclear levels of nuclear factor-E2-related factor 2, and decreased the nuclear levels of nuclear factor κB in hypoxic vascular smooth muscle cells. 4-phenylbutyrate has beneficial effects for traumatic hemorrhagic shock including improving animal survival and protecting organ function. These beneficial effects of 4-phenylbutyrate in traumatic hemorrhagic shock result from its vascular function protection via attenuation of the oxidative stress and mitochondrial permeability transition pore opening. Nuclear factor-E2-related factor 2 and nuclear factor-κB may be involved in 4-phenylbutyrate-mediated inhibition of oxidative stress.
Hoppe, Carolyn; Kuypers, Frans; Larkin, Sandra; Hagar, Ward; Vichinsky, Elliott; Styles, Lori
2013-01-01
Summary Sickle cell disease (SCD) is characterized by progressive vascular injury and its pathophysiology is strikingly similar to that of atherosclerosis. Statins decrease inflammation and improve endothelial function in cardiovascular disease, but their effect in SCD is not known. In this pilot study, we examined the safety and effect of short-term simvastatin on biomarkers of vascular dysfunction in SCD. We treated 26 SCD patients with simvastatin, 20 or 40 mg/d, for 21 d. Plasma nitric oxide metabolites (NOx), C-reactive protein (CRP), interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1), tissue factor (TF) and vascular endothelial growth factor (VEGF) were analyzed and responses to simvastatin were compared between the two treatment groups. Simvastatin increased NOx levels by 23% in the low-dose (P = 0.01) and 106% in the moderate-dose (P = 0.01) groups, and by 52% overall (P = 0.0008). CRP decreased similarly in both dose groups and by 68% overall (P = 0.02). Levels of IL-6 decreased by 50% (P = 0.04) and 71% (P < 0.05) in the low- and moderate-dose groups, respectively. Simvastatin had no effect on VEGF, VCAM1 or TF. Simvastatin was well-tolerated and safe. Our preliminary findings showing a dose-related effect of simvastatin on levels of NOx, CRP and IL-6 suggest a potential therapeutic role for simvastatin in SCD. PMID:21477202
Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction
Lee, Seung Eun; Park, Yong Seek
2013-01-01
Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction. PMID:23819013
Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers
Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G.; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph H.; Ahsan, Habibul; Chen, Yu
2012-01-01
The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007–2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease. PMID:22534204
Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L; van Geen, Alexander; Graziano, Joseph H; Ahsan, Habibul; Chen, Yu
2012-06-15
The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007-2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease.
Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture.
Schreier, Barbara; Schwerdt, Gerald; Heise, Christian; Bethmann, Daniel; Rabe, Sindy; Mildenberger, Sigrid; Gekle, Michael
2016-07-01
Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Rossman, Matthew J; Santos-Parker, Jessica R; Steward, Chelsea A C; Bispham, Nina Z; Cuevas, Lauren M; Rosenberg, Hannah L; Woodward, Kayla A; Chonchol, Michel; Gioscia-Ryan, Rachel A; Murphy, Michael P; Seals, Douglas R
2018-06-01
Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60-79 years) with impaired endothelial function (brachial artery flow-mediated dilation <6%) underwent 6 weeks of oral supplementation with MitoQ (20 mg/d) or placebo in a randomized, placebo-controlled, double-blind, crossover design study. MitoQ was well tolerated, and plasma MitoQ was higher after the treatment versus placebo period ( P <0.05). Brachial artery flow-mediated dilation was 42% higher after MitoQ versus placebo ( P <0.05); the improvement was associated with amelioration of mitochondrial reactive oxygen species-related suppression of endothelial function (assessed as the increase in flow-mediated dilation with acute, supratherapeutic MitoQ [160 mg] administration; n=9; P <0.05). Aortic stiffness (carotid-femoral pulse wave velocity) was lower after MitoQ versus placebo ( P <0.05) in participants with elevated baseline levels (carotid-femoral pulse wave velocity >7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo ( P <0.05). Participant characteristics, endothelium-independent dilation (sublingual nitroglycerin), and circulating markers of inflammation were not different (all P >0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023. © 2018 American Heart Association, Inc.
Herrera, Emilio A.; Cifuentes‐Zúñiga, Francisca; Figueroa, Esteban; Villanueva, Cristian; Hernández, Cherie; Alegría, René; Arroyo‐Jousse, Viviana; Peñaloza, Estefania; Farías, Marcelo; Uauy, Ricardo; Casanello, Paola
2016-01-01
Key points Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels.There is no evidence that this epigenetic programming is occurring on systemic fetal arteries.In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N‐acetylcysteine (NAC) during the second half of gestation.The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. Abstract In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N‐acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire‐myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance in IUGR (P < 0.05) and recovered fetal weight (P < 0.05), increasing fetal‐to‐placental ratio at term (∼40%) (P < 0.001). In IUGR, NAC treatment restored eNOS‐dependent relaxation in aorta and umbilical arteries (P < 0.05), normalizing eNOS mRNA levels in EC fetal and umbilical arteries (P < 0.05). IUGR‐derived ECs had a decreased DNA methylation (∼30%) at CpG −170 (from the transcription start site) and this epigenetic signature was absent in NAC‐treated fetuses (P < 0.001). These data show that IUGR‐ECs have common molecular markers of eNOS programming in umbilical and systemic arteries and this effect is prevented by maternal treatment with antioxidants. PMID:27739590
The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling
Pacurari, Maricica; Kafoury, Ramzi; Tchounwou, Paul B.; Ndebele, Kenneth
2014-01-01
The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors. PMID:24804145
Bruyndonckx, Luc; Hoymans, Vicky Y; Lemmens, Katrien; Ramet, José; Vrints, Christiaan J
2016-06-01
Childhood obesity jeopardizes a healthy future for our society's children as it is associated with increased cardiovascular morbidity and mortality later on in life. Endothelial dysfunction, the first step in the development of atherosclerosis, is already present in obese children and may well represent a targetable risk factor. Technological advancements in recent years have facilitated noninvasive measurements of endothelial homeostasis in children. Thereby this topic ultimately starts to get the attention it deserves. In this paper, we aim to summarize the latest insights on endothelial dysfunction in childhood obesity. We discuss methodological advancements in peripheral endothelial function measurement and newly identified diagnostic markers of vascular homeostasis. Finally, future challenges and perspectives are set forth on how to efficiently tackle the catastrophic rise in cardiovascular morbidity and mortality that will be inflicted on obese children if they are not treated optimally.
Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease.
Joo, Illsung L; Lai, Aaron Y; Bazzigaluppi, Paolo; Koletar, Margaret M; Dorr, Adrienne; Brown, Mary E; Thomason, Lynsie A M; Sled, John G; McLaurin, JoAnne; Stefanovic, Bojana
2017-04-12
Alzheimer's disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans.
Pericyte function in the physiological central nervous system.
Muramatsu, Rieko; Yamashita, Toshihide
2014-01-01
Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G
2013-03-01
Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.
Catry, Emilie; Bindels, Laure B; Tailleux, Anne; Lestavel, Sophie; Neyrinck, Audrey M; Goossens, Jean-François; Lobysheva, Irina; Plovier, Hubert; Essaghir, Ahmed; Demoulin, Jean-Baptiste; Bouzin, Caroline; Pachikian, Barbara D; Cani, Patrice D; Staels, Bart; Dessy, Chantal; Delzenne, Nathalie M
2018-02-01
To investigate the beneficial role of prebiotics on endothelial dysfunction, an early key marker of cardiovascular diseases, in an original mouse model linking steatosis and endothelial dysfunction. We examined the contribution of the gut microbiota to vascular dysfunction observed in apolipoprotein E knockout (Apoe -/- ) mice fed an n-3 polyunsaturated fatty acid (PUFA)-depleted diet for 12 weeks with or without inulin-type fructans (ITFs) supplementation for the last 15 days. Mesenteric and carotid arteries were isolated to evaluate endothelium-dependent relaxation ex vivo. Caecal microbiota composition (Illumina Sequencing of the 16S rRNA gene) and key pathways/mediators involved in the control of vascular function, including bile acid (BA) profiling, gut and liver key gene expression, nitric oxide and gut hormones production were also assessed. ITF supplementation totally reverses endothelial dysfunction in mesenteric and carotid arteries of n-3 PUFA-depleted Apoe -/- mice via activation of the nitric oxide (NO) synthase/NO pathway. Gut microbiota changes induced by prebiotic treatment consist in increased NO-producing bacteria, replenishment of abundance in Akkermansia and decreased abundance in bacterial taxa involved in secondary BA synthesis. Changes in gut and liver gene expression also occur upon ITFs suggesting increased glucagon-like peptide 1 production and BA turnover as drivers of endothelium function preservation. We demonstrate for the first time that ITF improve endothelial dysfunction, implicating a short-term adaptation of both gut microbiota and key gut peptides. If confirmed in humans, prebiotics could be proposed as a novel approach in the prevention of metabolic disorders-related cardiovascular diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Sodhi, Komal; Puri, Nitin; Favero, Gaia; Stevens, Sarah; Meadows, Charles; Abraham, Nader G.; Rezzani, Rita; Ansinelli, Hayden; Lebovics, Edward; Shapiro, Joseph I.
2015-01-01
Background Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), obesity and cardiovascular disease (CVD). Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1) belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox. Hypothesis We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction. Methods and Results We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05). Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05). Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose). These beneficial effects of CoPP were reversed by SnMP. Conclusion Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates NAFLD-associated vascular dysfunction; effects that are mediated by activation of SIRT1 gene expression. PMID:26098879
Liu, Yu; Yu, Manli; Zhang, Le; Cao, Qingxin; Song, Ying; Liu, Yuxiu; Gong, Jianbin
2016-08-01
Vascular dysfunction including vascular remodeling and endothelial dysfunction in hypertension often results in poor clinical outcomes and increased risk of vascular accidents. We investigate the effect of treatment with soluble receptor for advanced glycation end products (sRAGE) on vascular dysfunction in spontaneously hypertensive rats (SHR). Firstly, the aortic AGE/RAGE pathway was investigated in SHR. Secondly, SHR received intraperitoneal injections of sRAGE daily for 4 weeks. Effect of sRAGE against vascular dysfunction in SHR and underlying mechanism was investigated. SHR aortas exhibited enhanced activity of aldose reductase, reduced activity of glyoxalase 1, accumulation of methylglyoxal and AGE, and upregulated expression of RAGE. Treatment of SHR with sRAGE had no significant effect on blood pressure, but alleviated aortic hypertrophy and endothelial dysfunction. In vitro, treatment with sRAGE reversed the effect of incubation with AGE on proliferation of smooth muscle cells and endothelial function. Treatment of SHR with sRAGE abated oxidative stress, suppressed inflammation and NF-κB activation, improved the balance between Ang II and Ang-(1-7) through reducing angiotensin-converting enzyme (ACE) activity and enhancing ACE2 expression, and upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in aortas. In conclusion, treatment with sRAGE alleviated vascular adverse remodeling in SHR, possibly via suppression of oxidative stress and inflammation, improvement in RAS balance, and activation of PPAR-γ pathway.
Dunning, Jamie; Truong, Uyen; Ivy, D. Dunbar; Hunter, Kendall A.; Shandas, Robin
2015-01-01
Abstract Pulmonary arterial hypertension (PAH) is a progressive disease that puts excessive mechanical loads on the ventricle due to a gradual increase in pulmonary vascular impedance. We hypothesize that the increase in right ventricular (RV) afterload is reflected in the concentration of circulating biochemical markers of ventricular strain and stress (B-type natriuretic peptide [BNP] and N-terminal prohormone BNP [NT-proBNP]). We retrospectively analyzed right heart catheterization (RHC) and serum biochemical analysis data () for a pediatric PAH cohort with no sign of left ventricular dysfunction. Using RHC data, we computed an estimate of pulmonary vascular resistance (PVR), compliance, and ventricular-vascular coupling. We also compared how the early onset of interventricular decoupling (characterized as septal flattening) impacts serum NT-proBNP concentrations. Our data revealed correlated NT-proBNP expression with both the resistive and reactive components of RV afterload, an estimate of ventricular-vascular coupling, and a significant increase in biomarker expression in patients with a flattened interventricular septum. Furthermore, the strong correlation between PVR and NT-proBNP appears to break down under flat septum morphology. Over 80% of resistive RV afterload variance is reflected in serum NT-proBNP concentration in pediatric patients with PAH with no sign of left ventricular dysfunction. Reactive afterload appears to contribute to myocardial NT-proBNP release at advanced stages of PAH. Therefore, in mild-to-moderate PAH, resistive afterload is likely the greatest contributor to RV wall stress. These findings could also be used to estimate invasive RHC measurements from serum biochemical analysis, but more work is needed to improve correlations and overcome the issue of interventricular decoupling. PMID:26697173
Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross
2017-08-01
Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.
Fetterman, Jessica L.; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A.; Berk, Brittany D.; Duess, Mai-Ann; Farb, Melissa G.; Gokce, Noyan; Shirihai, Orian S.; Hamburg, Naomi M.; Vita, Joseph A.
2016-01-01
Background Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. Methods and Results We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n=45) and non-diabetic controls (n=41). p62 levels were higher in cells from diabetics (34.2±3.6 vs. 20.0±1.6, P=0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (−21±5% vs. 64±22%, P=0.003) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P=0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P=0.01) in cells from diabetics to a lesser extent than in cells from controls (P=0.04), suggesting ongoing, but inadequate autophagic clearance. Conclusion Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. PMID:26926601
Fetterman, Jessica L; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Duess, Mai-Ann; Farb, Melissa G; Gokce, Noyan; Shirihai, Orian S; Hamburg, Naomi M; Vita, Joseph A
2016-04-01
Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Jovanovski, Elena; Zurbau, Andreea
2015-01-01
Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk. PMID:25954727
Jovanovski, Elena; Zurbau, Andreea; Vuksan, Vladimir
2015-04-01
Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk.
Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Penghao; Xie, Qihai; Wei, Tong
Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in bothmore » strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.« less
Early neurovascular dysfunction in a transgenic rat model of Alzheimer’s disease
Joo, Illsung L.; Lai, Aaron Y.; Bazzigaluppi, Paolo; Koletar, Margaret M.; Dorr, Adrienne; Brown, Mary E.; Thomason, Lynsie A. M.; Sled, John G.; McLaurin, JoAnne; Stefanovic, Bojana
2017-01-01
Alzheimer’s disease (AD), pathologically characterized by amyloid-β peptide (Aβ) accumulation, neurofibrillary tangle formation, and neurodegeneration, is thought to involve early-onset neurovascular abnormalities. Hitherto studies on AD-associated neurovascular injury have used animal models that exhibit only a subset of AD-like pathologies and demonstrated some Aβ-dependent vascular dysfunction and destabilization of neuronal network. The present work focuses on the early stage of disease progression and uses TgF344-AD rats that recapitulate a broader repertoire of AD-like pathologies to investigate the cerebrovascular and neuronal network functioning using in situ two-photon fluorescence microscopy and laminar array recordings of local field potentials, followed by pathological analyses of vascular wall morphology, tau hyperphosphorylation, and amyloid plaques. Concomitant to widespread amyloid deposition and tau hyperphosphorylation, cerebrovascular reactivity was strongly attenuated in cortical penetrating arterioles and venules of TgF344-AD rats in comparison to those in non-transgenic littermates. Blood flow elevation to hypercapnia was abolished in TgF344-AD rats. Concomitantly, the phase-amplitude coupling of the neuronal network was impaired, evidenced by decreased modulation of theta band phase on gamma band amplitude. These results demonstrate significant neurovascular network dysfunction at an early stage of AD-like pathology. Our study identifies early markers of pathology progression and call for development of combinatorial treatment plans. PMID:28401931
Vasoreactivity in CADASIL: Comparison to structural MRI and neuropsychology.
Moreton, Fiona C; Cullen, Breda; Delles, Christian; Santosh, Celestine; Gonzalez, Rosario L; Dani, Krishna; Muir, Keith W
2018-06-01
Impaired cerebrovascular reactivity precedes histological and clinical evidence of CADASIL in animal models. We aimed to more fully characterise peripheral and cerebral vascular function and reactivity in a cohort of adult CADASIL patients, and explore the associations of these with conventional clinical, imaging and neuropsychological measures. A total of 22 adults with CADASIL gave informed consent to participate in an exploratory study of vascular function in CADASIL. Clinical assessment, comprehensive vascular assessment, MRI and neuropsychological testing were conducted. We measured cerebral vasoreactivity with transcranial Doppler and arterial spin labelling MRI with hypercapnia challenge. Number and volume of lacunes, subcortical hyperintensity volume, microbleeds and normalised brain volume were assessed on MRI. Analysis was exploratory and examined the associations between different markers. Cerebrovascular reactivity measured by ASL correlated with peripheral vasoreactivity measured by flow mediated dilatation. Subjects with ≥5 lacunes were older, with higher carotid intima-media thickness and had impaired cerebral and peripheral vasoreactivity. Subjects with depressive symptoms, disability or delayed processing speed also showed a trend to impaired vasoreactivity. Impaired vasoreactivity and vascular dysfunction may play a significant role in the pathophysiology of CADASIL, and vascular assessments may be useful biomarkers of severity in both longitudinal and clinical trials.
Herrera, Emilio A; Cifuentes-Zúñiga, Francisca; Figueroa, Esteban; Villanueva, Cristian; Hernández, Cherie; Alegría, René; Arroyo-Jousse, Viviana; Peñaloza, Estefania; Farías, Marcelo; Uauy, Ricardo; Casanello, Paola; Krause, Bernardo J
2017-02-15
Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels. There is no evidence that this epigenetic programming is occurring on systemic fetal arteries. In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N-acetylcysteine (NAC) during the second half of gestation. The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N-acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire-myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance in IUGR (P < 0.05) and recovered fetal weight (P < 0.05), increasing fetal-to-placental ratio at term (∼40%) (P < 0.001). In IUGR, NAC treatment restored eNOS-dependent relaxation in aorta and umbilical arteries (P < 0.05), normalizing eNOS mRNA levels in EC fetal and umbilical arteries (P < 0.05). IUGR-derived ECs had a decreased DNA methylation (∼30%) at CpG -170 (from the transcription start site) and this epigenetic signature was absent in NAC-treated fetuses (P < 0.001). These data show that IUGR-ECs have common molecular markers of eNOS programming in umbilical and systemic arteries and this effect is prevented by maternal treatment with antioxidants. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Zhang, Hui; Wang, Jing; Sun, Ling; Xu, Qiuqin; Hou, Miao; Ding, Yueyue; Huang, Jie; Chen, Ye; Cao, Lei; Zhang, Jianmin; Qian, Weiguo; Lv, Haitao
2015-01-01
Obesity has become an increasingly serious health problem and popular research topic. It is associated with many diseases, especially cardiovascular disease (CVD)-related endothelial dysfunction. This study analyzed genes related to endothelial dysfunction and obesity and then summarized their most significant signaling pathways. Genes related to vascular endothelial dysfunction and obesity were extracted from a PubMed database, and analyzed by STRING, DAVID, and Gene-Go Meta-Core software. 142 genes associated with obesity were found to play a role in endothelial dysfunction in PubMed. A significant pathway (Angiotensin system maturation in protein folding and maturation) associated with obesity and endothelial dysfunction was explored. The genes and the pathway explored may play an important role in obesity. Further studies about preventing vascular endothelial dysfunction obesity should be conducted through targeting these loci and pathways.
Circulating Endothelial Cells in Patients with Heart Failure and Left Ventricular Dysfunction
Martínez-Sales, Vicenta; Sánchez-Lázaro, Ignacio; Vila, Virtudes; Almenar, Luis; Contreras, Teresa; Reganon, Edelmiro
2011-01-01
Introduction and Aims: Acute and chronic heart failure may manifest different degrees of endothelial damage and angiogenesis. Circulating endothelial cells (CEC) have been identified as marker of vascular damage. The aim of our study was to evaluate the evolution of the CEC at different stages of patients with heart failure. We also investigated a potential correlation between CEC and markers of vascular damage and angiogenesis. Methods: We studied 32 heart failure patients at hospital admission (acute phase) and at revision after 3 months (stable phase) and 32 controls. Circulating markers of endothelial damage (CEC; von Willebrand factor, vWF and soluble E-selectin, sEsel) and angiogenesis (vascular endothelial growth factor, VEGF and thrombospondin-1) were quantified. Results: Levels of CEC, vWF, sEsel and VEGF are significantly higher in heart failure patients than in controls. Levels of CEC (36.9 ± 15.3 vs. 21.5 ± 10.0 cells/ml; p < 0.001), vWF (325 ± 101 vs. 231 ± 82%; p < 0.001) and VEGF (26.3 ± 15.2 vs. 21.9 ± 11.9 ng/ml; p < 0.001) are significantly higher in the acute phase than in the stable phase of heart failure. CEC levels correlate with vWF and VEGF. Results show than 100% of patients in acute phase and 37.5% in stable phase have levels of CEC higher than the 99th percentile of the distribution of controls (16 cells/ml). Therefore, increases in CEC represent a relative risk of 9.5 for heart failure patients suffering from acute phase. Conclusions: CEC, in addition to being elevated in heart failure, correlate with vWF levels, providing further support for CEC as markers of endothelial damage. Levels of CEC are associated with the acute phase of heart failure and could be used as a marker of the worsening in heart failure. PMID:21897001
Peripheral vascular dysfunction in migraine: a review
2013-01-01
Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826
Emoto, Takuo; Sawada, Takahiro; Morimoto, Natsumi; Tenjin, Takako; Wakimoto, Taku; Ikeda, Fumie; Sato, Chiaki; Terashita, Daisuke; Mizoguchi, Taiji; Mizuguchi, Takao; Okamoto, Hiroshi; Matsuo, Yosuke; Kim, Sushi-Ku; Takarada, Akira; Yokoyama, Mitsuhiro
2013-01-01
The prognostic significance of the apolipoprotein B/A1 (ApoB/A1) ratio in statintreated patients with coronary artery disease (CAD) is unknown. We aimed to evaluate the association of the ApoB/A1 ratio with oxidative stress and endothelial dysfunction in these patients. We enrolled 62 consecutive statin-treated patients who underwent percutaneous coronary intervention (PCI). Their lipid profiles, diacron-reactive oxygen metabolites (d-ROMs), as a marker of oxidative stress, flow-mediated dilatation (FMD), as a marker of vascular endothelial function, and C-reactive protein (CRP) levels, as a marker of inflammation, were measured. Our study population comprised 44 men and 18 women (mean age, 70.5 ± 2.5 years). The ApoB/A1 ratio was positively correlated with the results of the d-ROMs test (p=0.004, r=0.36) and CRP level (p=0.02, r=0.30) and negatively correlated with the %FMD (p=0.005, r=-0.40). A multivariate logistic regression analysis showed that the most powerful predictive factor for the d-ROMs was the ApoB/A1 ratio (p=0.026). We therefore divided patients into two groups according to the cutoff point reported by the INTERHEART study: a low ApoB/A1 ratio (<0.641, n=26) and a high ApoB/A1 ratio (>0.641, n=36). The patients with a high ApoB/A1 ratio had higher levels of d-ROMs and CRP, and tended to have a lower %FMD. The ApoB/A1 ratio was associated with the d-ROMs, a marker of oxidative stress, endothelial dysfunction and inflammation, and could be useful as a residual atherosclerotic risk marker to help prevent CAD in statin-treated patients.
Whitaker, Morgan E; Nair, Vineet; Sinari, Shripad; Dherange, Parinita A; Natarajan, Balaji; Trutter, Lindsey; Brittain, Evan L; Hemnes, Anna R; Austin, Eric D; Patel, Kumar; Black, Stephen M; Garcia, Joe G N; Yuan Md PhD, Jason X; Vanderpool, Rebecca R; Rischard, Franz; Makino, Ayako; Bedrick, Edward J; Desai, Ankit A
2018-06-01
Diabetes mellitus is associated with left ventricular hypertrophy and dysfunction. Parallel studies have also reported associations between diabetes mellitus and right ventricular dysfunction and reduced survival in patients with pulmonary arterial hypertension. However, the impact of diabetes mellitus on the pulmonary vasculature has not been well characterized. We hypothesized that diabetes mellitus and hyperglycemia could specifically influence right ventricular afterload and remodeling in patients with Group I pulmonary arterial hypertension, providing a link to their known susceptibility to right ventricular dysfunction. Using an adjusted model for age, sex, pulmonary vascular resistance, and medication use, associations of fasting blood glucose, glycated hemoglobin, and the presence of diabetes mellitus were evaluated with markers of disease severity in 162 patients with pulmonary arterial hypertension. A surrogate measure of increased pulmonary artery stiffness, elevated pulmonary arterial elastance (P = .012), along with reduced log(pulmonary artery capacitance) (P = .006) were significantly associated with the presence of diabetes mellitus in patients with pulmonary arterial hypertension in a fully adjusted model. Similar associations between pulmonary arterial elastance and capacitance were noted with both fasting blood glucose and glycated hemoglobin. Furthermore, right ventricular wall thickness on echocardiography was greater in pulmonary arterial hypertension patients with diabetes, supporting the link between right ventricular remodeling and diabetes. Cumulatively, these data demonstrate that an increase in right ventricular afterload, beyond pulmonary vascular resistance alone, may influence right ventricular remodeling and provide a mechanistic link between the susceptibility to right ventricular dysfunction in patients with both diabetes mellitus and pulmonary arterial hypertension. Copyright © 2018 Elsevier Inc. All rights reserved.
2013-01-01
Summary Vascular access dysfunction is a major cause of morbidity and mortality in hemodialysis patients. The most common cause of vascular access dysfunction is venous stenosis from neointimal hyperplasia within the perianastomotic region of an arteriovenous fistula and at the graft-vein anastomosis of an arteriovenous graft. There have been few, if any, effective treatments for vascular access dysfunction because of the limited understanding of the pathophysiology of venous neointimal hyperplasia formation. This review will (1) describe the histopathologic features of hemodialysis access stenosis; (2) discuss novel concepts in the pathogenesis of neointimal hyperplasia development, focusing on downstream vascular biology; (3) highlight future novel therapies for treating downstream biology; and (4) discuss future research areas to improve our understanding of downstream biology and neointimal hyperplasia development. PMID:23990166
Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model.
Park, Inwon; Choe, Kibaek; Seo, Howon; Hwang, Yoonha; Song, Eunjoo; Ahn, Jinhyo; Hwan Jo, You; Kim, Pilhan
2018-05-01
Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo , suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction.
Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model
Park, Inwon; Choe, Kibaek; Seo, Howon; Hwang, Yoonha; Song, Eunjoo; Ahn, Jinhyo; Hwan Jo, You; Kim, Pilhan
2018-01-01
Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo, suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction. PMID:29760995
Vascular Involvement in Axial Spondyloarthropathies.
Prati, Clément; Demougeot, Céline; Guillot, Xavier; Sondag, Maxime; Verhoeven, Frank; Wendling, Daniel
2018-05-19
Ankylosing spondylitis (AS) is a chronic inflammatory joint disease that involves the entheses, causing inflammatory pain and functional impairments. Patients may experience extraarticular manifestations such as uveitis, psoriasis, and inflammatory bowel disease. These, together with the increased risk of cardiovascular disease and osteoporosis and the development of spinal fusion, are the main determinants of adverse disease outcomes. As with many systemic inflammatory diseases, AS is associated with excess cardiovascular mortality due to increased risks of myocardial infarction, stroke, and venous thromboembolism. Studies of markers for subclinical atheroma (endothelial dysfunction, arterial stiffness, and intima-media thickness) have shown earlier onset of arterial disease compared to healthy controls, with the difference being greatest for patients with active AS. The potential vascular effects of drugs used to treat AS have not been established. Few studies have focused on nonsteroidal antiinflammatory drugs and biologics in patients with AS, and their results do not conclusively establish a beneficial or deleterious effect in axial spondyloarthritis. Statins have been found to improve endothelial dysfunction and to decrease mortality. The latest EULAR recommendations on cardiovascular risk management in patients with inflammatory joint disease indicate that statins should be used in compliance with national guidelines. Copyright © 2018. Published by Elsevier SAS.
Impaired Retinal Vasodilator Responses in Prediabetes and Type 2 Diabetes
Lott, Mary E.J.; Slocomb, Julia E.; Shivkumar, Vikram; Smith, Bruce; Quillen, David; Gabbay, Robert A.; Gardner, Thomas W.; Bettermann, Kerstin
2013-01-01
Purpose In diabetes, endothelial dysfunction and subsequent structural damage to blood vessels can lead to heart attacks, retinopathy and strokes. However, it is unclear whether prediabetic subjects exhibit microvascular dysfunction indicating early stages of arteriosclerosis and vascular risk. The purpose of this study was to examine whether retinal reactivity may be impaired early in the hyperglycemic continuum and may be associated with markers of inflammation. Methods Individuals with prediabetes (n = 22), type 2 diabetes (n = 25) and healthy age and body composition matched controls (n = 19) were studied. We used the Dynamic Vessel Analyzer to assess retinal vasoreactivity (percent change in vessel diameter) during a flickering light stimulation. Fasting highly sensitive c-reactive protein (hs-CRP), a marker of inflammation, was measured in blood plasma. Results Prediabetic and diabetic individuals had attenuated peak vasodilator and relative amplitude changes in retinal vein diameters to the flickering light stimulus compared to healthy controls (peak dilation: prediabetic subjects 3.3 ± 1.8 %, diabetic subjects 3.3 ± 2.1% controls 5.6 ± 2.6%, p = .001; relative amplitude: prediabetic subjects 4.3 ± 2.2%, diabetic subjects 5.0 ± 2.6% and control subjects 7.2 ± 3.2%, p = .003). Similar findings were observed in retinal arteries. Levels of hs-CRP were not associated with either retinal vessel response parameters. Conclusion Retinal reactivity was impaired in prediabetic and type 2 diabetic individuals in parallel with reduced insulin sensitivity but not associated with levels of hs-CRP. Retinal vasoreactivity measurements may be a sensitive tool to assess early vascular risk. PMID:23742315
Assessment of vascular and endothelial dysfunction in nutritional studies.
Ray, S; Miglio, C; Eden, T; Del Rio, D
2014-09-01
Vascular and endothelial dysfunction (VED) is emerging as a potential set of early markers of cardiovascular disease risk and tests for its measurement have been widely used in clinical research. The aim of this viewpoint is to describe and discuss the current usage of these measures in well-designed nutritional trials, using the potential relationship between fruit juice intake and VED as example. A search was conducted using the NHS evidence portal including studies published in English between January 1980 and October 2013. Only 10 suitable studies were selected, which investigated the effect of fruit juice intake on VED, among which 4 interventions used flow-mediated dilatation, 2 arterial stiffness, 2 a combination of arterial stiffness and flow-mediated dilatation, 2 carotid intimal media thickness and 1 iontophoresis with laser Doppler. Despite minimal effects reported on classical CVD markers, such as lipids, 8 out of the 10 identified studies reported an effect on endothelial function following juice consumption, indicating that VED tests can be effectively used in human dietary interventions to identify relationships between bioactive compounds from fruit and CVD risk. However, paucity of available data, scarcity of compound bioavailability and metabolism information, strong heterogeneity among experimental methodologies and a number of limitations to study designs, still limit the interpretation of the results obtained through these measures. Future, well-designed studies with greater attention to consider use of VED measures are needed to strengthen the utility of VED tests in nutrition research such as those investigating the impact of polyphenol-rich juices and CVD risk. Copyright © 2014 Elsevier B.V. All rights reserved.
Shah, Dilip; Romero, Freddy; Zhu, Ying; Duong, Michelle; Sun, Jianxin; Walsh, Kenneth; Summer, Ross
2015-12-04
The collectin proteins are innate immune molecules found in high concentrations on the epithelial and endothelial surfaces of the lung. While these proteins are known to have important anti-inflammatory actions in the airways of the lung little is known of their functional importance in the pulmonary circulation. We recently demonstrated that the circulating collectin protein adiponectin has potent anti-inflammatory effects on the lung endothelium, leading us to reason that other structurally related proteins might have similar effects. To test this hypothesis, we investigated the anti-inflammatory actions of C1q in lung endothelial homeostasis and the pulmonary vascular response to LPS or HCl injury. We show that lung endothelium from C1q-deficient (C1q(-/-)) mice expresses higher baseline levels of the vascular adhesion markers ICAM-1, VCAM-1, and E-selectin when compared with wild-type mice. Further, we demonstrate that these changes are associated with enhanced susceptibility of the lung to injury as evident by increased expression of adhesion markers, enhanced production of pro-inflammatory cytokines, and augmented neutrophil recruitment. Additionally, we found that C1q(-/-) mice also exhibited enhanced endothelial barrier dysfunction after injury as manifested by decreased expression of junctional adherens proteins and enhanced vascular leakage. Mechanistically, C1q appears to mediate its effects by inhibiting phosphorylation of p38 mitogen-activated protein kinase (MAPK) and blocking nuclear translocation of the P65 subunit of nuclear factor (NF)-κB. In summary, our findings indicate a previously unrecognized role for C1q in pulmonary vascular homeostasis and provide added support for the hypothesis that circulating collectin proteins have protective effects on the lung endothelium. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Shah, Dilip; Romero, Freddy; Zhu, Ying; Duong, Michelle; Sun, Jianxin; Walsh, Kenneth; Summer, Ross
2015-01-01
The collectin proteins are innate immune molecules found in high concentrations on the epithelial and endothelial surfaces of the lung. While these proteins are known to have important anti-inflammatory actions in the airways of the lung little is known of their functional importance in the pulmonary circulation. We recently demonstrated that the circulating collectin protein adiponectin has potent anti-inflammatory effects on the lung endothelium, leading us to reason that other structurally related proteins might have similar effects. To test this hypothesis, we investigated the anti-inflammatory actions of C1q in lung endothelial homeostasis and the pulmonary vascular response to LPS or HCl injury. We show that lung endothelium from C1q-deficient (C1q−/−) mice expresses higher baseline levels of the vascular adhesion markers ICAM-1, VCAM-1, and E-selectin when compared with wild-type mice. Further, we demonstrate that these changes are associated with enhanced susceptibility of the lung to injury as evident by increased expression of adhesion markers, enhanced production of pro-inflammatory cytokines, and augmented neutrophil recruitment. Additionally, we found that C1q−/− mice also exhibited enhanced endothelial barrier dysfunction after injury as manifested by decreased expression of junctional adherens proteins and enhanced vascular leakage. Mechanistically, C1q appears to mediate its effects by inhibiting phosphorylation of p38 mitogen-activated protein kinase (MAPK) and blocking nuclear translocation of the P65 subunit of nuclear factor (NF)-κB. In summary, our findings indicate a previously unrecognized role for C1q in pulmonary vascular homeostasis and provide added support for the hypothesis that circulating collectin proteins have protective effects on the lung endothelium. PMID:26487714
Agarwal, Gaurav; Nanda, Gitika; Kapoor, Aditya; Singh, Kul Ranjan; Chand, Gyan; Mishra, Anjali; Agarwal, Amit; Verma, Ashok K; Mishra, Saroj K; Syal, Sanjeev K
2013-12-01
Cardiovascular mortality in primary hyperparathyroidism (PHPT) is attributed to myocardial and endothelial dysfunction. In this prospective, case-control study we assessed cardiovascular dysfunction in patients with symptomatic PHPT and its reversal after successful parathyroidectomy. Fifty-six patients with symptomatic PHPT underwent two-dimensional echocardiography, tissue Doppler (diastolic function assessment), serum N-terminal pro-brain natriuretic peptide (s-NTproBNP, a myocardial damage marker), and endothelial- and smooth muscle-dependent vasodilatory response (vascular dysfunction) studies before, 3, and 6 months after parathyroidectomy; 25 age-matched controls were studied similarly. Patients had greater left ventricular mass (192 ± 70 vs. 149 ± 44 g; P = .006), interventricular septal thickness (10.8 ± 2.5 vs. 9.0 ± 1.6 mm; P = .001), posterior wall thickness (9.9 ± 2.0 vs. 8.6 ± 2.2 mm; P = .004), and diastolic dysfunction (lower E/A trans-mitral flow velocity ratio [1.0 ± 0.4 vs. 1.3 ± 0.4; P = .01). Patients had greater s-NTproBNP (4,625 ± 1,130 vs. 58 ± 49 pg/mL; P = .002) and lower endothelial-mediated vasodilation (9.3 ± 8.6 vs. 11.7 ± 6.3%; P = .03) and smooth muscle-mediated vasodilation (20.1 ± 17.9 vs. 23.8 ± 11.2%; P = .01). Improvements in left ventricular mass, systolic and diastolic function, and smooth muscle-mediated vasodilation were noted from 3 to 6 months after parathyroidectomy. Endothelial-mediated vasodilation did not improve significantly. S-NTproBNP levels mirrored echocardiographic changes with a substantial, sustained decrease. Results were similar in hypertensive and normotensive patients. Symptomatic PHPT patients have substantial cardiac and vascular dysfunction, which improve by 6 months after parathyroidectomy. Objective cardiovascular evaluation may improve outcomes in symptomatic PHPT patients. Copyright © 2013 Mosby, Inc. All rights reserved.
Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes
Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio MV; Wainstein, Marco V; Boff, Winston; Puñales, Marcia
2015-01-01
Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717
Roy-Chaudhury, P; Lee, T; Duncan, H; El-Khatib, M
2009-01-01
Hemodialysis (HD) vascular access dysfunction is currently a huge clinical problem for which there are no effective therapies. There are, however, a number of promising technologies that are currently at the experimental or clinical trial stage. We believe that the application of these novel technologies in combination with better clinical protocols for vascular access care could significantly reduce the current problems associated with HD vascular access.
Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus.
Shan, Kun; Liu, Chang; Liu, Bai-Hui; Chen, Xue; Dong, Rui; Liu, Xin; Zhang, Yang-Yang; Liu, Ban; Zhang, Shu-Jie; Wang, Jia-Jian; Zhang, Sheng-Hai; Wu, Ji-Hong; Zhao, Chen; Yan, Biao
2017-10-24
The vascular complications of diabetes mellitus are the major causes of morbidity and mortality among people with diabetes. Circular RNAs are a class of endogenous noncoding RNAs that regulate gene expression in eukaryotes. In this study, we investigated the role of circular RNA in retinal vascular dysfunction induced by diabetes mellitus. Quantitative polymerase chain reactions, Sanger sequencing, and Northern blots were conducted to detect circular HIPK3 (circHIPK3) expression pattern on diabetes mellitus-related stresses. MTT (3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assays, EdU (5-ethynyl-2'-deoxyuridine) incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of circHIPK3 in retinal endothelial cell function in vitro. Retinal trypsin digestion, vascular permeability assays, and ELISA assays were conducted to detect the role of circHIPK3 in retinal vascular dysfunction in vivo. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were conducted to reveal the mechanism of circHIPK3-mediated retinal vascular dysfunction. circHIPK3 expression was significantly upregulated in diabetic retinas and retinal endothelial cells following stressors related to diabetes mellitus. circHIPK3 silencing or overexpressing circHIPK3 changed retinal endothelial cell viability, proliferation, migration, and tube formation in vitro. circHIPK3 silencing in vivo alleviated retinal vascular dysfunction, as shown by decreased retinal acellular capillaries, vascular leakage, and inflammation. circHIPK3 acted as an endogenous miR-30a-3p sponge to sequester and inhibit miR-30a-3p activity, which led to increased vascular endothelial growth factor-C, FZD4, and WNT2 expression. Ectopic expression of miR-30a-3p mimicked the effect of circHIPK3 silencing on vascular endothelial phenotypes in vivo and in vitro. The circular RNA circHIPK3 plays a role in diabetic retinopathy by blocking miR-30a function, leading to increased endothelial proliferation and vascular dysfunction. These data suggest that circular RNA is a potential target to control diabetic proliferative retinopathy. © 2017 American Heart Association, Inc.
Sato, Naoyuki; Morishita, Ryuichi
2013-11-05
It is well known that a specific set of genetic and non-genetic risk factors contributes to the onset of Alzheimer disease (AD). Non-genetic risk factors include diabetes, hypertension in mid-life, and probably dyslipidemia in mid-life. This review focuses on the vascular and metabolic components of non-genetic risk factors. The mechanisms whereby non-genetic risk factors modify cognitive dysfunction are divided into four components, short- and long-term effects of vascular and metabolic factors. These consist of (1) compromised vascular reactivity, (2) vascular lesions, (3) hypo/hyperglycemia, and (4) exacerbated AD histopathological features, respectively. Vascular factors compromise cerebrovascular reactivity in response to neuronal activity and also cause irreversible vascular lesions. On the other hand, representative short-term effects of metabolic factors on cognitive dysfunction occur due to hypoglycemia or hyperglycemia. Non-genetic risk factors also modify the pathological manifestations of AD in the long-term. Therefore, vascular and metabolic factors contribute to aggravation of cognitive dysfunction in AD through short-term and long-term effects. β-amyloid could be involved in both vascular and metabolic components. It might be beneficial to support treatment in AD patients by appropriate therapeutic management of non-genetic risk factors, considering the contributions of these four elements to the manifestation of cognitive dysfunction in individual patients, though all components are not always present. It should be clarified how these four components interact with each other. To answer this question, a clinical prospective study that follows up clinical features with respect to these four components: (1) functional MRI or SPECT for cerebrovascular reactivity, (2) MRI for ischemic lesions and atrophy, (3) clinical episodes of hypoglycemia and hyperglycemia, (4) amyloid-PET and tau-PET for pathological features of AD, would be required.
Klein, Ronald; Myers, Chelsea E; Cruickshanks, Karen J; Gangnon, Ronald E; Danforth, Lorraine G; Sivakumaran, Theru A; Iyengar, Sudha K; Tsai, Michael Y; Klein, Barbara E K
2014-04-01
IMPORTANCE Modifying levels of factors associated with age-related macular degeneration (AMD) may decrease the risk for visual impairment in older persons. OBJECTIVE To examine the relationships of markers of inflammation, oxidative stress, and endothelial dysfunction to the 20-year cumulative incidence of early AMD. DESIGN, SETTING, AND PARTICIPANTS This longitudinal population-based cohort study involved a random sample of 975 persons in the Beaver Dam Eye Study without signs of AMD who participated in the baseline examination in 1988-1990 and up to 4 follow-up examinations in 1993-1995, 1998-2000, 2003-2005, and 2008-2010. EXPOSURES Serum markers of inflammation (high-sensitivity C-reactive protein, tumor necrosis factor-α receptor 2, interleukin-6, and white blood cell count), oxidative stress (8-isoprostane and total carbonyl content), and endothelial dysfunction (soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1) were measured. Interactions with complement factor H (rs1061170), age-related maculopathy susceptibility 2 (rs10490924), complement component 3 (rs2230199), and complement component 2/complement factor B (rs4151667) were examined using multiplicative models. Age-related macular degeneration was assessed from fundus photographs. MAIN OUTCOMES AND MEASURES Early AMD defined by the presence of any size drusen and the presence of pigmentary abnormalities or by the presence of large-sized drusen (≥125-μm diameter) in the absence of late AMD. RESULTS The 20-year cumulative incidence of early AMD was 23.0%. Adjusting for age, sex, and other risk factors, high-sensitivity C-reactive protein (odds ratio comparing fourth with first quartile, 2.18; P = .005), tumor necrosis factor-α receptor 2 (odds ratio, 1.78; P = .04), and interleukin-6 (odds ratio, 1.78; P = .03) were associated with the incidence of early AMD. Increased incidence of early AMD was associated with soluble vascular cell adhesion molecule-1 (odds ratio per SD on the logarithmic scale, 1.21; P = .04). CONCLUSIONS AND RELEVANCE We found modest evidence of relationships of serum high-sensitivity C-reactive protein, tumor necrosis factor-α receptor 2, interleukin-6, and soluble vascular cell adhesion molecule-1 to the 20-year cumulative incidence of early AMD independent of age, smoking status, and other factors. It is not known whether these associations represent a cause and effect relationship or whether other unknown confounders accounted for the findings. Even if inflammatory processes are a cause of early AMD, it is not known whether interventions that reduce systemic inflammatory processes will reduce the incidence of early AMD.
Melgar-Lesmes, Pedro; Balcells, Mercedes; Edelman, Elazer R.
2017-01-01
Objective Liver transplantation is limited by ischemic injury which promotes endothelial cell and hepatocyte dysfunction and eventually organ failure. We sought to understand how endothelial state determines liver recover after hepatectomy and engraftment. Design Matrix-embedded endothelial cells (MEECs) with retained healthy phenotype or control acellular matrices were implanted in direct contact with the remaining median lobe of donor mice undergoing partial hepatectomy (70%), or in the interface between the remaining median lobe and an autograft or isograft from the left lobe in hepatectomized recipient mice. Hepatic vascular architecture, DNA fragmentation and apoptosis in the median lobe and grafts, serum markers of liver damage and phenotype of macrophage and lymphocyte subsets in the liver after engraftment were analyzed 7 days post-op. Results Healthy MEECs create a functional vascular splice in donor and recipient liver after 70% hepatectomy in mouse protecting these livers from ischemic injury, hepatic congestion and inflammation. Macrophages recruited adjacent to the vascular nodes into the implants switched to an anti-inflammatory and regenerative profile M2. MEECs improved liver function and the rate of liver regeneration and prevented apoptosis in donor liver lobes, autologous grafts, and allogeneic engraftment. Conclusions Implants with healthy endothelial cells rescue liver donor and recipient endothelium and parenchyma from ischemic injury after major hepatectomy and engraftment. This study highlights endothelial-hepatocyte crosstalk in hepatic repair and provides a promising new approach to improve regenerative medicine outcomes and liver transplantation. PMID:26851165
Ceron, Carla S; Marchi, Katia C; Muniz, Jaqueline J; Tirapelli, Carlos R
2014-01-01
The observation that the excessive consumption of ethyl alcohol (ethanol) is associated with high blood pressure is nearing its centennial mark. Mechanisms linking ethanol consumption and hypertension are complex and not fully understood. It is established that chronic ethanol consumption leads to hypertension and that this process is a multimediated event involving increased sympathetic activity, stimulation of the renin-angiotensin-aldosterone system with a subsequent increase in vascular oxidative stress and endothelial dysfunction. Under physiological conditions, reactive oxygen species (ROS) play an important role as a signaling molecule in the control of vascular tone and endothelial function. Increased ROS bioavailability is associated with important processes underlying vascular injury in cardiovascular disease such as endothelial dysfunction, vascular remodeling, and inflammation. Studies focusing on molecular mechanisms showed a link between overproduction of ROS in the vasculature and ethanol-induced hypertension. Of the ROS generated in vascular cells, superoxide anion (O2(-)) and hydrogen peroxide (H2O2) appear to be especially important. Ethanol-mediated generation of O2(-) and H2O2 in vascular tissues is associated with elevations in intracellular calcium ([Ca(2+)]i), reduced nitric oxide (NO) bioavailability, endothelial dysfunction and vasoconstriction. O2(-) can also act as a vascular signaling molecule regulating signaling pathways that lead to vascular contraction. Thus, through increased generation of ROS and activation of redox-sensitive pathways, ethanol induces vascular dysfunction, a response that might contribute to the hypertension associated with ethanol consumption. The present article reviews the role of ROS in vascular (patho)biology of ethanol.
Sokup, Alina; Góralczyk, Barbara; Góralczyk, Krzysztof; Rość, Danuta
2012-02-01
To investigate whether baseline triglyceride levels are associated with early glucose dysregulation and/or cardiovascular risk in women with a previous history of gestational diabetes. Prospective postpregnancy cohort study. Polish university hospitals. Participants included 125 women with previous gestational diabetes and 40 women with normal glucose regulation during pregnancy. All women were studied 2-24 months (mean 12 ± 10 months) after the index pregnancy. Women with previous gestational diabetes were divided into tertiles in accordance with baseline triglyceride levels. We assessed glucose regulation (oral glucose tolerance test), insulin resistance (homeostasis model assessment), markers of endothelial dysfunction (soluble: intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, tissue plasminogen activator antigen, von Willebrand factor antigen), fibrinolysis (plasminogen activator inhibitor antigen), inflammation (high-sensitivity C-reactive protein) and lipid levels. Women with previous gestational diabetes (78% normal glucose regulation, 22% impaired glucose tolerance) had a high cardiometabolic risk profile compared with control women (100% normal glucose regulation). Baseline triglycerides >0.83 mmol/l were associated with a higher prevalence of impaired glucose tolerance, higher high-sensitivity C-reactive protein and triglyceride/high-density lipoprotein-cholesterol ratio. Triglycerides >1.22 mmol/l were associated with higher body fat indexes, higher insulin resistance, higher levels of endothelial dysfunction biomarkers, higher plasminogen activator inhibitor antigen and dyslipidemia. Only E-selectin was independently associated with triglyceride levels. Baseline triglyceride levels are a cardiovascular risk marker as well as a pathophysiological parameter independently associated with endothelial dysfunction in nondiabetic women with previous gestational diabetes at 2-24 months after an index pregnancy. Normalization of triglycerides should be included in preventive therapy after a pregnancy complicated by gestational diabetes. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2012 Nordic Federation of Societies of Obstetrics and Gynecology.
Green tea catechins: defensive role in cardiovascular disorders.
Bhardwaj, Pooja; Khanna, Deepa
2013-07-01
Green tea, Camellia sinensis (Theaceae), a major source of flavonoids such as catechins, has recently shown multiple cardiovascular health benefits through various experimental and clinical studies. These studies suggest that green tea catechins prevent the incidence of detrimental cardiovascular events, and also lower the cardiovascular mortality rate. Catechins present in green tea have the ability to prevent atherosclerosis, hypertension, endothelial dysfunction, ischemic heart diseases, cardiomyopathy, cardiac hypertrophy and congestive heart failure by decreasing oxidative stress, preventing inflammatory events, reducing platelet aggregation and halting the proliferation of vascular smooth muscle cells. Catechins afford an anti-oxidant effect by inducing anti-oxidant enzymes, inhibiting pro-oxidant enzymes and scavenging free radicals. Catechins present anti-inflammatory activity through the inhibition of transcriptional factor NF-κB-mediated production of cytokines and adhesion molecules. Green tea catechins interfere with vascular growth factors and thus inhibit vascular smooth muscle cell proliferation, and also inhibit thrombogenesis by suppressing platelet adhesion. Additionally, catechins could protect vascular endothelial cells and enhance vascular integrity and regulate blood pressure. In this review various experimental and clinical studies suggesting the role of green tea catechins against the markers of cardiovascular disorders and the underlying mechanisms for these actions are discussed. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Varadharaj, Saradhadevi; Kelly, Owen J.; Khayat, Rami N.; Kumar, Purnima S.; Ahmed, Naseer; Zweier, Jay L.
2017-01-01
In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED) occurs secondary to altered function of endothelial nitric oxide synthase (eNOS). A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs). Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases. PMID:29164133
Wei, Xiaochao; Schneider, Jochen G.; Shenouda, Sherene M.; Lee, Ada; Towler, Dwight A.; Chakravarthy, Manu V.; Vita, Joseph A.; Semenkovich, Clay F.
2011-01-01
Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease. PMID:21098489
Lala, Radu Ioan; Darabantiu, Dan; Pilat, Luminita; Puschita, Maria
2016-02-01
Heart failure is accompanied by abnormalities in ventricular-vascular interaction due to increased myocardial and arterial stiffness. Galectin-3 is a recently discovered biomarker that plays an important role in myocardial and vascular fibrosis and heart failure progression. The aim of this study was to determine whether galectin-3 is correlated with arterial stiffening markers and impaired ventricular-arterial coupling in decompensated heart failure patients. A total of 79 inpatients with acute decompensated heart failure were evaluated. Serum galectin-3 was determined at baseline, and during admission, transthoracic echocardiography and measurements of vascular indices by Doppler ultrasonography were performed. Elevated pulse wave velocity and low arterial carotid distensibility are associated with heart failure in patients with preserved ejection fraction (p = 0.04, p = 0.009). Pulse wave velocity, carotid distensibility and Young's modulus did not correlate with serum galectin-3 levels. Conversely, raised galectin-3 levels correlated with an increased ventricular-arterial coupling ratio (Ea/Elv) p = 0.047, OR = 1.9, 95% CI (1.0‑3.6). Increased galectin-3 levels were associated with lower rates of left ventricular pressure rise in early systole (dp/dt) (p=0.018) and raised pulmonary artery pressure (p = 0.046). High galectin-3 levels (p = 0.038, HR = 3.07) and arterial pulmonary pressure (p = 0.007, HR = 1.06) were found to be independent risk factors for all-cause mortality and readmissions. This study showed no significant correlation between serum galectin-3 levels and arterial stiffening markers. Instead, high galectin-3 levels predicted impaired ventricular-arterial coupling. Galectin-3 may be predictive of raised pulmonary artery pressures. Elevated galectin-3 levels correlate with severe systolic dysfunction and together with pulmonary hypertension are independent markers of outcome.
Constans, Joël; Bennetau-Pelissero, Catherine; Martin, Jean-François; Rock, Edmond; Mazur, Andrzej; Bedel, Aurélie; Morand, Christine; Bérard, Annie M
2015-12-01
Blond orange juice is the most consumed fruit juice in the world. It is a source of hesperidin, a bioavailable flavonoid reported to exhibit potential vascular protective actions. However, the specific impact on vascular function of Citrus phytomicronutrients, is unknown. For the first time, we investigated the effects of blond orange juice compared with a control beverage mimicking the composition of orange juice (including Vitamin C but no phytomicronutrients), on antioxidant markers, cardiovascular risk factors and endothelial function. Twenty five male volunteers with two cardiovascular risk factors (age over 50 years and LDL-cholesterol between 130 and 190 mg/L) were enrolled in a randomized cross-over study. They received 3 times daily 200 mL of either blond orange juice or control beverage for 4 weeks, spaced by a 5-week wash-out. Endothelial function (flow mediated dilatation and plasma markers), oxidative status, lipid profile and inflammatory markers were assessed. Daily intakes of orange juice significantly led to a marked antioxidant effect which was correlated to hesperetin plasma levels and related with a decrease in reactive oxygen species. A tendency towards reduction of endothelial dysfunction and modest increase in plasma apoA-I concentration were also observed. This allows further experiments demonstrating the specific effect of phytomicronutrients from orange juice. These findings suggest that daily intake of nutritionally relevant dose of blond orange juice may contribute for a significant antioxidant effect through the phytochemicals contained in. Orange juice may be associated to other healthy foods to achieve a significant effect on the vascular function. This study is recorded in ClinicalTrials.com as NCT00539916. Copyright © 2014. Published by Elsevier Ltd.
Páramo, José A; Orbe, Josune; Beloqui, Oscar; Colina, Inmaculada; Benito, Alberto; Rodríguez, José A; Díez, Javier
2008-09-27
We assessed whether an independent association between inflammatory markers and age-related subclinical atherosclerosis could be found in subjects free from cardiovascular disease. Metabolic parameters, inflammatory and endothelial markers, such as high-sensitivity C-reactive protein, interleukin-6, fibrinogen and von Willebrand factor, as well as the carotid intima-media thickness were assessed in 890 asymptomatic subjects (mean age: 55 years; range: 20-80 years; 80% men) with cardiovascular risk factors. Subjects in the upper quartile (age 61-80 years) showed a significant increase of traditional risk factors, particularly arterial pressure and glucose levels (p < 0.01) as compared with lower quartiles. We also found a significant increase in the levels on inflammatory and endothelial markers (p < 0.001) and intima-media thickness (p < 0.001) in older adults. In the multivarate analysis, after adjustment for cardiovascular risk factors, intima-media thickness was independently associated with inflammation and endothelial dysfunction in older adults (p < 0.01). Besides age, systemic inflammation and vascular damage are associated with subclinical atherosclerosis in asymptomatic subjects. The age-related inflammatory profile may predispose to cardiovascular complications.
Gorelick, Philip B; Scuteri, Angelo; Black, Sandra E; Decarli, Charles; Greenberg, Steven M; Iadecola, Costantino; Launer, Lenore J; Laurent, Stephane; Lopez, Oscar L; Nyenhuis, David; Petersen, Ronald C; Schneider, Julie A; Tzourio, Christophe; Arnett, Donna K; Bennett, David A; Chui, Helena C; Higashida, Randall T; Lindquist, Ruth; Nilsson, Peter M; Roman, Gustavo C; Sellke, Frank W; Seshadri, Sudha
2011-09-01
This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment. Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee. The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury-not solely stroke-ranging from mild cognitive impairment through fully developed dementia. Dysfunction of the neurovascular unit and mechanisms regulating cerebral blood flow are likely to be important components of the pathophysiological processes underlying VCI. Cerebral amyloid angiopathy is emerging as an important marker of risk for Alzheimer disease, microinfarction, microhemorrhage and macrohemorrhage of the brain, and VCI. The neuropathology of cognitive impairment in later life is often a mixture of Alzheimer disease and microvascular brain damage, which may overlap and synergize to heighten the risk of cognitive impairment. In this regard, magnetic resonance imaging and other neuroimaging techniques play an important role in the definition and detection of VCI and provide evidence that subcortical forms of VCI with white matter hyperintensities and small deep infarcts are common. In many cases, risk markers for VCI are the same as traditional risk factors for stroke. These risks may include but are not limited to atrial fibrillation, hypertension, diabetes mellitus, and hypercholesterolemia. Furthermore, these same vascular risk factors may be risk markers for Alzheimer disease. Carotid intimal-medial thickness and arterial stiffness are emerging as markers of arterial aging and may serve as risk markers for VCI. Currently, no specific treatments for VCI have been approved by the US Food and Drug Administration. However, detection and control of the traditional risk factors for stroke and cardiovascular disease may be effective in the prevention of VCI, even in older people. Vascular contributions to cognitive impairment and dementia are important. Understanding of VCI has evolved substantially in recent years, based on preclinical, neuropathologic, neuroimaging, physiological, and epidemiological studies. Transdisciplinary, translational, and transactional approaches are recommended to further our understanding of this entity and to better characterize its neuropsychological profile. There is a need for prospective, quantitative, clinical-pathological-neuroimaging studies to improve knowledge of the pathological basis of neuroimaging change and the complex interplay between vascular and Alzheimer disease pathologies in the evolution of clinical VCI and Alzheimer disease. Long-term vascular risk marker interventional studies beginning as early as midlife may be required to prevent or postpone the onset of VCI and Alzheimer disease. Studies of intensive reduction of vascular risk factors in high-risk groups are another important avenue of research.
Vascular Contributions to Cognitive Impairment and Dementia
Gorelick, Philip B.; Scuteri, Angelo; Black, Sandra E.; DeCarli, Charles; Greenberg, Steven M.; Iadecola, Costantino; Launer, Lenore J.; Laurent, Stephane; Lopez, Oscar L.; Nyenhuis, David; Petersen, Ronald C.; Schneider, Julie A.; Tzourio, Christophe; Arnett, Donna K.; Bennett, David A.; Chui, Helena C.; Higashida, Randall T.; Lindquist, Ruth; Nilsson, Peter M.; Roman, Gustavo C.; Sellke, Frank W.; Seshadri, Sudha
2013-01-01
Background and Purpose This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment. Methods Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee. Results The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury—not solely stroke—ranging from mild cognitive impairment through fully developed dementia. Dysfunction of the neurovascular unit and mechanisms regulating cerebral blood flow are likely to be important components of the pathophysiological processes underlying VCI. Cerebral amyloid angiopathy is emerging as an important marker of risk for Alzheimer disease, microinfarction, microhemorrhage and macrohemorrhage of the brain, and VCI. The neuropathology of cognitive impairment in later life is often a mixture of Alzheimer disease and microvascular brain damage, which may overlap and synergize to heighten the risk of cognitive impairment. In this regard, magnetic resonance imaging and other neuroimaging techniques play an important role in the definition and detection of VCI and provide evidence that subcortical forms of VCI with white matter hyperintensities and small deep infarcts are common. In many cases, risk markers for VCI are the same as traditional risk factors for stroke. These risks may include but are not limited to atrial fibrillation, hypertension, diabetes mellitus, and hypercholesterolemia. Furthermore, these same vascular risk factors may be risk markers for Alzheimer disease. Carotid intimal-medial thickness and arterial stiffness are emerging as markers of arterial aging and may serve as risk markers for VCI. Currently, no specific treatments for VCI have been approved by the US Food and Drug Administration. However, detection and control of the traditional risk factors for stroke and cardiovascular disease may be effective in the prevention of VCI, even in older people. Conclusions Vascular contributions to cognitive impairment and dementia are important. Understanding of VCI has evolved substantially in recent years, based on preclinical, neuropathologic, neuroimaging, physiological, and epidemiological studies. Transdisciplinary, translational, and transactional approaches are recommended to further our understanding of this entity and to better characterize its neuropsychological profile. There is a need for prospective, quantitative, clinical-pathological-neuroimaging studies to improve knowledge of the pathological basis of neuroimaging change and the complex interplay between vascular and Alzheimer disease pathologies in the evolution of clinical VCI and Alzheimer disease. Long-term vascular risk marker interventional studies beginning as early as midlife may be required to prevent or postpone the onset of VCI and Alzheimer disease. Studies of intensive reduction of vascular risk factors in high-risk groups are another important avenue of research. PMID:21778438
Tanaka, Atsushi; Kawaguchi, Atsushi; Tomiyama, Hirofumi; Ishizu, Tomoko; Matsumoto, Chisa; Higashi, Yukihito; Takase, Bonpei; Suzuki, Toru; Ueda, Shinichiro; Yamazaki, Tsutomu; Furumoto, Tomoo; Kario, Kazuomi; Inoue, Teruo; Koba, Shinji; Takemoto, Yasuhiko; Hano, Takuzo; Sata, Masataka; Ishibashi, Yutaka; Maemura, Koji; Ohya, Yusuke; Furukawa, Taiji; Ito, Hiroshi; Yamashina, Akira; Node, Koichi
2018-06-06
The endothelial dysfunction-arterial stiffness-atherosclerosis continuum plays an important pathophysiological role in hypertension. The aim of this study was to investigate the cross-sectional association between serum uric acid (SUA) and vascular markers related to this continuum, and to assess the longitudinal association between SUA and endothelial function that represents the initial step of the continuum. We evaluated the baseline associations between SUA levels and vascular markers that included flow-mediated vasodilatation (FMD), brachial-ankle pulse wave velocity (baPWV), and common carotid artery intima-media thickness (CCA-IMT) in 648 subjects receiving antihypertensive treatment. The longitudinal association between baseline SUA levels and FMD measured at 1.5 and 3 yr of follow-up was also investigated. At baseline, modest, but significant correlations were observed between SUA and FMD in females (r = -0.171), baPWV in males with SUA >368.78 μmol/L (r = -0.122) and in females with a SUA level ≤ 362.83 μmol/L (r = 0.217), mean CCA-IMT in females with a SUA level ≤ 333.09 μmol/L (r = 0.139), and max CCA-IMT in females with SUA level ≤ 333.09 μmol/L (r = 0.138). A longitudinal association between SUA and FMD was less observed in males. In females, the baseline SUA was associated significantly with FMD values at 1.5 yr (r = -0.211), and SUA levels >237.92 μmol/L were associated significantly and independently with FMD values at 3 yr (r = -0.166). Lower SUA levels were associated with better vascular markers of the continuum, especially in females. Furthermore, we observed a longitudinal association between SUA and endothelial function, suggesting SUA level may be a potential marker of the continuum in hypertension. Copyright © 2017 Elsevier B.V. All rights reserved.
Cerebrovascular-Reactivity Mapping Using MRI: Considerations for Alzheimer's Disease.
Chen, J J
2018-01-01
Alzheimer's disease (AD) is associated with well-established macrostructural and cellular markers, including localized brain atrophy and deposition of amyloid. However, there is growing recognition of the link between cerebrovascular dysfunction and AD, supported by continuous experimental evidence in the animal and human literature. As a result, neuroimaging studies of AD are increasingly aiming to incorporate vascular measures, exemplified by measures of cerebrovascular reactivity (CVR). CVR is a measure that is rooted in clinical practice, and as non-invasive CVR-mapping techniques become more widely available, routine CVR mapping may open up new avenues of investigation into the development of AD. This review focuses on the use of MRI to map CVR, paying specific attention to recent developments in MRI methodology and on the emerging stimulus-free approaches to CVR mapping. It also summarizes the biological basis for the vascular contribution to AD, and provides critical perspective on the choice of CVR-mapping techniques amongst frail populations.
