Blanch, N; Clifton, P M; Keogh, J B
2015-03-01
To review the relationships between: 1) Potassium and endothelial function; 2) Fruits and vegetables and endothelial function; 3) Potassium and other measures of vascular function; 4) Fruits and vegetables and other measures of vascular function. An electronic search for intervention trials investigating the effect of potassium, fruits and vegetables on vascular function was performed in MEDLINE, EMBASE and the Cochrane Library. Potassium appears to improve endothelial function with a dose of >40 mmol/d, however the mechanisms for this effect remain unclear. Potassium may improve measures of vascular function however this effect may be dependent on the effect of potassium on blood pressure. The effect of fruit and vegetables on endothelial function independent of confounding variables is less clear. Increased fruit and vegetable intake may improve vascular function only in high risk populations. Increasing dietary potassium appears to improve vascular function but the effect of increasing fruit and vegetable intake per se on vascular function is less clear. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin
2010-06-14
Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.
Yeh, Yi-Chun; Huang, Mei-Feng; Hwang, Shang-Jyh; Tsai, Jer-Chia; Liu, Tai-Ling; Hsiao, Shih-Ming; Yang, Yi-Hsin; Kuo, Mei-Chuan; Chen, Cheng-Sheng
2016-07-01
Patients with chronic kidney disease (CKD) have been found to have cognitive impairment. However, the core features and clinical correlates of cognitive impairment are still unclear. Elevated homocysteine levels are present in CKD, and this is a risk factor for cognitive impairment and vascular diseases in the general population. Thus, this study investigated the core domains of cognitive impairment and investigated the associations of homocysteine level and vascular burden with cognitive function in patients with CKD. Patients with CKD aged ≥ 50 years and age- and sex-matched normal comparisons were enrolled. The total fasting serum homocysteine level was measured. Vascular burden was assessed using the Framingham Cardiovascular Risk Scale. Cognitive function was evaluated using comprehensive neuropsychological tests. A total of 230 patients with CKD and 92 comparisons completed the study. Memory impairment and executive dysfunction were identified as core features of cognitive impairment in the CKD patients. Among the patients with CKD, higher serum homocysteine levels (β = -0.17, p = 0.035) and higher Framingham Cardiovascular Risk Scale scores (β = -0.18, p = 0.013) were correlated with poor executive function independently. However, an association with memory function was not noted. Our results showed that an elevated homocysteine level and an increased vascular burden were independently associated with executive function, but not memory, in CKD patients. This findings suggested the co-existence of vascular and non-vascular hypotheses regarding executive dysfunction in CKD patients. Meanwhile, other risk factors related to CKD itself should be investigated in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Blood pressure and mesenteric resistance arterial function after spaceflight
NASA Technical Reports Server (NTRS)
Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Coste, Sarah; Roullet, Jean Baptiste; McCarron, David A.
2002-01-01
Ground studies indicate that spaceflight may diminish vascular contraction. To examine that possibility, vascular function was measured in spontaneously hypertensive rats immediately after an 18-day shuttle flight. Isolated mesenteric resistance arterial responses to cumulative additions of norepinephrine, acetylcholine, and sodium nitroprusside were measured using wire myography within 17 h of landing. After flight, maximal contraction to norepinephrine was attenuated (P < 0.001) as was relaxation to acetylcholine (P < 0.001) and sodium nitroprusside (P < 0.05). At high concentrations, acetylcholine caused vascular contraction in vessels from flight animals but not in vessels from vivarium control animals (P < 0.05). The results are consistent with data from ground studies and indicate that spaceflight causes both endothelial-dependent and endothelial-independent alterations in vascular function. The resulting decrement in vascular function may contribute to orthostatic intolerance after spaceflight.
Cross, M D; Mills, N L; Al-Abri, M; Riha, R; Vennelle, M; Mackay, T W; Newby, D E; Douglas, N J
2008-07-01
The obstructive sleep apnoea/hypopnoea syndrome (OSAHS) is associated with hypertension and increased cardiovascular risk, particularly when accompanied by marked nocturnal hypoxaemia. The mechanisms of these associations are unclear. We hypothesised that OSAHS combined with severe nocturnal hypoxaemia causes impaired vascular function that can be reversed by continuous positive airways pressure (CPAP) therapy. We compared vascular function in two groups of patients with OSAHS: 27 with more than 20 4% desaturations/h (desaturator group) and 19 with no 4% and less than five 3% desaturations/h (non-desaturator group). In a randomised, double blind, placebo controlled, crossover trial, the effect of 6 weeks of CPAP therapy on vascular function was determined in the desaturator group. In all studies, vascular function was assessed invasively by forearm venous occlusion plethysmography during intra-arterial infusion of endothelium dependent (acetylcholine 5-20 microg/min and substance P 2-8 pmol/min) and independent (sodium nitroprusside 2-8 microg/min) vasodilators. Compared with the non-desaturator group, patients with OSAHS and desaturations had reduced vasodilatation to all agonists (p = 0.007 for all). The apnoea/hypopnoea index and desaturation frequency were inversely related to peak vasodilatation with acetylcholine (r = -0.44, p = 0.002 and r = -0.43, p = 0.003) and sodium nitroprusside (r = -0.42, p = 0.009 and r = -0.37, p = 0.02). In comparison with placebo, CPAP therapy improved forearm blood flow to all vasodilators (p = 0.01). Patients with OSAHS and frequent nocturnal desaturations have impaired endothelial dependent and endothelial independent vasodilatation that is proportional to hypoxaemia and is improved by CPAP therapy. Impaired vascular function establishes an underlying mechanism for the adverse cardiovascular consequences of OSAHS.
Chavkin, Nicholas W.; Jun Chia, Jia; Crouthamel, Matthew H.; Giachelli, Cecilia M.
2015-01-01
Vascular calcification (VC) is prevalent in chronic kidney disease and elevated serum inorganic phosphate (Pi) is a recognized risk factor. The type III sodium-dependent phosphate transporter, PiT-1, is required for elevated Pi-induced osteochondrogenic differentiation and matrix mineralization in vascular smooth muscle cells (VSMCs). However, the molecular mechanism(s) by which PiT-1 promotes these processes is unclear. In the present study, we confirmed that the Pi concentration required to induce osteochondrogenic differentiation and matrix mineralization of mouse VSMCs was well above that required for maximal Pi uptake, suggesting a signaling function of PiT-1 that was independent of Pi transport. Elevated Pi-induced signaling via ERK1/2 phosphorylation was abrogated in PiT-1 deficient VSMCs, but could be rescued by wild-type (WT) and a Pi transport-deficient PiT-1 mutant. Furthermore, both WT and transport-deficient PiT-1 mutants promoted osteochondrogenic differentiation as measured by decreased SM22α and increased osteopontin mRNA expression. Finally, compared to vector alone, expression of transport-deficient PiT-1 mutants promoted VSMC matrix mineralization, but not to the extent observed with PiT-1 WT. These data suggest that both Pi uptake-dependent and -independent functions of PiT-1 are important for VSMC processes mediating vascular calcification. PMID:25684711
Hypothermia Inhibits Endothelium-Independent Vascular Contractility via Rho-kinase Inhibition
Chung, Yoon Hee; Oh, Keon Woong; Kim, Sung Tae; Park, Eon Sub; Je, Hyun Dong; Yoon, Hyuk-Jun; Sohn, Uy Dong; Jeong, Ji Hoon; La, Hyen-Oh
2018-01-01
The present study was undertaken to investigate the influence of hypothermia on endothelium-independent vascular smooth muscle contractility and to determine the mechanism underlying the relaxation. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Hypothermia significantly inhibited fluoride-, thromboxane A2-, phenylephrine-, and phorbol ester-induced vascular contractions regardless of endothelial nitric oxide synthesis, suggesting that another pathway had a direct effect on vascular smooth muscle. Hypothermia significantly inhibited the fluoride-induced increase in pMYPT1 level and phorbol ester-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxing effect of moderate hypothermia on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activities. PMID:28208012
2013-01-01
Introduction Patients with rheumatoid arthritis (RA) are at an increased risk for cardiovascular disease (CVD). An early manifestation of CVD is endothelial dysfunction which can lead to functional and morphological vascular abnormalities. Classical CVD risk factors and inflammation are both implicated in causing endothelial dysfunction in RA. The objective of the present study was to examine the effect of baseline inflammation, cumulative inflammation, and classical CVD risk factors on the vasculature following a six-year follow-up period. Methods A total of 201 RA patients (155 females, median age (25th to 75th percentile): 61 years (53 to 67)) were examined at baseline (2006) for presence of classical CVD risk factors and determination of inflammation using C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). At follow-up (2012) patients underwent assessments of microvascular and macrovascular endothelium-dependent and endothelium-independent function, along with assessment of carotid atherosclerosis. The CRP and ESR were recorded from the baseline study visit to the follow-up visit for each patient to calculate cumulative inflammatory burden. Results Classical CVD risk factors, but not RA disease-related inflammation, predicted microvascular endothelium-dependent and endothelium-independent function, macrovascular endothelium-independent function and carotid atherosclerosis. These findings were similar in a sub-group of patients free from CVD, and not receiving non-steroidal anti-inflammatory drugs, cyclooxygenase 2 inhibitors or biologics. Cumulative inflammation was not associated with microvascular and macrovascular endothelial function, but a weak association was apparent between area under the curve for CRP and carotid atherosclerosis. Conclusions Classical CVD risk factors may be better long-term predictors of vascular function and morphology than systemic disease-related inflammation in patients with RA. Further studies are needed to confirm if assessments of vascular function and morphology are predictive of long-term CV outcomes in RA. PMID:24289091
BIOLOGICAL AND BIOPHYSICAL PROPERTIES OF VASCULAR CONNEXIN CHANNELS
Johnstone, Scott; Isakson, Brant; Locke, Darren
2010-01-01
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell type-independent and cell type-specific transcription factors, posttranslational modification and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this review in the physiological and pathophysiological context of vessel function. PMID:19815177
Liu, Huan; Liu, Jinbo; Zhao, Hongwei; Zhou, Yingyan; Li, Lihong; Wang, Hongyu
2018-03-01
The study was done to establish the relationship between serum uric acid (UA) and vascular function and structure parameters including carotid femoral pulse wave velocity (CF-PWV), carotid radial pulse wave velocity (CR-PWV), cardio ankle vascular index (CAVI), ankle brachial index (ABI), and carotid intima-media thickness (CIMT), and the gender difference in a real-world population from China. A total of 979 subjects were enrolled (aged 60.86±11.03 years, male 416 and female 563). Value of UA was divided by 100 (UA/100) for analysis. Body mass index (BMI), diastolic blood pressure (DBP), fasting plasma glucose (FPG), UA, and UA/100 were significantly higher in males compared with females (all p<0.05); pulse pressure (PP), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C) were lower in males than females (all p<0.05). All vascular parameters including CF-PWV, CR-PWV, CAVI, ABI, and CIMT were higher in males than females (all p<0.05). Multiple linear regression analysis showed that UA/100 was independently positively linearly correlated with CAVI (B=0.143, p=0.001) and negatively correlated with ABI in the male population (B=-0.012, p=0.020). In people with higher UA, the risk of higher CF-PWV was 1.593 (p<0.05). 1. All vascular parameters were higher in males than females. There was no gender difference in the relationship between UA and vascular markers except in ABI. 2. UA was independently linearly correlated with CAVI. 3. In people with higher UA level, the risk of higher CF-PWV increased. Therefore, higher UA may influence the vascular function mainly instead of vascular structure.
GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.
Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng
2016-02-01
The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. Copyright © 2016 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timko, Michael P
2013-02-01
The biosynthesis of chlorophyll is a critical biochemical step in the development of photosynthetic vascular plants and green algae. From photosynthetic bacteria (cyanobacteria) to algae, non-vascular plants, gymnosperms and vascular plants, mechanisms have evolved for protochlorophyllide reduction a key step in chlorophyll synthesis. Protochlorophyllide reduction is carried out by both a light-dependent (POR) and light-independent (LIPOR) mechanisms. NADPH: protochlorophyllide oxidoreductase (EC 1.3.1.33, abbreviated POR) catalyzes the light-dependent reduction of protochlorophyllide (PChlide) to chlorophyllide (Chlide). In contrast, a light-independent protochlorophyllide reductase (LIPOR) involves three plastid gene products (chlL, chlN, and chlB) and several nuclear factors. Our work focused on characterization ofmore » both the POR and LIPOR catalyzed processes.« less
Moien-Afshari, Farzad; Ghosh, Sanjoy; Elmi, Shahrzad; Khazaei, Majid; Rahman, Mohammad M; Sallam, Nada; Laher, Ismail
2008-10-01
Regulation of coronary function in diabetic hearts is an important component in preventing ischemic cardiac events but remains poorly studied. Exercise is recommended in the management of diabetes, but its effects on diabetic coronary function are relatively unknown. We investigated coronary artery myogenic tone and endothelial function, essential elements in maintaining vascular fluid dynamics in the myocardium. We hypothesized that exercise reduces pressure-induced myogenic constriction of coronary arteries while improving endothelial function in db/db mice, a model of type 2 diabetes. We used pressurized mouse coronary arteries isolated from hearts of control and db/db mice that were sedentary or exercised for 1 h/day on a motorized exercise-wheel system (set at 5.2 m/day, 5 days/wk). Exercise caused a approximately 10% weight loss in db/db mice and decreased whole body oxidative stress, as measured by plasma 8-isoprostane levels, but failed to improve hyperglycemia or plasma insulin levels. Exercise did not alter myogenic regulation of arterial diameter stimulated by increased transmural pressure, nor did it alter smooth muscle responses to U-46619 (a thromboxane agonist) or sodium nitroprusside (an endothelium-independent dilator). Moderate levels of exercise restored ACh-simulated, endothelium-dependent coronary artery vasodilation in db/db mice and increased expression of Mn SOD and decreased nitrotyrosine levels in hearts of db/db mice. We conclude that the vascular benefits of moderate levels of exercise were independent of changes in myogenic tone or hyperglycemic status and primarily involved increased nitric oxide bioavailability in the coronary microcirculation.
Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders.
Tanwar, Jyoti; Trebak, Mohamed; Motiani, Rajender K
2017-01-01
Store-operated Ca 2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca 2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca 2+ levels and transmits the message to plasma membrane Ca 2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca 2+ influx into the cells. This increase in cytosolic Ca 2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.
Vauzour, David; Houseman, Emily J; George, Trevor W; Corona, Giulia; Garnotel, Roselyne; Jackson, Kim G; Sellier, Christelle; Gillery, Philippe; Kennedy, Orla B; Lovegrove, Julie A; Spencer, Jeremy P E
2010-04-01
Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.
Peyton, Kelly J.; Yu, Yajie; Yates, Benjamin; Shebib, Ahmad R.; Liu, Xiao-ming; Wang, Hong
2011-01-01
6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine (compound C) is a cell-permeable pyrrazolopyrimidine derivative that acts as a potent inhibitor of AMP-activated protein kinase (AMPK). Although compound C is often used to determine the role of AMPK in various physiological processes, it also evokes AMPK-independent actions. In the present study, we investigated whether compound C influences vascular smooth muscle cell (SMC) function through the AMPK pathway. Treatment of rat aortic SMCs with compound C (0.02–10 μM) inhibited vascular SMC proliferation and migration in a concentration-dependent fashion. These actions of compound C were not mimicked or affected by silencing AMPKα expression or infecting SMCs with an adenovirus expressing a dominant-negative mutant of AMPK. In contrast, the pharmacological activator of AMPK 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibited the proliferation and migration of SMCs in a manner that was strictly dependent on AMPK activity. Flow cytometry experiments revealed that compound C arrested SMCs in the G0/G1 phase of the cell cycle, and this was associated with a decrease in cyclin D1 and cyclin A protein expression and retinoblastoma protein phosphorylation and an increase in p21 protein expression. Finally, local perivascular delivery of compound C immediately after balloon injury of rat carotid arteries markedly attenuated neointima formation. These studies identify compound C as a novel AMPK-independent regulator of vascular SMC function that exerts inhibitory effects on SMC proliferation and migration and neointima formation after arterial injury. Compound C represents a potentially new therapeutic agent in treating and preventing occlusive vascular disease. PMID:21566210
Peyton, Kelly J; Yu, Yajie; Yates, Benjamin; Shebib, Ahmad R; Liu, Xiao-ming; Wang, Hong; Durante, William
2011-08-01
6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine (compound C) is a cell-permeable pyrrazolopyrimidine derivative that acts as a potent inhibitor of AMP-activated protein kinase (AMPK). Although compound C is often used to determine the role of AMPK in various physiological processes, it also evokes AMPK-independent actions. In the present study, we investigated whether compound C influences vascular smooth muscle cell (SMC) function through the AMPK pathway. Treatment of rat aortic SMCs with compound C (0.02-10 μM) inhibited vascular SMC proliferation and migration in a concentration-dependent fashion. These actions of compound C were not mimicked or affected by silencing AMPKα expression or infecting SMCs with an adenovirus expressing a dominant-negative mutant of AMPK. In contrast, the pharmacological activator of AMPK 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibited the proliferation and migration of SMCs in a manner that was strictly dependent on AMPK activity. Flow cytometry experiments revealed that compound C arrested SMCs in the G(0)/G(1) phase of the cell cycle, and this was associated with a decrease in cyclin D1 and cyclin A protein expression and retinoblastoma protein phosphorylation and an increase in p21 protein expression. Finally, local perivascular delivery of compound C immediately after balloon injury of rat carotid arteries markedly attenuated neointima formation. These studies identify compound C as a novel AMPK-independent regulator of vascular SMC function that exerts inhibitory effects on SMC proliferation and migration and neointima formation after arterial injury. Compound C represents a potentially new therapeutic agent in treating and preventing occlusive vascular disease.
Wiest, Reiner; Jurzik, Lars; Moleda, Lukas; Froh, Matthias; Schnabl, Bernd; von Hörsten, Stephan; Schölmerich, Juergen; Straub, Rainer H
2006-03-01
Vascular hyporeactivity to catecholamines contributes to arterial vasodilation and hemodynamic dysregulation in portal hypertension. Neuropeptide Y (NPY) is a sympathetic neurotransmitter facilitating adrenergic vasoconstriction via Y1-receptors on the vascular smooth muscle. Therefore, we investigated its role for vascular reactivity in the superior mesenteric artery (SMA) of portal vein ligated (PVL) and sham operated rats. In vitro perfused SMA vascular beds of rats were tested for the cumulative dose-response to NPY dependent on the presence and level of alpha1-adrenergic vascular tone (methoxamine MT: 0.3-10 microM). Moreover, the effect of NPY (50 nM) on vascular responsiveness to alpha1-adrenergic stimulation (MT: 0.3-300 microM) was evaluated. Y1-receptor function was tested by Y1-selective inhibition using BIBP-3226 (1 microM). NPY dose-dependently and endothelium-independently enhanced MT-pre-constriction in SMA. This potentiation was increasingly effective with increasing adrenergic pre-stimulation and being more pronounced in PVL rats as compared to sham rats at high MT concentrations. NPY enhanced vascular contractility only in PVL rats correcting the adrenergic vascular hyporeactivity. Y1-receptor inhibition completely abolished NPY-evoked vasoconstrictive effects. NPY endothelium-independently potentiates adrenergic vasoconstriction via Y1-receptors being more pronounced in portal hypertension improving mesenteric vascular contractility and thereby correcting the splanchnic vascular hyporeactivity. This makes NPY a superior vasoconstrictor counterbalancing arterial vasodilation in portal hypertension.
Acute effect of mineralocorticoid receptor antagonism on vascular function in healthy older adults.
Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H; English, Mark; Talcott, Susanne; Jaffe, Iris Z; Christou, Demetra D
2016-01-01
Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 years; mean±SE, 53-79 years) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4 mg) following eplerenone (100 mg/dose, 2 doses, 24h between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6%, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOS(Ser1177) to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5%, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77±4/2 mmHg, P≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure. Copyright © 2015 Elsevier Inc. All rights reserved.
Vascular endothelial function and oxidative stress mechanisms in patients with Behçet's syndrome.
Chambers, J C; Haskard, D O; Kooner, J S
2001-02-01
We sought to test the hypothesis that vascular endothelial function is impaired in Behçet's syndrome and reflects increased levels of oxidative stress. Behçet's syndrome is a multisystem inflammatory disorder commonly complicated by vascular thrombosis and arterial aneurysm formation. The precise mechanisms underlying vascular disease in Behçet's syndrome are not known. We studied 19 patients with Behçet's syndrome (18 to 50 years old, 9 men) and 21 healthy volunteers (18 to 50 years old, 10 men). Brachial artery flow-mediated dilation (endothelium-dependent), and nitroglycerin (NTG)-induced dilation (endothelium-independent) were measured. To investigate oxidative stress mechanisms, vascular studies were repeated 1 h after administration of vitamin C (1 g, intravenous) in 12 patients and 12 control subjects. Flow-mediated dilation was reduced in patients with Behcet's syndrome as compared with control subjects (0.7 +/- 0.9% vs. 5.7 +/- 0.9%, p = 0.001). In contrast, there were no significant differences in the brachial artery diameter (4.2 +/- 0.2 vs. 4.0 +/- 0.2 mm, p = 0.47) or NTG-induced dilation (19.7 +/- 1.9% vs. 19.7 +/- 1.2%, p = 0.98). In regression analysis, Behçet's syndrome was associated with impaired flow-mediated dilation independent of age, gender, brachial artery diameter, blood pressure, cholesterol and glucose. Vitamin C increased flow-mediated dilation in Behçet's syndrome (0.2 +/- 0.7% to 3.5 +/- 1.0%, p = 0.002), but not in control subjects (4.3 +/- 0.6% to 4.7 +/- 0.4%, p = 0.51). In both groups, NTG-induced dilation and brachial artery diameter were unchanged after vitamin C treatment. Vascular endothelial function is impaired in Behcet's syndrome and can be rapidly improved by vitamin C treatment. Our results support a role for oxidative stress in the pathophysiology of Behçet's syndrome and provide a rationale for therapeutic studies aimed at reducing vascular complications in this disorder.
Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh
2016-01-01
Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function. PMID:26759702
Yinon, Yoav; Kingdom, John C P; Odutayo, Ayodele; Moineddin, Rahim; Drewlo, Sascha; Lai, Vesta; Cherney, David Z I; Hladunewich, Michelle A
2010-11-02
Women with a history of placental disease are at increased risk for the future development of vascular disease. It is unknown whether preexisting endothelial dysfunction underlies both the predisposition to placental disease and the later development of vascular disease. The aim of this study was to assess vascular function in postpartum women and to determine whether differences emerged depending on the presentation of placental disease. Women with a history of early-onset preeclampsia (n=15), late-onset preeclampsia (n=9), intrauterine growth restriction without preeclampsia (n=9), and prior normal pregnancy (n=16) were studied 6 to 24 months postpartum. Flow-mediated vasodilatation and flow-independent (glyceryl trinitrate-induced) vasodilatation were studied through the use of high-resolution vascular ultrasound examination of the brachial artery. Arterial stiffness was assessed by pulse-wave analysis (augmentation index). Laboratory assessment included circulating angiogenic factors (vascular endothelial growth factor, soluble fms-like tyrosine kinase 1, placental growth factor, and soluble endoglin). Flow-mediated vasodilatation was significantly reduced in women with previous early-onset preeclampsia and intrauterine growth restriction compared with women with previous late-onset preeclampsia and control subjects (3.2±2.7% and 2.1±1.2% versus 7.9±3.8% and 9.1±3.5%, respectively; P<0.0001). Flow-independent vasodilatation was similar among all groups. Similarly, the radial augmentation index was significantly increased among women with previous early-onset preeclampsia and intrauterine growth restriction, but not among late preeclamptic women and control subjects (P=0.0105). Circulating angiogenic factors were similar in all groups. Only women with a history of early-onset preeclampsia or intrauterine growth restriction without preeclampsia exhibit impaired vascular function, which might explain their predisposition to placental disease and their higher risk of future vascular disease.
Beckman, Joshua A.; Liao, James K.; Hurley, Shauna; Garrett, Leslie A.; Chui, Daoshan; Mitra, Debi; Creager, Mark A.
2009-01-01
Cigarette smoking impairs endothelial function. Hydroxymethylglutaryl (HMG) CoA reductase inhibitors (statins) may favorably affect endothelial function via nonlipid mechanisms. We tested the hypothesis that statins would improve endothelial function independent of changes in lipids in cigarette smokers. Twenty normocholesterolemic cigarette smokers and 20 matched healthy control subjects were randomized to atorvastatin 40 mg daily or placebo for 4 weeks, washed out for 4 weeks, and then crossed-over to the other treatment. Baseline low-density lipoprotein (LDL) levels were similar in smokers and healthy subjects, 103±22 versus 95±27 mg/dL, respectively (P=NS) and were reduced similarly in smokers and control subjects by atorvastatin, to 55±30 and 58±20 mg/dL, respectively (P=NS). Vascular ultrasonography was used to determine brachial artery, flow-mediated, endothelium-dependent, and nitroglycerin-mediated, endothelium-independent vasodilation. To elucidate potential molecular mechanisms that may account for changes in endothelial function, skin biopsy specimens were assayed for eNOS mRNA, eNOS activity, and nitrotyrosine. Endothelium-dependent vasodilation was less in smokers than nonsmoking control subjects during placebo treatment, 8.0±0.6% versus 12.1±1.1%, (P=0.003). Atorvastatin increased endothelium-dependent vasodilation in smokers to 10.5±1.3% (P=0.017 versus placebo) but did not change endothelium-dependent vasodilation in control subjects (to 11.0±0.8%, P=NS). Endothelium-independent vasodilation did not differ between groups during placebo treatment and was not significantly affected by atorvastatin. Multivariate analysis did not demonstrate any association between baseline lipid levels or the change in lipid levels and endothelium-dependent vasodilation. Cutaneous nitrotyrosine levels and skin microvessel eNOS mRNA, but not ENOS activity, were increased in smokers compared with controls but unaffected by atorvastatin treatment. Atorvastatin restores endothelium-dependent vasodilation in normocholesterolemic cigarette smokers independent of changes in lipids. These results are consistent with a lipid-independent vascular benefit of statins but could not be explained by changes in eNOS message and tissue oxidative stress. These findings implicate a potential role for statin therapy to restore endothelial function and thereby investigate vascular disease in cigarette smokers. PMID:15178637
Charlot, Keyne; Romana, Marc; Moeckesch, Berenike; Jumet, Stéphane; Waltz, Xavier; Divialle-Doumdo, Lydia; Hardy-Dessources, Marie-Dominique; Petras, Marie; Tressières, Benoît; Tarer, Vanessa; Hue, Olivier; Etienne-Julan, Maryse; Antoine-Jonville, Sophie; Connes, Philippe
2016-01-01
Vascular resistance and tissue perfusion may be both affected by impaired vascular function and increased blood viscosity. Little is known about the effects of vascular function on the occurrence of painful vaso-occlusive crises (VOC) in children with sickle cell anemia (SCA). The aim of the present study was to determine which side of the balance (blood viscosity or vascular function) is the most deleterious in SCA and increases the risk for frequent hospitalized VOC. Microvascular function, microcirculatory oxygenation and blood viscosity were determined in a group of 22 SCA children/adolescents at steady state and a group of 13 healthy children/adolescents. Univariate analyses demonstrated blunted microvascular reactivity during local thermal heating test and decreased microcirculatory oxygenation in SCA children compared to controls. Multivariate analysis revealed that increased blood viscosity and decreased microcirculatory oxygenation were independent risk factors of frequent VOC in SCA. In contrast, the level of microvascular dysfunction does not predict VOC rate. In conclusion, increased blood viscosity is usually well supported in healthy individuals where vascular function is not impaired. However, in the context of SCA, microvascular function is impaired and any increase of blood viscosity or decrease in microcirculatory oxygenation would increase the risks for frequent VOC. Copyright © 2015 Elsevier Inc. All rights reserved.
Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.
Hall, Wendy L
2009-06-01
The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.
Rabelo, Luiza A; Todiras, Mihail; Nunes-Souza, Valéria; Qadri, Fatimunnisa; Szijártó, István András; Gollasch, Maik; Penninger, Josef M; Bader, Michael; Santos, Robson A; Alenina, Natalia
2016-01-01
Accumulating evidence indicates that angiotensin-converting enzyme 2 (ACE2) plays a critical role in cardiovascular homeostasis, and its altered expression is associated with major cardiac and vascular disorders. The aim of this study was to evaluate the regulation of vascular function and assess the vascular redox balance in ACE2-deficient (ACE2-/y) animals. Experiments were performed in 20-22 week-old C57BL/6 and ACE2-/y male mice. Evaluation of endothelium-dependent and -independent relaxation revealed an impairment of in vitro and in vivo vascular function in ACE2-/y mice. Drastic reduction in eNOS expression at both protein and mRNA levels, and a decrease in •NO concentrations were observed in aortas of ACE2-/y mice in comparison to controls. Consistently, these mice presented a lower plasma and urine nitrite concentration, confirming reduced •NO availability in ACE2-deficient animals. Lipid peroxidation was significantly increased and superoxide dismutase activity was decreased in aorta homogenates of ACE2-/y mice, indicating impaired antioxidant capacity. Taken together, our data indicate, that ACE2 regulates vascular function by modulating nitric oxide release and oxidative stress. In conclusion, we elucidate mechanisms by which ACE2 is involved in the maintenance of vascular homeostasis. Furthermore, these findings provide insights into the role of the renin-angiotensin system in both vascular and systemic redox balance.
Intracranial stenosis in cognitive impairment and dementia.
Hilal, Saima; Xu, Xin; Ikram, M Kamran; Vrooman, Henri; Venketasubramanian, Narayanaswamy; Chen, Christopher
2017-06-01
Intracranial stenosis is a common vascular lesion observed in Asian and other non-Caucasian stroke populations. However, its role in cognitive impairment and dementia has been under-studied. We, therefore, examined the association of intracranial stenosis with cognitive impairment, dementia and their subtypes in a memory clinic case-control study, where all subjects underwent detailed neuropsychological assessment and 3 T neuroimaging including three-dimensional time-of-flight magnetic resonance angiography. Intracranial stenosis was defined as ≥50% narrowing in any of the intracranial arteries. A total of 424 subjects were recruited of whom 97 were classified as no cognitive impairment, 107 as cognitive impairment no dementia, 70 vascular cognitive impairment no dementia, 121 Alzheimer's Disease, and 30 vascular dementia. Intracranial stenosis was associated with dementia (age/gender/education - adjusted odds ratios (OR): 4.73, 95% confidence interval (CI): 1.93-11.60) and vascular cognitive impairment no dementia (OR: 3.98, 95% CI: 1.59-9.93). These associations were independent of cardiovascular risk factors and MRI markers. However, the association with Alzheimer's Disease and vascular dementia became attenuated in the presence of white matter hyperintensities. Intracranial stenosis is associated with vascular cognitive impairment no dementia independent of MRI markers. In Alzheimer's Disease and vascular dementia, this association is mediated by cerebrovascular disease. Future studies focusing on perfusion and functional markers are needed to determine the pathophysiological mechanism(s) linking intracranial stenosis and cognition so as to identify treatment strategies.
Boddi, M; Poggesi, L; Coppo, M; Zarone, N; Sacchi, S; Tania, C; Neri Serneri, G G
1998-03-01
A growing body of evidence supports the existence of a tissue-based renin-angiotensin system (RAS) in the vasculature, but the functional capacity of vascular RAS was not investigated in humans. In 28 normotensive healthy control subjects, the metabolism of angiotensins through vascular tissue was investigated in normal, low, and high sodium diets by the measurement of arterial-venous gradient of endogenous angiotensin (Ang) I and Ang II in two different vascular beds (forearm and leg), combined with the study of 125I-Ang I and 125I-Ang II kinetics. In normal sodium diet subjects, forearm vascular tissue extracted 36+/-6% of 125I-Ang I and 30+/-5% of 125I-Ang II and added 14.9+/-5.1 fmol x 100 mL(-1) x min(-1) of de novo formed Ang I and 6.2+/-2.8 fmol x 100 mL(-1) x min(-1) of Ang II to antecubital venous blood. Fractional conversion of 125I-Ang I through forearm vascular tissue was about 12%. Low sodium diet increased (P<.01) plasma renin activity, whereas de novo Ang I and Ang II formation by forearm vascular tissue became undetectable. Angiotensin degradation (33+/-7% for Ang I and 30+/-7% for Ang II) was unchanged, and vascular fractional conversion of 125I-Ang I decreased from 12% to 6% (P<.01). In high sodium diet subjects, plasma renin activity decreased, and de novo Ang I and Ang II formation by forearm vascular tissue increased to 22 and 14 fmol x 100 mL(-1) x min(-1), respectively (P<.01). Angiotensin degradation did not significantly change, whereas fractional conversion of 125I-Ang I increased from 12% to 20% (P<.01). Leg vascular tissue functional activities of RAS paralleled those of forearm vascular tissue both at baseline and during different sodium intake. These results provide consistent evidence for the existence of a functional tissue-based RAS in vascular tissue of humans. The opposite changes of plasma renin activity and vascular angiotensin formation indicate that vascular RAS is independent from but related to circulating RAS.
Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.
2013-01-01
Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (p<0.005). Low sodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID:23141486
Ehret, Fanny; Vogler, Steffen; Pojar, Sherin; Elliott, David A; Bradke, Frank; Steiner, Barbara; Kempermann, Gerd
2015-03-01
Could impaired adult hippocampal neurogenesis be a relevant mechanism underlying CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy)? Memory symptoms in CADASIL, the most common hereditary form of vascular dementia, are usually thought to be primarily due to vascular degeneration and white matter lacunes. Since adult hippocampal neurogenesis, a process essential for the integration of new spatial memory occurs in a highly vascularized niche, we considered dysregulation of adult neurogenesis as a potential mechanism for the manifestation of dementia in CADASIL. Analysis in aged mice overexpressing Notch3 with a CADASIL mutation, revealed vascular deficits in arteries of the hippocampal fissure but not in the niche of the dentate gyrus. At 12 months of age, cell proliferation and survival of newborn neurons were reduced not only in CADASIL mice but also in transgenic controls overexpressing wild type Notch3. At 6 months, hippocampal neurogenesis was altered in CADASIL mice independent of overt vascular abnormalities in the fissure. Further, we identified Notch3 expression in hippocampal precursor cells and maturing neurons in vivo as well as in cultured hippocampal precursor cells. Overexpression and knockdown experiments showed that Notch3 signaling negatively regulated precursor cell proliferation. Notch3 overexpression also led to deficits in KCl-induced precursor cell activation. This suggests a cell-autonomous effect of Notch3 signaling in the regulation of precursor proliferation and activation and a loss-of-function effect in CADASIL. Consequently, besides vascular damage, aberrant precursor cell proliferation and differentiation due to Notch3 dysfunction might be an additional independent mechanism for the development of hippocampal dysfunction in CADASIL. Copyright © 2014. Published by Elsevier Inc.
Ochi, Noriki; Yoshinaga, Keiichiro; Ito, Yoichi M; Tomiyama, Yuuki; Inoue, Mamiko; Nishida, Mutsumi; Manabe, Osamu; Shibuya, Hitoshi; Shimizu, Chikara; Suzuki, Eriko; Fujii, Satoshi; Katoh, Chietsugu; Tamaki, Nagara
2016-10-01
Comprehensive evaluation of endothelium-dependent and endothelium-independent vascular functions in peripheral arteries and coronary arteries in smokers has never been performed previously. Through the use of brachial artery ultrasound and oxygen-15-labeled water positron emission tomography (PET), we sought to investigate peripheral and coronary vascular dysfunctions in smokers. Eight smokers and 10 healthy individuals underwent brachial artery ultrasound at rest, during reactive hyperemia [250mmHg cuff occlusion (flow-mediated dilatation (FMD)], and following sublingual nitroglycerin (NTG) administration. Myocardial blood flow (MBF) was assessed through O-15-labeled water PET at rest, during adenosine triphosphate (ATP) administration, and during a cold pressor test (CPT). Through ultrasound, smokers were shown to have significantly reduced %FMD compared to controls (6.62±2.28% vs. 11.29±2.75%, p=0.0014). As assessed by O-15-labeled water PET, smokers were shown to have a significantly lower CPT response than were controls (21.1±9.5% vs. 50.9±16.9%, p=0.0004). There was no relationship between %FMD and CPT response (r=0.40, p=0.097). Endothelium-independent vascular dilatation was similar for both groups in terms of coronary flow reserve with PET (p=0.19). Smokers tended to have lower %NTG in the brachial artery (p=0.055). Smokers exhibited impaired coronary endothelial function as well as peripheral brachial artery endothelial function. In addition, there was no correlation between PET and ultrasound measurements, possibly implying that while smokers may have systemic vascular endothelial dysfunction, the characteristics of that dysfunction may be different in peripheral arteries and coronary arteries. Copyright © 2016. Published by Elsevier Ltd.
Carroll, S M; Heilman, S J; Stremel, R W; Tobin, G R; Barker, J H
1997-04-01
Ischemia of the distal portion of the latissimus dorsi muscle occurs in muscle transfer for cardiomyoplasty and reduces distal muscle contractility and thus the mechanical effectiveness of cardiomyoplasty. We hypothesized that muscle function would be improved by a vascular delay procedure that increases distal muscle perfusion of the latissimus dorsi muscle. The latissimus dorsi muscles of 10 adult mongrel dogs were subjected to a vascular delay procedure on one side and a sham procedure on the other. Following 10 days of vascular delay, muscle perfusion was measured with a laser-Doppler perfusion imager before and after elevation of the muscles as flaps based only on their thoracodorsal neurovascular pedicles. The muscles were wrapped and sutured around silicone chambers (simulating cardiomyoplasty), a stimulating electrode was placed around each thoracodorsal nerve, and the muscles were stimulated to contract in both rhythmic and tetanic fashion. Circumferential (distal and middle latissimus dorsi muscle function) force generation and fatigue rates were measured independently. Circumferential muscle force, circumferential and longitudinal fatigue rate, and distal, middle, and overall perfusion were significantly (p < 0.05) improved in delayed muscle compared with nondelayed muscle. We found that a vascular delay procedure and a 10-day delay adaptation period significantly improve latissimus dorsi muscle flap perfusion and function, particularly in the distal and middle portions of the muscle. Delay should be considered as a means of improving the clinical outcome in cardiomyoplasty.
López-Olóriz, Jorge; López-Cancio, Elena; Arenillas, Juan F; Hernández, María; Jiménez, Marta; Dorado, Laura; Barrios, Maite; Soriano-Raya, Juan José; Miralbell, Júlia; Cáceres, Cynthia; Forés, Rosa; Pera, Guillem; Dávalos, Antoni; Mataró, Maria
2013-10-01
Carotid atherosclerosis has emerged as a relevant contributor to cognitive impairment and dementia whereas the role of intracranial stenosis and vascular resistance in cognition remains unknown. This study aims to assess the association of asymptomatic cervicocerebral atherosclerosis and intracranial vascular resistance with cognitive performance in a large dementia-free population. The Barcelona-AsIA (Asymptomatic Intracranial Atherosclerosis) Neuropsychology Study included 747 Caucasian subjects older than 50 with a moderate-high vascular risk (assessed by REGICOR score) and without history of neither symptomatic vascular disease nor dementia. Extracranial and transcranial color-coded duplex ultrasound examination was performed to assess carotid intima-media thickness (IMT), presence of carotid plaques (ECAD group), intracranial stenosis (ICAD group), and middle cerebral artery pulsatility index (MCA-PI) as a measure of intracranial vascular resistance. Neuropsychological assessment included tests in three cognitive domains: visuospatial skills and speed, verbal memory and verbal fluency. In univariate analyses, carotid IMT, ECAD and MCA-PI were associated with lower performance in almost all cognitive domains, and ICAD was associated with poor performance in some visuospatial and verbal cognitive tests. After adjustment for age, sex, vascular risk score, years of education and depressive symptoms, ECAD remained associated with poor performance in the three cognitive domains and elevated MCA-PI with worse performance in visuospatial skills and speed. Carotid plaques and increased intracranial vascular resistance are independently associated with low cognitive functioning in Caucasian stroke and dementia-free subjects. We failed to find an independent association of intracranial large vessel stenosis with cognitive performance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Vascular wall function in insulin-resistant JCR:LA-cp rats: role of male and female sex.
O'Brien, S F; Russell, J C; Dolphin, P J; Davidge, S T
2000-08-01
Vascular wall function was assessed in obese insulin-resistant (cp/cp) and lean normal (+/?), male and female, JCR:LA-cp rats. Both male and female cp/cp rats showed enhanced maximum contractility in response to norepinephrine; impaired smooth muscle in response to sodium nitroprusside, a nitric oxide (NO) donor; and impaired relaxation in response to acetylcholine (ACh), compared with their lean counterparts. The abnormalities were similar in male and female cp/cp rats. The NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME), inhibited ACh-mediated relaxation significantly in male rats, both cp/cp and +/?. The inhibition of ACh-mediated relaxation by L-NAME in +/? females was less, with no reduction in maximal relaxation, and was absent in cp/cp females. These effects suggest that the relative importance of NO in the endothelial modulation of smooth muscle contractility is greater in male rats. The results are consistent with a decreased role for endothelial NO in the cp/cp rats of both sexes and a reduction in NO-independent cholinergic relaxation in the male cp/cp rat. This NO-independent mechanism is not affected in the female cp/cp rats. The relatively small differences between males and females in smooth muscle cell and vascular function may contribute to sex-related differences in the atherogenesis, vasospasm, and ischemic damage associated with the obese insulin-resistant state.
Nutrient-gene interactions in early pregnancy: a vascular hypothesis.
Steegers-Theunissen, R P M; Steegers, E A P
2003-02-10
It is hypothesized that the following periconceptional and early pregnancy nutrient-gene interactions link vascular-related reproductive complications and cardiovascular diseases in adulthood: (1) Maternal and paternal genetically controlled nutrient status affects the quality of gametes and fertilization capacity; (2) The embryonic genetic constitution, derived from both parents, and the maternal genetically controlled nutrient environment determine embryogenesis and fetal growth; (3) Trophoblast invasion of decidua and spiral arteries is driven by genes derived from both parents as well as by maternal nutritional factors; (4) Angiogenesis, vasculogenesis and vascular function are dependent on the genetic constitution of the embryo, derived from both parents, and the maternal genetically controlled nutritional environment.Early intra-uterine programming of vessels may concern the same (in)dependent determinants of vascular-related complications during pregnancy and cardiovascular diseases in later life.
Exercise training improves vascular mitochondrial function
Park, Song-Young; Rossman, Matthew J.; Gifford, Jayson R.; Bharath, Leena P.; Bauersachs, Johann; Richardson, Russell S.; Abel, E. Dale; Symons, J. David
2016-01-01
Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1, isocitrate dehydrogenase (Idh) 2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser1177), and suppressed reactive oxygen species generation (all P < 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520
Association of Anxiety with Resistance Vessel Dysfunction in Human Atherosclerosis
Stillman, Ashley N.; Moser, David J.; Fiedorowicz, Jess; Robinson, Heather M.; Haynes, William G.
2014-01-01
Objective Anxiety predicts cardiovascular events, though the mechanism remains unclear. We hypothesized that anxious symptoms will correlate with impaired resistance and conduit vessel function in participants aged 55–90 years. Method Anxious symptoms were measured with the Symptom Checklist-90-Revised in 89 participants with clinically diagnosed atherosclerotic cardiovascular disease and 54 healthy control participants. Vascular function was measured in conduit arteries using brachial flow-mediated dilatation (FMD) and in forearm resistance vessels (FRV) using intra-arterial drug administration and plethysmography. Results Anxious symptoms were not associated with FMD in either group. Participants with atherosclerosis exhibited significant inverse associations of anxious symptoms with FRV dilatation (β for acetylcholine =−0.302, p=0.004). Adjustment for medication, risk factors and depressive symptoms did not alter the association between anxiety and FRV dysfunction, except for BMI (anxiety β=−0.175, p=0.060; BMI β=−0.494, p<0.001). While BMI was more strongly associated with FRV function than anxiety, combined BMI and anxiety accounted for more variance in FRV function than either separately. Control participants showed no association of anxiety with FRV function. Conclusion Anxiety is uniquely and substantially related to poorer resistance vessel function (both endothelial and vascular smooth muscle function) in individuals with atherosclerosis. These relationships were independent of medication, depression and cardiovascular risk factors, with the exception of BMI. These findings support the concept that anxiety potentially increases vascular events through worsening of vascular function in atherosclerotic disease. PMID:23788697
Ye, Zusen; Zhang, Zhizhong; Zhang, Hao; Hao, Yonggang; Zhang, Jun; Liu, Wenhua; Xu, Gelin; Liu, Xinfeng
2017-03-01
Our objective is to investigate whether C-reactive protein (CRP) and homocysteine (Hcy) levels in the acute phase of large-artery atherosclerotic stroke predict long-term functional disability and recurrent vascular events. Patients with first-ever large-artery atherosclerotic ischemic stroke were prospectively registered in the Nanjing Stroke Registry Program between January 2012 and June 2014. Venous blood samples were collected within 2 weeks after the index stroke. Patients were followed up for 1 year. The Kaplan-Meier method was performed in survival analysis. Multiple logistic regression analysis and Cox proportional hazard model were applied to identify predictors of functional disability and recurrent vascular events, respectively. A total of 625 eligible patients (458 males) were evaluated. During the 1-year follow-up period, 63 patients suffered recurrent vascular events. An elevated CRP level is an independent predictor of poor functional disability at 1 year (P for trend = .002), in both males (P for trend = .017) and females (P for trend = .042). Hcy showed no relationship with functional disability. No significant relationship between CRP and Hcy levels and recurrent vascular events was found in total patients in multiple models. Stratified by sex, high Hcy levels were associated with recurrent vascular events in females (P for trend = .036) but not in males. Elevated CRP levels are associated with poor functional disability in patients with large-artery atherosclerotic stroke at 1 year, and Hcy is a relatively moderate predictor of recurrent vascular events in female patients with large-artery atherosclerotic stroke at 1 year. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Grolez, Guillaume P.; Bernardini, Michela; Richard, Elodie; Scianna, Marco; Lemonnier, Loic; Munaron, Luca; Mattot, Virginie; Prevarskaya, Natalia; Gkika, Dimitra
2017-01-01
Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein–protein interaction, thus preventing its cytoplasm–plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration. PMID:28550110
Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E
2017-06-01
Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.
Fibroblast Growth Factor 21 Protects Photoreceptor Function in Type 1 Diabetic Mice.
Fu, Zhongjie; Wang, Zhongxiao; Liu, Chi-Hsiu; Gong, Yan; Cakir, Bertan; Liegl, Raffael; Sun, Ye; Meng, Steven S; Burnim, Samuel B; Arellano, Ivana; Moran, Elizabeth; Duran, Rubi; Poblete, Alexander; Cho, Steve S; Talukdar, Saswata; Akula, James D; Hellström, Ann; Smith, Lois E H
2018-05-01
Retinal neuronal abnormalities occur before vascular changes in diabetic retinopathy. Accumulating experimental evidence suggests that neurons control vascular pathology in diabetic and other neovascular retinal diseases. Therefore, normalizing neuronal activity in diabetes may prevent vascular pathology. We investigated whether fibroblast growth factor 21 (FGF21) prevented retinal neuronal dysfunction in insulin-deficient diabetic mice. We found that in diabetic neural retina, photoreceptor rather than inner retinal function was most affected and administration of the long-acting FGF21 analog PF-05231023 restored the retinal neuronal functional deficits detected by electroretinography. PF-05231023 administration protected against diabetes-induced disorganization of photoreceptor segments seen in retinal cross section with immunohistochemistry and attenuated the reduction in the thickness of photoreceptor segments measured by optical coherence tomography. PF-05231023, independent of its downstream metabolic modulator adiponectin, reduced inflammatory marker interleukin-1β (IL-1β) mRNA levels. PF-05231023 activated the AKT-nuclear factor erythroid 2-related factor 2 pathway and reduced IL-1β expression in stressed photoreceptors. PF-05231023 administration did not change retinal expression of vascular endothelial growth factor A, suggesting a novel therapeutic approach for the prevention of early diabetic retinopathy by protecting photoreceptor function in diabetes. © 2018 by the American Diabetes Association.
Ridano, Magali E; Subirada, Paula V; Paz, María C; Lorenc, Valeria E; Stupirski, Juan C; Gramajo, Ana L; Luna, José D; Croci, Diego O; Rabinovich, Gabriel A; Sánchez, María C
2017-05-16
Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.
Cerebrovasculoprotective Effects of Azilsartan Medoxomil in Diabetes
Abdelsaid, Mohammed; Coucha, Maha; Ergul, Adviye
2014-01-01
We have shown that Goto-Kakizaki (GK) rats, a lean model of type 2 diabetes, develop significant cerebrovascular remodeling by 18 weeks of age, which is characterized by increased media thickness and matrix deposition. While early glycemic control prevents diabetes-mediated remodeling of the cerebrovasculature, whether the remodeling can be reversed is unknown. Given that angiotensin II Type 1 receptor blockers (ARBs) reverse pathological vascular remodeling and function independent of changes in blood pressure in other vascular beds, we hypothesized that azilsartan medoxomil, a new ARB, is vasculoprotective by preventing and reversing cerebrovascular remodeling in diabetes. Control Wistar and diabetic GK rats (n=6–8/group), were treated with vehicle (water) or azilsartan medoxomil (3 mg/kg/day) from 14 to 18 or 18 to 22 weeks of age before or after vascular remodeling is established, respectively. Blood glucose and blood pressure were monitored and middle cerebral artery structure and function were evaluated using pressurized arteriography. Blood glucose was higher in GK rats compared to Wistar rats. Azilsartan treatment lowered blood glucose in diabetes with no effect on blood pressure. Diabetic animals exhibited lower myogenic tone, increased wall thickness, and cross sectional area compared to controls, which were corrected by azilsartan treatment when started at the onset of diabetes or later after vascular remodeling is established. Azilsartan medoxomil offers preventive and therapeutic vasculoprotection in diabetes-induced cerebrovascular remodeling and myogenic dysfunction and this is independent of blood pressure. PMID:24999268
Phytochemical genistein in the regulation of vascular function: new insights.
Si, Hongwei; Liu, Dongmin
2007-01-01
Genistein, a natural bioactive compound derived from legumes, has drawn wide attention during the last decade because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data from animal and in vitro studies suggest a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Recent studies found that genistein exerts a novel non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Further studies demonstrated that genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These new findings reveal the novel roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential for inflammatory-related vascular disease.
Exercise, cognitive function, and aging
2015-01-01
Increasing the lifespan of a population is often a marker of a country's success. With the percentage of the population over 65 yr of age expanding, managing the health and independence of this population is an ongoing concern. Advancing age is associated with a decrease in cognitive function that ultimately affects quality of life. Understanding potential adverse effects of aging on brain blood flow and cognition may help to determine effective strategies to mitigate these effects on the population. Exercise may be one strategy to prevent or delay cognitive decline. This review describes how aging is associated with cardiovascular disease risks, vascular dysfunction, and increasing Alzheimer's disease pathology. It will also discuss the possible effects of aging on cerebral vascular physiology, cerebral perfusion, and brain atrophy rates. Clinically, these changes will present as reduced cognitive function, neurodegeneration, and the onset of dementia. Regular exercise has been shown to improve cognitive function, and we hypothesize that this occurs through beneficial adaptations in vascular physiology and improved neurovascular coupling. This review highlights the potential interactions and ideas of how the age-associated variables may affect cognition and may be moderated by regular exercise. PMID:26031719
LaMarca, Babbette D.; Chandler, Derrick L.; Grubbs, Lee; Bain, Jennifer; McLemore, Gerald R.; Granger, Joey P.; Ryan, Michael J.
2007-01-01
Background We previously showed that infusion of TNF-α induces hypertension and vascular dysfunction in late pregnant but not virgin rats. In the present study we tested the hypothesis that levels of ovarian hormones to mimic pregnancy are required for TNF-α induced changes in vascular function and blood pressure in rats. Methods 21 day release pellets containing 17β-estradiol, progesterone, or both were implanted in ovariectomized (OVX) rats. Sham OVX rats were used as controls. 12 days after implantation, TNF-α or vehicle was infused via osmotic minipumps (days 12-17). On day 18, mean arterial pressure was measured and animals were sacrificed to assess vascular function. Results Average estrogen and progesterone levels across all groups were 106±6 pg/ml and 88±5 ng/ml. TNF-α was 41±7 pg/ml compared to OVX rats infused with vehicle (4±1 pg/ml). The results show that TNF-α did not cause elevated mean arterial pressure in OVX rats with increased estrogen, progesterone, both. Vascular responses to the endothelium dependent and independent agonists, acetylcholine and sodium nitroprusside, were also not changed. Phenylephrine induced contraction was moderately but significantly increased at the highest concentrations (10-4 M) only in TNF-α infused rats. Conclusion These data suggest that increased ovarian hormones to levels observed during pregnancy are not sufficient to promote TNF-α induced increases in blood pressure or vascular dysfunction. PMID:17954370
ALDOSTERONE DYSREGULATION WITH AGING PREDICTS RENAL-VASCULAR FUNCTION AND CARDIO-VASCULAR RISK
Brown, Jenifer M.; Underwood, Patricia C.; Ferri, Claudio; Hopkins, Paul N.; Williams, Gordon H.; Adler, Gail K.; Vaidya, Anand
2014-01-01
Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal- and cardio-vascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1,124 visits) in a Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression-to-stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics, and the renal-vascular responses to dietary sodium manipulation and angiotensin II (AngII) infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β= -4.60, p<0.0001) and higher SASSI (β= -58.63, p=0.001) predicted lower RPF and a blunted RPF response to sodium loading and AngII infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (p<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (p<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal-vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal-vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease. PMID:24664291
Estrogen has opposing effects on vascular reactivity in obese, insulin-resistant male Zucker rats
NASA Technical Reports Server (NTRS)
Brooks-Asplund, Esther M.; Shoukas, Artin A.; Kim, Soon-Yul; Burke, Sean A.; Berkowitz, Dan E.
2002-01-01
We hypothesized that estradiol treatment would improve vascular dysfunction commonly associated with obesity, hyperlipidemia, and insulin resistance. A sham operation or 17beta-estradiol pellet implantation was performed in male lean and obese Zucker rats. Maximal vasoconstriction (VC) to phenylephrine (PE) and potassium chloride was exaggerated in control obese rats compared with lean rats, but estradiol significantly attenuated VC in the obese rats. Estradiol reduced the PE EC50 in all groups. This effect was cyclooxygenase independent, because preincubation with indomethacin reduced VC response to PE similarly in a subset of control and estrogen-treated lean rats. Endothelium-independent vasodilation (VD) to sodium nitroprusside was similar among groups, but endothelium-dependent VD to ACh was significantly impaired in obese compared with lean rats. Estradiol improved VD in lean and obese rats by decreasing EC50 but impaired function by decreasing maximal VD. The shift in EC50 corresponded to an upregulation in nitric oxide synthase III protein expression in the aorta of the estrogen-treated obese rats. In summary, estrogen treatment improves vascular function in male insulin-resistant, obese rats, partially via an upregulation of nitric oxide synthase III protein expression. These effects are counteracted by adverse factors, such as hyperlipidemia and, potentially, a release of an endothelium-derived contractile agent.
Etchells, J Peter; Provost, Claire M; Mishra, Laxmi; Turner, Simon R
2013-05-01
In plants, the cambium and procambium are meristems from which vascular tissue is derived. In contrast to most plant cells, stem cells within these tissues are thin and extremely long. They are particularly unusual as they divide down their long axis in a highly ordered manner, parallel to the tangential axis of the stem. CLAVATA3-LIKE/ESR-RELATED 41 (CLE41) and PHLOEM INTERCALATED WITH XYLEM (PXY) are a multifunctional ligand-receptor pair that regulate vascular cell division, vascular organisation and xylem differentiation in vascular tissue. A transcription factor gene, WUSCHEL HOMEOBOX RELATED 4 (WOX4) has been shown to act downstream of PXY. Here we show that WOX4 acts redundantly with WOX14 in the regulation of vascular cell division, but that these genes have no function in regulating vascular organisation. Furthermore, we identify an interaction between PXY and the receptor kinase ERECTA (ER) that affects the organisation of the vascular tissue but not the rate of cell division, suggesting that cell division and vascular organisation are genetically separable. Our observations also support a model whereby tissue organisation and cell division are integrated via PXY and ER signalling, which together coordinate development of different cell types that are essential for normal stem formation.