Turnbull, Chris D; Rossi, Valentina A; Santer, Peter; Schwarz, Esther I; Stradling, John R; Petousi, Nayia; Kohler, Malcolm
2017-05-01
Obstructive sleep apnoea (OSA) is associated with cardiovascular disease. Intermittent hypoxia, endothelial dysfunction and adipose tissue-mediated inflammation have all been linked to cardiovascular disease in OSA. We therefore explored the effect of OSA on relevant associated blood markers: adrenomedullin (ADM), endocan, endothelin-1 (ET-1), resistin and vascular endothelial growth factor (VEGF). Patients with OSA, established on and compliant with continuous positive airways pressure (CPAP) therapy for >1 year were included from three randomized controlled trials, conducted at two centres. Patients were randomized to either continued therapeutic CPAP or sham CPAP (CPAP withdrawal) for 2 weeks. Blood markers were measured at baseline and at 14 days and the treatment effect between sham CPAP and therapeutic CPAP was analysed. A total of 109 patients were studied (therapeutic CPAP n = 54, sham CPAP n = 55). Sham CPAP was associated with a return of OSA (between-group difference in oxygen desaturation index (ODI) 36.0/h, 95% CI 29.9-42.2, P < 0.001). Sham CPAP was associated with a reduction in ADM levels at 14 days (-26.0 pg/mL, 95% CI -47.8 to -4.3, P = 0.02), compared to therapeutic CPAP. Return of OSA was not associated with changes in endocan, ET-1, resistin or VEGF. Whilst CPAP withdrawal was associated with return of OSA, it was associated with an unexpected significant reduction in the vasodilator ADM and not with expected increases in hypoxia-induced markers, markers of endothelial function or resistin. We propose that the vascular effects occurring in OSA may be brought about by other mechanisms, perhaps partly through a reduction in ADM. © 2016 Asian Pacific Society of Respirology.
Loss of the Endothelial Glycocalyx Links Albuminuria and Vascular Dysfunction
Ferguson, Joanne K.; Burford, James L.; Gevorgyan, Haykanush; Nakano, Daisuke; Harper, Steven J.; Bates, David O.; Peti-Peterdi, Janos
2012-01-01
Patients with albuminuria and CKD frequently have vascular dysfunction but the underlying mechanisms remain unclear. Because the endothelial surface layer, a meshwork of surface-bound and loosely adherent glycosaminoglycans and proteoglycans, modulates vascular function, its loss could contribute to both renal and systemic vascular dysfunction in proteinuric CKD. Using Munich-Wistar-Fromter (MWF) rats as a model of spontaneous albuminuric CKD, multiphoton fluorescence imaging and single-vessel physiology measurements revealed that old MWF rats exhibited widespread loss of the endothelial surface layer in parallel with defects in microvascular permeability to both water and albumin, in both continuous mesenteric microvessels and fenestrated glomerular microvessels. In contrast to young MWF rats, enzymatic disruption of the endothelial surface layer in old MWF rats resulted in neither additional loss of the layer nor additional changes in permeability. Intravenous injection of wheat germ agglutinin lectin and its adsorption onto the endothelial surface layer significantly improved glomerular albumin permeability. Taken together, these results suggest that widespread loss of the endothelial surface layer links albuminuric kidney disease with systemic vascular dysfunction, providing a potential therapeutic target for proteinuric kidney disease. PMID:22797190
Price, Laura C; Wort, Stephen J; Finney, Simon J; Marino, Philip S; Brett, Stephen J
2010-01-01
Pulmonary vascular dysfunction, pulmonary hypertension (PH), and resulting right ventricular (RV) failure occur in many critical illnesses and may be associated with a worse prognosis. PH and RV failure may be difficult to manage: principles include maintenance of appropriate RV preload, augmentation of RV function, and reduction of RV afterload by lowering pulmonary vascular resistance (PVR). We therefore provide a detailed update on the management of PH and RV failure in adult critical care. A systematic review was performed, based on a search of the literature from 1980 to 2010, by using prespecified search terms. Relevant studies were subjected to analysis based on the GRADE method. Clinical studies of intensive care management of pulmonary vascular dysfunction were identified, describing volume therapy, vasopressors, sympathetic inotropes, inodilators, levosimendan, pulmonary vasodilators, and mechanical devices. The following GRADE recommendations (evidence level) are made in patients with pulmonary vascular dysfunction: 1) A weak recommendation (very-low-quality evidence) is made that close monitoring of the RV is advised as volume loading may worsen RV performance; 2) A weak recommendation (low-quality evidence) is made that low-dose norepinephrine is an effective pressor in these patients; and that 3) low-dose vasopressin may be useful to manage patients with resistant vasodilatory shock. 4) A weak recommendation (low-moderate quality evidence) is made that low-dose dobutamine improves RV function in pulmonary vascular dysfunction. 5) A strong recommendation (moderate-quality evidence) is made that phosphodiesterase type III inhibitors reduce PVR and improve RV function, although hypotension is frequent. 6) A weak recommendation (low-quality evidence) is made that levosimendan may be useful for short-term improvements in RV performance. 7) A strong recommendation (moderate-quality evidence) is made that pulmonary vasodilators reduce PVR and improve RV function, notably in pulmonary vascular dysfunction after cardiac surgery, and that the side-effect profile is reduced by using inhaled rather than systemic agents. 8) A weak recommendation (very-low-quality evidence) is made that mechanical therapies may be useful rescue therapies in some settings of pulmonary vascular dysfunction awaiting definitive therapy. This systematic review highlights that although some recommendations can be made to guide the critical care management of pulmonary vascular and right ventricular dysfunction, within the limitations of this review and the GRADE methodology, the quality of the evidence base is generally low, and further high-quality research is needed.
Škerk, Vedrana; Markotić, Alemka; Brkljačić, Diana Delić; Manola, Šime; Krčmar, Tomislav; Gabrić, Ivo Darko; Štajminger, Gordana; Pintarić, Hrvoje
2013-01-01
Background Ventricular tachycardia (VT) is frequently seen in ischemic settings like acute myocardial infarction with ST segment elevation (STEMI). Endothelial dysfunction (ED) represents inflammation and the loss of all protective features of the endothelium. We aimed to examine the association between VT and ED in patients with STEMI. Material/Methods The study included 90 subjects (30 with VT and acute STEMI, 30 with STEMI without VT, and 30 controls). Sera of all subjects were tested on ED markers by enzyme immunoassay: sICAM-1 (intracellular adhesive molecule-1), sVCAM-1 (vascular adhesive molecule-1), P- and E-selectins, and VEGF (vascular endothelial growth factor). In addition, CRP (C-reactive protein) was detected. Results Significantly increased values of low-density lipoprotein, triglycerides, leukocytes, creatinine, and the number of cigarettes smoked were observed among patients with VT+STEMI in comparison to controls. The levels of E-selectin were significantly lower in the VT+STEMI group than in the other groups, while the levels of VCAM-1 were significantly higher in the groups with STEMI and VT+STEMI compared to the controls. Lower levels of VEGF were recorded in STEMI and VT+STEMI groups compared to the control group. A significant correlation between CRP and VCAM-1 in patients with VT +STEMI was demonstrated. Conclusions We showed that ED may have a role in the immunopathogenesis of VT in patients with STEMI. The role of sE-selectin and correlation of sVCAM-1 with CRP as possible ED predictive markers in patients with VT+STEMI should be further investigated in a large cohort of patients. PMID:24253420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Liyi; Departments of Cardiology, The 451st Hospital of People's Liberation Army; Hu, Xiaojing
Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNAmore » was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (AngII) expression. • CTRP6 alleviates AngII-induced hypertension and vascular endothelial dysfunction.« less
Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat.
Jumabay, Medet; Moon, Jeremiah H; Yeerna, Huwate; Boström, Kristina I
2015-11-01
Diabetes mellitus affects the adipose tissue and mesenchymal stem cells derived from the adipose stroma and other tissues. Previous reports suggest that bone morphogenetic protein 4 (BMP4) is involved in diabetic complications, at the same time playing an important role in the maintenance of stem cells. In this study, we used rats transgenic for human islet amyloid polypeptide (HIP rats), a model of type 2 diabetes, to study the effect of diabetes on adipocyte-derived stem cells, referred to as dedifferentiated fat (DFAT) cells. Our results show that BMP4 expression in inguinal adipose tissue is significantly increased in HIP rats compared to controls, whereas matrix Gla protein (MGP), an inhibitor of BMP4 is decreased as determined by quantitative PCR, and immunofluorescence. In addition, adipose vascularity and expression of multiple endothelial cell markers was increased in the diabetic tissue, visualized by immunofluorescence for endothelial markers. The endothelial markers co-localized with the enhanced BMP4 expression, suggesting that vascular cells play a role BMP4 induction. The DFAT cells are multipotent stem cells derived from white mature adipocytes that undergo endothelial and adipogenic differentiation. DFAT cells prepared from the inguinal adipose tissue in HIP rats exhibited enhanced proliferative capacity compared to wild type. In addition, their ability to undergo both endothelial cell and adipogenic lineage differentiation was enhanced, as well as their response to BMP4, as assessed by lineage marker expression. We conclude that the DFAT cells are affected by diabetic changes and may contribute to the adipose dysfunction in diabetes. © 2015 Wiley Periodicals, Inc.
Exercise, cognitive function, and aging
2015-01-01
Increasing the lifespan of a population is often a marker of a country's success. With the percentage of the population over 65 yr of age expanding, managing the health and independence of this population is an ongoing concern. Advancing age is associated with a decrease in cognitive function that ultimately affects quality of life. Understanding potential adverse effects of aging on brain blood flow and cognition may help to determine effective strategies to mitigate these effects on the population. Exercise may be one strategy to prevent or delay cognitive decline. This review describes how aging is associated with cardiovascular disease risks, vascular dysfunction, and increasing Alzheimer's disease pathology. It will also discuss the possible effects of aging on cerebral vascular physiology, cerebral perfusion, and brain atrophy rates. Clinically, these changes will present as reduced cognitive function, neurodegeneration, and the onset of dementia. Regular exercise has been shown to improve cognitive function, and we hypothesize that this occurs through beneficial adaptations in vascular physiology and improved neurovascular coupling. This review highlights the potential interactions and ideas of how the age-associated variables may affect cognition and may be moderated by regular exercise. PMID:26031719
Arginase-I enhances vascular endothelial inflammation and senescence through eNOS-uncoupling.
Zhu, Cuicui; Yu, Yi; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong
2017-02-02
Augmented arginase-II (Arg-II) is implicated in endothelial senescence and inflammation through a mutual positive regulatory circuit with S6K1. This study was conducted to investigate whether Arg-I, another isoform of arginase that has been also reported to play a role in vascular endothelial dysfunction, promotes endothelial senescence through similar mechanisms. The non-senescent human endothelial cells from umbilical veins (passage 2 to 4) were transduced with empty recombinant adenovirus vector (rAd/CMV) as control or rAd/CMV-Arg-I to overexpress Arg-I. Overexpressing Arg-I promoted eNOS-uncoupling, enhanced senescence markers including p53-S15, p21 and senescence-associated β-galactosidase (SA-β-gal) staining, and increased inflammatory vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) as well as monocyte adhesion to endothelial cells without activating S6K1. All the effects of Arg-I were inhibited by the anti-oxidant N-acetylcysteine (NAC). Our study demonstrates that Arg-I promotes endothelial senescence and inflammatory responses through eNOS-uncoupling unrelated to activation of the S6K1 pathway.
Cognitive patterns in relation to biomarkers of cerebrovascular disease and vascular risk factors.
Miralbell, Júlia; López-Cancio, Elena; López-Oloriz, Jorge; Arenillas, Juan Francisco; Barrios, Maite; Soriano-Raya, Juan José; Galán, Amparo; Cáceres, Cynthia; Alzamora, Maite; Pera, Guillem; Toran, Pere; Dávalos, Antoni; Mataró, Maria
2013-01-01
Risk factors for vascular cognitive impairment (VCI) are the same as traditional risk factors for cerebrovascular disease (CVD). Early identification of subjects at higher risk of VCI is important for the development of effective preventive strategies. In addition to traditional vascular risk factors (VRF), circulating biomarkers have emerged as potential tools for early diagnoses, as they could provide in vivo measures of the underlying pathophysiology. While VRF have been consistently linked to a VCI profile (i.e., deficits in executive functions and processing speed), the cognitive correlates of CVD biomarkers remain unclear. In this population-based study, the aim was to study and compare cognitive patterns in relation to VRF and circulating biomarkers of CVD. The Barcelona-AsIA Neuropsychology Study included 747 subjects older than 50, without a prior history of stroke or coronary disease and with a moderate to high vascular risk (mean age, 66 years; 34.1% women). Three cognitive domains were derived from factoral analysis: visuospatial skills/speed, verbal memory and verbal fluency. Multiple linear regression was used to assess relationships between cognitive performance (multiple domains) and a panel of circulating biomarkers, including indicators of inflammation, C-reactive protein (CRP) and resistin, endothelial dysfunction, asymmetric dimethylarginine (ADMA), thrombosis, plasminogen activator inhibitor 1 (PAI-1), as well as traditional VRF, metabolic syndrome and insulin resistance (homeostatic model assessment for insulin resistance index). Analyses were adjusted for age, gender, years of education and depressive symptoms. Traditional VRF were related to lower performance in verbal fluency, insulin resistance accounted for lower performance in visuospatial skills/speed and the metabolic syndrome predicted lower performance in both cognitive domains. From the biomarkers of CVD, CRP was negatively related to verbal fluency performance and increasing ADMA levels were associated with lower performance in verbal memory. Resistin and PAI-1 did not relate to cognitive function performance. Vascular risk factors, and markers of inflammation and endothelial dysfunction predicted lower performance in several cognitive domains. Specifically, cognitive functions associated with CRP are typically affected in VCI and overlap those related to VRF. ADMA indicated a dissociation in the cognitive profile involving verbal memory. These findings suggest that inflammation and endothelial dysfunction might play a role in the predementia cognitive impairment stages. Copyright © 2013 S. Karger AG, Basel.
Bhatta, Maulasri; Chatpar, Krishna; Hu, Zihua; Wang, Joshua J; Zhang, Sarah X
2018-04-27
Persistent vascular injury and degeneration in diabetes are attributed in part to defective reparatory function of angiogenic cells. Our recent work implicates endoplasmic reticulum (ER) stress in high-glucose-induced bone marrow (BM) progenitor dysfunction. Herein, we investigated the in vivo role of ER stress in angiogenic abnormalities of streptozotocin-induced diabetic mice. Our data demonstrate that ER stress markers and inflammatory gene expression in BM mononuclear cells and hematopoietic progenitor cells increase dynamically with disease progression. Increased CHOP and cleaved caspase- 3 levels were observed in BM--derived early outgrowth cells (EOCs) after 3 months of diabetes. Inhibition of ER stress by ex vivo or in vivo chemical chaperone treatment significantly improved the generation and migration of diabetic EOCs while reducing apoptosis of these cells. Chemical chaperone treatment also increased the number of circulating angiogenic cells in peripheral blood, alleviated BM pathology, and enhanced retinal vascular repair following ischemia/reperfusion in diabetic mice. Mechanistically, knockdown of CHOP alleviated high-glucose-induced EOC dysfunction and mitigated apoptosis, suggesting a pivotal role of CHOP in mediating ER stress-associated angiogenic cell injury in diabetes. Together, our study suggests that targeting ER signaling may provide a promising and novel approach to enhancing angiogenic function in diabetes.
Dumnicka, Paulina; Maduzia, Dawid; Ceranowicz, Piotr; Olszanecki, Rafał; Drożdż, Ryszard; Kuśnierz-Cabala, Beata
2017-01-01
Acute pancreatitis (AP) is an inflammatory disease with varied severity, ranging from mild local inflammation to severe systemic involvement resulting in substantial mortality. Early pathologic events in AP, both local and systemic, are associated with vascular derangements, including endothelial activation and injury, dysregulation of vasomotor tone, increased vascular permeability, increased leukocyte migration to tissues, and activation of coagulation. The purpose of the review was to summarize current evidence regarding the interplay between inflammation, coagulation and endothelial dysfunction in the early phase of AP. Practical aspects were emphasized: (1) we summarized available data on diagnostic usefulness of the markers of endothelial dysfunction and activated coagulation in early prediction of severe AP; (2) we reviewed in detail the results of experimental studies and clinical trials targeting coagulation-inflammation interactions in severe AP. Among laboratory tests, d-dimer and angiopoietin-2 measurements seem the most useful in early prediction of severe AP. Although most clinical trials evaluating anticoagulants in treatment of severe AP did not show benefits, they also did not show significantly increased bleeding risk. Promising results of human trials were published for low molecular weight heparin treatment. Several anticoagulants that proved beneficial in animal experiments are thus worth testing in patients. PMID:28208708
Soulaidopoulos, Stergios; Triantafyllidou, Eva; Garyfallos, Alexandros; Kitas, George D; Dimitroulas, Theodoros
2017-08-01
Endothelial dysfunction and microvascular damage constitute the hallmarks of systemic sclerosis (SSc), explaining much of the pathophysiology and clinical manifestations of the disease. Nailfold videocapillaroscopy (NVC) is an established method for the assessment of the microvasculature, aiding in distinguishing different types of structural vascular abnormalities. Until recently, NVC was used in the diagnosis of SSc as well as in the assessment and follow-up of peripheral digital vasculopathy. On the top of digital ulcers, internal organ involvement such as myocardial dysfunction, pulmonary vascular and/or parenchymal lung disease characterizes severe SSc imparting a high risk of mortality. There is growing evidence suggesting that the extent of peripheral microvascular changes reflects the severity of the disease, especially in terms of life-threatening cardiopulmonary complications. The possible use of nailfold videocapillaroscopy as a useful, non-invasive modality to improve the ability to identify patients at higher risk for these devastating complications of the disease remains to be established. The aim of this review is to critically summarize and discuss current literature regarding the relationship between morphological alterations of nailfold dermal papillary vessels and several manifestations of SSc, focusing on visceral organ involvement, as well as their association with surrogate markers of macrovascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Disturbed angiogenesis in systemic sclerosis: high levels of soluble endoglin.
Wipff, J; Avouac, J; Borderie, D; Zerkak, D; Lemarechal, H; Kahan, A; Boileau, C; Allanore, Y
2008-07-01
SSc is a CTD characterized by early generalized microangiopathy with disturbed angiogenesis. Soluble endoglin (sENG), a serum anti-angiogenic protein, has recently been described as a major actor in pre-eclampsia, another severe vascular disease with abnormal angiogenesis. The aim of this study was to investigate, in a cross-sectional study, sENG levels together with other serum vascular markers. Serum levels of sENG were assessed by ELISA in consecutive SSc patients and controls matched for age and sex. We also measured by ELISA serum levels of VEGF and asymmetric dimethylarginine (ADMA), as respective markers of angiogenesis and endothelial dysfunction. We included 235 unrelated subjects: 187 SSc patients and 48 controls. Higher concentrations of sENG (P = 0.002) and sVEGF (P < 0.0001) were found in SSc patients compared with controls whereas there was no difference for ADMA. In multivariate analysis, sENG levels were significantly increased in SSc patients with cutaneous ulcerations (P = 0.0003), positive for ACAs (P = 0.009) and with abnormal diffusing capacity for carbon monoxide divided by alveolar volume (P = 0.03). Soluble ENG levels negatively correlated with ADMA, but no relationship was found between sENG and sVEGF. This study shows increased values of sENG in a large SSc cohort and a relevant association with a vascular phenotype. The predictive value of the biomarker sENG and its potential role on cellular endothelial disturbances remain to be determined.
Alcohol consumption, mediating biomarkers, and risk of type 2 diabetes among middle-aged women.
Beulens, Joline W J; Rimm, Eric B; Hu, Frank B; Hendriks, Henk F J; Mukamal, Kenneth J
2008-10-01
The purpose of this study was to investigate whether adiponectin concentrations and biomarkers of inflammation, endothelial dysfunction, and insulin resistance mediate the association between alcohol consumption and diabetes. In a nested case-control study of 705 women with incident diabetes and 787 matched control subjects, we examined the adjusted relationship between baseline alcohol consumption and risk of diabetes before and after adjustment for markers of inflammation/endothelial dysfunction (C-reactive protein, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, tumor necrosis factor-alpha receptor 2, and interleukin-6), fasting insulin, and adiponectin concentrations. Alcohol consumption was associated with a decreased risk of diabetes (odds ratio per 12.5 g/day increment in alcohol use 0.58; 95% CI 0.49-0.69; P < 0.001). Adjustment for BMI attenuated the association by 25%. None of the markers of inflammation or fasting insulin appeared to account for >2% of the observed relationship. Without adjustment for BMI, these biomarkers individually explained slightly more of the association, but <10% in all cases. Adiponectin accounted for 25% in a fully adjusted model and for 29% without adjustment for BMI. In this population of women, alcohol consumption was inversely associated with risk of type 2 diabetes. Adiponectin appeared to be a mediator of this association, but circulating biomarkers of inflammation, endothelial dysfunction, and fasting insulin did not explain this association. These results suggest that further research is needed into the potentially mediating roles of other biomarkers affected by alcohol consumption.
Vallejo, Susana; Palacios, Erika; Romacho, Tania; Villalobos, Laura; Peiró, Concepción; Sánchez-Ferrer, Carlos F
2014-12-18
Endothelial dysfunction is a crucial early phenomenon in vascular diseases linked to diabetes mellitus and associated to enhanced oxidative stress. There is increasing evidence about the role for pro-inflammatory cytokines, like interleukin-1β (IL-1β), in developing diabetic vasculopathy. We aimed to determine the possible involvement of this cytokine in the development of diabetic endothelial dysfunction, analysing whether anakinra, an antagonist of IL-1 receptors, could reduce this endothelial alteration by interfering with pro-oxidant and pro-inflammatory pathways into the vascular wall. In control and two weeks evolution streptozotocin-induced diabetic rats, either untreated or receiving anakinra, vascular reactivity and NADPH oxidase activity were measured, respectively, in isolated rings and homogenates from mesenteric microvessels, while nuclear factor (NF)-κB activation was determined in aortas. Plasma levels of IL-1β and tumor necrosis factor (TNF)-α were measured by ELISA. In isolated mesenteric microvessels from control rats, two hours incubation with IL-1β (1 to 10 ng/mL) produced a concentration-dependent impairment of endothelium-dependent relaxations, which were mediated by enhanced NADPH oxidase activity via IL-1 receptors. In diabetic rats treated with anakinra (100 or 160 mg/Kg/day for 3 or 7 days before sacrifice) a partial improvement of diabetic endothelial dysfunction occurred, together with a reduction of vascular NADPH oxidase and NF-κB activation. Endothelial dysfunction in diabetic animals was also associated to higher activities of the pro-inflammatory enzymes cyclooxygenase (COX) and the inducible isoform of nitric oxide synthase (iNOS), which were markedly reduced after anakinra treatment. Circulating IL-1β and TNF-α levels did not change in diabetic rats, but they were lowered by anakinra treatment. In this short-term model of type 1 diabetes, endothelial dysfunction is associated to an IL-1 receptor-mediated activation of vascular NADPH oxidase and NF-κB, as well as to vascular inflammation. Moreover, endothelial dysfunction, vascular oxidative stress and inflammation were reduced after anakinra treatment. Whether this mechanism can be extrapolated to a chronic situation or whether it may apply to diabetic patients remain to be established. However, it may provide new insights to further investigate the therapeutic use of IL-1 receptor antagonists to obtain vascular benefits in patients with diabetes mellitus and/or atherosclerosis.
Cardio-oncology: the Nuclear Option.
Alvarez, Jorge A; Russell, Raymond R
2017-04-01
Cardio-oncology focuses increased effort to decrease cancer treatment-related cardiotoxicity while continuing to improve outcomes. We sought to synthesize the latest in nuclear cardiology as it pertains to the assessment of left ventricular function in preventative guidelines and comparison to other modalities, novel molecular markers of pre-clinical cardiotoxicity, and its role in cardiac amyloid diagnosis. Planar ERNA (equilibrium radionuclide angiocardiography) provides a reliable and proven means of monitoring and preventing anthracycline cardiotoxicity, and SPECT ERNA using solid-state gamma cameras may provide reproducible assessments of left ventricular function with reduced radiation exposure. While certain chemotherapeutics have vascular side effects, the use of stress perfusion imaging has still not been adequately studied for routine use. Similarly, markers of apoptosis, inflammation, and sympathetic nerve dysfunction are promising, but are still not ready for uniform usage. SPECT tracers can assist in nonbiopsy diagnosis of cardiac amyloid. Nuclear cardiology is a significant contributor to the multimodality approach to cardio-oncology.
Ogawa-Akiyama, Ayu; Sugiyama, Hitoshi; Kitagawa, Masashi; Tanaka, Keiko; Onishi, Akifumi; Yamanari, Toshio; Morinaga, Hiroshi; Uchida, Haruhito Adam; Nakamura, Kazufumi; Ito, Hiroshi; Wada, Jun
2018-01-01
Cystatin C is a cysteine protease inhibitor that is produced by nearly all human cells. The serum level of cystatin C is a stronger predictor of the renal outcome and the risk of cardiovascular events than the creatinine level. The resistive index (RI) on renal Doppler ultrasonography is a good indicator of vascular resistance as well as the renal outcomes in patients with chronic kidney disease (CKD). However, it is unclear whether serum cystatin C is associated with signs of vascular dysfunction, such as the renal RI. We measured the serum cystatin C levels in 101 CKD patients and investigated the relationships between cystatin C and markers of vascular dysfunction, including the renal RI, ankle-brachial pulse wave velocity (baPWV), intima-media thickness (IMT), and cardiac function. The renal RI was significantly correlated with the serum cystatin C level (p < 0.0001, r = 0.6920). The serum cystatin C level was found to be a significant determinant of the renal RI (p < 0.0001), but not the baPWV, in a multivariate regression analysis. The multivariate odds ratio of the serum cystatin C level for a renal RI of more than 0.66 was statistically significant (2.92, p = 0.0106). The area under the receiver-operating characteristic curve comparing the sensitivity and specificity of cystatin C for predicting an RI of more than 0.66 was 0.882 (cutoff value: 2.04 mg/L). In conclusion, the serum cystatin C level is an independent biomarker associated with the renal RI in patients with CKD.
Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao
2017-03-11
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia
2016-11-01
Cardiovascular diseases as atherosclerosis are associated to an inflammatory state of the vessel wall which is accompanied by endothelial dysfunction, and adherence and activation of circulating inflammatory cells. Hydrogen sulfide, a novel cardiovascular protective gaseous mediator, has been reported to exert anti-inflammatory activity. We have recently demonstrated that the SH containing ACE inhibitor zofenoprilat, the active metabolite of zofenopril, controls the angiogenic features of vascular endothelium through H 2 S enzymatic production by cystathionine gamma lyase (CSE). Based on H 2 S donor/generator property of zofenoprilat, the objective of this study was to evaluate whether zofenoprilat exerts anti-inflammatory activity in vascular cells through its ability to increase H 2 S availability. Here we found that zofenoprilat, in a CSE/H 2 S-mediated manner, abolished all the inflammatory features induced by interlukin-1beta (IL-1β) in human umbilical vein endothelial cells (HUVEC), especially the NF-κB/cyclooxygenase-2 (COX-2)/prostanoid biochemical pathway. The pre-incubation with zofenoprilat/CSE dependent H 2 S prevented IL-1β induced paracellular hyperpermeability through the control of expression and localization of cell-cell junctional markers ZO-1 and VE-cadherin. Moreover, zofenoprilat/CSE dependent H 2 S reduced the expression of the endothelial markers CD40 and CD31, involved in the recruitment of circulating mononuclear cells and platelets. Interestingly, this anti-inflammatory activity was also confirmed in vascular smooth muscle cells and fibroblasts as zofenoprilat reduced, in both cell lines, proliferation, migration and COX-2 expression induced by IL-1β, but independently from the SH moiety and H 2 S availability. These in vitro data document the anti-inflammatory activity of zofenoprilat on vascular cells, reinforcing the cardiovascular protective effect of this multitasking drug. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fibroblast Growth Factor 21 Protects Photoreceptor Function in Type 1 Diabetic Mice.
Fu, Zhongjie; Wang, Zhongxiao; Liu, Chi-Hsiu; Gong, Yan; Cakir, Bertan; Liegl, Raffael; Sun, Ye; Meng, Steven S; Burnim, Samuel B; Arellano, Ivana; Moran, Elizabeth; Duran, Rubi; Poblete, Alexander; Cho, Steve S; Talukdar, Saswata; Akula, James D; Hellström, Ann; Smith, Lois E H
2018-05-01
Retinal neuronal abnormalities occur before vascular changes in diabetic retinopathy. Accumulating experimental evidence suggests that neurons control vascular pathology in diabetic and other neovascular retinal diseases. Therefore, normalizing neuronal activity in diabetes may prevent vascular pathology. We investigated whether fibroblast growth factor 21 (FGF21) prevented retinal neuronal dysfunction in insulin-deficient diabetic mice. We found that in diabetic neural retina, photoreceptor rather than inner retinal function was most affected and administration of the long-acting FGF21 analog PF-05231023 restored the retinal neuronal functional deficits detected by electroretinography. PF-05231023 administration protected against diabetes-induced disorganization of photoreceptor segments seen in retinal cross section with immunohistochemistry and attenuated the reduction in the thickness of photoreceptor segments measured by optical coherence tomography. PF-05231023, independent of its downstream metabolic modulator adiponectin, reduced inflammatory marker interleukin-1β (IL-1β) mRNA levels. PF-05231023 activated the AKT-nuclear factor erythroid 2-related factor 2 pathway and reduced IL-1β expression in stressed photoreceptors. PF-05231023 administration did not change retinal expression of vascular endothelial growth factor A, suggesting a novel therapeutic approach for the prevention of early diabetic retinopathy by protecting photoreceptor function in diabetes. © 2018 by the American Diabetes Association.
Wiseman, Stewart; Marlborough, Fergal; Doubal, Fergus; Webb, David J; Wardlaw, Joanna
2014-01-01
The cause of cerebral small vessel disease is not fully understood, yet it is important, accounting for about 25% of all strokes. It also increases the risk of having another stroke and contributes to about 40% of dementias. Various processes have been implicated, including microatheroma, endothelial dysfunction and inflammation. A previous review investigated endothelial dysfunction in lacunar stroke versus mostly non-stroke controls while another looked at markers of inflammation and endothelial damage in ischaemic stroke in general. We have focused on blood markers between clinically evident lacunar stroke and other subtypes of ischaemic stroke, thereby controlling for stroke in general. We systematically assessed the literature for studies comparing blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-stroke controls or other ischaemic stroke subtypes. We assessed the quality of included papers and meta-analysed results. We split the analysis on time of blood draw in relation to the stroke. We identified 1,468 full papers of which 42 were eligible for inclusion, including 4,816 ischaemic strokes, of which 2,196 were lacunar and 2,500 non-stroke controls. Most studies subtyped stroke using TOAST. The definition of lacunar stroke varied between studies. Markers of coagulation/fibrinolysis (tissue plasminogen activator (tPA), plasminogen activator inhibitor (PAI), fibrinogen, D-dimer) were higher in lacunar stroke versus non-stroke although fibrinogen was no different to non-stroke in the acute phase. tPA and PAI were no different between lacunar and non-lacunar stroke. Fibrinogen and D-dimer were significantly lower in lacunar stroke compared to other ischaemic strokes, both acutely and chronically. Markers of endothelial dysfunction (homocysteine, von Willebrand Factor (vWF), E-selectin, P-selectin, intercellular adhesion molecule-1 (ICAM), vascular cellular adhesion molecule-1 (VCAM)) were higher or had insufficient or conflicting data (P-selectin, VCAM) in lacunar stroke versus non-stroke. Compared to other ischaemic stroke subtypes, homocysteine did not differ in lacunar stroke while vWF was significantly lower in lacunar stroke acutely [atherothrombotic standardized mean difference, SMD, -0.34 (-0.61, -0.08); cardioembolic SMD -0.38 (-0.62, -0.14)], with insufficient data chronically. Markers of inflammation (C-reactive protein (CRP), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6)) were higher in lacunar stroke versus non-stroke, although there were no studies measuring TNF-α chronically and the sole study measuring IL-6 chronically showed no difference between lacunar stroke and non-stroke. Compared to other ischaemic stroke subtypes, there was no difference (CRP) or insufficient or conflicting data (TNF-α) to lacunar stroke. IL-6 was significantly lower [atherothrombotic SMD -0.37 (-0.63, -0.10); cardioembolic SMD -0.52 (-0.82, -0.22)] in lacunar stroke acutely, with insufficient data chronically. Lacunar stroke is an important stroke subtype. More studies comparing lacunar stroke to non-lacunar stroke specifically, rather than to non-stroke controls, are needed. Prospective studies with measurements taken well after the acute event are more likely to be helpful in determining pathogenesis. The available data in this review were limited and do not exclude the possibility that peripheral inflammatory processes including endothelial dysfunction are associated with lacunar stroke and cerebral small vessel disease. © 2013 S. Karger AG, Basel
GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.
Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng
2016-02-01
The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. Copyright © 2016 Elsevier GmbH. All rights reserved.
Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.
Sankrityayan, Himanshu; Majumdar, Anuradha S
2016-01-01
Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.
Increased endothelial microparticles and oxidative stress at extreme altitude.
Pichler Hefti, Jacqueline; Leichtle, Alexander; Stutz, Monika; Hefti, Urs; Geiser, Thomas; Huber, Andreas R; Merz, Tobias M
2016-04-01
Hypoxia and oxidative stress affect endothelial function. Endothelial microparticles (MP) are established measures of endothelial dysfunction and influence vascular reactivity. To evaluate the effects of hypoxia and antioxidant supplementation on endothelial MP profiles, a double-blind, placebo-controlled trial, during a high altitude expedition was performed. 29 participants were randomly assigned to a treatment group (n = 14), receiving vitamin E, C, A, and N-acetylcysteine daily, and a control group (n = 15), receiving placebo. Blood samples were obtained at 490 m (baseline), 3530, 4590, and 6210 m. A sensitive tandem mass spectrometry method was used to measure 8-iso-prostaglandin F2α and hydroxyoctadecadienoic acids as markers of oxidative stress. Assessment of MP profiles including endothelial activation markers (CD62+MP and CD144+MP) and cell apoptosis markers (phosphatidylserine+MP and CD31+MP) was performed using a standardized flow cytometry-based protocol. 15 subjects reached all altitudes and were included in the final analysis. Oxidative stress increased significantly at altitude. No statistically significant changes were observed comparing baseline to altitude measurements of phosphatidylserine expressing MP (p = 0.1718) and CD31+MP (p = 0.1305). Compared to baseline measurements, a significant increase in CD62+MP (p = 0.0079) and of CD144+MP was detected (p = 0.0315) at high altitudes. No significant difference in any MP level or oxidative stress markers were found between the treatment and the control group. Hypobaric hypoxia is associated with increased oxidative stress and induces a significant increase in CD62+ and CD144+MP, whereas phosphatidylserine+MP and CD31+MP remain unchanged. This indicates that endothelial activation rather than an apoptosis is the primary factor of hypoxia induced endothelial dysfunction.
Gelinas, Jinelle C; Lewis, Nia C; Harper, Megan I; Melzer, Bernie; Agar, Gloria; Rolf, J Douglass; Eves, Neil D
2017-11-01
What is the central question of this study? Chronic obstructive pulmonary disease (COPD) is associated with endothelial dysfunction, arterial stiffness and systemic inflammation, which are linked to increased cardiovascular disease risk. We asked whether periodized aerobic exercise training could improve vascular structure and function in patients with COPD. What is the main finding and its importance? Eight weeks of periodized aerobic training did not improve endothelial function, arterial stiffness or systemic inflammation in COPD, despite improvements in aerobic capacity, blood pressure and dyspnoea. Short-term training programmes may not be long enough to improve vascular-related cardiovascular risk in COPD. Chronic obstructive pulmonary disease (COPD) has been associated with endothelial dysfunction and arterial stiffening, which are predictive of future cardiovascular events. Although aerobic exercise improves vascular function in healthy individuals and those with chronic disease, it is unknown whether aerobic exercise can positively modify the vasculature in COPD. We examined the effects of 8 weeks of periodized aerobic training on vascular structure and function and inflammation in 24 patients with COPD (age, 69 ± 7 years; forced expiratory volume in 1 second as a percentage of predicted (FEV 1 %pred), 68 ± 19%) and 20 matched control subjects (age, 64 ± 5 years; FEV 1 %pred, 113 ± 16%) for comparison. Endothelial function was measured using brachial artery flow-mediated dilatation, whereas central and peripheral pulse wave velocity, carotid artery intima-media thickness, carotid compliance, distensibility and β-stiffness index were measured using applanation tonometry and ultrasound. Peak aerobic power (V̇O2 peak ) was measured using an incremental cycling test. Upper and lower body cycling training was performed three times per week for 8 weeks, and designed to optimize vascular adaptation by increasing and sustaining vascular shear stress. Flow-mediated dilatation was not increased in COPD patients (+0.15 ± 2.27%, P = 0.82) or control subjects (+0.34 ± 3.20%, P = 0.64) and was not different between groups (P = 0.68). No significant improvements in central pulse wave velocity (COPD, +0.30 ± 1.79 m s -1 versus control subjects, -0.34 ± 1.47 m s -1 ) or other markers of vascular structure or function were found within or between groups. The V̇O2 peak increased significantly in COPD and control subjects, and was greater in control subjects (1.6 ± 1.4 versus 4.1 ± 3.7 ml kg min -1 , P = 0.003), while blood pressure and dyspnoea were reduced in COPD patients (P < 0.05). These findings demonstrate that 8 weeks of aerobic training improved cardiorespiratory fitness and blood pressure in COPD but had little effect on other established markers of cardiovascular disease risk. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Vascular rarefaction mediates whitening of brown fat in obesity
Shimizu, Ippei; Aprahamian, Tamar; Kikuchi, Ryosuke; Shimizu, Ayako; Papanicolaou, Kyriakos N.; MacLauchlan, Susan; Maruyama, Sonomi; Walsh, Kenneth
2014-01-01
Brown adipose tissue (BAT) is a highly vascularized organ with abundant mitochondria that produce heat through uncoupled respiration. Obesity is associated with a reduction of BAT function; however, it is unknown how obesity promotes dysfunctional BAT. Here, using a murine model of diet-induced obesity, we determined that obesity causes capillary rarefaction and functional hypoxia in BAT, leading to a BAT “whitening” phenotype that is characterized by mitochondrial dysfunction, lipid droplet accumulation, and decreased expression of Vegfa. Targeted deletion of Vegfa in adipose tissue of nonobese mice resulted in BAT whitening, supporting a role for decreased vascularity in obesity-associated BAT. Conversely, introduction of VEGF-A specifically into BAT of obese mice restored vascularity, ameliorated brown adipocyte dysfunction, and improved insulin sensitivity. The capillary rarefaction in BAT that was brought about by obesity or Vegfa ablation diminished β-adrenergic signaling, increased mitochondrial ROS production, and promoted mitophagy. These data indicate that overnutrition leads to the development of a hypoxic state in BAT, causing it to whiten through mitochondrial dysfunction and loss. Furthermore, these results link obesity-associated BAT whitening to impaired systemic glucose metabolism. PMID:24713652
Endothelial dysfunction and amyloid-β-induced neurovascular alterations
Koizumi, Kenzo; Wang, Gang; Park, Laibaik
2015-01-01
Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the nonselective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca2+ overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781
The Whitening of Brown Fat and Its Implications for Weight Management in Obesity.
Shimizu, Ippei; Walsh, Kenneth
2015-06-01
Systemic inflammation resulting from dysfunction of white adipose tissue (WAT) accelerates the pathologies of diabetes and cardiovascular diseases. In contrast to WAT, brown adipose tissue (BAT) is abundant in mitochondria that produce heat by uncoupling respiratory chain process of ATP synthesis. Besides BAT's role in thermogenesis, accumulating evidence has shown that it is involved in regulating systemic metabolism. Studies have analyzed the "browning" processes of WAT as a means to combat obesity, whereas few studies have focused on the impact and molecular mechanisms that contribute to obesity-linked BAT dysfunction--a process that is associated with the "whitening" of this tissue. Compared to WAT, a dense vascular network is required to support the high energy consumption of BAT. Recently, vascular rarefaction was shown to be a significant causal factor in the whitening of BAT in mouse models. Vascular insufficiency leads to mitochondrial dysfunction and loss in BAT and contributes to systemic insulin resistance. These data suggest that BAT "whitening," resulting from vascular dysfunction, can impact obesity and obesity-linked diseases. Conversely, agents that promote BAT function could have utility in the treatment of these conditions.
El-Awady, Mohammed S; Nader, Manar A; Sharawy, Maha H
2017-10-01
Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Vascular dysfunctions following spinal cord injury
Popa, F; Grigorean, VT; Onose, G; Sandu, AM; Popescu, M; Burnei, G; Strambu, V; Sinescu, C
2010-01-01
The aim of this article is to analyze the vascular dysfunctions occurring after spinal cord injury (SCI). Vascular dysfunctions are common complications of SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. Neuroanatomy and physiology of autonomic nervous system, sympathetic and parasympathetic, is reviewed. SCI implies disruption of descendent pathways from central centers to spinal sympathetic neurons, originating in intermediolateral nuclei of T1–L2 cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant vascular dysfunction. Spinal shock occurs during the acute phase following SCI and it is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe arterial hypotension and bradycardia. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Arterial hypotension with orthostatic hypotension occurs in both acute and chronic phases. The etiology is multifactorial. We described a few factors influencing the orthostatic hypotension occurrence in SCI: sympathetic nervous system dysfunction, low plasma catecholamine levels, rennin–angiotensin–aldosterone activity, peripheral alpha–adrenoceptor hyperresponsiveness, impaired function of baroreceptors, hyponatremia and low plasmatic volume, cardiovascular deconditioning, morphologic changes in sympathetic neurons, plasticity within spinal circuits, and motor deficit leading to loss of skeletal muscle pumping activity. Additional associated cardiovascular concerns in SCI, such as deep vein thrombosis and long–term risk for coronary heart disease and systemic atherosclerosis are also described. Proper prophylaxis, including non–pharmacologic and pharmacological strategies, diminishes the occurrence of the vascular dysfunction following SCI. Each vascular disturbance requires a specific treatment. PMID:20945818
Capellini, Verena Kise; Baldo, Caroline Floreoto; Celotto, Andréa Carla; Batalhão, Marcelo Eduardo; Cárnio, Evelin Capellari; Rodrigues, Alfredo José; Evora, Paulo Roberto Barbosa
2010-08-01
To verify if an experimental model of alloxan-diabetic rats promotes oxidative stress, reduces nitric oxide bioavailability and causes vascular dysfunction, and to evaluate the effect of N-acetylcysteine (NAC) on these parameters. Alloxan-diabetic rats were treated or not with NAC for four weeks. Plasmatic levels of malondialdehyde (MDA) and nitrite/nitrate (NOx), the endothelial and inducible nitric oxide synthase (eNOS and iNOS) immunostaining and the vascular reactivity of aorta were compared among diabetic (D), treated diabetic (TD) and control (C) rats. MDA levels increased in D and TD. NOx levels did not differ among groups. Endothelial eNOS immunostaining reduced and adventitial iNOS increased in D and TD. The responsiveness of rings to acetylcholine, sodium nitroprusside, and phenylephrine did not differ among groups. NAC had no effect on the evaluated parameters and this experimental model did not promote vascular dysfunction despite the development of oxidative stress.
Moreno Sánchez, T; Martín Hervás, C; Sola Martínez, E; Moreno Rodríguez, F
2014-01-01
The main objectives of this study were to evaluate the sensitivity and specificity of duplex Doppler ultrasonography in the study of hemodialysis peripheral vascular access dysfunction and to analyze the resistance index and flow in the afferent artery. We prospectively studied 178 patients with 178 peripheral vascular accesses that were dysfunctional in at least three consecutive hemodialysis sessions. Patients underwent duplex Doppler ultrasonography and clinical and laboratory follow-up for three months (provided angiography findings were negative). We calculated the sensitivity, specificity, predictive values, and coefficients of probability. We studied the morphology of the afferent artery, the arteriovenous anastomosis, and the efferent vein, and we measured the resistance index and the flow of the afferent artery, the diameter of the anastomosis, and the flow and peak systolic velocity in the efferent vein. The final sample consisted of 159 patients. The sensitivity, specificity, positive and negative predictive values, and positive and negative coefficients of probability were 0,98 (95% CI: 0,88-1.00), 0,74 (95% CI: 0,66-0,81), 0,96, 0,82, 3.7, and 0,03, respectively. The resistance index was less than 0,5 in 78.5% of the peripheral vascular accesses with normal function and greater than 0,5 in 86.1% of the dysfunctional peripheral vascular accesses. We found aneurysms in 19 of the native peripheral vascular accesses and pseudoaneurysms in 7 of the prosthetic grafts. Inverted flow was seen in 57 peripheral vascular accesses. Duplex Doppler ultrasonography is an efficacious method for detecting and characterizing stenosis and thrombosis in peripheral vascular accesses, and it provides information about the morphology and hemodynamics. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.
Targeting vascular (endothelial) dysfunction
Steven, Sebastian; Weber, Alina; Shuvaev, Vladimir V.; Muzykantov, Vladimir R.; Laher, Ismail; Li, Huige; Lamas, Santiago
2016-01-01
Abstract Cardiovascular diseases are major contributors to global deaths and disability‐adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti‐inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:27187006
Tydén, Helena; Lood, Christian; Gullstrand, Birgitta; Nielsen, Christoffer Tandrup; Heegaard, Niels H H; Kahn, Robin; Jönsen, Andreas; Bengtsson, Anders A
2017-01-01
Objectives Endothelial dysfunction may be connected to cardiovascular disease (CVD) in systemic lupus erythematosus (SLE). Type I interferons (IFNs) are central in SLE pathogenesis and are suggested to induce both endothelial dysfunction and platelet activation. In this study, we investigated the interplay between endothelial dysfunction, platelets and type I IFN in SLE. Methods We enrolled 148 patients with SLE and 79 sex-matched and age-matched healthy controls (HCs). Type I IFN activity was assessed with a reporter cell assay and platelet activation by flow cytometry. Endothelial dysfunction was assessed using surrogate markers of endothelial activation, soluble vascular cell adhesion molecule-1 (sVCAM-1) and endothelial microparticles (EMPs), and finger plethysmograph to determine Reactive Hyperaemia Index (RHI). Results In patients with SLE, type I IFN activity was associated with endothelial activation, measured by high sVCAM-1 (OR 1.68, p<0.01) and elevated EMPs (OR 1.40, p=0.03). Patients with SLE with high type I IFN activity had lower RHI than HCs (OR 2.61, p=0.04), indicating endothelial dysfunction. Deposition of complement factors on platelets, a measure of platelet activation, was seen in patients with endothelial dysfunction. High levels of sVCAM-1 were associated with increased deposition of C4d (OR 4.57, p<0.01) and C1q (OR 4.10, p=0.04) on platelets. High levels of EMPs were associated with C4d deposition on platelets (OR 3.64, p=0.03). Conclusions Endothelial dysfunction was associated with activation of platelets and the type I IFN system. We suggest that an interplay between the type I IFN system, injured endothelium and activated platelets may contribute to development of CVD in SLE. PMID:29119007
Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie
2016-11-01
The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.
Sverdlov, A L; Ngo, D T M; Nightingale, A K; Rajendran, S; Mishra, K; Heresztyn, T; Ritchie, R H; Marwick, T H; Frenneaux, M P; Horowitz, J D
2011-06-30
Nitric oxide (NO) is a modulator of left ventricular hypertrophy (LVH) and myocardial relaxation. The impact of NO availability on development of LVH has never been demonstrated in humans. We tested the hypotheses that elevation of asymmetric dimethylarginine (ADMA) concentrations (biochemical marker of decreased NO generation), and impairment of vascular responsiveness to NO donor GTN, would each predict the presence of LVH and associated LV diastolic dysfunction in a normal aging population. In 74 subjects aged 68±6 years, LV volumes and mass indexed to height(2.7) (LVMI) were calculated from cardiac MRI. Despite the absence of clinically-defined LVH, there was a relationship (r=0.29; p=0.01) between systolic BP and LVMI. Both elevation of ADMA levels to the highest quartile or impairment of GTN responsiveness (determined by applanation tonometry) to the lowest quartile were determinants of LVMI independent of systolic BP (p=0.01 and p=0.03, respectively). Filling pressure (E/E' ratio from echocardiography) was increased in patients with impaired vascular NO responsiveness (p<0.05) irrespective of LVMI. ADMA remained a significant determinant of LVMI on multivariate analysis. These data imply that NO bioavailability within the myocardium modulates earliest stages of LVH development and facilitates development of diastolic dysfunction at a given LV mass. Copyright © 2011. Published by Elsevier Inc.
Treatment of erectile dysfunction in patients with cardiovascular disease : guide to drug selection.
Jackson, Graham
2004-01-01
Erectile dysfunction (ED) is common in cardiac patients and shares the same risk factors--smoking, hypertension, hyperlipidaemia and diabetes mellitus. Sexual activity is not unduly stressful to the heart and, providing patients are properly assessed using established guidelines, sexual intercourse can be enjoyed without increased risk. The treatment of ED in patients with cardiovascular disease has been transformed by the introduction of the oral phosphodiesterase type 5 inhibitors, the first of which was sildenafil. Success in restoring erectile function is possible in up to 80% of patients (depending on the aetiology) with minimal adverse effects. A synergistic hypotensive effect with nitrates, and almost certainly nicorandil, is the only major contraindication. ED in asymptomatic patients may be a marker of silent vascular disease or increased vascular risk factors and should alert the physician to the need for cardiac risk screening. ED is common in patients with cardiovascular disease and should be routinely enquired about. ED is a distressing condition for the man and his partner, and severely impairs quality of life. Patients with cardiovascular disease and patients with diabetes represent the largest group of patients with ED, the majority of whom benefit from the drug therapies currently available. Addressing ED in patients with cardiovascular disease can lead to a substantial improvement in quality of life and success is not difficult to achieve.
Obstructive sleep apnea as an independent stroke risk factor: possible mechanisms.
Godoy, Jaime; Mellado, Patricio; Tapia, Jorge; Santín, Julia
2009-03-01
Obstructive Sleep Apnea (OSA) is a prevalent disease that has emerged as a new cerebrovascular disease (CVD) risk factor, which is independent of its association to hypertension, age and other known conditions that increase CVD. The mechanisms involved in this relation are most likely induced by the periodic hypoxia/reoxygenation that characteristically occurs in OSA, which results in oxidative stress, endothelial dysfunction and activation of the inflammatory cascade, all of which favor atherogenesis. Numerous markers of these changes have been reported in OSA patients, including increased circulating free radicals, increased lipid peroxidation, decreased antioxidant capacity, elevation of tumor necrosis factor and interleukines, increased levels of proinflammatory nuclear transcription factor kappa B, decreased circulating nitric oxide, elevation of vascular adhesion molecules and vascular endothelial growth factor. In addition, several authors have described that Continuous Positive Airway Pressure, the standard OSA therapy, reverts these abnormalities. Further research is needed in order to better clarify the complex mechanisms that underlie the relation between OSA, atherogenesis and CVD which most likely will have significant clinical impact.
Han, KA; Patel, Y; Lteif, AA; Chisholm, R; Mather, KJ
2011-01-01
Background Individual effects of hyperglycemia and obesity to impair vascular health are recognized. However, the relative contributions of dysglycemia versus other obesity-related traits to vascular dysfunction have not been systematically evaluated. Methods We undertook a cross-sectional evaluation of factors contributing to vascular function in 271 consecutive subjects, categorized as non-obese normal glucose tolerant (n=115), non-obese dysglycemic (n=32), obese normal glucose tolerant (n=57), obese dysglycemic (n=38), or type 2 diabetic (n=29). Vascular function was measured invasively as leg blood flow responses to methacholine chloride, an endothelium-dependent vasodilator. Categorical and continuous analyses were used to assess the contributions of hyperglycemia to vascular dysfunction. Results Even among normoglycemic subjects, obese subjects had impaired vascular function compared to non-obese subjects (p=0.004). Vascular function was also impaired in non-obese dysglycemic subjects (p=0.04 versus non-obese normoglycemic subjects), to a level comparable to normoglycemic obese subjects. Within obese subject groups, gradations of dysglycemia including the presence of diabetes were not associated with further worsening of these vascular responses beyond the effect of obesity alone (p=NS comparing all obese groups, p<0.001 versus lean normoglycemic subjects). In univariate and multivariable modeling analyses we found that effects of glycemia were less powerful than effects of insulin resistance and obesity on vascular dysfunction. Conclusions Dysglycemia contributes to impaired vascular function in non-obese subjects, but obesity and insulin resistance are more important determinants of vascular function in obese and diabetic subjects. PMID:21309061
Aversa, Antonio; Letizia, Claudio; Francomano, Davide; Bruzziches, Roberto; Natali, Marco; Lenzi, Andrea
2012-10-18
It is known that the incidence of endothelial dysfunction in patients with vascular erectile dysfunction (ED) is increased. The effects of daily vardenafil on endothelial function and arterial stiffness in patients with erectile dysfunction (ED) have never been investigated. 20 men complaining vascular ED (mean IIEF5=12 ± 6 and peak systolic velocity-PSV=24 ± 2 cm/s) were enrolled in a 4-week, randomized, double-blind, double-dummy, crossover study (mean age 59 ± 11) and received either vardenafil 10mg daily or 20mg on-demand with a two-week washout interval. Primary endpoints were variation from baseline of reactive hyperemia (RH) and augmentation index (AI) calculated by fingertip peripheral arterial tonometry (PAT) device. Secondary endpoints were variations of IIEF-5 and SEP3 scores from baseline and plasma surrogate markers of endothelial function, i.e. endothelin-1 (ET-1) and adrenomedullin (ADM). Patients who took daily vardenafil (vs. on-demand) reported significant (P<0.01) improvements in arterial stiffness as evaluated by AI and reduction of plasma ADM levels (p<0.05) but no improvement in average RH. When corrected for heart rate, ADM showed a strong direct relationship with AI (r(2)=0.22; p<0.005). The proportion of patients with an IIEF5 score of ≥ 22 or in SEP3 percentage of success rates were similar. Each treatment resulted in significantly greater IIEF5 scores (p<0.001) and better SEP3 response rates (p<0.0001) compared with baseline. We demonstrated that daily vardenafil improves arterial stiffness and erectile function measurements in men with severe vasculogenic ED. This effect may be mediated, at least in part, by a reduction in ADM circulating levels. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Molecular mechanisms of maternal vascular dysfunction in preeclampsia.
Goulopoulou, Styliani; Davidge, Sandra T
2015-02-01
In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
2010-01-01
Background Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. Methods/Design Design: A cross-sectional multicenter study with six research groups. Subjects: From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. Primary measurements: We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro), central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse) and SphymgoCor System Px (Pulse Wave Analysis), pulse wave velocity (PWV) with SphymgoCor System Px (Pulse Wave Velocity), nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X), physical fitness with the cycle ergometer (PWC-170), carotid intima-media thickness by ultrasound (Micromax), and endothelial dysfunction biological markers (endoglin and osteoprotegerin). Discussion Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical exercise and diet. Trial Registration Clinical Trials.gov Identifier: NCT01083082 PMID:20459634
Bailey-Downs, Lora C; Sosnowska, Danuta; Toth, Peter; Mitschelen, Matthew; Gautam, Tripti; Henthorn, Jim C; Ballabh, Praveen; Koller, Akos; Farley, Julie A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan
2012-06-01
Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1-deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity.
Bailey-Downs, Lora C.; Sosnowska, Danuta; Toth, Peter; Mitschelen, Matthew; Gautam, Tripti; Henthorn, Jim C.; Ballabh, Praveen; Koller, Akos; Farley, Julie A.; Sonntag, William E.; Csiszar, Anna
2012-01-01
Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1–deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity. PMID:22080499
Ding, Jie; Wai, Khin Lay; McGeechan, Kevin; Ikram, M Kamran; Kawasaki, Ryo; Xie, Jing; Klein, Ronald; Klein, Barbara B K; Cotch, Mary Frances; Wang, Jie Jin; Mitchell, Paul; Shaw, Jonathan E; Takamasa, Kayama; Sharrett, A Richey; Wong, Tien Y
2014-02-01
Microvascular dysfunction has been suggested to be a major pathogenic factor for the development of hypertension. We examined the association between retinal vascular caliber, a marker of systemic microvascular dysfunction, and incident hypertension on a meta-analysis of individual participant data. We performed a systematic review with relevant studies identified through a search of electronic databases, a review of reference lists, and correspondence with experts. Studies were included if participants were selected from a general population, retinal vascular caliber was measured from photographs using computer-assisted methods at baseline, and individuals were followed up to ascertain the incidence of hypertension. Prespecified individual recorded data from six population-based prospective cohort studies were included. Discrete time proportional odds models were constructed for each study with adjustment for hypertension risk factors. Log odds ratios (ORs) per 20-μm difference were pooled using random-effects meta-analysis. Among 10 229 participants without prevalent hypertension, diabetes, or cardiovascular disease, 2599 developed new-onset hypertension during median follow-up periods ranging from 2.9 to 10 years. Both narrower retinal arterioles [pooled multivariate-adjusted OR per 20-μm difference 1.29, 95% confidence interval (CI) 1.20-1.39] and wider venules (OR per 20-μm difference 1.14, 95% CI 1.06-1.23) were associated with an increased risk of hypertension. Each 20 μm narrower arterioles at baseline were associated with a 1.12 mmHg (95% CI 0.25-1.99) greater increase in SBP over 5 years. Retinal arteriolar narrowing and venular widening were independently associated with an increased risk of hypertension. These findings underscore the importance of microvascular remodeling in the pathogenesis of hypertension.
Disordered vascular compliance in haemochromatosis.
Cash, W J; O'Neill, S; O'Donnell, M E; McCance, D R; Young, I S; McEneny, J; Cadden, I S; McDougall, Neil I; Callender, M E
2014-06-01
A relationship may exist between body iron stores, endothelial dysfunction and overall cardiovascular risk. To compare vascular compliance, biochemical endothelial function and antioxidant status between patients with homozygous hereditary haemochromatosis and healthy controls. Haemochromatosis patients and healthy controls were recruited. Measures of vascular compliance were assessed by applanation tonometry. Serological markers of endothelial function (plasma lipid hydroperoxides, cell adhesion molecules), antioxidant levels (ascorbate, lipid soluble antioxidants) and high-sensitivity C-reactive protein (CRP) were also measured. Thirty-five hereditary haemochromatosis patients (ten females, mean age 54.6) and 36 controls (27 female, mean age 54.0) were recruited. Haemochromatosis patients had significantly higher systolic and diastolic blood pressures. Pulse wave velocity (PWV) was significantly higher in male haemochromatosis patients (9.90 vs. 8.65 m/s, p = 0.048). Following adjustment for age and blood pressure, male haemochromatosis patients continued to have a trend for higher PWVs (+1.37 m/s, p = 0.058). Haemochromatosis patients had significantly lower levels of ascorbate (46.11 vs. 72.68 μmol/L, p = 0.011), retinol (1.17 vs. 1.81 μmol/L, p = 0.001) and g-tocopherol (2.51 vs. 3.14 μmol/L, p = 0.011). However, there was no difference in lipid hydroperoxides (0.46 vs. 0.47 nmol/L, p = 0.94), cell adhesion molecule levels (ICAM: 348.12 vs. 308.03 ng/mL, p = 0.32 and VCAM: 472.78 vs. 461.31 ng/mL, p = 0.79) or high-sensitivity CRP (225.01 vs. 207.13 mg/L, p = 0.32). Haemochromatosis is associated with higher PWVs in males and diminished antioxidants across the sexes but no evidence of endothelial dysfunction or increased lipid peroxidation.
Elinoff, Jason M; Rame, J Eduardo; Forfia, Paul R; Hall, Mary K; Sun, Junfeng; Gharib, Ahmed M; Abd-Elmoniem, Khaled; Graninger, Grace; Harper, Bonnie; Danner, Robert L; Solomon, Michael A
2013-04-02
Pulmonary arterial hypertension is a rare disorder associated with poor survival. Endothelial dysfunction plays a central role in the pathogenesis and progression of pulmonary arterial hypertension. Inflammation appears to drive this dysfunctional endothelial phenotype, propagating cycles of injury and repair in genetically susceptible patients with idiopathic and disease-associated pulmonary arterial hypertension. Therapy targeting pulmonary vascular inflammation to interrupt cycles of injury and repair and thereby delay or prevent right ventricular failure and death has not been tested. Spironolactone, a mineralocorticoid and androgen receptor antagonist, has been shown to improve endothelial function and reduce inflammation. Current management of patients with pulmonary arterial hypertension and symptoms of right heart failure includes use of mineralocorticoid receptor antagonists for their diuretic and natriuretic effects. We hypothesize that initiating spironolactone therapy at an earlier stage of disease in patients with pulmonary arterial hypertension could provide additional benefits through anti-inflammatory effects and improvements in pulmonary vascular function. Seventy patients with pulmonary arterial hypertension without clinical evidence of right ventricular failure will be enrolled in a randomized, double-blinded, placebo-controlled trial to investigate the effect of early treatment with spironolactone on exercise capacity, clinical worsening and vascular inflammation in vivo. Our primary endpoint is change in placebo-corrected 6-minute walk distance at 24 weeks and the incidence of clinical worsening in the spironolactone group compared to placebo. At a two-sided alpha level of 0.05, we will have at least 84% power to detect an effect size (group mean difference divided by standard deviation) of 0.9 for the difference in the change of 6-minute walk distance from baseline between the two groups. Secondary endpoints include the effect of spironolactone on the change in placebo-corrected maximal oxygen consumption; plasma markers of vascular inflammation and peripheral blood mononuclear cell gene expression profiles; sympathetic nervous system activation, renin-angiotensin-aldosterone system activation and sex hormone metabolism; and right ventricular structure and function using echocardiography and novel high-resolution magnetic resonance imaging-based techniques. Safety and tolerability of spironolactone will be assessed with periodic monitoring for hyperkalemia and renal insufficiency as well as the incidence of drug discontinuation for untoward effects. ClinicalTrials.gov: NCT01712620.
2013-01-01
Background Pulmonary arterial hypertension is a rare disorder associated with poor survival. Endothelial dysfunction plays a central role in the pathogenesis and progression of pulmonary arterial hypertension. Inflammation appears to drive this dysfunctional endothelial phenotype, propagating cycles of injury and repair in genetically susceptible patients with idiopathic and disease-associated pulmonary arterial hypertension. Therapy targeting pulmonary vascular inflammation to interrupt cycles of injury and repair and thereby delay or prevent right ventricular failure and death has not been tested. Spironolactone, a mineralocorticoid and androgen receptor antagonist, has been shown to improve endothelial function and reduce inflammation. Current management of patients with pulmonary arterial hypertension and symptoms of right heart failure includes use of mineralocorticoid receptor antagonists for their diuretic and natriuretic effects. We hypothesize that initiating spironolactone therapy at an earlier stage of disease in patients with pulmonary arterial hypertension could provide additional benefits through anti-inflammatory effects and improvements in pulmonary vascular function. Methods/Design Seventy patients with pulmonary arterial hypertension without clinical evidence of right ventricular failure will be enrolled in a randomized, double-blinded, placebo-controlled trial to investigate the effect of early treatment with spironolactone on exercise capacity, clinical worsening and vascular inflammation in vivo. Our primary endpoint is change in placebo-corrected 6-minute walk distance at 24 weeks and the incidence of clinical worsening in the spironolactone group compared to placebo. At a two-sided alpha level of 0.05, we will have at least 84% power to detect an effect size (group mean difference divided by standard deviation) of 0.9 for the difference in the change of 6-minute walk distance from baseline between the two groups. Secondary endpoints include the effect of spironolactone on the change in placebo-corrected maximal oxygen consumption; plasma markers of vascular inflammation and peripheral blood mononuclear cell gene expression profiles; sympathetic nervous system activation, renin-angiotensin-aldosterone system activation and sex hormone metabolism; and right ventricular structure and function using echocardiography and novel high-resolution magnetic resonance imaging-based techniques. Safety and tolerability of spironolactone will be assessed with periodic monitoring for hyperkalemia and renal insufficiency as well as the incidence of drug discontinuation for untoward effects. Trial registration ClinicalTrials.gov: NCT01712620 PMID:23547564
Pulse Doppler ultrasound as a tool for the diagnosis of chronic testicular dysfunction in stallions
Ortiz-Rodriguez, Jose M.; Anel-Lopez, Luis; Martín-Muñoz, Patricia; Álvarez, Mercedes; Gaitskell-Phillips, Gemma; Anel, Luis; Rodríguez-Medina, Pedro; Peña, Fernando J.