Nederlof, Rianne; Xie, Chaoqin; Eerbeek, Otto; Koeman, Anneke; Milstein, Dan MJ; Hollmann, Markus W; Mik, Egbert G; Warley, Alice; Southworth, Richard; Akar, Fadi G.; Zuurbier, Coert J
2013-01-01
Rationale We have shown that partial dissociation of HKII from mitochondria in the intact heart using low dose (200 nM) TAT-HKII prevents the cardioprotective effects of ischemic preconditioning (IPC) whereas high-dose (10 μM) TAT-HKII administration results in rapid myocardial dysfunction, mitochondrial depolarization and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely due to vasoconstriction and ensuing ischemia. Objective To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium. Methods and Results Using a variety of complementary techniques, including mitochondrial membrane potential (ΔΨm) imaging, high-resolution optical action potential (AP) mapping, analysis of lactate production, NADH epifluorescence, lactate dehydrogenase (LDH) release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of IPC, is not associated with ischemia or ischemic-injury. Conclusions Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia; thereby, lending further credence to the role of mitochondria bound HKII as a critical regulator of cardiac function, ischemia-reperfusion (IR) injury, and cardioprotection by IPC. PMID:23329797
Cabassi, A; Dumont, E C; Girouard, H; Bouchard, J F; Le Jossec, M; Lamontagne, D; Besner, J G; de Champlain, J
2001-07-01
Peroxynitrite (ONOO-), the product of superoxide and nitric oxide, seems to be involved in vascular alterations in hypertension. To evaluate the effects of ONOO- on endothelium-dependent and independent aortic vascular responsiveness, oxidized/reduced glutathione balance (GSSG/GSH), malondialdehyde aortic content, and the formation of 3-nitrotyrosine (3-NT), a stable marker of ONOO-, in N-acetylcysteine (NAC)-treated normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). In SHR only, NAC significantly reduced heart rate and systolic, but not diastolic, blood pressure. It also improved endothelium-dependent aortic relaxation in SHR, but not after exposure to ONOO-. Endothelium-dependent and independent aortic relaxations were markedly impaired by ONOO- in both strains of rat. NAC partially protected SHR against the ONOO- -induced reduction in endothelium-independent relaxation. Aortic GSSG/GSH ratio and malondialdehyde, which were higher in SHR than in WKY rats, showed a greater increase in SHR after exposure to ONOO-. NAC decreased GSSG/GSH and malondialdehyde in both strains of rat before and after exposure to ONOO-. The 3-NT concentration, which was similar in both strains of rat under basal conditions, was greater in SHR than in WKY rats after the addition of ONOO-, with a reduction only in NAC-treated SHR. These findings suggest an increased vulnerability of SHR aortas to the effects of ONOO- as compared with those of WKY rats. The selective improvements produced by NAC, in systolic arterial pressure, heart rate, aortic endothelial function, ONOO- -induced impairment of endothelium-independent relaxation, aortic GSSG/GSH balance, malondialdehyde content and 3-NT formation in SHR suggest that chronic administration of NAC may have a protective effect against aortic vascular dysfunction in the SHR model of hypertension.
Gender Differences in Bed Rest: Preliminary Analysis of Vascular Function
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Stenger, Michael B.; Martin, David S.; Freeman-Perez, Sondra A.; Phillips, Tiffany; Ribeiro, L. Christine
2008-01-01
Orthostatic intolerance is a recognized consequence of spaceflight. Numerous studies have shown that women are more susceptible to orthostatic intolerance following spaceflight as well as bed rest, the most commonly used ground-based analog for spaceflight. One of the possible mechanisms proposed to account for this is a difference in vascular responsiveness between genders. We hypothesized that women and men would have differing vascular responses to 90 days of 6-degree head down tilt bed rest. Additionally, we hypothesized that vessels in the upper and lower body would respond differently, as has been shown in the animal literature. Thirteen subjects were placed in bedrest for 90 days (8 men, 5 women) at the Flight Analogs Unit, UTMB. Direct arterial and venous measurements were made with ultrasound to evaluate changes in vascular structure and function. Arterial function was assessed, in the arm and leg, during a reactive hyperemia protocol and during sublingual nitroglycerin administration to gauge the contributions of endothelial dependent and independent dilator function respectively. Venous function was assessed in dorsal hand and foot veins during the administration of pharmaceuticals to assess constrictor and dilator function. Both gender and day effects are seen in arterial dilator function to reactive hyperemia, but none are seen with nitroglycerin. There are also differences in the wall thickness in the arm vs the leg during bed rest, which return toward pre-bed rest levels by day 90. More subjects are required, especially females as there is not sufficient power to properly analyze venous function. Day 90 data are most underpowered.
Ng, Hooi H; Jelinic, Maria; Parry, Laura J; Leo, Chen-Huei
2015-07-15
The vascular effects of exogenous relaxin (Rln) treatment are well established and include decreased myogenic reactivity and enhanced relaxation responses to vasodilators in small resistance arteries. These vascular responses are reduced in older animals, suggesting that Rln is less effective in mediating arterial function with aging. The present study investigated the role of endogenous Rln in the aorta and the possibility that vascular dysfunction occurs more rapidly with aging in Rln-deficient (Rln(-/-)) mice. We compared vascular function and underlying vasodilatory pathways in the aorta of male wild-type (Rln(+/+)) and Rln(-/-) mice at 4 and 16 mo of age using wire myography. Superoxide production, but not nitrotyrosine or NADPH oxidase expression, was significantly increased in the aorta of young Rln(-/-) mice, whereas endothelial nitric oxide (NO) synthase and basal NO availability were both significantly decreased compared with Rln(+/+) mice. In the presence of the cyclooxygenase inhibitor indomethacin, sensitivity to ACh was significantly decreased in young Rln(-/-) mice, demonstrating altered NO-mediated relaxation that was normalized in the presence of a membrane-permeable SOD or ROS scavenger. These vascular phenotypes were not exacerbated in old Rln(-/-) mice and, in most cases, did not differ significantly from old Rln(+/+) mice. Despite the vascular phenotypes in Rln(-/-) mice, endothelium-dependent and -independent vasodilation were not adversely affected. Our data show a role for endogenous Rln in reducing superoxide production and maintaining NO availability in the aorta but also demonstrate that Rln deficiency does not compromise vascular function in this artery or exacerbate endothelial dysfunction associated with aging. Copyright © 2015 the American Physiological Society.
Garriga, Marina; Milà, Marta; Mir, Manzoor; Al-Baradie, Raid; Huertas, Sonia; Castejon, Cesar; Casas, Laura; Badenes, Dolors; Giménez, Nuria; Font, M. Angels; Gonzalez, Jose M.; Ysamat, Maria; Aguilar, Miguel; Slevin, Mark; Krupinski, Jerzy
2015-01-01
Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common cause of dementia. Cerebral ischemia is a major risk factor for development of dementia. 123I-FP-CIT SPECT (DaTScan) is a complementary tool in the differential diagnoses of patients with incomplete or uncertain Parkinsonism. Additional application of DaTScan enables the categorization of Parkinsonian disease with dementia (PDD), and its differentiation from pure AD, and may further contribute to change the therapeutic decision. The aim of this study was to analyze the vascular contribution towards dementia and mild cognitive impairment (MCI). We evaluated the utility of DaTScan for the early diagnosis of dementia in patients with and without a clinical vascular component, and the association between neuropsychological function, vascular component and dopaminergic function on DaTScan. One-hundred and five patients with MCI or the initial phases of dementia were studied prospectively. We developed an initial assessment using neurologic examination, blood tests, cognitive function tests, structural neuroimaging and DaTScan. The vascular component was later quantified in two ways: clinically, according to the Framingham Risk Score (FRS) and by structural neuroimaging using Wahlund Scale Total Score (WSTS). Early diagnosis of dementia was associated with an abnormal DaTScan. A significant association was found between a high WSTS and an abnormal DaTScan (p < 0.01). Mixed AD was the group with the highest vascular component, followed by the VaD group, while MCI and pure AD showed similar WSTS. No significant associations were found between neuropsychological impairment and DaTScan independently of associated vascular component. DaTScan seems to be a good tool to discriminate, in a first clinical assessment, patients with MCI from those with established dementia. There was bigger general vascular affectation observable in MRI or CT in patients with abnormal dopaminergic uptake seen on DaTScan. PMID:26190980
High fat diet-induced diabetes in mice exacerbates cognitive deficit due to chronic hypoperfusion
Zuloaga, Kristen L; Johnson, Lance A; Roese, Natalie E; Marzulla, Tessa; Zhang, Wenri; Nie, Xiao; Alkayed, Farah N; Hong, Christine; Grafe, Marjorie R; Pike, Martin M; Raber, Jacob
2015-01-01
Diabetes causes endothelial dysfunction and increases the risk of vascular cognitive impairment. However, it is unknown whether diabetes causes cognitive impairment due to reductions in cerebral blood flow or through independent effects on neuronal function and cognition. We addressed this using right unilateral common carotid artery occlusion to model vascular cognitive impairment and long-term high-fat diet to model type 2 diabetes in mice. Cognition was assessed using novel object recognition task, Morris water maze, and contextual and cued fear conditioning. Cerebral blood flow was assessed using arterial spin labeling magnetic resonance imaging. Vascular cognitive impairment mice showed cognitive deficit in the novel object recognition task, decreased cerebral blood flow in the right hemisphere, and increased glial activation in white matter and hippocampus. Mice fed a high-fat diet displayed deficits in the novel object recognition task, Morris water maze and fear conditioning tasks and neuronal loss, but no impairments in cerebral blood flow. Compared to vascular cognitive impairment mice fed a low fat diet, vascular cognitive impairment mice fed a high-fat diet exhibited reduced cued fear memory, increased deficit in the Morris water maze, neuronal loss, glial activation, and global decrease in cerebral blood flow. We conclude that high-fat diet and chronic hypoperfusion impair cognitive function by different mechanisms, although they share commons features, and that high-fat diet exacerbates vascular cognitive impairment pathology. PMID:26661233
Cerebrovasculoprotective effects of azilsartan medoxomil in diabetes.
Abdelsaid, Mohammed; Coucha, Maha; Ergul, Adviye
2014-11-01
We have shown that Goto-Kakizaki (GK) rats, a lean model of type 2 diabetes, develop significant cerebrovascular remodeling by the age of 18 weeks, which is characterized by increased media thickness and matrix deposition. Although early glycemic control prevents diabetes-mediated remodeling of the cerebrovasculature, whether the remodeling can be reversed is unknown. Given that angiotensin II type 1 receptor blockers reverse pathologic vascular remodeling and function independent of changes in blood pressure in other vascular beds, we hypothesized that azilsartan medoxomil, a new angiotensin II type 1 receptor blocker, is vasculoprotective by preventing and reversing cerebrovascular remodeling in diabetes. Control Wistar and diabetic GK rats (n = 6-8 per group) were treated with vehicle (water) or azilsartan medoxomil (3 mg/kg/d) from the age of 14 to 18 or 18 to 22 weeks before or after vascular remodeling is established, respectively. Blood glucose and blood pressure were monitored and middle cerebral artery structure and function were evaluated using pressurized arteriography. Blood glucose was higher in GK rats compared with Wistar rats. Azilsartan treatment lowered blood glucose in diabetic animals with no effect on blood pressure. Diabetic animals exhibited lower myogenic tone, increased wall thickness, and cross-sectional area compared with control group animals, which were corrected by azilsartan treatment when started at the onset of diabetes or later after vascular remodeling is established. Azilsartan medoxomil offers preventive and therapeutic vasculoprotection in diabetes-induced cerebrovascular remodeling and myogenic dysfunction and this is independent of blood pressure. Published by Elsevier Inc.
Aldosterone dysregulation with aging predicts renal vascular function and cardiovascular risk.
Brown, Jenifer M; Underwood, Patricia C; Ferri, Claudio; Hopkins, Paul N; Williams, Gordon H; Adler, Gail K; Vaidya, Anand
2014-06-01
Aging and abnormal aldosterone regulation are both associated with vascular disease. We hypothesized that aldosterone dysregulation influences the age-related risk of renal vascular and cardiovascular disease. We conducted an analysis of 562 subjects who underwent detailed investigations under conditions of liberal and restricted dietary sodium intake (1124 visits) in the General Clinical Research Center. Aldosterone regulation was characterized by the ratio of maximal suppression to stimulation (supine serum aldosterone on a liberal sodium diet divided by the same measure on a restricted sodium diet). We previously demonstrated that higher levels of this Sodium-modulated Aldosterone Suppression-Stimulation Index (SASSI) indicate greater aldosterone dysregulation. Renal plasma flow (RPF) was determined via p-aminohippurate clearance to assess basal renal hemodynamics and the renal vascular responses to dietary sodium manipulation and angiotensin II infusion. Cardiovascular risk was calculated using the Framingham Risk Score. In univariate linear regression, older age (β=-4.60; P<0.0001) and higher SASSI (β=-58.63; P=0.001) predicted lower RPF and a blunted RPF response to sodium loading and angiotensin II infusion. We observed a continuous, independent, multivariate-adjusted interaction between age and SASSI, where the inverse relationship between SASSI and RPF was most apparent with older age (P<0.05). Higher SASSI and lower RPF independently predicted higher Framingham Risk Score (P<0.0001) and together displayed an additive effect. Aldosterone regulation and age may interact to mediate renal vascular disease. Our findings suggest that the combination of aldosterone dysregulation and renal vascular dysfunction could additively increase the risk of future cardiovascular outcomes; therefore, aldosterone dysregulation may represent a modifiable mechanism of age-related vascular disease.
Exercise training, vascular function, and functional capacity in middle-aged subjects.
Maiorana, A; O'Driscoll, G; Dembo, L; Goodman, C; Taylor, R; Green, D
2001-12-01
The aim of this study was to investigate the effect of 8 wk of exercise training on functional capacity, muscular strength, body composition, and vascular function in sedentary but healthy subjects by using a randomized, crossover protocol. After familiarization sessions, 19 subjects aged 47 +/- 2 yr (mean +/- SE) undertook a randomized, crossover design study of the effect of 8 wk of supervised circuit training consisting of combined aerobic and resistance exercise. Peak oxygen uptake (.VO(2peak)), sum of 7 maximal voluntary contractions and the sum of 8 skinfolds and 5 segment girths were determined at entry, crossover, and 16 wk. Endothelium-dependent and -independent vascular function were determined by forearm strain-gauge plethysmography and intrabrachial infusions of acetylcholine (ACh) and sodium nitroprusside (SNP) in 16 subjects. Training did not alter ACh or SNP responses. .VO(2peak), (28.6 +/- 1.1 to 32.6 +/- 1.3 mL.kg(-1).min(-1), P < 0.001), exercise test duration (17.4 +/- 1.1 to 22.1 +/- 1.2 min, P < 0.001), and muscular strength (465 +/- 27 to 535 +/- 27 kg, P < 0.001) significantly increased after the exercise program, whereas skinfolds decreased (144 +/- 10 vs 134 +/- 9 mm, P < 0.001). These results suggest that moderate intensity circuit training designed to minimize the involvement of the arms improves functional capacity, body composition, and strength in healthy, middle-aged subjects without significantly influencing upper limb vascular function. This finding contrasts with previous studies in subjects with type 2 diabetes and heart failure that employed an identical training program.
NgBR is essential for endothelial cell glycosylation and vascular development.
Park, Eon Joo; Grabińska, Kariona A; Guan, Ziqiang; Sessa, William C
2016-02-01
NgBR is a transmembrane protein identified as a Nogo-B-interacting protein and recently has been shown to be a subunit required for cis-prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial-specific NgBR knockout embryos. Here, we show that endothelial-specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE-cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo-B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development. © 2016 The Authors.
Lee, Craig R; Bass, Almasa; Ellis, Kyle; Tran, Bryant; Steele, Savanna; Caughey, Melissa; Stouffer, George A; Hinderliter, Alan L
2012-03-01
Digital peripheral arterial tonometry (PAT) is an emerging, noninvasive method to assess vascular function. The physiology underlying this phenotype, however, remains unclear. Therefore, we evaluated the relation between digital PAT and established brachial artery ultrasound measures of vascular function under basal conditions and after reactive hyperemia. Using a cross-sectional study design, digital PAT and brachial artery ultrasonography with pulsed wave Doppler were simultaneously completed at baseline and after reactive hyperemia in both those with established coronary artery disease (n = 99) and healthy volunteers with low cardiovascular disease risk (n = 40). Under basal conditions, the digital pulse volume amplitude demonstrated a significant positive correlation with the brachial artery velocity-time integral that was independent of the arterial diameter, in both the healthy volunteer (r(s) = 0.64, p <0.001) and coronary artery disease (r(s) = 0.63, p <0.001) cohorts. Similar positive relations were observed with the baseline brachial artery blood flow velocity and blood flow. In contrast, no relation between the reactive hyperemia-evoked digital PAT ratio and either brachial artery flow-mediated dilation or shear stress was observed in either cohort (p = NS). In conclusion, these findings demonstrate that the digital PAT measures of vascular function more closely reflect basal blood flow in the brachial artery than reactive hyperemia-induced changes in the arterial diameter or flow velocity, and the presence of vascular disease does not modify the physiology underlying the digital PAT phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.
Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H; Barnett, Nigel L; Kirk, Joshua K; Lee, SoRa; Coorey, Nathan J; Killingsworth, Murray; Sherman, Larry S; Gillies, Mark C
2012-11-07
Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction.
Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H.; Barnett, Nigel L.; Kirk, Joshua K.; Lee, SoRa; Coorey, Nathan J.; Killingsworth, Murray; Sherman, Larry S.; Gillies, Mark C.
2014-01-01
Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium derived factor. Intravitreal injection of cilliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the central nervous system associated with glial dysfunction. PMID:23136411
Thyroid function and the risk of dementia: The Rotterdam Study.
Chaker, Layal; Wolters, Frank J; Bos, Daniel; Korevaar, Tim I M; Hofman, Albert; van der Lugt, Aad; Koudstaal, Peter J; Franco, Oscar H; Dehghan, Abbas; Vernooij, Meike W; Peeters, Robin P; Ikram, M Arfan
2016-10-18
To study the role of thyroid function in dementia, cognitive function, and subclinical vascular brain disease with MRI. Analyses were performed within the Rotterdam Study (baseline 1997), a prospective, population-based cohort. We evaluated the association of thyroid-stimulating hormone (TSH) and free thyroxine with incident dementia using Cox models adjusted for age, sex, cardiovascular risk factors, and education. Absolute risks were calculated accounting for death as a competing risk factor. Associations of thyroid function with cognitive test scores and subclinical vascular brain disease (white matter lesions, lacunes, and microbleeds) were assessed with linear or logistic regression. Additionally, we stratified by sex and restricted analyses to normal thyroid function. We included 9,446 participants with a mean age of 65 years. During follow-up (mean 8.0 years), 601 participants had developed dementia. Higher TSH was associated with lower dementia risk in both the full and normal ranges of thyroid function (hazard ratio [HR] 0.90, 95% confidence interval [CI] 0.83-0.98; and HR 0.76, 95% CI 0.64-0.91, respectively). This association was independent of cardiovascular risk factors. Dementia risk was higher in individuals with higher free thyroxine (HR 1.04, 95% CI 1.01-1.07). Absolute 10-year dementia risk decreased from 15% to 10% with higher TSH in older women. Higher TSH was associated with better global cognitive scores (p = 0.021). Thyroid function was not related to subclinical vascular brain disease as indicated by MRI. High and high-normal thyroid function is associated with increased dementia risk. Thyroid function is not related to vascular brain disease as assessed by MRI, suggesting a role for thyroid hormone in nonvascular pathways leading to dementia. © 2016 American Academy of Neurology.
Relationships of vascular function with measures of ambulatory blood pressure variation.
Hodgson, Jonathan M; Woodman, Richard J; Croft, Kevin D; Ward, Natalie C; Bondonno, Catherine P; Puddey, Ian B; Lukoshkova, Elena V; Head, Geoffrey A
2014-03-01
Characteristics of short-term blood pressure (BP) variation may influence cardiovascular disease risk via effects on vascular function. In a cross-sectional study of a group of treated hypertensive and untreated largely normotensive subjects we investigated the relationships of measures of short-term BP variation with brachial artery vasodilator function. A total of 163 treated hypertensive (n = 91) and untreated largely normotensive (n = 72) men and women were recruited from the general population. Measures of systolic and diastolic BP variation were calculated from 24 h ambulatory BP assessments and included: (i) rate of measurement-to-measurement BP variation (SBP-var and DBP-var); and (ii) day-to-night BP dip (SBP-dip and DBP dip). Endothelium-dependent vasodilation was assessed as flow-mediated dilation (FMD) and endothelium-independent vasodilation was assessed in response to glyceryl trinitrate (GTN). Relationships were explored using univariate and multivariate linear regression. The relationships of brachial artery vasodilator function with BP variation were not significantly different between treated hypertensive and untreated subjects, therefore these groups were combined for analysis. In univariate analysis, higher SBP-var (P < 0.001) and lower DBP-dip (P = 0.004) were associated with lower FMD; and higher SBP-var (P = 0.002) and lower SBP-dip (P = 0.003) and DBP-dip (P = 0.001) were associated with lower GTN-mediated dilation. In multivariate analysis, lower SBP-dip (P = 0.007) and DBP-dip (P = 0.03) were independently associated with lower GTN response. Our results indicate that a lower day-to-night BP dip is independently associated with impaired smooth muscle cell function. Although rate of BP variation was associated with measures of endothelial and smooth muscle cell function, relationships were attenuated after accounting for age and BP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cerebral Small Vessel Disease and Chronic Kidney Disease
2015-01-01
Chronic kidney disease, defined by a decreased glomerular filtration rate or albuminuria, is recognized as a major global health burden, mainly because it is an established risk factor for cardiovascular and cerebrovascular diseases. The magnitude of the effect of chronic kidney disease on incident stroke seems to be higher in persons of Asian ethnicity. Since the kidney and brain share unique susceptibilities to vascular injury due to similar anatomical and functional features of small artery diseases, kidney impairment can be predictive of the presence and severity of cerebral small vessel diseases. Chronic kidney disease has been reported to be associated with silent brain infarcts, cerebral white matter lesions, and cerebral microbleeds, independently of vascular risk factors. In addition, chronic kidney disease affects cognitive function, partly via the high prevalence of cerebral small vessel diseases. Retinal artery disease also has an independent relationship with chronic kidney disease and cognitive impairment. Stroke experts are no longer allowed to be ignorant of chronic kidney disease. Close liaison between neurologists and nephrologists can improve the management of cerebral small vessel diseases in kidney patients. PMID:25692105
Jadhav, Sachin; Sattar, Naveed; Petrie, John R; Cobbe, Stuart M; Ferrell, William R
2007-09-01
Interrogation of peripheral vascular function is increasingly recognized as a noninvasive surrogate marker for coronary vascular function and carries with it important prognostic information regarding future cardiovascular risk. Laser Doppler imaging (LDI) is a completely noninvasive method for looking at peripheral microvascular function. We sought to look at reproducibility and repeatability of LDI-derived assessment of peripheral microvascular function between arms and 8 weeks apart. We used LDI in conjunction with iontophoretic application of ACh and SNP to look at endothelium-dependent and -independent microvascular function, respectively, in a mixture of women with cardiac syndrome X and healthy volunteers. We looked at variation between arms (n = 40) and variation at 8 weeks apart (n = 22). When measurements were corrected for skin resistance, there was nonsignificant variation between arms for ACh (2.7%) and SNP (3.8%) and nonsignificant temporal variation for ACh (3.5%) and SNP (4.7%). Construction of Bland-Altman plots reinforce that measurements have good repeatability. Elimination of the baseline perfusion response had deleterious effects on repeatability. LDI can be used to assess peripheral vascular response with good repeatability as long as measurements are corrected for skin resistance, which affects drug delivery. This has important implications for the future use of LDI.
Flow-mediated changes in pulse wave velocity: a new clinical measure of endothelial function.
Naka, Katerina K; Tweddel, Ann C; Doshi, Sagar N; Goodfellow, Jonathan; Henderson, Andrew H
2006-02-01
To test whether measuring hyperaemic changes in pulse wave velocity (PWV) could be used as a new method of assessing endothelial function for use in clinical practice. Flow-mediated changes in vascular tone may be used to assess endothelial function and may be induced by distal hyperaemia, while endothelium-mediated changes in vascular tone can influence PWV. These three known principles were combined to provide and test a novel method of measuring endothelial function by the acute effects of distal hyperaemia on upper and lower limb PWV (measured by a recently developed method). Flow-mediated changes in upper and lower limb PWV were compared in 17 healthy subjects and seven patients with stable chronic heart failure (CHF), as a condition where endothelial function is impaired but endothelium-independent dilator responses are retained. Corroborative measurements of PWV and brachial artery diameter responses to endothelium-dependent and -independent pharmacological stimuli were performed in a further eight healthy subjects. Flow-mediated reduction of PWV (by 14% with no change in blood pressure) was found in normal subjects but was almost abolished in patients with CHF. PWV responses appear to be inversely related to and relatively greater than brachial artery diameter responses. The method may offer potential advantages of practical use and sensitivity over conduit artery diameter responses to measure endothelial dysfunction.
Mohammed, Selma F; Borlaug, Barry A; Roger, Véronique L; Mirzoyev, Sultan A; Rodeheffer, Richard J; Chirinos, Julio A; Redfield, Margaret M
2012-11-01
Patients with heart failure and preserved ejection fraction (HFpEF) display increased adiposity and multiple comorbidities, factors that in themselves may influence cardiovascular structure and function. This has sparked debate as to whether HFpEF represents a distinct disease or an amalgamation of comorbidities. We hypothesized that fundamental cardiovascular structural and functional alterations are characteristic of HFpEF, even after accounting for body size and comorbidities. Comorbidity-adjusted cardiovascular structural and functional parameters scaled to independently generated and age-appropriate allometric powers were compared in community-based cohorts of HFpEF patients (n=386) and age/sex-matched healthy n=193 and hypertensive, n=386 controls. Within HFpEF patients, body size and concomitant comorbidity-adjusted cardiovascular structural and functional parameters and survival were compared in those with and without individual comorbidities. Among HFpEF patients, comorbidities (obesity, anemia, diabetes mellitus, and renal dysfunction) were each associated with unique clinical, structural, functional, and prognostic profiles. However, after accounting for age, sex, body size, and comorbidities, greater concentric hypertrophy, atrial enlargement and systolic, diastolic, and vascular dysfunction were consistently observed in HFpEF compared with age/sex-matched normotensive and hypertensive. Comorbidities influence ventricular-vascular properties and outcomes in HFpEF, yet fundamental disease-specific changes in cardiovascular structure and function underlie this disorder. These data support the search for mechanistically targeted therapies in this disease.
Ringvold, H C; Khalil, R A
2017-01-01
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca 2+ -dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca 2+ -dependent α, β, and γ, novel Ca 2+ -independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease. © 2017 Elsevier Inc. All rights reserved.
Telemedicine Can Replace the Neurologist on a Mobile Stroke Unit.
Wu, Tzu-Ching; Parker, Stephanie A; Jagolino, Amanda; Yamal, Jose-Miguel; Bowry, Ritvij; Thomas, Abraham; Yu, Amy; Grotta, James C
2017-02-01
The BEST-MSU study (Benefits of Stroke Treatment Delivered Using a Mobile Stroke Unit) is a comparative effectiveness trial in patients randomized to mobile stroke unit or standard management. A substudy tested interrater agreement for tissue-type plasminogen activator eligibility between a telemedicine vascular neurologist and onboard vascular neurologist. On scene, both the telemedicine vascular neurologist and onboard vascular neurologist independently evaluated the patient, documenting their tissue-type plasminogen activator treatment decision, National Institutes of Health Stroke Scale score, and computed tomographic interpretation. Agreement was determined using Cohen κ statistic. Telemedicine-related technical failures that impeded remote assessment were recorded. Simultaneous and independent telemedicine vascular neurologist and onboard vascular neurologist assessment was attempted in 174 patients. In 4 patients (2%), the telemedicine vascular neurologist could not make a decision because of technical problems. The telemedicine vascular neurologist agreed with the onboard vascular neurologist on 88% of evaluations (κ=0.73). Remote telemedicine vascular neurologist assessment is reliable and accurate, supporting either telemedicine vascular neurologist or onboard vascular neurologist assessment on our mobile stroke unit. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02190500. © 2017 American Heart Association, Inc.
Endothelial atypical cannabinoid receptor: do we have enough evidence?