2017-01-01
Testicular function is particularly susceptible to vascular insult, resulting in a negative impact on sperm production and quality of the ejaculate. A prompt diagnosis of testicular dysfunction enables implementation of appropriate treatment, hence improving fertility forecasts for stallions. The present research aims to: (1) assess if Doppler ultrasonography is a good tool to diagnose stallions with testicular dysfunction; (2) to study the relationship between Doppler parameters of the testicular artery and those of sperm quality assessed by flow cytometry and (3) to establish cut off values to differentiate fertile stallions from those with pathologies causing testicular dysfunction. A total of 10 stallions (n: 7 healthy stallions and n: 3 sub-fertile stallions) were used in this study. Two ejaculates per stallion were collected and preserved at 5°C in a commercial extender. The semen was evaluated at T0, T24 and T48h by flow cytometry. Integrity and viability of sperm (YoPro®-1/EthD-1), mitochondrial activity (MitoTracker® Deep Red FM) and the DNA fragmentation index (Sperm Chromatin Structure Assay) were assessed. Doppler parameters were measured at three different locations on the testicular artery (Supratesticular artery (SA); Capsular artery (CA) and Intratesticular artery (IA)). The Doppler parameters calculated were: Resistive Index (RI), Pulsatility Index (PI), Peak Systolic Velocity (PSV), End Diastolic Velocity (EDV), Time Average Maximum Velocity (TAMV), Total Arterial Blood Flow (TABF) and TABF rate. The capsular artery was the most reliable location to carry out spectral Doppler assessment, since blood flow parameters of this artery were most closely correlated with sperm quality parameters. Significant differences in all the Doppler parameters studied were observed between fertile and subfertile stallions (p ≤ 0.05). The principal components analysis assay determined that fertile stallions are characterized by high EDV, TAMV, TABF and TABF rate values (high vascular perfusion). In contrast, subfertile stallions tend to present high values of PI and RI (high vascular resistance). The ROC curves revealed that the best Doppler parameters to predict sperm quality in stallions were: Doppler velocities (PSV, EDV and TAMV), the diameter of the capsular artery and TABF parameters (tissue perfusion parameters). Cut off values were established using a Youden´s Index to identify fertile stallions from stallions with testicular dysfunction. Spectral Doppler ultrasound is a good predictive tool for sperm quality since correlations were determined among Doppler parameters and markers of sperm quality. Doppler ultrasonography could be a valuable diagnostic tool for use by clinical practitioners for the diagnosis of stallions with testicular dysfunction and could be a viable alternative to invasive procedures traditionally used for diagnosis of sub-fertility disorders. PMID:28558006
Chen, Hongying; Ho, Hok-Ming; Ying, Michael; Fu, Siu Ngor
2013-10-01
Single-cohort laboratory-based study. To identify whether plantar fascia vascularity and thickness are associated with foot pain and dysfunction in individuals with chronic plantar fasciitis. Background Altered plantar fascia vascularity and thickening of the fascia have been identified in individuals with chronic plantar fasciitis. Thirty-eight patients with chronic unilateral plantar fasciitis and 21 controls participated in this study. Proximal plantar fascia vascularization and thickness were assessed using ultrasound imaging, and pain and foot dysfunction were quantified with a visual analog scale and the Chinese version of the Foot Function Index, respectively. Paired t tests were used to assess the side-to-side differences in fascia thickness and vascularity index (VI) in the control and patient groups, and an unpaired t test was used to make comparisons with the patient group. Multiple regression analysis was performed to identify whether the VI and fascia thickness were associated with pain and foot dysfunction. There were significantly higher VI (mean ± SD, 2.4% ± 1.4%) and fascia thickness (5.0 ± 1.3 mm) values in the affected feet when compared with the unaffected feet in the patient group (VI, 1.4% ± 0.5%; fascia thickness, 3.3 ± 0.7 mm) and with the dominant side of the controls (VI, 1.6% ± 0.4%; fascia thickness, 2.9 ± 0.6 mm). After accounting for age, gender, body mass index, and duration of symptoms, the VI explained 13% and 33% of the variance in pain scores measured with a visual analog scale and the pain subscale of the Foot Function Index, respectively; the VI and fascia thickness explained 42% of the variance in the Foot Function Index. Individuals with unilateral chronic plantar fasciitis demonstrated significantly greater vascularity and thickened fascia on the affected side compared to the unaffected side and also to healthy controls. Fascia vascularity was associated independently with self-perceived pain, and both fascia vascularity and thickness were associated with foot dysfunction in patients with chronic plantar fasciitis. Public trials registry: Current Controlled Trials, ISRCTN49594569.
Fischer, Tamás
2015-07-12
It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction.
Jia, Mengfan; Ren, Daoyuan; Nie, Yan; Yang, Xingbin
2017-03-22
This study was designed to investigate the preventive effects of Red Fuji apple peel polyphenolic extract (APP) on vascular endothelial dysfunction and liver injury in mice fed a high choline diet. The mice were fed 3% dietary choline in drinking water for 8 weeks and displayed vascular dysfunction and liver damage (p < 0.01). The administration of APP at 600 and 900 mg per kg bw significantly elevated serum NO, HDL and 6-Keto-PGF1a levels and lowered serum TC, TG, LDL, ET-1 and TXB2 levels in the HC-fed mice. Besides, APP also caused the reduction of AST, ALT activities and MDA, CRP, TNF-α levels, and increased the hepatic GSH-Px and SOD activities of the HC-fed mice. Furthermore, the histopathology of the liver by conventional H&E and oil red O staining confirmed the liver steatosis induced by a choline diet and the hepatoprotective effect of APP. The experiment results indicated that the polyphenolic extract from apple peel might be regarded as a preventive and therapeutic product for the amelioration of HC diet-induced vascular dysfunction and hepatic injury.
Experimental and clinical study of EHF treatment of vascular-vestibular dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mal`tsev, A.E.; Abakarov, A.T.; Istomin, V.S.
1994-07-01
The authors present the results of a study of the effectiveness of EHF radiation on the cerebral hemodynamics, bioelectrical activity of the cerebral cortex, and functional state of the vestibular analyzer in chronic studies of cats using a model of vascular-vestibular dysfunction. The clinical part of the work reflects the results of studies of the functional state of cerebral blood circulation and the vestibular analyzer during the EHF treatment of angiovertebrogenic vestibular dysfunction in a background of initial manifestations of cerebral blood supply deficiency (angiodistonic variant).
Rathnayake, Kumari M; Weech, Michelle; Jackson, Kim G; Lovegrove, Julie A
2018-03-16
CVD are the leading cause of death in women globally, with ageing associated with progressive endothelial dysfunction and increased CVD risk. Natural menopause is characterised by raised non-fasting TAG concentrations and impairment of vascular function compared with premenopausal women. However, the mechanisms underlying the increased CVD risk after women have transitioned through the menopause are unclear. Dietary fat is an important modifiable risk factor relating to both postprandial lipaemia and vascular reactivity. Meals rich in SFA and MUFA are often associated with greater postprandial TAG responses compared with those containing n-6 PUFA, but studies comparing their effects on vascular function during the postprandial phase are limited, particularly in postmenopausal women. The present review aimed to evaluate the acute effects of test meals rich in SFA, MUFA and n-6 PUFA on postprandial lipaemia, vascular reactivity and other CVD risk factors in postmenopausal women. The systematic search of the literature identified 778 publications. The impact of fat-rich meals on postprandial lipaemia was reported in seven relevant studies, of which meal fat composition was compared in one study described in three papers. An additional study determined the impact of a high-fat meal on vascular reactivity. Although moderately consistent evidence suggests detrimental effects of high-fat meals on postprandial lipaemia in postmenopausal (than premenopausal) women, there is insufficient evidence to establish the impact of meals of differing fat composition. Furthermore, there is no robust evidence to conclude the effect of meal fatty acids on vascular function or blood pressure. In conclusion, there is an urgent requirement for suitably powered robust randomised controlled trials to investigate the impact of meal fat composition on postprandial novel and established CVD risk markers in postmenopausal women, an understudied population at increased cardiometabolic risk.
Sun, Peter; Cameron, Ann; Seftel, Allen; Shabsigh, Ridwan; Niederberger, Craig; Guay, Andre
2006-09-01
We examined whether men with erectile dysfunction are more likely to have diabetes mellitus than men without erectile dysfunction, and whether erectile dysfunction can be used as an observable early marker of diabetes mellitus. Using a nationally representative managed care claims database from 51 health plans and 28 million members in the United States, we conducted a retrospective cohort study to compare the prevalence rates of diabetes mellitus between men with erectile dysfunction (285,436) and men without erectile dysfunction (1,584,230) during 1995 to 2001. Logistic regression models were used to isolate the effect of erectile dysfunction on the likelihood of having diabetes mellitus with adjustment for age, region and 7 concurrent diseases. The diabetes mellitus prevalence rates were 20.0% in men with erectile dysfunction and 7.5% in men without erectile dysfunction. With adjustment for age, region and concurrent diseases, the odds ratio of having diabetes mellitus between men with erectile dysfunction and without erectile dysfunction was 1.60 (p <0.0001). With adjustment for regions and concurrent diseases, the age specific odds ratios ranged from 2.94 (p <0.0001, age 26 to 35) to 1.05 (p = 0.1717, age 76 to 85). Men with erectile dysfunction were more than twice as likely to have diabetes mellitus as men without erectile dysfunction. Erectile dysfunction is an observable marker of diabetes mellitus, strongly so for men 45 years old or younger and likely for men 46 to 65 years old, but it is not a marker for men older than 66 years.
Low-level laser irradiation modifies the effect of hyperglycemia on adhesion molecule levels.
Góralczyk, Krzysztof; Szymańska, Justyna; Gryko, Łukasz; Fisz, Jacek; Rość, Danuta
2018-05-03
Endothelium plays a key role in maintaining vascular homeostasis by secreting active factors involved in many biological processes such as hemostasis, angiogenesis, and inflammation. Hyperglycemia in diabetic patients causes dysfunction of endothelial cells. Soluble fractions of adhesion molecules like sE-selectin and vascular cell adhesion molecule (sVCAM) are considered as markers of endothelial damage. The low-level laser therapy (LLLT) effectively supports the conventional treatment of vascular complications in diabetes, for example hard-to-heal wounds in patients with diabetic foot syndrome. The aim of our study was to evaluate the effect of low-energy laser at the wavelength of 635 nm (visible light) and 830 nm (infrared) on the concentration of adhesion molecules: sE-selectin and sVCAM in the supernatant of endothelial cell culture of HUVEC line. Cells were cultured under high-glucose conditions of 30 mM/L. We have found an increase in sE-selectin and sVCAM levels in the supernatant of cells cultured under hyperglycemic conditions. This fact confirms detrimental influence of hyperglycemia on vascular endothelial cell cultures. LLLT can modulate the inflammation process. It leads to a decrease in sE-selectin and sVCAM concentration in the supernatant and an increase in the number of endothelial cells cultured under hyperglycemic conditions. The influence of LLLT is greater at the wavelength of 830 nm.
Carlucci, Philip M.; Purmalek, Monica M.; Dey, Amit K.; Temesgen-Oyelakin, Yenealem; Sakhardande, Simantini; Joshi, Aditya A.; Lerman, Joseph B.; Fike, Alice; Davis, Michael; Chung, Jonathan H.; Playford, Martin P.; Naqi, Mohammad; Mistry, Pragnesh; Gutierrez-Cruz, Gustavo; Dell’Orso, Stefania; Naz, Faiza; Salahuddin, Taufiq; Natarajan, Balaji; Tsai, Wanxia L.; Gupta, Sarthak; Grayson, Peter; Chen, Marcus Y.; Sun, Hong-Wei; Hasni, Sarfaraz; Mehta, Nehal N.
2018-01-01
BACKGROUND. Systemic lupus erythematosus (SLE) is associated with enhanced risk of atherosclerotic cardiovascular disease not explained by Framingham risk score (FRS). Immune dysregulation associated to a distinct subset of lupus proinflammatory neutrophils (low density granulocytes; LDGs) may play key roles in conferring enhanced CV risk. This study assessed if lupus LDGs are associated with in vivo vascular dysfunction and inflammation and coronary plaque. METHODS. SLE subjects and healthy controls underwent multimodal phenotyping of vascular disease by quantifying vascular inflammation (18F-fluorodeoxyglucose–PET/CT [18F-FDG–PET/CT]), arterial dysfunction (EndoPAT and cardio-ankle vascular index), and coronary plaque burden (coronary CT angiography). LDGs were quantified by flow cytometry. Cholesterol efflux capacity was measured in high-density lipoprotein–exposed (HDL-exposed) radioactively labeled cell lines. Whole blood RNA sequencing was performed to assess associations between transcriptomic profiles and vascular phenotype. RESULTS. Vascular inflammation, arterial stiffness, and noncalcified plaque burden (NCB) were increased in SLE compared with controls even after adjustment for traditional risk factors. In SLE, NCB directly associated with LDGs and associated negatively with cholesterol efflux capacity in fully adjusted models. A neutrophil gene signature reflective of the most upregulated genes in lupus LDGs associated with vascular inflammation and NCB. CONCLUSION. Individuals with SLE demonstrate vascular inflammation, arterial dysfunction, and NCB, which may explain the higher reported risk for acute coronary syndromes. The association of LDGs and neutrophil genes with vascular disease supports the hypothesis that distinct neutrophil subsets contribute to vascular damage and unstable coronary plaque in SLE. Results also support previous observations that neutrophils may disrupt HDL function and thereby promote atherogenesis. TRIAL REGISTRATION. Clinicaltrials.gov NCT00001372 FUNDING. Intramural Research Program NIAMS/NIH (ZIA AR041199) and Lupus Research Institute PMID:29669944
Gamal, Maha; Moawad, Jackline; Rashed, Laila; El-Eraky, Wafaa; Saleh, Dalia; Lehmann, Christian; Sharawy, Nivin
2015-04-15
Sepsis is associated with neuronal damage and cognitive impairment, with the participation of pro-inflammatory cytokines and oxidative-nitrous stress. It is known that activated microglia plays a vital role in neuro-inflammation and neuro-degeneration. Thus, the objective of this study was to evaluate therapeutic roles of two microglia regulating agents, JWH-133 and Eserine, on the neuroinflammatory associated brain dysfunctions. To achieve our aim, we used control rats or submitted rats to lipopolysaccharide (LPS) challenge. 30 min after LPS challenge, the animals received either saline, Eserine, JWH-133 or Eserine+JWH-133. After 24h, animals were submitted to the habituation to T maze, Rotarod and activity cage tests. The rats were killed after and were evaluated for central and peripheral inflammatory and oxidative parameters. We observed that the use of Eserine, JWH-133 or Eserine + JWH-133 reverted the increases in the inflammatory markers [interleukin 6 (IL6), vascular cell adhesion molecule 1(VCAM-1) and Eselectin] and oxidative-nitrous stress MDM, and that the anti-inflammatory, antioxidant properties of both JWH-133 and Eserine successfully improve the LPS induced brain dysfunction. The results observed in this study reinforce the role of microglia activation regulating agents, in particular, JWH-133 and Eserine, in the brain dysfunction associated with endotoxemia. Copyright © 2015 Elsevier B.V. All rights reserved.
Ruiz-del-Árbol, Luis; Serradilla, Regina
2015-01-01
During the course of cirrhosis, there is a progressive deterioration of cardiac function manifested by the disappearance of the hyperdynamic circulation due to a failure in heart function with decreased cardiac output. This is due to a deterioration in inotropic and chronotropic function which takes place in parallel with a diastolic dysfunction and cardiac hypertrophy in the absence of other known cardiac disease. Other findings of this specific cardiomyopathy include impaired contractile responsiveness to stress stimuli and electrophysiological abnormalities with prolonged QT interval. The pathogenic mechanisms of cirrhotic cardiomyopathy include impairment of the b-adrenergic receptor signalling, abnormal cardiomyocyte membrane lipid composition and biophysical properties, ion channel defects and overactivity of humoral cardiodepressant factors. Cirrhotic cardiomyopathy may be difficult to determine due to the lack of a specific diagnosis test. However, an echocardiogram allows the detection of the diastolic dysfunction and the E/e′ ratio may be used in the follow-up progression of the illness. Cirrhotic cardiomyopathy plays an important role in the pathogenesis of the impairment of effective arterial blood volume and correlates with the degree of liver failure. A clinical consequence of cardiac dysfunction is an inadequate cardiac response in the setting of vascular stress that may result in renal hypoperfusion leading to renal failure. The prognosis is difficult to establish but the severity of diastolic dysfunction may be a marker of mortality risk. Treatment is non-specific and liver transplantation may normalize the cardiac function. PMID:26556983
Weissgerber, Tracey L.
2015-01-01
Endothelial dysfunction is a key feature of preeclampsia, and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction and the shear stimulus. This review encourages researchers to think beyond “low FMD” by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia, while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for three years post-partum. However, FMD returns to normal by ten years post-partum. Studies using new protocols are needed to gain more mechanistic insight. PMID:25182159
Weissgerber, Tracey L
2014-11-01
Endothelial dysfunction is a key feature of preeclampsia and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction, and shear stimulus. This review encourages researchers to think beyond "low FMD" by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for 3 years post-partum. However, FMD returns to normal by 10 years post-partum. Studies using new protocols are needed to gain more mechanistic insight.
Diagnosis and treatment of vascular damage in dementia.
Biessels, Geert Jan
2016-05-01
This paper provides an overview of cognitive impairment due to vascular brain damage, which is referred to as vascular cognitive impairment (VCI). Over the past decades, we have seen marked progress in detecting VCI, both through maturation of diagnostic concepts and through advances in brain imaging, especially MRI. Yet in daily practice, it is often challenging to establish the diagnosis, particularly in patients where there is no evident temporal relation between a cerebrovascular event and cognitive dysfunction. Because vascular damage is such a common cause of cognitive dysfunction, it provides an obvious target for treatment. In patients whose cognitive dysfunction follows directly after a stroke, the etiological classification of this stroke will direct treatment. In many patients however, VCI develops due to so-called "silent vascular damage," without evident cerebrovascular events. In these patients, small vessel diseases (SVDs) are the most common cause. Yet no SVD-specific treatments currently exist, which is due to incomplete understanding of the pathophysiology. This review addresses developments in this field. It offers a framework to translate diagnostic criteria to daily practice, addresses treatment, and highlights some future perspectives. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau, and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.
Münzel, Thomas; Daiber, Andreas; Steven, Sebastian; Tran, Lan P.; Ullmann, Elisabeth; Kossmann, Sabine; Schmidt, Frank P.; Oelze, Matthias; Xia, Ning; Li, Huige; Pinto, Antonio; Wild, Philipp; Pies, Kai; Schmidt, Erwin R.; Rapp, Steffen; Kröller-Schön, Swenja
2017-01-01
Abstract Aims Epidemiological studies indicate that traffic noise increases the incidence of coronary artery disease, hypertension and stroke. The underlying mechanisms remain largely unknown. Field studies with nighttime noise exposure demonstrate that aircraft noise leads to vascular dysfunction, which is markedly improved by vitamin C, suggesting a key role of oxidative stress in causing this phenomenon. Methods and results We developed a novel animal model to study the vascular consequences of aircraft noise exposure. Peak sound levels of 85 and mean sound level of 72 dBA applied by loudspeakers for 4 days caused an increase in systolic blood pressure, plasma noradrenaline and angiotensin II levels and induced endothelial dysfunction. Noise increased eNOS expression but reduced vascular NO levels because of eNOS uncoupling. Noise increased circulating levels of nitrotyrosine, interleukine-6 and vascular expression of the NADPH oxidase subunit Nox2, nitrotyrosine-positive proteins and of endothelin-1. FACS analysis demonstrated an increase in infiltrated natural killer-cells and neutrophils into the vasculature. Equal mean sound pressure levels of white noise for 4 days did not induce these changes. Comparative Illumina sequencing of transcriptomes of aortic tissues from aircraft noise-treated animals displayed significant changes of genes in part responsible for the regulation of vascular function, vascular remodelling, and cell death. Conclusion We established a novel and unique aircraft noise stress model with increased blood pressure and vascular dysfunction associated with oxidative stress. This animal model enables future studies of molecular mechanisms, mitigation strategies, and pharmacological interventions to protect from noise-induced vascular damage. PMID:28329261
Fischer, Tamás
2015-03-01
The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.
Infrared Imaging of Nitric Oxide-Mediated Blood Flow in Human Sickle Cell Disease
Gorbach, Alexander M.; Ackerman, Hans C.; Liu, Wei-Min; Meyer, Joseph M.; Littel, Patricia L.; Seamon, Catherine; Footman, Eleni; Chi, Amy; Zorca, Suzana; Krajewski, Megan L.; Cuttica, Michael J.; Machado, Roberto F.; Cannon, Richard O.; Kato, Gregory J.
2012-01-01
Vascular dysfunction is an important pathophysiologic manifestation of sickle cell disease (SCD), a condition that increases risk of pulmonary hypertension and stroke. We hypothesized that infrared (IR) imaging would detect changes in cutaneous blood flow reflective of vascular function. We performed IR imaging and conventional strain gauge plethysmography in twenty-five adults with SCD at baseline and during intra-arterial infusions of an endothelium-dependent vasodilator acetylcholine (ACh), an endothelium-independent vasodilator sodium nitroprusside (SNP), and a NOS inhibitor L-NMMA. Skin temperature measured by IR imaging increased in a dose-dependent manner to graded infusions of ACh (+1.1° C, p < 0.0001) and SNP (+0.9° C, p < 0.0001), and correlated with dose-dependent increases in forearm blood flow (ACh: +19.9 mL/min/100mL, p < 0.0001; rs = 0.57, p = 0.003; SNP: +8.6 mL/min/100mL, p < 0.0001; r = 0.70, p = 0.0002). Although IR measurement of skin temperature accurately reflected agonist-induced increases in blood flow, it was less sensitive to decreases in blood flow caused by NOS inhibition. Baseline forearm skin temperature measured by IR imaging correlated significantly with baseline forearm blood flow (31.8±0.2° C, 6.0±0.4 mL/min/100mL; r = 0.58, p = 0.003), and appeared to represent a novel biomarker of vascular function. It predicted a blunted blood flow response to SNP (r = −0.61, p = 0.002), and was independently associated with a marker of pulmonary artery pressure, as well as hemoglobin level, diastolic blood pressure, homocysteine, and cholesterol (R2 = 0.84, p < 0.0001 for the model). IR imaging of agonist-stimulated cutaneous blood flow represents a less cumbersome alternative to plethysmography methodology. Measurement of baseline skin temperature by IR imaging may be a useful new marker of vascular risk in adults with SCD. PMID:22784510
Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham
2012-01-01
The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450
Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena
2017-11-14
Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
[Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].
Fischer, Tamás
2015-11-15
It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors for the disease and are older than 50 years; (2) who have been diagnosed with unilateral age-related macular degeneration in order to prevent damage of the contralateral eye; (3) who have bilateral age-related macular degeneration in order to avert deterioration and in the hope of a potential improvement. However, randomised prospective clinical trials are still needed to elucidate the potential role of these drug treatments in the prevention and treatment of age-related macular degeneration.
Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine
2011-01-01
Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065
All men with vasculogenic erectile dysfunction require a cardiovascular workup.
Miner, Martin; Nehra, Ajay; Jackson, Graham; Bhasin, Shalender; Billups, Kevin; Burnett, Arthur L; Buvat, Jacques; Carson, Culley; Cunningham, Glenn; Ganz, Peter; Goldstein, Irwin; Guay, Andre; Hackett, Geoff; Kloner, Robert A; Kostis, John B; LaFlamme, K Elizabeth; Montorsi, Piero; Ramsey, Melinda; Rosen, Raymond; Sadovsky, Richard; Seftel, Allen; Shabsigh, Ridwan; Vlachopoulos, Charalambos; Wu, Frederick
2014-03-01
An association between erectile dysfunction and cardiovascular disease has long been recognized, and studies suggest that erectile dysfunction is an independent marker of cardiovascular disease risk. Therefore, assessment and management of erectile dysfunction may help identify and reduce the risk of future cardiovascular events, particularly in younger men. The initial erectile dysfunction evaluation should distinguish between predominantly vasculogenic erectile dysfunction and erectile dysfunction of other etiologies. For men believed to have predominantly vasculogenic erectile dysfunction, we recommend that initial cardiovascular risk stratification be based on the Framingham Risk Score. Management of men with erectile dysfunction who are at low risk for cardiovascular disease should focus on risk-factor control; men at high risk, including those with cardiovascular symptoms, should be referred to a cardiologist. Intermediate-risk men should undergo noninvasive evaluation for subclinical atherosclerosis. A growing body of evidence supports the use of emerging prognostic markers to further understand cardiovascular risk in men with erectile dysfunction, but few markers have been prospectively evaluated in this population. In conclusion, we support cardiovascular risk stratification and risk-factor management in all men with vasculogenic erectile dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.
2012-01-01
Background Since atherogenesis is related to oxidative stress, our objective was to study the association of oxidative stress markers with the vascular recurrence in non-cardioembolic stroke. Methods Atherosclerotic and oxidative stress markers were evaluated on admission, in 477 patients suffering from a first non-cardioembolic stroke. Patients were followed at 6 and 12 months after inclusion, recording cardiovascular events. As markers of endothelial oxidative stress we used oxidized LDL, Cu/Zn superoxide dismutase and 8-OH deoxiguanosine. 136 patients were being treated with statins at the moment of serum samples acquisition. Results Patients who suffered vascular recurrence or vascular-origin death had higher levels of 8-OHDG (40.06±24.70vs33.11±15.18;p=0.003). We also found associations between vascular recurrence or vascular origin death and Cu/ZnSOD (OR,1.02; 95%CI,1.00-1.03;p=0.0001) and 8-OHDG (OR,1.12;95%CI,1.08-1.16;p<0.0001) in a subgroup of 333 patients that were not in treatment with statins on admission. We also found associations between 8-OHDG and intima media thickness (IMT) (OR,1.13;95%CI,1.09-1.16;p<0.0001), presence of ipsilatieral stenosis≥50% (OR,1.03;95%CI1.00-1.05;p=0.007) and other atherosclerotic plaque characteristics. Conclusions Specific oxidative stress markers were found to be markers of atherosclerosis plaque types and vascular recurrence in non-statins treated patients at admission. PMID:22862793
Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction.
Liu, Chang; Yao, Mu-Di; Li, Chao-Peng; Shan, Kun; Yang, Hong; Wang, Jia-Jian; Liu, Ban; Li, Xiu-Miao; Yao, Jin; Jiang, Qin; Yan, Biao
2017-01-01
Vascular dysfunction is a hallmark of ischemic, cancer, and inflammatory diseases, contributing to disease progression. Circular RNAs (circRNAs) are endogenous non-coding RNAs, which have been reported to be abnormally expressed in many human diseases. In this study, we used retinal vasculature to determine the role of circular RNA in vascular dysfunction. We revealed that cZNF609 was significantly up-regulated upon high glucose and hypoxia stress in vivo and in vitro . cZNF609 silencing decreased retinal vessel loss and suppressed pathological angiogenesis in vivo . cZNF609 silencing increased endothelial cell migration and tube formation, and protected endothelial cell against oxidative stress and hypoxia stress in vitro . By contrast, transgenic overexpression of cZNF609 showed an opposite effects. cZNF609 acted as an endogenous miR-615-5p sponge to sequester and inhibit miR-615-5p activity, which led to increased MEF2A expression. MEF2A overexpression could rescue cZNF609 silencing-mediated effects on endothelial cell migration, tube formation, and apoptosis. Moreover, dysregulated cZNF609 expression was detected in the clinical samples of the patients with diabetes, hypertension, and coronary artery disease. Intervention of cZNF609 expression is promising therapy for vascular dysfunction.
Kurozumi, Akira; Okada, Yosuke; Arao, Tadashi; Tanaka, Yoshiya
Objective Visceral fat obesity and metabolic syndrome correlate with atherosclerosis in part due to insulin resistance and various other factors. The aim of this study was to determine the relationship between vascular endothelial dysfunction and excess visceral adipose tissue (VAT) in Japanese patients with type 2 diabetes mellitus (T2DM). Methods In 71 T2DM patients, the reactive hyperemia index (RHI) was measured using an Endo-PAT 2000, and VAT and subcutaneous adipose tissue (SAT) were measured via CT. We also measured various metabolic markers, including high-molecular-weight adiponectin (HMW-AN). Results VAT correlated negatively with the natural logarithm of RHI (L_RHI), the primary endpoint (p=0.042, r=-0.242). L_RHI did not correlate with SAT, VAT/SAT, abdominal circumference, homeostasis model assessment for insulin resistance, urinary C-peptide reactivity, HMW-AN, or alanine amino transferase, the secondary endpoints. A linear multivariate analysis via the forced entry method using age, sex, VAT, and smoking history as independent variables and L_RHI as the dependent variable revealed a lack of any determinants of L_RHI. Conclusion Excess VAT worsens the vascular endothelial function, represented by RHI which was analyzed using Endo-PAT, in Japanese patients with T2DM.
Wynne, Brandi M; Labazi, Hicham; Carneiro, Zidonia N; Tostes, Rita C; Webb, R Clinton
2017-11-05
Nitroglycerin (Gtn) is a treatment for cardiovascular patients due to its vasodilatory actions, but induces tolerance when given chronically. A proposed mechanism is the superoxide (O 2 - )-oxidative stress hypothesis, which suggests that Gtn increases O 2 - production. Nitric oxide (NO) exists in three different redox states; the protonated, reduced state, nitroxyl anion (HNO) is an emerging candidate in vascular regulation. HNO is resistant to scavenging and of particular interest in conditions where high levels of reactive oxygen species (ROS) exist. We hypothesize that treatment with Gtn will exacerbate endothelin 1 (ET-1) induced vascular dysfunction via an increase in ROS, while treatment with Angeli's Salt (AS), an HNO donor, will not. Aorta from mice were isolated and divided into four groups: vehicle, ET-1 [0.1μM, 1μM], ET-1+Gtn [Gtn 1μM] and ET-1+AS [AS 1μM]. Concentration response curves (CRCs) to acetylcholine (ACh) and phenylephrine (Phe) were performed. Aorta incubated with ET-1 (for 20-22h) exhibited a decreased relaxation response to ACh and an increase in Phe-mediated contraction. Aorta incubated with AS exhibited a reversal in ET-1 induced vascular and endothelial dysfunction. ET-1 increased ROS in aortic vascular smooth muscle cells (VSMCs), visualized by dihydroethidium (DHE) staining. AS incubated reduced this ROS generation, yet maintained with Gtn treatment. These data suggest that aorta incubated with the HNO donor, AS, can reverse ET-1 mediated vascular dysfunction, which may be through a decrease or prevention of ROS generation. We propose that HNO may be vasoprotective and that HNO donors studied as a therapeutic option where other organic nitrates are contraindicative. Copyright © 2017 Elsevier B.V. All rights reserved.
Sharma, Shilpa; Mehta, Puja K; Arsanjani, Reza; Sedlak, Tara; Hobel, Zachary; Shufelt, Chrisandra; Jones, Erika; Kligfield, Paul; Mortara, David; Laks, Michael; Diniz, Marcio; Bairey Merz, C Noel
2018-06-19
The utility of exercise-induced ST-segment depression for diagnosing ischemic heart disease (IHD) in women is unclear. Based on evidence that IHD pathophysiology in women involves coronary vascular dysfunction, we hypothesized that coronary vascular dysfunction contributes to exercise electrocardiography (Ex-ECG) ST-depression in the absence of obstructive CAD, so-called "false positive" results. We tested our hypothesis in a pilot study evaluating the relationship between peripheral vascular endothelial function and Ex-ECG. Twenty-nine asymptomatic women without cardiac risk factors underwent maximal Bruce protocol exercise treadmill testing and peripheral endothelial function assessment using peripheral arterial tonometry (Itamar EndoPAT 2000) to measure reactive hyperemia index (RHI). The relationship between RHI and Ex-ECG ST-segment depression was evaluated using logistic regression and differences in subgroups using two-tailed t-tests. Mean age was 54 ± 7 years, body mass index 25 ± 4 kg/m 2 , and RHI 2.51 ± 0.66. Three women (10%) had RHI less than 1.68, consistent with abnormal peripheral endothelial function, while 18 women (62%) met criteria for a positive Ex-ECG based on ST-segment depression in contiguous leads. Women with and without ST-segment depression had similar baseline and exercise vital signs, metabolic equivalents (METS) achieved, and RHI (all p>0.05). RHI did not predict ST-segment depression. Our pilot study demonstrates a high prevalence of exercise-induced ST-segment depression in asymptomatic, middle-aged, overweight women. Peripheral vascular endothelial dysfunction did not predict Ex-ECG ST-segment depression. Further work is needed to investigate the utility of vascular endothelial testing and Ex-ECG for IHD diagnostic and management purposes in women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.
2013-01-01
Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (p<0.005). Low sodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID:23141486
Retinal vascular changes are a marker for cerebral vascular diseases
Moss, Heather E.
2016-01-01
The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk. PMID:26008809
HIV-1, Reactive Oxygen Species and Vascular Complications
Porter, Kristi M.; Sutliff, Roy L.
2012-01-01
Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529
Vasculature on the clock: Circadian rhythm and vascular dysfunction.
Crnko, Sandra; Cour, Martin; Van Laake, Linda W; Lecour, Sandrine
2018-05-17
The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Mitochondria and Cardiovascular Aging
Dai, Dao-Fu; Ungvari, Zoltan
2013-01-01
Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (e.g. renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics and exercise training. PMID:22499901
Nam, Mi-Hyun; Son, Won-Rak; Lee, Young Sik; Lee, Kwang-Won
Advanced glycation end-products (AGEs) are involved in the development of vascular smooth muscle cell (VSMC) dysfunction and the progression of atherosclerosis. However, AGEs may indirectly affect VSMCs via AGEs-induced signal transduction between monocytes and human umbilical endothelial cells (HUVECs), rather than having a direct influence. This study was designed to elucidate the signaling pathway underlying AGEs-RAGE axis influence on VSMC dysfunction using a co-culture system with monocytes, HUVECs and VSMCs. AGEs stimulated production of reactive oxygen species and pro-inflammatory mediators such as tumor necrosis factor-α and interleukin-1β via extracellular-signal-regulated kinases phosphorylation and nuclear factor-κB activation in HUVECs. It was observed that AGEs-induced pro-inflammatory cytokines increase VSMC proliferation, inflammation and vascular remodeling in the co-culture system. This result implies that RAGE plays a role in AGEs-induced VSMC dysfunction. We suggest that the regulation of signal transduction via the AGEs-RAGE axis in the endothelium can be a therapeutic target for preventing atherosclerosis.
Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.
2012-01-01
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498
Aerobic exercise and other healthy lifestyle factors that influence vascular aging.
Santos-Parker, Jessica R; LaRocca, Thomas J; Seals, Douglas R
2014-12-01
Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote "resistance" against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. Copyright © 2014 The American Physiological Society.
Aerobic exercise and other healthy lifestyle factors that influence vascular aging
Santos-Parker, Jessica R.; LaRocca, Thomas J.
2014-01-01
Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote “resistance” against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. PMID:25434012
Awad, Hisham A E; Tantawy, Azza A G; El-Farrash, Rania A; Ismail, Eman A; Youssif, Noha M
2014-04-01
ABO antigens are expressed on the surfaces of red blood cells and the vascular endothelium. We studied circulating endothelial microparticles (EMP) in ABO haemolytic disease of the newborn (ABO HDN) as a marker of endothelial activation to test a hypothesis of possible endothelial injury in neonates with ABO HDN, and its relation with the occurrence and severity of haemolysis. Forty-five neonates with ABO HDN were compared with 20 neonates with Rhesus incompatibility (Rh HDN; haemolytic controls) and 20 healthy neonates with matched mother and infant blood groups (healthy controls). Laboratory investigations were done for markers of haemolysis and von Willebrand factor antigen (vWF Ag). EMP (CD144(+)) levels were measured before and after therapy (exchange transfusion and/or phototherapy). vWF Ag and pre-therapy EMP levels were higher in infants with ABO HDN or Rh HDN than in healthy controls, and were significantly higher in babies with ABO HDN than in those with Rh HDN (p<0.05). In ABO HDN, pre-therapy EMP levels were higher in patients with severe hyperbilirubinaemia than in those with mild and moderate disease or those with Rh HDN (p<0.001). Post-therapy EMP levels were lower than pre-therapy levels in both the ABO HDN and Rh HDN groups; however, the decline in EMP levels was particularly evident after exchange transfusion in ABO neonates with severe hyperbilirubinaemia (p<0.001). Multiple regression analysis revealed that the concentrations of haemoglobin, lactate dehydrogenase and indirect bilirubin were independently correlated with pre-therapy EMP levels in ABO HDN. Elevated EMP levels in ABO HDN may reflect an IgG-mediated endothelial injury parallel to the IgG-mediated erythrocyte destruction and could serve as a surrogate marker of vascular dysfunction and disease severity in neonates with this condition.
Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Globus, Ruth K.
2018-01-01
Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and groundbased models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.
de Sá, Francine Gomes; de Queiroz, Diego Barbosa; Ramos-Alves, Fernanda Elizabethe; Santos-Rocha, Juliana; da Silva, Odair Alves; Moreira, Hicla Stefany; Leal, Geórgia Andrade; da Rocha, Marcelo Aurélio; Duarte, Gloria Pinto; Xavier, Fabiano Elias
2017-08-01
What is the central question of this study? Hyperglycaemia during pregnancy induces vascular dysfunction and hypertension in male offspring. Given that female offspring from other fetal programming models are protected from the effects of fetal insult, the present study investigated whether there are sex differences in blood pressure and vascular function in hyperglycaemia-programmed offspring. What is the main finding and its importance? We demonstrated that hyperglycaemia in pregnant rats induced vascular dysfunction and hypertension only in male offspring. We found sex differences in oxidative stress and cyclooxygenase-2-derived prostanoid production that might underlie the vascular dysfunction. These differences, particularly in resistance arteries, may in part explain the absence of hypertension in female offspring born to hyperglycaemic dams. Exposure to maternal hyperglycaemia induces hypertension and vascular dysfunction in adult male offspring. Given that female offspring from several fetal programming models are protected from the effects of fetal insult, in this study we analysed possible differences relative to sex in blood pressure and vascular function in hyperglycaemia-programmed offspring. Hyperglycaemia was induced on day 7 of gestation (streptozotocin, 50 mg kg -1 ). Blood pressure, acetylcholine and phenylephrine or noradrenaline responses were analysed in the aorta and mesenteric resistance arteries of 3-, 6- and 12-month-old male and female offspring. Thromboxane A 2 release was analysed with commercial kits and superoxide anion (O 2 - ) production by dihydroethidium-emitted fluorescence. Male but not female offspring of hyperglycaemic dams (O-DR) had higher blood pressure than control animals (O-CR). Contraction in response to phenylephrine increased and relaxation in response to acetylcholine decreased only in the aorta from 12-month-old male O-DR and not in age-matched O-CR. Contractile and vasodilator responses were preserved in both the aorta and mesenteric resistance arteries from female O-DR of all ages. Pre-incubation with tempol, superoxide dismutase, indomethacin, NS-398, furegrelate or SQ29548 decreased contraction in response to phenylephrine and potentiated relaxation in response to acetylcholine in 12-month-old male O-DR aorta. In this artery, thromboxane A 2 release and O 2 - generation were greater in O-DR than O-CR groups. In conclusion, exposure to hyperglycaemia in utero results in sex-specific and age-dependent hypertension. The fact that vascular function is preserved in female O-DR may in part explain the absence of hypertension in this group. In contrast, the peripheral artery dysfunction associated with increased cyclooxygenase-2-derived production of vasoconstrictor prostanoids could underlie the increased blood pressure in male O-DR. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Gingerich, W.H.; Pityer, R.A.; Rach, J.J.
1987-01-01
1. Total blood volume and relative blood volumes in selected tissues were determined in non-anesthetized, confined rainbow trout by using 51Cr-labelled trout erythrocytes as a vascular space marker.2. Mean total blood volume was estimated to be 4.09 ± 0.55 ml/100 g, or about 75% of that estimated with the commonly used plasma space marker Evans blue dye.3. Relative tissue blood volumes were greatest in highly perfused tissues such as kidney, gills, brain and liver and least in mosaic muscle.4. Estimates of tissue vascular spaces, made using radiolabelled erythrocytes, were only 25–50% of those based on plasma space markers.5. The consistently smaller vascular volumes obtained with labelled erythrocytes could be explained by assuming that commonly used plasma space markers diffuse from the vascular compartment.
Gun, Aburrahman; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca
2016-01-01
Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment. PMID:27042260
Lange-Asschenfeldt, Christian; Kojda, Georg
2008-06-01
Exercise training promotes extensive cardiovascular changes and adaptive mechanisms in both the peripheral and cerebral vasculature, such as improved organ blood flow, induction of antioxidant pathways, and enhanced angiogenesis and vascular regeneration. Clinical studies have demonstrated a reduction of morbidity and mortality from cardiovascular disease among exercising individuals. However, evidence from recent large clinical trials also suggests a substantial reduction of dementia risk - particularly regarding Alzheimer's disease (AD) - with regular exercise. Enhanced neurogenesis and improved synaptic plasticity have been implicated in this beneficial effect. However, recent research has revealed that vascular and specifically endothelial dysfunction is essentially involved in the disease process and profoundly aggravates underlying neurodegeneration. Moreover, vascular risk factors (VRFs) are probably determinants of incidence and course of AD. In this review, we emphasize the interconnection between AD and VRFs and the impact of cerebrovascular and endothelial dysfunction on AD pathophysiology. Furthermore, we describe the molecular mechanisms of the beneficial effects of exercise on the vasculature such as activation of the vascular nitric oxide (NO)/endothelial NO synthase (eNOS) pathway, upregulation of antioxidant enzymes, and angiogenesis. Finally, recent prospective clinical studies dealing with the effect of exercise on the risk of incident AD are briefly reviewed. We conclude that, next to upholding neuronal plasticity, regular exercise may counteract AD pathophysiology by building a vascular reserve.
Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H; Barnett, Nigel L; Kirk, Joshua K; Lee, SoRa; Coorey, Nathan J; Killingsworth, Murray; Sherman, Larry S; Gillies, Mark C
2012-11-07
Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction.
Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H.; Barnett, Nigel L.; Kirk, Joshua K.; Lee, SoRa; Coorey, Nathan J.; Killingsworth, Murray; Sherman, Larry S.; Gillies, Mark C.
2014-01-01
Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium derived factor. Intravitreal injection of cilliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the central nervous system associated with glial dysfunction. PMID:23136411
Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca
2016-01-01
Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.
Role of reactive oxygen and nitrogen species in the vascular responses to inflammation
Kvietys, Peter R.; Granger, D. Neil
2012-01-01
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653
Weissgerber, Tracey L.; Milic, Natasa M.; Milin-Lazovic, Jelena S.; Garovic, Vesna D.
2015-01-01
Endothelial dysfunction is believed to play a critical role in preeclampsia, however it is unclear whether this dysfunction precedes the pregnancy or is caused by early pathophysiological events. It is also unclear for how long vascular dysfunction may persist post-partum, and whether it represents a mechanism linking preeclampsia with future cardiovascular disease. Our objective was to determine whether women with preeclampsia have worse vascular function compared to women who did not have preeclampsia by performing systematic review and meta-analysis of studies that examined endothelial dysfunction using flow-mediated dilation (FMD). We included studies published before May 29, 2015 that examined FMD before, during and after preeclampsia. Differences in FMD between study groups were evaluated by standardized mean differences. Out of 610 abstracts identified through PubMED, EMBASE and Web of Science, 37 studies were eligible for the meta-analysis. When compared to women who did not have preeclampsia, women who had preeclampsia had lower FMD prior to the development of preeclampsia (~20–29 weeks gestation), at the time of preeclampsia, and for three years post-partum, with the estimated magnitude of the effect ranging between 0.5 and 3 standard deviations. Similar effects were observed when the analysis was limited to studies that excluded women with chronic hypertension, smokers, or both. Vascular dysfunction predates preeclampsia and may contribute to its pathogenesis. Future studies should address whether vascular changes that persist after preeclamptic pregnancies may represent a mechanistic link with the increased risk for future cardiovascular disease. PMID:26711737
Gortan Cappellari, Gianluca; Barazzoni, Rocco; Cattin, Luigi; Muro, Andrés F.; Zanetti, Michela
2016-01-01
Glucose-induced changes of artery anatomy and function account for diabetic vascular complications, which heavily impact disease morbidity and mortality. Since fibronectin containing extra domain A (EDA + FN) is increased in diabetic vessels and participates to vascular remodeling, we wanted to elucidate whether and how EDA + FN is implicated in diabetes-induced endothelial dysfunction using isometric-tension recording in a murine model of diabetes. In thoracic aortas of EDA−/−, EDA+/+ (constitutively lacking and expressing EDA + FN respectively), and of wild-type mice (EDAwt/wt), streptozotocin (STZ)-induced diabetes impaired endothelial vasodilation to acetylcholine, irrespective of genotype. However STZ + EDA−/− mice exhibited increased endothelial dysfunction compared with STZ + EDA+/+ and with STZ + EDAwt/wt. Analysis of the underlying mechanisms revealed that STZ + EDA−/− mice show increased oxidative stress as demonstrated by enhanced aortic superoxide anion, nitrotyrosine levels and expression of NADPH oxidase NOX4 and TGF-β1, the last two being reverted by treatment with the antioxidant n-acetylcysteine. In contrast, NOX1 expression and antioxidant potential were similar in aortas from the three genotypes. Interestingly, reduced eNOS expression in STZ + EDA+/+ vessels is counteracted by increased eNOS coupling and function. Although EDA + FN participates to vascular remodelling, these findings show that it plays a crucial role in limiting diabetic endothelial dysfunction by preventing vascular oxidative stress. PMID:27897258
Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin
2016-08-01
The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Endothelial dysfunction in the regulation of portal hypertension
Iwakiri, Yasuko
2013-01-01
Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318
Klepacki, Jacek; Brunner, Nina; Schmitz, Volker; Klawitter, Jelena; Christians, Uwe; Klawitter, Jost
2013-06-05
Although increased levels of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) have been implicated as markers for renal and vascular dysfunction, until now there have been no studies investigating their association with clinical post-transplant events such as organ rejection and immunosuppressant nephrotoxicity. A newly developed and validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the quantification of SAM and SAH in human EDTA plasma was used for a clinical proof-of-concept pilot study. Retrospective analysis was performed using samples from a longitudinal clinical study following de novo kidney transplant patients for the first year (n=16). The ranges of reliable response were 8 to 1024 nmol/l for SAM and 16 to 1024 nmol/l for SAH. The inter-day accuracies were 96.7-103.9% and 97.9-99.3% for SAM and SAH, respectively. Inter-day imprecisions were 8.1-9.1% and 8.4-9.8%. The total assay run time was 5 min. SAM and SAH concentrations were significantly elevated in renal transplant patients preceding documented acute rejection and nephrotoxicity events when compared to healthy controls (n=8) as well as transplant patients void of allograft dysfunction (n=8). The LC-MS/MS assay will provide the basis for further large-scale clinical studies to explore these thiol metabolites as molecular markers for the management of renal transplant patients. Copyright © 2013 Elsevier B.V. All rights reserved.
Rexhaj, Emrush; Rimoldi, Stefano F; Pratali, Lorenza; Brenner, Roman; Andries, Daniela; Soria, Rodrigo; Salinas, Carlos; Villena, Mercedes; Romero, Catherine; Allemann, Yves; Lovis, Alban; Heinzer, Raphaël; Sartori, Claudio; Scherrer, Urs
2016-04-01
Chronic mountain sickness (CMS) is often associated with vascular dysfunction, but the underlying mechanism is unknown. Sleep-disordered breathing (SDB) frequently occurs at high altitude. At low altitude, SDB causes vascular dysfunction. Moreover, in SDB, transient elevations of right-sided cardiac pressure may cause right-to-left shunting in the presence of a patent foramen ovale (PFO) and, in turn, further aggravate hypoxemia and pulmonary hypertension. We speculated that SDB and nocturnal hypoxemia are more pronounced in patients with CMS compared with healthy high-altitude dwellers, and are related to vascular dysfunction. We performed overnight sleep recordings, and measured systemic and pulmonary artery pressure in 23 patients with CMS (mean ± SD age, 52.8 ± 9.8 y) and 12 healthy control subjects (47.8 ± 7.8 y) at 3,600 m. In a subgroup of 15 subjects with SDB, we assessed the presence of a PFO with transesophageal echocardiography. The major new findings were that in patients with CMS, (1) SDB and nocturnal hypoxemia was more severe (P < .01) than in control subjects (apnea-hypopnea index [AHI], 38.9 ± 25.5 vs 14.3 ± 7.8 number of events per hour [nb/h]; arterial oxygen saturation, 80.2% ± 3.6% vs 86.8% ± 1.7%, CMS vs control group), and (2) AHI was directly correlated with systemic blood pressure (r = 0.5216; P = .001) and pulmonary artery pressure (r = 0.4497; P = .024). PFO was associated with more severe SDB (AHI, 48.8 ± 24.7 vs 14.8 ± 7.3 nb/h; P = .013, PFO vs no PFO) and hypoxemia. SDB and nocturnal hypoxemia are more severe in patients with CMS than in control subjects and are associated with systemic and pulmonary vascular dysfunction. The presence of a PFO appeared to further aggravate SDB. Closure of the PFO may improve SDB, hypoxemia, and vascular dysfunction in patients with CMS. ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Estrada-Gutierrez, Guadalupe; Cappello, Renato E; Mishra, Nikita; Romero, Roberto; Strauss, Jerome F; Walsh, Scott W
2011-01-01
This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Poursafa, Parinaz; Baradaran-Mahdavi, Sadegh; Moradi, Bita; Haghjooy Javanmard, Shaghayegh; Tajadini, Mohammadhasan; Mehrabian, Ferdous; Kelishadi, Roya
2016-04-01
This study aims to investigate the association of exposure to ambient air pollution during pregnancy with cord blood concentrations of surrogate markers of endothelial dysfunction. This population-based cohort was conducted from March 2014 to March 2015 among 250 mother-neonate pairs in urban areas of Isfahan, the second large and air-polluted city in Iran. We analyzed the association between the ambient carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particular matter 10 (PM10), and air quality index (AQI) with cord blood levels of endothelin-1, vascular adhesion molecule (VCAM), and intercellular adhesion molecule (ICAM). Multiple regression analysis was conducted after adjustment for potential confounding factors and covariates. The regression coefficient (beta), standard error of the estimate (SE), and 95% confidence intervals for each regression coefficient (95% CI) are reported. Data of 233 mother-neonate pairs were complete, and included in the analysis. Multiple regression analyses showed that AQI, CO and O3 had significant correlation with cord blood ICAM-1 [Beta (SE), 95%CI: 2.93 (0.72), 1.33,5.54; 2.28(1.44), 1.56,5.12; and 2.02(0.01), 1.03,2.04, respectively] as well as with VCAM-1 [2.78(0.91), 1.69,4.57; 2.47(1.47), 1.43,5.37; and 2.01(0.01),1.07,2.04, respectively]. AQI, PM10, and SO2 were significantly associated with Endothelin-1 concentrations [Beta (SE), 95%CI: 10.16(5.08),7.61,14.28; 9.70(3.46), 2.88,16.52; and 1.07(0.02), 1.03,2.11, respectively]. The significant associations of air pollutants with markers of endothelial dysfunction during fetal period may provide another evidence on the adverse health effects of air pollutants on early stages of atherosclerosis from fetal period. Our findings underscore the importance of considering environmental factors in primordial prevention of chronic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Raghavan, R P; Laight, D W; Cummings, M H
2014-02-01
The effect of aspirin upon platelet function is well documented although experimental studies suggest that aspirin may also affect oxidative stress, vascular inflammation, endothelial dysfunction and dysglycaemia. The optimal dose of aspirin for cardiovascular protection in type 2 diabetes is still debated. We examined the effects of different doses of aspirin upon these novel markers of cardiovascular risk and any association between aspirin-mediated changes in these markers. Subjects with type 2 diabetes attended for baseline evaluation including BMI, glycaemic and lipid markers, endothelial function (photoplethysmography), insulin resistance (HOMA), inflammation (sVCAM-1 and Hs-CRP) and markers of oxidative stress [total anti-oxidant status (TAOS and FRAP), whole blood total glutathione (GSH) assays]. Subjects then received in random, sequential, blinded fashion aspirin 75 mg day(-1) , aspirin 300 mg day(-1) , aspirin 3.6 g day(-1) or placebo for 2 weeks with a 2-week washout. The above investigations were repeated after each intervention. Aspirin-related changes compared with placebo were analysed using repeated measures ANOVA. Subjects = 17 (M - 12; F - 5), mean age - 57.4 ± 9.1 years (mean ± 1 SD), HbA1c - 63 ± 13 mmol mol(-1) (7.9 ± 1.2%), total cholesterol 4.57 ± 1.01 mmol l(-1) . At baseline TAOS value was 59.3 ± 9.7 μM AEAC (Ascorbate Equivalent Anti-oxidant Concentration), glutathione 302.2 ± 183.3 mmol l(-1) and FRAP 0.86 ± 0.23 mM FeII. None of the aspirin doses had a significant impact upon BMI, blood pressure, lipid parameters, insulin sensitivity (HOMA), FRAP, TAOS, GSH, endothelial function, glycaemic control (fructosamine) or inflammation (sVCAM-1 and HsCRP). Aspirin exhibited no significant dose-dependent effect on markers of vascular inflammation, oxidative stress, insulin resistance and endothelial function (photoplethysmography) when used in type 2 diabetes over a 2-week period. ( NCT00898950, EUDRACT:2004-001418-14). © 2013 John Wiley & Sons Ltd.
Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity.
Oppenheimer, Beno W; Berger, Kenneth I; Ali, Saleem; Segal, Leopoldo N; Donnino, Robert; Katz, Stuart; Parikh, Manish; Goldring, Roberta M
2016-01-01
Obesity is characterized by increased systemic and pulmonary blood volumes (pulmonary vascular congestion). Concomitant abnormal alveolar membrane diffusion suggests subclinical interstitial edema. In this setting, functional abnormalities should encompass the entire distal lung including the airways. We hypothesize that in obesity: 1) pulmonary vascular congestion will affect the distal lung unit with concordant alveolar membrane and distal airway abnormalities; and 2) the degree of pulmonary congestion and membrane dysfunction will relate to the cardiac response. 54 non-smoking obese subjects underwent spirometry, impulse oscillometry (IOS), diffusion capacity (DLCO) with partition into membrane diffusion (DM) and capillary blood volume (VC), and cardiac MRI (n = 24). Alveolar-capillary membrane efficiency was assessed by calculation of DM/VC. Mean age was 45±12 years; mean BMI was 44.8±7 kg/m2. Vital capacity was 88±13% predicted with reduction in functional residual capacity (58±12% predicted). Despite normal DLCO (98±18% predicted), VC was elevated (135±31% predicted) while DM averaged 94±22% predicted. DM/VC varied from 0.4 to 1.4 with high values reflecting recruitment of alveolar membrane and low values indicating alveolar membrane dysfunction. The most abnormal IOS (R5 and X5) occurred in subjects with lowest DM/VC (r2 = 0.31, p<0.001; r2 = 0.34, p<0.001). Cardiac output and index (cardiac output / body surface area) were directly related to DM/VC (r2 = 0.41, p<0.001; r2 = 0.19, p = 0.03). Subjects with lower DM/VC demonstrated a cardiac output that remained in the normal range despite presence of obesity. Global dysfunction of the distal lung (alveolar membrane and distal airway) is associated with pulmonary vascular congestion and failure to achieve the high output state of obesity. Pulmonary vascular congestion and consequent fluid transudation and/or alterations in the structure of the alveolar capillary membrane may be considered often unrecognized causes of airway dysfunction in obesity.
Dabiré, Hubert; Barthélémy, Inès; Blanchard-Gutton, Nicolas; Sambin, Lucien; Sampedrano, Carolina Carlos; Gouni, Vassiliki; Unterfinger, Yves; Aguilar, Pablo; Thibaud, Jean-Laurent; Ghaleh, Bijan; Bizé, Alain; Pouchelon, Jean-Louis; Blot, Stéphane; Berdeaux, Alain; Hittinger, Luc; Chetboul, Valérie; Su, Jin Bo
2012-01-01
Little is known about the vascular function and expression of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) in Duchenne muscular dystrophy (DMD). Bradykinin is involved in the regulation of eNOS expression induced by angiotensin-converting enzyme inhibitors. We characterized the vascular function and eNOS and nNOS expression in a canine model of DMD and evaluated the effects of chronic bradykinin treatment. Vascular function was examined in conscious golden retriever muscular dystrophy (GRMD) dogs with left ventricular dysfunction (measured by echocardiography) and in isolated coronary arteries. eNOS and nNOS proteins in carotid arteries were measured by western blot and cyclic guanosine monophosphate (cGMP) content was analyzed by radioimmunoassay. Compared with controls, GRMD dogs had an impaired vasodilator response to acetylcholine. In isolated coronary artery, acetylcholine-elicited relaxation was nearly absent in placebo-treated GRMD dogs. This was explained by reduced nNOS and eNOS proteins and cGMP content in arterial tissues. Chronic bradykinin infusion (1 μg/min, 4 weeks) restored in vivo and in vitro vascular response to acetylcholine to the level of control dogs. This effect was NO-mediated through upregulation of eNOS and nNOS expression. In conclusion, this study is the first to demonstrate that DMD is associated with NO-mediated vascular endothelial dysfunction linked to an altered expression of eNOS and nNOS, which can be overcome by bradykinin. PMID:22193759
Syed, Mansoor A; Choo-Wing, Rayman; Homer, Robert J; Bhandari, Vineet
2016-01-01
The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2-/- and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung.
Likhachev, S A; Mar'enko, I P
2015-01-01
The objective of the present study was to elucidate specific features of etiology and pathophysiology of recurring chronic vestibular dysfunction. It included 90 patients with this pathology of whom 24 (26.6%) presented with vascular compression of the vestibulocochlear nerve diagnosed by means of high-field MRI. This method revealed the high frequency of positionally-dependent vestibular dysfunction associated with neurovascular interactions. Analysis of the state of vestibular dysfunction during the attack-free periods demonstrated the signs of latent vestibular dysfunction in 20 (83.3%) patients. The results of the study provide additional information on the prevalence of vascular compression of the vestibulocochlear nerve in the patients presenting with recurrent chronic dizziness; moreover, they make it possible to evaluate the state of vestibular function and develop the new diagnostic criteria for vestibular paroxismia.
The role of nutrition and nutraceutical supplements in the treatment of hypertension
Houston, Mark
2014-01-01
Vascular biology, endothelial and vascular smooth muscle and cardiac dysfunction play a primary role in the initiation and perpetuation of hypertension, cardiovascular disease and target organ damage. Nutrient-gene interactions and epigenetics are predominant factors in promoting beneficial or detrimental effects in cardiovascular health and hypertension. Macronutrients and micronutrients can prevent, control and treat hypertension through numerous mechanisms related to vascular biology. Oxidative stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. There is a role for the selected use of single and component nutraceutical supplements, vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies which complement optimal nutrition, coupled with other lifestyle modifications. PMID:24575172
Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight.
Tahimic, Candice G T; Globus, Ruth K
2017-10-16
Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.
Rivera, José Carlos; Madaan, Ankush; Zhou, Tianwei Ellen; Chemtob, Sylvain
2016-12-01
Retinopathy of prematurity (ROP) is a multifactorial disease and the main cause of visual impairment and blindness in premature neonates. The inner retina has been considered the primary region affected in ROP, but choroidal vascular degeneration and progressive outer retinal dysfunctions have also been observed. This review focuses on observations regarding neurovascular dysfunctions in both the inner and outer immature retina, the mechanisms and the neuronal-derived factors implicated in the development of ROP, as well potential therapeutic avenues for this disorder. Alterations in the neurovascular integrity of the inner and outer retina contribute to the development of ROP. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.
2014-01-01
Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329
Complications of transplantation. Part 1: renal transplants.
Khaja, Minhaj S; Matsumoto, Alan H; Saad, Wael E
2014-10-01
Vascular complications after solid-organ transplantation are not uncommon and may lead to graft dysfunction and ultimately graft loss. A thorough understanding of the surgical anatomy, etiologies, and types of vascular complications, their presentation, and the options for management are important for managing these complex patients. This article reviews the basic surgical anatomy, vascular complications, and endovascular management options of vascular complications in patients with renal transplants.
Zito, Concetta; Mohammed, Moemen; Todaro, Maria Chiara; Khandheria, Bijoy K; Cusmà-Piccione, Maurizio; Oreto, Giuseppe; Pugliatti, Pietro; Abusalima, Mohamed; Antonini-Canterin, Francesco; Vriz, Olga; Carerj, Scipione
2014-11-01
We evaluated the interplay between left ventricular diastolic function and large-artery stiffness in asymptomatic patients at increased risk of heart failure and no structural heart disease (Stage A). We divided 127 consecutive patients (mean age 49 ± 17 years) with risk factors for heart failure who were referred to our laboratory to rule out structural heart disease into two groups according to presence (Group 1, n = 35) or absence (Group 2, n = 92) of grade I left ventricular diastolic dysfunction. Doppler imaging with high-resolution echo-tracking software was used to measure intima-media thickness (IMT) and stiffness of carotid arteries. Group 1 had significantly higher mean age, blood pressure, left ventricular mass index, carotid IMT and arterial stiffness than Group 2 (P < 0.05). Overall, carotid stiffness indices (β-stiffness index, augmentation index and elastic modulus) and 'one-point' pulse wave velocity each showed inverse correlation with E-wave velocity, E' velocity and E/A ratio, and direct correlation with A-wave velocity, E-wave deceleration time and E/E' ratio (P < 0.05). Arterial compliance showed negative correlations with the echocardiographic indices of left ventricular diastolic function (P < 0.05). On logistic regression analysis, age, hypertension, SBP, pulse pressure, left ventricular mass index, carotid IMT and stiffness parameters were associated with grade I left ventricular diastolic dysfunction (P < 0.05 for each). However, on multivariate logistic analysis, only 'one-point' pulse wave velocity and age were independent predictors (P = 0.038 and P = 0.016, respectively). An independent association between grade I left ventricular diastolic dysfunction and increased arterial stiffness is demonstrated at the earliest stage of heart failure. Hence, assessment of vascular function, beyond cardiac function, should be included in a comprehensive clinical evaluation of these patients.
Endothelial dysfunction: methods of assessment and application to hypertension.
Nadar, Sunil; Blann, Andrew D; Lip, Gregory Y H
2004-01-01
Interest in the endothelium has been growing in recent decades and the traditional belief that it provides an inert interface between blood and the vessel wall is no longer the case. It is now clear that the endothelium produces a large number of substances that influence blood flow, and it is in turn affected by changes in the blood and the pressure of blood flow. Nitric oxide and endothelins are the major regulators of the vascular tone, and thereby the blood pressure. Historically speaking, concepts such as endothelial cell damage and injury were described in the 1960s and 1970s. More recently, terms such as endothelial cell activation and dysfunction have also been introduced. Although similar in some respects or part of a continuum, these terms differ in the actual effects on the endothelium, and hence differentiation is important. In hypertension, the delicate balance between the vasodilators and the vasoconstrictors is upset, with disturbance in the nitric oxide pathways that lead to a predominance of the vasoconstrictors. This in turn leads to many other changes that take place in the endothelium, setting up a vicious cycle that maintains the high blood pressure. Therefore, accurate assessment of vascular function is important in linking pathophysiology with clinical disease, such as hypertension. Indeed, there are several methods currently employed experimentally to assess endothelial dysfunction. However, the most widely studied and accepted tests are the estimation of plasma markers such as von Willebrand factor, E-selectin and thrombomodulin, and studies of forearm circulation in response to hypoxia induced stress ('flow mediated dilatation', FMD) or intra arterially administered drugs such as acetyl choline. The present document examines these topics. Whilst acknowledging the debt owed to animal models in the study of hypertension, we shall focus on work where primary study is in homo sapiens. A greater appreciation of how endothelial assessments are made in hypertension will have relevance for drug development and future management strategies.
Vascular cognitive impairment, a cardiovascular complication.
Frances, Adiukwu; Sandra, Ofori; Lucy, Ugbomah
2016-06-22
Over the past two decades, the term vascular cognitive impairment (VCI) has been used to refer to a spectrum of cognitive decline characterized by executive dysfunction, associated with vascular pathology. With 30% of stroke survivors showing cognitive impairments, it is regarded as the most common cause of cognitive impairment. This is a narrative review of available literature citing sources from PubMed, MEDLINE and Google Scholar. VCI has a high prevalence both before and after a stroke and is associated with great economic and caregiver burden. Despite this, there is no standardized diagnostic criteria for VCI. Hypertension has been identified as a risk factor for VCI and causes changes in cerebral vessel structure and function predisposing to lacuna infarcts and small vessel haemorrhages in the frontostriatal loop leading to executive dysfunction and other cognitive impairments. Current trials have shown promising results in the use of antihypertensive medications in the management of VCI and prevention of disease progression to vascular dementia. Prevention of VCI is necessary in light of the looming dementia pandemic. All patients with cardiovascular risk factors would therefore benefit from cognitive screening with screening instruments sensitive to executive dysfunction as well as prompt and adequate control of hypertension.