Bondarenko, Alexander I
2014-01-01
Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1, non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions. PMID:25073723
Ellis, Amy; Patterson, Morgan; Dudenbostel, Tanja; Calhoun, David; Gower, Barbara
2015-01-01
Background Vascular endothelial function declines with advancing age, due in part to increased oxidative stress and inflammation, and this age-related vascular dysfunction has been identified as an independent risk factor for cardiovascular diseases (CVD). This double-blind, placebo-controlled trial investigated the effects of a dietary supplement containing β-hydroxy-β-methylbutyrate (HMB), glutamine, and arginine on endothelial-dependent vasodilation of older adults. Subjects/Methods Thirty-one community-dwelling men and women aged 65-87 years were randomly assigned to two groups. The treatment group received two doses of the supplement daily (totaling 3g HMB, 14g glutamine, 14g arginine) for six months while the control group received an isocaloric placebo. At baseline and week 24, vascular endothelial function was measured by flow-mediated dilation of the brachial artery, and fasting blood samples were obtained to measure high-sensitivity C-reactive protein (hsCRP) and tumor necrosis factor-α (TNF-α). Results Paired samples t-tests revealed a 27% increase in flow-mediated dilation among the treatment group (p=0.003) while no change was observed in the placebo group (p=0.651). Repeated-measures ANOVA verified a significant time by group interaction (p=0.038). Although no significant changes were observed for hsCRP or TNF-α, a trend was observed for increasing hsCRP among the placebo group only (p=0.059). Conclusions These results suggest that dietary supplementation of HMB, glutamine, and arginine may favorably impact vascular endothelial function in older adults. Additional studies are needed to elucidate whether reduced inflammation or other mechanisms may underlie the benefits of supplementation. PMID:26306566
Ellis, A C; Patterson, M; Dudenbostel, T; Calhoun, D; Gower, B
2016-02-01
Vascular endothelial function declines with advancing age, due in part to increased oxidative stress and inflammation, and this age-related vascular dysfunction has been identified as an independent risk factor for cardiovascular diseases. This double-blind, placebo-controlled trial investigated the effects of a dietary supplement containing β-hydroxy-β-methylbutyrate (HMB), glutamine and arginine on endothelial-dependent vasodilation of older adults. A total of 31 community-dwelling men and women aged 65-87 years were randomly assigned to two groups. The treatment group received two doses of the supplement daily (totaling 3 g HMB, 14 g glutamine and 14 g arginine) for 6 months, whereas the control group received an isocaloric placebo. At baseline and week 24, vascular endothelial function was measured by flow-mediated dilation of the brachial artery, and fasting blood samples were obtained to measure high-sensitivity C-reactive protein (hsCRP) and tumor necrosis factor-α (TNF-α). Paired sample t-tests revealed a 27% increase in flow-mediated dilation among the treatment group (P=0.003), whereas no change was observed in the placebo group (P=0.651). Repeated-measures analysis of variance verified a significant time by group interaction (P=0.038). Although no significant changes were observed for hsCRP or TNF-α, a trend was observed for increasing hsCRP among the placebo group only (P=0.059). These results suggest that dietary supplementation of HMB, glutamine and arginine may favorably affect vascular endothelial function in older adults. Additional studies are needed to elucidate whether reduced inflammation or other mechanisms may underlie the benefits of supplementation.
O'Donnell, Emma; Goodman, Jack M; Mak, Susanna; Harvey, Paula J
2014-05-01
Exercise-trained hypoestrogenic premenopausal women with functional hypothalamic amenorrhea (ExFHA) exhibit impaired endothelial function. The vascular effects of an acute bout of exercise, a potent nitric oxide stimulus, in these women are unknown. Three groups were studied: recreationally active ExFHA women (n = 12; 24.2 ± 1.2 years of age; mean ± SEM), and recreationally active (ExOv; n = 14; 23.5 ± 1.2 years of age) and sedentary (SedOv; n = 15; 23.1 ± 0.5 years of age) ovulatory eumenorrheic women. Calf blood flow (CBF) and brachial artery flow-mediated dilation (FMD) were evaluated using plethysmographic and ultrasound techniques, respectively, both before and 1 hour after 45 minutes of moderate-intensity exercise. Endothelium-independent dilation was assessed at baseline using glyceryl trinitrate. Calf vascular resistance (CVR) and brachial peak shear rate, as determined by the area under the curve (SRAUCpk), were also calculated. FMD and glyceryl trinitrate responses were lower (P < .05) in ExFHA (2.8% ± 0.4% and 11.6% ± 0.7%, respectively) than ExOv (8.8% ± 0.7% and 16.7% ± 1.3%) and SedOv (8.0% ± 0.5% and 17.1% ± 1.8%). SRAUCpk was also lower (P < .05) in ExFHA. Normalization of FMD for SRAUCpk (FMD/SRAUCpk) did not alter (P > .05) the findings. CBF was lower (P < .05) and CVR higher (P < .05) in ExFHA. After exercise, FMD and SRAUCpk were augmented (P < .05), but remained lower (P < .05), in ExFHA. FMD/SRAUCpk no longer differed (P > .05) between the groups. CBF in ExFHA was increased (P < .05) and CVR decreased (P < .05) to levels observed in ovulatory women. Acute dynamic exercise improves vascular function in ExFHA women. Although the role of estrogen deficiency per se is unclear, our findings suggest that low shear rate and increased vasoconstrictor tone may play a role in impaired basal vascular function in these women.
Rotationplasty with vascular reconstruction for prosthetic knee joint infection.
Fujiki, Masahide; Miyamoto, Shimpei; Nakatani, Fumihiko; Kawai, Akira; Sakuraba, Minoru
2015-01-01
Rotationplasty is used most often as a function-preserving salvage procedure after resection of sarcomas of the lower extremity; however, it is also used after infection of prosthetic knee joints. Conventional vascular management during rotationplasty is to preserve and coil major vessels, but recently, transection and reanastomosis of the major vessels has been widely performed. However, there has been little discussion regarding the optimal vascular management of rotationplasty after infection of prosthetic knee joints because rotationplasty is rarely performed for this indication. We reviewed four patients who had undergone resection of osteosarcomas of the femur, placement of a prosthetic knee joint, and rotationplasty with vascular reconstruction from 2010 to 2013. The mean interval between prosthetic joint replacement and rotationplasty was 10.4 years and the mean interval between the diagnosis of prosthesis infection and rotationplasty was 7.9 years. Rotationplasty was successful in all patients; however, in one patient, arterial thrombosis developed and necessitated urgent surgical removal and arterial reconstruction. All patients were able to walk independently with a prosthetic limb after rehabilitation. Although there is no consensus regarding the most appropriate method of vascular management during rotationplasty for revision of infected prosthetic joints, vascular transection and reanastomosis is a useful option.
Vascular Consequences of Aldosterone Excess and Mineralocorticoid Receptor Antagonism.
Chrissobolis, Sophocles
2017-01-01
Aldosterone binds to mineralocorticoid receptors (MRs) on renal epithelial cells to regulate sodium and water reabsorption, and therefore blood pressure. Recently, the actions of aldosterone outside the kidney have been extensively investigated, with numerous reports of aldosterone having detrimental actions, including in the vasculature. Notably, elevated aldosterone levels are an independent cardiovascular risk factor, and in addition to causing an increase in blood pressure, aldosterone can have blood pressure-dependent and -independent effects commonly manifested in the vasculature in cardiovascular diseases, including oxidative stress, endothelial dysfunction, inflammation, remodeling, stiffening, and plaque formation. Receptor-dependent mechanisms mediating these actions include the MR expressed on vascular endothelial and smooth muscle cells, but also include the angiotensin II type 1 receptor, epidermal growth factor receptor and vascular endothelial growth factor receptor 1, with downstream mechanisms including NADPH oxidase, cyclooxygenase, glucose-6-phosphate dehydrogenase, poly-(ADP ribose) polymerase and placental growth factor. The beneficial actions of MR antagonism in experimental hypertension include improved endothelial function, reduced hypertrophy and remodeling, and in atherosclerosis beneficial actions include reduced plaque area, inflammation, oxidative stress and endothelial dysfunction. Aldosterone excess is detrimental and MR antagonism is beneficial in humans also. The emerging concept of the contribution of aldosterone/MR-induced immunity to vascular pathology will also be discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Effects of high flavanol dark chocolate on cardiovascular function and platelet aggregation.
Rull, Gurvinder; Mohd-Zain, Zetty N; Shiel, Julian; Lundberg, Martina H; Collier, David J; Johnston, Atholl; Warner, Timothy D; Corder, Roger
2015-08-01
Regular consumption of chocolate and cocoa products has been linked to reduced cardiovascular mortality. This study compared the effects of high flavanol dark chocolate (HFDC; 1064mg flavanols/day for 6weeks) and low flavanol dark chocolate (LFDC; 88mg flavanols/day for 6weeks) on blood pressure, heart rate, vascular function and platelet aggregation in men with pre-hypertension or mild hypertension. Vascular function was assessed by pulse wave analysis using radial artery applanation tonometry in combination with inhaled salbutamol (0.4mg) to assess changes due to endothelium-dependent vasodilatation. HFDC did not significantly reduce blood pressure compared to baseline or LFDC. Heart rate was increased by LFDC compared to baseline, but not by HFDC. Vascular responses to salbutamol tended to be greater after HFDC. Platelet aggregation induced by collagen or the thromboxane analogue U46619 was unchanged after LFDC or HFDC, whereas both chocolates reduced responses to ADP and the thrombin receptor activator peptide, SFLLRNamide (TRAP6), relative to baseline. Pre-incubation of platelets with theobromine also attenuated platelet aggregation induced by ADP or TRAP6. We conclude that consumption of HFDC confers modest improvements in cardiovascular function. Platelet aggregation is modulated by a flavanol-independent mechanism that is likely due to theobromine. Copyright © 2015 Elsevier Inc. All rights reserved.
Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function.
Kajikawa, Masato; Nakashima, Ayumu; Fujimura, Noritaka; Maruhashi, Tatsuya; Iwamoto, Yumiko; Iwamoto, Akimichi; Matsumoto, Takeshi; Oda, Nozomu; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Aibara, Yoshiki; Noma, Kensuke; Takeuchi, Masayoshi; Matsui, Takanori; Yamagishi, Sho-Ichi; Higashi, Yukihito
2015-01-01
Advanced glycation end products (AGEs) and their specific receptor, the receptor for AGEs (RAGE), play an important role in atherosclerosis. Recently, a soluble form of RAGE (sRAGE) has been identified in human serum. However, the role of sRAGE in cardiovascular disease is still controversial. There is no information on the association between simultaneous measurements of AGEs and sRAGE and vascular function. In this study, we evaluated the associations between serum levels of AGEs and sRAGE, ratio of AGEs to sRAGE, and vascular function. We measured serum levels of AGEs and sRAGE and assessed vascular function by measurement of flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation in 110 subjects who underwent health examinations. Multivariate regression analyses were performed to identify factors associated with vascular function. Univariate regression analysis revealed that FMD correlated with age, BMI, systolic blood pressure, diastolic blood pressure, heart rate, triglycerides, HDL cholesterol, glucose, smoking pack-years, nitroglycerine-induced vasodilation, serum levels of AGEs and sRAGE, and ratio of AGEs to sRAGE. Multivariate analysis revealed that the ratio of AGEs to sRAGE remained an independent predictor of FMD, while serum level of AGEs alone or sRAGE alone was not associated with FMD. These findings suggest that sRAGE may have a counterregulatory mechanism that is activated to counteract the vasotoxic effect of the AGE-RAGE axis. The ratio of AGEs to sRAGE may be a new chemical biomarker of endothelial function. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Wu, Chung-Kuan; Wu, Chia-Lin; Lin, Chia-Hsun; Leu, Jyh-Gang; Kor, Chew-Teng; Tarng, Der-Cherng
2017-09-24
To investigate the impact of vascular access flow (Qa) on vascular and all-cause mortality in chronic haemodialysis (HD) patients. Observational cohort study. Single centre. Adult chronic HD patients at the HD unit of Shin Kong Wu Ho-Su Memorial Hospital between 1 January 2003 and 31 December 2003 were recruited. Patients were excluded if they had arteriovenous fistula or arteriovenous graft failure within 3 months before the date of Qa measurement, were aged <18 years and had Qa levels of ≥2000mL/min. A total of 378 adult chronic HD patients were eventually enrolled for the study. The selected patients were evaluated with Qa and cardiac index (CI). They were divided into four groups according to three Qa cut-off points (500, 1000 and 1500 mL/min). Short-term and long-term vascular (cardiovascular or cerebrovascular) and all-cause mortality. Qa was positively correlated with CI ( r =0.48, p<0.001). A Qa level of <1000 mL/min was independently associated with 1-year all-cause mortality (adjusted OR, 6.04; 95% CI 1.64 to 22.16; p=0.007). Kaplan-Meier analysis revealed that the cumulative incidence rates of all-cause and vascular mortality were significantly higher in the patients with a Qa level of <1000 mL/min (log-rank test; all p<0.01). Furthermore, a Qa level of <1000 mL/min was independently associated with long-term all-cause mortality (adjusted HR, 1.62; 95% CI 1.11 to 2.37; p=0.013); however, the risk of vascular mortality did not significantly increase after adjustment for confounders. Qa is moderately correlated with cardiac function, and a Qa level of <1000 mL/min is an independent risk factor for both short-term and long-term all-cause mortality in chronic HD patients. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Jiménez-Balado, Joan; Riba-Llena, Iolanda; Garde, Edurne; Valor, Marta; Gutiérrez, Belen; Pujadas, Francesc; Delgado, Pilar
2018-06-01
The clinical importance of hippocampal enlarged perivascular spaces (H-EPVS) remains uncertain. We aimed to study their association with vascular risk factors, cognitive function and mild cognitive impairment (MCI). Data were obtained from the ISSYS (Investigating Silent Strokes in hYpertensives, a magnetic resonance imaging Study) cohort, which is a prospective study of patients with hypertension aged 50-70 with no prior stroke or dementia. Participants were clinically evaluated and underwent a cognitive screening test, Dementia Rating Scale-2, which includes five cognitive subscales (attention, initiation/perseveration, conceptualisation, construction and memory). Besides, they were diagnosed with MCI or normal ageing following standard criteria. H-EPVS were manually counted on brain MRI according to a previous scale and defined as extensive when H-EPVS count was ≥7 (upper quartile). Multivariate models were created to study the relationship between H-EPVS, vascular risk factors and cognitive function. 723 patients were included; the median age was 64 (59-67) and 51% were male. Seventy-two patients (10%) were diagnosed with MCI and 612 (84.6%) had at least 1 H-EPVS. Older age (OR per year=1.04, 95% CI 1.01 to 1.08) and poor blood pressure treatment compliance (OR=1.50, 95% CI 1.07 to 2.11) were independently associated with extensive H-EPVS. Regarding cognitive function, H-EPVS were independently and inversely correlated with verbal reasoning (β=-0.021, 95% CI -0.038 to -0.003). No association was found between H-EPVS and MCI. H-EPVS are a frequent finding in patients with hypertension and are associated with ageing and poor hypertension treatment compliance. Besides, H-EPVS are associated with worse verbal reasoning function. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
O'Neill, Marie S; Veves, Aristidis; Zanobetti, Antonella; Sarnat, Jeremy A; Gold, Diane R; Economides, Panayiotis A; Horton, Edward S; Schwartz, Joel
2005-06-07
Epidemiological studies suggest that people with diabetes are vulnerable to cardiovascular health effects associated with exposure to particle air pollution. Endothelial and vascular function is impaired in diabetes and may be related to increased cardiovascular risk. We examined whether endothelium-dependent and -independent vascular reactivity was associated with particle exposure in individuals with and without diabetes. Study subjects were 270 greater-Boston residents. We measured 24-hour average ambient levels of air pollution (fine particles [PM2.5], particle number, black carbon, and sulfates [SO4(2-)]) approximately 500 m from the patient examination site. Pollutant concentrations were evaluated for associations with vascular reactivity. Linear regressions were fit to the percent change in brachial artery diameter (flow mediated and nitroglycerin mediated), with the particulate pollutant index, apparent temperature, season, age, race, sex, smoking history, and body mass index as predictors. Models were fit to all subjects and then stratified by diagnosed diabetes versus at risk for diabetes. Six-day moving averages of all 4 particle metrics were associated with decreased vascular reactivity among patients with diabetes but not those at risk. Interquartile range increases in SO4(2-) were associated with decreased flow-mediated (-10.7%; 95% CI, -17.3 to -3.5) and nitroglycerin-mediated (-5.4%; 95% CI, -10.5 to -0.1) vascular reactivity among those with diabetes. Black carbon increases were associated with decreased flow-mediated vascular reactivity (-12.6%; 95% CI, -21.7 to -2.4), and PM2.5 was associated with nitroglycerin-mediated reactivity (-7.6%; 95% CI, -12.8 to -2.1). Effects were stronger in type II than type I diabetes. Diabetes confers vulnerability to particles associated with coal-burning power plants and traffic.
Preoperative frailty assessment predicts loss of independence after vascular surgery.
Donald, Graham W; Ghaffarian, Amir A; Isaac, Farid; Kraiss, Larry W; Griffin, Claire L; Smith, Brigitte K; Sarfati, Mark R; Beckstrom, Julie L; Brooke, Benjamin S
2018-05-14
Frailty, a clinical syndrome associated with loss of metabolic reserves, is prevalent among patients who present to vascular surgery clinics for evaluation. The Clinical Frailty Scale (CFS) is a rapid assessment method shown to be highly specific for identifying frail patients. In this study, we sought to evaluate whether the preoperative CFS score could be used to predict loss of independence after major vascular procedures. We identified all patients living independently at home who were prospectively assessed using the CFS before undergoing an elective major vascular surgery procedure (admitted for >24 hours) at an academic medical center between December 2015 and December 2017. Patient- and procedure-level clinical data were obtained from our institutional Vascular Quality Initiative registry database. The composite outcome of discharge to a nonhome location or 30-day mortality was evaluated using bivariate and multivariate regression models. A total of 134 independent patients were assessed using the CFS before they underwent elective open abdominal aortic aneurysm repair (8%), endovascular aneurysm repair (26%), thoracic endovascular aortic repair (6%), suprainguinal bypass (6%), infrainguinal bypass (16%), carotid endarterectomy (19%), or peripheral vascular intervention (20%). Among 39 (29%) individuals categorized as being frail using the CFS, there was no significant difference in age or ASA physical status compared with nonfrail patients. However, frail patients were significantly more likely to need mobility assistance after surgery (62% frail vs 22% nonfrail; P < .01) and to be discharged to a nonhome location (22% frail vs 6% nonfrail; P = .01) or to die within 30 days after surgery (8% frail vs 0% nonfrail; P < .01). Preoperative frailty was associated with a >12-fold higher risk (odds ratio, 12.1; 95% confidence interval, 2.17-66.96; P < .01) of 30-day mortality or loss of independence, independent of the vascular procedure undertaken. The CFS is a practical tool for assessing preoperative frailty among patients undergoing elective major vascular surgery and can be used to predict likelihood of requiring discharge to a nursing facility or death after surgery. The identification of frail patients before major surgery can help manage postoperative expectations and optimize transitions of care. Published by Elsevier Inc.
Shearer, Gregory C.; Pottala, James V.; Hansen, Susan N.; Brandenburg, Verdayne; Harris, William S.
2012-01-01
The metabolic syndrome includes both dyslipidemia and impaired vascular function. Because extended-release niacin (ERN) and prescription omega-3 acid ethyl-esters (P-OM3) independently improve these characteristics, we tested their effects in combination. Sixty metabolic syndrome subjects were randomized to 16 weeks of treatment on dual placebo, P-OM3 (4g/day), ERN (2 g/day), or combination in a double-blind trial. Lipoprotein subfractions and vascular endpoints were measured and tested using ANCOVA. ERN increased HDL cholesterol by 5.4 mg/dl from baseline (P = 0.04), decreased triglycerides (TG) by 39 mg/dl (−21%, P = 0.003), and decreased the augmentation index, which is a measure of vascular stiffness, by 3.5 units (P = 0.04). P-OM3 reduced TG by 26 mg/dl (−13%, P = 0.04). Combination treatment increased HDL cholesterol by 7.8 mg/dl (P = 002) and decreased TG by 72 mg/dl (−34%) but there was no improvement in vascular stiffness. Detailed analysis of lipoprotein subfractions revealed increased large, bouyant HDL2 (3.3 mg/dl; P = 0.002) and decreased VLDL1+2 (−32%; P < 0.0001), among subjects treated with combination therapy, that were not present with either therapy alone. ERN and P-OM3 alone improved characteristics of metabolic syndrome; however, whereas subjects on combination therapy did not have improved vascular stiffness, TG and HDL levels improved as did certain lipoprotein subfractions. PMID:22892157
Vitamin D and endothelial vasodilation in older individuals: data from the PIVUS study.
Maggio, Marcello; De Vita, Francesca; Lauretani, Fulvio; Ceda, Gian Paolo; Volpi, Elena; Giallauria, Francesco; De Cicco, Giuseppe; Cattabiani, Chiara; Melhus, Håkan; Michaëlsson, Karl; Cederholm, Tommy; Lind, Lars
2014-09-01
Vitamin D plays a role in a wide range of extraskeletal processes, including vascular function. Endothelial dysfunction is a predictor of cardiovascular disease, especially in older subjects. However, the relationship between vitamin D levels and indexes of endothelial vasodilation has never been fully addressed in older individuals. The objective of this study was to examine the association between vitamin D and endothelial function in a large community-based sample of older subjects. This cross-sectional study involved 852 community-dwelling men and women aged 70 years from the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS), with complete data on vascular function and 25-hydroxyvitamin D. We evaluated endothelium-dependent vasodilation by an invasive forearm technique with acetylcholine, endothelium-independent vasodilation by sodium nitroprussiate, flow-mediated vasodilation, and the pulse wave analysis (reflectance index). Vitamin D levels were measured by chemiluminescence. We used multivariate regression models adjusted for body mass index (model 1) and for multiple confounders (high-sensitivity C-reactive protein, insulin, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, smoking, sex hormones, season of blood collection, hypertension, diabetes, cardiovascular medications and diseases, statin usage, plasma calcium and calcium intake, PTH, physical exercise, liver and kidney function tests, albumin; model 2). In women, but not in men, vitamin D levels were positively associated with endothelium-independent vasodilation in both model 1 (β ± SE = 1.41 ± 0.54; P = .001), and model 2 (β ± SE = 2.01 ± 0.68; P = .003).We found no significant relationship between vitamin D levels and endothelium-dependent vasodilation, flow-mediated vasodilation, and reflectance index in both sexes. In older women, but not in men, vitamin D is positively and independently associated with EIDV.
Vitamin D and Endothelial Vasodilation in Older Individuals: Data From the PIVUS Study
De Vita, Francesca; Lauretani, Fulvio; Ceda, Gian Paolo; Volpi, Elena; Giallauria, Francesco; De Cicco, Giuseppe; Cattabiani, Chiara; Melhus, Håkan; Michaëlsson, Karl; Cederholm, Tommy; Lind, Lars
2014-01-01
Context: Vitamin D plays a role in a wide range of extraskeletal processes, including vascular function. Endothelial dysfunction is a predictor of cardiovascular disease, especially in older subjects. However, the relationship between vitamin D levels and indexes of endothelial vasodilation has never been fully addressed in older individuals. Objective: The objective of this study was to examine the association between vitamin D and endothelial function in a large community-based sample of older subjects. Methods: This cross-sectional study involved 852 community-dwelling men and women aged 70 years from the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS), with complete data on vascular function and 25-hydroxyvitamin D. We evaluated endothelium-dependent vasodilation by an invasive forearm technique with acetylcholine, endothelium-independent vasodilation by sodium nitroprussiate, flow-mediated vasodilation, and the pulse wave analysis (reflectance index). Vitamin D levels were measured by chemiluminescence. We used multivariate regression models adjusted for body mass index (model 1) and for multiple confounders (high-sensitivity C-reactive protein, insulin, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, smoking, sex hormones, season of blood collection, hypertension, diabetes, cardiovascular medications and diseases, statin usage, plasma calcium and calcium intake, PTH, physical exercise, liver and kidney function tests, albumin; model 2). Results: In women, but not in men, vitamin D levels were positively associated with endothelium-independent vasodilation in both model 1 (β ± SE = 1.41 ± 0.54; P = .001), and model 2 (β ± SE = 2.01 ± 0.68; P = .003).We found no significant relationship between vitamin D levels and endothelium-dependent vasodilation, flow-mediated vasodilation, and reflectance index in both sexes. Conclusions: In older women, but not in men, vitamin D is positively and independently associated with EIDV. PMID:24892991
Adverse systemic arterial function in patients with selenium deficiency.
Chan, Y-H; Siu, C-W; Yiu, K-H; Chan, H-T; Li, S-W; Tam, S; Cheung, B M; Lau, C-P; Lam, T H; Tse, H-F
2012-01-01
Experimental studies have shown that selenium is involved in the synthesis of selenoproteins which might contribute to cardiovascular protection. However, the relationship between selenium deficiency and vascular function in clinical context remains unknown. To investigate for any relationship between selenium deficiency and systemic arterial function in patients with high risk of vascular events. Cross-sectional study. 306 consecutive patients with high risk for cardiovascular events (coronary artery disease 35%, acute/ recurrent ischemic stroke 40%, diabetes mellitus 54%) followed up at internal medicine outpatient clinics. Non-invasive brachial-ankle pulse wave velocity (PWV) was determined using vascular profiling system (VP-2000). Long-term intake of selenium was determined by a validated food frequency questionnaire. Mean daily selenium intake was 59.5 ± 52.1 mcg/day, and mean PWV was 1782.4 ± 418.4 cm/s. Patients with selenium intake <10th percentile had significantly higher PWV as compared to patients with intake ≥ 10th percentile (1968.2 ± 648.9 cm/s versus 1762.2 ± 381.6 cm/s, P=0.010). After adjusting for potential confounders including age, gender, history of hypertension, hyperlipidemia, diabetes and cardiovascular disease, smoking status, use of cardiovascular medications, waist-hip ratio, education/ financial status, physical activity, calorie intake and intake of antioxidant vitamins, deficient selenium intake <10th percentile remained independently predictive of increased PWV by +363.4 cm/s [95% CI: 68.1 to 658.6, P=0.016, relative increase 21%]. Selenium deficiency is associated with adverse arterial function in patients with high risk for vascular events.
Sex Differences Influencing Micro- and Macrovascular Endothelial Phenotype In Vitro.
Huxley, Virginia H; Kemp, Scott S; Schramm, Christine; Sieveking, Steve; Bingaman, Susan; Yu, Yang; Zaniletti, Isabella; Stockard, Kevin; Wang, Jianjie
2018-06-09
Endothelial dysfunction is an early hallmark of multiple disease states that also display sex differences with respect to age of onset, frequency, and severity. Results of in vivo studies of basal and stimulated microvascular barrier function revealed sex differences difficult to ascribe to specific cells or environmental factors. The present study evaluated endothelial cells (EC) isolated from macro- and/or microvessels of reproductively mature rats under the controlled conditions of low-passage culture to test the assumption that EC phenotype would be sex-independent. The primary finding was that EC, regardless of where they are derived, retain a sex-bias in low-passage culture, independent of varying levels of reproductive hormones. Implications of the work include the fallacy of expecting a universal set of mechanisms derived from study of EC from one sex and/or one vascular origin to apply uniformly to all EC under unstimulated conditions no less in the disease state. Vascular endothelial cells (EC) are heterogeneous with respect to phenotype reflecting at least organ of origin, location within the vascular network, and physical forces. Sex, as an independent influence on EC functions in health or etiology, susceptibility, and progression of dysfunction in numerous disease states, has been largely ignored. The current study focussed on EC isolated from aorta (macrovascular) and skeletal muscle vessels (microvascular) of age-matched male and female rats under identical conditions of short term (passage 4) culture. We tested the hypothesis that genomic sex would not influence endothelial growth, wound healing, morphology, lactate production, or messenger RNA and protein expression of key proteins (sex hormone receptors for androgen (AR) and oestrogen (ERα and ERβ); PECAM-1 and VE-CAD mediating barrier function; α v β 3 and N-Cadherin influencing matrix interactions; ICAM-1 and VCAM-1 mediating EC/white cell adhesion). The hypothesis was rejected as EC origin (macro- versus microvessel) and sex influenced multiple phenotypic characteristics. Statistical model analysis of EC growth demonstrated an hierarchy of variable importance, recapitulated for other phenotypic characteristics, wherein predictions assuming EC homogeneity < Sex < Vessel Origin < Sex and Vessel Origin. Further, patterns of EC mRNA expression by vessel origin and by sex did not predict protein expression. Overall the study demonstrated that accurate assessment of sex-linked EC dysfunction first requires understanding of EC function by position in the vascular tree and by sex. Results from a single EC tissue source/species/sex cannot provide universal insight into the mechanisms regulating in vivo endothelial function in health, no less disease. (250) This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chen, Hongying; Ho, Hok-Ming; Ying, Michael; Fu, Siu Ngor
2013-10-01
Single-cohort laboratory-based study. To identify whether plantar fascia vascularity and thickness are associated with foot pain and dysfunction in individuals with chronic plantar fasciitis. Background Altered plantar fascia vascularity and thickening of the fascia have been identified in individuals with chronic plantar fasciitis. Thirty-eight patients with chronic unilateral plantar fasciitis and 21 controls participated in this study. Proximal plantar fascia vascularization and thickness were assessed using ultrasound imaging, and pain and foot dysfunction were quantified with a visual analog scale and the Chinese version of the Foot Function Index, respectively. Paired t tests were used to assess the side-to-side differences in fascia thickness and vascularity index (VI) in the control and patient groups, and an unpaired t test was used to make comparisons with the patient group. Multiple regression analysis was performed to identify whether the VI and fascia thickness were associated with pain and foot dysfunction. There were significantly higher VI (mean ± SD, 2.4% ± 1.4%) and fascia thickness (5.0 ± 1.3 mm) values in the affected feet when compared with the unaffected feet in the patient group (VI, 1.4% ± 0.5%; fascia thickness, 3.3 ± 0.7 mm) and with the dominant side of the controls (VI, 1.6% ± 0.4%; fascia thickness, 2.9 ± 0.6 mm). After accounting for age, gender, body mass index, and duration of symptoms, the VI explained 13% and 33% of the variance in pain scores measured with a visual analog scale and the pain subscale of the Foot Function Index, respectively; the VI and fascia thickness explained 42% of the variance in the Foot Function Index. Individuals with unilateral chronic plantar fasciitis demonstrated significantly greater vascularity and thickened fascia on the affected side compared to the unaffected side and also to healthy controls. Fascia vascularity was associated independently with self-perceived pain, and both fascia vascularity and thickness were associated with foot dysfunction in patients with chronic plantar fasciitis. Public trials registry: Current Controlled Trials, ISRCTN49594569.
Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.
Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis
2013-04-01
Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.
Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis.
Findeisen, Hannes M; Kahles, Florian K; Bruemmer, Dennis
2013-05-01
Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.
Qi, Jian Hua; Anand-Apte, Bela
2015-01-01
Tissue Inhibitor of Metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in endothelial cells (ECs) in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in endothelial cells expressing KDR (PAE/KDR), but not in endothelial cells expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway. PMID:25558000
Qi, Jian Hua; Anand-Apte, Bela
2015-04-01
Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.
Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications
Lucas-Herald, Angela K.; Alves-Lopes, Rheure; Montezano, Augusto C.; Ahmed, S. Faisal
2017-01-01
The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function. PMID:28645930
Characteristics of 32 supercentenarians.
Schoenhofen, Emily A; Wyszynski, Diego F; Andersen, Stacy; Pennington, Jaemi; Young, Robert; Terry, Dellara F; Perls, Thomas T
2006-08-01
To report phenotypic characteristics of 32 age-validated supercentenarians. Case series. U.S.-based recruitment effort. Thirty-two supercentenarians. Multiple forms of proof were used to validate age claims. Sociodemographic, activities of daily living, and medical history data were collected. Age range was 110 to 119. Fifty-nine percent had Barthel Index scores in the partially to totally dependent range, whereas 41% required minimal assistance or were independent. Few subjects had a history of clinically evident vascular-related diseases, including myocardial infarction (n=2, 6%) and stroke (n=4, 13%). Twenty-two percent (n=7) were taking medications for hypertension. Twenty-five percent (n=8) had a history of cancer (all cured). Diabetes mellitus (n=1, 3%) and Parkinson's disease (n=1, 3%) were rare. Osteoporosis (n=14, 44%) and cataract history (n=28, 88%) were common. Data collected thus far suggest that supercentenarians markedly delay and even escape clinical expression of vascular disease toward the end of their exceptionally long lives. A surprisingly substantial proportion of these individuals were still functionally independent or required minimal assistance.
Oliveira, Samuel Henrique Vieira; de Miranda, Marciano Robson; Santos Morais, Charles Augusto; Palotás, András; Lima, Luciana Moreira
2013-08-01
Lipoprotein-A (LpA) is an emerging independent risk factor for cerebro- and cardio-vascular diseases (CCVD). Recognizing its function and its normal distribution is of fundamental importance for a better understanding of CCVD patho-physiology. The present study evaluated plasma LpA levels of healthy university students using turbidimetric methods. Medians and inter-quartile differences obtained for male and female participants were 11.3mg/dL (3.1-30.7) and 20.9mg/dL (6.5-42.3), respectively, demonstrating a significant difference (P=0.017) between men and women. A third of students showed plasma concentrations above reference values. Our results indicate that 33% of students possess a hidden independent risk factor for CCVD. Multi-disciplinary evaluation and characterization of young individuals should be recommended in an attempt to take early preventive measures and to eliminate possible modifiable risk factors such as sedentary lifestyle, smoking, hypertension, obesity and atherogenic diet. Copyright © 2013 Elsevier Inc. All rights reserved.
Social Resources That Preserve Functional Independence After Memory Loss
2013-05-01
RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE May 2013 2 . REPORT TYPE Annual 3. DATES COVERED 20 April 2012 – 19 April 2013 4. TITLE...Even traditional vascular risk factors like high blood pressure, dyslipidemia, diabetes mellitus , smoking and atherosclerotic disease may be untreated...May 2013 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort
Honda, Yukiko; Meguro, Kenichi; Meguro, Mitsue; Akanuma, Kyoko
2013-01-01
Patients with vascular dementia (VaD) are often isolated, withdrawn from society because of negative symptoms and functional disabilities. The aim of this study was to detect factors associated with social withdrawal in patients with VaD. The participants were 36 institutionalized patients with VaD. Social withdrawal was assessed with the social withdrawal of the Multidimensional Observation Scale for Elderly Subjects (MOSES). Possible explanatory variables were the MOSES items depression and self-care, Cognitive Abilities Screening Instrument (CASI), apathy evaluation scale (AES), and Behavioral Pathology in Alzheimer's Disease Frequency-Weighted Severity Scale (BEHAVE-AD-FW). Multiple regression analyses were conducted for two groups: Analysis 1 was performed in all patients (N = 36) and Analysis 2 was performed in the patients with the ability to move by themselves (i.e., independent walking or independent movement with a cane or a wheelchair; n = 28). In Analysis 1, MOSES item social withdrawal was correlated with AES and MOSES item self-care. In Analysis 2, MOSES item social withdrawal was correlated with AES and CASI domain abstraction and judgment. Decreased social activities of VaD were not related to general cognitive function or depression. Disturbed activities of daily living (ADLs) for self-care may involve decreased frontal lobe function, indicating that comprehensive rehabilitation for both ADL and dementia are needed to improve the social activities of patients with VaD.
Jiang, Kan; Kwak, Hyeongil; Tosato, Giovanna
2013-01-18
Although Vascular Endothelial Growth Factor (VEGF)-targeted therapies have shown efficacy in the treatment of certain advanced cancers, benefits to patients have been modest, which is attributed to tumor resistance to VEGF neutralization. Recent efforts to identify new targets to inhibit tumor angiogenesis have identified Bv8 (prokineticin 2), a myeloid cell-derived protein that promotes endothelial cell growth and tumor angiogenesis, but many mechanistic aspects of the pro-tumorigenic function of Bv8 are unclear. Here we demonstrate that CD11b+, Ly6C+, Ly6G+ granulocytes are the predominant cell source of Bv8 expression in bone marrow, spleen and in tumor tissues. Using granulocyte-deficient Growth factor independence-1 (Gfi1)-null mutant mice and normal littermates, we found that EL4 lymphoma tumors grow significantly larger in the granulocyte and Bv8-deficient mutant mice in comparison to the normal mice that display abundant tumor-associated granulocytes and Bv8 expression. Conversely, Lewis lung carcinoma (LLC-1) tumors grew to a significantly greater size in the normal mice in comparison to the Gfi1-null mice, but normal granulocyte tumor infiltration was modest. Quantitative analysis of tissue vascularization showed that EL4 and LLC-1 tumors from normal and Gfi1-mutant mice are similarly vascularized. These results confirm the critical contribution of the tumor microenvironment in determining the rate of tumor progression independently of tumor angiogenesis, and reveal some of the complexities of granulocyte and Bv8 functions in modulating tumor growth.
Jiang, Kan; Kwak, Hyeongil; Tosato, Giovanna
2014-01-01
Although Vascular Endothelial Growth Factor (VEGF)-targeted therapies have shown efficacy in the treatment of certain advanced cancers, benefits to patients have been modest, which is attributed to tumor resistance to VEGF neutralization. Recent efforts to identify new targets to inhibit tumor angiogenesis have identified Bv8 (prokineticin 2), a myeloid cell-derived protein that promotes endothelial cell growth and tumor angiogenesis, but many mechanistic aspects of the pro-tumorigenic function of Bv8 are unclear. Here we demonstrate that CD11b+, Ly6C+, Ly6G+ granulocytes are the predominant cell source of Bv8 expression in bone marrow, spleen and in tumor tissues. Using granulocyte-deficient Growth factor independence-1 (Gfi1)-null mutant mice and normal littermates, we found that EL4 lymphoma tumors grow significantly larger in the granulocyte and Bv8-deficient mutant mice in comparison to the normal mice that display abundant tumor-associated granulocytes and Bv8 expression. Conversely, Lewis lung carcinoma (LLC-1) tumors grew to a significantly greater size in the normal mice in comparison to the Gfi1-null mice, but normal granulocyte tumor infiltration was modest. Quantitative analysis of tissue vascularization showed that EL4 and LLC-1 tumors from normal and Gfi1-mutant mice are similarly vascularized. These results confirm the critical contribution of the tumor microenvironment in determining the rate of tumor progression independently of tumor angiogenesis, and reveal some of the complexities of granulocyte and Bv8 functions in modulating tumor growth. PMID:25493215
Fusi, Fabio; Trezza, Alfonso; Spiga, Ottavia; Sgaragli, Giampietro; Bova, Sergio
2017-09-15
To characterize the role of cAMP-dependent protein kinase (PKA) in regulating vascular Ca 2+ current through Ca v 1.2 channels [I Ca1.2 ], we have documented a marked capacity of the isoquinoline H-89, widely used as a PKA inhibitor, to reduce current amplitude. We hypothesized that the I Ca1.2 inhibitory activity of H-89 was mediated by mechanisms unrelated to PKA inhibition. To support this, an in-depth analysis of H-89 vascular effects on both I Ca1.2 and contractility was undertaken by performing whole-cell patch-clamp recordings and functional experiments in rat tail main artery single myocytes and rings, respectively. H-89 inhibited I Ca1.2 with a pIC 50 (M) value of about 5.5, even under conditions where PKA activity was either abolished by both the PKA antagonists KT5720 and protein kinase inhibitor fragment 6-22 amide or enhanced by the PKA stimulators 6-Bnz-cAMP and 8-Br-cAMP. Inhibition of I Ca1.2 by H-89 appeared almost irreversible upon washout, was charge carrier- and voltage-dependent, and antagonised by the Ca v 1.2 channel agonist (S)-(-)-Bay K 8644. H-89 did not alter both potency and efficacy of verapamil, did not affect current kinetics or voltage-dependent activation, while shifting to the left the 50% voltage of inactivation in a concentration-dependent manner. H-89 docked at the α 1C subunit in a pocket region close to that of (S)-(-)-Bay K 8644 docking, forming a hydrogen bond with the same, key amino acid residue Tyr-1489. Finally, both high K + - and (S)-(-)-Bay K 8644-induced contractions of rings were fully reverted by H-89. In conclusion, these results indicate that H-89 inhibited vascular I Ca1.2 and, consequently, the contractile function through a PKA-independent mechanism. Therefore, caution is recommended when interpreting experiments where H-89 is used to inhibit vascular smooth muscle PKA. Copyright © 2017 Elsevier Inc. All rights reserved.
Relational databases for rare disease study: application to vascular anomalies.
Perkins, Jonathan A; Coltrera, Marc D
2008-01-01
To design a relational database integrating clinical and basic science data needed for multidisciplinary treatment and research in the field of vascular anomalies. Based on data points agreed on by the American Society of Pediatric Otolaryngology (ASPO) Vascular Anomalies Task Force. The database design enables sharing of data subsets in a Health Insurance Portability and Accountability Act (HIPAA)-compliant manner for multisite collaborative trials. Vascular anomalies pose diagnostic and therapeutic challenges. Our understanding of these lesions and treatment improvement is limited by nonstandard terminology, severity assessment, and measures of treatment efficacy. The rarity of these lesions places a premium on coordinated studies among multiple participant sites. The relational database design is conceptually centered on subjects having 1 or more lesions. Each anomaly can be tracked individually along with their treatment outcomes. This design allows for differentiation between treatment responses and untreated lesions' natural course. The relational database design eliminates data entry redundancy and results in extremely flexible search and data export functionality. Vascular anomaly programs in the United States. A relational database correlating clinical findings and photographic, radiologic, histologic, and treatment data for vascular anomalies was created for stand-alone and multiuser networked systems. Proof of concept for independent site data gathering and HIPAA-compliant sharing of data subsets was demonstrated. The collaborative effort by the ASPO Vascular Anomalies Task Force to create the database helped define a common vascular anomaly data set. The resulting relational database software is a powerful tool to further the study of vascular anomalies and the development of evidence-based treatment innovation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret
2011-07-08
Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC),more » little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.« less
Koh, Angela S; Murthy, Venkatesh L; Sitek, Arkadiusz; Gayed, Peter; Bruyere, John; Wu, Justina; Di Carli, Marcelo F; Dorbala, Sharmila
2015-09-01
Longstanding uncontrolled atherogenic risk factors may contribute to left atrial (LA) hypertension, LA enlargement (LAE) and coronary vascular dysfunction. Together they may better identify risk of major adverse cardiac events (MACE). The aim of this study was to test the hypothesis that chronic LA hypertension as assessed by LAE modifies the relationship between coronary vascular function and MACE. In 508 unselected subjects with a normal clinical (82)Rb PET/CT, ejection fraction ≥40 %, no prior coronary artery disease, valve disease or atrial fibrillation, LAE was determined based on LA volumes estimated from the hybrid perfusion and CT transmission scan images and indexed to body surface area. Absolute myocardial blood flow and global coronary flow reserve (CFR) were calculated. Subjects were systematically followed-up for the primary end-point - MACE - a composite of all-cause death, myocardial infarction, hospitalization for heart failure, stroke, coronary artery disease progression or revascularization. During a median follow-up of 862 days, 65 of the subjects experienced a composite event. Compared with subjects with normal LA size, subjects with LAE showed significantly lower CFR (2.25 ± 0.83 vs. 1.95 ± 0.80, p = 0.01). LAE independently and incrementally predicted MACE even after accounting for clinical risk factors, medication use, stress left ventricular ejection fraction, stress left ventricular end-diastolic volume index and CFR (chi-squared statistic increased from 30.9 to 48.3; p = 0.001). Among subjects with normal CFR, those with LAE had significantly worse event-free survival (risk adjusted HR 5.4, 95 % CI 2.3 - 12.8, p < 0.0001). LAE and reduced CFR are related but distinct cardiovascular adaptations to atherogenic risk factors. LAE is a risk marker for MACE independent of clinical factors and left ventricular volumes; individuals with LAE may be at risk of MACE despite normal coronary vascular function.
Kalyani, Partho S; Fawzi, Amani A; Gangaputra, Sapna; van Natta, Mark L; Hubbard, Larry D; Danis, Ronald P; Thorne, Jennifer E; Holland, Gary N
2012-03-01
To evaluate relationships between retinal vessel caliber and tests of visual function among people with AIDS. Longitudinal, observational cohort study. We evaluated data for participants without ocular opportunistic infections at initial examination (baseline) in the Longitudinal Studies of the Ocular Complications of AIDS (1998-2008). Visual function was evaluated with best-corrected visual acuity, Goldmann perimetry, automated perimetry (Humphrey Field Analyzer), and contrast sensitivity (CS) testing. Semi-automated grading of fundus photographs (1 eye/participant) determined central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE), and arteriole-to-venule ratio (AVR) at baseline. Multiple linear regression models, using forward selection, sought independent relationships between indices and visual function variables. Included were 1250 participants. Smaller AVR was associated with reduced visual field by Goldmann perimetry (P = .003) and worse mean deviation (P = .02) on automated perimetry and possibly with worse pattern standard deviation (PSD) on automated perimetry (P = .06). There was a weak association between smaller AVR and worse CS (P = .07). Relationships were independent of antiretroviral therapy and level of immunodeficiency (CD4+ T lymphocyte count, human immunodeficiency virus [HIV] RNA blood level). On longitudinal analysis, retinal vascular indices at baseline did not predict changes in visual function. Variation in retinal vascular indices is associated with abnormal visual function in people with AIDS, manifested by visual field loss and possibly by reduced CS. Relationships are consistent with the hypothesis that HIV-related retinal vasculopathy is a contributing factor to vision dysfunction among HIV-infected individuals. Longitudinal studies are needed to determine whether changes in indices predict change in visual function. Copyright © 2012 Elsevier Inc. All rights reserved.
Dimitroulas, Theodoros; Sandoo, Aamer; Hodson, James; Smith, Jacqueline P; Kitas, George D
2016-07-01
To examine associations between asymmetric (ADMA), symmetric dimethylarginine (SDMA) and ADMA:SDMA ratio with assessments of endothelial function and coronary artery perfusion in RA patients. ADMA and SDMA levels were measured in 197 RA individuals [144 (77.4%) females, median age: 66 years (quartiles: 59-73)]. Patients underwent assessments of microvascular endothelium-dependent and endothelium-independent function, macrovascular endothelium-dependent and endothelium-independent function and vascular morphology (pulse wave analysis, carotid intima-media thickness (cIMT), and carotid plaque). Coronary perfusion was assessed by subendocardial viability ratio (SEVR). SEVR correlated with SDMA (r = 0.172, p = 0.026) and ADMA:SDMA (r = -0.160, p = 0.041) in univariable analysis, but not in multivariable analysis accounting for confounding factors. Neither ADMA:SDMA ratio nor SDMA were significantly correlated with microvascular or macrovascular endothelial function, or with arterial stiffness and cIMT. Within subgroup of patients (n = 26) with high inflammatory markers, a post-hoc analysis showed that SDMA and the ADMA:SDMA ratio were significantly associated with endothelium-dependent microvascular function in univariable analysis, with Pearson's r correlation coefficients of -0.440 (p = 0.031) and 0.511 (p = 0.011), respectively. Similar finding were established between ADMA:SDMA ratio and arterial stiffness in univariable analysis, with Pearson's r of 0.493, (p = 0.024). Dimethylarginines were not found to be significantly associated with several assessments of vascular function and morphology in patients with RA, however, post-hoc analysis indicates that there may be associations in patients with raised inflammatory markers. Our results suggest that dysregulated NO metabolism may not be the sole mechanism for the development of preclinical atherosclerosis in RA.
Domingo, Enric; Aguilar, Rio; López-Meseguer, Manuel; Teixidó, Gisela; Vazquez, Manuel; Roman, Antonio
2009-01-01
Pulmonary arterial hypertension (PAH) is a rare fatal disease defined as a sustained elevation of pulmonary arterial pressure to more than 25 mmHg at rest, with a mean pulmonary-capillary wedge pressure and left ventricular enddiastolic pressure of less than 15 mmHg at rest. Histopathology of PAH is founded on structural modifications on the vascular wall of small pulmonary arteries characterized by thickening of all its layers. These changes, named as vascular remodelling, include vascular proliferation, fibrosis, and vessel obstruction. In clinical practice the diagnosis of PAH relies on measurements of pulmonary vascular pressure and cardiac output, and calculation of pulmonary vascular resistances. Direct evaluation of pulmonary vascular structure is not routinely performed in pulmonary hypertension since current imaging techniques are limited and since little is known about the relationship between structural changes and functional characteristics of the pulmonary vasculature. Intravascular ultrasound studies in patients with pulmonary hypertension have shown a thicker middle layer, increased wall-thickness ratio and diminished pulsatility than in control patients. Optical Coherence Tomography, a new high resolution imaging modality that has proven its superiority over intravascular ultrasound (IVUS) for the detection and characterization of coronary atherosclerotic plaque composition, may potentially be a useful technique for the in vivo study of the pulmonary arterial wall. In addition current progress in Echo Doppler technique will quantify right ventricular function with parameters independent of loading conditions and not requiring volumetric approximations of the complex geometry of the right ventricle. This would allow the in vivo study of right ventricular and pulmonary artery remodelling in PAH. PMID:19452037
Matsui, Shogo; Kajikawa, Masato; Maruhashi, Tatsuya; Iwamoto, Yumiko; Oda, Nozomu; Kishimoto, Shinji; Hashimoto, Haruki; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Hida, Eisuke; Goto, Chikara; Aibara, Yoshiki; Nakashima, Ayumu; Yusoff, Farina Mohamad; Noma, Kensuke; Kuwahara, Yoshitaka; Matsubara, Akio; Higashi, Yukihito
2018-06-15
Lower urinary tract symptoms (LUTS) is not only common symptoms in elderly men and women but also risk of future cardiovascular events. The purpose of this study was to evaluate the relationships of vascular function and structure with LUTS in men and women. We investigated flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation (NID) as vascular function, brachial-ankle pulse wave velocity (baPWV) as vascular structure, and LUTS assessed by International Prostate Symptom Score (IPSS) in 287 men and 147 women. IPSS was significantly correlated with traditional cardiovascular risk factors, Framingham risk score, FMD, NID and baPWV. Moderate to severe LUTS was associated with the prevalence of coronary heart disease in men but not in women. In men, FMD and NID were significantly lower in the moderate to severe LUTS group than in the none to mild LUTS group (2.1 ± 2.0% vs. 4.0 ± 3.0% and 9.3 ± 6.1% vs. 12.8 ± 6.6%, P < 0.001, respectively). baPWV was significantly higher in the moderate to severe LUTS group than in the none to mild LUTS group (1722 ± 386 cm/s vs. 1509 ± 309 cm/s, P < 0.001). In multivariate analysis, FMD was independently associated with a decrease in the odds ratio of moderate to severe LUTS in men (OR: 0.83, 95% CI, 0.72-0.95; P = 0.008) but not in women. NID and baPWV were not independently associated with moderate to severe LUTS either in men or women. These findings suggest that endothelial dysfunction is associated with LUTS in men. LUTS in men may be useful for a predictor of cardiovascular events. URL for Clinical Trial: http://UMIN; Registration Number for Clinical Trial: UMIN000003409. Copyright © 2018 Elsevier B.V. All rights reserved.
Infrared Imaging of Nitric Oxide-Mediated Blood Flow in Human Sickle Cell Disease
Gorbach, Alexander M.; Ackerman, Hans C.; Liu, Wei-Min; Meyer, Joseph M.; Littel, Patricia L.; Seamon, Catherine; Footman, Eleni; Chi, Amy; Zorca, Suzana; Krajewski, Megan L.; Cuttica, Michael J.; Machado, Roberto F.; Cannon, Richard O.; Kato, Gregory J.
2012-01-01
Vascular dysfunction is an important pathophysiologic manifestation of sickle cell disease (SCD), a condition that increases risk of pulmonary hypertension and stroke. We hypothesized that infrared (IR) imaging would detect changes in cutaneous blood flow reflective of vascular function. We performed IR imaging and conventional strain gauge plethysmography in twenty-five adults with SCD at baseline and during intra-arterial infusions of an endothelium-dependent vasodilator acetylcholine (ACh), an endothelium-independent vasodilator sodium nitroprusside (SNP), and a NOS inhibitor L-NMMA. Skin temperature measured by IR imaging increased in a dose-dependent manner to graded infusions of ACh (+1.1° C, p < 0.0001) and SNP (+0.9° C, p < 0.0001), and correlated with dose-dependent increases in forearm blood flow (ACh: +19.9 mL/min/100mL, p < 0.0001; rs = 0.57, p = 0.003; SNP: +8.6 mL/min/100mL, p < 0.0001; r = 0.70, p = 0.0002). Although IR measurement of skin temperature accurately reflected agonist-induced increases in blood flow, it was less sensitive to decreases in blood flow caused by NOS inhibition. Baseline forearm skin temperature measured by IR imaging correlated significantly with baseline forearm blood flow (31.8±0.2° C, 6.0±0.4 mL/min/100mL; r = 0.58, p = 0.003), and appeared to represent a novel biomarker of vascular function. It predicted a blunted blood flow response to SNP (r = −0.61, p = 0.002), and was independently associated with a marker of pulmonary artery pressure, as well as hemoglobin level, diastolic blood pressure, homocysteine, and cholesterol (R2 = 0.84, p < 0.0001 for the model). IR imaging of agonist-stimulated cutaneous blood flow represents a less cumbersome alternative to plethysmography methodology. Measurement of baseline skin temperature by IR imaging may be a useful new marker of vascular risk in adults with SCD. PMID:22784510
Welmer, Anna-Karin; Liang, Yajun; Angleman, Sara; Santoni, Giola; Yan, Zhongrui; Cai, Chuanzhu; Qiu, Chengxuan
2014-08-01
Vascular risk factors such as hypertension and obesity have been associated with physical limitations among older adults. The purpose of this study is to examine whether individual and aggregated vascular risk factors (VRFs) are associated with functional dependence and to what extent carotid atherosclerosis (CAS) or peripheral artery disease (PAD) may mediate the possible associations of aggregated VRFs with functional dependence. This cross-sectional study included 1,451 community-living participants aged ≥60 years in the Confucius Hometown Aging Project of China. Data on demographic features, hypertension, high total cholesterol, obesity, smoking, physical inactivity, diabetes, CAS, PAD, and cardiovascular diseases (CVDs) were collected through an interview, a clinical examination, and laboratory tests. Functional dependence was defined as being dependent in at least one activity in the personal or instrumental activities of daily living. Data were analyzed using multiple logistic models controlling for potential confounders. We used the mediation model to explore the potential mediating effect of CAS and PAD on the associations of aggregated VRFs with functional dependence. Of the 1,451 participants, 222 (15.3%) had functional dependence. The likelihood of functional dependence increased linearly with increasing number of VRFs (hypertension, high total cholesterol, abdominal obesity, and physical inactivity) (p for trend <0.002). Mediation analysis showed that controlling for demographics and CVDs up to 11% of the total association of functional dependence with clustering VRFs was mediated by CAS and PAD. Aggregation of multiple VRFs is associated with an increased likelihood of functional dependence among Chinese older adults; the association is partially mediated by carotid and peripheral artery atherosclerosis independently of CVDs.
Larijani, Vahid Nabavi; Ahmadi, Naser; Zeb, Irfan; Khan, Faraz; Flores, Ferdinand; Budoff, Matthew
2014-01-01
Objective Aged garlic extract (AGE) is associated with a significant decrease in atherosclerotic plaque progression and endothelial function improvement. Similarly, coenzyme Q10 (CoQ10) has significant beneficial effects on endothelial function. A stressful lifestyle is a well-known risk factor for the presence and progression of atherosclerosis. This study investigated the effect of AGE plus CoQ10 on vascular elasticity measured by pulse-wave velocity (PWV) and endothelial function measured by digital thermal monitoring (DTM) in firefighters. Methods Sixty-five Los-Angeles County firefighters who met the eligibility criteria were enrolled in this placebo-controlled, double-blinded randomized trial. The firefighters were randomized to four tablets of AGE (300 mg/tablet) plus CoQ10 (30 mg/tablet) or placebo. The participants underwent quarterly visits and 1-year follow-up. PWV and DTM were measured at baseline and at the 1-year follow-up. Results There were no significant differences in age, cardiovascular risk factors, PWV, and DTM between the AGE/CoQ10 and placebo groups at baseline (P > 0.5). At 1-y, PWV and DTM significantly improved in the AGE/CoQ10 compared with the placebo group (P < 0.05). After an adjustment for cardiovascular risk factors and statin therapy, the mean decrease in vascular stiffness (PWV) was 1.21 m/s in the AGE/CoQ10 compared with the placebo group (P = 0.005). Similarly, the mean increase in the area under the temperature curve, the DTM index of endothelial function, was 31.3 in the AGE/CoQ10 compared with the placebo group (P = 0.01). Conclusion The combination of AGE and CoQ10 was independently associated with significant beneficial effects on vascular elasticity and endothelial function in firefighters with high occupational stress, highlighting the important role of AGE and CoQ10 in atherosclerotic prevention of such individuals. PMID:22858191
Al-Rashed, Fahad; Calay, Damien; Lang, Marie; Thornton, Clare C; Bauer, Andrea; Kiprianos, Allan; Haskard, Dorian O; Seneviratne, Anusha; Boyle, Joseph J; Schönthal, Alex H; Wheeler-Jones, Caroline P; Mason, Justin C
2018-04-19
Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα (Thr172) and CREB-1 (Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65 (Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs.