Vascular cognitive impairment, a cardiovascular complication
Frances, Adiukwu; Sandra, Ofori; Lucy, Ugbomah
2016-01-01
Over the past two decades, the term vascular cognitive impairment (VCI) has been used to refer to a spectrum of cognitive decline characterized by executive dysfunction, associated with vascular pathology. With 30% of stroke survivors showing cognitive impairments, it is regarded as the most common cause of cognitive impairment. This is a narrative review of available literature citing sources from PubMed, MEDLINE and Google Scholar. VCI has a high prevalence both before and after a stroke and is associated with great economic and caregiver burden. Despite this, there is no standardized diagnostic criteria for VCI. Hypertension has been identified as a risk factor for VCI and causes changes in cerebral vessel structure and function predisposing to lacuna infarcts and small vessel haemorrhages in the frontostriatal loop leading to executive dysfunction and other cognitive impairments. Current trials have shown promising results in the use of antihypertensive medications in the management of VCI and prevention of disease progression to vascular dementia. Prevention of VCI is necessary in light of the looming dementia pandemic. All patients with cardiovascular risk factors would therefore benefit from cognitive screening with screening instruments sensitive to executive dysfunction as well as prompt and adequate control of hypertension. PMID:27354961
Endothelial progenitor cells and rheumatic disease modifying therapy.
Lo Gullo, Alberto; Aragona, Caterina Oriana; Michele, Scuruchi; Versace, Antonio Giovanni; Antonino, Saitta; Egidio, Imbalzano; Loddo, Saverio; Campo, Giuseppe Maurizio; Giuseppe, Mandraffino
2018-05-26
Rheumatic diseases are associated with accelerated atherosclerosis and with increased risk of cardiovascular morbidity and mortality. The mechanisms underlying the higher prevalence of cardiovascular disease are not completely clarified, but it is likely that a pivotal role is played by vascular inflammation and consequently to altered vascular endothelium homeostasis. Also, high prevalence of traditional risk factors, proatherogenic activation and endothelial dysfunction further contribute to vascular damage. Circulating endothelial progenitor cells (EPCs) can restore dysfunctional endothelium and protect against atherosclerotic vascular disease. However, abnormalities in number and function of these cells in patients with rheumatic condition have been extensively reported. During the last years, growing interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD has been shown; in addition, pioneering studies show that EPC dysfunction might be improved with pharmacological strategies. However, how to restore EPC function, and whether achieving this aim may be effective in preventing cardiovascular complications in rheumatic disease, remain to be established. In this review we report an overview on the current stand of knowledge on the effect of pharmaceutical and lifestyle intervention in improving EPCs number and function in rheumatic disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli
2016-01-01
We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia (VaD) using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p<0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 (AQP-4) expression around blood vessels. MMI induced glymphatic dysfunction with delayed cerebrospinal fluid (CSF) penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases AQP-4 and induces glymphatic dysfunction which may play an important role in MMI induced axonal/WM damage and cognitive deficits. PMID:27940353
Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli
2017-02-01
We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p < 0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age-matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 expression around blood vessels. MMI-induced glymphatic dysfunction with delayed cerebrospinal fluid penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases Aquaporin-4 and induces glymphatic dysfunction which may play an important role in MMI-induced axonal/WM damage and cognitive deficits. Copyright © 2016 Elsevier Inc. All rights reserved.
Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...
Can the Mean Platelet Volume Be a Risk Factor for Vasculogenic Erectile Dysfunction?
Yeni, Ercan; Demir, Mehmet; Yagmur, Ismail; Gümüş, Kemal; Celik, Hakim; Savas, Murat; Gulum, Mehmet
2013-01-01
Purpose The mean platelet volume (MPV) is a marker of the platelet activity and is reported to increase in vascular diseases. We aimed to investigate the association between MPV and vasculogenic erectile dysfunction (ED). Materials and Methods MPV and platelet (PLT) levels were measured in 50 cases of ED and 40 healthy controls. The diagnosis of vasculogenic ED was based on a detailed sexual history, physical examination, laboratory assessment, and color Doppler ultrasonography. The results are given as mean±standard deviation of the mean. Results The mean ages of the patient and the control groups were 53.70±12.39 years (range 24~77 years) and 53.85±9.5 years (range 30~73 years), respectively (p=0.947). The MPV and PLT values were significantly higher in the patients with ED than those of the controls (7.49±1.4), (6.85±1.2), (262.97±68), (252.89±82) respectively, p<0.001). However, the MPV values were not statistically significantly different in the patients with severe ED according to the International Index of Erectile Function than in those with mild ED, p>0.05), and there was no correlation between MPV and either age of patients (p=0.905) or duration of ED (p=0.583). Conclusions The platelet count and MPV was detected to be increased in patients with vasculogenic ED. This finding suggests a role for platelets in the pathogenesis of vascular complications and that the MPV would be useful in monitoring disease progression. PMID:24459654
A plant-based diet, atherogenesis, and coronary artery disease prevention.
Tuso, Phillip; Stoll, Scott R; Li, William W
2015-01-01
A plant-based diet is increasingly becoming recognized as a healthier alternative to a diet laden with meat. Atherosclerosis associated with high dietary intake of meat, fat, and carbohydrates remains the leading cause of mortality in the US. This condition results from progressive damage to the endothelial cells lining the vascular system, including the heart, leading to endothelial dysfunction. In addition to genetic factors associated with endothelial dysfunction, many dietary and other lifestyle factors, such as tobacco use, high meat and fat intake, and oxidative stress, are implicated in atherogenesis. Polyphenols derived from dietary plant intake have protective effects on vascular endothelial cells, possibly as antioxidants that prevent the oxidation of low-density lipoprotein. Recently, metabolites of L-carnitine, such as trimethylamine-N-oxide, that result from ingestion of red meat have been identified as a potential predictive marker of coronary artery disease (CAD). Metabolism of L-carnitine by the intestinal microbiome is associated with atherosclerosis in omnivores but not in vegetarians, supporting CAD benefits of a plant-based diet. Trimethylamine-N-oxide may cause atherosclerosis via macrophage activation. We suggest that a shift toward a plant-based diet may confer protective effects against atherosclerotic CAD by increasing endothelial protective factors in the circulation while reducing factors that are injurious to endothelial cells. The relative ratio of protective factors to injurious endothelial exposure may be a novel approach to assessing an objective dietary benefit from a plant-based diet. This review provides a mechanistic perspective of the evidence for protection by a plant-based diet against atherosclerotic CAD.
Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.
Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao
2016-09-01
Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.
Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage
2014-01-01
This article reviews current knowledge of the mechanisms underlying the initial hemorrhage and secondary blood–brain barrier (BBB) dysfunction in primary spontaneous intracerebral hemorrhage (ICH) in adults. Multiple etiologies are associated with ICH, for example, hypertension, Alzheimer’s disease, vascular malformations and coagulopathies (genetic or drug-induced). After the initial bleed, there can be continued bleeding over the first 24 hours, so-called hematoma expansion, which is associated with adverse outcomes. A number of clinical trials are focused on trying to limit such expansion. Significant progress has been made on the causes of BBB dysfunction after ICH at the molecular and cell signaling level. Blood components (e.g. thrombin, hemoglobin, iron) and the inflammatory response to those components play a large role in ICH-induced BBB dysfunction. There are current clinical trials of minimally invasive hematoma removal and iron chelation which may limit such dysfunction. Understanding the mechanisms underlying the initial hemorrhage and secondary BBB dysfunction in ICH is vital for developing methods to prevent and treat this devastating form of stroke. PMID:25120903
Nitroglycerin-induced changes in facial skin temperature: 'cold nose' as a predictor of headache?
Zaproudina, Nina; Närhi, Matti; Lipponen, Jukka A; Tarvainen, Mika P; Karjalainen, Pasi A; Karhu, Jari; Airaksinen, Olavi; Giniatullin, Rashid
2013-11-01
Nitroglycerin (NTG) often induces headaches when used to treat cardiac diseases. Such property of NTG has been widely used in modelling of migraine-like headaches. However, background reasons, predisposing to the development of NTG-headache, are less studied. The main aim of our study was to find, using NTG model, easily accessible markers of the vascular changes associated with headache. Because changes in the blood flow alter the local skin temperature (Tsk), we studied the relationship between the regional changes in the facial Tsk and NTG-induced headaches. Tsk was measured with infrared thermography in 11 healthy women during 3 h after sublingual NTG administration. NTG caused headache in five women, and four of them were the first-degree relatives of migraine patients. Notably, before NTG administration, subjects in the headache group had lower Tsk values, especially in the nose area, than women in the pain-free group (n = 6). NTG-induced headache was associated with a long-lasting increase of Tsk over the baseline. In sharp contrast, in the pain-free group, the Tsk reduced and returned rapidly to the baseline. Thus, the low baseline level and greater increase of regional Tsk correlated with the incidence of headache that supports a role of greater vascular changes in headache happening on the basis of the dissimilarities in vascular tone. An easily accessible phenomenon of 'cold nose' may indicate background vascular dysfunctions in individuals with predisposition to headache. Facial infrared thermography, coupled with NTG administration, suggests a novel temporally controlled approach for non-invasive investigation of vascular processes accompanying headaches. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Domingueti, Caroline Pereira; Dusse, Luci Maria Sant'Ana; Carvalho, Maria das Graças; de Sousa, Lirlândia Pires; Gomes, Karina Braga; Fernandes, Ana Paula
2016-01-01
Vascular complications are the leading cause of morbidity and mortality among patients with type 1 and type 2 diabetes mellitus. These vascular abnormalities result of a chronic hyperglycemic state, which leads to an increase in oxidative stress and inflammatory responses. This review addresses the relationships among endothelial dysfunction, hypercoagulability and inflammation and their biomarkers in the development of vascular complications in type 1 and type 2 diabetes. Inflammation, endothelial dysfunction, and hypercoagulability are correlated to each other, playing an important role in the development of vascular complications in diabetic patients. Moreover, it has been observed that several endothelial, inflammatory and pro-coagulant biomarkers, such as VWF, IL-6, TNF-α, D-dimer and PAI-1, are increased in diabetic patients who have microvascular and macrovascular complications, including nephropathy or cardiovascular disease. It is promising the clinical and laboratory use of endothelial, inflammatory and pro-coagulant biomarkers for predicting the risk of cardiovascular and renal complications in diabetic patients and for monitoring these patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Quan, Chunli; Sun, Qinghua; Lippmann, Morton; Chen, Lung-Chi
2011-01-01
Ambient air PM2.5 (particulate matter less than 2.5 μm in diameter) has been associated with cardiovascular diseases (CVDs), but the underlying mechanisms affecting CVDs are unknown. The authors investigated whether subchronic inhalation of concentrated ambient PM2.5 (CAPs), whole diesel exhaust (WDE), or diesel exhaust gases (DEGs) led to exacerbation of atherosclerosis, pulmonary and systemic inflammation, and vascular dysfunction; and whether DEG interactions with CAPs alter cardiovascular effects. ApoE−/− mice were simultaneously exposed via inhalation for 5 hours/day, 4 days/week, for up to 5 months to one of five different exposure atmospheres: (1) filtered air (FA); (2) CAPs (105 μg/m3); (3) WDE (DEP = 436 μg/m3); (4) DEG (equivalent to gas levels in WDE group); and (5) CAPs+DEG (PM2.5: 113 μg/m3; with DEG equivalent to WDE group). After 3 and 5 months, lung lavage fluid and blood sera were analyzed, and atherosclerotic plaques were quantified by ultrasound imaging, hematoxylin and eosin (H&E stain), and en face Sudan IV stain. Vascular functions were assessed after 5 months of exposure. The authors showed that (1) subchronic CAPs, WDE, and DEG inhalations increased serum vascular cell adhesion molecule (VCAM)-1 levels and enhanced phenylephrine (PE)-induced vasoconstriction; (2) for plaque exacerbation, CAPs > WDE > DEG = FA, thus PM components (not present in WDE) were responsible for plaque development; (3) atherosclerosis can exacerbated through mechanistic pathways other than inflammation and vascular dysfunction; and (4) although there were no significant interactions between CAPs and DEG on plaque exacerbation, it is less clear whether the effects of CAPs on vasomotor dysfunction and pulmonary/systemic inflammation were enhanced by the DEG coexposure. PMID:20462391
Petersen, Chrissa; Bharat, Divya; Cutler, Brett Ronald; Gholami, Samira; Denetso, Christopher; Mueller, Jennifer Ellen; Cho, Jae Min; Kim, Ji-Seok; Symons, J David; Anandh Babu, Pon Velayutham
2018-07-15
Cardiovascular disease is 2-4-fold more prevalent in patients with diabetes. Human studies support the cardiovascular benefits of strawberry consumption but the effects of strawberry on diabetic vasculature are unknown. We tested the hypothesis that dietary strawberry supplementation attenuates vascular inflammation and dysfunction in diabetic mice. Seven-week-old diabetic db/db mice that consumed standard diet (db/db) or diet supplemented with 2.35% freeze-dried strawberry (db/db + SB) for ten weeks were compared to non-diabetic control mice (db/+). Indices of vascular inflammation and dysfunction were measured. Endothelial cells (ECs) were isolated from the vasculature to determine the influence of strawberry on them. The effect of metabolites of strawberry on endothelial inflammation was determined by incubating mouse aortic ECs (MAECs) with ±5% serum, obtained from strawberry fed mice (metabolites serum) or standard diet fed mice (control serum) ± 25 mM glucose and 100 μM palmitate. db/db mice exhibited an increased monocyte binding to vessel, elevated blood pressure, and reduced endothelial-dependent vasorelaxation compared with db/+ mice but each defect was attenuated in db/db + SB mice. The elevation of inflammatory molecules, NOX2 and inhibitor-κB kinase observed in ECs from db/db vs. db/+ mice was suppressed in db/db + SB mice. Glucose and palmitate increased endothelial inflammation in MAECs but were normalized by co-incubation with metabolites serum. Dietary supplementation of strawberry attenuates indices of vascular inflammation and dysfunction in diabetic db/db mice. The effect of strawberry on vasculature is endothelial-dependent and possibly mediated through their circulating metabolites. Strawberry might complement conventional therapies to improve vascular complications in diabetics. Copyright © 2017 Elsevier B.V. All rights reserved.
Zarzuelo, María José; López-Sepúlveda, Rocío; Sánchez, Manuel; Romero, Miguel; Gómez-Guzmán, Manuel; Ungvary, Zoltan; Pérez-Vizcaíno, Francisco; Jiménez, Rosario; Duarte, Juan
2013-05-01
Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation. Copyright © 2013 Elsevier Inc. All rights reserved.
Silva, J F; Ocarino, N M; Vieira, A L S; Nascimento, E F; Serakides, R
2013-08-01
Although thyroid dysfunction occurs frequently in humans and some animal species, the mechanisms by which hypo- and hyperthyroidism affect the corpus luteum have not been thoroughly elucidated. This study evaluated the levels of proliferative activity, angiogenesis, apoptosis and expression of cyclooxygenase-2 in the corpus luteum of female rats with thyroid dysfunction. These processes may be important in understanding the reproductive changes caused by thyroid dysfunction. A total of 18 adult female rats were divided into three groups (control, hypothyroid and hyperthyroid) with six animals per group. Three months after treatment to induce thyroid dysfunction, the rats were euthanized in the dioestrus phase. The ovaries were collected and immunohistochemically analysed for expression of the cell proliferation marker CDC-47, vascular endothelial growth factor (VEGF), VEGF receptor Flk-1 and cyclooxygenase-2 (COX-2). Apoptosis was evaluated using the TUNEL assay. Hypothyroidism reduced the intensity and area of COX-2 expression in the corpus luteum (p < 0.05), while hyperthyroidism did not alter COX-2 expression in the dioestrus phase. Hypothyroidism significantly reduced the expression of CDC-47 in endothelial cells and pericytes in the corpus luteum, whereas hyperthyroidism did not induce a detectable change in CDC-47 expression (p > 0.05). Hypothyroidism reduced the level of apoptosis in luteal cells (p < 0.05) and increased VEGF expression in the corpus luteum. In contrast, hyperthyroidism increased the level of apoptosis in the corpus luteum (p < 0.05). In conclusion, thyroid dysfunction differentially affects the levels of proliferative activity, angiogenesis and apoptosis and COX-2 expression in the corpus luteum of female rats. © 2013 Blackwell Verlag GmbH.
Oxidative and inflammatory signals in obesity-associated vascular abnormalities.
Reho, John J; Rahmouni, Kamal
2017-07-15
Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Vascular dysfunction in preeclampsia.
Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T
2014-01-01
Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review. © 2013 John Wiley & Sons Ltd.
Rexhaj, Emrush; Pireva, Agim; Paoloni-Giacobino, Ariane; Allemann, Yves; Cerny, David; Dessen, Pierre; Sartori, Claudio; Scherrer, Urs; Rimoldi, Stefano F
2015-10-01
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans. Copyright © 2015 the American Physiological Society.
Tsai, I-Jung; Chen, Chia-Wen; Tsai, Shin-Yu; Wang, Pei-Yuan; Owaga, Eddy; Hsieh, Rong-Hong
2018-01-29
Vascular endothelial dysfunction is a potential risk factor for cardiovascular disease. This study evaluated the effect of curcumin on factors associated with vascular dysfunction using rats fed a high-sucrose, high-fat (HSF) diet. The experiment included 2 animal feeding phases. In the first feeding phase, male Sprague-Dawley rats were randomly divided into 2 groups: the control group (n = 8) was fed a standard diet (AIN-93G) and the HSF group (n = 24) was fed an HSF diet for 8 weeks to induce obesity. In the second feeding phase, lasting 4 weeks, the HSF group was randomly divided into 3 subgroups: the O group (n = 8) continued feeding on the HSF diet, the OA group (n = 8) had the HSF diet replaced with AIN-93G, and the OC group (n = 8) was fed the HSF diet supplemented with curcumin (300 mg/kg body weight daily). After 8 weeks, the HSF diet significantly elevated levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), insulin, homeostatic model assessment insulin resistance (HOMA-IR), low-density lipoprotein cholesterol (LDL-C), homocysteine (Hcy), C-reactive protein (CRP), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) but significantly reduced levels of nitric oxide (NO) and high-density lipoprotein cholesterol (HDL-C). After dietary intervention, the OA and OC groups exhibited significantly lower levels of AST, ALT, HOMA-IR, cholesterol, LDL-C, Hcy, CRP, VCAM-1, and ICAM-1 and higher levels of NO and catalase (CAT) activity compared with the O group. Superoxide dismutase, CAT, and glutathione peroxidase activities were increased in the OA group, while CAT levels were enhanced in the OC group. In conclusion, this study showed that curcumin supplementation and diet modification can inhibit HSF diet-induced vascular dysfunction potentially by enhancing NO production and antioxidant enzyme activities, thereby suppressing inflammation and oxidative damage in the vascular endothelium.
Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Llanos, Roxana M.; Mercer, Julian F.B.; Ushio-Fukai, Masuko; Fukai, Tohru
2013-01-01
Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2•− production in aortas of streptozotocin-induced and genetically induced Ins2Akita T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2•− production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2•− overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress–dependent vascular and metabolic diseases. PMID:23884884
Emter, Craig A; Tharp, Darla L; Ivey, Jan R; Ganjam, Venkataseshu K; Bowles, Douglas K
2011-10-01
Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.
Tharp, Darla L.; Ivey, Jan R.; Ganjam, Venkataseshu K.; Bowles, Douglas K.
2011-01-01
Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy. PMID:21841018
Smit, Andries J; Gerrits, Esther G
2010-11-01
Skin autofluorescence (SAF) is a new method to noninvasively assess accumulation of advanced glycation endproducts (AGEs) in a tissue with low turnover. Recent progress in the clinical application of SAF as a risk marker for diabetic nephropathy as well as cardiovascular disease in nondiabetic end-stage kidney disease, less advanced chronic kidney disease, and renal transplant recipients is reviewed. Experimental studies highlight the fundamental role of the interaction of AGEs with the receptor for AGEs (RAGEs), also called the AGE-RAGE axis, in the pathogenesis of vascular and chronic kidney disease. SAF predicts (cardiovascular) mortality in renal failure and also chronic renal transplant dysfunction. Long-term follow-up results from the Diabetes Control and Complications Trial and UK Prospective Diabetes Study suggest that AGE accumulation is a key carrier of metabolic memory and oxidative stress. Short-term intervention studies in diabetic nephropathy with thiamine, benfotiamine and angiotensin-receptor blockers aimed at reducing AGE formation have reported mixed results. SAF is a noninvasive marker of AGE accumulation in a tissue with low turnover, and thereby of metabolic memory and oxidative stress. SAF independently predicts cardiovascular and renal risk in diabetes, as well as in chronic kidney disease. Further long-term studies are required to assess the potential benefits of interventions to reduce AGE accumulation.
Liu, Qi; Zhang, Hui; Lin, Jiale; Zhang, Ruoxi; Chen, Shuyuan; Liu, Wei; Sun, Meng; Du, Wenjuan; Hou, Jingbo; Yu, Bo
2017-11-01
Vascular smooth muscle cells (VSMCs) switch to macrophage-like cells after cholesterol loading, and this change may play an important role in the progression of atherosclerosis. C1q/TNF-related protein 9 (CTRP9) is a recently discovered adipokine that has been shown to have beneficial effects on glucose metabolism and vascular function, particularly in regard to cardiovascular disease. The question of whether CTRP9 can protect VSMCs from cholesterol damage has not been addressed. In this study, the impact of CTRP9 on cholesterol-damaged VSMCs was observed. Our data show that in cholesterol-treated VSMCs, CTRP9 significantly reversed the cholesterol-induced increases in pro-inflammatory factor secretion, monocyte adhesion, cholesterol uptake and expression of the macrophage marker CD68. Meanwhile, CTRP9 prevented the cholesterol-induced activation of the TLR4-MyD88-p65 pathway and upregulated the expression of proteins important for cholesterol efflux. Mechanistically, as siRNA-induced selective gene ablation of AMPKα1 abolished these effects of CTRP9, we concluded that CTRP9 achieves these protective effects in VSMCs through the AMP-dependent kinase (AMPK) pathway. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Effect of agmatine on experimental vascular endothelial dysfunction.
Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S
2016-05-01
This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. © The Author(s) 2015.
Ras, Rouyanne T; Fuchs, Dagmar; Koppenol, Wieneke P; Garczarek, Ursula; Greyling, Arno; Keicher, Christian; Verhoeven, Carole; Bouzamondo, Hakim; Wagner, Frank; Trautwein, Elke A
2015-01-01
Background: Plant sterols (PSs) lower LDL cholesterol, an established risk factor for coronary artery disease (CAD). No direct evidence is available supporting a reduced risk of CAD for foods with added PSs. Endothelial dysfunction is seen as an early indicator of atherosclerotic damage. Objectives: This study was primarily designed to investigate the effect of a low-fat spread with added PSs on brachial artery endothelial function as measured by flow-mediated dilation (FMD). Second, effects on arterial stiffness, blood pressure, serum lipids, and plasma PS concentrations were investigated. We hypothesized that PSs would not worsen FMD but would rather modestly improve FMD. Design: This study had a double-blind, randomized, placebo-controlled, parallel design. After a 4-wk run-in period, 240 hypercholesterolemic but otherwise healthy men and women consumed 20 g/d of low-fat spread without (control) or with added PSs (3 g/d) during 12 wk. Pre- and postintervention, vascular function measurements and blood sampling were performed. Results: In total, 232 participants completed the study period. For the primary endpoint FMD, 199 participants were included in the statistical analysis. PS intake did not affect FMD (+0.01 percentage points; 95% CI: −0.73, 0.75) compared with control. Measures of arterial stiffness (pulse wave velocity and augmentation index) and blood pressure were also not significantly changed compared with control. After PS intervention, LDL cholesterol significantly decreased on average by 0.26 mmol/L (95% CI: −0.40, −0.12) or 6.7% compared with control. Plasma sitosterol and campesterol concentrations significantly increased in the PS group up to on average 11.5 μmol/L and 13.9 μmol/L (expressed as geometric means), respectively. Conclusions: The intake of a low-fat spread with added PSs neither improved nor worsened FMD or other vascular function markers in hypercholesterolemic men and women. As expected, serum LDL cholesterol decreased, whereas plasma PSs increased after PS intake. This study was registered at clinicaltrials.gov as NCT01803178. PMID:25809853
Factors associated with subendocardial ischemia risk in patients on hemodialysis.
Silva, Bruno Caldin da; Sanjuan, Adriano; Costa-Hong, Valéria; Reis, Luciene Dos; Graciolli, Fabiana; Consolim-Colombo, Fernanda; Bortolotto, Luiz Aparecido; Moyses, Rosa Maria Affonso; Elias, Rosilene Motta
2016-01-01
Bone metabolism disorder (BMD) and vascular dysfunction contribute to excess cardiovascular mortality observed in hemodialysis patients. Vascular dysfunction, a new marker of atherosclerosis, can play a role in this risk. Even though associated with higher mortality in the general population, such vascular evaluation in patients on hemodialysis has not been extensively studied. In this cross-sectional study, hemodialysis patients were submitted to flow-mediated dilation, subendocardial viability ratio (SEVR) and ejection duration index assessment, in order to estimate the impact of BMD markers on vascular dysfunction. A matched cohort of patients with (n = 16) and without (n = 11) severe secondary hyperparathyroidism (SHPT) was studied. Additionally, time spent under severe SHPT was also evaluated. Patients with severe SHPT had lower SEVR and higher ejection duration index, indicating higher cardiovascular risk. Lower SEVR was also associated to diastolic blood pressure (r = 0.435, p = 0.049), serum 25-Vitamin-D levels (r = 0.479, p = 0.028) and to more time spent under severe secondary hyperparathyroidism (SHPT), defined as time from PTH > 500pg/ml until parathyroidectomy surgery or end of the study (r = -0.642, p = 0.027). In stepwise multiple regression analysis between SEVR and independent variables, lower SEVR was independently associated to lower serum 25-Vitamin-D levels (p = 0.005), female sex (p = 0.012) and more time spent under severe SHPT (p = 0.001) in a model adjusted for age, serum cholesterol, and blood pressure (adjusted r² = 0.545, p = 0.001). Subendocardial perfusion was lower in patients with BMD, reflecting higher cardiovascular risk in this population. Whether early parathyroidectomy in the course of kidney disease could modify such results still deserves further investigation. Distúrbios do metabolismo ósseo (DMO) e alterações da função vascular contribuem para a elevada mortalidade de pacientes em hemodiálise. A disfunção vascular, um novo marcador de aterosclerose, pode contribuir para este risco. Apesar de associada a aumento de mortalidade na população geral, a avaliação de tal disfunção ainda não foi realizada de modo amplo em pacientes em hemodiálise. Neste estudo transversal, pacientes em hemodiálise foram submetidos à avaliação da vasodilatação mediada por fluxo, razão de viabilidade subendocárdica (RVSE) e índice de duração de ejeção, como estimativas de avaliação dos marcadores de DMO sobre disfunção vascular. Uma coorte pareada com (n = 16) e sem (n = 11) hiperparatireoidismo secundário (HPTS) grave foi estudada. Adicionalmente, o tempo transcorrido do diagnóstico de HPTS grave também foi avaliado. Pacientes com HPTS grave apresentaram menores valores de RVSE e maiores valores de índice de duração de ejeção, apontando maior risco cardiovascular. Baixa RVSE também foi associada à pressão arterial diastólica (r = 0,435, p = 0,049), níveis séricos de 25-Vitamina D (r = 0,479, p = 0,028) e maior tempo transcorrido desde diagnóstico de HPTS grave, definido como tempo em que o paciente permaneceu com valores de paratormônio superiores a 500 pg/ml até realização de cirurgia de paratireoidectomia ou término do estudo (r = -0,642, p = 0,027). Em regressão logística stepwise entre RVSE e variáveis independentes, menor RVSE foi independentemente associado a menores valores de 25-Vitamina D (p = 0,005), sexo feminino (p = 0,012) e maior tempo transcorrido desde diagnóstico de HPTS grave (p = 0,001) em um modelo ajustado para idade, colesterol sérico e pressão arterial (r2 ajustado = 0,545, p = 0,001). A perfusão subendocárdica foi menor em pacientes com DMO, refletindo o maior risco cardiovascular nesta população. Investigações adicionais são necessárias para definir se a paratireoidectomia precoce no curso da doença renal crônica poderia interferir neste risco.
A Revised Hemodynamic Theory of Age-Related Macular Degeneration
Gelfand, Bradley D.; Ambati, Jayakrishna
2016-01-01
Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265
Retinal ganglion cells in diabetes
Kern, Timothy S; Barber, Alistair J
2008-01-01
Diabetic retinopathy has long been recognized as a vascular disease that develops in most patients, and it was believed that the visual dysfunction that develops in some diabetics was due to the vascular lesions used to characterize the disease. It is becoming increasingly clear that neuronal cells of the retina also are affected by diabetes, resulting in dysfunction and even degeneration of some neuronal cells. Retinal ganglion cells (RGCs) are the best studied of the retinal neurons with respect to the effect of diabetes. Although investigations are providing new information about RGCs in diabetes, including therapies to inhibit the neurodegeneration, critical information about the function, anatomy and response properties of these cells is yet needed to understand the relationship between RGC changes and visual dysfunction in diabetes. PMID:18565995
microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction
Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira
2013-01-01
Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154
Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease
Wallin, Anders; Román, Gustavo C.; Esiri, Margaret; Kettunen, Petronella; Svensson, Johan; Paraskevas, George P.; Kapaki, Elisabeth
2018-01-01
Subcortical small-vessel disease (SSVD) is a disorder well characterized from the clinical, imaging, and neuropathological viewpoints. SSVD is considered the most prevalent ischemic brain disorder, increasing in frequency with age. Vascular risk factors include hypertension, diabetes, hyperlipidemia, elevated homocysteine, and obstructive sleep apnea. Ischemic white matter lesions are the hallmark of SSVD; other pathological lesions include arteriolosclerosis, dilatation of perivascular spaces, venous collagenosis, cerebral amyloid angiopathy, microbleeds, microinfarcts, lacunes, and large infarcts. The pathogenesis of SSVD is incompletely understood but includes endothelial changes and blood-brain barrier alterations involving metalloproteinases, vascular endothelial growth factors, angiotensin II, mindin/spondin, and the mammalian target of rapamycin pathway. Metabolic and genetic conditions may also play a role but hitherto there are few conclusive studies. Clinical diagnosis of SSVD includes early executive dysfunction manifested by impaired capacity to use complex information, to formulate strategies, and to exercise self-control. In comparison with Alzheimer’s disease (AD), patients with SSVD show less pronounced episodic memory deficits. Brain imaging has advanced substantially the diagnostic tools for SSVD. With the exception of cortical microinfarcts, all other lesions are well visualized with MRI. Diagnostic biomarkers that separate AD from SSVD include reduction of cerebrospinal fluid amyloid-β (Aβ)42 and of the ratio Aβ42/Aβ40 often with increased total tau levels. However, better markers of small-vessel function of intracerebral blood vessels are needed. The treatment of SSVD remains unsatisfactory other than control of vascular risk factors. There is an urgent need of finding targets to slow down and potentially halt the progression of this prevalent, but often unrecognized, disorder. PMID:29562536
Yamanashi, H; Shimizu, Y; Koyamatsu, J; Nagayoshi, M; Kadota, K; Tamai, M; Maeda, T
2017-01-01
Handgrip strength is a simple measurement of overall muscular strength and is used to detect sarcopenia. It also predicts adverse events in later life. Many mechanisms of sarcopenia development have been reported. A hypertensive status impairs endothelial dysfunction, which might deteriorate skeletal muscle if vascular angiogenesis is not maintained. This study investigated muscle strength and circulating CD34-positive cells as a marker of vascular angiogenesis. Cross-sectional study. 262 male Japanese community dwellers aged 60 to 69 years. The participants' handgrip strength, medical history, and blood samples were taken. We stratified the participants by hypertensive status to investigate the association between handgrip strength and circulating CD34-positive cells according to hypertensive status. Pearson correlation and linear regression analyses were used. In the Pearson correlation analysis, handgrip strength and the logarithm of circulating CD34-positive cells were significantly associated in hypertensive participants (r=0.22, p=0.021), but not in non-hypertensive participants (r=-0.01, p=0.943). This relationship was only significant in hypertensive participants (ß=1.94, p=0.021) in the simple linear regression analysis, and it remained significant after adjusting for classic cardiovascular risk factors (ß=1.92, p=0.020). The relationship was not significant in non-hypertensive participants (ß=-0.09, p=0.903). We found a positive association between handgrip strength and circulating CD34-positive cells in hypertensive men. Vascular maintenance attributed by circulating CD34-positive cells is thought to be a background mechanism of this association after hypertension-induced vascular injury in skeletal muscle.
[Circuit resistance training improved endothelial dysfunction in obese aged women].
Rosety, Ignacio; Pery, María Teresa; Rosety, Jesús; García, Natalia; Rodríguez-Pareja, María Antonia; Brenes-Martín, Francisco; Díaz, Antonio; Rosety-Rodríguez, Manuel; Ordoñez, Francisco Javier; Rosety, Miguel Ángel
2016-02-16
It is widely accepted that obesity is associated with endothelial dysfunction. In a recent paper, we have also found circuit resistance training may reduce visceral fat in obese aged women. Accordingly, the current study was conducted to ascertain the effects of circuit resistance training on markers of endothelial dysfunction in this population group. In the present interventional study, a total of 48 obese aged women were recruited from the community. Twenty-four of them were randomly assigned to perform a 12-week resistance circuit training programme, 3-days per week. This training was circularly performed in 6 stations: arm curl, leg extension, seated row, leg curl, triceps extension and leg press. The Jamar handgrip electronic dynamometer was used to assess maximal handgrip strength of the dominant hand. Lastly, serum samples were analysed using an immunoassay (ELISA) for endothelin-1, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). When compared to baseline, resistance training significantly reduced serum levels of endothelin-1 (2.28 ± 0.7 vs. 1.98 ± 1.1 pg/ml; p = 0.019; d = 0.67) and ICAM-1 (290 ± 69 vs. 255 ± 76 ng/ml; p = 0.004; d = 0.92) in the experimental group. No significant changes in any of the tested outcomes were found in the control group. A short-term circuit resistance program improved endothelial dysfunction in aged obese women. Further studies on this topic are still required to consolidate this approach in clinical application.
Vascular risk factors, cerebrovascular reactivity, and the default-mode brain network.
Haight, Thaddeus J; Bryan, R Nick; Erus, Guray; Davatzikos, Christos; Jacobs, David R; D'Esposito, Mark; Lewis, Cora E; Launer, Lenore J
2015-07-15
Cumulating evidence from epidemiologic studies implicates cardiovascular health and cerebrovascular function in several brain diseases in late life. We examined vascular risk factors with respect to a cerebrovascular measure of brain functioning in subjects in mid-life, which could represent a marker of brain changes in later life. Breath-hold functional MRI (fMRI) was performed in 541 women and men (mean age 50.4 years) from the Coronary Artery Risk Development in Young Adults (CARDIA) Brain MRI sub-study. Cerebrovascular reactivity (CVR) was quantified as percentage change in blood-oxygen level dependent (BOLD) signal in activated voxels, which was mapped to a common brain template and log-transformed. Mean CVR was calculated for anatomic regions underlying the default-mode network (DMN) - a network implicated in AD and other brain disorders - in addition to areas considered to be relatively spared in the disease (e.g. occipital lobe), which were utilized as reference regions. Mean CVR was significantly reduced in the posterior cingulate/precuneus (β=-0.063, 95% CI: -0.106, -0.020), anterior cingulate (β=-0.055, 95% CI: -0.101, -0.010), and medial frontal lobe (β=-0.050, 95% CI: -0.092, -0.008) relative to mean CVR in the occipital lobe, after adjustment for age, sex, race, education, and smoking status, in subjects with pre-hypertension/hypertension compared to normotensive subjects. By contrast, mean CVR was lower, but not significantly, in the inferior parietal lobe (β=-0.024, 95% CI: -0.062, 0.014) and the hippocampus (β=-0.006, 95% CI: -0.062, 0.050) relative to mean CVR in the occipital lobe. Similar results were observed in subjects with diabetes and dyslipidemia compared to those without these conditions, though the differences were non-significant. Reduced CVR may represent diminished vascular functionality for the DMN for individuals with prehypertension/hypertension in mid-life, and may serve as a preclinical marker for brain dysfunction in later life. Copyright © 2015 Elsevier Inc. All rights reserved.
[HDL-C/apoA-I]: A multivessel cardiometabolic risk marker in women with T2DM.
Hermans, Michel P; Valensi, Paul; Ahn, Sylvie A; Rousseau, Michel F
2018-01-01
Although women have higher high-density lipoprotein cholesterol (HDL-C) than have men, their HDL particles are also prone to become small, dense, and dysfunctional in case of type 2 diabetes mellitus (T2DM). To assess the vascular risk related to HDLs of different sizes/densities without direct measurement, we adjusted HDL-C to its main apolipoprotein (apoA-I) as [HDL-C/apoA-I]. This ratio estimates HDL sizes and provides indices as to their number, cholesterol load, and density. We stratified 280 Caucasian T2DM women according to [HDL-C/apoA-I] quartiles (Q) to determine how they are segregated according to cardiometabolic risk, β-cell function, glycaemic control, and vascular complications. Five parameters were derived from combined determination of HDL-C and apoA-I: HDL size, HDL number, cholesterol load per particle (pP), apoA-I pP, and HDL density. An adverse cardiometabolic profile characterized QI and QII patients whose HDLs were denser and depleted in apoA-I, whereas QIII patients had HDLs with characteristics closer to those of controls. QIV patients had HDLs of supernormal size/composition and a more favourable phenotype in terms of fat distribution; insulin sensitivity (64% vs 41%), metabolic syndrome, and β-cell function (32% vs 23%); exogenous insulin (44 vs 89 U·d -1 ); and glycaemic control (glycated haemoglobin, 56 vs 61 mmol·mol -1 ), associated with lower prevalence of microvascular/macrovascular complications: all-cause microangiopathy 47% vs 61%; retinopathy 22% vs 34%; all-cause macroangiopathy 19% vs 31%; and coronary artery disease 6% vs 24% (P < .05). [HDL-C/apoA-I] can stratify T2DM women according to metabolic phenotype, macrovascular and coronary damage, β-cell function, microangiopathic risk, and retinopathy. This ratio is a versatile and readily available marker of cardiometabolic status and vascular complications in T2DM women. Copyright © 2017 John Wiley & Sons, Ltd.
Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium.
Rush, James W E; Turk, James R; Laughlin, M Harold
2003-04-01
Vascular oxidative stress contributes to endothelial dysfunction. Aerobic exercise training improves vascular function. The purpose of this study was to test the hypothesis that exercise training would improve the balance of antioxidant to prooxidant enzymes and reduce markers of oxidative stress in aortic endothelial cells (AEC). Female Yucatan miniature pigs either remained sedentary (SED) or were exercise trained (EX) for 16-19 wk. EX pigs had increased AEC SOD-1 protein levels and Cu/Zn SOD activity of the whole aorta compared with SED pigs. Protein levels of other antioxidant enzymes (SOD-2, catalase) were not affected by exercise training. Protein levels of p67(phox), a subunit of the prooxidant enzyme NAD(P)H oxidase, were reduced in EX vs. SED AEC. These EX adaptations were associated with lower AEC malondialdehyde levels and decreased phosphorylation of ERK-1/2. Endothelial nitric oxide synthase protein, protein nitrotyrosine content, and heme oxygenase-1 protein were not different in EX vs. SED pigs. We conclude that chronic aerobic exercise training influenced both antioxidant and prooxidant enzymes and decreased indexes of oxidative stress in AEC. These adaptations may contribute to improved endothelial function with exercise training.
Growth Hormone (GH) and Cardiovascular System
Díaz, Oscar; Devesa, Pablo
2018-01-01
This review describes the positive effects of growth hormone (GH) on the cardiovascular system. We analyze why the vascular endothelium is a real internal secretion gland, whose inflammation is the first step for developing atherosclerosis, as well as the mechanisms by which GH acts on vessels improving oxidative stress imbalance and endothelial dysfunction. We also report how GH acts on coronary arterial disease and heart failure, and on peripheral arterial disease, inducing a neovascularization process that finally increases flow in ischemic tissues. We include some preliminary data from a trial in which GH or placebo is given to elderly people suffering from critical limb ischemia, showing some of the benefits of the hormone on plasma markers of inflammation, and the safety of GH administration during short periods of time, even in diabetic patients. We also analyze how Klotho is strongly related to GH, inducing, after being released from the damaged vascular endothelium, the pituitary secretion of GH, most likely to repair the injury in the ischemic tissues. We also show how GH can help during wound healing by increasing the blood flow and some neurotrophic and growth factors. In summary, we postulate that short-term GH administration could be useful to treat cardiovascular diseases. PMID:29346331
Celletti, Claudia; Camerota, Filippo; Castori, Marco; Censi, Federica; Gioffrè, Laura; Calcagnini, Giovanni; Strano, Stefano
2017-01-01
Background . Joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type (JHS/EDS-HT), is a hereditary connective tissue disorder mainly characterized by generalized joint hypermobility, skin texture abnormalities, and visceral and vascular dysfunctions, also comprising symptoms of autonomic dysfunction. This study aims to further evaluate cardiovascular autonomic involvement in JHS/EDS-HT by a battery of functional tests. Methods . The response to cardiovascular reflex tests comprising deep breathing, Valsalva maneuver, 30/15 ratio, handgrip test, and head-up tilt test was studied in 35 JHS/EDS-HT adults. Heart rate and blood pressure variability was also investigated by spectral analysis in comparison to age and sex healthy matched group. Results . Valsalva ratio was normal in all patients, but 37.2% of them were not able to finish the test. At tilt, 48.6% patients showed postural orthostatic tachycardia, 31.4% orthostatic intolerance, 20% normal results. Only one patient had orthostatic hypotension. Spectral analysis showed significant higher baroreflex sensitivity values at rest compared to controls. Conclusions. This study confirms the abnormal cardiovascular autonomic profile in adults with JHS/EDS-HT and found the higher baroreflex sensitivity as a potential disease marker and clue for future research.
Davison, Kade; Howe, Peter R C
2015-11-18
The metabolic syndrome is a pathological state whereby cardiovascular and metabolic dysfunction coexist and typically progress in a mutual feed-forward manner to further dysfunction and ultimately disease. The health and function of the vascular endothelium is integral in this phenomenon and thus represents a logical target for intervention. Consumption of foods high in cocoa flavanols has demonstrated a capacity to markedly improve endothelial function and key markers of the metabolic syndrome including blood pressure and insulin sensitivity. The typically high energy content of foods containing sufficient doses of cocoa flavanols has caused some reservations around its therapeutic use, but this is dependent upon the particulars of the food matrix used. Further to this, the food matrix appears to influence the dose response curve of cocoa flavanols, particularly on blood pressure, with dark chocolate appearing to be 8 times more effective in systolic blood pressure reduction than a cocoa powder drink for the equivalent dose of flavanol. Cocoa flavanol consumption conclusively demonstrates a positive impact on cardiometabolic function; however, more research is needed to understand how best to consume it to maximize the benefit while avoiding excessive fat and sugar consumption.
Higashi, Yukihito
2017-06-01
It is well known that there is an association of lower urinary tract symptoms/benign prostatic hypertrophy with cardiovascular disease, suggesting that lower urinary tract symptoms/benign prostatic hypertrophy is a risk factor for cardiovascular events. Vascular function, including endothelial function and vascular smooth muscle function, is involved in the pathogenesis, maintenance and development of atherosclerosis, leading to cardiovascular events. Vascular dysfunction per se should also contribute to lower urinary tract symptoms/benign prostatic hypertrophy. Both lower urinary tract symptoms/benign prostatic hypertrophy and vascular dysfunction have cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus, aging, obesity and smoking. Inactivation of the phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate-nitric oxide pathway causes lower urinary tract symptoms/benign prostatic hypertrophy through an enhancement of sympathetic nervous activity, endothelial dysfunction, increase in Rho-associated kinase activity and vasoconstriction, and decrease in blood flow of pelvic viscera. Both endogenous nitric oxide and exogenous nitric oxide act as vasodilators on vascular smooth muscle cells through an increase in the content of cyclic guanosine 3',5'-monophosphate, which is inactivated by phosphodiesterase type 5. In a clinical setting, phosphodiesterase type 5 inhibitors are widely used in patients with lower urinary tract symptoms/benign prostatic hypertrophy. Phosphodiesterase type 5 inhibitors might have beneficial effects on vascular function through not only inhibition of cyclic guanosine 3',5'-monophosphate degradation, but also increases in testosterone levels and nitric oxide bioavailability, increase in the number and improvement of the function of endothelial progenitor cells, and decrease in insulin resistance. In the present review, the relationships between lower urinary tract symptoms/benign prostatic hypertrophy, the phosphodiesterase type 5-nitric oxide-cyclic guanosine 3',5'-monophosphate pathway, vascular function and cardiovascular outcomes are examined. © 2017 The Japanese Urological Association.
Guan, Yong; Wendong, Sun; Zhao, Shengtian; Liu, Tongyan; Liu, Yuqiang; Zhang, Xiulin; Yuan, Mingzhen
2015-01-01
Erectile dysfunction (ED) is a common complication of pelvic fractures. To identify the vascular and neurogenic factors associated with ED, 120 patients admitted with ED after traumatic pelvic fracture between January 2009 and June 2013 were enrolled in this study. All patients answered the International Index of Erectile Function (IIEF-5) questionnaire. Nocturnal penile tumescence (NPT) testing confirmed the occurrence of ED in 96 (80%) patients on whom penile duplex ultrasound and neurophysiological testing were further performed. Of these ED patients 29 (30%) were demonstrated only with vascular abnormality, 41 (42.7%) were detected only with neural abnormality, 26 (27.1%) revealed mixed abnormalities. Of the 55 patients (29+26) with vascular problems, 7 patients (12.7%) with abnormal arterial response to intracavernous injection of Bimix (15mg papaverine and 1mg phentolamine), 31 (56.4%) with corporal veno-occlusive dysfunction and 17 (30.9%) had both problems. Of the 67 (41+26) patients with abnormal neurophysiological outcomes, 51 (76.1%) with abnormal bulbocavernosus re?ex (BCR), 20 (29.9%) with pathological pudendal nerve evoked potentials (PDEPs) and 25 (37.3%) with abnormal posterior tibial somatosensory nerve evoked potentials (PTSSEPs). Our observation indicated that neurogenic factors are important for the generation of ED in patients with pelvic fracture; venous impotence is more common than arteriogenic ED.
Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System
Finch, Jordan; Conklin, Daniel J.
2015-01-01
Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health. PMID:26148452
PGC-1α dictates endothelial function through regulation of eNOS expression
Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.
2016-01-01
Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955
Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System.
Finch, Jordan; Conklin, Daniel J
2016-07-01
Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.
Statin withdrawal: clinical implications and molecular mechanisms.
Cubeddu, Luigi X; Seamon, Matthew J
2006-09-01
Retrospective analyses of data from the Platelet Receptor Inhibition in Ischemic Syndrome Management (PRISM), the National Registry of Myocardial Infarction 4, and the Global Registry of Acute Coronary Events (GRACE) trials revealed that the benefits of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) on acute coronary outcomes are rapidly lost and outcomes worsened if statins are discontinued during a patient's hospitalization for an acute coronary syndrome. Withdrawal of statin therapy in the first 24 hours of hospitalization for non-ST-elevation myocardial infarction increased the hospital morbidity and mortality rate versus continued therapy (11.9% vs 5.7%, p<0.01). Data from the Treating New Targets (TNT) study, however, suggested that short-term discontinuation of statin therapy in patients with stable cardiac conditions may not substantially increase the risk of acute coronary syndromes. In patients with acute coronary syndromes who discontinue statins, the rapid increase in risk of an event may result not only from the lost benefits from the therapy, but also from rebound inhibition of vascular protective substances and activation of vascular deleterious substances. Statins inhibit cholesterol synthesis in vascular cells. By reducing levels of isoprenoid intermediates, statins increase the production of nitric oxide and downregulate angiotensin II AT(1) receptors, endothelin-1, vascular inflammatory adhesion molecules, and inflammatory cytokines. These benefits are rapidly lost and often transiently reversed when statins are acutely discontinued. Acute removal of pleiotropic effects and rebound vascular dysfunction may be more important in an acute coronary event, where inflammation promotes rupture of atherosclerotic plaques and inflammatory and prothrombosis markers are present in high concentration, than in stable chronic vascular disease. In the absence of data from randomized controlled trials, current information suggests that statin therapy should be continued, and possibly boosted, during hospitalization for an acute coronary syndrome. Because statins are discontinued during the early hospitalization of many patients, practitioners must ensure that statins are not omitted, unless contraindicated, from the treatment of patients with acute coronary syndromes.
Brant, Luisa C C; Wang, Na; Ojeda, Francisco M; LaValley, Michael; Barreto, Sandhi M; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S; Palmisano, Joseph N; Münzel, Thomas; Blankenberg, Stefan; Wild, Philipp S; Zeller, Tanja; Ribeiro, Antonio L P; Schnabel, Renate B; Hamburg, Naomi M
2017-03-08
Microvascular dysfunction is a marker of early vascular disease that predicts cardiovascular events. Whether metabolically healthy obese individuals have impaired microvascular function remains unclear. The aim of this study was to evaluate the relation of obesity phenotypes stratified by metabolic status to microvascular function. We meta-analyzed aggregate data from 3 large cohorts (Brazilian Longitudinal Study of Adult Health, the Framingham Heart Study, and the Gutenberg Heart Study; n=16 830 participants, age range 19-90, 51.3% men). Regression slopes between cardiovascular risk factors and microvascular function, measured by peripheral arterial tonometry (PAT), were calculated. Individuals were classified as normal-weight, overweight, or obese by body mass index (BMI) and stratified by healthy or unhealthy metabolic status based on metabolic syndrome using the ATP-III criteria. Male sex, BMI, and metabolic risk factors were associated with higher baseline pulse amplitude and lower PAT ratio. There was stepwise impairment of vascular measures from normal weight to obesity in both metabolic status strata. Metabolically healthy obese individuals had more impaired vascular function than metabolically healthy normal-weight individuals (baseline pulse amplitude 6.12±0.02 versus 5.61±0.01; PAT ratio 0.58±0.01 versus 0.76±0.01, all P <0.0001). Metabolically unhealthy obese individuals had more impaired vascular function than metabolically healthy obese individuals (baseline pulse amplitude 6.28±0.01 versus 6.12±0.02; PAT ratio 0.49±0.01 versus 0.58±0.01, all P <0.0001). Metabolically healthy obese individuals have impaired microvascular function, though the degree of impairment is less marked than in metabolically unhealthy obese individuals. Our findings suggest that obesity is detrimental to vascular health irrespective of metabolic status. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Bedet, Alexandre; Razazi, Keyvan; Boissier, Florence; Surenaud, Mathieu; Hue, Sophie; Giraudier, Stéphane; Brun-Buisson, Christian; Mekontso Dessap, Armand
2018-06-01
Thrombocytopenia is a common feature of sepsis and may involve various mechanisms often related to the inflammatory response. This study aimed at evaluating factors associated with thrombocytopenia during human septic shock. In particular, we used a multiplex analysis to assess the role of endogenous sepsis mediators. Prospective, observational study. Thrombocytopenia was defined as an absolute platelet count <100 G/L or a 50% relative decrease in platelet count during the first week of septic shock. Plasma concentrations of 27 endogenous mediators involved in sepsis and platelet pathophysiology were assessed at day-1 using a multi-analyte Milliplex human cytokine kit. Patients with underlying diseases at risk of thrombocytopenia (hematological malignancies, chemotherapy, cirrhosis, and chronic heart failure) were excluded. Thrombocytopenia occurred in 33 (55%) of 60 patients assessed. Patients with thrombocytopenia were more prone to present with extrapulmonary infections and bacteremia. Disseminated intravascular coagulation was frequent (81%) in these patients. Unbiased hierarchical clustering identified five different clusters of sepsis mediators, including one with markers of platelet activation (e.g., thrombospondin-1) positively associated with platelet count, one with markers of inflammation (e.g., tumor necrosis factor alpha and heat shock protein 70), and endothelial dysfunction (e.g., intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) negatively associated with platelet count, and another involving growth factors of thrombopoiesis (e.g., thrombopoietin), also negatively associated with platelet count. Surrogates of hemodilution (e.g., hypoprotidemia and higher fluid balance) were also associated with thrombocytopenia. Multiple mechanisms seemed involved in thrombocytopenia during septic shock, including endothelial dysfunction/coagulopathy, hemodilution, and altered thrombopoiesis.
Latimer, Caitlin S; Searcy, James L; Bridges, Michael T; Brewer, Lawrence D; Popović, Jelena; Blalock, Eric M; Landfield, Philip W; Thibault, Olivier; Porter, Nada M
2011-01-01
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.
Latimer, Caitlin S.; Searcy, James L.; Bridges, Michael T.; Brewer, Lawrence D.; Popović, Jelena; Blalock, Eric M.; Landfield, Philip W.; Thibault, Olivier; Porter, Nada M.
2011-01-01
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging. PMID:22046366
Yang, Fang; Suo, Yourui; Chen, Dongli; Tong, Li
2016-07-19
Chronic hyperlipemia increases the incidence of vascular endothelial dysfunction and can even induce cardiovascular disease. Sea buckthorn contains a host of bioactives such as flavonoids and polyphenols that can prevent the development of cardiovascular disease. The current study isolated active ingredients, polyphenols, from sea buckthorn berries (SVP) and orally administered SVP at a dose of 7-28 mg/kg. This treatment significantly reduced serum lipids, it enhanced the activity of antioxidant enzymes, and it decreased the level of serum TNF-α and IL-6. SVP also alleviate vascular impairment by decreasing the expression of eNOS, ICAM-1, and LOX-1 mRNA and proteins in aortas of rats with hyperlipidemia. Based on these findings, SVP has antioxidant action and it protects endothelium.
Effectiveness of Vascular Markers (Immunohistochemical Stains) in Soft Tissue Sarcomas.
Naeem, Namra; Mushtaq, Sajid; Akhter, Noreen; Hussain, Mudassar; Hassan, Usman
2018-05-01
To ascertain the effectiveness of IHC markers of vascular origin like CD31, CD34, FLI1 and ERG in vascular soft tissue sarcomas including angiosarcomas, Kaposi sarcomas, epithelioid hemangioendothelioma and a non-vascular soft tissue sarcoma (Epithelioid sarcoma). Descriptive study. Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, from 2011 to 2017. Diagnosed cases of angiosarcomas (n=48), epithelioid hemangioendothelioma (n=9), Kaposi sarcoma (n=9) and epithelioid sarcoma (n=20) were selected. Immunohistochemical staining as performed on formalin fixed paraffin embedded sections. The sections were stained for the following markers: CD34 (VENTANA clone Q Bend 10), CD31 (Leica clone 1 A 10), FLI1 (CELL MARQUE clone MRQ-1) and ERG (CELL MARQUE clone EP111). A complete panel of CD34, CD31 and ERG was applied on 8/48 cases of angiosarcomas with triple positivity in 6 cases. Eight cases showed positivity for only CD31 and ERG and 2 cases showed positivity for only ERG. A complete panel of CD34, CD31 and ERG was applied on 3/9 cases of epithelioid hemangioendothelioma with positivity for all markers in 2 cases. Combined positivity for ERG and CD34 was seen in 2 cases and on 4 cases only CD31 immunohistochemical was solely applied with 100% positivity. FLI1 was not applied on any case. Among 9 cases of Kaposi sarcoma, ERG, CD34 and CD31 in combination were applied on only 1 case with triple positivity. Remaining cases show positivity for either CD34, CD31 or FLI1. Majority of cases of epithelioid sarcomas were diagnosed on the basis of cytokeratin and CD34 positivity with loss of INI1. The other vascular markers showed negativity in all cases. Among these four markers, ERG immunohistochemical stain is highly effective for endothelial differentiation due to its specific nuclear staining pattern in normal blood vessel endothelial cells (internal control) as well as neoplastic cells of vascular tumors and lack of background staining.
RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Kun; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing
Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro. RNCR3 knockdown alleviates retinal vascular dysfunction in vivo, as shown by decreased acellular capillaries, decreased vascular leakage, and reduced inflammatory response. RNCR3 knockdown decreases retinal endothelial cell proliferation, and reduces cell migration and tube formation in vitro. RNCR3 regulates endothelial cell function through RNCR3/KLF2/miR-185-5p regulatory network. RNCR3 inhibition may be a treatment option for the prevention of diabetes mellitus-induced retinal microvascular abnormalities. - Highlights:more » • RNCR3 expression is significantly up-regulated upon high glucose stress. • RNCR3 knockdown alleviates retinal vascular dysfunction in vivo. • RNCR3 regulates retinal endothelial cell function in vitro. • RNCR3 regulates retinal endothelial cell function via RNCR3/KLF2/miR-185-5p pathway.« less
HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.
Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E
2011-10-01
Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.
Catino, Anna B; Hubbard, Rebecca A; Chirinos, Julio A; Townsend, Ray; Keefe, Stephen; Haas, Naomi B; Puzanov, Igor; Fang, James C; Agarwal, Neeraj; Hyman, David; Smith, Amanda M; Gordon, Mary; Plappert, Theodore; Englefield, Virginia; Narayan, Vivek; Ewer, Steven; ElAmm, Chantal; Lenihan, Daniel; Ky, Bonnie
2018-03-01
Sunitinib, used widely in metastatic renal cell carcinoma, can result in hypertension, left ventricular dysfunction, and heart failure. However, the relationships between vascular function and cardiac dysfunction with sunitinib are poorly understood. In a multicenter prospective study of 84 metastatic renal cell carcinoma patients, echocardiography, arterial tonometry, and BNP (B-type natriuretic peptide) measures were performed at baseline and at 3.5, 15, and 33 weeks after sunitinib initiation, correlating with sunitinib cycles 1, 3, and 6. Mean change in vascular function parameters and 95% confidence intervals were calculated. Linear regression models were used to estimate associations between vascular function and left ventricular ejection fraction, longitudinal strain, diastolic function (E/e'), and BNP. After 3.5 weeks of sunitinib, mean systolic blood pressure increased by 9.5 mm Hg (95% confidence interval, 2.0-17.1; P =0.02) and diastolic blood pressure by 7.2 mm Hg (95% confidence interval, 4.3-10.0; P <0.001) across all participants. Sunitinib resulted in increases in large artery stiffness (carotid-femoral pulse wave velocity) and resistive load (total peripheral resistance and arterial elastance; all P <0.05) and changes in pulsatile load (total arterial compliance and wave reflection). There were no statistically significant associations between vascular function and systolic dysfunction (left ventricular ejection fraction and longitudinal strain). However, baseline total peripheral resistance, arterial elastance, and aortic impedance were associated with worsening diastolic function and filling pressures over time. In patients with metastatic renal cell carcinoma, sunitinib resulted in early, significant increases in blood pressure, arterial stiffness, and resistive and pulsatile load within 3.5 weeks of treatment. Baseline vascular function parameters were associated with worsening diastolic but not systolic function. © 2018 American Heart Association, Inc.
Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.
Jain, Swati; Sharma, Bhupesh
2015-12-01
Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.
Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice.
Zou, Liangqiang; Wang, Weiyi; Liu, Shangxin; Zhao, Xiaojing; Lyv, Ying; Du, Congkuo; Su, Xueying; Geng, Bin; Xu, Guoheng
2016-02-01
Perilipin-1 (Plin1) coats lipid droplets exclusively in adipocytes and regulates two principle functions of adipose tissue, triglyceride storage and hydrolysis, which are disrupted upon Plin1 deficiency. In the present study, we investigated the alterations in systemic metabolites and hormones, vascular function and adipose function in spontaneous hypertensive mice lacking perilipin-1 (Plin1-/-). Plin1-/- mice developed spontaneous hypertension without obvious alterations in systemic metabolites and hormones. Plin1 expressed only in adipose cells but not in vascular cells, so its ablation would have no direct effect in situ on blood vessels. Instead, Plin1-/- mice showed dysfunctions of perivascular adipose tissue (PVAT), a fat depot that anatomically surrounds systemic arteries and has an anticontractile effect. In Plin1-/- mice, aortic and mesenteric PVAT were reduced in mass and adipocyte derived relaxing factor secretion, but increased in basal lipolysis, angiotensin II secretion, macrophage infiltration and oxidative stress. Such multiple culprits impaired the anticontractile effect of PVAT to promote vasoconstriction of aortic and mesenteric arteries of Plin1-/- mice. Furthermore, arterial vessels of Plin1-/- mice showed increasing angiotensin II receptor type 1, monocyte chemotactic protein-1 and interlukin-6 expression, structural damage of endothelial and smooth muscle cells, along with impaired endothelium-dependent relaxation. Hypertension in Plin1-/- mice might occur as a deleterious consequence of PVAT dysfunction. This finding provides the direct evidence that links dysfunctional PVAT to vascular dysfunction and hypertension, particularly in pathophysiological states. This hypertensive mouse model might mimic and explain the hypertension occurring in patients with adipose tissue dysfunction, particularly with Plin1 mutations. Copyright © 2015 Elsevier B.V. All rights reserved.
Shirakura, Takashi; Nomura, Johji; Matsui, Chieko; Kobayashi, Tsunefumi; Tamura, Mizuho; Masuzaki, Hiroaki
2016-08-01
Xanthine oxidase (XO) is an enzyme responsible for the production of uric acid. XO produces considerable amount of oxidative stress throughout the body. To date, however, its pathophysiologic role in hypertension and endothelial dysfunction still remains controversial. To explore the possible involvement of XO-derived oxidative stress in the pathophysiology of vascular dysfunction, by use of a selective XO inhibitor, febuxostat, we investigated the impact of pharmacological inhibition of XO on hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats (SHRs). Sixteen-week-old SHR and normotensive Wistar-Kyoto (WKY) rats were treated with tap water (control) or water containing febuxostat (3 mg/kg/day) for 6 weeks. Systolic blood pressure (SBP) in febuxostat-treated SHR (220 ± 3 mmHg) was significantly (P < 0.05) decreased compared with the control SHR (236 ± 4 mmHg) while SBP in febuxostat-treated WKY was constant. Acetylcholine-induced endothelium-dependent relaxation in aortas from febuxostat-treated SHR was significantly (P < 0.05) improved compared with the control SHR, whereas relaxation in response to sodium nitroprusside was not changed. Vascular XO activity and tissue nitrotyrosine level, a representative indicator of local oxidative stress, were considerably elevated in the control SHR compared with the control WKY, and this increment was abolished by febuxostat. Our results suggest that exaggerated XO activity and resultant increase in oxidative stress in this experimental model contribute to the hypertension and endothelial dysfunction, thereby supporting a notion that pharmacological inhibition of XO is valuable not only for hyperuricemia but also for treating hypertension and related endothelial dysfunction in human clinics.
Yonezawa, S; Maruyama, I; Sakae, K; Igata, A; Majerus, P W; Sato, E
1987-10-01
Thrombomodulin (TM) is a newly described endothelial cell-associated protein that functions as a potent natural anticoagulant by converting thrombin from a procoagulant protease to an anticoagulant. Various vascular tumors were characterized with immunoperoxidase staining with the use of a polyclonal anti-TM serum. The staining patterns of TM were compared with those of Factor VIII-related antigen (FVIII-RAG) and Ulex europaeus agglutinin-I (UEA-I), which have been used as markers for endothelial cells. The results showed that TM is a specific and a highly sensitive marker for angiosarcomas in comparison with FVIII-RAG or UEA-I. In contrast, UEA-I is more sensitive for benign vascular tumors than TM or FVIII-RAG. The other mesenchymal tumors of nonvascular origin showed negative staining for three endothelial markers. These results indicate that TM is a new specific and sensitive tool for the diagnosis of angiosarcomas.
Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina
2017-01-01
Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and N G -monomethyl-l-arginine (l-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible according to inclusion and exclusion criteria. Studies investigated the effect of age (n=2), type 2 diabetes mellitus (DM) (n=1), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (n=1), leukoaraiosis (n=1), and prior ischaemic stroke or transient ischaemic attack (TIA) (n=2) on cerebral ED. Most studies applied transcranial Doppler to quantify cerebral ED. Endothelium-dependent vasodilatation (EDV) induced by l-arginine was impaired in elderly and subjects with leukoaraiosis, but enhanced in CADASIL patients. Studies including subjects with prior ischaemic stroke or TIA reported both enhanced and impaired EDV to l-arginine. Responses to l-NMMA deviated between subjects with type 2 DM and the elderly. We found only few studies investigating cerebral endothelial responses to l-arginine and l-NMMA in subjects with vascular risk factors or ischaemic cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease. © 2016 John Wiley & Sons Australia, Ltd.
Preconditioning to Reduce Decompression Stress in Scuba Divers.