López-Olóriz, Jorge; López-Cancio, Elena; Arenillas, Juan F; Hernández, María; Dorado, Laura; Dacosta-Aguayo, Rosalía; Barrios, Maite; Soriano-Raya, Juan José; Miralbell, Júlia; Bargalló, Núria; Cáceres, Cynthia; Torán, Pere; Alzamora, Maite; Dávalos, Antonio; Mataró, Maria
2014-01-01
The contribution of traditional vascular risk factors to cognitive impairment and dementia is well known. However, in order to obtain possible targets for prevention of vascular cognitive impairment (VCI), it may be important to identify other early and noninvasive markers in asymptomatic middle-aged adults. The calculation of middle cerebral artery-pulsatility index (MCA-PI) is an ultrasonologic, noninvasive, validated and easily reproducible technique to assess increased distal resistance to blood flow. This study aims to assess the relationship between MCA-PI, microstructural white matter (WM) integrity and cognition in a middle-aged asymptomatic population. Ninety-five participants from the Barcelona-Asymptomatic Intracranial Atherosclerosis (AsIA) neuropsychology study were included. Subjects were 50-65 years old, free from dementia and without history of vascular disease. Transcranial color-coded duplex ultrasound examination was performed to assess MCA-PI as a measure of vascular resistance. WM integrity was evaluated by fractional anisotropy (FA) measurements of diffusion tensor images (DTI) acquired on a 3T-MRI. The neuropsychological battery was specifically selected to be sensitive to VCI, and included tests that were grouped into six cognitive domains: executive functioning, attention, verbal fluency, memory, visuospatial skills and psychomotor speed. A multivariate linear regression model adjusted for age, gender, years of education, diabetes and hypertension was performed. MCA-PI was significantly associated with WM disintegration in different tracts (fornix, corticospinal and anterior thalamic), all p < 0.05 uncorrected. Both mean MCA-PI and mean FA of those significant tracts were independently associated with poor performance in attention, psychomotor speed, and visuospatial skills after adjustment for age, gender, years of education, and vascular risk factors (all p < 0.05). MCA-PI was independently associated with lower scores in all cognitive domains, except for visuospatial skills. Our data suggest that MCA-PI may be related to WM disintegration and early vascular cognitive impairment in middle-aged subjects. Although further prospective studies are needed to provide evidence for its validity in longitudinal studies, our results support the proposal of including MCA-PI as part of clinical assessment in order to identify targets for VCI prevention. © 2014 S. Karger AG, Basel.
Haley, Andreana P; Oleson, Stephanie; Pasha, Evan; Birdsill, Alex; Kaur, Sonya; Thompson, Janelle; Tanaka, Hirofumi
2018-05-09
Intact memory and problem solving are key to functional independence and quality of life in older age. Considering the unprecedented demographic shift toward a greater number of older adults than children in the United States in the next few decades, it is critically important for older adults to maintain work productivity and functional independence for as long as possible. Implementing early interventions focused on modifiable risk factors for cognitive decline at midlife is a strategy with the highest chance of success at present, bearing in mind the current lack of dementia cures. We present a selective, narrative review of evidence linking nutrition, body composition, vascular health, and brain function in midlife to highlight the phenotypic heterogeneity of obesity-related brain vulnerability and to endorse the development of individually tailored lifestyle modification plans for primary prevention of cognitive decline. © 2018 New York Academy of Sciences.
McGlade, D P; Poon, A B; Davies, M J
2001-10-01
We aimed to assess the reliability of patients as historians in terms of the self assessment of functional capacity and also examined the usefulness of a simple ward exercise tolerance test. One hundred consecutive elective vascular surgery patients were interviewed preoperatively using a modified Duke Activity Status Index (DASI) questionnaire. To test reliability in reference to an independent observer, the questionnaire concerning the patient was also applied to each patient's closest relative who was blinded to the patient's responses. Patients were then asked to walk up two flights of stairs and the time taken to complete the task or the reason for failing to complete the task was recorded. The D
Two zero-flow pressure intercepts exist in autoregulating isolated skeletal muscle.
Braakman, R; Sipkema, P; Westerhof, N
1990-06-01
The autoregulating vascular bed of the isolated canine extensor digitorum longus muscle was investigated for the possible existence of two positive zero-flow pressure axis intercepts, a tone-dependent one and a tone-independent one. An isolated preparation, perfused with autologous blood, was used to exclude effects of collateral flow and nervous and humoral regulation while autoregulation was left intact [mean autoregulatory gain 0.50 +/- 0.24 (SD)]. In a first series of experiments, the steady-state (zero flow) pressure axis intercept [mean 8.9 +/- 2.6 (SD) mmHg, tone independent] and the instantaneous (zero flow) pressure axis intercept [mean 28.5 +/- 9.9 (SD) mmHg, tone dependent] were determined as a function of venous pressure (range: 0-45 mmHg) and were independent of venous pressure until the venous pressure exceeded their respective values. Beyond this point the relations between the venous pressure and the steady-state and instantaneous pressure axis intercept followed the line of identity. The findings agree with the predictions of the vascular waterfall model. In a second series it was shown by means of administration of vasoactive drugs that the instantaneous pressure axis intercept is tone dependent, whereas the steady-state pressure axis intercept is not. It is concluded that there is a (proximal) tone-dependent zero-flow pressure at the arteriolar level and a (distal) tone-independent zero-flow pressure at the venous level.
Spijkers, Léon J A; Janssen, Ben J A; Nelissen, Jelly; Meens, Merlijn J P M T; Wijesinghe, Dayanjan; Chalfant, Charles E; De Mey, Jo G R; Alewijnse, Astrid E; Peters, Stephan L M
2011-01-01
We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A(2), cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A(2). This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR. For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20-25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A(2). The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction. In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions.
Spijkers, Léon J. A.; Janssen, Ben J. A.; Nelissen, Jelly; Meens, Merlijn J. P. M. T.; Wijesinghe, Dayanjan; Chalfant, Charles E.; De Mey, Jo G. R.; Alewijnse, Astrid E.; Peters, Stephan L. M.
2011-01-01
Background We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A2, cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A2. This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR. Methods and Findings For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20–25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A2. The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction. Conclusion In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions. PMID:22195025
Self-perceived memory complaints predict progression to Alzheimer disease. The LADIS study.
Verdelho, Ana; Madureira, Sofia; Moleiro, Carla; Santos, Catarina O; Ferro, José M; Erkinjuntti, Timo; Poggesi, Anna; Pantoni, Leonardo; Fazekas, Franz; Scheltens, Philip; Waldemar, Gunhild; Wallin, Anders; Inzitari, Domenico
2011-01-01
Memory complaints are frequent in the elderly but its implications in cognition over time remain a controversial issue. Our objective was to evaluate the risk of self perceived memory complaints in the evolution for future dementia. The LADIS (Leukoaraiosis and Disability) prospective multinational European study evaluates the impact of white matter changes (WMC) on the transition of independent elderly subjects into disability. Independent elderly were enrolled due to the presence of WMC. Subjects were evaluated yearly during 3 years with a comprehensive clinical protocol and a neuropsychological battery. Dementia and subtypes of dementia were classified. Self perceived memory complaints in independent elderly were collected during the interview. MRI was performed at entry and at the end of the study. 639 subjects were included (74.1 ± 5 years old, 55% women, 9.6 ± 3.8 years of schooling). At end of follow-up, 90 patients were demented (vascular dementia, 54; Alzheimer's disease (AD) and AD with vascular component, 34; frontotemporal dementia, 2). Using Cox regression analysis, we found that self perceived memory complaints were a strong predictor of AD and AD with vascular component during the follow-up (β = 2.7, p = 0.008; HR = 15.5, CI 95% [2.04, 117.6]), independently of other confounders, namely depressive symptoms, WMC severity, medial temporal lobe atrophy, and global cognition status at baseline. Self perceived memory complaints did not predict vascular dementia. In the LADIS study, self perceived memory complaints predicted AD but not vascular dementia in elderly subjects with WMC living independently.
2010-01-01
Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds. PMID:20653945
Bim is Responsible for the Inherent Sensitivity of the Developing Retinal Vasculature to Hyperoxia
Wang, Shoujian; Park, SunYoung; Fei, Ping; Sorenson, Christine M.
2010-01-01
Apoptosis plays an important role in development and remodeling of vasculature during organogenesis. Coordinated branching and remodeling of the retinal vascular tree is essential for normal retinal function. Bcl-2 family members, such as bim can not only influence apoptosis, but also cell adhesive and migratory properties essential during vascular development. Here we examined the impact of bim deficiency on postnatal retinal vascularization, as well as retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) and laser-induced choroidal neovascularization. Loss of bim expression was associated with increased retinal vascular density in mature animals. This was mainly attributed to increased numbers of pericytes and endothelial cells. However, the initial spread of the superficial layer of retinal vasculature and, the appearance and density of the tip cells were similar in bim +/+ and bim -/- mice. In addition, hyaloid vessel regression was attenuated in the absence of bim. Furthermore, in the absence of bim retinal vessel obliteration and neovascularization did not occur during OIR. Instead, normal inner retinal vascularization proceeded independent of changes in oxygen levels. In contrast, choroidal neovascularization occurred equally well in bim +/+ and bim -/- mice. Together our data suggest bim expression may be responsible for the inherent sensitivity of the developing retinal vasculature to changes in oxygen levels, and promotes vessel obliteration in response to hyperoxia. PMID:21047504
2011-01-01
Background Subjective memory complaints (SMC) are common but their significance is still unclear. It has been suggested they are a precursor of mild cognitive impairment (MCI) or dementia and an early indicator of cognitive decline. Vascular risk factors have an important role in the development of dementia and possibly MCI. We therefore aimed to test the hypothesis that vascular risk factors were associated with SMC, independent of psychological distress, in a middle-aged community-dwelling population. Methods A cross-sectional analysis of baseline data from the 45 and Up Study was performed. This is a cohort study of people living in New South Wales (Australia), and we explored the sample of 45, 532 participants aged between 45 and 64 years. SMC were defined as 'fair' or 'poor' on a self-reported five-point Likert scale of memory function. Vascular risk factors of obesity, diabetes, hypertension, hypercholesterolemia and smoking were identified by self-report. Psychological distress was measured by the Kessler Psychological Distress Scale. We tested the model generated from a randomly selected exploratory sample (n = 22, 766) with a confirmatory sample of equal size. Results 5, 479/45, 532 (12%) of respondents reported SMC. Using multivariate logistic regression, only two vascular risk factors: smoking (OR 1.18; 95% CI = 1.03 - 1.35) and hypercholesterolaemia (OR 1.19; 95% CI = 1.04 - 1.36) showed a small independent association with SMC. In contrast psychological distress was strongly associated with SMC. Those with the highest levels of psychological distress were 7.00 (95% CI = 5.41 - 9.07) times more likely to have SMC than the non-distressed. The confirmatory sample also demonstrated the strong association of SMC with psychological distress rather than vascular risk factors. Conclusions In a large sample of middle-aged people without any history of major affective illness or stroke, psychological distress was strongly, and vascular risk factors only weakly, associated with SMC, although we cannot discount psychological distress acting as a mediator in any association between vascular risk factors and SMC. Given this, clinicians should be vigilant regarding the presence of an affective illness when assessing middle-aged patients presenting with memory problems. PMID:21722382
Elbaz, Alexis; Shipley, Martin J; Nabi, Hermann; Brunner, Eric J; Kivimaki, Mika; Singh-Manoux, Archana
2014-03-01
Vascular risk factors are associated with increased risk of cognitive impairment and dementia, but their association with motor function, another key feature of aging, has received little research attention. We examined the association between trajectories of the Framingham general cardiovascular disease risk score (FRS) over midlife and motor function later in life. A total of 5376 participants of the Whitehall II cohort study (29% women) who had up to four repeat measures of FRS between 1991-1993 (mean age=48.6 years) and 2007-2009 (mean age=65.4 years) and without history of stroke or coronary heart disease in 2007-2009 were included. Motor function was assessed in 2007-2009 through objective tests (walking speed, chair rises, balance, finger tapping, grip strength). We used age- and sex-adjusted linear mixed models. Participants with poorer performances for walking speed, chair rises, and balance in 2007-2009 had higher FRS concurrently and also in 1991-1993, on average 16 years earlier. These associations were robust to adjustment for cognition, socio-economic status, height, and BMI, and not explained by incident mobility limitation prior to motor assessment. No association was found with finger tapping and grip strength. Cardiovascular risk early in midlife is associated with poor motor performances later in life. Vascular risk factors play an important and under-recognized role in motor function, independently of their impact on cognition, and suggest that better control of vascular risk factors in midlife may prevent physical impairment and disability in the elderly. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
/sup 45/Ca distribution and transport in saponin skinned vascular smooth muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, M.A.; Diecke, F.P.
1983-04-01
/sup 45/Ca distribution and transport were studied in chemically skinned strips of caudal artery from Kyoto Wistar rats. Sarcolemmal membranes were made hyperpermeable by exposure for 60 min to solutions containing 0.1 mg/ml of saponin. Skinned helical strips responded with graded contractions to changes in ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid buffered free Ca solutions (10(-7) to 10(-5) M) and were sensitive to the Mg-ATP concentration. Tissues loaded in the presence of 10(-7) M Ca contracted in response to 10 mM caffeine. These experiments indicate the strips are skinned and possess a functional regulatory and contractile system and an intact Camore » sequestering system. /sup 45/Ca distributes in three compartments in skinned caudal artery strips. The Ca contents of two components are linear functions of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration and desaturate at rapid rates. They correspond to the extracellular and cytoplasmic spaces. A significantly smaller component releases Ca at comparatively slower rates. /sup 45/Ca uptake by the slow component consists of an ATP-dependent and an ATP-independent fraction. The /sup 45/Ca content of the ATP-dependent fraction is a function of the free Ca concentration and is independent of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration. Its content was enhanced by oxalate and was abolished by Triton X-100 skinning solutions. The ATP-independent component was not affected by Triton X-100 skinning and may represent Ca binding to cytoplasmic molecules and structures. The sequestered Ca was released with caffeine or Ca but not by epinephrine. The observations indicate that the sarcoplasmic reticulum and mitochondria of vascular smooth muscle strips skinned with saponin retain their functional integrity after saponin skinning.« less
Greaney, Jody L; DuPont, Jennifer J; Lennon-Edwards, Shannon L; Sanders, Paul W; Edwards, David G; Farquhar, William B
2012-01-01
Animal studies have reported dietary salt-induced reductions in vascular function independent of increases in blood pressure (BP). The purpose of this study was to determine if short-term dietary sodium loading impairs cutaneous microvascular function in normotensive adults with salt resistance. Following a control run-in diet, 12 normotensive adults (31 ± 2 years) were randomized to a 7 day low-sodium (LS; 20 mmol day−1) and 7 day high-sodium (HS; 350 mmol day−1) diet (controlled feeding study). Salt resistance, defined as a ≤5 mmHg change in 24 h mean BP determined while on the LS and HS diets, was confirmed in all subjects undergoing study (LS: 84 ± 1 mmHg vs. HS: 85 ± 2 mmHg; P > 0.05). On the last day of each diet, subjects were instrumented with two microdialysis fibres for the local delivery of Ringer solution and 20 mm ascorbic acid (AA). Laser Doppler flowmetry was used to measure red blood cell flux during local heating-induced vasodilatation (42°C). After the established plateau, 10 mm l-NAME was perfused to quantify NO-dependent vasodilatation. All data were expressed as a percentage of maximal cutaneous vascular conductance (CVC) at each site (28 mm sodium nitroprusside; 43°C). Sodium excretion increased during the HS diet (P < 0.05). The plateau % CVCmax was reduced during HS (LS: 93 ± 1 % CVCmax vs. HS: 80 ± 2 % CVCmax; P < 0.05). During the HS diet, AA improved the plateau % CVCmax (Ringer: 80 ± 2 % CVCmax vs. AA: 89 ± 3 % CVCmax; P < 0.05) and restored the NO contribution (Ringer: 44 ± 3 % CVCmax vs. AA: 59 ± 6 % CVCmax; P < 0.05). These data demonstrate that dietary sodium loading impairs cutaneous microvascular function independent of BP in normotensive adults and suggest a role for oxidative stress. PMID:22907057
BDNF - A key player in cardiovascular system.
Pius-Sadowska, Ewa; Machaliński, Bogusław
2017-09-01
Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ligand-receptor co-evolution shaped the jasmonate pathway in land plants.
Monte, Isabel; Ishida, Sakiko; Zamarreño, Angel M; Hamberg, Mats; Franco-Zorrilla, José M; García-Casado, Gloria; Gouhier-Darimont, Caroline; Reymond, Philippe; Takahashi, Kosaku; García-Mina, José M; Nishihama, Ryuichi; Kohchi, Takayuki; Solano, Roberto
2018-05-01
The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates defense, growth and developmental responses in vascular plants. Bryophytes have conserved sequences for all JA-Ile signaling pathway components but lack JA-Ile. We show that, in spite of 450 million years of independent evolution, the JA-Ile receptor COI1 is functionally conserved between the bryophyte Marchantia polymorpha and the eudicot Arabidopsis thaliana but COI1 responds to different ligands in each species. We identified the ligand of Marchantia MpCOI1 as two isomeric forms of the JA-Ile precursor dinor-OPDA (dinor-cis-OPDA and dinor-iso-OPDA). We demonstrate that AtCOI1 functionally complements Mpcoi1 mutation and confers JA-Ile responsiveness and that a single-residue substitution in MpCOI1 is responsible for the evolutionary switch in ligand specificity. Our results identify the ancestral bioactive jasmonate and clarify its biosynthetic pathway, demonstrate the functional conservation of its signaling pathway, and show that JA-Ile and COI1 emergence in vascular plants required co-evolution of hormone biosynthetic complexity and receptor specificity.
Genomic and non-genomic effects of androgens in the cardiovascular system: clinical implications.
Lucas-Herald, Angela K; Alves-Lopes, Rheure; Montezano, Augusto C; Ahmed, S Faisal; Touyz, Rhian M
2017-07-01
The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca 2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Asymptomatic carotid stenosis is associated with cognitive impairment.
Lal, Brajesh K; Dux, Moira C; Sikdar, Siddhartha; Goldstein, Carly; Khan, Amir A; Yokemick, John; Zhao, Limin
2017-10-01
Cerebrovascular risk factors (eg, hypertension, coronary artery disease) and stroke can lead to vascular cognitive impairment. The Asymptomatic Carotid Stenosis and Cognitive Function study evaluated the isolated impact of asymptomatic carotid stenosis (no prior ipsilateral or contralateral stroke or transient ischemic attack) on cognitive function. Cerebrovascular hemodynamic and carotid plaque characteristics were analyzed to elucidate potential mechanisms affecting cognition. There were 82 patients with ≥50% asymptomatic carotid stenosis and 62 controls without stenosis but matched for vascular comorbidities who underwent neurologic, National Institutes of Health Stroke Scale, and comprehensive neuropsychological examination. Overall cognitive function and five domain-specific scores were computed. Duplex ultrasound with Doppler waveform and B-mode imaging defined the degree of stenosis, least luminal diameter, plaque area, and plaque gray-scale median. Breath-holding index (BHI) and microembolization were measured using transcranial Doppler. We assessed cognitive differences between stenosis patients and control patients and of stenosis patients with low vs high BHI and correlated cognitive function with microembolic counts and plaque characteristics. Stenosis and control patients did not differ in vascular risk factors, education, estimated intelligence, or depressive symptoms. Stenosis patients had worse composite cognitive scores (P = .02; Cohen's d = 0.43) and domain-specific scores for learning/memory (P = .02; d = 0.42) and motor/processing speed (P = .01; d = 0.65), whereas scores for executive function were numerically lower (P = .08). Approximately 49.4% of all stenosis patients were impaired in at least two cognitive domains. Precisely 50% of stenosis patients demonstrated a reduced BHI. Stenosis patients with reduced BHI performed worse on the overall composite cognitive score (t = -2.1; P = .02; d = 0.53) and tests for learning/memory (t = -2.7; P = .01; d = 0.66). Cognitive function did not correlate with measures of plaque burden (degree of stenosis, least luminal diameter, and plaque area) or with plaque gray-scale median. Asymptomatic carotid stenosis is associated with cognitive impairment independent of known vascular risk factors for vascular cognitive impairment. Approximately 49.4% of these patients demonstrate impairment in at least two neuropsychological domains. The deficit is driven primarily by reduced motor/processing speed and learning/memory and is mild to moderate in severity. The mechanism for impairment is likely to be hemodynamic as evidenced by reduced cerebrovascular reserve and the likely result of hypoperfusion from a pressure drop across the stenosis in the presence of inadequate collateralization. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Characteristics of 32 Supercentenarians
Schoenhofen, Emily A.; Wyszynski, Diego F.; Andersen, Stacy; Pennington, JaeMi; Young, Robert; Terry, Dellara F.; Perls, Thomas T.
2010-01-01
OBJECTIVES To report phenotypic characteristics of 32 age-validated supercentenarians. DESIGN Case series. SETTING U.S.-based recruitment effort. PARTICIPANTS Thirty-two supercentenarians. MEASUREMENTS Multiple forms of proof were used to validate age claims. Sociodemographic, activities of daily living, and medical history data were collected. RESULTS Age range was 110 to 119. Fifty-nine percent had Barthel Index scores in the partially to totally dependent range, whereas 41% required minimal assistance or were independent. Few subjects had a history of clinically evident vascular-related diseases, including myocardial infarction (n = 2, 6%) and stroke (n = 4, 13%). Twenty-two percent (n = 7) were taking medications for hypertension. Twenty-five percent (n = 8) had a history of cancer (all cured). Diabetes mellitus (n = 1, 3%) and Parkinson’s disease (n = 1, 3%) were rare. Osteoporosis (n = 14, 44%) and cataract history (n = 28, 88%) were common. CONCLUSION Data collected thus far suggest that supercentenarians markedly delay and even escape clinical expression of vascular disease toward the end of their exceptionally long lives. A surprisingly substantial proportion of these individuals were still functionally independent or required minimal assistance. PMID:16913991
Peripheral vascular dysfunction in migraine: a review
2013-01-01
Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826
Acosta-Navarro, Julio; Antoniazzi, Luiza; Oki, Adriana Midori; Bonfim, Maria Carlos; Hong, Valeria; Acosta-Cardenas, Pedro; Strunz, Celia; Brunoro, Eleonora; Miname, Marcio Hiroshi; Filho, Wilson Salgado; Bortolotto, Luiz Aparecido; Santos, Raul D
2017-03-01
Dietary habits play an important role in the development of atherosclerosis, the most important cause of morbidity and mortality in the world. The objective of this study was to verify if vegetarian (VEG) diet could be related a better profile of subclinical vascular disease evaluated by arterial stiffness and functional and structural properties of carotid arteries, compared to omnivorous (OMN) diet. In this cross-sectional study, 44 VEG and 44 OMN apparently healthy men ≥35years of age, in order to not have confounding risk factors of subclinical atherosclerosis, were assessed for anthropometric data, blood pressure, blood lipids, glucose, C reactive protein (CRP), and arterial stiffness determined by carotid-femoral pulse wave velocity (PWV). Also, carotid intima-media thickness (c-IMT) and distensibility were evaluated. VEG men had lower body mass index, systolic and diastolic blood pressures, fasting serum total cholesterol, LDL and non-HDL-cholesterol, apolipoprotein B, glucose and glycated hemoglobin values in comparison with OMN individuals (all p values <0.05). Markers of vascular structure and function were different between VEG and OMN: PWV 7.1±0.8m/s vs. 7.7±0.9m/s (p<0.001); c-IMT 593±94 vs. 661±128μm (p=0.003); and relative carotid distensibility 6.39±1.7 vs. 5.72±1.8% (p=0.042), respectively. After a multivariate linear regression analysis, a VEG diet was independently and negatively associated with PWV (p value 0.005). A VEG diet is associated with a more favorable cardiovascular diseases biomarker profile and better vascular structural and functional parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Peng, Duo; Gu, Xi; Xue, Liang-Jiao; Leebens-Mack, James H.; Tsai, Chung-Jui
2014-01-01
Sucrose transporters (SUTs) are essential for the export and efficient movement of sucrose from source leaves to sink organs in plants. The angiosperm SUT family was previously classified into three or four distinct groups, Types I, II (subgroup IIB), and III, with dicot-specific Type I and monocot-specific Type IIB functioning in phloem loading. To shed light on the underlying drivers of SUT evolution, Bayesian phylogenetic inference was undertaken using 41 sequenced plant genomes, including seven basal lineages at key evolutionary junctures. Our analysis supports four phylogenetically and structurally distinct SUT subfamilies, originating from two ancient groups (AG1 and AG2) that diverged early during terrestrial colonization. In both AG1 and AG2, multiple intron acquisition events in the progenitor vascular plant established the gene structures of modern SUTs. Tonoplastic Type III and plasmalemmal Type II represent evolutionarily conserved descendants of AG1 and AG2, respectively. Type I and Type IIB were previously thought to evolve after the dicot-monocot split. We show, however, that divergence of Type I from Type III SUT predated basal angiosperms, likely associated with evolution of vascular cambium and phloem transport. Type I SUT was subsequently lost in monocots along with vascular cambium, and independent evolution of Type IIB coincided with modified monocot vasculature. Both Type I and Type IIB underwent lineage-specific expansion. In multiple unrelated taxa, the newly-derived SUTs exhibit biased expression in reproductive tissues, suggesting a functional link between phloem loading and reproductive fitness. Convergent evolution of Type I and Type IIB for SUT function in phloem loading and reproductive organs supports the idea that differential vascular development in dicots and monocots is a strong driver for SUT family evolution in angiosperms. PMID:25429293
Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.
Rolland, Vivien; Bergstrom, Dana M; Lenné, Thomas; Bryant, Gary; Chen, Hua; Wolfe, Joe; Holbrook, N Michele; Stanton, Daniel E; Ball, Marilyn C
2015-08-01
Protoxylem plays an important role in the hydraulic function of vascular systems of both herbaceous and woody plants, but relatively little is known about the processes underlying the maintenance of protoxylem function in long-lived tissues. In this study, embolism repair was investigated in relation to xylem structure in two cushion plant species, Azorella macquariensis and Colobanthus muscoides, in which vascular water transport depends on protoxylem. Their protoxylem vessels consisted of a primary wall with helical thickenings that effectively formed a pit channel, with the primary wall being the pit channel membrane. Stem protoxylem was organized such that the pit channel membranes connected vessels with paratracheal parenchyma or other protoxylem vessels and were not exposed directly to air spaces. Embolism was experimentally induced in excised vascular tissue and detached shoots by exposing them briefly to air. When water was resupplied, embolized vessels refilled within tens of seconds (excised tissue) to a few minutes (detached shoots) with water sourced from either adjacent parenchyma or water-filled vessels. Refilling occurred in two phases: (1) water refilled xylem pit channels, simplifying bubble shape to a rod with two menisci; and (2) the bubble contracted as the resorption front advanced, dissolving air along the way. Physical properties of the protoxylem vessels (namely pit channel membrane porosity, hydrophilic walls, vessel dimensions, and helical thickenings) promoted rapid refilling of embolized conduits independent of root pressure. These results have implications for the maintenance of vascular function in both herbaceous and woody species, because protoxylem plays a major role in the hydraulic systems of leaves, elongating stems, and roots. © 2015 American Society of Plant Biologists. All Rights Reserved.
Paredes, M. Dolores; Romecín, Paola; Castillo, Julián; Ortiz, M. Clara
2018-01-01
Background: we have evaluated the antihypertensive effect of several flavonoid extracts in a rat model of arterial hypertension caused by chronic administration (6 weeks) of the nitric oxide synthesis inhibitor, L-NAME. Methods: Sprague Dawley rats received L-NAME alone or L-NAME plus flavonoid-rich vegetal extracts (Lemon, Grapefruit + Bitter Orange, and Cocoa) or purified flavonoids (Apigenin and Diosmin) for 6 weeks. Results: L-NAME treatment resulted in a marked elevation of blood pressure, and treatment with Apigenin, Lemon Extract, and Grapefruit + Bitter Orange extracts significantly reduced the elevated blood pressure of these animals. Apigenin and some of these flavonoids also ameliorated nitric oxide-dependent and -independent aortic vasodilation and elevated nitrite urinary excretion. End-organ abnormalities such as cardiac infarcts, hyaline arteriopathy and fibrinoid necrosis in coronary arteries and aorta were improved by these treatments, reducing the end-organ vascular damage. Conclusions: the flavonoids included in this study, specially apigenin, may be used as functional food ingredients with potential therapeutic benefit in arterial hypertension. PMID:29652818
Paredes, M Dolores; Romecín, Paola; Atucha, Noemí M; O'Valle, Francisco; Castillo, Julián; Ortiz, M Clara; García-Estañ, Joaquín
2018-04-13
we have evaluated the antihypertensive effect of several flavonoid extracts in a rat model of arterial hypertension caused by chronic administration (6 weeks) of the nitric oxide synthesis inhibitor, L-NAME. Sprague Dawley rats received L-NAME alone or L-NAME plus flavonoid-rich vegetal extracts (Lemon, Grapefruit + Bitter Orange, and Cocoa) or purified flavonoids (Apigenin and Diosmin) for 6 weeks. L-NAME treatment resulted in a marked elevation of blood pressure, and treatment with Apigenin, Lemon Extract, and Grapefruit + Bitter Orange extracts significantly reduced the elevated blood pressure of these animals. Apigenin and some of these flavonoids also ameliorated nitric oxide-dependent and -independent aortic vasodilation and elevated nitrite urinary excretion. End-organ abnormalities such as cardiac infarcts, hyaline arteriopathy and fibrinoid necrosis in coronary arteries and aorta were improved by these treatments, reducing the end-organ vascular damage. the flavonoids included in this study, specially apigenin, may be used as functional food ingredients with potential therapeutic benefit in arterial hypertension.
Spieker, L E; Noll, G; Ruschitzka, F T; Lüscher, T F
2001-12-01
Congestive heart failure (CHF) is a disease process characterized by impaired left ventricular function, increased peripheral and pulmonary vascular resistance and reduced exercise tolerance and dyspnea. Thus, mediators involved in the control of myocardial function and vascular tone may be involved in its pathophysiology. The family of endothelins (ET) consists of four closely related peptides, ET-1, ET-2, ET-3, and ET-4, which cause vasoconstriction, cell proliferation, and myocardial effects through activation of ET(A) receptors. In contrast, endothelial ET(B) receptors mediate vasodilation via release of nitric oxide and prostacyclin. In addition, ET(B) receptors in the lung are a major pathway for the clearance of ET-1 from plasma. Thus, infusion of an ET(A) receptor antagonist into the brachial artery in healthy humans leads to vasodilation whereas infusion of an ET(B) receptor antagonist causes vasoconstriction. ET-1 plasma levels are elevated in CHF and correlate both with the hemodynamic severity and with symptoms. Plasma levels of ET-1 and its precursor, big ET-1, are strong independent predictors of death in patients after myocardial infarction and with CHF. ET-1 contributes to increased systemic and pulmonary vascular resistance, vascular dysfunction, myocardial ischemia, and renal impairment in CHF. Selective ET(A) as well as combined ET(A/B) receptor antagonists have been studied in patients with CHF showing impressive hemodynamic improvements (i.e. reduced peripheral vascular and pulmonary resistance as well as increased cardiac output). These results indicate that ET receptor antagonists indeed have a potential to improve hemodynamics, symptoms, and potentially prognosis of CHF which still carries a high mortality.
S1P1 inhibits sprouting angiogenesis during vascular development.
Ben Shoham, Adi; Malkinson, Guy; Krief, Sharon; Shwartz, Yulia; Ely, Yona; Ferrara, Napoleone; Yaniv, Karina; Zelzer, Elazar
2012-10-01
Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P(1) as a pro-angiogenic factor. Here, we show that S1P(1) acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P(1)-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P(1) as an anti-angiogenic factor. A similar phenotype observed when S1P(1) expression was blocked specifically in ECs indicates that the effect of S1P(1) on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p(1) knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P(1) and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P(1) inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P(1), is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.
Activation of PAR-2 elicits NO-dependent and CGRP-independent dilation of the dural artery.
Bhatt, Deepak K; Ploug, Kenneth B; Ramachandran, Roshni; Olesen, Jes; Gupta, Saurabh
2010-06-01
The goal of this study was to determine the vascular effects of protease-activated receptor-2 (PAR-2) activation in the rat cranial vasculature. The role of PAR-2 in pain and inflammatory conditions has been established but the information available on its effects and receptor distribution in the trigeminal vascular axis is limited. We studied the dilatory function and expression of PAR-2 in the neuro-vascular circuit, critical in migraine pathogenesis. We also investigated the interaction of PAR-2 with calcitonin gene-related peptide (CGRP) and dural mast cells. We used an improved model of intravital microscopy on the closed cranial window in rats to study the vascular effects of PAR-2 activating peptides (PAR-2 APs; SLIGRL-NH(2), 2-Furoyl-LIGRLO-NH(2)) in the dural vasculature. Measurement of immunoreactive CGRP in skull halves and in trigeminal nucleus caudalis was done by using an enzyme-linked immunosorbent assay. We also analyzed the presence of PAR-2 in different migraine relevant tissues by quantitative real-time PCR and Western blot analysis. PAR-2 APs and trypsin induced a dose-dependent increase in dural artery diameter. The topical application of a nonspecific nitric oxide synthase (NOS) inhibitor, L-N(G)-Nitroarginine methyl ester, attenuated SLIGRL-NH(2) responses. Olcegepant, a CGRP receptor antagonist, did not a have significant effect on the SLIGRL-NH(2) responses, though exogenous CGRP responses were completely blocked. There was no significant release of CGRP from skull halves incubated with SLIGRL-NH(2) as compared with those incubated with the corresponding negative peptide. Chronic mast cell degranulation did not change the vascular effects of PAR-2 APs. mRNA and protein expression of PAR-2 were found throughout trigeminovasuclar axis. PAR-2 activation leads to vasodilation of dural arteries and these responses are partially mediated by nitric oxide. As PAR-2 is present throughout trigeminovasuclar axis, it may have a role in migraine pathogenesis, independent of CGRP and mast cell mediated mechanism.
Kurozumi, Akira; Okada, Yosuke; Arao, Tadashi; Tanaka, Yoshiya
Objective Visceral fat obesity and metabolic syndrome correlate with atherosclerosis in part due to insulin resistance and various other factors. The aim of this study was to determine the relationship between vascular endothelial dysfunction and excess visceral adipose tissue (VAT) in Japanese patients with type 2 diabetes mellitus (T2DM). Methods In 71 T2DM patients, the reactive hyperemia index (RHI) was measured using an Endo-PAT 2000, and VAT and subcutaneous adipose tissue (SAT) were measured via CT. We also measured various metabolic markers, including high-molecular-weight adiponectin (HMW-AN). Results VAT correlated negatively with the natural logarithm of RHI (L_RHI), the primary endpoint (p=0.042, r=-0.242). L_RHI did not correlate with SAT, VAT/SAT, abdominal circumference, homeostasis model assessment for insulin resistance, urinary C-peptide reactivity, HMW-AN, or alanine amino transferase, the secondary endpoints. A linear multivariate analysis via the forced entry method using age, sex, VAT, and smoking history as independent variables and L_RHI as the dependent variable revealed a lack of any determinants of L_RHI. Conclusion Excess VAT worsens the vascular endothelial function, represented by RHI which was analyzed using Endo-PAT, in Japanese patients with T2DM.
Fukuda, Toshihiko; Kuroda, Takahiro; Kono, Miki; Hyoguchi, Mai; Tanaka, Mitsuru; Matsui, Toshiro
2015-10-01
Aging deteriorates vascular functions such as vascular reactivity and stiffness. Thus far, various reports suggest that bioactive compounds can improve vascular functions. However, few age-related studies of natural bioactive compounds are available. The present study attempted to evaluate age-related vasorelaxation of bioactive cinnamic acids, caffeic acid, and ferulic acid using aged rat thoracic aorta. Vasorelaxation was evaluated in thoracic aorta from both 8, 18, and 40 weeks old Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) respectively. The result indicated that caffeic acid possessed the vasorelaxation regardless of aging in WKY and SHR. Moreover, the vasorelaxation of ferulic acid enhanced with aging in SHR. The vasorelaxation behavior was acted in an endothelium-independent manner. To access structure importance of enhanced vasorelaxation, analogues of ferulic acid were tested. In 40 weeks old SHR, 3,4-dimethoxycinnamic acid and coniferyl alcohol exhibited equivalent vasorelaxation activity with ferulic acid, providing the structural importance of methoxy-modified 3-position on the phenyl ring and 2-propenoic moiety. These results firstly demonstrated that enhanced vasorelaxation of ferulic acid with aging and 3,4-dimethoxycinnamic acid and coniferyl alcohol, along with ferulic acid, might exhibit the therapeutic potential of vasoactive power with aging.
Smith, Samantha D; Dunk, Caroline E; Aplin, John D; Harris, Lynda K; Jones, Rebecca L
2009-05-01
Decidual artery remodeling is essential for a healthy pregnancy. This process involves loss of vascular smooth muscle cells and endothelium, which are replaced by endovascular trophoblasts (vEVTs) embedded in fibrinoid. Remodeling is impaired during pre-eclampsia, a disease of pregnancy that results in maternal and fetal mortality and morbidity. Early vascular changes occur in the absence of vEVTs, suggesting that another cell type is involved; evidence from animal models indicates that decidual leukocytes play a role. We hypothesized that leukocytes participate in remodeling through the triggering of apoptosis or extracellular matrix degradation. Decidua basalis samples (8 to 12 weeks gestation) were examined by immunohistochemistry to elucidate associations between leukocytes, vEVTs, and key remodeling events. Trophoblast-independent and -dependent phases of remodeling were identified. Based on a combination of morphological attributes, vessel profiles were classified into a putative temporal series of four stages. In early stages of remodeling, vascular smooth muscle cells showed dramatic disruption and disorganization before vEVT presence. Leukocytes (identified as uterine natural killer cells and macrophages) were apparent infiltrating vascular smooth muscle cells layers and were matrix metalloproteinase-7 and -9 immunopositive. A proportion of vascular smooth muscle cells and endothelial cells were terminal deoxynucleotidyl transferase dUTP nick-end labeling positive, suggesting remodeling involves apoptosis. We thus confirm that vascular remodeling occurs in distinct trophoblast-independent and -dependent stages and provide the first evidence of decidual leukocyte involvement in trophoblast-independent stages.
Neigh, Gretchen N.; Nemeth, Christina L; Kelly, Sean D.; Hardy, Emily E.; Bourke, Chase; Stowe, Zachary N.; Owens, Michael J.
2016-01-01
Prenatal stress has been linked to deficits in neurological function including deficient social behavior, alterations in learning and memory, impaired stress regulation, and susceptibility to adult disease. In addition, prenatal environment is known to alter cardiovascular health; however, limited information is available regarding the cerebrovascular consequences of prenatal stress exposure. Vascular disturbances late in life may lead to cerebral hypoperfusion which is linked to a variety of neurodegenerative and psychiatric diseases. The known impact of cerebrovascular compromise on neuronal function and behavior highlights the importance of characterizing the impact of stress on not just neurons and glia, but also cerebrovasculature. Von Willebrand factor has previously been shown to be impacted by prenatal stress and is predictive of cerebrovascular health. Here we assess the impact of prenatal stress on von Willebrand factor and related angiogenic factors. Furthermore, we assess the potential protective effects of concurrent anti-depressant treatment during in utero stress exposure on the assessed cerebrovascular endpoints. Prenatal stress augmented expression of von Willebrand factor which was prevented by concurrent in utero escitalopram treatment. The functional implications of this increase in von Willebrand factor remain elusive, but the presented data demonstrate that although prenatal stress did not independently impact total vascularization, exposure to chronic stress in adulthood decreased blood vessel length. In addition, the current study demonstrates that production of reactive oxygen species in the hippocampus is decreased by prenatal exposure to escitalopram. Collectively, these findings demonstrate that the prenatal experience can cause complex changes in adult cerebral vascular structure and function. PMID:27422674
Prognostic value of the frequency of vascular invasion in stage I non-small cell lung cancer.
Okada, Satoshi; Mizuguchi, Shinjiro; Izumi, Nobuhiro; Komatsu, Hiroaki; Toda, Michihito; Hara, Kantaro; Okuno, Takahiro; Shibata, Toshihiko; Wanibuchi, Hideki; Nishiyama, Noritoshi
2017-01-01
There is no standard pathological method for determining vessel invasion in lung cancer. Herein, we examine whether vessel invasion can be accurately assessed using hematoxylin-eosin staining alone, and investigate the prognostic impact of the presence and frequency of vessel invasion in lung cancer. Vessel invasion was assessed by hematoxylin-eosin, Victoria blue, and D2-40 in 251 completely resected stage I non-small cell lung cancer patients. Vessel invasion was classified into 3 grades according to the number of invaded vessels. Using hematoxylin-eosin and Victoria blue, vascular invasion was detected in 27 (10.8 %) and 75 (29.9 %) of patients, respectively. Lymphatic permeation was detected in 126 (50.2 %) and 70 (27.9 %) of patients using hematoxylin-eosin and D2-40 staining. Hematoxylin-eosin staining did not accurately detect a high frequency of vessel invasion; only 5 and 21.7 % of high-frequency vascular invasion and lymphatic permeation cases diagnosed with Victoria blue and D2-40 were detected. Multivariate analysis based on elastic stain and immunostaining indicated that plural invasion, a high frequency of vascular invasion (hazard ratio 4.00), and a high frequency of lymphatic permeation (hazard ratio 2.30) were independent predictors of cancer recurrence within 3 years. Likewise, an age ≥70 years, male, and a high frequency of vascular invasion (hazard ratio 3.41) were independent predictors of overall survival. Vascular invasion should be confirmed by elastic stains, and the frequency, not but the presence, of vascular invasion is a powerful independent prognostic factor in completely resected stage I non-small cell lung cancer patients.
Rossman, Matthew J; Santos-Parker, Jessica R; Steward, Chelsea A C; Bispham, Nina Z; Cuevas, Lauren M; Rosenberg, Hannah L; Woodward, Kayla A; Chonchol, Michel; Gioscia-Ryan, Rachel A; Murphy, Michael P; Seals, Douglas R
2018-06-01
Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60-79 years) with impaired endothelial function (brachial artery flow-mediated dilation <6%) underwent 6 weeks of oral supplementation with MitoQ (20 mg/d) or placebo in a randomized, placebo-controlled, double-blind, crossover design study. MitoQ was well tolerated, and plasma MitoQ was higher after the treatment versus placebo period ( P <0.05). Brachial artery flow-mediated dilation was 42% higher after MitoQ versus placebo ( P <0.05); the improvement was associated with amelioration of mitochondrial reactive oxygen species-related suppression of endothelial function (assessed as the increase in flow-mediated dilation with acute, supratherapeutic MitoQ [160 mg] administration; n=9; P <0.05). Aortic stiffness (carotid-femoral pulse wave velocity) was lower after MitoQ versus placebo ( P <0.05) in participants with elevated baseline levels (carotid-femoral pulse wave velocity >7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo ( P <0.05). Participant characteristics, endothelium-independent dilation (sublingual nitroglycerin), and circulating markers of inflammation were not different (all P >0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023. © 2018 American Heart Association, Inc.
Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos
2013-02-01
Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Vascular function and cholecalciferol supplementation in CKD: A self-controlled case series.
Kumar, Vivek; Yadav, Ashok Kumar; Singhal, Manphool; Kumar, Vinod; Lal, Anupam; Banerjee, Debasish; Gupta, Krishan Lal; Jha, Vivekanand
2018-06-01
Vitamin D deficiency is common and associated with mortality in chronic kidney disease (CKD) patients. Cardiovascular disease (CVD) is the commonest cause of mortality in CKD patients. In a randomized, double blind, placebo controlled trial, we have recently reported favorable effects of vitamin D supplementation on vascular & endothelial function and inflammatory biomarkers in vitamin D deficient patients with non-diabetic stage 3-4 CKD (J Am Soc Nephrol 28: 3100-3108, 2017). Subjects in the placebo group who had still not received vitamin D after completion of the trial received two oral doses 300,000 IU of oral cholecalciferol at 8 weeks interval followed by flow mediated dilatation (FMD), pulse wave velocity (PWV), circulating endothelial and inflammatory markers (E-Selectin, vWF, hsCRP and IL-6), 125 (OH) 2 D, iPTH and iFGF-23 assessment at 16 weeks. 31 subjects completed this phase of the study. Last values recorded in the preceding clinical trial were taken as baseline values. Serum 25(OH)D and 1,25(OH) 2 D increased and FMD significantly improved after cholecalciferol supplementation [mean change in FMD%: 5.8% (95% CI: 4.0-7.5%, p < 0.001]. Endothelium independent nitroglycerine mediated dilatation, PWV, iPTH, iFGF-23 and IL-6 also showed favorable changes. The data further cement the findings of beneficial effects of correction of vitamin D deficiency on vascular function. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shing, Cecilia M; Fassett, Robert G; Peake, Jonathan M; Coombes, Jeff S
2014-12-01
Inflammation and endothelial dysfunction contribute to cardiovascular disease, prevalent in chronic kidney disease (CKD). Antioxidant supplements such as tocopherols may reduce inflammation and atherosclerosis. This study aimed to investigate the effect of tocopherol supplementation on vascular function, aortic plaque formation, and inflammation in apolipoprotein E(-/-) mice with 5/6 nephrectomy as a model of combined cardiovascular and kidney disease. Nephrectomized mice were assigned to a normal chow diet group (normal chow), a group receiving 1000 mg/kg diet of α-tocopherol supplementation or a group receiving 1000 mg/kg diet mixed-tocopherol (60% γ-tocopherol). Following 12 weeks, in vitro aortic endothelial-independent relaxation was enhanced with both α-tocopherol and mixed-tocopherol (P < 0.05), while mixed-tocopherol enhanced aortic contraction at noradrenaline concentrations of 3 × 10(-7) M to 3 × 10(-5) M (P < 0.05), when compared to normal chow. Supplementation with α- and mixed-tocopherol reduced systemic concentrations of IL-6 (P < 0.001 and P < 0.001, respectively) and IL-10 (P < 0.05 and P < 0.001, respectively), while α-tocopherol also reduced MCP-1 (P < 0.05) and tumor necrosis factor (TNF)-α (P < 0.05). Aortic sinus plaque area was significantly reduced with α-tocopherol supplementation when compared to normal chow (P < 0.01). Tocopherol supplementation favorably influenced vascular function and cytokine profile, while it was also effective in reducing atherosclerosis in the apolipoprotein E(-/-) mouse with CKD. © 2014 John Wiley & Sons Ltd.
Burgos, P I; Vilá, L M; Reveille, J D; Alarcón, G S
2009-12-01
To determine the factors associated with peripheral vascular damage in systemic lupus erythematosus patients and its impact on survival from Lupus in Minorities, Nature versus Nurture, a longitudinal US multi-ethnic cohort. Peripheral vascular damage was defined by the Systemic Lupus International Collaborating Clinics Damage Index (SDI). Factors associated with peripheral vascular damage were examined by univariable and multi-variable logistic regression models and its impact on survival by a Cox multi-variable regression. Thirty-four (5.3%) of 637 patients (90% women, mean [SD] age 36.5 [12.6] [16-87] years) developed peripheral vascular damage. Age and the SDI (without peripheral vascular damage) were statistically significant (odds ratio [OR] = 1.05, 95% confidence interval [CI] 1.01-1.08; P = 0.0107 and OR = 1.30, 95% CI 0.09-1.56; P = 0.0043, respectively) in multi-variable analyses. Azathioprine, warfarin and statins were also statistically significant, and glucocorticoid use was borderline statistically significant (OR = 1.03, 95% CI 0.10-1.06; P = 0.0975). In the survival analysis, peripheral vascular damage was independently associated with a diminished survival (hazard ratio = 2.36; 95% CI 1.07-5.19; P = 0.0334). In short, age was independently associated with peripheral vascular damage, but so was the presence of damage in other organs (ocular, neuropsychiatric, renal, cardiovascular, pulmonary, musculoskeletal and integument) and some medications (probably reflecting more severe disease). Peripheral vascular damage also negatively affected survival.
He, Lian; He, Wan-Yu; A, La-Ta; Yang, Wen-Ling; Zhang, Ai-Hua
2018-01-01
Vascular calcification, which involves an active cellular transformation of vascular smooth muscle cells into bone forming cells, is prevalent and predicts mortality in dialysis patients. Its mechanisms are complex and unclear. We presume that irisin, a newly identified myokine also may play roles in vascular calcification in hemodialysis patients. This study aims to evaluate serum irisin levels and establish their relation to vascular calcification and other parameters in hemodialysis patients. A total of 150 patients on maintenance hemodialysis treatment and 38 age- and sex-matched healthy controls were enrolled in this cross-sectional study. Serum irisin concentrations were measured by ELISA. Vascular calcification was evaluated by abdominal aortic calcification scores. Serum irisin concentrations were significantly lower in hemodialysis patients than in controls [52.8 (22.0, 100.0) vs. 460.8 (434.8, 483.4) ng/ml, P<0.01]. In addition, irisin was negatively correlated with the parathyroid hormone level (P=0.01). The HD patients with vascular calcification showed significantly lower serum irisin concentrations [39.0 (21.7, 86.2) vs.79.0 (39.5, 130.2) ng/mL, P<0.01]. Compared with the group without vascular calcification multivariate logistic regression analyses revealed that serum irisin, HD vintage and age were significant independent determinant factors for vascular calcification in HD patients. Our results are the first to provide a clinical evidence of the association between serum irisin and vascular calcification in HD patients. Lower irisin levels, long-term hemodialysis and old ages are independent risk factors in HD patients. © 2018 The Author(s). Published by S. Karger AG, Basel.
Oh, Won-Jong; Gu, Chenghua
2013-10-16
Nerves and vessels often run parallel to one another, a phenomenon that reflects their functional interdependency. Previous studies have suggested that neurovascular congruency in planar tissues such as skin is established through a "one-patterns-the-other" model, in which either the nervous system or the vascular system precedes developmentally and then instructs the other system to form using its established architecture as a template. Here, we find that, in tissues with complex three-dimensional structures such as the mouse whisker system, neurovascular congruency does not follow the previous model but rather is established via a mechanism in which nerves and vessels are patterned independently. Given the diversity of neurovascular structures in different tissues, guidance signals emanating from a central organizer in the specific target tissue may act as an important mechanism to establish neurovascular congruency patterns that facilitate unique target tissue function. Copyright © 2013 Elsevier Inc. All rights reserved.
Warren, Helen R; Evangelou, Evangelos; Cabrera, Claudia P; Gao, He; Ren, Meixia; Mifsud, Borbala; Ntalla, Ioanna; Surendran, Praveen; Liu, Chunyu; Cook, James P; Kraja, Aldi T; Drenos, Fotios; Loh, Marie; Verweij, Niek; Marten, Jonathan; Karaman, Ibrahim; Lepe, Marcelo P Segura; O'Reilly, Paul F; Knight, Joanne; Snieder, Harold; Kato, Norihiro; He, Jiang; Tai, E Shyong; Said, M Abdullah; Porteous, David; Alver, Maris; Poulter, Neil; Farrall, Martin; Gansevoort, Ron T; Padmanabhan, Sandosh; Mägi, Reedik; Stanton, Alice; Connell, John; Bakker, Stephan J L; Metspalu, Andres; Shields, Denis C; Thom, Simon; Brown, Morris; Sever, Peter; Esko, Tõnu; Hayward, Caroline; van der Harst, Pim; Saleheen, Danish; Chowdhury, Rajiv; Chambers, John C; Chasman, Daniel I; Chakravarti, Aravinda; Newton-Cheh, Christopher; Lindgren, Cecilia M; Levy, Daniel; Kooner, Jaspal S; Keavney, Bernard; Tomaszewski, Maciej; Samani, Nilesh J; Howson, Joanna M M; Tobin, Martin D; Munroe, Patricia B; Ehret, Georg B; Wain, Louise V
2017-03-01
Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.
Ntalla, Ioanna; Surendran, Praveen; Liu, Chunyu; Cook, James P; Kraja, Aldi T; Drenos, Fotios; Loh, Marie; Verweij, Niek; Marten, Jonathan; Karaman, Ibrahim; Segura Lepe, Marcelo P; O’Reilly, Paul F; Knight, Joanne; Snieder, Harold; Kato, Norihiro; He, Jiang; Tai, E Shyong; Said, M Abdullah; Porteous, David; Alver, Maris; Poulter, Neil; Farrall, Martin; Gansevoort, Ron T; Padmanabhan, Sandosh; Mägi, Reedik; Stanton, Alice; Connell, John; Bakker, Stephan J L; Metspalu, Andres; Shields, Denis C; Thom, Simon; Brown, Morris; Sever, Peter; Esko, Tõnu; Hayward, Caroline; van der Harst, Pim; Saleheen, Danish; Chowdhury, Rajiv; Chambers, John C; Chasman, Daniel I; Chakravarti, Aravinda; Newton-Cheh, Christopher; Lindgren, Cecilia M; Levy, Daniel; Kooner, Jaspal S; Keavney, Bernard; Tomaszewski, Maciej; Samani, Nilesh J; Howson, Joanna M M; Tobin, Martin D; Munroe, Patricia B; Ehret, Georg B; Wain, Louise V
2017-01-01
Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. Combined with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure raising genetic variants on future cardiovascular disease risk. PMID:28135244
Rios, Francisco J; Lopes, Rheure A; Neves, Karla B; Camargo, Livia L; Montezano, Augusto C; Touyz, Rhian M
2016-05-01
Elevated blood pressure was an unexpected outcome in some cholesteryl ester transfer protein (CETP) inhibitor trials, possibly due to vascular effects of these drugs. We investigated whether CETP inhibitors (torcetrapib, dalcetrapib, anacetrapib) influence vascular function and explored the putative underlying molecular mechanisms. Resistance arteries and vascular smooth muscle cells (VSMC) from rats, which lack the CETP gene, were studied. CETP inhibitors increased phenylephrine-stimulated vascular contraction (logEC50 (:) 6.6 ± 0.1; 6.4 ± 0.06, and 6.2 ± 0.09 for torcetrapib, dalcetrapib, and anacetrapib, respectively, versus control 5.9 ± 0.05). Only torcetrapib reduced endothelium-dependent vasorelaxation. The CETP inhibitor effects were ameliorated by N-acetylcysteine (NAC), a reactive oxygen species (ROS) scavenger, and by S3I-201 [2-hydroxy-4-[[2-(4-methylphenyl)sulfonyloxyacetyl]amino]benzoic acid], a signal transducer and activator of transcription 3 (STAT3) inhibitor. CETP inhibitors increased the phosphorylation (2- to 3-fold) of vascular myosin light chain (MLC) and myosin phosphatase target subunit 1 (MYPT1) (procontractile proteins) and stimulated ROS production. CETP inhibitors increased the phosphorylation of STAT3 (by 3- to 4-fold), a transcription factor important in cell activation. Activation of MLC was reduced by NAC, GKT137831 [2-(2-chlorophenyl)-4-[3-(dimethylamino)phenyl]-5-methyl-1H-pyrazolo[4,3-c]pyridine-3,6-dione] (Nox1/4 inhibitor), and S3I-201. The phosphorylation of STAT3 was unaffected by NAC and GKT137831. CETP inhibitors did not influence activation of mitogen-activated proteins kinases (MAPK) or c-Src. Our data demonstrate that CETP inhibitors influence vascular function and contraction through redox-sensitive, STAT3-dependent, and MAPK-independent processes. These phenomena do not involve CETP because the CETP gene is absent in rodents. Findings from our study indicate that CETP inhibitors have vasoactive properties, which may contribute to the adverse cardiovascular effects of these drugs such as hypertension. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Surveillance of hemodialysis vascular access with ultrasound vector flow imaging
NASA Astrophysics Data System (ADS)
Brandt, Andreas H.; Olesen, Jacob B.; Hansen, Kristoffer L.; Rix, Marianne; Jensen, Jørgen A.; Nielsen, Michael B.
2015-03-01
The aim of this study was prospectively to monitor the volume flow in patients with arteriovenous fistula (AVF) with the angle independent ultrasound technique Vector Flow Imaging (VFI). Volume flow values were compared with Ultrasound dilution technique (UDT). Hemodialysis patients need a well-functioning vascular access with as few complications as possible and preferred vascular access is an AVF. Dysfunction due to stenosis is a common complication, and regular monitoring of volume flow is recommended to preserve AVF patency. UDT is considered the gold standard for volume flow surveillance, but VFI has proven to be more precise, when performing single repeated instantaneous measurements. Three patients with AVF were monitored with UDT and VFI monthly for five months. A commercial ultrasound scanner with a 9 MHz linear array transducer with integrated VFI was used to obtain data. UDT values were obtained with Transonic HD03 Flow-QC Hemodialysis Monitor. Three independent measurements at each scan session were obtained with UDT and VFI each month. Average deviation of volume flow between UDT and VFI was 25.7 % (Cl: 16.7% to 34.7%) (p= 0.73). The standard deviation for all patients, calculated from the mean variance of each individual scan sessions, was 199.8 ml/min for UDT and 47.6 ml/min for VFI (p = 0.002). VFI volume flow values were not significantly different from the corresponding estimates obtained using UDT, and VFI measurements were more precise than UDT. The study indicates that VFI can be used for surveillance of volume flow.