Germonpré, Peter; Balestra, Costantino
2017-02-01
Using ultrasound imaging, vascular gas emboli (VGE) are observed after asymptomatic scuba dives and are considered a key element in the potential development of decompression sickness (DCS). Diving is also accompanied with vascular dysfunction, as measured by flow-mediated dilation (FMD). Previous studies showed significant intersubject variability to VGE for the same diving exposure and demonstrated that VGE can be reduced with even a single pre-dive intervention. Several preconditioning methods have been reported recently, seemingly acting either on VGE quantity or on endothelial inflammatory markers. Nine male divers who consistently showed VGE postdive performed a standardized deep pool dive (33 m/108 ft, 20 min in 33°C water temperature) to investigate the effect of three different preconditioning interventions: heat exposure (a 30-min session of dry infrared sauna), whole-body vibration (a 30-min session on a vibration mattress), and dark chocolate ingestion (30 g of chocolate containing 86% cocoa). Dives were made one day per week and interventions were administered in a randomized order. These interventions were shown to selectively reduce VGE, FMD, or both compared to control dives. Vibration had an effect on VGE (39.54%, SEM 16.3%) but not on FMD postdive. Sauna had effects on both parameters (VGE: 26.64%, SEM 10.4%; FMD: 102.7%, SEM 2.1%), whereas chocolate only improved FMD (102.5%, SEM 1.7%). This experiment, which had the same subjects perform all control and preconditioning dives in wet but completely standardized diving conditions, demonstrates that endothelial dysfunction appears to not be solely related to VGE.Germonpré P, Balestra C. Preconditioning to reduce decompression stress in scuba divers. Aerosp Med Hum Perform. 2017; 88(2):114-120.
Tripathi, Avnish; Benjamin, Emelia J; Musani, Solomon K; Hamburg, Naomi M; Tsao, Connie W; Saraswat, Arti; Vasan, Ramachandran S; Mitchell, Gary F; Fox, Ervin R
2017-05-01
Peripheral vascular endothelial dysfunction assessed by digital peripheral arterial tonometry (PAT) has been associated with risk for adverse cardiovascular events. We examined the relations of peripheral microvascular dysfunction and left ventricular mass in a community-based cohort of African Americans. We examined participants of the Jackson Heart Study who had PAT and cardiac magnetic resonance imaging evaluations between 2007 and 2013. Consistent with pertinent literature, left ventricular mass index (LVMI) was adjusted for body size by indexing to height 2.7 . Pearson's correlation and general linear regression analyses were used to relate reactive hyperemia index, baseline pulse amplitude (BPA), and augmentation index (markers of microvascular vasodilator function, baseline vascular pulsatility, and relative wave reflection, respectively) to LVMI after adjusting for traditional cardiovascular risk factors. A total of 440 participants (mean age 59 ± 10 years, 60% women) were included. Age- and sex-adjusted Pearson's correlation analysis suggested that natural log transformed LVMI was negatively correlated with reactive hyperemia index (coefficient: -0.114; P = .02) and positively correlated with BPA (coefficient: 0.272; P < .001). In multivariable analyses, higher log e LVMI was associated with higher BPA (β: 0.210; P = .03) after accounting for age, sex, body mass index, diabetes, hypertension, ratio of total cholesterol and high-density lipoprotein cholesterol, smoking, and history of cardiovascular disease. In a community-based sample of African Americans, higher baseline pulsatility measured by PAT was associated with higher LVMI by cardiac magnetic resonance imaging after adjusting for traditional risk factors. Copyright © 2017 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Shaikh, Amir Y; Wang, Na; Yin, Xiaoyan; Larson, Martin G; Vasan, Ramachandran S; Hamburg, Naomi M; Magnani, Jared W; Ellinor, Patrick T; Lubitz, Steven A; Mitchell, Gary F; Benjamin, Emelia J; McManus, David D
2016-09-01
The relations of measures of arterial stiffness, pulsatile hemodynamic load, and endothelial dysfunction to atrial fibrillation (AF) remain poorly understood. To better understand the pathophysiology of AF, we examined associations between noninvasive measures of vascular function and new-onset AF. The study sample included participants aged ≥45 years from the Framingham Heart Study offspring and third-generation cohorts. Using Cox proportional hazards regression models, we examined relations between incident AF and tonometry measures of arterial stiffness (carotid-femoral pulse wave velocity), wave reflection (augmentation index), pressure pulsatility (central pulse pressure), endothelial function (flow-mediated dilation), resting brachial arterial diameter, and hyperemic flow. AF developed in 407/5797 participants in the tonometry sample and 270/3921 participants in the endothelial function sample during follow-up (median 7.1 years, maximum 10 years). Higher augmentation index (hazard ratio, 1.16; 95% confidence interval, 1.02-1.32; P=0.02), baseline brachial artery diameter (hazard ratio, 1.20; 95% confidence interval, 1.01-1.43; P=0.04), and lower flow-mediated dilation (hazard ratio, 0.79; 95% confidence interval, 0.63-0.99; P=0.04) were associated with increased risk of incident AF. Central pulse pressure, when adjusted for age, sex, and hypertension (hazard ratio, 1.14; 95% confidence interval, 1.02-1.28; P=0.02) was associated with incident AF. Higher pulsatile load assessed by central pulse pressure and greater apparent wave reflection measured by augmentation index were associated with increased risk of incident AF. Vascular endothelial dysfunction may precede development of AF. These measures may be additional risk factors or markers of subclinical cardiovascular disease associated with increased risk of incident AF. © 2016 American Heart Association, Inc.
Cognitive Impairment among the Aging Population in a Community in Southwest Nigeria
ERIC Educational Resources Information Center
Adebiyi, Akindele O.; Ogunniyi, Adesola; Adediran, Babatunde A.; Olakehinde, Olaide O.; Siwoku, Akeem A.
2016-01-01
Background: Vascular risk models can be quite informative in assisting the clinician to make a prediction of an individual's risk of cognitive impairment. Thus, a simple marker is a priority for low-capacity settings. This study examines the association of selected simple to deploy vascular markers with cognitive impairment in an elderly…
Nonpharmacologic Treatment of Erectile Dysfunction
Montague, Drogo K
2002-01-01
Nonpharmacologic treatment for erectile dysfunction (ED) includes sex therapy, the use of vacuum erection devices, penile prosthesis implantation, and penile vascular surgery. Sex therapy is indicated for psychogenic ED and is at times a useful adjunct for other treatments in men with mixed psychogenic and organic ED. Vacuum erection devices produce usable erections in over 90% of patients; however, patient and partner acceptability is an issue. Three-piece inflatable penile prostheses create flaccidity and an erection that comes close to that which occurs naturally. Penile vascular surgery has shown greatest efficacy in young men with vasculogenic ED resulting from pelvic or perineal trauma. PMID:16986016
Alves-Lopes, Rhéure; Neves, Karla B; Montezano, Augusto C; Harvey, Adam; Carneiro, Fernando S; Touyz, Rhian M; Tostes, Rita C
2016-10-01
Oxidative stress plays an important role in diabetes mellitus (DM)-associated vascular injury. DM is an important risk factor for erectile dysfunction. Functional and structural changes in internal pudendal arteries (IPA) can lead to erectile dysfunction. We hypothesized that downregulation of nuclear factor E2-related factor 2 (Nrf2), consequent to increased nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1)-derived reactive oxygen species (ROS), impairs IPA function in DM. IPA and vascular smooth muscle cells from C57BL/6 (control) and NOX1 knockout mice were used. DM was induced by streptozotocin in C57BL/6 mice. Functional properties of IPA were assessed using a myograph, protein expression and peroxiredoxin oxidation by Western blot, RNA expression by polymerase chain reaction, carbonylation by oxyblot assay, ROS generation by lucigenin, nitrotyrosine, and amplex red, and Rho kinase activity and nuclear accumulation of Nrf2 by ELISA. IPA from diabetic mice displayed increased contractions to phenylephrine (control 138.5±9.5 versus DM 191.8±15.5). ROS scavenger, Nrf2 activator, NOX1 and Rho kinase inhibitors normalized vascular function. High glucose increased ROS generation in IPA vascular smooth muscle cell. This effect was abrogated by Nrf2 activation and not observed in NOX1 knockout vascular smooth muscle cell. High glucose also increased levels of nitrotyrosine, protein oxidation/carbonylation, and Rho kinase activity, but reduced Nrf2 activity and expression of Nrf2-regulated genes (catalase [25.6±0.05%], heme oxygenase-1 [21±0.1%], and quinone oxidoreductase 1 [22±0.1%]) and hydrogen peroxide levels. These effects were not observed in vascular smooth muscle cell from NOX1 knockout mice. In these cells, high glucose increased hydrogen peroxide levels. In conclusion, Rho kinase activation, via NOX1-derived ROS and downregulation of Nrf2 system, impairs IPA function in DM. These data suggest that Nrf2 is vasoprotective in DM-associated erectile dysfunction. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy
We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOSmore » and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic-induced vascular dysfunction. • Arsenic reduced ACh-induced aortic relaxation but didn’t alter response to SNP and PE. • Arsenic affected aortic NO signalling and production of inflammatory mediators. • Arsenic produced vasculopathic lesions in aorta. • Atorvastatin restored arsenic-induced functional, biochemical and structural changes.« less
Rassaf, Tienush; Rammos, Christos; Hendgen-Cotta, Ulrike B; Heiss, Christian; Kleophas, Werner; Dellanna, Frank; Floege, Jürgen; Hetzel, Gerd R; Kelm, Malte
2016-01-07
Hemodialysis (HD) per se entails vascular dysfunction in patients with ESRD. Endothelial dysfunction is a key step in atherosclerosis and is characterized by impaired flow-mediated dilation (FMD). Interventional studies have shown that cocoa flavanol (CF)-rich supplements improve vascular function. Aim of this study was to investigate the effect of flavanol-rich bioactive food ingredients on acute and chronic HD-induced vascular dysfunction in ESRD. We conducted a randomized, double-blind, placebo-controlled trial from 2012 to 2013. Fifty-seven participants were enrolled, ingested CF-rich beverages (900 mg CF per study day), and were compared with those ingesting CF-free placebo. This included (1) a baseline cross-over acute study to determine safety and efficacy of CF and (2) a subsequent chronic parallel group study with a 30-day follow-up period to study effects of CF on HD-mediated vascular dysfunction entailing (3) an acute substudy during HD in flavanol-naive patients and (4) an acute on chronic study during HD. Primary and secondary outcome measures included changes in FMD and hemodynamics. CF ingestion was well tolerated. Acute ingestion improved FMD by 53% (3.2±0.6% to 4.8±0.9% versus placebo, 3.2±0.7% to 3.3±0.8%; P<0.001), with no effects on BP or heart rate. A 30-day ingestion of CF led to an increase in baseline FMD by 18% (3.4±0.9% to 3.9±0.8% versus placebo, 3.5±0.7% to 3.5±0.7%; P<0.001), with reduced diastolic BP (73±12 to 69±11 mmHg versus placebo, 70±11 to 73±13 mmHg; P=0.03) and increased heart rate (70±12 to 74±13 bpm versus placebo, 75±15 to 74±13 bpm; P=0.01). No effects were observed for placebo. Acute ingestion of CF during HD alleviated HD-induced vascular dysfunction (3.4±0.9% to 2.7±0.6% versus placebo, 3.5±0.7% to 2.0±0.6%; P<0.001). This effect was sustained throughout the study (acute on chronic, 3.9±0.9% to 3.0±0.7% versus placebo, 3.5±0.7% to 2.2±0.6; P=0.01). Dietary CF ingestion mitigates acute HD-induced and chronic endothelial dysfunction in patients with ESRD and thus, improves vascular function in this high-risk population. Larger clinical trials are warranted to test whether this translates into an improved cardiovascular prognosis in patients with ESRD. Copyright © 2016 by the American Society of Nephrology.
Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.
Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S; Palta, Priit; Esko, Tonu; Pers, Tune H; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M; Kallela, Mikko; Freilinger, Tobias M; Ran, Caroline; Gordon, Scott G; Stam, Anine H; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab H H; Lehtimäki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A; Buring, Julie E; Schürks, Markus; Ridker, Paul M; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M; Hottenga, Jouke-Jan; Penninx, Brenda W J H; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Malik, Rainer; Heath, Andrew C; Madden, Pamela A F; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Kals, Mart; Mägi, Reedik; Pärn, Kalle; Hämäläinen, Eija; Huang, Hailiang; Byrnes, Andrea E; Franke, Lude; Huang, Jie; Stergiakouli, Evie; Lee, Phil H; Sandor, Cynthia; Webber, Caleb; Cader, Zameel; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Eriksson, Johan G; Salomaa, Veikko; Heikkilä, Kauko; Loehrer, Elizabeth; Uitterlinden, Andre G; Hofman, Albert; van Duijn, Cornelia M; Cherkas, Lynn; Pedersen, Linda M; Stubhaug, Audun; Nielsen, Christopher S; Männikkö, Minna; Mihailov, Evelin; Milani, Lili; Göbel, Hartmut; Esserlind, Ann-Louise; Christensen, Anne Francke; Hansen, Thomas Folkmann; Werge, Thomas; Kaprio, Jaakko; Aromaa, Arpo J; Raitakari, Olli; Ikram, M Arfan; Spector, Tim; Järvelin, Marjo-Riitta; Metspalu, Andres; Kubisch, Christian; Strachan, David P; Ferrari, Michel D; Belin, Andrea C; Dichgans, Martin; Wessman, Maija; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret I; Smith, George Davey; Stefansson, Kari; Eriksson, Nicholas; Daly, Mark J; Neale, Benjamin M; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Palotie, Aarno
2016-08-01
Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.
Cerebral Autoregulation in Hypertension and Ischemic Stroke: A Mini Review
Shekhar, Shashank; Liu, Ruen; Travis, Olivia K; Roman, Richard J; Fan, Fan
2017-01-01
Aging and chronic hypertension are associated with dysfunction in vascular smooth muscle, endothelial cells, and neurovascular coupling. These dysfunctions induce impaired myogenic response and cerebral autoregulation, which diminish the protection of cerebral arterioles to the cerebral microcirculation from elevated pressure in hypertension. Chronic hypertension promotes cerebral focal ischemia in response to reductions in blood pressure that are often seen in sedentary elderly patients on antihypertensive therapy. Cerebral autoregulatory dysfunction evokes Blood-Brain Barrier (BBB) leakage, allowing the circulating inflammatory factors to infiltrate the brain to activate glia. The impaired cerebral autoregulation-induced inflammatory and ischemic injury could cause neuronal cell death and synaptic dysfunction which promote cognitive deficits. In this brief review, we summarize the pathogenesis and signaling mechanisms of cerebral autoregulation in hypertension and ischemic stroke-induced cognitive deficits, and discuss our new targets including 20-Hydroxyeicosatetraenoic acid (20-HETE), Gamma-Adducin (Add3) and Matrix Metalloproteinase-9 (MMP-9) that may contribute to the altered cerebral vascular function. PMID:29333537
Bridges, Jason P; Gilbert, Jeffrey S; Colson, Drew; Gilbert, Sara A; Dukes, Matthew P; Ryan, Michael J; Granger, Joey P
2009-05-01
Recent evidence indicates that both increased oxidative stress and an altered balance between pro- and anti-angiogenic factors such as vascular-endothelial growth factor (VEGF) and the soluble VEGF receptor (sFlt-1) contribute to endothelial dysfunction in preeclampsia. We hypothesized that chronic infusion of sFlt-1 to mimic the increase observed in preeclamptic patients would reduce plasma VEGF concentrations, increase blood pressure (BP) and vascular superoxide levels, and cause endothelial dysfunction in the pregnant rat. Recombinant sFlt-1 was infused (500 ng/h) during days 13-18 of pregnancy. BP, fetal and placental weight, oxidative stress and vessel vasorelaxation were determined on day 18 of pregnancy. Plasma sFlt-1 concentrations (299 +/- 33 vs. 100 +/- 16 pg/ml; P < 0.01) and BP (117 +/- 6 vs. 98 +/- 4 mm Hg; P < 0.01) were increased, while plasma-free VEGF concentrations (570 +/- 77 vs. 780 +/- 48 pg/ml; P < 0.01) were decreased when compared to vehicle infused dams. sFlt-1 rats had smaller fetuses (1.3 +/- 0.03 vs. 1.5 +/- 0.04 g, P < 0.01) and placentas (0.41 +/- 0.01 vs. 0.47 +/- 0.02 g; P < 0.05). Placental (180 +/- 66 vs. 24 +/- 2.3 RLU/min/mg; P < 0.05) and vascular (34 +/- 8 vs. 12 +/- 5 RLU/min/mg; P < 0.05) superoxide production was increased in the sFlt-1 compared to vehicle infused rats. Vasorelaxation to acetylecholine (ACh) and sodium nitroprusside (SNP) were both decreased (P < 0.05) in the sFlt-1 infusion group compared to the vehicle and this decrease was attenuated (P < 0.05) by the superoxide scavenger Tiron. These data indicate elevated maternal sFlt-1 and decreased VEGF concentrations results in increased oxidative stress that contributes to vascular dysfunction during pregnancy.
Maseroli, Elisa; Scavello, Irene; Vignozzi, Linda
2018-05-02
Erectile dysfunction is recognized as an opportunity for preventing cardiovascular (CV) events, and assessing the impairment of penile vascular flow by Doppler ultrasound is an important tool to ascertain CV risk. Conversely, the role of genital vascular impairment in the pathophysiology of female sexual dysfunction (FSD) remains contentious. To focus on the current scientific support for an association between CV risk factors and female sexual health in the 1st part of a 2-part review. A thorough literature search of peer-reviewed publications on the associations between CV risk factors and FSD and their underlying mechanisms was performed using the PubMed database. We present a summary of the evidence from clinical studies and discuss the possible mechanisms providing the pathophysiologic bases of vasculogenic FSD syndromes. The peripheral sexual response in women is a vascular-dependent event, and evidence suggests that cardiometabolic-related perturbations in endothelial function can determine vascular insufficiency in female genital tissues. Although epidemiologic and observational studies demonstrate that the prevalence of FSD is higher in women with diabetes mellitus, a cause-effect relation between these clinical conditions cannot be assumed. Evidence on the effect of obesity, metabolic syndrome, and polycystic ovary syndrome on sexual function in women is controversial. Data on the associations of dyslipidemia and hypertension with FSD are limited. Common cardiometabolic alterations could affect vascular function in the female genital tract. Based on limited data, there is an association between CV risk factors and female sexual health in women; however, this association appears milder than in men. Maseroli E, Scavello I, Vignozzi L. Cardiometabolic Risk and Female Sexuality-Part I. Risk Factors and Potential Pathophysiological Underpinnings for Female Vasculogenic Sexual Dysfunction Syndromes. Sex Med Rev 2018;X:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Yin, Yonghui; Qi, Fanghua; Song, Zhenhua; Zhang, Bo; Teng, Jialin
2014-08-01
Dysfunction of the endothelium is regarded as an important factor in the pathogenesis of vascular disease in diabetes mellitus (DM). Unfortunately, prevention of the progression of vascular complications of DM remains pessimistic. Ferulic acid and astragaloside IV, isolated from traditional Chinese medicine Angelica sinensis and Radix astragali respectively, exhibit potential cardio-protective and anti-hyperglycemic properties. In the present study, we investigated the protective effects and underlying mechanism of ferulic acid and astragaloside IV against vascular endothelial dysfunction in diabetic rats. After the diabetic rat model was established using streptozotocin, sixty rats were divided into 6 groups (control, model, ferulic acid, astragaloside IV, ferulic acid + astragaloside IV, and metformin) and treated for 10 weeks. Blood samples were collected to measure levels of hemoglobin A1c (HbAlc), triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), low density lipoproteins (Ox-LDL), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and creatinine (Cr), nitric oxide (NO) and endothelial nitric oxide synthase (eNOS), and abdominal aorta tissue samples were collected for observing histological morphology changes of endothelium and detecting gene and protein expression of nuclear factor-κB (NF-κB) P65, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor α (TNF-α). We found that ferulic acid combined with astragaloside IV was capable of improving the structure of the aortic endothelium wall, attenuating the increase of HbAlc, TG, TC, LDL-C and Ox-LDL, promoting the release of NO and eNOS, and inhibiting over-activation of MCP-1, TNF-α, and NF-κB P65, without damage to liver and kidney function. In conclusion, ferulic acid combined with astragaloside IV exhibited significant protective effects against vascular endothelial dysfunction in diabetic rats through the NF-κB pathway involving decrease of Ox-LDL, increase of NO and eNOS, and activation of NF-κB P65, MCP-1 and TNF-α.
Qi, Di; Wang, Daoxin; Zhang, Chunrong; Tang, Xumao; He, Jing; Zhao, Yan; Deng, Wang; Deng, Xinyu
2017-01-01
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein-rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity-associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad-vaspin) to examine its effects on lipopolysaccharide (LPS)-induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10] levels, and intercellular cell adhesion molecule-1 (ICAM-1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)-vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF-α and IL-6) and endothelial-specific adhesion markers [vascular cell adhesion molecule-1 and E-selectin], activation of nuclear factor-κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad-vaspin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)-3β pathway. In addition, pretreatment of HPMECs with rh-vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal organization following LPS insult, which was accompanied by activation of the Akt/GSK3β pathway. In conclusion, the present study demonstrated that vaspin protects against LPS-induced ARDS by reversing EC barrier dysfunction via the suppression of inflammation, apoptosis and ROS production in pulmonary ECs, at least partially via activation of the Akt/GSK3β pathway. These findings provide evidence of a causal link between vaspin and EC dysfunction in ARDS, and suggest a potential therapeutic intervention for patients with ARDS. PMID:29039444
Qi, Di; Wang, Daoxin; Zhang, Chunrong; Tang, Xumao; He, Jing; Zhao, Yan; Deng, Wang; Deng, Xinyu
2017-12-01
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein‑rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue‑derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity‑associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad‑vaspin) to examine its effects on lipopolysaccharide (LPS)‑induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)‑α, interleukin (IL)‑6 and IL‑10] levels, and intercellular cell adhesion molecule‑1 (ICAM‑1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)‑vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF‑α and IL‑6) and endothelial‑specific adhesion markers [vascular cell adhesion molecule‑1 and E‑selectin], activation of nuclear factor‑κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad‑vaspin protected against LPS‑induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)‑3β pathway. In addition, pretreatment of HPMECs with rh‑vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal organization following LPS insult, which was accompanied by activation of the Akt/GSK3β pathway. In conclusion, the present study demonstrated that vaspin protects against LPS‑induced ARDS by reversing EC barrier dysfunction via the suppression of inflammation, apoptosis and ROS production in pulmonary ECs, at least partially via activation of the Akt/GSK3β pathway. These findings provide evidence of a causal link between vaspin and EC dysfunction in ARDS, and suggest a potential therapeutic intervention for patients with ARDS.
Thomson, R L; Brinkworth, G D; Noakes, M; Clifton, P M; Norman, R J; Buckley, J D
2012-07-01
Women with polycystic ovary syndrome (PCOS) present with vascular abnormalities, including elevated markers of endothelial dysfunction. There is limited evidence for the effect of lifestyle modification and weight loss on these markers. The aim of this study was to determine if 20 weeks of a high-protein energy-restricted diet with or without exercise in women with PCOS could improve endothelial function. This is a secondary analysis of a subset of 50 overweight/obese women with PCOS (age: 30.3 ± 6.3 years; BMI: 36.5 ± 5.7 kg/m(2)) from a previous study. Participants were randomly assigned by computer generation to one of three 20-week interventions: diet only (DO; n = 14, ≈ 6000 kJ/day), diet and aerobic exercise (DA; n = 16, ≈ 6000 kJ/day and five walking sessions/week) and diet and combined aerobic-resistance exercise (DC; n = 20, ≈ 6000 kJ/day, three walking and two strength sessions/week). At Weeks 0 and 20, weight, markers of endothelial function [vascular cell adhesion molecule-1 (sVCAM-1), inter-cellular adhesion molecule-1 (sICAM-1), plasminogen activator inhibitor-1 (PAI-1) and asymmetric dimethylarginine (ADMA)], insulin resistance and hormonal profile were assessed. All three treatments resulted in significant weight loss (DO 7.9 ± 1.2%, DA 11.0 ± 1.6%, DC 8.8 ± 1.1; P < 0.001 for time; P = 0.6 time × treatment). sVCAM-1, sICAM-1 and PAI-1 levels decreased with weight loss (P≤ 0.01), with no differences between treatments (P ≥ 0.4). ADMA levels did not change significantly (P = 0.06). Testosterone, sex hormone-binding globulin and the free androgen index (FAI) and insulin resistance also improved (P < 0.001) with no differences between treatments (P ≥ 0.2). Reductions in sVCAM-1 were correlated to reductions in testosterone (r = 0.32, P = 0.03) and FAI (r = 0.33, P = 0.02) as well as weight loss (r= 0.44, P = 0.002). Weight loss was also associated with reductions in sICAM-1 (r= 0.37, P = 0.008). Exercise training provided no additional benefit to following a high-protein, hypocaloric diet on markers of endothelial function in overweight/obese women with PCOS.
Sillesen, Martin; Johansson, Pär I; Rasmussen, Lars S; Jin, Guang; Jepsen, Cecilie H; Imam, Ayesha; Hwabejire, John O; Deperalta, Danielle; Duggan, Michael; DeMoya, Marc; Velmahos, George C; Alam, Hasan B
2014-04-01
Platelet dysfunction following trauma has been identified as an independent predictor of mortality. We hypothesized that fresh frozen plasma (FFP) resuscitation would attenuate platelet dysfunction compared with 0.9% normal saline (NS). Twelve swine were subjected to multisystem trauma (traumatic brain injury, liver injury, rib fracture, and soft tissue injury) with hemorrhagic shock (40% of estimated blood volume). Animals were left in shock (mean arterial pressure, 30-35 mm Hg) for 2 hours followed by resuscitation with three times shed volume NS (n = 6) or one times volume FFP (n = 6) and monitored for 6 hours. Platelet function was assessed by adenosine diphosphate (ADP)-induced platelet aggregation at baseline, after 2 hours of shock following resuscitation, and 6 hours after resuscitation. Fibrinogen levels and markers of platelet activation (transforming growth factor β [TGF-β], sP-Selectin, and CD40L) as well as endothelial injury (intercellular adhesion molecule 1 [ICAM-1], vascular cell adhesion molecule 1 [VCAM-1]) were also assayed. Thromboelastography was used to measure clotting activity. ADP-induced platelet aggregation was significantly higher in the FFP group (46.3 U vs. 25.5 U, p < 0.01) following resuscitation. This was associated with higher fibrinogen levels (202 mg/dL vs. 80 mg/dL, p < 0.01) but lower endothelial activation (VCAM-1, 1.25 ng/mL vs. 3.87 ng/mL, p = 0.05). Other markers did not differ.After 6 hours of observation, ADP-induced platelet aggregation remained higher in the FFP group (53.8 U vs. 37.0 U, p = 0.03) as was fibrinogen levels (229 mg/dL vs. 153 mg/dL, p < 0.01). Endothelial activation was lower (ICAM-1, 21.0 ng/mL vs. 24.4 ng/mL, p = 0.05), whereas TGF-β levels were higher (2,138 pg/mL vs. 1,802 pg/mL, p = 0.03) in the FFP group. Other markers did not differ. Thromboelastography revealed increased clot strength in the FFP group at both postresuscitation time points. Resuscitation with FFP resulted in an immediate and sustained improvement in platelet function and clot strength compared with high-volume NS resuscitation. This was associated with an increase in fibrinogen levels and an attenuation of endothelial activation.
Sinusoidal constriction and vascular hypertrophy in the diabetes-induced rabbit penis.
Pereira, Vivian Alves; Abidu-Figueiredo, Marcelo; Pereira-Sampaio, Marco Aurelio; Chagas, Mauricio Alves; Costa, Waldemar Silva; Sampaio, Francisco J B
2013-01-01
To assess the morphological changes of penile vascular structures and the corpus cavernosum area in alloxan-induced diabetic rabbits. Twenty male rabbits (2 months old) were divided into two groups with 10 rabbits each, the control group (CG) and the diabetic group (DG). The animals from DG received an intravenous injection of alloxan (100mg/kg) to induce the diabetes. Ten weeks after the induction of diabetes, all animals were euthanized. Two fragments of the penile shaft were harvested and samples were processed and paraffin embedded. Sections (5 µm) were cut and stained for histological and immunohistochemical markers. Nuclear protrusion toward the lumen, and cytoplasmic vacuolization were observed in the tunica intima of the dorsal artery of the penis in DG. The thicknesses of the tunica media increased significantly in DG (p = 0.0350). It was also observed a significant increase in the area of the tunica media (p = 0.0179). There was no significant change in smooth muscle cell density in the tunica media of the dorsal artery of the penis (p = 0.0855). The collagen fiber pattern of the tunica adventitia of the dorsal artery of the penis was different between the control and diabetic groups. There was a significant decrease in the area occupied by the cavernous sinuses in DG (p = 0.0013). Alloxan-induced diabetes mellitus in rabbits promotes important changes in penile vascular structures, thereby decreasing blood supply and affecting penile hemodynamics, leading to erectile dysfunction.
Grau, Marijke; Mozar, Anaïs; Charlot, Keyne; Lamarre, Yann; Weyel, Linda; Suhr, Frank; Collins, Bianca; Jumet, Stéphane; Hardy-Dessources, Marie-Dominique; Romana, Marc; Lemonne, Nathalie; Etienne-Julan, Maryse; Antoine-Jonville, Sophie; Bloch, Wilhelm; Connes, Philippe
2015-03-01
Human red blood cells (RBC) express an active and functional endothelial-like nitric oxide (NO) synthase (RBC-NOS). We report studies on RBC-NOS activity in sickle cell anaemia (SCA), a genetic disease characterized by decreased RBC deformability and vascular dysfunction. Total RBC-NOS content was not significantly different in SCA patients compared to healthy controls; however, using phosphorylated RBC-NOS-Ser(1177) as a marker, RBC-NOS activation was higher in SCA patients as a consequence of the greater activation of Akt (phosphorylated Akt-Ser(473) ). The higher RBC-NOS activation in SCA led to higher levels of S-nitrosylated α- and β-spectrins, and greater RBC nitrite and nitrotyrosine levels compared to healthy controls. Plasma nitrite content was not different between the two groups. Laser Doppler flowmetric experiments demonstrated blunted microcirculatory NO-dependent response under hyperthermia in SCA patients. RBC deformability, measured by ektacytometry, was reduced in SCA in contrast to healthy individuals, and pre-shearing RBC in vitro did not improve deformability despite an increase of RBC-NOS activation. RBC-NOS activation is high in freshly drawn blood from SCA patients, resulting in high amounts of NO produced by RBC. However, this does not result in improved RBC deformability and vascular function: higher RBC-NO is not sufficient to counterbalance the enhanced oxidative stress in SCA. © 2014 John Wiley & Sons Ltd.
Shields, Kelly J; Verdelis, Kostas; Passineau, Michael J; Faight, Erin M; Zourelias, Lee; Wu, Changgong; Chong, Rong; Benza, Raymond L
2016-12-01
Pulmonary arterial hypertension (PAH) is a rare disease characterized by significant vascular remodeling. The obesity epidemic has produced great interest in the relationship between small visceral adipose tissue depots producing localized inflammatory conditions, which may link metabolism, innate immunity, and vascular remodeling. This study used novel micro computed tomography (microCT) three-dimensional modeling to investigate the degree of remodeling of the lung vasculature and differential proteomics to determine small visceral adipose dysfunction in rats with severe PAH. Sprague-Dawley rats were subjected to a subcutaneous injection of vascular endothelial growth factor receptor blocker (Sugen 5416) with subsequent hypoxia exposure for 3 weeks (SU/hyp). At 12 weeks after hypoxia, microCT analysis showed a decrease in the ratio of vascular to total tissue volume within the SU/hyp group (mean ± standard deviation: 0.27 ± 0.066; P = 0.02) with increased vascular separation (0.37 ± 0.062 mm; P = 0.02) when compared with the control (0.34 ± 0.084 and 0.30 ± 0.072 mm). Differential proteomics detected an up-regulation of complement protein 3 (C3; SU/hyp∶control ratio = 2.86) and the adipose tissue-specific fatty acid binding protein-4 (FABP4, 2.66) in the heart adipose of the SU/hyp. Significant remodeling of the lung vasculature validates the efficacy of the SU/hyp rat for modeling human PAH. The upregulation of C3 and FABP4 within the heart adipose implicates small visceral adipose dysfunction. C3 has been associated with vascular stiffness, and FABP4 suppresses peroxisome proliferator-activated receptor, which is a major regulator of adipose function and known to be downregulated in PAH. These findings reveal that small visceral adipose tissue within the SU/hyp model provides mechanistic links for vascular remodeling and adipose dysfunction in the pathophysiology of PAH.
Xiao, Guohua; Wang, Zongbao; Zeng, Huaicai; Yu, Jian; Yin, Weidong; Zhang, Sujun; Wang, Yueting; Zhang, Yali
2011-10-01
Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of diabetes-associated vascular diseases. And it might be a therapeutic agent for diabetic vascular complications.
Wang, Xintong; Zachman, Angela L.; Chun, Young Wook; Shen, Fang-Wen; Hwang, Yu-Shik; Sung, Hak-Joon
2014-01-01
Background Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. Methods Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. Results We demonstrated poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule-1 (VCAM) along with decreased nitric oxide production, indicating ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced release of elastase or elastase-like protease, which further accelerated polymer degradation. Conclusions This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis. PMID:24820736
Jurrissen, Thomas J; Olver, T Dylan; Winn, Nathan C; Grunewald, Zachary I; Lin, Gabriela S; Hiemstra, Jessica A; Edwards, Jenna C; Gastecki, Michelle L; Welly, Rebecca J; Emter, Craig A; Vieira-Potter, Victoria J; Padilla, Jaume
2018-01-02
In rodents, experimentally-induced ovarian hormone deficiency increases adiposity and adipose tissue (AT) inflammation, which is thought to contribute to insulin resistance and increased cardiovascular disease risk. However, whether this occurs in a translationally-relevant large animal model remains unknown. Herein, we tested the hypothesis that ovariectomy would promote visceral and perivascular AT (PVAT) inflammation, as well as subsequent insulin resistance and peripheral vascular dysfunction in female swine. At sexual maturity (7 months of age), female Yucatan mini-swine either remained intact (control, n = 9) or were ovariectomized (OVX, n = 7). All pigs were fed standard chow (15-20 g/kg), and were euthanized 6 months post-surgery. Uterine mass and plasma estradiol levels were decreased by ∼10-fold and 2-fold, respectively, in OVX compared to control pigs. Body mass, glucose homeostasis, and markers of insulin resistance were not different between control and OVX pigs; however, OVX animals exhibited greater plasma triglycerides and triglyceride:HDL ratio. Ovariectomy enhanced visceral adipocyte expansion, although this was not accompanied by brachial artery PVAT adipocyte expansion, AT inflammation in either depot, or increased systemic inflammation assessed by plasma C-reactive protein concentrations. Despite the lack of AT inflammation and insulin resistance, OVX pigs exhibited depressed brachial artery endothelial-dependent vasorelaxation, which was rescued with blockade of endothelin receptor A. Together, these findings indicate that in female Yucatan mini-swine, increased AT inflammation and insulin resistance are not required for loss of ovarian hormones to induce endothelial dysfunction.
Soewondo, Pradana; Suyono, Slamet; Sastrosuwignyo, Mpu Kanoko; Harahap, Alida R; Sutrisna, Bambang; Makmun, Lukman H
2017-01-01
to evaluate the role of clinical characteristics, functional markers of vasodilation, inflammatory response, and atherosclerosis in predicting wound healing in diabetic foot ulcer. a cohort study (February - October 2010) was conducted from 40 subjects with acute diabetic foot ulcer at clinical ward of Dr. Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia. Each subject underwent at least two variable measurements, i.e. during inflammatory phase and proliferation phase. The studied variables were clinical characteristics, complete peripheral blood count (CBC) and differential count, levels of HbA1c, ureum, creatinine, lipid profile, fasting blood glucose (FBG), marker of endothelial dysfunction (asymmetric dimethylarginine/ADMA, endothelin-1/ET-1, and flow-mediated dilation/FMD of brachial artery), and marker of vascular calcification (osteoprotegerin/OPG). median of time achieving 50% granulation tissue in our study was 21 days. There were nine factors that contribute in the development of 50% granulation tissue, i.e. family history of diabetes mellitus (DM), previous history of wound, wound area, duration of existing wound, captopril and simvastatin medications, levels of ADMA, ET-1, and OPG. There were three out of the nine factors that significantly correlated with wound healing, i.e. wound area, OPG levels, and simvastatin medications. in acute diabetic foot ulcers, wound area and OPG levels had positive correlation with wound healing, whereas simvastatin medications had negative correlation with wound healing.
[Social dysfunction in schizotypy].
de Wachter, O; De La Asuncion, J; Sabbe, B; Morrens, M
2016-01-01
Schizotypy is a personality organisation that is closely related to schizotypal personality disorder and schizophrenia and is characterised by deficits in social functioning. Although the dimensions of social dysfunction have not yet been fully explored certain aspects of social dysfunction are promising predictive markers for schizophrenia. To describe schizotypy and its influence on social functioning. We reviewed the literature systematically using the online databases PubMed and PsycINFO. The disorder known as schizotypy lies at the basis of schizotypal personality disorder. Both disorders are characterised by an increased risk for schizophrenia. The social dysfunctioning seen in schizotypy corresponds to the social dysfunction seen in schizophrenia. Impairments in social cognition are causal factors of this social dysfunction. Both the negative and the positive dimension of schizotypy influence social cognition. More focused, objective and interactive research to the various aspects of social functioning in schizotypy is needed in order to discover potential premorbid markers for schizophrenia.
Masha, A; Martina, V
2014-01-01
Several metabolic diseases present a high cardiovascular mortality due to endothelial dysfunction consequences. In the last years of the past century, it has come to light that the endothelial cells, previously considered as inert in what regards an eventual secretion activity, play a pivotal role in regulating different aspects of the vascular function (endothelial function). It was clearly demonstrated that the endothelium acts as a real active organ, owning endocrine, paracrine and autocrine modulation activities by means of which it is able to regulate the vascular homeostasis. The present review will investigate the relationship between some metabolic diseases and the endothelial dysfunction and in particular the mechanisms underlying the effects of metabolic pathologies on the endothelium. Furthermore, it will consider the possible therapeutic employment of the N-acetilcysteine in such conditions.
The Role of Oxidative Stress and Inflammation in Cardiovascular Aging
Wu, Junzhen; Xia, Shijin; Kalionis, Bill; Sun, Tao
2014-01-01
Age is an independent risk factor of cardiovascular disease, even in the absence of other traditional factors. Emerging evidence in experimental animal and human models has emphasized a central role for two main mechanisms of age-related cardiovascular disease: oxidative stress and inflammation. Excess reactive oxygen species (ROS) and superoxide generated by oxidative stress and low-grade inflammation accompanying aging recapitulate age-related cardiovascular dysfunction, that is, left ventricular hypertrophy, fibrosis, and diastolic dysfunction in the heart as well as endothelial dysfunction, reduced vascular elasticity, and increased vascular stiffness. We describe the signaling involved in these two main mechanisms that include the factors NF-κB, JunD, p66Shc, and Nrf2. Potential therapeutic strategies to improve the cardiovascular function with aging are discussed, with a focus on calorie restriction, SIRT1, and resveratrol. PMID:25143940
Intracranial stenosis in cognitive impairment and dementia.
Hilal, Saima; Xu, Xin; Ikram, M Kamran; Vrooman, Henri; Venketasubramanian, Narayanaswamy; Chen, Christopher
2017-06-01
Intracranial stenosis is a common vascular lesion observed in Asian and other non-Caucasian stroke populations. However, its role in cognitive impairment and dementia has been under-studied. We, therefore, examined the association of intracranial stenosis with cognitive impairment, dementia and their subtypes in a memory clinic case-control study, where all subjects underwent detailed neuropsychological assessment and 3 T neuroimaging including three-dimensional time-of-flight magnetic resonance angiography. Intracranial stenosis was defined as ≥50% narrowing in any of the intracranial arteries. A total of 424 subjects were recruited of whom 97 were classified as no cognitive impairment, 107 as cognitive impairment no dementia, 70 vascular cognitive impairment no dementia, 121 Alzheimer's Disease, and 30 vascular dementia. Intracranial stenosis was associated with dementia (age/gender/education - adjusted odds ratios (OR): 4.73, 95% confidence interval (CI): 1.93-11.60) and vascular cognitive impairment no dementia (OR: 3.98, 95% CI: 1.59-9.93). These associations were independent of cardiovascular risk factors and MRI markers. However, the association with Alzheimer's Disease and vascular dementia became attenuated in the presence of white matter hyperintensities. Intracranial stenosis is associated with vascular cognitive impairment no dementia independent of MRI markers. In Alzheimer's Disease and vascular dementia, this association is mediated by cerebrovascular disease. Future studies focusing on perfusion and functional markers are needed to determine the pathophysiological mechanism(s) linking intracranial stenosis and cognition so as to identify treatment strategies.
Guan, Yong; Wendong, Sun; Zhao, Shengtian; Liu, Tongyan; Liu, Yuqiang; Zhang, Xiulin; Yuan, Mingzhen
2015-01-01
ABSTRACT Erectile dysfunction (ED) is a common complication of pelvic fractures. To identify the vascular and neurogenic factors associated with ED, 120 patients admitted with ED after traumatic pelvic fracture between January 2009 and June 2013 were enrolled in this study. All patients answered the International Index of Erectile Function (IIEF-5) questionnaire. Nocturnal penile tumescence (NPT) testing confirmed the occurrence of ED in 96 (80%) patients on whom penile duplex ultrasound and neurophysiological testing were further performed. Of these ED patients 29 (30%) were demonstrated only with vascular abnormality, 41 (42.7%) were detected only with neural abnormality, 26 (27.1%) revealed mixed abnormalities. Of the 55 patients (29+26) with vascular problems, 7 patients (12.7%) with abnormal arterial response to intracavernous injection of Bimix (15mg papaverine and 1mg phentolamine), 31 (56.4%) with corporal veno-occlusive dysfunction and 17 (30.9%) had both problems. Of the 67 (41+26) patients with abnormal neurophysiological outcomes, 51 (76.1%) with abnormal bulbocavernosus reflex (BCR), 20 (29.9%) with pathological pudendal nerve evoked potentials (PDEPs) and 25 (37.3%) with abnormal posterior tibial somatosensory nerve evoked potentials (PTSSEPs). Our observation indicated that neurogenic factors are important for the generation of ED in patients with pelvic fracture; venous impotence is more common than arteriogenic ED. PMID:26689522
Post-Translational Modification of Constitutive Nitric Oxide Synthase in the Penis
Musicki, Biljana; Ross, Ashley E.; Champion, Hunter C.; Burnett, Arthur L.; Bivalacqua, Trinity J.
2009-01-01
Erectile dysfunction (ED) is a common men's health problem characterized by the consistent inability to sustain an erection sufficient for sexual intercourse. Basic science research on erectile physiology has been devoted to investigating the pathogenesis of ED and has led to the conclusion that ED is predominately a disease of vascular origin and/or neurogenic dysfunction. The constitutive forms of nitric oxide synthase [NOS; endothelial NOS (eNOS) and neuronal NOS (nNOS)] are important enzymes involved in the production of nitric oxide (NO) and thus regulate penile vascular homeostasis. Given the impact of endothelial- and neuronal-derived NO in penile vascular biology, a great deal of research over the past decade has focused on the role of NO synthesis from the endothelium and nitrergic nerve terminal in normal erectile physiology as well as in disease states. Loss of the functional integrity of the endothelium and subsequent endothelial dysfunction plays an integral role in the occurrence of ED. Therefore, molecular mechanisms involved in dysregulation of these NOS isoforms in the development of ED are essential to discovering the pathogenesis of ED in various disease states. This communication reviews the role of eNOS and nNOS in erectile physiology and discusses the alterations in eNOS and nNOS via post-translation modification in various vascular diseases of the penis. PMID:19342700
Anderson, Chastain; Majeste, Andrew; Hanus, Jakub; Wang, Shusheng
2016-12-01
Cigarette smoking remains one of the leading causes of preventable death worldwide. Vascular cell death and dysfunction is a central or exacerbating component in the majority of cigarette smoking related pathologies. The recent development of the electronic nicotine delivery systems known as e-cigarettes provides an alternative to conventional cigarette smoking; however, the potential vascular health risks of e-cigarette use remain unclear. This study evaluates the effects of e-cigarette aerosol extract (EAE) and conventional cigarette smoke extract (CSE) on human umbilical vein endothelial cells (HUVECs). A laboratory apparatus was designed to produce extracts from e-cigarettes and conventional cigarettes according to established protocols for cigarette smoking. EAE or conventional CSE was applied to human vascular endothelial cells for 4-72 h, dependent on the assay. Treated cells were assayed for reactive oxygen species, DNA damage, cell viability, and markers of programmed cell death pathways. Additionally, the anti-oxidants α-tocopherol and n-acetyl-l-cysteine were used to attempt to rescue e-cigarette induced cell death. Our results indicate that e-cigarette aerosol is capable of inducing reactive oxygen species, causing DNA damage, and significantly reducing cell viability in a concentration dependent fashion. Immunofluorescent and flow cytometry analysis indicate that both the apoptosis and programmed necrosis pathways are triggered by e-cigarette aerosol treatment. Additionally, anti-oxidant treatment provides a partial rescue of the induced cell death, indicating that reactive oxygen species play a causal role in e-cigarette induced cytotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cabassi, A; Dumont, E C; Girouard, H; Bouchard, J F; Le Jossec, M; Lamontagne, D; Besner, J G; de Champlain, J
2001-07-01
Peroxynitrite (ONOO-), the product of superoxide and nitric oxide, seems to be involved in vascular alterations in hypertension. To evaluate the effects of ONOO- on endothelium-dependent and independent aortic vascular responsiveness, oxidized/reduced glutathione balance (GSSG/GSH), malondialdehyde aortic content, and the formation of 3-nitrotyrosine (3-NT), a stable marker of ONOO-, in N-acetylcysteine (NAC)-treated normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). In SHR only, NAC significantly reduced heart rate and systolic, but not diastolic, blood pressure. It also improved endothelium-dependent aortic relaxation in SHR, but not after exposure to ONOO-. Endothelium-dependent and independent aortic relaxations were markedly impaired by ONOO- in both strains of rat. NAC partially protected SHR against the ONOO- -induced reduction in endothelium-independent relaxation. Aortic GSSG/GSH ratio and malondialdehyde, which were higher in SHR than in WKY rats, showed a greater increase in SHR after exposure to ONOO-. NAC decreased GSSG/GSH and malondialdehyde in both strains of rat before and after exposure to ONOO-. The 3-NT concentration, which was similar in both strains of rat under basal conditions, was greater in SHR than in WKY rats after the addition of ONOO-, with a reduction only in NAC-treated SHR. These findings suggest an increased vulnerability of SHR aortas to the effects of ONOO- as compared with those of WKY rats. The selective improvements produced by NAC, in systolic arterial pressure, heart rate, aortic endothelial function, ONOO- -induced impairment of endothelium-independent relaxation, aortic GSSG/GSH balance, malondialdehyde content and 3-NT formation in SHR suggest that chronic administration of NAC may have a protective effect against aortic vascular dysfunction in the SHR model of hypertension.
Takemori, Kumiko; Yamamoto, Ei; Ito, Hiroyuki; Kometani, Takashi
2015-01-01
To determine the prophylactic effects of an elastin peptide derived from the bulbus arteriosus of bonitos and prolylglycine (PG), a degradation product of elastin peptide, on vascular dysfunction in spontaneously hypertensive rats (SHRs). Male 15-week-old SHR/Izm rats were fed without (control group) or with elastin peptide (1 g/kg body weight) for 5 weeks (EP group), or were infused via an osmotic mini-pump for 4 weeks with PG (PG group) or saline (control group). Using thoracic aortas, we assessed endothelial changes by scanning electron microscopy. Vascular reactivity (contraction and relaxation) and pressure-induced distension was compared. mRNA production levels of endothelial nitric oxide synthase (eNOS) and intercellular adhesion molecule-1 (ICAM-1) were investigated by real-time-polymerase chain reaction. Aortas of the EP group displayed limited endothelial damage compared with that in the control group. Under treatment of SHRs with elastin peptide, the effect of phenylephrine returned closer to the normal level observed in normotensive Wistar-Kyoto (WKY/Izm) rats. mRNA production of eNOS (but not ICAM-1) was greater in the EP group than in the control group. Endothelial damage was suppressed and pressure-induced vascular distension was greater in the PG group than in the corresponding control group. These results suggest that elastin peptide from bonitos elicits prophylactic affects hypertension-associated vascular dysfunction by targeting the eNOS signaling pathway. PG may be a key mediator of the beneficial effects of elastin peptide. Copyright © 2014 Elsevier Inc. All rights reserved.
Krajnak, Kristine; Miller, G R; Waugh, Stacey
2018-01-01
Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.
Carbon monoxide inhalation increases microparticles causing vascular and CNS dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jiajun; Yang, Ming; Kosterin, Paul
We hypothesized that circulating microparticles (MPs) play a role in pro-inflammatory effects associated with carbon monoxide (CO) inhalation. Mice exposed for 1 h to 100 ppm CO or more exhibit increases in circulating MPs derived from a variety of vascular cells as well as neutrophil activation. Tissue injury was quantified as 2000 kDa dextran leakage from vessels and as neutrophil sequestration in the brain and skeletal muscle; and central nervous system nerve dysfunction was documented as broadening of the neurohypophysial action potential (AP). Indices of injury occurred following exposures to 1000 ppm for 1 h or to 1000 ppm formore » 40 min followed by 3000 ppm for 20 min. MPs were implicated in causing injuries because infusing the surfactant MP lytic agent, polyethylene glycol telomere B (PEGtB) abrogated elevations in MPs, vascular leak, neutrophil sequestration and AP prolongation. These manifestations of tissue injury also did not occur in mice lacking myeloperoxidase. Vascular leakage and AP prolongation were produced in naïve mice infused with MPs that had been obtained from CO poisoned mice, but this did not occur with MPs obtained from control mice. We conclude that CO poisoning triggers elevations of MPs that activate neutrophils which subsequently cause tissue injuries. - Highlights: • Circulating microparticles (MPs) increase in mice exposed to 100 ppm CO or more. • MPs are lysed by infusing the surfactant polyethylene glycol telomere B. • CO-induced MPs cause neutrophil activation, vascular leak and CNS dysfunction. • Similar tissue injuries do not arise with MPs obtained from air-exposed, control mice.« less
Medina, M; Alberto, M R; Sierra, L; Van Nieuwenhove, C; Saad, S; Isla, M I; Jerez, S
2014-07-01
The present study evaluated the plasma fatty acid levels and the vascular prostaglandin (PG) release in a rabbit model of early hypercholesterolemia with endothelial dysfunction. Rabbits were fed either a control diet (CD) or a diet containing 1 % cholesterol (HD) for 5-6 weeks. The level of fatty acids was measured in plasma. The levels of PG and nitric oxide (NO) released from the aorta were also determined. Vascular morphology of the aorta was characterized by intima and media thickness measurements. The rabbits fed with HD had higher levels of arachidonic acid (ARA) and lower levels of oleic acid. The linoleic acid level was unchanged. PGI(2) and NO were diminished and PGF(2α) levels, the PGI(2)/TXA(2) ratio and the intima/media ratio were increased in rabbits fed with HD. In conclusion, feeding HD for a short period increased ARA plasma levels and unbalanced release of vasodilator/vasoconstrictor PG redirected the pathway to vasoconstrictor metabolite release. These lipid metabolism alterations in addition to the reduced NO levels and the moderate changes in the vascular morphology contributed to the endothelial dysfunction in this animal model. Therefore, the present findings support the importance of early correction or prevention of high cholesterol levels to disrupt the endothelial dysfunction process that leads to cardiovascular disease.
Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan
2014-09-01
The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.
Taylor, Stephanie L; Trudeau, Dustin; Arnold, Brendan; Wang, Joshua; Gerrow, Kim; Summerfeldt, Kieran; Holmes, Andrew; Zamani, Akram; Brocardo, Patricia S; Brown, Craig E
2015-06-01
Clinical and experimental studies have shown a clear link between diabetes, vascular dysfunction and cognitive impairment. However, the molecular underpinnings of this association remain unclear. Since vascular endothelial growth factor (VEGF) signaling is important for maintaining vascular integrity and function, we hypothesized that vascular and cognitive impairment in the diabetic brain could be related to a deficiency in VEGF signaling. Here we show that chronic hyperglycemia (~8weeks) in a mouse model of type 1 diabetes leads to a selective reduction in the expression of VEGF and its cognate receptor (VEGF-R2) in the hippocampus. Correlating with this, diabetic mice showed selective deficits in spatial memory in the Morris water maze, increased vessel area, width and permeability in the dentate gyrus/CA1 region of the hippocampus and reduced spine densities in CA1 neurons. Chronic low dose infusion of VEGF in diabetic mice was sufficient to restore VEGF signaling, protect them from memory deficits, as well as vascular and synaptic abnormalities in the hippocampus. These findings suggest that a hippocampal specific reduction in VEGF signaling and resultant vascular/neuronal defects may underlie early manifestations of cognitive impairment commonly associated with diabetes. Furthermore, restoring VEGF signaling may be a useful strategy for preserving hippocampal-related brain circuitry in degenerative vascular diseases. Copyright © 2015. Published by Elsevier Inc.
Walton, Sarah L; Singh, Reetu R; Tan, Tiffany; Paravicini, Tamara M; Moritz, Karen M
2016-03-01
Gestational hypoxia and high dietary salt intake have both been associated with impaired vascular function in adulthood. Using a mouse model of prenatal hypoxia, we examined whether a chronic high salt diet had an additive effect in promoting vascular dysfunction in offspring. Pregnant CD1 dams were placed in a hypoxic chamber (12% O2) or housed under normal conditions (21% O2) from embryonic day 14.5 until birth. Gestational hypoxia resulted in a reduced body weight for both male and female offspring at birth. This restriction in body weight persisted until weaning, after which the animals underwent catch-up growth. At 10 weeks of age, a subset of offspring was placed on a high salt diet (5% NaCl). Pressurized myography of mesenteric resistance arteries at 12 months of age showed that both male and female offspring exposed to maternal hypoxia had significantly impaired endothelial function, as demonstrated by impaired vasodilatation to ACh but not sodium nitroprusside. Endothelial dysfunction caused by prenatal hypoxia was not exacerbated by postnatal consumption of a high salt diet. Prenatal hypoxia increased microvascular stiffness in male offspring. The combination of prenatal hypoxia and a postnatal high salt diet caused a leftward shift in the stress-strain relationship in both sexes. Histopathological analysis of aortic sections revealed a loss of elastin integrity and increased collagen, consistent with increased vascular stiffness. These results demonstrate that prenatal hypoxia programs endothelial dysfunction in both sexes. A chronic high salt diet in postnatal life had an additive deleterious effect on vascular mechanics and structural characteristics in both sexes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Endothelial dysfunction impairs vascular neurotransmission in tail arteries.
Sousa, Joana B; Fresco, Paula; Diniz, Carmen
2015-01-01
The present study intends to clarify if endothelium dysfunction impairs vascular sympathetic neurotransmission. Electrically-evoked tritium overflow (100 pulses/5 Hz) was evaluated in arteries (intact and denuded) or exhibiting some degree of endothelium dysfunction (spontaneously hypertensive arteries), pre-incubated with [(3)H]-noradrenaline in the presence of enzymes (nitric oxide synthase (NOS); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; xanthine oxidase; cyclooxygenase; adenosine kinase) inhibitors and a nucleoside transporter inhibitor. Inhibition of endothelial nitric oxide synthase with L-NIO dihydrochloride reduced tritium overflow in intact arteries whereas inhibition of neuronal nitric oxide synthase with Nω-Propyl-L-arginine hydrochloride was devoid of effect showing that only endothelial nitric oxide synthase is involved in vascular sympathetic neuromodulation. Inhibition of enzymes involved in reactive oxygen species or prostaglandins production with apocynin and allopurinol or indomethacin, respectively, failed to alter tritium overflow. A facilitation or reduction of tritium overflow was observed in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or of 5-iodotubericidin, respectively, but only in intact arteries. These effects can be ascribed to a tonic inhibitory effect mediated by A1 receptors. In denuded and hypertensive arteries, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) reduced tritium overflow, suggesting the occurrence of a tonic activation of A2A receptors. When endogenous adenosine bioavailability was increased by the nucleoside transporter inhibitor, S-(4-Nitrobenzyl)-6-thioinosine, tritium overflow increased in intact, denuded and hypertensive arteries. Among the endothelium-derived substances studied that could alter vascular sympathetic transmission only adenosine/adenosine receptor mediated mechanisms were clearly impaired by endothelium injury/dysfunction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin
2016-09-01
Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.
Levels of uric acid in erectile dysfunction of different aetiology.
Barassi, Alessandra; Corsi Romanelli, Massimiliano Marco; Pezzilli, Raffaele; Dozio, Elena; Damele, Clara Anna Linda; Vaccalluzzo, Liborio; Di Dario, Marco; Goi, Giancarlo; Papini, Nadia; Massaccesi, Luca; Colpi, Giovanni Maria; Melzi d'Eril, Gian Vico
2018-01-12
Erectile dysfunction is a common disease characterized by endothelial dysfunction. The aetiology of ED is often multifactorial but evidence is being accumulated in favor of the proper function of the vascular endothelium that is essential to achieving and maintaining penile erection. Uric acid itself causes endothelial dysfunction via decreased nitric oxide production. This study aims to evaluate the serum uric acid (SUA) levels in 180 ED patients, diagnosed with the International Index of Erectile Function-5 (IIEF-5) and 30 non-ED control. Serum uric acid was analyzed with a commercially available kit using ModularEVO (Roche, Monza, Italy). Within-assay and between-assay variations were 3.0% and 6.0%, respectively. Out of the ED patients, 85 were classified as arteriogenic (A-ED) and 95 as non-arteriogenic (NA-ED) with penile-echo-color-Doppler. Uric acid levels (median and range in mg/dL) in A-ED patients (5.8, 4.3-7.5) were significantly higher (p < .001) than in NA-ED patients (4.4, 2.6-5.9) and in control group (4.6, 3.1-7.2). There was a significant difference (p < .001) between uric acid levels in patients with mild A-ED (IIEF-5 16-20) and severe/complete A-ED (IIEF-5 ≤ 10) that were 5.4 (range 4.3-6.5) mg/dL and 6.8 (range 6.4-7.2) mg/dL, respectively. There was no difference between the levels of uric acid in patients with different degree of NA-ED. Our findings reveal that SUA is a marker of ED but only of ED of arteriogenic aetiology.
Cortical Cerebral Microinfarcts on 3 Tesla MRI in Patients with Vascular Cognitive Impairment.
Ferro, Doeschka A; van Veluw, Susanne J; Koek, Huiberdina L; Exalto, Lieza G; Biessels, Geert Jan
2017-01-01
Cerebral microinfarcts (CMIs) are small ischemic lesions that are a common neuropathological finding in patients with stroke or dementia. CMIs in the cortex can now be detected in vivo on 3 Tesla MRI. To determine the occurrence of CMIs and associated clinical features in patients with possible vascular cognitive impairment (VCI). 182 memory-clinic patients (mean age 71.4±10.6, 55% male) with vascular injury on brain MRI (i.e., possible VCI) underwent a standardized work-up including 3 Tesla MRI and cognitive assessment. A control group consisted of 70 cognitively normal subjects (mean age 70.6±4.7, 60% male). Cortical CMIs and other neuroimaging markers of vascular brain injury were rated according to established criteria. Occurrence of CMIs was higher (20%) in patients compared to controls (10%). Among patients, the presence of CMIs was associated with male sex, history of stroke, infarcts, and white matter hyperintensities. CMI presence was also associated with a diagnosis of vascular dementia and reduced performance in multiple cognitive domains. CMIs on 3 Tesla MRI are common in patients with possible VCI and co-occur with imaging markers of small and large vessel disease, likely reflecting a heterogeneous etiology. CMIs are associated with worse cognitive performance, independent of other markers of vascular brain injury.
Hyperglycemia: a bad signature on the vascular system
Costantino, Sarah; Paneni, Francesco
2015-01-01
Experimental work has clearly demonstrated that hyperglycemia is able to derail molecular pathways favouring oxidative stress, inflammation and endothelial dysfunction. Consistently, pooled analyses from prospective studies provide strong evidence that glycemic markers, namely glycated haemoglobin (HbA1c), predict cardiovascular risk, with an increase of about 18% in risk for each 1% absolute increase in HbA1c concentration, regardless of classical risk factors. Although the importance of hyperglycemic burden on cardiovascular phenotype, normalization of blood glucose levels in patients with long-standing hyperglycemia does not seem to reduce macrovascular complications. These data suggest that hyperglycemia may exert long-lasting detrimental effects on the cardiovascular system. This emerging phenomenon is defined metabolic or hyperglycemic memory to indicate a long-term persistence of hyperglycemic stress, even after blood glucose normalization. Here, we discuss clinical evidence and potential molecular mechanisms implicated in metabolic memory and, hence, diabetes-related cardiovascular complications. PMID:26543827
Association of fibrinogen with HbA1C in diabetic foot ulcer
NASA Astrophysics Data System (ADS)
Pase, M. A.; Gatot, D.; Lindarto, D.
2018-03-01
Fibrinogen is one of the inflammatory markers of vascular changes and endothelial dysfunction in diabetic patients. The aim of this study to associate serum fibrinogen levels with HbA1C in diabetic foot ulcer (DFU). This study was cross-sectional and retrospective in DFU patients from January to July 2017 in Haji Adam Malik Central General Hospital. The patients enrolled in the study were T2DM with DFU as a complication. The grading of DFU was evaluated according to the Wagner’s Classification. Serum fibrinogen level, HbA1C and ankle-brachial index (ABI) were carried out directly in the patients. Fibrinogen serum levels were found significantly with HbA1C (P=0.001, r=0.387) and ABI (P=0.008, r=-0.454). Fibrinogen serum levels in DFU patients were positively correlated with HbA1C and significantly higher in patients with poor glycemic control.
Effect of isolated hepatic ischemia on organic anion clearance and oxidative metabolism.
Minard, G; Bynoe, R; Wood, G C; Fabian, T C; Croce, M; Kudsk, K A
1992-04-01
Hepatic failure is frequently seen following severe hemorrhagic shock, sepsis, and trauma. Clearance of various drugs has been used to evaluate hepatocellular dysfunction, including indocyanine green (ICG), an organic anionic dye that is transported similarly to bilirubin, and antipyrine (AP), a marker of oxidative phosphorylation. Previous investigators have noted a decrease in ICG excretion following systemic hemorrhage. The effect of isolated hepatic ischemia on the clearances of ICG and AP was studied in 16 pigs after 90 minutes of vascular occlusion to the liver. Antipyrine clearance decreased almost 50% from baseline values at 24 and 72 hours after the ischemia procedure, indicating a significant depression in the cytochrome P-450 system. On the other hand, ICG clearance did not change significantly. In conclusion, ICG clearance is not depressed after isolated hepatic ischemia in pigs. Changes in organic anion clearance after systemic hemorrhage may be because of release of toxic products from ischemic peripheral tissue.
Reduced Marker of Vascularization in the Anterior Hippocampus in a Female Monkey Model of Depression
Kalidindi, Anisha; Kelly, Sean D.; Singleton, Kaela S.; Guzman, Dora; Merrill, Liana; Willard, Stephanie L.; Shively, Carol A.; Neigh, Gretchen N.
2016-01-01
Depression is a common and debilitating mood disorder that impacts women more often than men. The mechanisms that result in depressive behaviors are not fully understood; however, the hippocampus has been noted as a key structure in the pathophysiology of depression. In addition to neural implications of depression, the cardiovascular system is impacted. Although not as commonly considered, the cerebrovasculature is critical to brain function, impacted by environmental stimuli, and is capable of altering neural function and thereby behavior. In the current study, we assessed the relationship between depressive behavior and a marker of vascularization of the hippocampus in adult female cynomolgus macaques (Macaca fascicularis). Similar to previously noted impacts on neuropil and glia, the depressed phenotype predicts a reduction in a marker of vascular length in the anterior hippocampus. These data reinforce the growing recognition of the effects of depression on vasculature and support further consideration of vascular endpoints in studies aimed at the elucidation of the mechanisms underlying depression. PMID:27423324
The crosstalk between autonomic nervous system and blood vessels
Sheng, Yulan; Zhu, Li
2018-01-01
The autonomic nervous system (ANS), comprised of two primary branches, sympathetic and parasympathetic nervous system, plays an essential role in the regulation of vascular wall contractility and tension. The sympathetic and parasympathetic nerves work together to balance the functions of autonomic effector organs. The neurotransmitters released from the varicosities in the ANS can regulate the vascular tone. Norepinephrine (NE), adenosine triphosphate (ATP) and Neuropeptide Y (NPY) function as vasoconstrictors, whereas acetylcholine (Ach) and calcitonin gene-related peptide (CGRP) can mediate vasodilation. On the other hand, vascular factors, such as endothelium-derived relaxing factor nitric oxide (NO), and constriction factor endothelin, play an important role in the autonomic nervous system in physiologic conditions. Endothelial dysfunction and inflammation are associated with the sympathetic nerve activity in the pathological conditions, such as hypertension, heart failure, and diabetes mellitus. The dysfunction of the autonomic nervous system could be a risk factor for vascular diseases and the overactive sympathetic nerve is detrimental to the blood vessel. In this review, we summarize findings concerning the crosstalk between ANS and blood vessels in both physiological and pathological conditions and hope to provide insight into the development of therapeutic interventions of vascular diseases. PMID:29593847
Axon-glial disruption: the link between vascular disease and Alzheimer's disease?
Horsburgh, Karen; Reimer, Michell M; Holland, Philip; Chen, Guiquan; Scullion, Gillian; Fowler, Jill H
2011-08-01
Vascular risk factors play a critical role in the development of cognitive decline and AD (Alzheimer's disease), during aging, and often result in chronic cerebral hypoperfusion. The neurobiological link between hypoperfusion and cognitive decline is not yet defined, but is proposed to involve damage to the brain's white matter. In a newly developed mouse model, hypoperfusion, in isolation, produces a slowly developing and diffuse damage to myelinated axons, which is widespread in the brain, and is associated with a selective impairment in working memory. Cerebral hypoperfusion, an early event in AD, has also been shown to be associated with white matter damage and notably an accumulation of amyloid. The present review highlights some of the published data linking white matter disruption to aging and AD as a result of vascular dysfunction. A model is proposed by which chronic cerebral hypoperfusion, as a result of vascular factors, results in both the generation and accumulation of amyloid and injury to white matter integrity, resulting in cognitive impairment. The generation of amyloid and accumulation in the vasculature may act to perpetuate further vascular dysfunction and accelerate white matter pathology, and as a consequence grey matter pathology and cognitive decline.
Vitamin D in Vascular Calcification: A Double-Edged Sword?
Wang, Jeffrey; Zhou, Jimmy J; Robertson, Graham R; Lee, Vincent W
2018-05-22
Vascular calcification (VC) as a manifestation of perturbed mineral balance, is associated with aging, diabetes and kidney dysfunction, as well as poorer patient outcomes. Due to the current limited understanding of the pathophysiology of vascular calcification, the development of effective preventative and therapeutic strategies remains a significant clinical challenge. Recent evidence suggests that traditional risk factors for cardiovascular disease, such as left ventricular hypertrophy and dyslipidaemia, fail to account for clinical observations of vascular calcification. Therefore, more complex underlying processes involving physiochemical changes to mineral balance, vascular remodelling and perturbed hormonal responses such as parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) are likely to contribute to VC. In particular, VC resulting from modifications to calcium, phosphate and vitamin D homeostasis has been recently elucidated. Notably, deregulation of vitamin D metabolism, dietary calcium intake and renal mineral handling are associated with imbalances in systemic calcium and phosphate levels and endothelial cell dysfunction, which can modulate both bone and soft tissue calcification. This review addresses the current understanding of VC pathophysiology, with a focus on the pathogenic role of vitamin D that has provided new insights into the mechanisms of VC.
Mikhed, Yuliya; Daiber, Andreas; Steven, Sebastian
2015-01-01
The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan. PMID:26184181
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Azusa; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Chen, Yonghong
Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularitymore » for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.« less
SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA
2014-01-01
Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581
Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio
2014-01-01
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972
Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe
2014-09-01
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Takechi, Ryusuke; Pallebage-Gamarallage, Menuka M; Lam, Virginie; Giles, Corey; Mamo, John C
2013-06-19
Emerging evidence suggests that disturbances in the blood-brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma. Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic anti-oxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations.
Cabrera-Rego, Julio Oscar; Navarro-Despaigne, Daisy; Staroushik-Morel, Liudmila; Díaz-Reyes, Karel; Lima-Martínez, Marcos M; Iacobellis, Gianluca
Menopausal transition is critical for the development of early, subclinical vascular damage. Multiple factors, such as atherosclerosis, increased epicardial fat, and endothelial dysfunction can play a role. Hence, the objective of this study was the comparison of epicardial adipose tissue and carotid intima media thickness in order to establish the best predictor of carotid stiffness in middle-aged women with endothelial dysfunction. A total of 43 healthy women aged 40-59 years old with endothelial dysfunction previously demonstrated by flow mediated dilation were recruited to have anthropometric, biochemical, hormonal and ultrasound determinations of carotid intima media thickness and epicardial fat thickness. Carotid arterial stiffness parameters (local pulse wave velocity [4.7±0.7 vs 4.8±0.5 vs 5.6±0.5m/s, respectively, p<0.001], pressure strain elastic modulus [55.2±13.4 vs 59.2±11.8 vs 81.9±15.6kPa, respectively, p<0.001], arterial stiffness index β [4.4±1.4 vs 5.0±1.1 vs 6.4±1.3, respectively, p<0.001]) and epicardial fat thickness (2.98±1.4 vs 3.28±1.9 vs 4.70±1.0mm, respectively, p=0.007) showed a significant and proportional increase in the group of late post-menopausal women when compared to early post-menopausal and pre-menopausal groups, respectively. Among body fat markers, epicardial fat was the strongest predictor of local pulse wave velocity, independent of age. In menopausal women with endothelial dysfunction, menopausal transition is associated with increased carotid arterial stiffness and epicardial fat thickness, independent of age. Ultrasound measured epicardial fat was a better independent predictor of arterial stiffness than carotid intima media thickness in these women. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Yannoutsos, Alexandra; Levy, Bernard I; Safar, Michel E; Slama, Gerard; Blacher, Jacques
2014-02-01
Hypertension is a multifactorial systemic chronic disorder through functional and structural macrovascular and microvascular alterations. Macrovascular alterations are featured by arterial stiffening, disturbed wave reflection and altered central to peripheral pulse pressure amplification. Microvascular alterations, including altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities and network rarefaction, lead to disturbed tissue perfusion and susceptibility to ischemia. Central arterial stiffness and microvascular alterations are common denominators of organ damages. Vascular alterations are intercorrelated, amplifying the haemodynamic load and causing further damage in the arterial network. A plausible precursor role of vascular alterations in incident hypertension provides new insights for preventive and therapeutic strategies targeting macro and microvasculature. Cumulative metabolic burden and oxidative stress lead to chronic endothelial injury, promoting structural and functional vascular alterations, especially in the microvascular network. Pathophysiology of hypertension may then be revisited, based on both macrovascular and microvascular alterations, with a precursor role of endothelial dysfunction for the latter.
Erectile Dysfunction and Undiagnosed Diabetes, Hypertension, and Hypercholesterolemia.
Skeldon, Sean C; Detsky, Allan S; Goldenberg, S Larry; Law, Michael R
2015-01-01
We investigated whether erectile dysfunction, a marker for future cardiovascular disease, is associated with undiagnosed cardiometabolic risk factors among US men. Identifying the presence of these risk factors could lead to earlier initiation of treatment for primary prevention of cardiovascular disease. We analyzed cross-sectional data from men aged 20 years and older who participated in the National Health and Nutrition Examination Survey during 2001-2004. Erectile dysfunction was determined by a single, validated survey question. We used logistic regression analyses to investigate the relationship between erectile dysfunction and undiagnosed hypertension, hypercholesterolemia, and diabetes. After multivariate adjustment, men with erectile dysfunction had more than double the odds of having undiagnosed diabetes (odds ratio = 2.20; 95% CI, 1.10-4.37), whereas no association was seen for undiagnosed hypertension or undiagnosed hypercholesterolemia. For the average man aged 40 to 59 years, the predicted probability of having undiagnosed diabetes increased from 1 in 50 in the absence of erectile dysfunction to 1 in 10 in the presence of erectile dysfunction. Our results underscore the importance of erectile dysfunction as a marker of undiagnosed diabetes. Erectile dysfunction should be a trigger to initiate diabetes screening, particularly among middle-aged men. © 2015 Annals of Family Medicine, Inc.
Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W
2012-04-01
The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity <5 kPa showed α-actin markers. The ability to control MSC differentiation into either endothelial or smooth muscle-like cells based purely on the local elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Jingming; Wang, Joshua J.; Peng, Qisheng; Chen, Chen; Humphrey, Mary Beth; Heinecke, Jay; Zhang, Sarah X.
2012-01-01
Pathological angiogenesis is a major cause of vision loss in ischemic and inflammatory retinal diseases. Recent evidence implicates macrophage metalloelastase (MMP-12), a macrophage-derived elastinolytic protease in inflammation, tissue remodeling and angiogenesis. However, little is known about the role of MMP-12 in retinal pathophysiology. The present study aims to explore the enzyme’s contributions to retinal angiogenesis in oxygen-induced retinopathy (OIR) using MMP-12 knockout (KO) mice. We find that MMP-12 expression was upregulated in OIR, accompanied by elevated macrophage infiltration and increased inflammatory markers. Compared to wildtype mice, MMP-12 KO mice had decreased levels of adhesion molecule and inflammatory cytokines and reduced vascular leakage in OIR. Concomitantly, these mice had markedly reduced macrophage content in the retina with impaired macrophage migratory capacity. Significantly, loss of MMP-12 attenuated retinal capillary dropout in early OIR and mitigated pathological retinal neovascularization (NV). Similar results were observed in the study using MMP408, a pharmacological inhibitor of MMP-12. Intriguingly, in contrast to reducing pathological angiogenesis, lack of MMP-12 accelerated revascularization of avascular retina in OIR. Taken together, we conclude that MMP-12 is a key regulator of macrophage infiltration and inflammation, contributing to retinal vascular dysfunction and pathological angiogenesis. PMID:23285156
Aerobic Exercise and Other Healthy Lifestyle Factors That Influence Vascular Aging
ERIC Educational Resources Information Center
Santos-Parker, Jessica R.; LaRocca, Thomas J.; Seals, Douglas R
2014-01-01
Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development…
Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment.
Abcouwer, Steven F; Gardner, Thomas W
2014-04-01
Diabetic retinopathy (DR) impairs vision of patients with type 1 and type 2 diabetes, associated with vascular dysfunction and occlusion, retinal edema, hemorrhage, and inappropriate growth of new blood vessels. The recent success of biologic treatments targeting vascular endothelial growth factor (VEGF) demonstrates that treating the vascular aspects in the later stages of the disease can preserve vision in many patients. It would also be highly desirable to prevent the onset of the disease or arrest its progression at a stage preceding the appearance of overt microvascular pathologies. The progression of DR is not necessarily linear but may follow a series of steps that evolve over the course of multiple years. Abundant data suggest that diabetes affects the entire neurovascular unit of the retina, with an early loss of neurovascular coupling, gradual neurodegeneration, gliosis, and neuroinflammation occurring before observable vascular pathologies. In this article, we consider the pathology of DR from the point of view that diabetes causes measurable dysfunctions in the complex integral network of cell types that produce and maintain human vision. © 2014 New York Academy of Sciences.
Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment
Abcouwer, Steven F.; Gardner, Thomas W.
2014-01-01
Diabetic retinopathy (DR) impairs vision of patients with type 1 and type 2 diabetes, associated with vascular dysfunction and occlusion, retinal edema, hemorrhage, and inappropriate growth of new blood vessels. The recent success of biologic treatments targeting vascular endothelial growth factor (VEGF) demonstrates that treating the vascular aspects in the later stages of the disease can preserve vision in many patients. It would also be highly desirable to prevent the onset of the disease or arrest its progression at a stage preceding the appearance of overt microvascular pathologies. The progression of DR is not necessarily linear but may follow a series of steps that evolve over the course of multiple years. Abundant data suggest that diabetes affects the entire neurovascular unit of the retina, with an early loss of neurovascular coupling, gradual neurodegeneration, gliosis, and neuroinflammation before observable vascular pathologies. In this article, we consider the pathology of diabetic retinopathy from the point of view that diabetes causes measurable dysfunctions in the complex integral network of cell types that produce and maintain human vision. PMID:24673341
DeMarzo, Arthur P
2013-06-01
Early detection of cardiovascular disease (CVD) in prehypertension could initiate appropriate treatment and prevent progression. Impedance cardiography (ICG) is a noninvasive technology that can be used to assess cardiovascular function. This study used ICG waveform analysis with postural change to detect CVD in asymptomatic prehypertensive adults over 40 years of age with no history of CVD and at least 2 cardiovascular risk factors: cigarette smoking, poor diet, physical inactivity, central obesity, family history of premature CVD, elevated blood glucose, and dyslipidemia. A study group of 25 apparently healthy adults was tested by ICG in standing and supine positions. Criteria for an age-matched control group of 16 healthy subjects included an active lifestyle, no risk factor, and no history of CVD. In addition to hemodynamic measurements of systemic vascular resistance (SVR) and cardiac index (CI), ICG used SVR to assess vascular resistive load, an index of arterial compliance and a widening of the systolic waveform to assess vascular pulsatile load, and waveform analysis and measured wave amplitude to detect ventricular dysfunction. All subjects in the study group had some abnormal ICG data, with an average of 2.9 ± 1.5 abnormalities per person. ICG indicated that 24 (96%) had elevated vascular load, 13 (52%) had some type of ventricular dysfunction, and 12 (48%) had abnormal hemodynamics. For the control group, ICG showed none (0%) with elevated vascular load, none (0%) with ventricular dysfunction, and 7 (44%) with high CI. Prehypertensives over 40 years of age with multiple risk factors have different cardiovascular abnormalities. This ICG test could be used as part of a prevention program for early detection of CVD. An abnormal ICG test could expedite the initiation of customized treatment that targets the subclinical CVD.
Ikonomovic, Milos D; Mi, Zhiping; Abrahamson, Eric E
2017-03-01
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function. Published by Elsevier B.V.
Ma, Shuangtao; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Yang, Yongjian
2014-03-01
Ablation of uncoupling protein 2 (UCP2) has been involved in the enhancement of salt sensitivity associated with increased superoxide level and decreased nitric oxide (NO) bioavailability. However, the role of overexpression of UCP2 in salt-induced vascular dysfunction remains elusive. UCP2 transgenic (TG) and wild-type (WT) mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 12 weeks. Blood pressure (BP) and hypotensive responses were measured, and the vascular tone, superoxide level, and NO bioavailability in aortas were measured in each group. The TG mice had increased expression and function of UCP2 in vascular smooth muscle cells. The acetylcholine (ACh)- and nitroglycerin (NTG)-induced hypotensive responses and aortic relaxations were significantly blunted in WT mice fed with an HS diet compared with an NS diet. These harmful effects were prevented in UCP2 TG mice. The impairments of ACh- and NTG-induced relaxation in aorta were inhibited by the endothelial NO synthase (eNOS) inhibitor L-NAME and mitochondrial antioxidant MitoQ, respectively. The HS intake led to a significant increase in superoxide production and a comparable decrease in NO bioavailability in aortas, and these effects were blunted in UCP2 TG mice. The expression of UCP2 was slightly increased in the HS group. However, the expression and phosphorylation of eNOS were not affected by an HS diet and overexpression of UCP2. These findings suggest that overexpression of UCP2 can ameliorate salt-induced vascular dysfunction. This beneficial effect of UCP2 is mediated by decreased superoxide and reserved NO bioavailability.
Lewis, Gregory D; Ngo, Debby; Hemnes, Anna R; Farrell, Laurie; Domos, Carly; Pappagianopoulos, Paul P; Dhakal, Bishnu P; Souza, Amanda; Shi, Xu; Pugh, Meredith E; Beloiartsev, Arkadi; Sinha, Sumita; Clish, Clary B; Gerszten, Robert E
2016-01-19
Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements. This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction. We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30). In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension. Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Choi, Seul Min; Kim, Jee Eun; Kang, Kyung Koo
2006-02-09
This study examined the effects of chronic treatment of a new phosphodiesterase type 5 inhibitor, DA-8159, on endothelial dysfunction in stroke-prone spontaneously hypertensive rats (SHR-SP). Six-week-old male SHR-SP were divided into 4 groups; vehicle control, DA-8159 1, 3, and 10 mg/kg/day. During a 32-week experimental period, the animals were administered DA-8159 orally and fed a 4% NaCl-loaded diet. The systolic blood pressure was measured every two weeks throughout the experimental period using the tail-cuff method. At the end of experiments, the vascular function (acetylcholine-induced vasodilation) in the endothelium-intact aortic rings was investigated. In addition, the mortality, the left ventricular hypertrophy index, the plasma parameters and the incidence of a cerebral infarction were assessed. In the DA-8159 treated-rats, the vascular reactivity improved significantly in a dose-dependent manner. Although DA-8159 did not alter the elevation of the systolic blood pressure directly, the 3 and 10 mg/kg/day DA-8159 treatment delayed the early death caused by stroke. DA-8159 significantly reduced the left ventricular heart weight/body weight ratio compared with the vehicle control group. Furthermore, the DA-8159 treatment significantly increased the plasma nitric oxide, cGMP, and the total antioxidative status. The DA-8159 treatment also reduced the occurrence of stroke-associated cerebral damage. These results indicate that DA-8159 can ameliorate an endothelial dysfunction-related vascular injury. Therefore, pharmacological intervention aimed at attenuating an endothelial dysfunction is important and might be useful in both preventing and treating endothelial dysfunction-related complications.
"Non alcoholic fatty liver disease and eNOS dysfunction in humans".
Persico, Marcello; Masarone, Mario; Damato, Antonio; Ambrosio, Mariateresa; Federico, Alessandro; Rosato, Valerio; Bucci, Tommaso; Carrizzo, Albino; Vecchione, Carmine
2017-03-07
NAFLD is associated to Insulin Resistance (IR). IR is responsible for Endothelial Dysfunction (ED) through the impairment of eNOS function. Although eNOS derangement has been demonstrated in experimental models, no studies have directly shown that eNOS dysfunction is associated with NAFLD in humans. The aim of this study is to investigate eNOS function in NAFLD patients. Fifty-four NAFLD patients were consecutively enrolled. All patients underwent clinical and laboratory evaluation and liver biopsy. Patients were divided into two groups by the presence of NAFL or NASH. We measured vascular reactivity induced by patients' platelets on isolated mice aorta rings. Immunoblot assays for platelet-derived phosphorylated-eNOS (p-eNOS) and immunohistochemistry for hepatic p-eNOS have been performed to evaluate eNOS function in platelets and liver specimens. Flow-mediated-dilation (FMD) was also performed. Data were compared with healthy controls. Twenty-one (38, 8%) patients had NAFL and 33 (61, 7%) NASH. No differences were found between groups and controls except for HOMA and insulin (p < 0.0001). Vascular reactivity demonstrated a reduced function induced from NAFLD platelets as compared with controls (p < 0.001), associated with an impaired p-eNOS in both platelets and liver (p < 0.001). NAFL showed a higher impairment of eNOS phosphorylation in comparison to NASH (p < 0.01). In contrast with what observed in vitro, the vascular response by FMD was worse in NASH as compared with NAFL. Our data showed, for the first time in humans, that NAFLD patients show a marked eNOS dysfunction, which may contribute to a higher CV risk. eNOS dysfunction observed in platelets and liver tissue didn't match with FMD.
Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores
2015-07-01
Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS. Copyright © 2015 Elsevier Inc. All rights reserved.
[The Role of GRK2 and Its Potential as a New Therapeutic Target in Diabetic Vascular Complications].
Taguchi, Kumiko
2015-01-01
A decrease in nitric oxide (NO) production may induce pathological conditions associated with endothelial dysfunction and diabetes. Although a decrease in NO production caused by impaired Akt/endothelial nitric oxide synthesis (eNOS) signaling has been demonstrated at the aorta in the presence of diabetic vascular complications, little is known regarding the details of the mechanism. We identified G-protein-coupled receptor kinase 2 (GRK2) as a critical factor in diabetic endothelial dysfunction. GRK2 plays a role in many physiological functions including regulation of G-protein-coupled receptors (GPCRs). We found that the vasculature affected by type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction caused by impaired Akt/eNOS signaling. GRK2 activation also induces changes in the subcellular localization of GRK2 and β-arrestin 2, a downstream protein, from the cytosol to membrane. In mouse aorta GRK2 may be, on translocation, a key negative regulator and an important regulator of β-arrestin 2/Akt/eNOS signaling, which has been implicated in diabetic endothelial dysfunction. Furthermore, in the aortic membrane of type 2 diabetic model mice under insulin stimulation, the impaired Akt/eNOS signaling was improved by a selective GRK2 inhibitor. These results suggest that in diabetes the GRK2 inhibitor ameliorates vascular endothelial dysfunction via Akt/eNOS signaling by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation to the membrane under GPCR or non-GPCR stimulation, thereby contributing to blood pressure- and blood glucose-lowering effects. We propose that the GRK2 inhibitor may be a promising therapeutic target for cardiovascular complications in type 2 diabetes.
Stroke injury, cognitive impairment and vascular dementia☆
Kalaria, Raj N.; Akinyemi, Rufus; Ihara, Masafumi
2016-01-01
The global burden of ischaemic strokes is almost 4-fold greater than haemorrhagic strokes. Current evidence suggests that 25–30% of ischaemic stroke survivors develop immediate or delayed vascular cognitive impairment (VCI) or vascular dementia (VaD). Dementia after stroke injury may encompass all types of cognitive disorders. States of cognitive dysfunction before the index stroke are described under the umbrella of pre-stroke dementia, which may entail vascular changes as well as insidious neurodegenerative processes. Risk factors for cognitive impairment and dementia after stroke are multifactorial including older age, family history, genetic variants, low educational status, vascular comorbidities, prior transient ischaemic attack or recurrent stroke and depressive illness. Neuroimaging determinants of dementia after stroke comprise silent brain infarcts, white matter changes, lacunar infarcts and medial temporal lobe atrophy. Until recently, the neuropathology of dementia after stroke was poorly defined. Most of post-stroke dementia is consistent with VaD involving multiple substrates. Microinfarction, microvascular changes related to blood–brain barrier damage, focal neuronal atrophy and low burden of co-existing neurodegenerative pathology appear key substrates of dementia after stroke injury. The elucidation of mechanisms of dementia after stroke injury will enable establishment of effective strategy for symptomatic relief and prevention. Controlling vascular disease risk factors is essential to reduce the burden of cognitive dysfunction after stroke. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia edited by M. Paul Murphy, Roderick A. Corriveau and Donna M. Wilcock. PMID:26806700
Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments
Herradón, Esperanza; González, Cristina; Uranga, José A.; Abalo, Raquel; Martín, Ma I.; López-Miranda, Visitacion
2017-01-01
In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations. PMID:28533750
Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments.
Herradón, Esperanza; González, Cristina; Uranga, José A; Abalo, Raquel; Martín, Ma I; López-Miranda, Visitacion
2017-01-01
In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations.
Type 2 diabetes aggravates Alzheimer's disease-associated vascular alterations of the aorta in mice.
Sena, Cristina M; Pereira, Ana M; Carvalho, Cristina; Fernandes, Rosa; Seiça, Raquel M; Oliveira, Catarina R; Moreira, Paula I
2015-01-01
Vascular risk factors are associated with a higher incidence of dementia. In fact, diabetes mellitus is considered a main risk factor for Alzheimer's disease (AD) and both diseases are characterized by vascular dysfunction. However, the underlying mechanisms remain largely unknown. Here, the effects of high-sucrose-induced type 2 diabetes (T2D) in the aorta of wild type (WT) and triple-transgenic AD (3xTg-AD) mice were investigated. 3xTg-AD mice showed a significant decrease in body weight and an increase in postprandial glycemia, glycated hemoglobin (HbA1c), and vascular nitrotyrosine, superoxide anion (O2•-), receptor for the advanced glycation end products (RAGE) protein, and monocyte chemoattractant protein-1 (MCP-1) levels when compared to WT mice. High-sucrose intake caused a significant increase in body weight, postprandial glycemia, HbA1c, triglycerides, plasma vascular cell adhesion molecule 1 (VCAM-1), and vascular nitrotyrosine, O2•-, RAGE, and MCP-1 levels in both WT and 3xTg-AD mice when compared to the respective control group. Also, a significant decrease in nitric oxide-dependent vasorelaxation was observed in 3xTg-AD and sucrose-treated WT mice. In conclusion, AD and T2D promote similar vascular dysfunction of the aorta, this effect being associated with elevated oxidative and nitrosative stress and inflammation. Also, AD-associated vascular alterations are potentiated by T2D. These findings support the idea that metabolic alterations predispose to the onset and progression of dementia.
Alexandru, Nicoleta; Badila, Elisabeta; Weiss, Emma; Cochior, Daniel; Stępień, Ewa; Georgescu, Adriana
2016-03-25
The recognition of the importance of diabetes in vascular disease has greatly increased lately. Common risk factors for diabetes-related vascular disease include hyperglycemia, insulin resistance, dyslipidemia, inflammation, hypercoagulability, hypertension, and atherosclerosis. All of these factors contribute to the endothelial dysfunction which generates the diabetic complications, both macro and microvascular. Knowledge of diabetes-related vascular complications and of associated mechanisms it is becoming increasingly important for therapists. The discovery of microparticles (MPs) and their associated microRNAs (miRNAs) have opened new perspectives capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. MPs known as submicron vesicles generated from membranes of apoptotic or activated cells into circulation have the ability to act as autocrine and paracrine effectors in cell-to-cell communication. They operate as biological vectors modulating the endothelial dysfunction, inflammation, coagulation, angiogenesis, thrombosis, subsequently contributing to the progression of macro and microvascular complications in diabetes. More recently, miRNAs have started to be actively investigated, leading to first exciting reports, which suggest their significant role in vascular physiology and disease. The contribution of MPs and also of their associated miRNAs to the development of vascular complications in diabetes was largely unexplored and undiscussed. In essence, with this review we bring light upon the understanding of impact diabetes has on vascular biology, and the significant role of MPs and MPs associated miRNAs as novel mediators, potential biomarkers and therapeutic targets in vascular complications in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.
Inorganic nitrite supplementation for healthy arterial aging
DeVan, Allison E.; Fleenor, Bradley S.; Seals, Douglas R.
2014-01-01
Aging is the major risk factor for cardiovascular diseases (CVD). This is attributable primarily to adverse changes in arteries, notably, increases in large elastic artery stiffness and endothelial dysfunction mediated by inadequate concentrations of the vascular-protective molecule, nitric oxide (NO), and higher levels of oxidative stress and inflammation. Inorganic nitrite is a promising precursor molecule for augmenting circulating and tissue NO bioavailability because it requires only a one-step reduction to NO. Nitrite also acts as an independent signaling molecule, exerting many of the effects previously attributed to NO. Results of recent studies indicate that nitrite may be effective in the treatment of vascular aging. In old mice, short-term oral sodium nitrite supplementation reduces aortic pulse wave velocity, the gold-standard measure of large elastic artery stiffness, and ameliorates endothelial dysfunction, as indicated by normalization of NO-mediated endothelium-dependent dilation. These improvements in age-related vascular dysfunction with nitrite are mediated by reductions in oxidative stress and inflammation, and may be linked to increases in mitochondrial biogenesis and health. Increasing nitrite levels via dietary intake of nitrate appears to have similarly beneficial effects in many of the same physiological and clinical settings. Several clinical trials are being performed to determine the broad therapeutic potential of increasing nitrite bioavailability on human health and disease, including studies related to vascular aging. In summary, inorganic nitrite, as well as dietary nitrate supplementation, represents a promising therapy for treatment of arterial aging and prevention of age-associated CVD in humans. PMID:24408999
Majmudar, Maulik D; Murthy, Venkatesh L; Shah, Ravi V; Kolli, Swathy; Mousavi, Negareh; Foster, Courtney R; Hainer, Jon; Blankstein, Ron; Dorbala, Sharmila; Sitek, Arkadiusz; Stevenson, Lynne W; Mehra, Mandeep R; Di Carli, Marcelo F
2015-08-01
Patients with left ventricular systolic dysfunction frequently show abnormal coronary vascular function, even in the absence of overt coronary artery disease. Moreover, the severity of vascular dysfunction might be related to the aetiology of cardiomyopathy.We sought to determine the incremental value of assessing coronary vascular dysfunction among patients with ischaemic (ICM) and non-ischaemic (NICM) cardiomyopathy at risk for adverse cardiovascular outcomes. Coronary flow reserve (CFR, stress/rest myocardial blood flow) was quantified in 510 consecutive patients with rest left ventricular ejection fraction (LVEF) ≤45% referred for rest/stress myocardial perfusion PET imaging. The primary end point was a composite of major adverse cardiovascular events (MACE) including cardiac death, heart failure hospitalization, late revascularization, and aborted sudden cardiac death.Median follow-up was 8.2 months. Cox proportional hazards model was used to adjust for clinical variables. The annualized MACE rate was 26.3%. Patients in the lowest two tertiles of CFR (CFR ≤ 1.65) experienced higher MACE rates than those in the highest tertile (32.6 vs. 15.5% per year, respectively, P = 0.004), irrespective of aetiology of cardiomyopathy. Impaired coronary vascular function, as assessed by reduced CFR by PET imaging, is common in patients with both ischaemic and non-ischaemic cardiomyopathy and is associated with MACE. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J
2017-11-01
Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r = -0.49, P = 0.003), p21 ( r = -0.38, P = 0.03), and p16 ( r = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed ( P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function. Copyright © 2017 the American Physiological Society.
Ruiz-Vera, Tania; Pruneda-Álvarez, Lucia G; Ochoa-Martínez, Ángeles C; Ramírez-GarcíaLuna, José L; Pierdant-Pérez, Mauricio; Gordillo-Moscoso, Antonio A; Pérez-Vázquez, Francisco J; Pérez-Maldonado, Iván N
2015-09-01
The use of solid fuels for cooking and heating is likely to be the largest source of indoor air pollution on a global scale; these fuels emit substantial amounts of toxic pollutants such as polycyclic aromatic hydrocarbons (PAHs) when used in simple cooking stoves (such as open "three-stone" fires). Moreover, indoor air pollution from biomass fuels is considered an important risk factor for human health. The aim of this study was to evaluate the relationship between exposure to PAHs from wood smoke and vascular dysfunction; in a group of Mexican women that use biomass combustion as their main energy source inside their homes. We used 1-hydroxypyrene (1-OHP) as an exposure biomarker to PAHs and it was assessed using high performance liquid chromatography. The endothelium-dependent vasodilation was assessed through a vascular reactivity compression test performed with a pneumatic cuff under visualization of the brachial artery using high resolution ultrasonography (HRU). Assessment of the carotid intima-media thickness (CIMT) was used as an atherosclerosis biomarker (also assessed using HRU); and clinical parameters such as anthropometry, blood pressure, glucose, triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol, among others were also evaluated. The mean concentration of urinary 1-OHP found in exposed women was 0.46±0.32μmol/mol Cr (range: 0.086-1.23μmol/mol Cr). Moreover, vascular dysfunction (diminished endothelium dependent vasodilation) was found in 45% of the women participating in the study. Association between vascular function and 1-OHP levels was found to be significant through a logistic regression analysis (p=0.034; r(2)=0.1329). Furthermore, no association between CIMT and clinical parameters, urinary 1-OHP levels or vascular dysfunction was found. Therefore, with the information obtained in this study, we advocate for the need to implement programs to reduce the risk of exposure to PAHs in communities that use biomass fuels as a main energy source. Copyright © 2015 Elsevier B.V. All rights reserved.
Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.
Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub
2012-08-06
Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.
Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta.
Sturza, Adrian; Leisegang, Matthias S; Babelova, Andrea; Schröder, Katrin; Benkhoff, Sebastian; Loot, Annemarieke E; Fleming, Ingrid; Schulz, Rainer; Muntean, Danina M; Brandes, Ralf P
2013-07-01
Monoamine oxidases (MAOs) generate H(2)O(2) as a by-product of their catalytic cycle. Whether MAOs are mediators of endothelial dysfunction is unknown and was determined here in the angiotensin II and lipopolysaccharide-models of vascular dysfunction in mice. Quantitative real-time polymerase chain reaction revealed that mouse aortas contain enzymes involved in catecholamine generation and MAO-A and MAO-B mRNA. MAO-A and -B proteins could be detected by Western blot not only in mouse aortas but also in human umbilical vein endothelial cells. Ex vivo incubation of mouse aorta with recombinant MAO-A increased H(2)O(2) formation and induced endothelial dysfunction that was attenuated by polyethylene glycol-catalase and MAO inhibitors. In vivo lipopolysaccharide (8 mg/kg IP overnight) or angiotensin II (1 mg/kg per day, 2 weeks, minipump) treatment induced vascular MAO-A and -B expressions and resulted in attenuated endothelium-dependent relaxation of the aorta in response to acetylcholine. MAO inhibitors reduced the lipopolysaccharide- and angiotensin II-induced aortic reactive oxygen species formation by 50% (ferrous oxidation xylenol orange assay) and partially normalized endothelium-dependent relaxation. MAO-A and MAO-B inhibitors had an additive effect; combined application completely restored endothelium-dependent relaxation. To determine how MAO-dependent H(2)O(2) formation induces endothelial dysfunction, cyclic GMP was measured. Histamine stimulation of human umbilical vein endothelial cells to activate endothelial NO synthase resulted in an increase in cyclic GMP, which was almost abrogated by MAO-A exposure. MAO inhibition prevented this effect, suggesting that MAO-induced H(2)O(2) formation is sufficient to attenuate endothelial NO release. Thus, MAO-A and MAO-B are both expressed in the mouse aorta, induced by in vivo lipopolysaccharide and angiotensin II treatment and contribute via the generation of H(2)O(2) to endothelial dysfunction in vascular disease models.
Imaging of cerebrovascular pathology in animal models of Alzheimer's disease
Klohs, Jan; Rudin, Markus; Shimshek, Derya R.; Beckmann, Nicolau
2014-01-01
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature. PMID:24659966
da Costa, Rafael M; da Silva, Josiane F; Alves, Juliano V; Dias, Thiago B; Rassi, Diane M; Garcia, Luis V; Lobato, Núbia de Souza; Tostes, Rita C
2018-01-01
Under physiological conditions, the perivascular adipose tissue (PVAT) negatively modulates vascular contractility. This property is lost in experimental and human obesity and in the metabolic syndrome, indicating that changes in PVAT function may contribute to vascular dysfunction associated with increased body weight and hyperglycemia. The O -linked β-N-acetylglucosamine ( O -GlcNAc) modification of proteins ( O -GlcNAcylation) is a unique posttranslational process that integrates glucose metabolism with intracellular protein activity. Increased flux of glucose through the hexosamine biosynthetic pathway and the consequent increase in tissue-specific O -GlcNAc modification of proteins have been linked to multiple facets of vascular dysfunction in diabetes and other pathological conditions. We hypothesized that chronic consumption of glucose, a condition that progresses to metabolic syndrome, leads to increased O -GlcNAc modification of proteins in the PVAT, decreasing its anti-contractile effects. Therefore, the current study was devised to determine whether a high-sugar diet increases O -GlcNAcylation in the PVAT and how increased O -GlcNAc interferes with PVAT vasorelaxant function. To assess molecular mechanisms by which O -GlcNAc contributes to PVAT dysfunction, thoracic aortas surrounded by PVAT were isolated from Wistar rats fed either a control or high sugar diet, for 10 and 12 weeks. Rats chronically fed a high sugar diet exhibited metabolic syndrome features, increased O -GlcNAcylated-proteins in the PVAT and loss of PVAT anti-contractile effect. PVAT from high sugar diet-fed rats for 12 weeks exhibited decreased NO formation, reduced expression of endothelial nitric oxide synthase (eNOS) and increased O -GlcNAcylation of eNOS. High sugar diet also decreased OGA activity and increased superoxide anion generation in the PVAT. Visceral adipose tissue samples from hyperglycemic patients showed increased levels of O -GlcNAc-modified proteins, increased ROS generation and decreased OGA activity. These data indicate that O -GlcNAcylation contributes to metabolic syndrome-induced PVAT dysfunction and that O -GlcNAcylation of eNOS may be targeted in the development of novel therapies for vascular dysfunction in conditions associated with hyperglycemia.
Goodwill, Adam G.; Frisbee, Stephanie J.; Stapleton, Phoebe A.; James, Milinda E.; Frisbee, Jefferson C.
2011-01-01
Object The obese Zucker rat (OZR) model of the metabolic syndrome is partly characterized by moderate hypercholesterolemia in addition to other contributing co-morbidities. Previous results suggest that vascular dysfunction in OZR is associated with chronic reduction in vascular nitric oxide (NO) bioavailability and chronic inflammation, both frequently associated with hypercholesterolemia. As such, we evaluated the impact of chronic cholesterol reducing therapy on the development of impaired skeletal muscle arteriolar reactivity and microvessel density in OZR and its impact on chronic inflammation and NO bioavailability. Materials and Methods Beginning at 7 weeks of age, male OZR were treated with gemfibrozil, probucol, atorvastatin or simvastatin (in chow) for 10 weeks. Subsequently, plasma and vascular samples were collected for biochemical/molecular analyses, while arteriolar reactivity and microvessel network structure were assessed using established methodologies after 3, 6 and 10 weeks of drug therapy Results All interventions were equally effective at reducing total cholesterol, although only the statins also blunted the progressive reductions to vascular NO bioavailability, evidenced by greater maintenance of acetylcholine-induced dilator responses, an attenuation of adrenergic constrictor reactivity, and an improvement in agonist-induced NO production. Comparably, while minimal improvements to arteriolar wall mechanics were identified with any of the interventions, chronic statin treatment reduced the rate of microvessel rarefaction in OZR. Associated with these improvements was a striking statin-induced reduction in inflammation in OZR, such that numerous markers of inflammation were correlated with improved microvascular reactivity and density. However, using multivariate discriminant analyses, plasma RANTES, IL-10, MCP-1 and TNF-α were determined to be the strongest contributors to differences between groups, although their relative importance varied with time. Conclusions While the positive impact of chronic statin treatment on vascular outcomes in the metabolic syndrome are independent of changes to total cholesterol, and are more strongly associated with improvements to vascular NO bioavailability and attenuated inflammation, these results provide both a spatial and temporal framework for targeted investigation into mechanistic determinants of vasculopathy in the metabolic syndrome. PMID:19905967
Factor VIII-associated antigen in human lymphatic endothelium.
Nagle, R B; Witte, M H; Martinez, A P; Witte, C L; Hendrix, M J; Way, D; Reed, K
1987-03-01
Lymphatic vascular endothelium both on tissue section and in culture exhibits positivity for Factor VIII-associated antigen although staining is generally less intense and more spotty than in comparable blood vascular endothelium. Lymphatic endothelium also exhibits Weibel-Palade bodies. Neither marker, therefore, reliably distinguishes blood vascular endothelium from lymphatic endothelium.
The Role of PGC-1α in Vascular Regulation: Implications for Atherosclerosis
Kadlec, Andrew O.; Chabowski, Dawid S.; Ait-Aissa, Karima; Gutterman, David D.
2016-01-01
Mitochondrial dysfunction results in high levels of oxidative stress and mitochondrial damage, leading to disruption of endothelial homeostasis. Recent discoveries have clarified several pathways whereby mitochondrial dysregulation contributes to endothelial dysfunction and vascular disease burden. One such pathway centers around PGC-1α, a transcriptional coactivator linked to mitochondrial biogenesis and antioxidant defense, among other functions. Although primarily investigated for its therapeutic potential in obesity and skeletal muscle differentiation, the ability of PGC-1α to alter a multitude of cellular functions has sparked interest in its role in the vasculature. Within this context, recent studies demonstrate that PGC-1α plays a key role in endothelial cell and smooth muscle cell regulation through effects on oxidative stress, apoptosis, inflammation, and cell proliferation. The ability of PGC-1α to impact these parameters is relevant to vascular disease progression, particularly in relation to atherosclerosis. Upregulation of PGC-1α can prevent the development of, and even encourage regression of, atherosclerotic lesions. Therefore, PGC-1α is poised to serve as a promising target in vascular disease. This review details recent findings related to PGC-1α in vascular regulation, regulation of PGC-1α itself, the role of PGC-1α in atherosclerosis, and therapies that target this key protein. PMID:27312223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petri, Marcelo H.; Tellier, Céline; Michiels, Carine
2013-11-15
Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels ofmore » different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.« less
Microfibrillar-associated protein 4 variation in symptomatic peripheral artery disease.
Hemstra, Line Ea; Schlosser, Anders; Lindholt, Jes Sanddal; Sorensen, Grith L
2018-06-08
Symptomatic peripheral artery disease (PAD) is an atherosclerotic occlusive disease affecting the lower extremities. The cause of symptomatic PAD is atherosclerosis, vascular dysfunctions, impaired angiogenesis and neointima formation. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein, which is highly expressed in the heart and arteries and recently introduced as a potential mediator of pathological vascular remodeling and neointima formation. We aimed to investigate the relationship between serum MFAP4 (sMFAP4) and symptomatic PAD outcomes. A total of 286 PAD patients were analyzed if they had either intermittent claudication or critical lower-extremity ischemia (CLI) and followed for 7 years. The level of serum MFAP4 (sMFAP4) was measured by alphaLISA. Kaplan-Meier, Cox proportional hazard and logistic regression analysis were used to analyze the associations between upper tertile sMFAP4 and symptomatic PAD outcomes. Patients with upper tertile sMFAP4 had an odds ratio (OR) of 2.65 (p < 0.001) for having CLI diagnosis. Further analysis indicated that patients with upper tertile sMFAP4 had a hazard ratio (HR) of 1.97 (p = 0.04) for cardiovascular death during the 7-years follow-up. However, analysis of 2-year primary patency showed that patients with upper tertile sMFAP4 had decreased risk of vascular occlusion after reconstructive surgery with HR of 0.15 (p = 0.02). sMFAP4 has potential as a prognostic marker for cardiovascular death, primary patency of reconstructed vessels and CLI diagnosis in symptomatic PAD patients. Confirmation of observations in larger cohorts is warranted.
Kalayjian, Robert C; Wu, Kunling; Evans, Scott; Clifford, David B; Pallaki, Muraldihar; Currier, Judith S; Smryzynski, Marlene
2014-09-01
Proteinuria is a marker of vascular dysfunction that predicted increased cardiovascular mortality and is associated with neurocognitive impairment (NCI) in population-based studies. We examined associations between proteinuria and HIV-associated NCI. Multivariable logistic regression was used to examine associations between NCI at the first neurocognitive assessment (baseline) and simultaneous, clinically significant proteinuria [as random spot urine protein-to-creatinine ratios (UP/Cr) ≥200 mg/g] in a prospective multicenter observational cohort study. Generalized estimating equations were used to examine associations between baseline proteinuria and subsequent NCI among subjects without NCI at baseline. NCI was defined as a Z-score, derived from the combination of normalized scores from the Trailmaking A and B and the Wechsler Adult Intelligence Scale-Revised Digit Symbol tests. A total of 1972 subjects were included in this analysis. Baseline proteinuria was associated with increased odds of NCI [odds ratio (OR): 1.41, 95% confidence interval (CI): 1.08 to 1.85; P = 0.01] and with subsequent NCI among subjects without NCI at baseline (OR: 1.39, 95% CI: 1.01 to 1.93; P = 0.046) in multivariable models adjusted for risk factors and potential confounders. Similar associations were evident when these analyses were limited to visits at which time study subjects maintained plasma HIV RNA levels <200 copies per milliliter. The association between proteinuria and NCI observed in this study adds to a growing body of evidence implicating contributions by vascular disease to NCI in antiretroviral treated individuals. Studies examining interventions that improve vascular function are warranted.
Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD
Pasarín, Marcos; La Mura, Vincenzo; Gracia-Sancho, Jorge; García-Calderó, Héctor; Rodríguez-Vilarrupla, Aina; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G.
2012-01-01
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Most morbidity associated with the metabolic syndrome is related to vascular complications, in which endothelial dysfunction is a major pathogenic factor. However, whether NAFLD is associated with endothelial dysfunction within the hepatic vasculature is unknown. The aims of this study were to explore, in a model of diet-induced overweight that expresses most features of the metabolic syndrome, whether early NAFLD is associated with liver endothelial dysfunction. Wistar Kyoto rats were fed a cafeteria diet (CafD; 65% of fat, mostly saturated) or a control diet (CD) for 1 month. CafD rats developed features of the metabolic syndrome (overweight, arterial hypertension, hypertryglyceridemia, hyperglucemia and insulin resistance) and liver steatosis without inflammation or fibrosis. CafD rats had a significantly higher in vivo hepatic vascular resistance than CD. In liver perfusion livers from CafD rats had an increased portal perfusion pressure and decreased endothelium-dependent vasodilation. This was associated with a decreased Akt-dependent eNOS phosphorylation and NOS activity. In summary, we demonstrate in a rat model of the metabolic syndrome that shows features of NAFLD, that liver endothelial dysfunction occurs before the development of fibrosis or inflammation. PMID:22509248
Flow cytometry on the stromal-vascular fraction of white adipose tissue.
Brake, Danett K; Smith, C Wayne
2008-01-01
Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow cytometry to analyze cell surface markers on leukocytes. Here, we present a technical approach to identify subsets of leukocytes that differentially express cell surface markers.
Moran, Lisa J; Noakes, Manny; Wittert, Gary A; Clifton, Peter M; Norman, Robert J
2012-11-01
Polycystic ovary syndrome (PCOS) is associated with increased cardiovascular disease risk. The effect of weight loss on the vascular inflammatory markers plasminogen activator inhibitor-1 (PAI-1), asymmetric dimethylarginine (ADMA), soluble vascular cell adhesion molecule-1 (sVCAM-1) and intracellular adhesion molecule-1 (sICAM-1) is unknown. Overweight women with (n=14) and without (n=13) PCOS of comparable age and body mass index undertook an 8-week weight-loss programme. Women with PCOS had elevated PAI-1, sVCAM-1 and sICAM-1 before and after weight loss compared with the controls. For all women, sVCAM-1 (P=0.026) and sICAM-1 (P=0.04) decreased with weight loss. Women with PCOS have elevated inflammatory markers, which are partially reduced by weight loss. Copyright © 2012 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Chu, Shuang; Mao, Xiaodong; Guo, Hengjiang; Wang, Li; Li, Zezheng; Zhang, Yang; Wang, Yunman; Wang, Hao; Zhang, Xuemei; Peng, Wen
2017-03-01
Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.
Causes and Effects of Changes in Xylem Functionality in Apple Fruit
DRAŽETA, LAZAR; LANG, ALEXANDER; HALL, ALISTAIR J.; VOLZ, RICHARD K.; JAMESON, PAULA E.
2004-01-01
• Background and Aims The xylem in fruit of a number of species becomes dysfunctional as the fruit develops, resulting in a reduction of xylem inflow to the fruit. Such a reduction may have consequential effects on the mineral balance of the fruit. The aim of this study was to elucidate the dynamics and nature of xylem failure in developing apples (Malus domestica) showing differing susceptibilities to bitter pit, a calcium‐related disorder. • Methods Developmental changes in xylem functionality of the fruit were investigated in ‘Braeburn’ and ‘Granny Smith’ apples by using a dye infusion technique, to stain the vasculature along the path of dye movement. The vascular bundles were clearly visible in transverse section when fruit were sectioned equatorially. The intensity of staining of the vascular bundles in the fruit was recorded at regular intervals throughout the season. Tissue containing dysfunctional bundles was fixed and embedded in wax for subsequent sectioning and examination. • Key Results As the season progressed, an increasing proportion of vascular bundles failed to show any staining, with the most marked change occurring in the primary bundles, and in nearly all bundles with increasing distance from the stalk end of the fruit. Decreased conductance in the primary bundles of ‘Braeburn’ occurred earlier than in ‘Granny Smith’. Microscopy revealed that the xylem in vascular bundles of the fruit suffered substantial damage, indicating that the mode of dysfunction was via the physical disruption of the xylem caused by expansion of the flesh. • Conclusions Results support the view that the relative calcium deficiency of apple fruit is due to a progressive breakdown of xylem conductance caused by growth‐induced damage to the xylem strand in the bundle. The earlier onset of xylem dysfunction in the cultivar more susceptible to bitter pit suggests that the relative growth dynamics of the fruit may control the occurrence of calcium‐related disorders. PMID:14988096
Sereno, J; Parada, B; Rodrigues-Santos, P; Lopes, P C; Carvalho, E; Vala, H; Teixeira-Lemos, E; Alves, R; Figueiredo, A; Mota, A; Teixeira, F; Reis, F
2013-04-01
Cyclosporin (CsA) has been progressively replaced by other drugs with putatively fever side effects, including nephrotoxicity and hypertension. Sirolimus (SRL) is one of the main options for management of kidney transplant patients in the post-CsA era. It shows identical efficacy with apparently less cardiorenal side effects than CsA. However, doubts remain concerning the mechanisms of putative renoprotection by SRL as well as the best serum and/or tissue markers for nephropathy, as assessed in this study employing CsA- and SRL-treated rats. Three groups (n = 6) were treated orally during a 6-week protocol: control (vehicle); CsA (5 mg/kg body weight per day Sandimmun Neoral); SRL (1 mg/kg body weight per day Rapamune). Blood pressure and heart rate were assessed with a "tail cuff". Renal dysfunction and morphology were characterized using serum creatinine and blood urea nitrogen (BUN) levels as well as hematoxylin and eosin and periodic acid Schiff staining, respectively. We examined serum concentrations of interleukin (IL)-2, IL-1β, high-sensitivity C-reactive protein, tumor necrosis factor TNF-α, and vascular endothelial growth factor and kidney mRNA expression of interleukin-1β (IL-1β), tumor protein 53 (TP53), mammalian target of rapamycin (mTOR) and proliferating cell nuclear antigen (PCNA), as well as markers of lipid peroxidation in the kidney and serum. Both CsA and SRL induced significant increases in systolic and diastolic blood pressure, but only CsA caused tachycardia. CsA-treated rats also displayed increased serum creatinine and BUN levels, accompanied by mild renal lesions, which were almost absent among SRL-treated rats, which presented hyperlipidemic and hyperglycemic profiles. CsA-induced nephrotoxicity was accompanied by kidney overexpression of inflammatory and proliferative mRNA markers (IL-1β, mTOR and PCNA), which were absent among SRL group. In conclusion, the antiproliferative and antifibrotic character of SRL may explain its less nephrotoxic profile. Renal over expression of mTOR in the CsA-treated group, associated with renal dysfunction and structural damage, reinforces the potential beneft of SRL as a strategy to reduce CsA-evoked nephrotoxicity. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farjam, R; Pramanik, P; Srinivasan, A
Purpose: Vascular injury could be a cause of hippocampal dysfunction leading to late neurocognitive decline in patients receiving brain radiotherapy (RT). Hence, our aim was to develop a multivariate interaction model for characterization of hippocampal vascular dose-response and early prediction of radiation-induced late neurocognitive impairments. Methods: 27 patients (17 males and 10 females, age 31–80 years) were enrolled in an IRB-approved prospective longitudinal study. All patients were diagnosed with a low-grade glioma or benign tumor and treated by 3-D conformal or intensity-modulated RT with a median dose of 54 Gy (50.4–59.4 Gy in 1.8− Gy fractions). Six DCE-MRI scans weremore » performed from pre-RT to 18 months post-RT. DCE data were fitted to the modified Toft model to obtain the transfer constant of gadolinium influx from the intravascular space into the extravascular extracellular space, Ktrans, and the fraction of blood plasma volume, Vp. The hippocampus vascular property alterations after starting RT were characterized by changes in the hippocampal mean values of, μh(Ktrans)τ and μh(Vp)τ. The dose-response, Δμh(Ktrans/Vp)pre->τ, was modeled using a multivariate linear regression considering integrations of doses with age, sex, hippocampal laterality and presence of tumor/edema near a hippocampus. Finally, the early vascular dose-response in hippocampus was correlated with neurocognitive decline 6 and 18 months post-RT. Results: The μh(Ktrans) increased significantly from pre-RT to 1 month post-RT (p<0.0004). The multivariate model showed that the dose effect on Δμh(Ktrans)pre->1M post-RT was interacted with sex (p<0.0007) and age (p<0.00004), with the dose-response more pronounced in older females. Also, the vascular dose-response in the left hippocampus of females was significantly correlated with memory function decline at 6 (r = − 0.95, p<0.0006) and 18 (r = −0.88, p<0.02) months post-RT. Conclusion: The hippocampal vascular response to radiation could be sex and age dependent. The early hippocampal vascular dose-response could predict late neurocognitive dysfunction. (Support: NIH-RO1NS064973)« less
Circulating Markers of Vascular Injury and Angiogenesis in ANCA-Associated Vasculitis
Monach, Paul A; Tomasson, Gunnar; Specks, Ulrich; Stone, John H; Cuthbertson, David; Krischer, Jeffrey; Ding, Linna; Fervenza, Fernando C; Fessler, Barri J; Hoffman, Gary S; Ikle, David; Kallenberg, Cees GM; Langford, Carol A; Mueller, Mark; Seo, Philip; St.Clair, E William; Spiera, Robert; Tchao, Nadia; Ytterberg, Steven R; Gu, Yi-Zhong; Snyder, Ronald D; Merkel, Peter A
2011-01-01
Objective To identify biomarkers that distinguish between active ANCA-associated vasculitis (AAV) and remission in a manner superior or complementary to established markers of systemic inflammation. Methods Markers of vascular injury and angiogenesis were measured before and after treatment in a large clinical trial in AAV. 163 subjects enrolled in the Rituximab in ANCA-Associated Vasculitis (RAVE) trial were studied. Serum levels of E-selectin, ICAM-3, MMP1, MMP3, MMP9, P-selectin, thrombomodulin, and VEGF were measured at study screening (time of active disease) and at month 6. ESR and CRP levels had been measured at the time of the clinical visit. The primary outcome was the difference in marker level between screening and month 6 among patients in remission (BVAS/WG score of 0) at month 6. Results All subjects had severe active vasculitis (mean BVAS/WG score 8.6 +/− 3.2 SD) at screening. Among the 123 subjects clinically in remission at month 6, levels of all markers except E-selectin showed significant declines. MMP3 levels were also higher among the 23 subjects with active disease at month 6 than among the 123 subjects in remission. MMP3 levels correlated weakly with ESR and CRP. Conclusion Many markers of vascular injury and angiogenesis are elevated in severe active AAV and decline with treatment, but MMP3 appears to distinguish active AAV from remission better than the other markers studied. Further study of MMP3 is warranted to determine its clinical utility in combination with conventional markers of inflammation and ANCA titers. PMID:21953143
NLRP3 Inflammasome Mediates Aldosterone-Induced Vascular Damage.
Bruder-Nascimento, Thiago; Ferreira, Nathanne S; Zanotto, Camila Z; Ramalho, Fernanda; Pequeno, Isabela O; Olivon, Vania C; Neves, Karla B; Alves-Lopes, Rheure; Campos, Eduardo; Silva, Carlos Alberto A; Fazan, Rubens; Carlos, Daniela; Mestriner, Fabiola L; Prado, Douglas; Pereira, Felipe V; Braga, Tarcio; Luiz, Joao Paulo M; Cau, Stefany B; Elias, Paula C; Moreira, Ayrton C; Câmara, Niels O; Zamboni, Dario S; Alves-Filho, Jose Carlos; Tostes, Rita C
2016-12-06
Inflammation is a key feature of aldosterone-induced vascular damage and dysfunction, but molecular mechanisms by which aldosterone triggers inflammation remain unclear. The NLRP3 inflammasome is a pivotal immune sensor that recognizes endogenous danger signals triggering sterile inflammation. We analyzed vascular function and inflammatory profile of wild-type (WT), NLRP3 knockout (NLRP3 -/- ), caspase-1 knockout (Casp-1 -/- ), and interleukin-1 receptor knockout (IL-1R -/- ) mice treated with vehicle or aldosterone (600 µg·kg -1 ·d -1 for 14 days through osmotic mini-pump) while receiving 1% saline to drink. Here, we show that NLRP3 inflammasome plays a central role in aldosterone-induced vascular dysfunction. Long-term infusion of aldosterone in mice resulted in elevation of plasma interleukin-1β levels and vascular abnormalities. Mice lacking the IL-1R or the inflammasome components NLRP3 and caspase-1 were protected from aldosterone-induced vascular damage. In vitro, aldosterone stimulated NLRP3-dependent interleukin-1β secretion by bone marrow-derived macrophages by activating nuclear factor-κB signaling and reactive oxygen species generation. Moreover, chimeric mice reconstituted with NLRP3-deficient hematopoietic cells showed that NLRP3 in immune cells mediates aldosterone-induced vascular damage. In addition, aldosterone increased the expression of NLRP3, active caspase-1, and mature interleukin-1β in human peripheral blood mononuclear cells. Hypertensive patients with hyperaldosteronism or normal levels of aldosterone exhibited increased activity of NLRP3 inflammasome, suggesting that the effect of hyperaldosteronism on the inflammasome may be mediated through high blood pressure. Together, these data demonstrate that NLRP3 inflammasome, through activation of IL-1R, is critically involved in the deleterious vascular effects of aldosterone, placing NLRP3 as a potential target for therapeutic interventions in conditions with high aldosterone levels. © 2016 American Heart Association, Inc.
Jordan, Jens; Nilsson, Peter M; Kotsis, Vasilios; Olsen, Michael H; Grassi, Guido; Yumuk, Volkan; Hauner, Hans; Zahorska-Markiewicz, Barbara; Toplak, Hermann; Engeli, Stefan; Finer, Nick
2015-03-01
Current cardiovascular risk scores do not include obesity or fat distribution as independent factors, and may underestimate risk in obese individuals. Assessment of early vascular ageing (EVA) biomarkers including arterial stiffness, central blood pressure, carotid intima-media thickness and flow-mediated vasodilation may help to refine risk assessment in obese individuals in whom traditional cardiovascular risk scores and factors suggest no need for specific medical attention. A number of issues need to be addressed before this approach is ready for translation into routine clinical practice. Methodologies for measurements of vascular markers need to be further standardized and less operator-dependent. The utility of these nontraditional risk factors will also need to be proven in sufficiently large and properly designed interventional studies. Indeed, published studies on vascular markers in obesity and weight loss vary in quality and study design, are sometimes conducted in small populations, use a variety of differing methodologies and study differing vascular beds. Finally, current vascular measurements are still crude and may not be sufficient to cover the different aspects of EVA in obesity.
Lamping, KL; Nuno, DW; Coppey, LJ; Holmes, AJ; Hu, S; Oltman, CL; Norris, AW; Yorek, MA
2013-01-01
Aims The ability of dietary enrichment with monounsaturated (MUFA), n-3, or n-6 polyunsaturated fatty acids (PUFA) to reverse glucose intolerance and vascular dysfunction resulting from excessive dietary saturated fatty acids is not resolved. We hypothesized that partial replacement of dietary saturated fats with n-3 PUFA enriched menhaden oil (MO) would provide greater improvement in glucose tolerance and vascular function compared to n-6 enriched safflower oil (SO) or MUFA-enriched olive oil (OO). Material and Methods We fed mice a high saturated fat diet (60% kcal from lard) for 12 weeks before substituting half the lard with MO, SO or OO for an additional 4 weeks. At the end of 4 weeks, we assessed glucose tolerance, insulin signaling and reactivity of isolated pressurized gracilis arteries. Results After 12 weeks of saturated fat diet, body weights were elevated and glucose tolerance abnormal compared to mice on control diet (13% kcal lard). Diet substituted with MO restored basal glucose levels, glucose tolerance, and indices of insulin signaling (phosphorylated Akt) to normal whereas restoration was limited for SO and OO substitutions. Although dilation to acetylcholine was reduced in arteries from mice on HF, OO and SO diets compared to normal diet, dilation to acetylcholine was fully restored and constriction to phenylephrine reduced in MO fed mice compared to normal. Conclusion We conclude that short term enrichment of an ongoing high fat diet with n-3 PUFA rich MO but not MUFA rich OO or n-6 PUFA rich SO reverses glucose tolerance, insulin signaling, and vascular dysfunction. PMID:22950668
Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Fazal, Fabeha; Rahman, Arshad
2018-03-01
Autophagy is an evolutionarily conserved cellular process that facilitates the continuous recycling of intracellular components (organelles and proteins) and provides an alternative source of energy when nutrients are scarce. Recent studies have implicated autophagy in many disorders, including pulmonary diseases. However, the role of autophagy in endothelial cell (EC) barrier dysfunction and its relevance in the context of acute lung injury (ALI) remain uncertain. Here, we provide evidence that autophagy is a critical component of EC barrier disruption in ALI. Using an aerosolized bacterial lipopolysaccharide (LPS) inhalation mouse model of ALI, we found that administration of the autophagy inhibitor 3-methyladenine (3-MA), either prophylactically or therapeutically, markedly reduced lung vascular leakage and tissue edema. 3-MA was also effective in reducing the levels of proinflammatory mediators and lung neutrophil sequestration induced by LPS. To test the possibility that autophagy in EC could contribute to lung vascular injury, we addressed its role in the mechanism of EC barrier disruption. Knockdown of ATG5, an essential regulator of autophagy, attenuated thrombin-induced EC barrier disruption, confirming the involvement of autophagy in the response. Similarly, exposure of cells to 3-MA, either before or after thrombin, protected against EC barrier dysfunction by inhibiting the cleavage and loss of vascular endothelial cadherin at adherens junctions, as well as formation of actin stress fibers. 3-MA also reversed LPS-induced EC barrier disruption. Together, these data imply a role of autophagy in lung vascular injury and reveal the protective and therapeutic utility of 3-MA against ALI.
Zeng, Heng; He, Xiaochen; Tuo, Qin-Hui; Liao, Duan-Fang; Zhang, Guo-Qiang; Chen, Jian-Xiong
2016-02-12
Recent studies reveal a crucial role of pericyte loss in sepsis-associated microvascular dysfunction. Sirtuin 3 (SIRT3) mediates histone protein post-translational modification related to aging and ischemic disease. This study investigated the involvement of SIRT3 in LPS-induced pericyte loss and microvascular dysfunction. Mice were exposed to LPS, expression of Sirt3, HIF-2α, Notch3 and angiopoietins/Tie-2, pericyte/endothelial (EC) coverage and vascular permeability were assessed. Mice treated with LPS significantly reduced the expression of SIRT3, HIF-2α and Notch3 in the lung. Furthermore, exposure to LPS increased Ang-2 while inhibited Ang-1/Tie-2 expression with a reduced pericyte/EC coverage. Intriguingly, knockout of Sirt3 upregulated Ang-2, but downregulated Tie-2 and HIF-2α/Notch3 expression which resulted in a dramatic reduction of pericyte/EC coverage and exacerbation of LPS-induced vascular leakage. Conversely, overexpression of Sirt3 reduced Ang-2 expression and increased Ang-1/Tie-2 and HIF-2α/Notch3 expression in the LPS treated mice. Overexpression of Sirt3 further prevented LPS-induced pericyte loss and vascular leakage. This was accompanied by a significant reduction of the mortality rate. Specific knockout of prolyl hydroxylase-2 (PHD2) increased HIF-2α/Notch3 expression, improved pericyte/EC coverage and reduced the mortality rate in the LPS-treated mice. Our study demonstrates the importance of SIRT3 in preserving vascular integrity by targeting pericytes in the setting of LPS-induced sepsis.
LaMarca, Babbette D.; Chandler, Derrick L.; Grubbs, Lee; Bain, Jennifer; McLemore, Gerald R.; Granger, Joey P.; Ryan, Michael J.
2007-01-01
Background We previously showed that infusion of TNF-α induces hypertension and vascular dysfunction in late pregnant but not virgin rats. In the present study we tested the hypothesis that levels of ovarian hormones to mimic pregnancy are required for TNF-α induced changes in vascular function and blood pressure in rats. Methods 21 day release pellets containing 17β-estradiol, progesterone, or both were implanted in ovariectomized (OVX) rats. Sham OVX rats were used as controls. 12 days after implantation, TNF-α or vehicle was infused via osmotic minipumps (days 12-17). On day 18, mean arterial pressure was measured and animals were sacrificed to assess vascular function. Results Average estrogen and progesterone levels across all groups were 106±6 pg/ml and 88±5 ng/ml. TNF-α was 41±7 pg/ml compared to OVX rats infused with vehicle (4±1 pg/ml). The results show that TNF-α did not cause elevated mean arterial pressure in OVX rats with increased estrogen, progesterone, both. Vascular responses to the endothelium dependent and independent agonists, acetylcholine and sodium nitroprusside, were also not changed. Phenylephrine induced contraction was moderately but significantly increased at the highest concentrations (10-4 M) only in TNF-α infused rats. Conclusion These data suggest that increased ovarian hormones to levels observed during pregnancy are not sufficient to promote TNF-α induced increases in blood pressure or vascular dysfunction. PMID:17954370
Review: Cerebral microvascular pathology in aging and neurodegeneration
Brown, William R.; Thore, Clara R.
2010-01-01
This review of age-related brain microvascular pathologies focuses on topics studied by this laboratory, including anatomy of the blood supply, tortuous vessels, venous collagenosis, capillary remnants, vascular density, and microembolic brain injury. Our studies feature thick sections, large blocks embedded in celloidin, and vascular staining by alkaline phosphatase (AP). This permits study of the vascular network in three dimensions, and the differentiation of afferent from efferent vessels. Current evidence suggests that there is decreased vascular density in aging, Alzheimer’s disease (AD), and leukoaraiosis (LA), and cerebrovascular dysfunction precedes and accompanies cognitive dysfunction and neurodegeneration. A decline in cerebrovascular angiogenesis may inhibit recovery from hypoxia-induced capillary loss. Cerebral blood flow (CBF) is inhibited by tortuous arterioles and deposition of excessive collagen in veins and venules. Misery perfusion due to capillary loss appears to occur before cell loss in LA, and CBF is also reduced in the normal-appearing white matter. Hypoperfusion occurs early in AD, inducing white matter lesions and correlating with dementia. In vascular dementia, cholinergic reductions are correlated with cognitive impairment, and cholinesterase inhibitors have some benefit. Most lipid microemboli from cardiac surgery pass through the brain in a few days, but some remain for weeks. They can cause what appears to be a type of vascular dementia years after surgery. Donepezil has shown some benefit. Emboli, such as clots, cholesterol crystals, and microspheres can be extruded through the walls of cerebral vessels, but there is no evidence yet that lipid emboli undergo such extravasation. PMID:20946471
Perusquía, Mercedes
2010-01-01
The marked sexual dimorphism that exists in human cardiovascular diseases has led to the dogmatic concept that testosterone (Tes) has deleterious effects and exacerbates the development of cardiovascular disease in males. While some animal studies suggest that Tes does exert deleterious effects by enhancing vascular tone through acute or chronic mechanisms, accumulating evidence suggests that Tes and other androgens exert beneficial effects by inducing rapid vasorelaxation of vascular smooth muscle through nongenomic mechanisms. While this effect frequently has been observed in large arteries at micromolar concentrations, more recent studies have reported vasorelaxation of smaller resistance arteries at nanomolar (physiological) concentrations. The key mechanism underlying Tes-induced vasorelaxation appears to be the modulation of vascular smooth muscle ion channel function, particularly the inactivation of L-type voltage-operated Ca2+ channels and/or the activation of voltage-operated and Ca2+-activated K+ channels. Studies employing Tes analogs and metabolites reveal that androgen-induced vasodilation is a structurally specific nongenomic effect that is fundamentally different than the genomic effects on reproductive targets. For example, 5α-dihydrotestosterone exhibits potent genomic-androgenic effects but only moderate vasorelaxing activity, whereas its isomer 5β-dihydrotestosterone is devoid of androgenic effects but is a highly efficacious vasodilator. These findings suggest that the dihydro-metabolites of Tes or other androgen analogs devoid of androgenic or estrogenic effects could have useful therapeutic roles in hypertension, erectile dysfunction, prostatic ischemia, or other vascular dysfunctions. PMID:20228257
Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets
2012-01-01
Background Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). Method EAL-I (100 mg·kg−1/day), EAL-II (200 mg·kg−1/day), and fluvastatin (3 mg·kg−1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation. PMID:22866890
Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M
2018-05-15
Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.
The Promise of Cell Based Therapies for Diabetic Complications: challenges and solutions
Jarajapu, Yagna P.R.; Grant, Maria B.
2013-01-01
The discovery of endothelial progenitor cells (EPCs) in human peripheral blood advanced the field of cell-based therapeutics for many pathological conditions. Despite the lack of agreement about the existence and characteristics of EPCs, autologous EPC populations represent a novel treatment option for complications requiring therapeutic revascularization and vascular repair. Patients with diabetic complications represent a population of patients that may benefit from cellular therapy yet their broadly dysfunctional cells may limit the feasibility of this approach. Diabetic EPCs have decreased migratory prowess and reduced proliferative capacity and an altered cytokine/ growth factor secretory profile that can accelerates deleterious repair mechanisms rather than support proper vascular repair. Furthermore, the diabetic environment poses additional challenges for the autologous transplantation of cells. The present review is focused on correcting diabetic EPC dysfunction and the challenges involved in the application of cell-based therapies for treatment of diabetic vascular complications. In addition, ex vivo and in vivo functional manipulation(s) of EPCs to overcome these hurdles are discussed. PMID:20299675
El-Assmy, A; El-Tholoth, H S; Abou-El-Ghar, M E; Mohsen, T; Ibrahiem, E H I
2012-01-01
This study was conducted to determine the preoperative and intraoperative risk factors of ED and the underlying penile vascular abnormalities among patients with penile fracture treated surgically. In all, 180 patients with penile fracture were treated surgically and followed up in one center. None of our patients had ED before the penile trauma and only two of them had risk factors for systemic vascular diseases, such as diabetes mellitus (one patient) and hypertension (one patient). After a mean follow-up of 106 months, 11 patients (6.6%) developed ED, 7 had mild ED and 4 had moderate ED. The main risk factors for subsequent ED were aging, >50 years, and bilateral corporal involvement. Among the 11 patients with ED, color Doppler ultrasonography (CDU) showed normal Doppler indices in 4 (36.4%), veno-occlusive dysfunction in 4 (36.4%) and arterial insufficiency in the remaining 3 (27.2%) patients. CDU assessments from the injured and intact sides were comparable. ED of either a psychological or vascular origin can be encountered as a long-term sequel of surgical treatment of penile fracture. Aging, >50 years, at presentation and bilateral corporal involvement is the main risk factors for subsequent development of ED.
Endothelial C-type natriuretic peptide maintains vascular homeostasis
Moyes, Amie J.; Khambata, Rayomand S.; Villar, Inmaculada; Bubb, Kristen J.; Baliga, Reshma S.; Lumsden, Natalie G.; Xiao, Fang; Gane, Paul J.; Rebstock, Anne-Sophie; Worthington, Roberta J.; Simone, Michela I.; Mota, Filipa; Rivilla, Fernando; Vallejo, Susana; Peiró, Concepción; Sánchez Ferrer, Carlos F.; Djordjevic, Snezana; Caulfield, Mark J.; MacAllister, Raymond J.; Selwood, David L.; Ahluwalia, Amrita; Hobbs, Adrian J.
2014-01-01
The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor–C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension by demonstrating the importance of CNP/NPR-C signaling in preserving vascular homoeostasis. Furthermore, these results suggest that the CNP/NPR-C pathway has potential as a disease-modifying therapeutic target for cardiovascular disorders. PMID:25105365
Fan, Fan; Ge, Ying; Lv, Wenshan; Elliott, Matthew R.; Muroya, Yoshikazu; Hirata, Takashi; Booz, George W.; Roman, Richard J.
2016-01-01
Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury. PMID:27100515
Chang, Mingze; Zhang, Bei; Tian, Ye; Hu, Ming; Zhang, Gejuan; Di, Zhengli; Wang, Xinlai; Liu, Zhiqin; Gu, Naibin; Liu, Yong
2017-04-01
Advanced glycation end products (AGEs) have been confirmed to induce dysfunction in endothelial progenitor cells (EPCs) and play key roles in pathogenesis of diabetes-related vascular complications. The major function of sirtuin 3 (SIRT3) is to orchestrate oxidative metabolism and control reactive oxygen species (ROS) homeostasis, which are more closely related to EPCs' dysfunction. Our study therefore was designed to explore the role of SIRT3 on AGEs-induced EPCs dysfunction of. EPCs isolated from healthy adults were stimulated with AGEs and the expression of SIRT3 was assessed. Then, EPCs transfected with ad-SIRT3 or siRNA-SIRT3 were cultured with or without AGEs. EPCs function, including proliferation, migration; expression of manganese superoxide dismutase (MnSOD), ROS production, and interleukin-8 (IL-8); and vascular endothelial growth factor (VEGF) production were measured. In some experiments, EPCs were pre-cultured with anti-receptor for advanced glycation end products (RAGE) antibody or anti-neutralizing antibody, and then proliferation, migration, expression of MnSOD, ROS production, and IL-8 and VEGF production were measured. Our results showed that SIRT3 expressed in EPCs and AGEs decreased SIRT3 expression. SIRT3 knockdown with siRNA-SIRT3 promoted dysfunction in EPCs whereas SIRT3 activation with ad-SIRT3 strengthened anti-oxidant capacity and protected AGE-impaired dysfunction. Moreover, RAGE may involve in AGEs-decreased SIRT3 expression in EPCs. These data suggested an important role of SIRT3 in regulating EPCs bioactivity.
Calcium dobesilate may alleviate diabetes-induced endothelial dysfunction and inflammation
Zhou, Yijun; Yuan, Jiangzi; Qi, Chaojun; Shao, Xinghua; Mou, Shan; Ni, Zhaohui
2017-01-01
Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease. However, the pathogenesis of DKD remains unclear, and no effective treatments for the disease are available. Thus, there is an urgent need to elucidate the pathogenic mechanisms of DKD and to develop more effective therapies for this disease. Human umbilical vein endothelial cells (HUVECs) were cultured using different D-glucose concentrations to determine the effect of high glucose (HG) on the cells. Alternatively, HUVECs were incubated with 100 µmol/l calcium dobesilate (CaD) to detect its effects. The authors subsequently measured HUVEC proliferation via cell counting kit-8 assays. In addition, HUVEC angiogenesis was investigated via migration assays and fluorescein isothiocyanate (FITC)-labelled bovine serum albumin (BSA) permeability assays. The content or distribution of markers of endothelial dysfunction [vascular endothelial growth factor (VEGF), VEGF receptor (R) and endocan) or inflammation [intercellular adhesion molecule (ICAM)-1, monocyte chemotactic protein (MCP)-1 and pentraxin-related protein (PTX3)] was evaluated via reverse transcription-quantitative polymerase chain reaction and western blotting. HG treatment induced increased in VEGF, VEGFR, endocan, ICAM-1, MCP-1 and PTX3 mRNA and protein expression in HUVECs. HG treatment for 24 to 48 h increased cell proliferation in a time-dependent manner, but the cell proliferation rate was decreased at 72 h of HG treatment. Conversely, CaD inhibited abnormal cell proliferation. HG treatment also significantly enhanced HVUEC migration compared to the control treatment. In contrast, CaD treatment partially inhibited HUVEC migration compared to HG exposure. HG-treated HUVECs exhibited increased FITC-BSA permeability compared to control cells cultured in medium alone; however, CaD application prevented the HG-induced increase in FITC-BSA permeability and suppressed HG-induced overexpression of endothelial markers (VEGF, VEGFR-2, endocan) and inflammation markers (ICAM-1, MCP-1, PTX3) in HUVECs. CaD has angioprotective properties and protects endothelial cells partly by ameliorating HG-induced inflammation. The current results demonstrated the potential applicability of CaD to the treatment of diabetic nephropathy, particularly during the early stages of this disease. PMID:29039485
Arpaci, Dilek; Karakece, Engin; Tocoglu, Aysel Gurkan; Ergenc, Hasan; Gurol, Gonul; Ciftci, Ihsan Hakki; Tamer, Ali
2016-12-01
Although the relationship between atherosclerosis and overt hypothyroidism has been confirmed, it remains controversial in cases of subclinical hypothyroidism. Higher TSH and similar T4 suggest differences in set-points or differences due to diagnostic limitations regarding subclinical hypothyroidism. Endothelial dysfunction (ED) is a marker rather than a precursor of cardiovascular disease. Asymmetric dimethylarginine (ADMA) and endocan are known as novel markers of ED in various diseases. Transforming growth factor-beta (TGF-β) has a protective role against autoimmune diseases such as thyroiditis. This study aimed to determine the relationships between serum ADMA, endocan, TGF-β, and the high-sensitivity C-reactive protein (hs-CRP) levels, a proven indicator of ED, in patients with SH. Thirty-five patients with SH and 21 age- and sex-matched euthyroid subjects were included in the study. The levels of TSH, FT4, lipid parameters, endocan, ADMA, TGF-β, and hs-CRP were measured. No significant differences in age or sex were found between the patient and control groups (p=0.294 and 0.881, respectively). Mean TSH level was higher in the patient group (p=0.005), whereas mean fT4 level was similar in two groups (p=0.455). The average hs-CRP, endocan, TGF-β l level in the patient group was higher than control group (p=0.001; P=0.012; P=0.025; P<0.01 respectively). A positive correlation was found between the endocan and ADMA levels (r=0.760, p=0.000). ADMA levels also were positively correlated with hs-CRP. Both the TSH and low-density lipoprotein cholesterol (LDL-C) levels were positively correlated with the hs-CRP level. Subclinical hypothyroidism is associated with increased levels of serum endocan, ADMA, and TGF-β, which are new markers for ED. In particular, ADMA was correlated with both endocan and hs-CRP levels. These findings are suggestive for increased risk of ED and subsequent development of atherosclerosis in patients with SH. © 2016 by the Association of Clinical Scientists, Inc.
Roman, Amanda; Desai, Neeraj; Krantz, David; Liu, Hsiao-Pin; Rosner, Jonathan; Vohra, Nidhi; Rochelson, Burton
2014-07-01
Our primary objective was to determine the association of maternal serum analytes in pregnancies complicated by intrauterine growth restriction (IUGR) stratified by umbilical artery (UA) Doppler versus pregnancies with appropriately grown for gestational age (AGA) and its potential use as screening model. Retrospective cohort evaluating first and second trimester maternal serum aneuploidy screening markers in women complicated with IUGR [90 with absent or reversed end diastolic velocity (AREDV), 46 with UA systolic/diastolic ratio ≥95th percentile and 215 with normal UA Doppler] versus 2590 women with AGA fetuses (control). Extreme levels of each analyte were significantly more common in the IUGR/AREDV group than in AGA group: inhibin A >97th percentile [≥2.27 multiples of the median (MoM)], OR: 41 (95% CI: 21-80); unconjugated estriol <3rd percentile (≤0.6 MoM), OR: 17.2 (95% CI: 8.1-42); AFP >97th percentile (≥1.88 MoM), OR: 15 (95% CI: 8.2-27); PAPP-A <3rd percentile (≤0.33 MoM), OR: 13 (95% CI: 6.6-25.5); and free-beta human chorionic gonadotrophin second trimester >97th percentile (≥3.24 MoM), OR: 11.6 (95% CI: 4.2-32). In a subgroup of pregnancies in which all markers were evaluated on each patient, a combination of abnormal markers detected 73% (95% CI: 54-87%) of IUGR/AREDV fetuses. When maternal risk factors were included into the risk calculation, it increased to 91% (95% CI: 76-98%). Abnormal maternal serum aneuploidy markers preferentially identify those pregnancies at greatest risk of IUGR with AREDV in the UA. © 2014 John Wiley & Sons, Ltd.
Endocrine modulators of mouse subcutaneous adipose tissue beige adipocyte markers
USDA-ARS?s Scientific Manuscript database
The stromal vascular fraction (SVF) of subcutaneous adipose tissue contains precursors that can give rise to beige adipocytes. Beige adipocytes are characterized by the expression of specific markers, but it is not clear which markers best evaluate beige adipocyte differentiation. Both regulators of...
Role of oxidative stress and nitric oxide in atherothrombosis
Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph
2008-01-01
During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590
The effects of low environmental cadmium exposure on bone density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trzcinka-Ochocka, M., E-mail: ochocka@imp.lodz.pl; Jakubowski, M.; Szymczak, W.
2010-04-15
Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9;more » 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone density.« less
Coronary microvascular dysfunction in diabetes mellitus
Selthofer-Relatic, Kristina; Drenjancevic, Ines; Bacun, Tatjana; Bosnjak, Ivica; Kibel, Dijana; Gros, Mario
2017-01-01
The significance, mechanisms and consequences of coronary microvascular dysfunction associated with diabetes mellitus are topics into which we have insufficient insight at this time. It is widely recognized that endothelial dysfunction that is caused by diabetes in various vascular beds contributes to a wide range of complications and exerts unfavorable effects on microcirculatory regulation. The coronary microcirculation is precisely regulated through a number of interconnected physiological processes with the purpose of matching local blood flow to myocardial metabolic demands. Dysregulation of this network might contribute to varying degrees of pathological consequences. This review discusses the most important findings regarding coronary microvascular dysfunction in diabetes from pre-clinical and clinical perspectives. PMID:28643578
Cooke, Esther J; Zhou, Jenny Y; Wyseure, Tine; Joshi, Shweta; Bhat, Vikas; Durden, Donald L; Mosnier, Laurent O; Drygalski, Annette von
2018-06-01
Vascular remodelling is a prominent feature of haemophilic arthropathy (HA) that may underlie re-bleeding, yet the nature of vascular changes and underlying mechanisms remain largely unknown. Here, we aimed to characterize synovial vascular remodelling and vessel integrity after haemarthrosis, as well as temporal changes in inflammatory and tissue-reparative pathways. Thirty acutely painful joints in patients with haemophilia (PWH) were imaged by musculoskeletal ultrasound with Power Doppler (MSKUS/PD) to detect vascular abnormalities and bloody effusions. Nineteen out of 30 painful joint episodes in PWH were associated with haemarthrosis, and abnormal vascular perfusion was unique to bleeding joints. A model of induced haemarthrosis in factor VIII (FVIII)-deficient mice was used for histological assessment of vascular remodelling (α-smooth muscle actin [αSMA] expression), and monitoring of in vivo vascular perfusion and permeability by MSKUS/PD and albumin extravasation, respectively. Inflammatory (M1) and reparative (M2) macrophage markers were quantified in murine synovium over a 10-week time course by real-time polymerase chain reaction. The abnormal vascular perfusion observed in PWH was recapitulated in FVIII-deficient mice after induced haemarthrosis. Neovascularization and increased vessel permeability were apparent 2 weeks post-bleed in FVIII-deficient mice, after a transient elevation of inflammatory macrophage M1 markers. These vascular changes subsided by week 4, while vascular remodelling, evidenced by architectural changes and pronounced αSMA expression, persisted alongside a reparative macrophage M2 response. In conclusion, haemarthrosis leads to transient inflammation coupled with neovascularization and associated vascular permeability, while subsequent tissue repair mechanisms coincide with vascular remodelling. Together, these vascular changes may promote re-bleeding and HA progression. Schattauer GmbH Stuttgart.
Laksmivenkateshiah, Srinivas; Singhi, Anil K; Vaidyanathan, Balu; Francis, Edwin; Karimassery, Sundaram R; Kumar, Raman K
2011-06-01
To examine the utility of decline in arterial partial pressure of oxygen after exercise as a marker of pulmonary vascular obstructive disease in patients with atrial septal defect and pulmonary hypertension. Treadmill exercise was performed in 18 patients with atrial septal defect and pulmonary hypertension. Arterial blood gas samples were obtained before and after peak exercise. A decline in the arterial pressure of oxygen of more than 10 millimetres of mercury after exercise was considered significant based on preliminary tests conducted on the controls. Cardiac catheterisation was performed in all patients and haemodynamic data sets were obtained on room air, oxygen, and a mixture of oxygen and nitric oxide (30-40 parts per million). There were 10 patients who had more than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise and who had a basal pulmonary vascular resistance index of more than 7 Wood units per square metre. Out of eight patients who had less than a 10 millimetres of mercury drop in arterial partial pressure of oxygen after exercise, seven had a basal pulmonary vascular resistance index of less than 7 Wood units per square metre, p equals 0.0001. A decline in arterial partial pressure of oxygen of more than 10 millimetres of mercury predicted a basal pulmonary vascular resistance index of more than 7 Wood units per square metre with a specificity of 100% and a sensitivity of 90%. A decline in arterial partial pressure of oxygen following exercise appears to predict a high pulmonary vascular resistance index in patients with atrial septal defect and pulmonary hypertension. This test is a useful non-invasive marker of pulmonary vascular obstructive disease in this subset.
Montoya, Jessica L.; Iudicello, Jennifer; Fazeli, Pariya L.; Hong, Suzi; Potter, Michael; Ellis, Ronald J.; Grant, Igor; Letendre, Scott L.; Moore, David J.
2016-01-01
Background HIV is associated with elevated markers of vascular remodeling that may contribute to arterial fibrosis and stiffening, and changes in pulse pressure (PP). These changes may, in turn, deleteriously affect autoregulation of cerebral blood flow and neurocognitive function. Methods To evaluate these mechanisms, we studied markers of vascular remodeling, PP, and neurocognitive function among older (≥50 years of age) HIV-infected (HIV+; n = 72) and HIV-seronegative (HIV-; n = 36) adults. Participants completed standardized neurobehavioral and neuromedical assessments. Neurocognitive functioning was evaluated using a well-validated comprehensive battery. Three plasma biomarkers of vascular remodeling (i.e., angiopoietin 2, Tie-2, and vascular endothelial growth factor; VEGF) were collected. Results HIV+ and HIV- participants had similar levels of plasma Ang-2 (p = .48), Tie-2 (p = .27), VEGF (p = .18), and PP (p = .98). In a multivariable regression model, HIV interacted with Tie-2 (β = .41, p < .01) and VEGF (β = −.43, p = .01) on neurocognitive function, such that lower Tie-2 and higher VEGF values were associated with worse neurocognitive function for HIV+ participants. Greater Tie-2 values were associated with increased PP (r = .31, p < .01). In turn, PP demonstrated a quadratic association with neurocognitive function (β = −.33, p = .01), such that lower and higher, relative to mean sample, PP values were associated with worse neurocognitive function. Conclusions These findings indicate that vascular remodeling and altered cerebral blood flow autoregulation contribute to neurocognitive function. Furthermore, HIV moderates the association between vascular remodeling and neurocognitive function but not the association between PP and neurocognitive function. PMID:27828873
The RenTg mice: a powerful tool to study renin-dependent chronic kidney disease.
Huby, Anne-Cecile; Kavvadas, Panagiotis; Alfieri, Carlo; Abed, Ahmed; Toubas, Julie; Rastaldi, Maria-Pia; Dussaule, Jean-Claude; Chatziantoniou, Christos; Chadjichristos, Christos E
2012-01-01
Several studies have shown that activation of the renin-angiotensin system may lead to hypertension, a major risk factor for the development of chronic kidney disease (CKD). The existing hypertension-induced CDK mouse models are quite fast and consequently away from the human pathology. Thus, there is an urgent need for a mouse model that can be used to delineate the pathogenic process leading to progressive renal disease. The objective of this study was dual: to investigate whether mice overexpressing renin could mimic the kinetics and the physiopathological characteristics of hypertension-induced renal disease and to identify cellular and/or molecular events characterizing the different steps of the progression of CKD. We used a novel transgenic strain, the RenTg mice harboring a genetically clamped renin transgene. At 3 months, heterozygous mice are hypertensive and slightly albuminuric. The expression of adhesion markers such as vascular cell adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 are increased in the renal vasculature indicating initiation of endothelial dysfunction. At 5 months, perivascular and periglomerular infiltrations of macrophages are observed. These early renal vascular events are followed at 8 months by leukocyte invasion, decreased expression of nephrin, increased expression of KIM-1, a typical protein of tubular cell stress, and of several pro-fibrotic agents of the TGFβ family. At 12 months, mice display characteristic structural alterations of hypertensive renal disease such as glomerular ischemia, glomerulo- and nephroangio-sclerosis, mesangial expansion and tubular dilation. The RenTg strain develops CKD progressively. In this model, endothelial dysfunction is an early event preceding the structural and fibrotic alterations which ultimately lead to the development of CKD. This model can provide new insights into the mechanisms of chronic renal failure and help to identify new targets for arresting and/or reversing the development of the disease.
Tampakakis, Emmanouil; Tabit, Corey E; Holbrook, Monika; Linder, Erika A; Berk, Brittany D; Frame, Alissa A; Bretón-Romero, Rosa; Fetterman, Jessica L; Gokce, Noyan; Vita, Joseph A; Hamburg, Naomi M
2016-01-11
Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response may initially be protective, but when prolonged, have been implicated in atherogenesis in diabetic conditions. Triglycerides and free fatty acids (FFAs) are elevated in patients with diabetes and may contribute to ER stress. We sought to evaluate the effect of acute FFA elevation on ER stress in endothelial and circulating white cells. Twenty-one healthy subjects were treated with intralipid (20%; 45 mL/h) plus heparin (12 U/kg/h) infusion for 5 hours. Along with increased triglyceride and FFA levels, intralipid/heparin infusion reduced the calf reactive hyperemic response without a change in conduit artery flow-mediated dilation consistent with microvascular dysfunction. To investigate the short-term effects of elevated triglycerides and FFA, we measured markers of ER stress in peripheral blood mononuclear cells (PBMCs) and vascular endothelial cells (VECs). In VECs, activating transcription factor 6 (ATF6) and phospho-inositol requiring kinase 1 (pIRE1) proteins were elevated after infusion (both P<0.05). In PBMCs, ATF6 and spliced X-box-binding protein 1 (XBP-1) gene expression increased by 2.0- and 2.5-fold, respectively (both P<0.05), whereas CHOP and GADD34 decreased by ≈67% and 74%, respectively (both P<0.01). ATF6 and pIRE1 protein levels also increased (both P<0.05), and confocal microscopy revealed the nuclear localization of ATF6 after infusion, suggesting activation. Along with microvascular dysfunction, intralipid infusion induced an early protective ER stress response evidenced by activation of ATF6 and IRE1 in both leukocytes and endothelial cells. Our results suggest a potential link between metabolic disturbances and ER stress that may be relevant to vascular disease. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Emdin, Michele; Fatini, Cinzia; Mirizzi, Gianluca; Poletti, Roberta; Borrelli, Chiara; Prontera, Concetta; Latini, Roberto; Passino, Claudio; Clerico, Aldo; Vergaro, Giuseppe
2015-03-30
Renin-angiotensin-aldosterone system (RAAS), participated by kidney, liver, vascular endothelium, and adrenal cortex, and counter-regulated by cardiac endocrine function, is a complex endocrine system regulating systemic functions, such as body salt and water homeostasis and vasomotion, in order to allow the accomplishment of physiological tasks, such as orthostasis, physical and emotional stimuli, and to react towards the hemorrhagic insult, in tight conjunction with other neurohormonal axes, namely the sympathetic nervous system, the endothelin and vasopressin systems. The systemic as well as the tissue RAAS are also dedicated to promote tissue remodeling, particularly relevant after damage, when chronic activation may configure as a maladaptive response, leading to fibrosis, hypertrophy and apoptosis, and organ dysfunction. RAAS activation is a fingerprint of systemic arterial hypertension, kidney dysfunction, vascular atherosclerotic disease, and is definitely an hallmark of heart failure, which rapidly shifts from organ disease to a disorder of neurohormonal regulatory systems. Chronic RAAS activation is an indirect or direct target of most effective pharmacological treatments in heart failure, such as beta-blockers, inhibitors of angiotensin converting enzyme, angiotensin receptor blockers, direct renin inhibitors, and mineralocorticoid receptor blockers. Biomarkers of RAAS activation are available, with different feasibility and accuracy, such as plasma renin activity, renin, angiotensin II, and aldosterone, which all accompany the increasing clinical severity of heart failure disease, and are well recognized prognostic factors, even in patients with optimal therapy. Polymorphisms influencing the expression and activity of RAAS pathways have been recognized as clinically relevant biomarkers, likely influencing either the individual clinical phenotype, or the response to drugs. This solid, growing evidence strongly suggests the rationale for the use of biomarkers of the RAAS activation, as a guide to tailor individual therapy in the current practice, and their implementation as a rule-in marker for future trials on novel drugs in the heart failure setting. Copyright © 2014 Elsevier B.V. All rights reserved.
Food and plant bioactives for reducing cardiometabolic disease risk: an evidence based approach.
Cicero, Arrigo F G; Fogacci, Federica; Colletti, Alessandro
2017-06-21
Cardiovascular diseases (CVDs) are one of the major causes of mortality and disability in Western countries. Prevention is known to be the cornerstone to lessen the incidence of CVDs and also to reduce the economic burden of both the citizen and the healthcare system. "Interventional medicine" certainly puts lifestyle modification as the first therapeutic step, including a healthy diet and physical activity. Secondly, a large body of research individuated a number of food and plant bioactives, which are potentially efficacious in preventing and reducing some highly prevalent CV risk factors, such as hypercholesterolemia, hypertension, vascular inflammation and vascular compliance. Some lipid- and blood pressure-lowering bioactives were studied for their impact on human vascular health, particularly as regards endothelial function and arterial stiffness. Several nutraceuticals showed additive or synergistic properties in combination, sometimes (but not always) allowing a reduction of the administered dose of extracts and determining a "multi-factorial" final effect on many cardiovascular risk factors. Thus, this review focuses on available evidence regarding the effects of berberine, plant sterols, green tea extract, soy, curcumin, cocoa, pycnogenol, lycopene, olive oil, soluble fibers, garlic, resveratrol, beetroot, mineral salts and vitamins on the lipid profile, blood pressure, inflammatory and endothelial markers, and vascular compliance. Future clinical research studies will have to focus more on middle term modification of the instrumental markers of vascular aging than on short-term effects on indirect laboratory risk markers.
Charlot, Keyne; Romana, Marc; Moeckesch, Berenike; Jumet, Stéphane; Waltz, Xavier; Divialle-Doumdo, Lydia; Hardy-Dessources, Marie-Dominique; Petras, Marie; Tressières, Benoît; Tarer, Vanessa; Hue, Olivier; Etienne-Julan, Maryse; Antoine-Jonville, Sophie; Connes, Philippe
2016-01-01
Vascular resistance and tissue perfusion may be both affected by impaired vascular function and increased blood viscosity. Little is known about the effects of vascular function on the occurrence of painful vaso-occlusive crises (VOC) in children with sickle cell anemia (SCA). The aim of the present study was to determine which side of the balance (blood viscosity or vascular function) is the most deleterious in SCA and increases the risk for frequent hospitalized VOC. Microvascular function, microcirculatory oxygenation and blood viscosity were determined in a group of 22 SCA children/adolescents at steady state and a group of 13 healthy children/adolescents. Univariate analyses demonstrated blunted microvascular reactivity during local thermal heating test and decreased microcirculatory oxygenation in SCA children compared to controls. Multivariate analysis revealed that increased blood viscosity and decreased microcirculatory oxygenation were independent risk factors of frequent VOC in SCA. In contrast, the level of microvascular dysfunction does not predict VOC rate. In conclusion, increased blood viscosity is usually well supported in healthy individuals where vascular function is not impaired. However, in the context of SCA, microvascular function is impaired and any increase of blood viscosity or decrease in microcirculatory oxygenation would increase the risks for frequent VOC. Copyright © 2015 Elsevier Inc. All rights reserved.
Giachini, Fernanda Regina; Galaviz-Hernandez, Carlos; Damiano, Alicia E; Viana, Marta; Cadavid, Angela; Asturizaga, Patricia; Teran, Enrique; Clapes, Sonia; Alcala, Martin; Bueno, Julio; Calderón-Domínguez, María; Ramos, María P; Lima, Victor Vitorino; Sosa-Macias, Martha; Martinez, Nora; Roberts, James M; Escudero, Carlos
2017-10-06
Pregnancy is a physiologically stressful condition that generates a series of functional adaptations by the cardiovascular system. The impact of pregnancy on this system persists from conception beyond birth. Recent evidence suggests that vascular changes associated with pregnancy complications, such as preeclampsia, affect the function of the maternal and offspring vascular systems, after delivery and into adult life. Since the vascular system contributes to systemic homeostasis, defective development or function of blood vessels predisposes both mother and infant to future risk for chronic disease. These alterations in later life range from fertility problems to alterations in the central nervous system or immune system, among others. It is important to note that rates of morbi-mortality due to pregnancy complications including preeclampsia, as well as cardiovascular diseases, have a higher incidence in Latin-American countries than in more developed countries. Nonetheless, there is a lack both in the amount and impact of research conducted in Latin America. An impact, although smaller, can be seen when research in vascular disorders related to problems during pregnancy is analyzed. Therefore, in this review, information about preeclampsia and endothelial dysfunction generated from research groups based in Latin-American countries will be highlighted. We relate the need, as present in many other countries in the world, for increased effective regional and international collaboration to generate new data specific to our region on this topic.
Wharton, Whitney; Gleason, Carey E; Dowling, N Maritza; Carlsson, Cynthia M; Brinton, Eliot A; Santoro, M Nanette; Neal-Perry, Genevieve; Taylor, Hugh; Naftolin, Frederick; Lobo, Rogerio A; Merriam, George; Manson, Joann E; Cedars, Marcelle I; Miller, Virginia M; Black, Dennis M; Budoff, Matthew; Hodis, Howard N; Harman, S Mitchell; Asthana, Sanjay
2014-01-01
Midlife vascular risk factors influence later cognitive decline and Alzheimer's disease (AD). The decrease in serum estradiol levels during menopause has been associated with cognitive impairment and increased vascular risk, such as high blood pressure (BP), which independently contributes to cognitive dysfunction and AD. We describe the extent to which vascular risk factors relate to cognition in healthy, middle-aged, recently postmenopausal women enrolled in the Kronos Early Estrogen Prevention Cognitive and Affective Study (KEEPS-Cog) at baseline. KEEPS-Cog is a double-blind, randomized, placebo-controlled, parallel group, clinical trial, investigating the efficacy of low-dose, transdermal 17β-estradiol and oral conjugated equine estrogen on cognition. All results are cross-sectional and represent baseline data only. Analyses confirm that the KEEPS-Cog cohort (n = 571) was middle aged (mean 52.7 years, range 42-59 years), healthy, and free of cognitive dysfunction. Higher systolic BP was weakly related to poorer performance in auditory working memory and attention (p = 0.004; adjusted for multiple comparisons p = 0.10). This relationship was not associated with endogenous hormone levels, and systolic BP was not related to any other cognitive domain. BP levels may be more sensitive than other vascular risk factors in detecting subtle differences in cognitive task performance in healthy, recently menopausal women. Lower BP early in menopause may affect cognitive domains known to be associated with AD.
Ong, Angel M; Weiler, Hope A; Wall, Michelle; Haddad, Rouba; Gorgui, Jessica; Daskalopoulou, Stella S; Goltzman, David; Morin, Suzanne N
2016-07-01
Whether supplemental Ca has similar effects to dietary Ca on vascular and bone markers is unknown. The present trial investigated the feasibility of applying dietary and supplemental interventions in a randomised-controlled trial (RCT) aiming to estimate the effect of supplemental Ca as compared with dietary Ca on vascular and bone markers in postmenopausal women. In total, thirteen participants were randomised to a Ca supplement group (CaSuppl) (750 mg Ca from CaCO3+450 mg Ca from food+20 µg vitamin D supplement) or a Ca diet group (CaDiet) (1200 mg Ca from food+10 µg vitamin D supplement). Participants were instructed on Ca consumption targets at baseline. Monthly telephone follow-ups were conducted to assess adherence to interventions (±20 % of target total Ca) using the multiple-pass 24-h recall method and reported pill count. Measurements of arterial stiffness, peripheral blood pressure and body composition were performed at baseline and after 6 and 12 months in all participants who completed the trial (n 9). Blood and serum biomarkers were measured at baseline and at 12 months. Both groups were compliant to trial interventions (±20 % of target total Ca intake; pill count ≥80 %). CaSuppl participants maintained a significantly lower average dietary Ca intake compared with CaDiet participants throughout the trial (453 (sd 187) mg/d v. 1241 (sd 319) mg/d; P<0·001). There were no significant differences in selected vascular outcomes between intervention groups over time. Our pilot trial demonstrated the feasibility of conducting a large-scale RCT to estimate the differential effects of supplemental and dietary Ca on vascular and bone health markers in healthy postmenopausal women.
NASA Astrophysics Data System (ADS)
Harfmann, J.; Hernes, P.; Chuang, C. Y.; Kaiser, K.; Spencer, R. G.; Guillemette, F.
2017-12-01
Source origin of dissolved organic matter (DOM) is crucial in determining reactivity, driving chemical and biological processing of carbon. DOM source biomarkers such as lignin (a vascular plant marker) and D-amino acids (bacterial markers) are well-established tools in tracing DOM origin and fate. The development of high-resolution mass spectrometry and optical studies has expanded our toolkit; yet despite these advances, our understanding of DOM sources and fate remains largely qualitative. Quantitative data on DOM pools and fluxes become increasingly necessary as we refine our comprehension of its composition. In this study, we aim to calibrate and quantify DOM source endmembers by performing microbial incubations of multiple vascular plant leachates, where total DOM is constrained by initial vascular plant input and microbial production. Derived endmembers may be applied to endmember mixing models to quantify DOM source contributions in aquatic systems.
Decidual vascular changes in early pregnancy as a marker for intrauterine pregnancy.
Lichtig, C; Korat, A; Deutch, M; Brandes, J M
1988-09-01
Endometrial vascular changes similar to atherosclerosis of toxemia of pregnancy were described and graded in 217 consecutive endometrial biopsies of known early intrauterine pregnancy. Severe vascular changes were found in 23.5% of cases. Control material consisting of endometrial biopsies of patients with known cases of tubal ectopic pregnancy and various non-pregnancy menstrual disorders showed minimal or no changes except in one case. A parallel study of Aria-Stella phenomenon in 110 cases of uterine pregnancy showed significant changes in only 3.6% of patients. It is obvious that in these cases of positive Arias-Stella findings, the possibility of an extrauterine pregnancy could not be discarded on histologic grounds alone. The authors suggest the use of the vascular changes of the more severe histologic degree as described in this article as a positive or strongly suspicious marker for intrauterine pregnancy whenever this is needed.
Ng, Hooi Hooi; Leo, Chen Huei; Prakoso, Darnel; Qin, Chengxue; Ritchie, Rebecca H.; Parry, Laura J.
2017-01-01
Serelaxin prevents endothelial dysfunction in the mouse aorta ex vivo and inhibits apoptosis in cardiomyocytes under acute hyperglycaemia. Less is known about the effects of serelaxin in an in vivo mouse model of diabetes. Therefore, we tested the hypothesis in streptozotocin (STZ)-treated mice that serelaxin is able to reverse diabetes-induced vascular dysfunction and cardiac remodelling. Mice were divided into citrate buffer + placebo, STZ + placebo and STZ + serelaxin (0.5 mg/kg/d, 2 weeks) groups. After 12 weeks of diabetes, sensitivity to the endothelium-dependent agonist acetylcholine (ACh) was reduced in the mesenteric artery. This was accompanied by an enhanced vasoconstrictor prostanoid contribution and a decrease in endothelium-derived hyperpolarisation (EDH)-mediated relaxation. Serelaxin restored endothelial function by increasing nitric oxide (NO)-mediated relaxation but not EDH. It also normalised the contribution of vasoconstrictor prostanoids to endothelial dysfunction and suppressed diabetes-induced hyper-responsiveness of the mesenteric artery to angiotensin II. Similarly, diabetes reduced ACh-evoked NO-mediated relaxation in the aorta which was reversed by serelaxin. In the left ventricle, diabetes promoted apoptosis, hypertrophy and fibrosis; serelaxin treatment reversed this ventricular apoptosis and hypertrophy, but had no effect on fibrosis. In summary, serelaxin reversed diabetes-induced endothelial dysfunction by enhancing NO-mediated relaxation in the mouse vasculature and attenuating left ventricular hypertrophy and apoptosis. PMID:28067255
Memon, Lidija; Spasojevic-Kalimanovska, Vesna; Bogavac-Stanojevic, Natasa; Kotur-Stevuljevic, Jelena; Simic-Ogrizovic, Sanja; Giga, Vojislav; Dopsaj, Violeta; Jelic-Ivanovic, Zorana; Spasic, Slavica
2013-01-01
The study was designed to evaluate associations between symmetric dimethylarginine (SDMA), inflammation, and superoxide anion (O2∙-) with endothelial function and to determine their potential for screening of endothelial dysfunction in patients with chronic kidney disease (CKD) and renal transplant (RT) recipients. We included 64 CKD and 52 RT patients. Patients were stratified according to brachial artery flow-mediated dilation (FMD). Logistic regression analysis showed that high SDMA and high sensitive C-reactive protein (hs-CRP) were associated with impaired FMD in CKD and RT patients, after adjustment for glomerular filtration rate. The ability of inflammation, SDMA, and O2∙- to detect impaired FMD was investigated by receiving operative characteristic analysis. Hs-CRP (area under the curves (AUC) = 0.754, P < 0.001), IL-6 (AUC = 0.699, P = 0.002), and SDMA (AUC = 0.689, P = 0.007) had the highest ability to detect impaired FMD. SDMA in combination with inflammatory parameters and/or O2∙- had better screening performance than SDMA alone. Our results indicate a strong predictable association between hs-CRP, SDMA, and endothelial dysfunction in CKD patients and RT recipients. The individual marker that showed the strongest discriminative ability for endothelial dysfunction is hs-CRP, but its usefulness as a discriminatory marker for efficient diagnosis of endothelial dysfunction should be examined in prospective studies.
Defining the Thrombotic Risk in Patients with Myeloproliferative Neoplasms
Vianello, Fabrizio; Battisti, Anna; Cella, Giuseppe; Marchetti, Marina; Falanga, Anna
2011-01-01
Polycythemia vera (PV) and essential thrombocythemia (ET) are two Philadelphia-negative myeloproliferative neoplasms (MPN) associated with an acquired mutation in the JAK2 tyrosine kinase gene. There is a rare incidence of progression to myelofibrosis and myeloid metaplasia in both disorders, which may or may not precede transformation to acute myeloid leukemia, but thrombosis is the main cause of morbidity and mortality. The pathophysiology of thrombosis in patients with MPN is complex. Traditionally, abnormalities of platelet number and function have been claimed as the main players, but increased dynamic interactions between platelets, leukocytes, and the endothelium do probably represent a fundamental interplay in generating a thrombophilic state. In addition, endothelial dysfunction, a well-known risk factor for vascular disease, may play a role in the thrombotic risk of patients with PV and ET. The identification of plasma markers translating the hemostatic imbalance in patients with PV and ET would be extremely helpful in order to define the subgroup of patients with a significant clinical risk of thrombosis. PMID:21623459
Molecular determinants for a cardiovascular collapse in anthrax
Brojatsch, Jurgen; Casadevall, Arturo; Goldman, David L.
2015-01-01
Bacillus anthracis releases two bipartite proteins, lethal toxin and edema factor, that contribute significantly to the progression of anthrax-associated shock. As blocking the anthrax toxins prevents disease, the toxins are considered the main virulence factors of the bacterium. The anthrax bacterium and the anthrax toxins trigger multiorgan failure associated with enhanced vascular permeability, hemorrhage and cardiac dysfunction in animal challenge models. A recent study using mice that either lacked the anthrax toxin receptor in specific cells and corresponding mice expressing the receptor in specific cell types demonstrated that cardiovascular cells are critical for disease mediated by anthrax lethal toxin. These studies are consistent with involvement of the cardiovascular system, and with an increase of cardiac failure markers observed in human anthrax and in animal models using B. anthracis and anthrax toxins. This review discusses the current state of knowledge regarding the pathophysiology of anthrax and tries to provide a mechanistic model and molecular determinants for the circulatory shock in anthrax. PMID:24389148
Protecting against vascular disease in brain
2011-01-01
Endothelial cells exert an enormous influence on blood vessels throughout the circulation, but their impact is particularly pronounced in the brain. New concepts have emerged recently regarding the role of this cell type and mechanisms that contribute to endothelial dysfunction and vascular disease. Activation of the renin-angiotensin system plays a prominent role in producing these abnormalities. Both oxidative stress and local inflammation are key mechanisms that underlie vascular disease of diverse etiology. Endogenous mechanisms of vascular protection are also present, including antioxidants, anti-inflammatory molecules, and peroxisome proliferator-activated receptor-γ. Despite their clear importance, studies of mechanisms that underlie cerebrovascular disease continue to lag behind studies of vascular biology in general. Identification of endogenous molecules and pathways that protect the vasculature may result in targeted approaches to prevent or slow the progression of vascular disease that causes stroke and contributes to the vascular component of dementia and Alzheimer's disease. PMID:21335467
Petri, Marcelo H; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus
2013-11-15
The prothrombotic mediator thromboxane A2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Premature aging of cardiovascular/platelet function in polycystic ovarian syndrome.
Chan, Wai Ping A; Ngo, Doan T; Sverdlov, Aaron L; Rajendran, Sharmalar; Stafford, Irene; Heresztyn, Tamila; Chirkov, Yuliy Y; Horowitz, John D
2013-07-01
The objective of this study was to compare the impact of aging on nitric oxide (NO) modulation of platelet and vascular function in healthy women and women with polycystic ovary syndrome. A case-control study of women ages 18 to 60 years, comparing women with polycystic ovarian syndrome against age-matched healthy controls, was performed. A total of 242 women, of whom 109 had polycystic ovarian syndrome (based on Rotterdam criteria), participated in the study. Women who were pregnant or on clopidogrel were excluded from the study. Inhibition of platelet aggregation by nitric oxide (primary outcome measure), vascular endothelial function, plasma concentrations of N(G), N(G)-dimethyl-L-arginine (ADMA), endothelial progenitor cell count, and high-sensitivity C-reactive protein (markers of endothelial dysfunction and inflammation) were assessed. With increasing age in control women, there was progressive attenuation of platelet responses to NO, impairment of endothelial function, and elevation of ADMA levels (P ≤.001). Irrespective of age, women with polycystic ovarian syndrome exhibited greater impairment of all these parameters (all P <.05, 2-way analysis of variance) and demonstrated these anomalies earlier in life. Normal aging in women is associated with attenuation of NO-based signaling in platelets and blood vessels. In women with polycystic ovarian syndrome, these changes are present from early adult life and may contribute to premature atherogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.
Letsiou, Eleftheria; Sammani, Saad; Zhang, Wei; Zhou, Tong; Quijada, Hector; Moreno-Vinasco, Liliana; Dudek, Steven M.
2015-01-01
Acute lung injury (ALI) results from infectious challenges and from pathologic lung distention produced by excessive tidal volume delivered during mechanical ventilation (ventilator-induced lung injury [VILI]) and is characterized by extensive alveolar and vascular dysfunction. Identification of novel ALI therapies is hampered by the lack of effective ALI/VILI biomarkers. We explored endothelial cell (EC)-derived microparticles (EMPs) (0.1–1 μm) as potentially important markers and potential mediators of lung vascular injury in preclinical models of ALI and VILI. We characterized EMPs (annexin V and CD31 immunoreactivity) produced from human lung ECs exposed to physiologic or pathologic mechanical stress (5 or 18% cyclic stretch [CS]) or to endotoxin (LPS). EC exposure to 18% CS or to LPS resulted in increased EMP shedding compared with static cells (∼ 4-fold and ∼ 2.5-fold increases, respectively). Proteomic analysis revealed unique 18% CS–derived (n = 10) and LPS-derived EMP proteins (n = 43). VILI-challenged mice (40 ml/kg, 4 h) exhibited increased plasma and bronchoalveolar lavage CD62E (E-selectin)-positive MPs compared with control mice. Finally, mice receiving intratracheal instillation of 18% CS–derived EMPs displayed significant lung inflammation and injury. These findings indicate that ALI/VILI-producing stimuli induce significant shedding of distinct EMP populations that may serve as potential ALI biomarkers and contribute to the severity of lung injury. PMID:25029266
Totoson, Perle; Maguin-Gaté, Katy; Nappey, Maude; Wendling, Daniel; Demougeot, Céline
2016-01-01
To determine mechanisms involved in endothelial dysfunction (ED) during the course of arthritis and to investigate the link between cytokines, chemokines and osteoprotegerin. Experiments were conducted on aortic rings at day 4 (preclinical), day 11 (onset of disease), day 33 (acute disease) and day 90 (chronic disease) after adjuvant-induced arthritis (AIA) in Lewis rats. At day 4, the unique vascular abnormality was a reduced norepinephrine-induced constriction. At day 11, endothelial function assessed by the relaxation to acetylcholine was normal despite increased cyclo-oxygenase-2 activity (COX-2) and overproduction of superoxide anions that was compensated by increased nitric oxide synthase (NOS) activity. At day 33, ED apparition coincides with the normalization of NOS activity. At day 90, ED was only observed in rats with a persisting imbalance between endothelial NOS and COX-2 pathways and higher plasma levels of IL-1β and TNFα. Plasma levels of IL-1β, TNFα and MIP-1α negatively correlated with Ach-induced relaxation throughout the course of AIA. Our data identified increased endothelial NOS activity as an important compensatory response that opposes the ED in the early arthritis. Thereafter, a cross-talk between endothelial COX-2/NOS pathways appears as an important element for the occurrence of ED. Our results encourage determining the clinical value of IL-1β, TNFα and MIP-1α as biomarkers of ED in RA.
Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela
2015-01-01
We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583
Alarcon, Gabriela; Roco, Julieta; Medina, Mirta; Medina, Analia; Peral, Maria; Jerez, Susana
2018-01-30
Obesity contributes significantly to the development and evolution of cardiovascular disease (CVD) which is believed to be mediated by oxidative stress, inflammation and endothelial dysfunction. However, the vascular health of metabolically obese and normal weight (MONW) individuals is not completely comprehended. The purpose of our study was to evaluate vascular function on the basis of a high fat diet (HFD)-MONW rabbit model. Twenty four male rabbits were randomly assigned to receive either a regular diet (CD, n = 12) or a high-fat diet (18% extra fat on the regular diet, HFD, n = 12) for 6 weeks. Body weight, TBARS and gluthathione serum levels were similar between the groups; fasting glucose, triglycerides, C reactive protein (CRP), visceral adipose tissue (VAT), triglyceride-glucose index (TyG index) were higher in the HFD group. Compared to CD, the HFD rabbits had glucose intolerance and lower HDL-cholesterol and plasma nitrites levels. Thoracic aortic rings from HFD rabbits exhibited: (a) a reduced acetylcholine-induced vasorelaxation; (b) a greater contractile response to norepinephrine and KCl; (c) an improved angiotensin II-sensibility. The HFD-effect on acetylcholine-response was reversed by the cyclooxygenase-2 (COX-2) inhibitor (NS398) and the cyclooxygenase-1 inhibitor (SC560), and the HFD-effect on angiotensin II was reversed by NS398 and the TP receptor blocker (SQ29538). Immunohistochemistry and western blot studies showed COX-2 expression only in arteries from HFD rabbits. Our study shows a positive pro-inflammatory status of HFD-induced MONW characterized by raised COX-2 expression, increase of the CRP levels, reduction of NO release and oxidative stress-controlled conditions in an early stage of metabolic alterations characteristic of metabolic syndrome. Endothelial dysfunction and increased vascular reactivity in MONW individuals may be biomarkers of early vascular injury. Therefore, the metabolic changes induced by HFD even in normal weight individuals may be associated to functional alterations of blood vessels.
Oxidative stress induces gastric submucosal arteriolar dysfunction in the elderly
Liu, Lei; Liu, Yan; Cui, Jie; Liu, Hong; Liu, Yan-Bing; Qiao, Wei-Li; Sun, Hong; Yan, Chang-Dong
2013-01-01
AIM: To evaluate human gastric submucosal vascular dysfunction and its mechanism during the aging process. METHODS: Twenty male patients undergoing subtotal gastrectomy were enrolled in this study. Young and elderly patient groups aged 25-40 years and 60-85 years, respectively, were included. Inclusion criteria were: no clinical evidence of cardiovascular, renal or diabetic diseases. Conventional clinical examinations were carried out. After surgery, gastric submucosal arteries were immediately dissected free of fat and connective tissue. Vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were measured by isolated vascular perfusion. Morphological changes in the gastric mucosal vessels were observed by hematoxylin and eosin (HE) staining and Verhoeff van Gieson (EVG) staining. The expression of xanthine oxidase (XO) and manganese-superoxide dismutase (Mn-SOD) was assessed by Western blotting analysis. The malondialdehyde (MDA) and hydrogen peroxide (H2O2) content and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were determined according to commercial kits. RESULTS: The overall structure of vessel walls was shown by HE and EVG staining, respectively. Disruption of the internal elastic lamina or neointimal layers was not observed in vessels from young or elderly patients; however, cell layer number in the vessel wall increased significantly in the elderly group. Compared with submucosal arteries in young patients, the amount of vascular collagen fibers, lumen diameter and media cross-sectional area were significantly increased in elderly patients. Ach- and SNP-induced vasodilatation in elderly arterioles was significantly decreased compared with that of gastric submucosal arterioles from young patients. Compared with the young group, the expression of XO and the contents of MDA and H2O2 in gastric submucosal arterioles were increased in the elderly group. In addition, the expression of Mn-SOD and the activities of SOD and GSH-Px in the elderly group decreased significantly compared with those in the young group. CONCLUSION: Gastric vascular dysfunction and senescence may be associated with increased oxidative stress and decreased antioxidative defense in the aging process. PMID:24409074
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.
Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment ofmore » learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.« less
Jablonski, Kristen L.; Gates, Phillip E.; Pierce, Gary L.; Seals, Douglas R.
2012-01-01
Background Age and increasing systolic blood pressure (BP) are associated with vascular endothelial dysfunction, but the factors involved are incompletely understood. We tested the hypothesis that vascular endothelial function is related to dietary sodium intake among middle-aged and older adults (MA and O) with elevated systolic BP. Methods Data were analyzed on 25 otherwise healthy adults aged 48–73 years with high normal systolic BP or stage I systolic hypertension (130–159 mmHg). Self-reported sodium intake was <100 mmol/d in 12 (7 M) subjects (low sodium, 73 ± 6 mmol/d) and between 100 and 200 mmol/d in 13 (9 M) subjects (normal sodium, 144 ± 6 mmol/d). Results Groups did not differ in other dietary factors, age, body weight and composition, BP, metabolic risk factors, physical activity and maximal aerobic capacity. Plasma concentrations of norepinephrine, endothelin-1, oxidized low-density lipoproteins (LDL), antioxidant status and inflammatory markers did not differ between groups. Brachial artery flow-mediated dilation (FMD) was 42% (mm Δ) to 52% (% Δ) higher in the low versus normal sodium group (p <0.05). In all subjects, brachial artery FMD was inversely related to dietary sodium intake (FMD mm Δr =−0.40, p <0.05; %Δr =−0.53, p <0.01). Brachial artery FMD was not related to any other variable. In contrast, endothelium-independent dilation did not differ between groups (p ≥ 0.24) and was not related to sodium intake in the overall group (p ≥ 0.29). Conclusions Low sodium intake is associated with enhanced brachial artery FMD in MA and O with elevated systolic BP. These results suggest that dietary sodium restriction may be an effective intervention for improving vascular endothelial function in this high-risk group. PMID:19723834
Kong, Ling-Ran; Zhou, Yan-Ping; Chen, Dong-Rui; Ruan, Cheng-Chao; Gao, Ping-Jin
2018-01-01
Functional perivascular adipose tissue (PVAT) is necessary to maintain vascular physiology through both mechanical support and endocrine or paracrine ways. PVAT shows a brown adipose tissue (BAT)-like feature and the browning level of PVAT is dependent on the anatomic location and species. However, it is not clear whether PVAT browning is involved in the vascular tone regulation in spontaneously hypertensive rats (SHRs). In the present study, we aimed to illustrate the effect of aging on PVAT browning and subsequent vasomotor reaction in SHRs. Herein we utilized histological staining and western blot to detect the characteristics of thoracic PVAT (tPVAT) in 8-week-old and 16-week-old SHR and Wistar-Kyoto (WKY) rats. We also detected vascular reactivity analysis to determine the effect of tPVAT on vasomotor reaction during aging. The results showed that tPVAT had a similar phenotype to BAT, including smaller adipocyte size and positive uncoupling protein-1 (UCP1) staining. Interestingly, the tPVAT of 8-week-old SHR showed increased BAT phenotypic marker expression compared to WKY, whereas the browning level of tPVAT had a more dramatic decrease from 8 to 16 weeks of age in SHR than age-matched WKY rats. The vasodilation effect of tPVAT on aortas had no significant difference in 8-week-old WKY and SHR, whereas this effect is obviously decreased in 16-week-old SHR compared to WKY. In contrast, tPVAT showed a similar vasoconstriction effect in 8- or 16-week-old WKY and SHR rats. Moreover, we identified an important vasodilator adenosine, which regulates adipocyte browning and may be a potential PVAT-derived relaxing factor. Adenosine is dramatically decreased from 8 to 16 weeks of age in the tPVAT of SHR. In summary, aging is associated with a decrease of tPVAT browning and adenosine production in SHR rats. These may result in attenuated vasodilation effect of the tPVAT in SHR during aging.
Are there Race-Dependent Endothelial Cell Responses to Exercise?
Brown, Michael D.; Feairheller, Deborah L.
2013-01-01
African Americans have endothelial dysfunction which likely contributes to their high prevalence of hypertension. Endothelial cell responses to stimuli could play a role in the development of endothelial dysfunction and hypertension. High physiological levels of vascular laminar shear stress can profoundly alter endothelial cell phenotype. It is not known whether there are race-dependent endothelial cell responses to laminar shear stress. PMID:23262464
Yinon, Yoav; Kingdom, John C P; Odutayo, Ayodele; Moineddin, Rahim; Drewlo, Sascha; Lai, Vesta; Cherney, David Z I; Hladunewich, Michelle A
2010-11-02
Women with a history of placental disease are at increased risk for the future development of vascular disease. It is unknown whether preexisting endothelial dysfunction underlies both the predisposition to placental disease and the later development of vascular disease. The aim of this study was to assess vascular function in postpartum women and to determine whether differences emerged depending on the presentation of placental disease. Women with a history of early-onset preeclampsia (n=15), late-onset preeclampsia (n=9), intrauterine growth restriction without preeclampsia (n=9), and prior normal pregnancy (n=16) were studied 6 to 24 months postpartum. Flow-mediated vasodilatation and flow-independent (glyceryl trinitrate-induced) vasodilatation were studied through the use of high-resolution vascular ultrasound examination of the brachial artery. Arterial stiffness was assessed by pulse-wave analysis (augmentation index). Laboratory assessment included circulating angiogenic factors (vascular endothelial growth factor, soluble fms-like tyrosine kinase 1, placental growth factor, and soluble endoglin). Flow-mediated vasodilatation was significantly reduced in women with previous early-onset preeclampsia and intrauterine growth restriction compared with women with previous late-onset preeclampsia and control subjects (3.2±2.7% and 2.1±1.2% versus 7.9±3.8% and 9.1±3.5%, respectively; P<0.0001). Flow-independent vasodilatation was similar among all groups. Similarly, the radial augmentation index was significantly increased among women with previous early-onset preeclampsia and intrauterine growth restriction, but not among late preeclamptic women and control subjects (P=0.0105). Circulating angiogenic factors were similar in all groups. Only women with a history of early-onset preeclampsia or intrauterine growth restriction without preeclampsia exhibit impaired vascular function, which might explain their predisposition to placental disease and their higher risk of future vascular disease.
Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Gutterman, David D.
2012-01-01
Objective To determine if folic acid supplementation improves vascular function (brachial artery flow-mediated dilation [FMD]) in professional dancers with known endothelial dysfunction. Design Prospective cross-sectional study. Setting Academic institution in the Midwestern United States. Subjects Twenty-two professional ballet dancers volunteered for this study. Main Outcome Measures Subjects completed a 3-day food record to determine caloric and micronutrient intake. Menstrual status was determined by interview and questionnaire. Endothelial function was determined as flow-induced vasodilation measured by high-frequency ultrasound of the brachial artery. A change in brachial diameter of <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Subjects with abnormal FMD took 10 mg of folic acid daily for 4 weeks, and FMD testing was then repeated. Serum whole blood was measured for folic acid levels before and after supplementation. Results Sixty-four percent of dancers (n = 14) had abnormal brachial artery FMD (<5%) (mean ± standard deviation, 2.9% ± 1.5%). After 4 weeks of folic acid supplementation (10 mg/day), FMD improved in all the subjects (7.1% ± 2.3%; P < .0001). Conclusions This study reveals that vascular endothelial function improves in dancers after supplementation with folic acid (10 mg/day) for at least 4 weeks. This finding may have clinically important implications for future cardiovascular disease risk prevention. PMID:21715240
Lau, Kui Kai; Wong, Yuen Kwun; Chan, Yap Hang; Teo, Kay Cheong; Chan, Koon Ho; Wai Li, Leonard Sheung; Cheung, Raymond Tak Fai; Siu, Chung Wah; Ho, Shu Leong; Tse, Hung Fat
2014-07-01
Visit-to-visit blood pressure variability (BPV) is a simple surrogate marker for the development of atherosclerotic diseases, cardiovascular and all-cause mortality. Nevertheless, the relative prognostic value of BPV in comparison with other established vascular assessments remain uncertain. We prospectively followed-up 656 high-risk patients with diabetes or established cardiovascular or cerebrovascular diseases for the occurrence of major adverse cardiovascular events (MACEs). Baseline brachial endothelial function, carotid intima-media thickness (IMT) and plaque burden, ankle-brachial index and arterial stiffness were determined. Visit-to-visit BPV were recorded during a mean 18 ± 9 outpatient clinic visits. After a mean 81 ± 12 month's follow-up, 123 patients (19%) developed MACEs. Patients who developed a MACE had significantly higher systolic BPV, more severe endothelial function, arterial stiffness and systemic atherosclerotic burden compared to patients who did not develop a MACE (all P<0.01). BPV significantly correlated with all of the vascular assessments (P<0.01). A high carotid IMT had the greatest prognostic value in predicting development of a MACE (area under receiver operating characteristic curve (AUC) 0.69 ± 0.03, P<0.01). A high BPV also had moderate prognostic value in prediction of MACE (AUC 0.65 ± 0.03, P<0.01). After adjustment of confounding factors, a high BPV remained a significant independent predictor of MACE (hazards ratio 1.67, 95% confidence interval 1.14-2.43, P<0.01). Compared with established surrogate markers of atherosclerosis, visit-to-visit BPV provides similar prognostic information and may represent a new and simple marker for adverse outcomes in patients with vascular diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zhou, Bo; Li, Huixia; Liu, Jiali; Xu, Lin; Zang, Weijin; Wu, Shufang; Sun, Hongzhi
2013-06-15
The osteoblast-specific secreted molecule osteocalcin behaves as a hormone-regulating glucose and lipid metabolism, but the role of osteocalcin in cardiovascular disease (CVD) is not fully understood. In the present study, we investigated the effect of osteocalcin on autophagy and endoplasmic reticulum (ER) stress secondary to diet-induced obesity in the vascular tissue of mice and in vascular cell models and clarified the intracellular events responsible for osteocalcin-mediated effects. The evidences showed that intermittent injections of osteocalcin in mice fed the high-fat diet were associated with a reduced body weight gain, decreased blood glucose and improved insulin sensitivity compared with mice fed the high-fat diet receiving vehicle. Simultaneously, the administration of osteocalcin not only attenuated autophagy and ER stress but also rescued impaired insulin signaling in vascular tissues of mice fed a high-fat diet. Consistent with these results in vivo, the addition of osteocalcin reversed autophagy and ER stress and restored defective insulin sensitivity in vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) in the presence of tunicamycin or in knockout XBP-1 (a transcription factor which mediates ER stress response) cells or in Atg7(-/-) cells. The protective effects of osteocalcin were nullified by suppression of Akt, mammalian target of rapamycin (mTOR) or nuclear factor kappa B (NFκB), suggesting that osteocalcin inhibits autophagy, ER stress and improves insulin signaling in the vascular tissue and cells under insulin resistance in a NFκB-dependent manner, which may be a promising therapeutic strategies of cardiovascular dysfunction secondary to obesity.
Ng, Hooi H; Jelinic, Maria; Parry, Laura J; Leo, Chen-Huei
2015-07-15
The vascular effects of exogenous relaxin (Rln) treatment are well established and include decreased myogenic reactivity and enhanced relaxation responses to vasodilators in small resistance arteries. These vascular responses are reduced in older animals, suggesting that Rln is less effective in mediating arterial function with aging. The present study investigated the role of endogenous Rln in the aorta and the possibility that vascular dysfunction occurs more rapidly with aging in Rln-deficient (Rln(-/-)) mice. We compared vascular function and underlying vasodilatory pathways in the aorta of male wild-type (Rln(+/+)) and Rln(-/-) mice at 4 and 16 mo of age using wire myography. Superoxide production, but not nitrotyrosine or NADPH oxidase expression, was significantly increased in the aorta of young Rln(-/-) mice, whereas endothelial nitric oxide (NO) synthase and basal NO availability were both significantly decreased compared with Rln(+/+) mice. In the presence of the cyclooxygenase inhibitor indomethacin, sensitivity to ACh was significantly decreased in young Rln(-/-) mice, demonstrating altered NO-mediated relaxation that was normalized in the presence of a membrane-permeable SOD or ROS scavenger. These vascular phenotypes were not exacerbated in old Rln(-/-) mice and, in most cases, did not differ significantly from old Rln(+/+) mice. Despite the vascular phenotypes in Rln(-/-) mice, endothelium-dependent and -independent vasodilation were not adversely affected. Our data show a role for endogenous Rln in reducing superoxide production and maintaining NO availability in the aorta but also demonstrate that Rln deficiency does not compromise vascular function in this artery or exacerbate endothelial dysfunction associated with aging. Copyright © 2015 the American Physiological Society.
Yeh, Yi-Chun; Huang, Mei-Feng; Hwang, Shang-Jyh; Tsai, Jer-Chia; Liu, Tai-Ling; Hsiao, Shih-Ming; Yang, Yi-Hsin; Kuo, Mei-Chuan; Chen, Cheng-Sheng
2016-07-01
Patients with chronic kidney disease (CKD) have been found to have cognitive impairment. However, the core features and clinical correlates of cognitive impairment are still unclear. Elevated homocysteine levels are present in CKD, and this is a risk factor for cognitive impairment and vascular diseases in the general population. Thus, this study investigated the core domains of cognitive impairment and investigated the associations of homocysteine level and vascular burden with cognitive function in patients with CKD. Patients with CKD aged ≥ 50 years and age- and sex-matched normal comparisons were enrolled. The total fasting serum homocysteine level was measured. Vascular burden was assessed using the Framingham Cardiovascular Risk Scale. Cognitive function was evaluated using comprehensive neuropsychological tests. A total of 230 patients with CKD and 92 comparisons completed the study. Memory impairment and executive dysfunction were identified as core features of cognitive impairment in the CKD patients. Among the patients with CKD, higher serum homocysteine levels (β = -0.17, p = 0.035) and higher Framingham Cardiovascular Risk Scale scores (β = -0.18, p = 0.013) were correlated with poor executive function independently. However, an association with memory function was not noted. Our results showed that an elevated homocysteine level and an increased vascular burden were independently associated with executive function, but not memory, in CKD patients. This findings suggested the co-existence of vascular and non-vascular hypotheses regarding executive dysfunction in CKD patients. Meanwhile, other risk factors related to CKD itself should be investigated in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Serotonin, neural markers, and memory
Meneses, Alfredo
2015-01-01
Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence. PMID:26257650
Judaki, Arezo; Norozi, Siros; Ahmadi, Mohammad Reza Hafezi; Ghavam, Samira Mis; Asadollahi, Khairollah; Rahmani, Asghar
2017-12-01
Endothelial dysfunction is one of the early stages of vascular diseases. The aim of this study was to investigate the endothelial dysfunction markers in patients with chronic gastritis associated with Helicobacter pylori (H. pylori) infection. By a cross sectional study, basic and clinical information of 120 participants (40 patients with positive H. pylori infection, 40 patients with negative H. pylori infection and 40 healthy people) were analyzed. Carotid intima media thickness and flow-mediated dilation levels were measured in all patients and controls. Soluble vascular cell adhesion molecule-1 (sVCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured with Elisa for all subjects. IgG level was assessed in chronic gastritis patients. The flow-mediated dilation level in patients with positive H. pylori infection (0.17%±0.09) was significantly lower than those with negative H. pylori infection (0.21% ±0.10, P<0.05) and compared to the control group (0.27% ±0.11, P<0.05). Carotid intima media thickness level in patients with positive H. pylori infection (0.58±0.13 mm) was significantly higher than those with negative H. pylori infection (0.48±0.32 mm, P<0.05) and compared to the control group (0.36±0.44mm, P<0.05). The mean level of sICAM-1 in positive H. pylori infection group (352.16±7.54 pg/mL) was higher than negative H. pylori infection group (332.64±8.75 pg/mL =0.75) and compared to the control group (236.32±12.43 pg/mL, P<0.05). A direct relationship was revealed between flow-mediated dilation and carotid intima media thickness changes and between sICAM-1 and sVCAM-1 associated with the level of H. pylori IgG in chronic gastritis. The levels of flow-mediated dilation, carotid intima media thickness and sICAM-1 were higher among patients with positive H. pylori infection. Patients with chronic gastritis associated with H. pylori infection are at risk of endothelial dysfunction due to flow-mediated dilation and carotid intima media thickness abnormalities and increased level of sICAM-1 and sVCAM-1.
Frameworking memory and serotonergic markers.
Meneses, Alfredo
2017-07-26
The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals' species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7 receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Shen, Huiyun; Oesterling, Elizabeth; Stromberg, Arnold; Toborek, Michal; MacDonald, Ruth; Hennig, Bernhard
2008-10-01
Marginal intake of dietary zinc can be associated with increased risk of cardiovascular diseases. In the current study we hypothesized that vascular dysfunction and associated inflammatory events are activated during a zinc deficient state. We tested this hypothesis using both vascular endothelial cells and mice lacking the functional LDL-receptor gene. Zinc deficiency increased oxidative stress and NF-kappaB DNA binding activity, and induced COX-2 and E-selectin gene expression, as well as monocyte adhesion in cultured endothelial cells. The NF-kappaB inhibitor CAPE significantly reduced the zinc deficiency-induced COX-2 expression, suggesting regulation through NF-kappaB signaling. PPAR can inhibit NF-kappaB signaling, and our previous data have shown that PPAR transactivation activity requires adequate zinc. Zinc deficiency down-regulated PPARalpha expression in cultured endothelial cells. Furthermore, the PPARgamma agonist rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during zinc deficiency, an event which could be reversed by zinc supplementation. Our in vivo data support the importance of PPAR dysregulation during zinc deficiency. For example, rosiglitazone induced inflammatory genes (e.g., MCP-1) only during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS. In addition, rosiglitazone increased IkappaBalpha protein expression only in zinc adequate mice. Finally, plasma data from LDL-R-deficient mice suggest an overall pro-inflammatory environment during zinc deficiency and support the concept that zinc is required for proper anti-inflammatory or protective functions of PPAR. These studies suggest that zinc nutrition can markedly modulate mechanisms of the pathology of inflammatory diseases such as atherosclerosis.
Sun, Jing; Wang, Shaochuang; Zhao, Dong; Hun, Fei Han; Weng, Lei; Liu, Hui
2011-10-01
Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe(2)O(3)), iron(II,III) oxide (Fe(3)O(4)), magnesium oxide (MgO), aluminum oxide (Al(2)O(3)), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12-24 h and 0.001-100 μg/ml of exposure). The results indicated that Fe(2)O(3), Fe(3)O(4), and Al(2)O(3) NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time. © Springer Science+Business Media B.V. 2011
Degenerative effects in rat eyes after experimental ocular hypertension.
Scarsella, G; Nebbioso, M; Stefanini, S; Pescosolido, N
2012-10-08
This study was used to evaluate the degenerative effects on the retina and eye-cup sections after experimental induction of acute ocular hypertension on animal models. In particular, vascular events were directly focused in this research in order to assess the vascular remodeling after transient ocular hypertension on rat models. After local anaesthesia by administration of eye drops of 0.4% oxibuprocaine, 16 male adult Wistar rats were injected in the anterior chamber of the right eye with 15 µL of methylcellulose (MTC) 2% in physiological solution. The morphology and the vessels of the retina and eye-cup sections were examined in animals sacrificed 72 h after induction of ocular hypertension. In retinal fluorescein angiographies (FAGs), by means of fluorescein isothiocyanate-coniugated dextran (FITC), the radial venules showed enlargements and increased branching, while the arterioles appeared focally thickened. The length and size of actually perfused vessels appeared increased in the whole superficial plexus. In eye-cup sections of MTC-injected animals, in deep plexus and connecting layer there was a bigger increase of vessels than in controls. Moreover, the immunolocalization of astrocytic marker glial fibrillary acidic protein (GFAP) revealed its increased expression in internal limiting membrane and ganglion cell layer, as well as its presence in Müller cells. Finally, the pro-angiogenic factor vascular endothelial growth factor (VEGF) was found to be especially expressed by neurones of ganglion cell layer, both in control and in MTC-injected eyes. The data obtained in this experimental model on the interactions among glia, vessels and neurons should be useful to evaluate if also in glaucomatous patients the activation of vessel-adjacent glial cells might play key roles in following neuronal dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Sung Gu; Department of Animal and Food Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40536; Han, Seong-Su
Tea flavonoids such as epigallocatechin gallate (EGCG) protect against vascular diseases such as atherosclerosis via their antioxidant and anti-inflammatory functions. Persistent and widespread environmental pollutants, including polychlorinated biphenyls (PCB), can induce oxidative stress and inflammation in vascular endothelial cells. Even though PCBs are no longer produced, they are still detected in human blood and tissues and thus considered a risk for vascular dysfunction. We hypothesized that EGCG can protect endothelial cells against PCB-induced cell damage via its antioxidant and anti-inflammatory properties. To test this hypothesis, primary vascular endothelial cells were pretreated with EGCG, followed by exposure to the coplanar PCBmore » 126. Exposure to PCB 126 significantly increased cytochrome P450 1A1 (Cyp1A1) mRNA and protein expression and superoxide production, events which were significantly attenuated following pretreatment with EGCG. Similarly, EGCG also reduced DNA binding of NF-κB and downstream expression of inflammatory markers such as monocyte chemotactic protein-1 (MCP-1) and vascular cell adhesion protein-1 (VCAM-1) after PCB exposure. Furthermore, EGCG decreased endogenous or base-line levels of Cyp1A1, MCP-1 and VCAM-1 in endothelial cells. Most of all, treatment of EGCG upregulated expression of NF-E2-related factor 2 (Nrf2)-controlled antioxidant genes, including glutathione S transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), in a dose-dependent manner. In contrast, silencing of Nrf2 increased Cyp1A1, MCP-1 and VCAM-1 and decreased GST and NQO1 expression, respectively. These data suggest that EGCG can inhibit AhR regulated genes and induce Nrf2-regulated antioxidant enzymes, thus providing protection against PCB-induced inflammatory responses in endothelial cells. -- Highlights: ► PCBs cause endothelial inflammation and subsequent atherosclerosis. ► Nutrition can modulate toxicity by environmental pollutants. ► We demonstrated that EGCG can decrease PCB-induced inflammation. ► EGCG protection was via inhibition of AhR and induction of Nrf2 regulatory genes.« less
Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A
2015-07-31
Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes. © 2015 American Heart Association, Inc.
Ochi, Noriki; Yoshinaga, Keiichiro; Ito, Yoichi M; Tomiyama, Yuuki; Inoue, Mamiko; Nishida, Mutsumi; Manabe, Osamu; Shibuya, Hitoshi; Shimizu, Chikara; Suzuki, Eriko; Fujii, Satoshi; Katoh, Chietsugu; Tamaki, Nagara
2016-10-01
Comprehensive evaluation of endothelium-dependent and endothelium-independent vascular functions in peripheral arteries and coronary arteries in smokers has never been performed previously. Through the use of brachial artery ultrasound and oxygen-15-labeled water positron emission tomography (PET), we sought to investigate peripheral and coronary vascular dysfunctions in smokers. Eight smokers and 10 healthy individuals underwent brachial artery ultrasound at rest, during reactive hyperemia [250mmHg cuff occlusion (flow-mediated dilatation (FMD)], and following sublingual nitroglycerin (NTG) administration. Myocardial blood flow (MBF) was assessed through O-15-labeled water PET at rest, during adenosine triphosphate (ATP) administration, and during a cold pressor test (CPT). Through ultrasound, smokers were shown to have significantly reduced %FMD compared to controls (6.62±2.28% vs. 11.29±2.75%, p=0.0014). As assessed by O-15-labeled water PET, smokers were shown to have a significantly lower CPT response than were controls (21.1±9.5% vs. 50.9±16.9%, p=0.0004). There was no relationship between %FMD and CPT response (r=0.40, p=0.097). Endothelium-independent vascular dilatation was similar for both groups in terms of coronary flow reserve with PET (p=0.19). Smokers tended to have lower %NTG in the brachial artery (p=0.055). Smokers exhibited impaired coronary endothelial function as well as peripheral brachial artery endothelial function. In addition, there was no correlation between PET and ultrasound measurements, possibly implying that while smokers may have systemic vascular endothelial dysfunction, the characteristics of that dysfunction may be different in peripheral arteries and coronary arteries. Copyright © 2016. Published by Elsevier Ltd.
Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu
2016-02-15
Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent. Copyright © 2016 Elsevier B.V. All rights reserved.
Aragon, Mario; Erdely, Aaron; Bishop, Lindsey; Salmen, Rebecca; Weaver, John; Liu, Jim; Hall, Pamela; Eye, Tracy; Kodali, Vamsi; Zeidler-Erdely, Patti; Stafflinger, Jillian E.; Ottens, Andrew K.; Campen, Matthew J.
2016-01-01
Inhalation of multiwalled carbon nanotubes (MWCNT) causes systemic effects including vascular inflammation, endothelial dysfunction, and acute phase protein expression. MWCNTs translocate only minimally beyond the lungs, thus cardiovascular effects thereof may be caused by generation of secondary biomolecular factors from MWCNT-pulmonary interactions that spill over into the systemic circulation. Therefore, we hypothesized that induced matrix metalloproteinase-9 (MMP-9) is a generator of factors that, in turn, drive vascular effects through ligand-receptor interactions with the multiligand pattern recognition receptor, CD36. To test this, wildtype (WT; C57BL/6) and MMP-9−/− mice were exposed to varying doses (10 or 40 µg) of MWCNTs via oropharyngeal aspiration and serum was collected at 4 and 24 h postexposure. Endothelial cells treated with serum from MWCNT-exposed WT mice exhibited significantly reduced nitric oxide (NO) generation, as measured by electron paramagnetic resonance, an effect that was independent of NO scavenging. Serum from MWCNT-exposed WT mice inhibited acetylcholine (ACh)-mediated relaxation of aortic rings at both time points. Absence of CD36 on the aortic rings (obtained from CD36-deficient mice) abolished the serum-induced impairment of vasorelaxation. MWCNT exposure induced MMP-9 protein levels in both bronchoalveolar lavage and whole lung lysates. Serum from MMP-9−/− mice exposed to MWCNT did not diminish the magnitude of vasorelaxation in naïve WT aortic rings, although a modest right shift of the ACh dose–response curve was observed in both MWCNT dose groups relative to controls. In conclusion, pulmonary exposure to MWCNT leads to elevated MMP-9 levels and MMP-9-dependent generation of circulating bioactive factors that promote endothelial dysfunction and decreased NO bioavailability via interaction with vascular CD36. PMID:26801584
Crataegus special extract WS(®)1442 prevents aging-related endothelial dysfunction.
Idris-Khodja, N; Auger, C; Koch, E; Schini-Kerth, V B
2012-06-15
Aging is associated with a markedly increased incidence of cardiovascular diseases due, in part, to the development of vascular endothelial dysfunction. The present study has evaluated whether the Crataegus special extract WS(®)1442 prevents the development of aging-related endothelial dysfunction in rats, and, if so, to determine the underlying mechanisms. Wistar rats received either a control diet or the same diet containing 100 or 300 mg/kg/day of WS(®)1442 from week 25 until week 65. Vascular reactivity was assessed in mesenteric artery rings using organ chambers, oxidative stress by dihydroethidine staining and cyclooxygenase-1 (COX-1) and -2 (COX-2) expression by immunohistochemistry. Acetylcholine-induced endothelium-dependent relaxations in mesenteric artery rings were blunted in 65-week-old rats compared to 16-week-old rats. This effect was associated with a marked reduction of the endothelium-derived hyperpolarizing factor (EDHF) component whereas the nitric oxide (NO) component was not affected. Aging was also associated with the induction of endothelium-dependent contractile responses to acetylcholine. Both aging-related impairment of endothelium-dependent relaxations and the induction of endothelium-dependent contractile responses were improved by the Crataegus treatment and by COX inhibitors. An excessive vascular oxidative stress and an upregulation of COX-1 and COX-2 were observed in the mesenteric artery of old rats compared to young rats, and these effects were improved by the Crataegus treatment. In conclusion, chronic intake of Crataegus prevented aging-related endothelial dysfunction by reducing the prostanoid-mediated contractile responses, most likely by improving the increased oxidative stress and the overexpression of COX-1 and COX-2. Copyright © 2012 Elsevier GmbH. All rights reserved.
Calderón-Garcidueñas, L; Villarreal-Calderon, R; Valencia-Salazar, G; Henríquez-Roldán, C; Gutiérrez-Castrellón, P; Torres-Jardón, R; Osnaya-Brizuela, N; Romero, L; Torres-Jardón, R; Solt, A; Reed, W
2008-03-01
Mexico City children are chronically exposed to significant concentrations of air pollutants and exhibit chronic respiratory-tract inflammation. Epidemiological, controlled human exposures, laboratory-based animal models, and in vitro/in vivo studies have shown that inflammatory, endothelial dysfunction, and endothelial damage mediators are upregulated upon exposure to particulate matter (PM). Endothelial dysfunction is a critical event in cardiovascular disease. The focus of this work was to investigate whether exposure to ambient air pollution including PM(2.5) produces systemic inflammation and endothelial injury in healthy children. We measured markers of endothelial activation, and inflammatory mediators in 52 children age 8.6+/-0.1 yr, residents of Mexico City (n: 28) or of Polotitlán (n: 24), a city with low levels of pollutants. Mexico City children had significant increases in inflammatory mediators and vasoconstrictors, including tumor necrosis factor (TNF)alpha, prostaglandin (PG) E2, C-reactive protein, interleukin-1beta, and endothelin-1. There was a significant anti-inflammatory response, and a downregulation of vascular adhesion molecule-1, intercellular adhesion molecule-1 and -2, and selectins sE and sL. Results from linear regression found TNF a positively associated with 24- and 48-h cumulative levels of PM(2.5), while the 7-d PM(2.5) value was negatively associated with the numbers of white blood cells in peripheral blood in highly exposed children. Systemic subclinical inflammation, increased endothelin- 1, and significant downregulation of soluble adhesion molecules are seen in Mexico City children. Children chronically exposed to fine PM above the standard could be at risk of developing cardiovascular diseases, atherosclerosis, stroke, and other systemic effects later in life.
Frentzou, Georgia A; Drinkhill, Mark J; Turner, Neil A; Ball, Stephen G; Ainscough, Justin F X
2015-08-01
Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfβ. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that there is an initial response from the housekeeping cells of the heart to signals emanating from distressed neighbouring cardiomyocytes to suppress those changes most commonly associated with progressive heart disease. We suggest that the reversible nature of this state of compensated dysfunction presents an ideal window of opportunity for personalised therapeutic intervention. © 2015. Published by The Company of Biologists Ltd.
Kukongviriyapan, Upa; Luangaram, Saowanee; Leekhaosoong, Krissadarut; Kukongviriyapan, Veerapol; Preeprame, Srisomporn
2007-04-01
Phytochemicals contained in dietary plants provide a variety of health benefits and may reduce the risk of cardiovascular diseases. The aqueous extracts from three popular Thai dietary and herbal plants, Cratoxylum formosum, Syzygium gratum, and Limnophila aromatica, were investigated for the antioxidant and vascular protective activities in the in vitro and in vivo models. The free radical scavenging and antioxidant activities of plant extracts were evaluated in vitro by the 1,1-diphenyl-2-picrylhydrazyl assay, the ferric reducing antioxidant power assay, the intracellular antioxidant activity in rat peritoneal macrophages by dihydrofluorescein assay, and the inhibition of nitric oxide (NO) production in RAW 264.7 macrophages. In an animal model of oxidative stress and vascular dysfunction, male Sprague-Dawley rats were orally administered with aqueous plant extracts (1 g/kg/d) or N-acetylcysteine (NAC; 300 mg/kg/d) as a control for 6 d. On day four, all animals except the normal control group, were administered with phenylhydrazine (PHZ) intraperitoneally. It was demonstrated that the plant extracts possessed high free radical scavenging and antioxidant activities. PHZ induced severe hemolysis and hemodynamic disturbances and treatment with the extracts and NAC significantly improved the hemodynamic status. Vascular responsiveness to bradykinin, acetylcholine, and phenylephrine in PHZ-control rats was markedly impaired, and the plant extracts or NAC largely restored the vascular responses. Moreover, the plant extracts prevented loss of blood reduced glutathione and suppressed formation of plasma malondialdehyde, plasma NO metabolites and blood superoxide anion. It was concluded that the plant extracts possess antioxidants and have potential roles in protection of vascular dysfunction.
Kaisar, Mohammad A; Sivandzade, Farzane; Bhalerao, Aditya; Cucullo, Luca
2018-06-04
It is well established that tobacco smoking is associated with vascular endothelial dysfunction in a causative and dose dependent manner primarily related to the tobacco smoke (TS) content of reactive oxygen species (ROS), nicotine, and oxidative stress (OS) -driven inflammation. Preclinical studies have also shown that nicotine (the principal e-liquid's ingredient used in e-cigarettes (e-Cigs) can also cause OS, exacerbation of cerebral ischemia and secondary brain injury. Likewise, chronic e-Cig vaping could be prodromal to vascular endothelial dysfunctions. Herein, we provide direct evidence that similarly to TS, e-Cig promotes mitochondrial depolarization in primary brain vascular endothelial cells as well as the vascular endothelial cell line bEnd3. In addition, both TS and e-Cig exposure upregulated the transmembrane iron exporter Slc40a1 (crucial to maintain cellular iron and redox homeostasis) and that of porphyrin importer Abcb6 (linked to accelerated atherosclerosis). We then investigated in vivo whether gender plays a role in how chronic TS affect vascular endothelial functions. Our results clearly show chronic TS exposure differentially impacts the expression levels of Phase-II enzymes as well as the iron transporters previously investigated in vitro. Although the physiological implications of the gender-specific differential responses to TS are not fully clear, they do demonstrate that gender is a risk factor that needs to be investigated when assessing the potential impact of chronic smoking and perhaps e-Cig vaping. Copyright © 2018. Published by Elsevier B.V.
Pathogenesis of vascular leak in dengue virus infection.
Malavige, Gathsaurie Neelika; Ogg, Graham S
2017-07-01
Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease. © 2017 John Wiley & Sons Ltd.
Quintana, L F; Coll, E; Monteagudo, I; Collado, S; López-Pedret, J; Cases, A
2005-01-01
Vascular access-related complications are a frequent cause of morbidity in haemodialysis patients and generate high costs. We present the case of an adult patient with end-stage renal disease and recurrent vascular access thrombosis associated with the prothrombin mutation G20210A and renal graft intolerance. The clinical expression of this heterozygous gene mutation may have been favoured by inflammatory state, frequent in dialysis patients. In this patient, the inflammatory response associated with the renal graft intolerance would have favored the development of recurrent vascular access thrombosis in a adult heterozygous for prothrombin mutation G20210A. In the case of early dysfunction of haemodialysis vascular access and after ruling out technical problems, it is convenient to carry out a screening for thrombophilia.
Griffiths, Michael J; Ooi, Mong H; Wong, See C; Mohan, Anand; Podin, Yuwana; Perera, David; Chieng, Chae H; Tio, Phaik H; Cardosa, Mary J; Solomon, Tom
2012-09-15
Enterovirus 71 (EV71) causes large outbreaks of hand, foot, and mouth disease (HFMD), with severe neurological complications and cardio-respiratory compromise, but the pathogenesis is poorly understood. We measured levels of 30 chemokines and cytokines in serum and cerebrospinal fluid (CSF) samples from Malaysian children hospitalized with EV71 infection (n = 88), comprising uncomplicated HFMD (n = 47), meningitis (n = 8), acute flaccid paralysis (n = 1), encephalitis (n = 21), and encephalitis with cardiorespiratory compromise (n = 11). Four of the latter patients died. Both pro-inflammatory and anti-inflammatory mediator levels were elevated, with different patterns of mediator abundance in the CSF and vascular compartments. Serum concentrations of interleukin 1β (IL-1β), interleukin 1 receptor antagonist (IL-1Ra), and granulocyte colony-stimulating factor (G-CSF) were raised significantly in patients who developed cardio-respiratory compromise (P = .013, P = .004, and P < .001, respectively). Serum IL-1Ra and G-CSF levels were also significantly elevated in patients who died, with a serum G-CSF to interleukin 5 ratio of >100 at admission being the most accurate prognostic marker for death (P < .001; accuracy, 85.5%; sensitivity, 100%; specificity, 84.7%). Given that IL-1β has a negative inotropic action on the heart, and that both its natural antagonist, IL-1Ra, and G-CSF are being assessed as treatments for acute cardiac impairment, the findings suggest we have identified functional markers of EV71-related cardiac dysfunction and potential treatment options.
NF1 Signal Transduction and Vascular Dysfunction
2015-05-01
microenvironment that promotes much of the pathology associated with the disease . Moreover we hypothesize that a mechanistic consequence of the loss...obliteration of the normal red pulp architecture. In addition, we found significant peri-aveolar and peri-vascular inflammatory infiltrates in the lung...the mouse model of NF1 disease in the endothelium we proposed and have done experiments investigating the loss of endothelial NF1 in the adult
Maron, Bradley A
2014-12-01
Despite the importance of preserved right ventricular structure and function with respect to outcome across the spectrum of lung, cardiac, and pulmonary vascular diseases, only recently have organized efforts developed to consider the pulmonary vascular-right ventricular apparatus as a specific unit within the larger context of cardiopulmonary pathophysiology. The Third International Right Heart Failure Summit (Boston, MA) was a multidisciplinary event dedicated to promoting a dialogue about the scientific and clinical basis of right heart disease. The current review provides a synopsis of key discussions presented during the section of the summit titled "Emerging Hemodynamic Signatures of the Right Heart." Specifically, topics emphasized in this element of the symposium included (1) the effects of pulmonary vascular dysfunction at rest or provoked by exercise on the right ventricular pressure-volume relationship, (2) the role of pressure-volume loop analysis as a method to characterize right ventricular inefficiency and predict right heart failure, and (3) the importance of a systems biology approach to identifying novel factors that contribute to pathophenotypes associated with pulmonary arterial hypertension and/or right ventricular dysfunction. Collectively, these concepts frame a forward-thinking paradigm shift in the approach to right heart disease by emphasizing factors that regulate the transition from adaptive to maladaptive right ventricular-pulmonary vascular (patho)physiology.
Nyengaard, J R; Chang, K; Berhorst, S; Reiser, K M; Williamson, J R; Tilton, R G
1997-01-01
We examined the effects of aminoguanidine and methylguanidine on vascular dysfunction, glomerular structural changes, and indexes of early and late nonenzymatic glycation in 7-month streptozotocin-induced diabetic rats. Kidney weight, glomerular volume, fractional mesangial volume, glomerular capillary basement membrane width, and urinary albumin excretion were increased in diabetic rats. Diabetes also 1) increased vascular albumin permeation twofold in retina, sciatic nerve, aorta, skin, and kidney; 2) decreased renal collagenase-soluble collagen; 3) increased collagen-associated fluorescence in kidney and skin but not in aorta; and 4) increased glycated hemoglobin levels and aortic pentosidine levels. Aminoguanidine reduced albuminuria by 70% after 4 months, and both guanidines 1) normalized aortic pentosidine levels and renal collagenase-soluble collagen, 2) had no effect on glycated hemoglobin levels or collagen-associated fluorescence (in aorta, kidney, or skin), and 3) had little or no effect on regional albumin permeation. These discordant effects of aminoguanidine on diabetes-induced vascular changes versus parameters of nonenzymatic glycation are consistent with a multifactorial pathogenesis of diabetic complications, including roles for metabolic imbalances independent of nonenzymatic glycation. To the extent that glomerular matrix accumulation and increased regional albumin permeation in chronically diabetic rats are sequelae of nonenzymatic glycation, these findings point to an important role for early glycation reactions and products.
Kumar, Gaurav; Chhabra, Aastha; Mishra, Shalini; Kalam, Haroon; Kumar, Dhiraj; Meena, Ramniwas; Ahmad, Yasmin; Bhargava, Kalpana; Prasad, Dipti N.; Sharma, Manish
2016-01-01
Hypobaric Hypoxia (HH) is an established risk factor for various neuro-physiological perturbations including cognitive impairment. The origin and mechanistic basis of such responses however remain elusive. We here combined systems level analysis with classical neuro-physiological approaches, in a rat model system, to understand pathological responses of brain to HH. Unbiased ‘statistical co-expression networks’ generated utilizing temporal, differential transcriptome signatures of hippocampus—centrally involved in regulating cognition—implicated perturbation of Glio-Vascular homeostasis during early responses to HH, with concurrent modulation of vasomodulatory, hemostatic and proteolytic processes. Further, multiple lines of experimental evidence from ultra-structural, immuno-histological, substrate-zymography and barrier function studies unambiguously supported this proposition. Interestingly, we show a significant lowering of H2S levels in the brain, under chronic HH conditions. This phenomenon functionally impacted hypoxia-induced modulation of cerebral blood flow (hypoxic autoregulation) besides perturbing the strength of functional hyperemia responses. The augmentation of H2S levels, during HH conditions, remarkably preserved Glio-Vascular homeostasis and key neuro-physiological functions (cerebral blood flow, functional hyperemia and spatial memory) besides curtailing HH-induced neuronal apoptosis in hippocampus. Our data thus revealed causal role of H2S during HH-induced early Glio-Vascular dysfunction and consequent cognitive impairment. PMID:27211559
Toth, Peter; Tarantini, Stefano; Csiszar, Anna
2017-01-01
Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer’s disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined. PMID:27793855
Villalba, Nuria; Sackheim, Adrian M; Nunez, Ivette A; Hill-Eubanks, David C; Nelson, Mark T; Wellman, George C; Freeman, Kalev
2017-01-01
Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O 2 - production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.
Salmon, Peter; Al-Marzooqi, Suad M; Baker, Gus; Reilly, James
2003-01-01
A history of childhood sexual abuse is thought to characterize patients with nonepileptic seizures (NES). We tested the hypotheses: 1) that history of sexual abuse is more prevalent in patients with NES than in controls with epilepsy; 2) that such abuse is associated with NES, not directly but because it is a marker of family dysfunction; and 3) that family dysfunction and abuse are, in turn, linked to NES because they increase a general tendency to somatize. We compared 81 patients with NES with 81 case-matched epilepsy patients, using questionnaires to elicit recollections of sexual, physical, and psychological abuse and family atmosphere and to quantify current somatization. Although each form of abuse was more prevalent in NES patients, only child psychological abuse uniquely distinguished NES from epilepsy. However, its association with NES was explained by family dysfunction. A general tendency to somatize explained part of the relationship of abuse to NES. Abuse therefore seems to be a marker for aspects of family dysfunction that are associated with--and may therefore cause--somatization and, specifically, NES.
Rebolledo, Alejandro; Rebolledo, Oscar R; Marra, Carlos A; García, María E; Roldán Palomo, Ana R; Rimorini, Laura; Gagliardino, Juan J
2010-10-21
To test the early effect of fructose-induced changes in fatty acid composition and oxidative stress markers in perivascular adipose tissue (PVAT) upon vascular contractility. Adult male Wistar rats were fed a commercial diet without (CD) or with 10% fructose (FRD) in the drinking water for 3 weeks. We measured plasma metabolic parameters, lipid composition and oxidative stress markers in aortic PVAT. Vascular contractility was measured in aortic rings sequentially, stimulated with serotonin (5-HT) and high K+-induced depolarization using intact and thereafter PVAT-deprived rings. Comparable body weights were recorded in both groups. FRD rats had increased plasma triglyceride and fructosamine levels. Their PVAT had an increased saturated to mono- or poly-unsaturated fatty acid ratio, a significant decrease in total superoxide dismutase and glutathione peroxidase activities and in the total content of glutathione. Conversely, lipid peroxidation (TBARS), nitric oxide content, and gluthathione reductase activity were significantly higher, indicating an increase in oxidative stress. In aortic rings, removal of PVAT increased serotonin-induced contractions, but the effect was significantly lower in rings from FRD rats. This effect was no longer observed when the two contractions were performed in PVAT-deprived rings. PVAT did not affect the contractions triggered by high K+-induced depolarization either in CD or FRD rats. FRD induces multiple metabolic and endocrine systemic alterations which also alter PVAT and the vascular relaxant properties of this tissue. The changes in PVAT would affect its paracrine modulation of vascular function.
Lee, Ki-Mo; Kang, Haeng-A; Park, Min; Lee, Hwa-Youn; Choi, Ha-Rim; Yun, Chul-Ho; Oh, Jae-Wook; Kang, Hyung-Sik
2012-11-09
Vascular calcification is a hallmark of cardiovascular disease. Interleukin-24 (IL-24) has been known to suppress tumor progression in a variety of human cancers. However, the role of IL-24 in the pathophysiology of diseases other than cancer is unclear. We investigated the role of IL-24 in vascular calcification. IL-24 was applied to a β-glycerophosphate (β-GP)-induced rat vascular smooth muscle cell (VSMC) calcification model. In this study, IL-24 significantly inhibited β-GP-induced VSMC calcification, as determined by von Kossa staining and calcium content. The inhibitory effect of IL-24 on VSMC calcification was due to the suppression of β-GP-induced apoptosis and expression of calcification and osteoblastic markers. In addition, IL-24 abrogated β-GP-induced activation of the Wnt/β-catenin pathway, which plays a key role in the pathogenesis of vascular calcification. The specificity of IL-24 for the inhibition of VSMC calcification was confirmed by using a neutralizing antibody to IL-24. Our results suggest that IL-24 inhibits β-GP-induced VSMC calcification by inhibiting apoptosis, the expression of calcification and osteoblastic markers, and the Wnt/ β-catenin pathway. Our study may provide a novel mechanism of action of IL-24 in cardiovascular disease and indicates that IL-24 is a potential therapeutic agent in VSMC calcification. Copyright © 2012 Elsevier Inc. All rights reserved.
Protective effect of Tribulus terrestris linn on liver and kidney in cadmium intoxicated rats.
Lakshmi, G Dhana; Kumar, P Ravi; Bharavi, K; Annapurna, P; Rajendar, B; Patel, Pankaj T; Kumar, C S V Satish; Rao, G S
2012-02-01
Administration of cadmium (Cd) significantly increased the peroxidation markers such as malondialdehyde and protein carbonyls along with significant decrease in antioxidant markers such as super oxide dismutase and reduced glutathione in liver and kidney tissues. Cadmium also caused a significant alteration in hepatic and renal functional markers in serum viz. total protein, albumin, alanine transaminase, blood urea nitrogen and creatinine. Prominent pathological changes observed in liver were severe vascular and sinusoidal congestion with diffuse degenerative changes and mononuclear infiltration into peripheral areas, while the kidney showed vascular and glomerular congestion, cloudy swelling of tubular epithelium. Coadministration of ethonolic extract of T. terrestris or vitamin E along with Cd significantly reversed the Cd induced changes along with significant reduction in Cd load.
Little, D; Said, J W; Siegel, R J; Fealy, M; Fishbein, M C
1986-06-01
Markers for endothelial cells including Ulex europaeus 1 lectin, blood group A, B, and H, and the prostaglandin metabolite 6-keto-PGF1 alpha were evaluated in paraffin secretions from formalin-fixed benign and malignant vascular neoplasms using a variety of immunohistochemical techniques, and results compared with staining for factor VIII-related antigen. Staining for Ulex appeared more sensitive than factor VIII-related antigen in identifying poorly differentiated neoplasms including haemangiosarcomas and spindle cell proliferations in Kaposi's sarcoma. Staining for blood group related antigens correlated with blood group in all cases. Ulex europaeus 1 lectin was the only marker for endothelial cells in lymphangiomas.
Modulating Oxidative Stress and Inflammation in Elders: The MOXIE Study
Ellis, Amy Cameron; Dudenbostel, Tanja; Locher, Julie L.; Crowe-White, Kristi
2016-01-01
Cardiovascular disease (CVD) is the leading cause of death among women in the United States. Endothelial dysfunction and arterial stiffness increase with advancing age and are early predictors of future CVD outcomes. We designed the Modulating Oxidative Stress and Inflammation in Elders (MOXIE) study to examine the effects of 100% watermelon juice as a “food-first” intervention to reduce CVD risk among African American (AA) and European American (EA) women aged 55–69 years. Vascular dysfunction is more pronounced in AA compared to EA women due in part to lower nitric oxide bioavailability caused by higher oxidative stress. However, bioactive compounds in watermelon may improve vascular function by increasing nitric oxide bioavailability and antioxidant capacity. This trial will use a randomized, placebo-controlled, crossover design to investigate the potential of 100% watermelon juice to positively impact various robust measures of vascular function as well as serum biomarkers of oxidative stress and antioxidant capacity. This nutrition intervention and its unique methodology to examine both clinical and mechanistic outcomes are described in this article. PMID:27897608
Horváth, Eszter Mária; Mágenheim, Rita; Domján, Beatrix Annamária; Ferencz, Viktória; Tänczer, Tímea; Szabó, Eszter; Benkő, Rita; Szabó, Csaba; Tabák, Ádám; Somogyi, Anikó
2015-11-22
Oxidative-nitrative stress and poly(ADP-ribose) polymerase activation observed in gestational diabetes may play role in the increased cardiovascular risk in later life. The present study aimed to examine the influence of the severity of previous gestational diabetes (insulin need) on vascular function three years after delivery. Furthermore, the authors investigated the relation of vascular function with oxidative-nitrative stress and poly(ADP-ribose) polymerase activation. Macrovascular function was measured by applanation tonometry; microvascular reactivity was assessed by provocation tests during Laser-Doppler flowmetry in 40 women who had gestational diabetes 3 years before the study. Oxidative-nitrative stress and poly(ADP-ribose) polymerase activity in blood components were determined by colorimetry and immunohistochemistry. Three years after insulin treated gestational diabetes impaired microvascular function and increased oxidative stress was observed compared to mild cases. The severity of previous gestational diabetes affects microvascular dysfunction that is accompanied by elevated oxidative stress. Nitrative stress and poly(ADP-ribose) polymerase activity correlates with certain vascular factors not related to the severity of the disease.
Redox-dependent impairment of vascular function in sickle cell disease.
Aslan, Mutay; Freeman, Bruce A
2007-12-01
The vascular pathophysiology of sickle cell disease (SCD) is influenced by many factors, including adhesiveness of red and white blood cells to endothelium, increased coagulation, and homeostatic perturbation. The vascular endothelium is central to disease pathogenesis because it displays adhesion molecules for blood cells, balances procoagulant and anticoagulant properties of the vessel wall, and regulates vascular homeostasis by synthesizing vasoconstricting and vasodilating substances. The occurrence of intermittent vascular occlusion in SCD leads to reperfusion injury associated with granulocyte accumulation and enhanced production of reactive oxygen species. The participation of nitric oxide (NO) in oxidative reactions causes a reduction in NO bioavailability and contributes to vascular dysfunction in SCD. Therapeutic strategies designed to counteract endothelial, inflammatory, and oxidative abnormalities may reduce the frequency of hospitalization and blood transfusion, the incidence of pain, and the occurrence of acute chest syndrome and pulmonary hypertension in patients with SCD.
Giga, Vojislav; Dopsaj, Violeta; Jelic-Ivanovic, Zorana
2013-01-01
Objectives. The study was designed to evaluate associations between symmetric dimethylarginine (SDMA), inflammation, and superoxide anion (O2∙−) with endothelial function and to determine their potential for screening of endothelial dysfunction in patients with chronic kidney disease (CKD) and renal transplant (RT) recipients. Materials and Methods. We included 64 CKD and 52 RT patients. Patients were stratified according to brachial artery flow-mediated dilation (FMD). Results. Logistic regression analysis showed that high SDMA and high sensitive C-reactive protein (hs-CRP) were associated with impaired FMD in CKD and RT patients, after adjustment for glomerular filtration rate. The ability of inflammation, SDMA, and O2∙− to detect impaired FMD was investigated by receiving operative characteristic analysis. Hs-CRP (area under the curves (AUC) = 0.754, P < 0.001), IL-6 (AUC = 0.699, P = 0.002), and SDMA (AUC = 0.689, P = 0.007) had the highest ability to detect impaired FMD. SDMA in combination with inflammatory parameters and/or O2∙− had better screening performance than SDMA alone. Conclusions. Our results indicate a strong predictable association between hs-CRP, SDMA, and endothelial dysfunction in CKD patients and RT recipients. The individual marker that showed the strongest discriminative ability for endothelial dysfunction is hs-CRP, but its usefulness as a discriminatory marker for efficient diagnosis of endothelial dysfunction should be examined in prospective studies. PMID:24167363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajalakshmi, Palanivel; Priya, Mani Krishna; Pradeep, Thangaraj
Widely used chemotherapeutic breast cancer drugs such as Tamoxifen citrate (TC), Capecitabine (CP) and Epirubicin (EP) are known to cause various cardiovascular side-effects among long term cancer survivors. Vascular modulation warrants nitric oxide (NO) signal transduction, which targets the vascular endothelium. We hypothesize that TC, CP and EP interference with the nitric oxide downstream signaling specifically, could lead to cardiovascular dysfunctions. The results demonstrate that while all three drugs attenuate NO and cyclic guanosine mono-phosphate (cGMP) production in endothelial cells, they caused elevated levels of NO in the plasma and RBC. However, PBMC and platelets did not show any significantmore » changes under treatment. This implies that the drug effects are specific to the endothelium. Altered eNOS and phosphorylated eNOS (Ser-1177) localization patterns in endothelial cells were observed following drug treatments. Similarly, the expression of phosphorylated eNOS (Ser-1177) protein was decreased under the treatment of drugs. Altered actin polymerization was also observed following drug treatment, while addition of SpNO and 8Br-cGMP reversed this effect. Incubation with the drugs decreased endothelial cell migration whereas addition of YC-1, SC and 8Br-cGMP recovered the effect. Additionally molecular docking studies showed that all three drugs exhibited a strong binding affinity with the catalytic domain of human sGC. In conclusion, results indicate that TC, CP and EP cause endothelial dysfunctions via the NO–sGC–cGMP pathway and these effects could be recovered using pharmaceutical agonists of NO signaling pathway. Further, the study proposes a combination therapy of chemotherapeutic drugs and cGMP analogs, which would confer protection against chemotherapy mediated vascular dysfunctions in cancer patients. - Highlights: • NO production is reduced in endothelial cells under breast cancer drug treatment. • Cellular cGMP level is decreased under the treatments of breast cancer drugs. • Breast cancer drugs induce vasoconstriction by interfering with NO pathway. • NO donors, cGMP analogs rescue breast cancer drug induced endothelial dysfunctions.« less
Wiest, Elani F; Walsh-Wilcox, Mary T; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K
2016-11-01
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) found in fish protect against cardiovascular morbidity and mortality; however, many individuals avoid fish consumption due to concerns about pollutants. We tested the hypothesis that n-3 PUFAs would prevent vascular dysfunction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). C57Bl/6 male mice were fed a chow or n-3 PUFA diet for 10 weeks and were exposed to vehicle or 300 ng/kg/d TCDD during the final 2 weeks on each diet. Aortic vasoconstriction mediated by arachidonic acid (AA) ± SKF525 (P450 inhibitor) or SQ29548 (thromboxane/prostanoid [TP] receptor antagonist) was assessed. RBC fatty acids and expression of n-3 and n-6 PUFA metabolites were analyzed. Cytochrome P4501A1 (CYP1A1), CYP1B1, and aryl hydrocarbon receptor (AHR) expression was measured. TCDD significantly increased AA-mediated vasoconstriction on a chow diet by increasing the contribution of P450s and TP receptor to the constriction response. In contrast, the n-3 PUFA diet prevented the TCDD-induced increase in AA vasoconstriction and normalized the contribution of P450s and TP receptor. Although TCDD increased the levels of AA vasoconstrictors on the chow diet, this increase was prevent by the n-3 PUFA diet. Additionally, the n-3 PUFA diet significantly increased the levels of n-3 PUFA-derived vasodilators and TCDD increased these levels further. Interestingly, the n-3 PUFA diet significantly attenuated CYP1A1 induction by TCDD without a significant effect on AHR expression. These data suggest that n-3 PUFAs can prevent TCDD-induced vascular dysfunction by decreasing vasoconstrictors, increasing vasodilators, and attenuating CYP1A1 induction, which has been shown previously to contribute to TCDD-induced vascular dysfunction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sohn, Michael; Hatzinger, Martin; Goldstein, Irwin; Krishnamurti, Sudhakar
2013-01-01
The impact of penile blood supply on erectile function was recognized some 500 years ago. At the turn of the 20th century first results of penile venous ligation were published and in 1973 the first surgical attempts to restore penile arterial inflow were undertaken. Numerous techniques were published in the meantime, but inclusion criteria, patient selection, and success evaluation differed extremely between study groups. To develop evidence-based standard operating procedures (SOPs) for vascular surgery in erectile dysfunction, based on recent state of the art consensus reports and recently published articles in peer-reviewed journals. Based on the recent publication of the consensus process during the 2009 International Consultation on Sexual Medicine in Paris, recommendations are derived for diagnosis and surgical treatment of vascular erectile dysfunction. In addition several recent publications in this field not mentioned in the consensus statements are included in the discussion. The Oxford system of evidence-based review was systematically applied. Due to the generally low level of evidence in this field expert opinions were accepted, if published after a well-defined consensus process in peer-reviewed journals. Referring to penile revascularization it may be concluded, that in the face of missing randomized trials, only recommendations grade D may be given: this kind of surgery may be offered to men less than 55 years, who are nonsmokers, nondiabetic, and demonstrate isolated arterial stenoses in the absence of generalized vascular disease. The evidence level for recommendations concerning penile venous ligations may be even lower. Too many unsolved controversies exist and universal diagnostic criteria for patient selection as well as operative technique selection have not been unequivocally established. This kind of surgery is still considered investigational but may be offered in special situations on an individualized basis in an investigational or research setting after obtaining written consent, using both pre- and postoperatively validated measuring instruments of success evaluation. SOPs for penile revascularization procedures can be developed, concerning a highly selected patient group with isolated arterial stenoses. Based on the available data it is not yet possible to define SOPs for surgical treatment of corporal veno-occlusive dysfunction. © 2012 International Society for Sexual Medicine.
Mahanty, Siddhartha; Orrego, Miguel Angel; Mayta, Holger; Marzal, Miguel; Cangalaya, Carla; Paredes, Adriana; Gonzales-Gustavson, Eloy; Arroyo, Gianfranco; Gonzalez, Armando E.; Guerra-Giraldez, Cristina; García, Hector H.; Nash, Theodore E.
2015-01-01
Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB) dysfunction, as determined by Evans blue (EB) extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue) and non stained (clear) cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα) were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3) was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model can be used to investigate mechanisms involved in host damaging inflammatory responses and agents or modalities that may control damaging post treatment inflammation. PMID:25774662
Chen, Chiao-Chi V; Chen, Yu-Chen; Hsiao, Han-Yun; Chang, Chen; Chern, Yijuang
2013-07-05
The coupling between neuronal activity and vascular responses is controlled by the neurovascular unit (NVU), which comprises multiple cell types. Many different types of dysfunction in these cells may impair the proper control of vascular responses by the NVU. Magnetic resonance imaging, which is the most powerful tool available to investigate neurovascular structures or functions, will be discussed in the present article in relation to its applications and discoveries. Because aberrant angiogenesis and vascular remodeling have been increasingly reported as being implicated in brain pathogenesis, this review article will refer to this hallmark event when suitable.
Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study.
Castillo, J; Alvarez-Sabín, J; Martínez-Vila, E; Montaner, J; Sobrino, T; Vivancos, J
2009-02-01
Vascular disease recurrence following stroke is the main cause of morbidity and mortality. The MITICO study was designed to assess the prognostic value of markers of inflammation in relation to the risk of recurrence of vascular disease. Multi-centered prospective observational study, in patients with ischemic stroke not receiving anti-coagulation therapy and who were recruited within 1-3 months from stroke onset. Blood samples were obtained at baseline and follow- up for the determination of high-sensitive C reactive protein (CRP), IL-6, IL-10, ICAM-1, VCAM- 1, MMP-9 and cellular fibronectin. Four follow-up visits within the first year were to rule out recurrence. Of 965 patients from 65 hospitals, 780 (aged 67.5+/-11.2 years, 33.6 % female) were valid for main analysis. One-hundred and three patients (13.2 %) had a new adverse vascular event and 116 patients (14.9 %) a vascular event or vascular death (66.4 % stroke, 21.5 % coronary and 12.1 % peripheral). Levels of IL-6 > 5 pg/mL and VCAM-1 > 1350 ng/mL (ROC curve analyses) were associated with vascular disease recurrence risk (OR: 28.7; 95 % CI: 14.2-58.0 vs. OR: 4.1; 95 % CI: 2.4-7.1, respectively) following adjustment for confounding variables. Risk of adverse vascular event or death from vascular disease were associated with IL-6 (OR: 21.2; 95 % CI: 11.6-38.7) and VCAM-1 (OR: 3.8; 95 % CI: 2.3-6.4). Baseline values of IL-6 > 5 pg/mL and VCAM-1 > 1350 ng/mL increase 21-fold and 4-fold, respectively, the risk of new vascular disease event or death from vascular disease in patients with ischemic stroke not receiving anti-coagulation treatment.
Csiszar, Anna; Labinskyy, Nazar; Jimenez, Rosario; Pinto, John T.; Ballabh, Praveen; Losonczy, Gyorgy; Pearson, Kevin J.; de Cabo, Rafael; Ungvari, Zoltan
2009-01-01
Endothelial-dysfunction, oxidative stress and inflammation are associated with vascular aging and promote the development of cardiovascular-disease. Caloric restriction (CR) mitigates conditions associated with aging, but its effects on vascular dysfunction during aging remain poorly defined. To determine whether CR exerts vasoprotective effects in aging, aortas of ad libitum (AL) fed young and aged and CR-aged F344 rats were compared. Aging in AL-rats was associated with impaired acetylcholine-induced relaxation, vascular oxidative stress and increased NF-κB-activity. Lifelong CR significantly improved endothelial function, attenuated vascular ROS production, inhibited NF-κB activity and down-regulated inflammatory genes. To elucidate the role of circulating factors in mediation of the vasoprotective effects of CR, we determined whether sera obtained from CR-animals can confer anti-oxidant and anti-inflammatory effects in cultured coronary-arterial endothelial cells (CAECs), mimicking the effects of CR. In CAECs cultured in the presence of AL-serum TNFα elicited oxidative-stress, NF-κB-activation and inflammatory gene expression. By contrast, treatment of CAECs with CR-serum attenuated TNFα-induced ROS generation and prevented NF-κB-activation and induction of inflammatory genes. siRNA-knockdown of SIRT1 mitigated the anti-oxidant and anti-inflammatory effects of CR-serum. CR exerts anti-oxidant and anti-inflammatory vascular effects, which are likely mediated by circulating factors, in part, via a SIRT1-dependent pathway. PMID:19549533
The role of neuroinflammation and neurovascular dysfunction in major depressive disorder.
Jeon, Sang Won; Kim, Yong-Ku
2018-01-01
Although depression has generally been explained with monoamine theory, it is far more multifactorial, and therapies that address the disease's pathway have not been developed. In this context, an understanding of neuroinflammation and neurovascular dysfunction would enable a more comprehensive approach to depression. Inflammation is in a sense a type of allostatic load involving the immune, endocrine, and nervous systems. Neuroinflammation is involved in the pathophysiology of depression by increasing proinflammatory cytokines, activating the hypothalamus-pituitary-adrenal axis, increasing glucocorticoid resistance, and affecting serotonin synthesis and metabolism, neuronal apoptosis and neurogenesis, and neuroplasticity. In future, identifying the subtypes of depression with increased vulnerability to inflammation and testing the effects of inflammatory modulating agents in these patient groups through clinical trials will lead to more concrete conclusions on the matter. The vascular depression hypothesis is supported by evidence for the association between vascular disease and late-onset depression and between ischemic brain lesions and distinctive depressive symptoms. Vascular depression may be the entity most suitable for studies of the mechanisms of depression. Pharmacotherapies used in the prevention and treatment of cerebrovascular disease may help prevent vascular depression. In future, developments in structural and functional imaging, electrophysiology, chronobiology, and genetics will reveal the association between depression and brain lesions. This article aims to give a general review of the existing issues examined in the literature pertaining to depression-related neuroinflammatory and vascular functions, related pathophysiology, applicability to depression treatment, and directions for future research.
The role of neuroinflammation and neurovascular dysfunction in major depressive disorder
Jeon, Sang Won; Kim, Yong-Ku
2018-01-01
Although depression has generally been explained with monoamine theory, it is far more multifactorial, and therapies that address the disease’s pathway have not been developed. In this context, an understanding of neuroinflammation and neurovascular dysfunction would enable a more comprehensive approach to depression. Inflammation is in a sense a type of allostatic load involving the immune, endocrine, and nervous systems. Neuroinflammation is involved in the pathophysiology of depression by increasing proinflammatory cytokines, activating the hypothalamus–pituitary–adrenal axis, increasing glucocorticoid resistance, and affecting serotonin synthesis and metabolism, neuronal apoptosis and neurogenesis, and neuroplasticity. In future, identifying the subtypes of depression with increased vulnerability to inflammation and testing the effects of inflammatory modulating agents in these patient groups through clinical trials will lead to more concrete conclusions on the matter. The vascular depression hypothesis is supported by evidence for the association between vascular disease and late-onset depression and between ischemic brain lesions and distinctive depressive symptoms. Vascular depression may be the entity most suitable for studies of the mechanisms of depression. Pharmacotherapies used in the prevention and treatment of cerebrovascular disease may help prevent vascular depression. In future, developments in structural and functional imaging, electrophysiology, chronobiology, and genetics will reveal the association between depression and brain lesions. This article aims to give a general review of the existing issues examined in the literature pertaining to depression-related neuroinflammatory and vascular functions, related pathophysiology, applicability to depression treatment, and directions for future research. PMID:29773951
Vorticity is a marker of diastolic ventricular interdependency in pulmonary hypertension
Browning, James; Schroeder, Joyce D.; Shandas, Robin; Kheyfets, Vitaly O.; Buckner, J. Kern; Hunter, Kendall S.; Hertzberg, Jean R.; Fenster, Brett E.
2016-01-01
Abstract Our objective was to determine whether left ventricular (LV) vorticity (ω), the local spinning motion of a fluid element, correlated with markers of ventricular interdependency in pulmonary hypertension (PH). Maladaptive ventricular interdependency is associated with interventricular septal shift, impaired LV performance, and poor outcomes in PH patients, yet the pathophysiologic mechanisms underlying fluid-structure interactions in ventricular interdependency are incompletely understood. Because conformational changes in chamber geometry affect blood flow formations and dynamics, LV ω may be a marker of LV-RV (right ventricular) interactions in PH. Echocardiography was performed for 13 PH patients and 10 controls for assessment of interdependency markers, including eccentricity index (EI), and biventricular diastolic dysfunction, including mitral valve (MV) and tricuspid valve (TV) early and late velocities (E and A, respectively) as well as MV septal and lateral early tissue Doppler velocities (e′). Same-day 4-dimensional cardiac magnetic resonance was performed for LV E (early)-wave ω measurement. LV E-wave ω was significantly decreased in PH patients (P = 0.008) and correlated with diastolic EI (Rho = −0.53, P = 0.009) as well as with markers of LV diastolic dysfunction, including MV E(Rho = 0.53, P = 0.011), E/A (Rho = 0.56, P = 0.007), septal e′ (Rho = 0.63, P = 0.001), and lateral e′ (Rho = 0.57, P = 0.007). Furthermore, LV E-wave ω was associated with indices of RV diastolic dysfunction, including TV e′ (Rho = 0.52, P = 0.012) and TV E/A (Rho = 0.53, P = 0.009). LV E-wave ω is decreased in PH and correlated with multiple echocardiographic markers of ventricular interdependency. LV ω may be a novel marker for fluid-tissue biomechanical interactions in LV-RV interdependency. PMID:27162613
Anthony, P P; Ramani, P
1991-01-01
A new monoclonal antibody, QB-END/10, raised against the CD34 antigen in human endothelial cell membranes and haemopoietic progenitor cells, was studied for its usefulness as a marker of neoplastic vascular cells in 21 angiosarcomas and seven malignant haemangioendotheliomas of the liver. QB-END/10 was both more sensitive and more specific than Von Willebrand factor (VWF) and Ulex europaeus 1 agglutinin (UEA-1) in labelling endothelial cells and it did not cross react with epithelia as UEA-1 often does. Staining was uniformly strong and clear in all histological variants of these two tumours. QB-END/10 should prove particularly useful in the differential diagnosis of malignant vascular tumours of the liver.
Anthony, P P; Ramani, P
1991-01-01
A new monoclonal antibody, QB-END/10, raised against the CD34 antigen in human endothelial cell membranes and haemopoietic progenitor cells, was studied for its usefulness as a marker of neoplastic vascular cells in 21 angiosarcomas and seven malignant haemangioendotheliomas of the liver. QB-END/10 was both more sensitive and more specific than Von Willebrand factor (VWF) and Ulex europaeus 1 agglutinin (UEA-1) in labelling endothelial cells and it did not cross react with epithelia as UEA-1 often does. Staining was uniformly strong and clear in all histological variants of these two tumours. QB-END/10 should prove particularly useful in the differential diagnosis of malignant vascular tumours of the liver. Images PMID:1705261
Alcohol Intoxication Impact on Outcome from Traumatic Injury
2011-05-01
in urine output and decreased urine osmolality as compared to dextrose-infused and no infusion controls; however, at the completion of the infusion...levels of alanine amino transferase (ALT) and blood urea nitrogen (BUN), markers of hepatic and renal damage and dysfunction respectively. To examine...hepatic injury and dysfunction, as well as blood urea nitrogen (BUN) and creatinine, makers of renal dysfunction, were elevated following delayed
Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji
2017-08-22
Accumulating evidence implicates mitochondrial dysfunction-induced insulin resistance in skeletal muscle as the root cause for the greatest hallmarks of type 2 diabetes (T2D). However, the identification of specific metabolite-based markers linked to mitochondrial dysfunction in T2D has not been adequately addressed. Therefore, we sought to identify the markers-based metabolomics for mitochondrial dysfunction associated with T2D. First, a cellular disease model was established using human myotubes treated with antimycin A, an oxidative phosphorylation inhibitor. Non-targeted metabolomic profiling of intracellular-defined metabolites on the cultured myotubes with mitochondrial dysfunction was then determined. Further, a targeted MS-based metabolic profiling of fasting blood plasma from normal (n = 32) and T2D (n = 37) subjects in a cross-sectional study was verified. Multinomial logical regression analyses for defining the top 5% of the metabolites within a 95% group were employed to determine the differentiating metabolites. The myotubes with mitochondrial dysfunction exhibited insulin resistance, oxidative stress and inflammation with impaired insulin signalling activities. Four metabolic pathways were found to be strongly associated with mitochondrial dysfunction in the cultured myotubes. Metabolites derived from these pathways were validated in an independent pilot investigation of the fasting blood plasma of healthy and diseased subjects. Targeted metabolic analysis of the fasting blood plasma with specific baseline adjustment revealed 245 significant features based on orthogonal partial least square discriminant analysis (PLS-DA) with a p-value < 0.05. Among these features, 20 significant metabolites comprised primarily of branched chain and aromatic amino acids, glutamine, aminobutyric acid, hydroxyisobutyric acid, pyroglutamic acid, acylcarnitine species (acetylcarnitine, propionylcarnitine, dodecenoylcarnitine, tetradecenoylcarnitine hexadecadienoylcarnitine and oleylcarnitine), free fatty acids (palmitate, arachidonate, stearate and linoleate) and sphingomyelin (d18:2/16:0) were identified as predictive markers for mitochondrial dysfunction in T2D subjects. The current study illustrates how cellular metabolites provide potential signatures associated with the biochemical changes in the dysregulated body metabolism of diseased subjects. Our finding yields additional insights into the identification of robust biomarkers for T2D associated with mitochondrial dysfunction in cultured myotubes.
Ghosh, Amiya Kumar; Mau, Theresa; O'Brien, Martin; Garg, Sanjay; Yung, Raymond
2016-10-24
Adipose tissue dysfunction in aging is associated with inflammation, metabolic syndrome and other diseases. We propose that impaired protein homeostasis due to compromised lysosomal degradation (micro-autophagy) might promote aberrant ER stress response and inflammation in aging adipose tissue. Using C57BL/6 mouse model, we demonstrate that adipose tissue-derived stromal vascular fraction (SVF) cells from old (18-20 months) mice have reduced expression of autophagy markers as compared to the younger (4-6 months) cohort. Elevated expressions of ER-stress marker CHOP and autophagy substrate SQSTM1/p62 are observed in old SVFs compared to young, when treated with either vehicle or with thapsigargin (Tg), an ER stress inducer. Treatment with bafilomycin A1 (Baf), a vacuolar-type H (+)-ATPase, or Tg elevated expressions of CHOP, and SQSTM1/p62 and LC-3-II, in 3T3-L1-preadipocytes. We also demonstrate impaired autophagy activity in old SVFs by analyzing increased accumulation of autophagy substrates LC3-II and p62. Compromised autophagy activity in old SVFs is correlated with enhanced release of pro-inflammatory cytokines IL-6 and MCP-1. Finally, SVFs from calorie restricted old mice (CR-O) have shown enhanced autophagy activity compared to ad libitum fed old mice (AL-O). Our results support the notion that diminished autophagy activity with aging contributes to increased adipose tissue ER stress and inflammation.
Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.
Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M
2018-03-01
Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Deleterious effects of tributyltin on porcine vascular stem cells physiology.
Bernardini, Chiara; Zannoni, Augusta; Bertocchi, Martina; Bianchi, Francesca; Salaroli, Roberta; Botelho, Giuliana; Bacci, Maria Laura; Ventrella, Vittoria; Forni, Monica
2016-01-01
The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
MacDonald, Stuart W. S.; Vergote, David; Jhamandas, Jack; Westaway, David; Dixon, Roger A.
2016-01-01
Objectives: Mild cognitive impairment (MCI) is a high-risk condition for progression to Alzheimer’s disease (AD). Vascular health is a key mechanism underlying age-related cognitive decline and neurodegeneration. AD-related genetic risk factors may be associated with preclinical cognitive status changes. We examine independent and cross-domain interactive effects of vascular and genetic markers for predicting MCI status and stability. Method: We used cross-sectional and 2-wave longitudinal data from the Victoria Longitudinal Study, including indicators of vascular health (e.g., reported vascular diseases, measured lung capacity and pulse rate) and genetic risk factors—that is, apolipoprotein E (APOE; rs429358 and rs7412; the presence vs absence of ε4) and catechol-O-methyltransferase (COMT; rs4680; met/met vs val/val). We examined associations with objectively classified (a) cognitive status at baseline (not impaired congnitive (NIC) controls vs MCI) and (b) stability or transition of cognitive status across a 4-year interval (stable NIC–NIC vs chronic MCI–MCI or transitional NIC–MCI). Results: Using logistic regression, indicators of vascular health, both independently and interactively with APOE ε4, were associated with risk of MCI at baseline and/or associated with MCI conversion or MCI stability over the retest interval. Discussion: Several vascular health markers of aging predict MCI risk. Interactively, APOE ε4 may intensify the vascular health risk for MCI. PMID:26362601
Kofler, Natalie M.; Cuervo, Henar; Uh, Minji K.; Murtomäki, Aino; Kitajewski, Jan
2015-01-01
Pericytes regulate vessel stability and pericyte dysfunction contributes to retinopathies, stroke, and cancer. Here we define Notch as a key regulator of pericyte function during angiogenesis. In Notch1+/−; Notch3−/− mice, combined deficiency of Notch1 and Notch3 altered pericyte interaction with the endothelium and reduced pericyte coverage of the retinal vasculature. Notch1 and Notch3 were shown to cooperate to promote proper vascular basement membrane formation and contribute to endothelial cell quiescence. Accordingly, loss of pericyte function due to Notch deficiency exacerbates endothelial cell activation caused by Notch1 haploinsufficiency. Mice mutant for Notch1 and Notch3 develop arteriovenous malformations and display hallmarks of the ischemic stroke disease CADASIL. Thus, Notch deficiency compromises pericyte function and contributes to vascular pathologies. PMID:26563570
Sies, Helmut; Hollman, Peter C.H.; Grune, Tilman; Stahl, Wilhelm; Biesalski, Hans K.; Williamson, Gary
2012-01-01
Criteria for assessing the purported protection by flavanol-rich foods against vascular dysfunction and oxidative damage to biomolecules was the subject of the 27th Hohenheim Consensus Conference held on July 11, 2011. State-of-the-art evidence was put into perspective, focusing on several questions that were followed by a consensus answer. Among the topics addressed were the major sources of flavanols in the human diet, the bioavailability of flavanols, biomarkers for “health benefit,” and the biological function of flavanols. Consensus was reached on these topics. No conclusion was reached on the design of randomized, controlled trials for substantiation of health claims for flavanol-rich foods as to the necessity of a study arm with an isolated pharmacologically active compound, e.g., (−)-epicatechin. PMID:22516731