Chan, Y-H; Lau, K-K; Yiu, K-H; Siu, C-W; Chan, H-T; Li, S-W; Tam, S; Lam, T-H; Lau, C-P; Tse, H-F
2012-04-01
Whether isoflavone has any effect on recurrent cardiovascular events is unknown. To investigate the relations between isoflavone intake and the risk of stroke recurrence. We recruited 127 consecutive patients with prior history of atherothrombotic/ hemorrhagic stroke (mean age: 67 ± 11 years, 69% male) and prospectively followed up for a mean duration of 30 months. Stroke recurrence and major adverse cardiovascular events (MACE) were documented. Brachial flow-mediated dilatation (FMD) was measured using high-resolution ultrasound. Isoflavone intake was estimated using a validated food frequency questionnaire. Median isoflavone intake was 6.9 (range: 2.1 - 14.5) mg/day. Isoflavone intake was independently associated with increased FMD (Pearson R=0.23, p=0.012). At 30 months, there were 10 stroke recurrence and 12 MACE. Kaplan-Meier analysis showed that patients with isoflavone intake higher than median value had significantly longer median stroke recurrence-free survival time (19.0 [range: 10.4 - 27.6] mth versus 5.0 [range: 4.1 - 5.9] mth, p=0.021) and MACE-free survival time (19.0 [range: 10.4 - 27.6] mth versus 4.0 [range: 2.4 - 5.6] mth, p=0.013). Using multivariate cox regression, higher isoflavone intake was an independent predictor for lower risk of stroke recurrence (hazards ratio 0.18 [95%CI: 0.03 - 0.95], risk reduction 82%, p=0.043) and MACE (hazards ratio 0.16 [95%CI: 0.03 - 0.84], risk reduction 84%, p=0.030). Higher isoflavone intake in stroke patients was associated with prolonged recurrence-free survival, and reduced risk of stroke recurrence and MACE independent of baseline vascular function. Whether isoflavone may confer clinically significant secondary protection in stroke patients should be further investigated in a randomized controlled trial.
Coimbra, S R; Lage, S H; Brandizzi, L; Yoshida, V; da Luz, P L
2005-09-01
Although red wine (RW) reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM), and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 +/- 8.1 years) without other risk factors. Twenty-four normal subjects were used as controls for vascular reactivity. Subjects randomly received RW, 250 ml/day, or purple grape juice (GJ), 500 ml/day, for 14 days with an equal wash-out period. At baseline, all 16 subjects were hypercholesterolemic (mean LDL = 181.0 +/- 28.7 mg/dl) but HDL, triglycerides, glucose, adhesion molecules, and platelet function were within normal limits. Brachial artery flow-mediated dilation was significantly decreased compared to controls (9.0 +/- 7.1 vs 12.1 +/- 4.5%; P < 0.05) and increased with both GJ (10.1 +/- 7.1 before vs 16.9 +/- 6.7% after: P < 0.05) and RW (10.1 +/- 6.4 before vs 15.6 +/- 4.6% after; P < 0.05). RW, but not GJ, also significantly increased endothelium-independent vasodilation (17.0 +/- 8.6 before vs 23.0 +/- 12.0% after; P < 0.01). GJ reduced ICAM-1 but not VCAM and RW had no effect on either molecule. No significant alterations were observed in plasma lipids, glucose or platelet aggregability with RW or GJ. Both RW and GJ similarly improved flow-mediated dilation, but RW also enhanced endothelium-independent vasodilation in hypercholesterolemic patients despite the increased plasma cholesterol. Thus, we conclude that GJ may protect against coronary artery disease without the additional negative effects of alcohol despite the gender.
N-acetylcysteine improves coronary and peripheral vascular function.
Andrews, N P; Prasad, A; Quyyumi, A A
2001-01-01
We investigated whether N-acetylcysteine (NAC), a reduced thiol that modulates redox state and forms adducts of nitric oxide (NO), improves endothelium-dependent vasomotion. Coronary atherosclerosis is associated with endothelial dysfunction and reduced NO activity. In 16 patients undergoing cardiac catheterization, seven with and nine without atherosclerosis, we assessed endothelium-dependent vasodilation with acetylcholine (ACH) and endothelium-independent vasodilation with nitroglycerin (NTG) and sodium nitroprusside (SNP) before and after intracoronary NAC. In 14 patients femoral vascular responses to ACH, NTG and SNP were measured before and after NAC. Intraarterial NAC did not change resting coronary or peripheral vascular tone. N-acetylcysteine potentiated ACH-mediated coronary vasodilation; coronary blood flow was 36 +/- 11% higher (p < 0.02), and epicardial diameter changed from -1.2 +/- 2% constriction to 4.7 +/- 2% dilation after NAC (p = 0.03). Acetylcholine-mediated femoral vasodilation was similarly potentiated by NAC (p = 0.001). Augmentation of the ACH response was similar in patients with or without atherosclerosis. N-acetylcysteine did not affect NTG-mediated vasodilation in either the femoral or coronary circulations and did not alter SNP responses in the femoral circulation. In contrast, coronary vasodilation with SNP was significantly greater after NAC (p < 0.05). Thiol supplementation with NAC improves human coronary and peripheral endothelium-dependent vasodilation. Nitroglycerin responses are not enhanced, but SNP-mediated responses are potentiated only in the coronary circulation. These NO-enhancing effects of thiols reflect the importance of the redox state in the control of vascular function and may be of therapeutic benefit in treating acute and chronic manifestations of atherosclerosis.
Hein, Travis W; Ren, Yi; Potts, Luke B; Yuan, Zhaoxu; Kuo, Enoch; Rosa, Robert H; Kuo, Lih
2012-01-03
Because retinal vascular disease is associated with ischemia and increased oxidative stress, the vasodilator function of retinal arterioles was examined after retinal ischemia induced by elevated intraocular pressure (IOP). The role of superoxide anions in the development of vascular dysfunction was assessed. IOP was increased and maintained at 80 to 90 mm Hg for 30, 60, or 90 minutes by infusing saline into the anterior chamber of a porcine eye. The fellow eye with normal IOP (10-20 mm Hg) served as control. In some pigs, superoxide dismutase mimetic TEMPOL (1 mM) or vehicle (saline) was injected intravitreally before IOP elevation. After enucleation, retinal arterioles were isolated and pressurized without flow for functional analysis by recording diameter changes using videomicroscopic techniques. Dihydroethidium (DHE) was used to detect superoxide production in isolated retinal arterioles. Isolated retinal arterioles developed stable basal tone and the vasodilations to endothelium-dependent nitric oxide (NO)-mediated agonists bradykinin and L-lactate were significantly reduced only by 90 minutes of ischemia. However, vasodilation to endothelium-independent NO donor sodium nitroprusside was unaffected after all time periods of ischemia. DHE staining showed that 90 minutes of ischemia significantly increased superoxide levels in retinal arterioles. Intravitreal injection of membrane-permeable radical scavenger but not vehicle before ischemia prevented elevation of vascular superoxide and preserved bradykinin-induced dilation. Endothelium-dependent NO-mediated dilation of retinal arterioles is impaired by 90 minutes of ischemia induced by elevated IOP. The inhibitory effect appears to be mediated by the alteration of NO signaling via vascular superoxide.
The Role of Oxidative Stress and Inflammation in Cardiovascular Aging
Wu, Junzhen; Xia, Shijin; Kalionis, Bill; Sun, Tao
2014-01-01
Age is an independent risk factor of cardiovascular disease, even in the absence of other traditional factors. Emerging evidence in experimental animal and human models has emphasized a central role for two main mechanisms of age-related cardiovascular disease: oxidative stress and inflammation. Excess reactive oxygen species (ROS) and superoxide generated by oxidative stress and low-grade inflammation accompanying aging recapitulate age-related cardiovascular dysfunction, that is, left ventricular hypertrophy, fibrosis, and diastolic dysfunction in the heart as well as endothelial dysfunction, reduced vascular elasticity, and increased vascular stiffness. We describe the signaling involved in these two main mechanisms that include the factors NF-κB, JunD, p66Shc, and Nrf2. Potential therapeutic strategies to improve the cardiovascular function with aging are discussed, with a focus on calorie restriction, SIRT1, and resveratrol. PMID:25143940
McFee, Renee M.; Artac, Robin A.; McFee, Ryann M.; Clopton, Debra T.; Smith, Robyn A. Longfellow; Rozell, Timothy G.; Cupp, Andrea S.
2009-01-01
We hypothesized that vascular endothelial growth factor A (VEGFA) angiogenic isoforms and their receptors, FLT1 and KDR, regulate follicular progression in the perinatal rat ovary. Each VEGFA angiogenic isoform has unique functions (based on its exons) that affect diffusibility, cell migration, branching, and development of large vessels. The Vegfa angiogenic isoforms (Vegfa_120, Vegfa_164, and Vegfa_188) were detected in developing rat ovaries, and quantitative RT-PCR determined that Vegfa_120 and Vegfa_164 mRNA was more abundant after birth, while Vegfa_188 mRNA was highest at Embryonic Day 16. VEGFA and its receptors were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the role of VEGFA in developing ovaries, Postnatal Day 3/4 rat ovaries were cultured with 8 μM VEGFR-TKI, a tyrosine kinase inhibitor that blocks FLT1 and KDR. Ovaries treated with VEGFR-TKI had vascular development reduced by 94% (P < 0.0001), with more primordial follicles (stage 0), fewer early primary, transitional, and secondary follicles (stages 1, 3, and 4, respectively), and greater total follicle numbers compared with control ovaries (P < 0.005). V1, an inhibitor specific for KDR, was utilized to determine the effects of only KDR inhibition. Treatment with 30 μM V1 had no effect on vascular density; however, treated ovaries had fewer early primary, transitional, and secondary follicles and more primary follicles (stage 2) compared with control ovaries (P < 0.05). We conclude that VEGFA may be involved in primordial follicle activation and in follicle maturation and survival, which are regulated through vascular-dependent and vascular-independent mechanisms. PMID:19605787
Rathnayake, Kumari M; Weech, Michelle; Jackson, Kim G; Lovegrove, Julie A
2018-03-01
Elevated postprandial triacylglycerol concentrations, impaired vascular function, and hypertension are important independent cardiovascular disease (CVD) risk factors in women. However, the effects of meal fat composition on postprandial lipemia and vascular function in postmenopausal women are unknown. This study investigated the impact of sequential meals rich in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), or n-6 (ω-6) polyunsaturated fatty acids (PUFAs) on postprandial flow-mediated dilatation (FMD; primary outcome measure), vascular function, and associated CVD risk biomarkers (secondary outcomes) in postmenopausal women. A double-blind, randomized, crossover, postprandial study was conducted in 32 postmenopausal women [mean ± SEM ages: 58 ± 1 y; mean ± SEM body mass index (in kg/m2): 25.9 ± 0.7]. After fasting overnight, participants consumed high-fat meals at breakfast (0 min; 50 g fat, containing 33-36 g SFAs, MUFAs, or n-6 PUFAs) and lunch (330 min; 30 g fat, containing 19-20 g SFAs, MUFAs, or n-6 PUFAs), on separate occasions. Blood samples were collected before breakfast and regularly after the meals for 480 min, with specific time points selected for measuring vascular function and blood pressure. Postprandial FMD, laser Doppler imaging, and digital volume pulse responses were not different after consuming the test fats. The incremental area under the curve (iAUC) for diastolic blood pressure was lower after the MUFA-rich meals than after the SFA-rich meals (mean ± SEM: -2.3 ± 0.3 compared with -1.5 ± 0.3 mm Hg × 450 min × 103; P = 0.009), with a similar trend for systolic blood pressure (P = 0.012). This corresponded to a lower iAUC for the plasma nitrite response after the SFA-rich meals than after the MUFA-rich meals (-1.23 ± 0.7 compared with -0.17 ± 0.4 μmol/L × 420 min P = 0.010). The soluble intercellular adhesion molecule 1 (sICAM-1) time-course profile, AUC, and iAUC were lower after the n-6 PUFA-rich meals than after the SFA- and MUFA-rich meals (P ≤ 0.001). Lipids, glucose, and markers of insulin sensitivity did not differ between the test fats. Our study showed a differential impact of meal fat composition on blood pressure, plasma nitrite, and sICAM-1, but no effect on postprandial FMD or lipemia in postmenopausal women. This trial was registered at www.clinicaltrials.gov as NCT02144454.
Belair, David G.; Whisler, Jordan A.; Valdez, Jorge; Velazquez, Jeremy; Molenda, James A.; Vickerman, Vernella; Lewis, Rachel; Daigh, Christine; Hansen, Tyler D.; Mann, David A.; Thomson, James A.; Griffith, Linda G.; Kamm, Roger D.; Schwartz, Michael P.; Murphy, William L.
2015-01-01
Here we describe a strategy to model blood vessel development using a well-defined iPSC-derived endothelial cell type (iPSC-EC) cultured within engineered platforms that mimic the 3D microenvironment. The iPSC-ECs used here were first characterized by expression of endothelial markers and functional properties that included VEGF responsiveness, TNF-α-induced upregulation of cell adhesion molecules (MCAM/CD146; ICAM1/CD54), thrombin-dependent barrier function, shear stress-induced alignment, and 2D and 3D capillary-like network formation in Matrigel. The iPSC-ECs also formed 3D vascular networks in a variety of engineering contexts, yielded perfusable, interconnected lumen when co-cultured with primary human fibroblasts, and aligned with flow in microfluidics devices. iPSC-EC function during tubule network formation, barrier formation, and sprouting was consistent with that of primary ECs, and the results suggest a VEGF-independent mechanism for sprouting, which is relevant to therapeutic anti-angiogenesis strategies. Our combined results demonstrate the feasibility of using a well-defined, stable source of iPSC-ECs to model blood vessel formation within a variety of contexts using standard in vitro formats. PMID:25190668
Liang, Ying; Gao, Haiqing; Wang, Jian; Wang, Quanzhen; Zhao, Shaohua; Zhang, Jun; Qiu, Jie
2017-05-01
Vascular remodeling is a primary contributor to the initiation and development of hypertension, which has a pathological association with subsequent multi-organ damage. Grape seed proanthocyanidin extracts (GSPE) exhibit protective cardiovascular effects, resulting from their anti‑oxidant and anti‑inflammatory properties. However, the function and mechanism underlying the effect of GSPE on small artery remodeling remain to be elucidated. The present study investigated the effect of GSPE on vascular remodeling in the mesenteric small arteries of spontaneous hypertensive rats (SHR). Parameters associated with hypertension, including systolic blood pressure, oxidative stress, morphological and ultrastructural alteration of vessels, deposition of collagen and transforming growth factor (TGF)-β1, were analyzed. The results revealed that GSPE alleviated hypertension-induced hypertrophic vascular remodeling in the small arteries of SHR, which was independent of blood pressure. GSPE decreased oxidative stress associated with hypertension in SHR and suppressed the increased expression of TGF‑β1, which blocked the translocation and differentiation of adventitia fibroblasts and eventually inhibited collagen hyperplasia in the blood vessel. The inhibitory effect of GSPE on small artery remodeling was achieved via its suppressive effect on oxidant production and the subsequent intercellular and intracellular cascades. The findings of the present study supported the potential therapeutic value of GSPE for the treatment of hypertension.
Nyengaard, J R; Chang, K; Berhorst, S; Reiser, K M; Williamson, J R; Tilton, R G
1997-01-01
We examined the effects of aminoguanidine and methylguanidine on vascular dysfunction, glomerular structural changes, and indexes of early and late nonenzymatic glycation in 7-month streptozotocin-induced diabetic rats. Kidney weight, glomerular volume, fractional mesangial volume, glomerular capillary basement membrane width, and urinary albumin excretion were increased in diabetic rats. Diabetes also 1) increased vascular albumin permeation twofold in retina, sciatic nerve, aorta, skin, and kidney; 2) decreased renal collagenase-soluble collagen; 3) increased collagen-associated fluorescence in kidney and skin but not in aorta; and 4) increased glycated hemoglobin levels and aortic pentosidine levels. Aminoguanidine reduced albuminuria by 70% after 4 months, and both guanidines 1) normalized aortic pentosidine levels and renal collagenase-soluble collagen, 2) had no effect on glycated hemoglobin levels or collagen-associated fluorescence (in aorta, kidney, or skin), and 3) had little or no effect on regional albumin permeation. These discordant effects of aminoguanidine on diabetes-induced vascular changes versus parameters of nonenzymatic glycation are consistent with a multifactorial pathogenesis of diabetic complications, including roles for metabolic imbalances independent of nonenzymatic glycation. To the extent that glomerular matrix accumulation and increased regional albumin permeation in chronically diabetic rats are sequelae of nonenzymatic glycation, these findings point to an important role for early glycation reactions and products.
Zhou, Junxuan; Zhang, Cong
2018-01-01
Ellagitannins in Phyllanthus emblica L. (emblic leafflower fruits) have been thought of as the beneficial constituents for ameliorating endocrinal and metabolic diseases including diabetes. However, the effect of emblic leafflower fruits on diabetic vascular complications involved in ellagitannin-derived urolithin metabolites is still rare. In this study, acetylcholine-induced endothelium-independent relaxation in aortas was facilitated upon emblic leafflower fruit consumption in the single dose streptozotocin-induced hyperglycemic rats. Emblic leafflower fruit consumption also suppressed the phosphorylation of Akt (Thr308) in the hyperglycemic aortas. More importantly, urolithin A (UroA) and its derived phase II metabolites were identified as the metabolites upon emblic leafflower fruit consumption by HPLC-ESI-Q-TOF-MS. Moreover, UroA reduced the protein expressions of phosphor-Akt (Thr308) and β-catenin in a high glucose-induced A7r5 vascular smooth muscle cell proliferation model. Furthermore, accumulation of β-catenin protein and activation of Wnt signaling in LiCl-triggered A7r5 cells were also ameliorated by UroA treatment. In conclusion, our data demonstrate that emblic leafflower fruit consumption facilitates the vascular function in hyperglycemic rats by regulating Akt/β-catenin signaling, and the effects are potentially mediated by the ellagitannin metabolite urolithin A. PMID:29692859
Smoking and Female Sex: Independent Predictors of Human Vascular Smooth Muscle Cells Stiffening
Dinardo, Carla Luana; Santos, Hadassa Campos; Vaquero, André Ramos; Martelini, André Ricardo; Dallan, Luis Alberto Oliveira; Alencar, Adriano Mesquita; Krieger, José Eduardo; Pereira, Alexandre Costa
2015-01-01
Aims Recent evidence shows the rigidity of vascular smooth muscle cells (VSMC) contributes to vascular mechanics. Arterial rigidity is an independent cardiovascular risk factor whose associated modifications in VSMC viscoelasticity have never been investigated. This study’s objective was to evaluate if the arterial rigidity risk factors aging, African ancestry, female sex, smoking and diabetes mellitus are associated with VMSC stiffening in an experimental model using a human derived vascular smooth muscle primary cell line repository. Methods Eighty patients subjected to coronary artery bypass surgery were enrolled. VSMCs were extracted from internal thoracic artery fragments and mechanically evaluated using Optical Magnetic Twisting Cytometry assay. The obtained mechanical variables were correlated with the clinical variables: age, gender, African ancestry, smoking and diabetes mellitus. Results The mechanical variables Gr, G’r and G”r had a normal distribution, demonstrating an inter-individual variability of VSMC viscoelasticity, which has never been reported before. Female sex and smoking were independently associated with VSMC stiffening: Gr (apparent cell stiffness) p = 0.022 and p = 0.018, R2 0.164; G’r (elastic modulus) p = 0.019 and p = 0.009, R2 0.184 and G”r (dissipative modulus) p = 0.011 and p = 0.66, R2 0.141. Conclusion Female sex and smoking are independent predictors of VSMC stiffening. This pro-rigidity effect represents an important element for understanding the vascular rigidity observed in post-menopausal females and smokers, as well as a potential therapeutic target to be explored in the future. There is a significant inter-individual variation of VSMC viscoelasticity, which is slightly modulated by clinical variables and probably relies on molecular factors. PMID:26661469
López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio
2010-07-01
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.
MacDonald, Stuart W. S.; Vergote, David; Jhamandas, Jack; Westaway, David; Dixon, Roger A.
2016-01-01
Objectives: Mild cognitive impairment (MCI) is a high-risk condition for progression to Alzheimer’s disease (AD). Vascular health is a key mechanism underlying age-related cognitive decline and neurodegeneration. AD-related genetic risk factors may be associated with preclinical cognitive status changes. We examine independent and cross-domain interactive effects of vascular and genetic markers for predicting MCI status and stability. Method: We used cross-sectional and 2-wave longitudinal data from the Victoria Longitudinal Study, including indicators of vascular health (e.g., reported vascular diseases, measured lung capacity and pulse rate) and genetic risk factors—that is, apolipoprotein E (APOE; rs429358 and rs7412; the presence vs absence of ε4) and catechol-O-methyltransferase (COMT; rs4680; met/met vs val/val). We examined associations with objectively classified (a) cognitive status at baseline (not impaired congnitive (NIC) controls vs MCI) and (b) stability or transition of cognitive status across a 4-year interval (stable NIC–NIC vs chronic MCI–MCI or transitional NIC–MCI). Results: Using logistic regression, indicators of vascular health, both independently and interactively with APOE ε4, were associated with risk of MCI at baseline and/or associated with MCI conversion or MCI stability over the retest interval. Discussion: Several vascular health markers of aging predict MCI risk. Interactively, APOE ε4 may intensify the vascular health risk for MCI. PMID:26362601
Han, KA; Patel, Y; Lteif, AA; Chisholm, R; Mather, KJ
2011-01-01
Background Individual effects of hyperglycemia and obesity to impair vascular health are recognized. However, the relative contributions of dysglycemia versus other obesity-related traits to vascular dysfunction have not been systematically evaluated. Methods We undertook a cross-sectional evaluation of factors contributing to vascular function in 271 consecutive subjects, categorized as non-obese normal glucose tolerant (n=115), non-obese dysglycemic (n=32), obese normal glucose tolerant (n=57), obese dysglycemic (n=38), or type 2 diabetic (n=29). Vascular function was measured invasively as leg blood flow responses to methacholine chloride, an endothelium-dependent vasodilator. Categorical and continuous analyses were used to assess the contributions of hyperglycemia to vascular dysfunction. Results Even among normoglycemic subjects, obese subjects had impaired vascular function compared to non-obese subjects (p=0.004). Vascular function was also impaired in non-obese dysglycemic subjects (p=0.04 versus non-obese normoglycemic subjects), to a level comparable to normoglycemic obese subjects. Within obese subject groups, gradations of dysglycemia including the presence of diabetes were not associated with further worsening of these vascular responses beyond the effect of obesity alone (p=NS comparing all obese groups, p<0.001 versus lean normoglycemic subjects). In univariate and multivariable modeling analyses we found that effects of glycemia were less powerful than effects of insulin resistance and obesity on vascular dysfunction. Conclusions Dysglycemia contributes to impaired vascular function in non-obese subjects, but obesity and insulin resistance are more important determinants of vascular function in obese and diabetic subjects. PMID:21309061
[Vascular aging, arterial hypertension and physical activity].
Schmidt-Trucksäss, A; Weisser, B
2011-11-01
The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.
Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1
Eferl, Robert; Hasselblatt, Peter; Rath, Martina; Popper, Helmut; Zenz, Rainer; Komnenovic, Vukoslav; Idarraga, Maria-Helena; Kenner, Lukas; Wagner, Erwin F.
2008-01-01
Studies using genetically modified mice have revealed fundamental functions of the transcription factor Fos/AP-1 in bone biology, inflammation, and cancer. However, the biological role of the Fos-related protein Fra-2 is not well defined in vivo. Here we report an unexpected profibrogenic function of Fra-2 in transgenic mice, in which ectopic expression of Fra-2 in various organs resulted in generalized fibrosis with predominant manifestation in the lung. The pulmonary phenotype was characterized by vascular remodeling and obliteration of pulmonary arteries, which coincided with expression of osteopontin, an AP-1 target gene involved in vascular remodeling and fibrogenesis. These alterations were followed by inflammation; release of profibrogenic factors, such as IL-4, insulin-like growth factor 1, and CXCL5; progressive fibrosis; and premature mortality. Genetic experiments and bone marrow reconstitutions suggested that fibrosis developed independently of B and T cells and was not mediated by autoimmunity despite the marked inflammation observed in transgenic lungs. Importantly, strong expression of Fra-2 was also observed in human samples of idiopathic and autoimmune-mediated pulmonary fibrosis. These findings indicate that Fra-2 expression is sufficient to cause pulmonary fibrosis in mice, possibly by linking vascular remodeling and fibrogenesis, and suggest that Fra-2 has to be considered a contributing pathogenic factor of pulmonary fibrosis in humans. PMID:18641127
Park, Yang-Gyu; Choi, Jawun; Jung, Hye-Kang; Song, In Kyu; Shin, Yongwhan; Park, Sang-Youel; Seol, Jae-Won
2017-01-01
Early pregnancy is characterized by an increase in the blood volume of the uterus for embryonic development, thereby exerting fluid shear stress (FSS) on the vascular walls. The uterus experiences vascular remodeling to accommodate the increased blood flow. The blood flow-induced FSS elevates the expression of vascular endothelial growth factors (VEGFs) and their receptors, and regulates vascular remodeling through the activation of VEGF receptor-3 (VEGFR-3). However, the mechanisms responsible for FSS-induced VEGFR-3 expression in the uterus during pregnancy are unclear. In this study, we demonstrate that vascular remodeling in the uterus during pregnancy is regulated by FSS-induced VEGFR-3 expression. We examined the association between VEGFR-3 and FSS through in vivo and in vitro experiments. In vivo experiments revealed VEGFR-3 expression in the CD31-positive region of the uterus of pregnant mice; VEGF-C (ligand for VEGFR-3) was undetected in the uterus. These results confirmed that VEGFR-3 expression in the endometrium is independent of its ligand. In vitro studies experiments revealed that FSS induced morphological changes and increased VEGFR-3 expression in human uterine microvascular endothelial cells. Thus, VEGFR-3 activation by FSS is associated with vascular remodeling to allow increased blood flow in the uterus during pregnancy. PMID:28849193
Park, Yang-Gyu; Choi, Jawun; Jung, Hye-Kang; Song, In Kyu; Shin, Yongwhan; Park, Sang-Youel; Seol, Jae-Won
2017-10-01
Early pregnancy is characterized by an increase in the blood volume of the uterus for embryonic development, thereby exerting fluid shear stress (FSS) on the vascular walls. The uterus experiences vascular remodeling to accommodate the increased blood flow. The blood flow‑induced FSS elevates the expression of vascular endothelial growth factors (VEGFs) and their receptors, and regulates vascular remodeling through the activation of VEGF receptor-3 (VEGFR-3). However, the mechanisms responsible for FSS-induced VEGFR-3 expression in the uterus during pregnancy are unclear. In this study, we demonstrate that vascular remodeling in the uterus during pregnancy is regulated by FSS-induced VEGFR-3 expression. We examined the association between VEGFR-3 and FSS through in vivo and in vitro experiments. In vivo experiments revealed VEGFR-3 expression in the CD31-positive region of the uterus of pregnant mice; VEGF-C (ligand for VEGFR‑3) was undetected in the uterus. These results confirmed that VEGFR-3 expression in the endometrium is independent of its ligand. In vitro studies experiments revealed that FSS induced morphological changes and increased VEGFR-3 expression in human uterine microvascular endothelial cells. Thus, VEGFR-3 activation by FSS is associated with vascular remodeling to allow increased blood flow in the uterus during pregnancy.
Alpha Klotho and Fibroblast Growth Factor-23 Among Alcoholics.
Quintero-Platt, Geraldine; González-Reimers, Emilio; Rodríguez-Gaspar, Melchor; Martín-González, Candelaria; Pérez-Hernández, Onán; Romero-Acevedo, Lucía; Espelosín-Ortega, Elisa; Vega-Prieto, María José de la; Santolaria-Fernández, Francisco
2017-09-01
Alcoholism may be a cardiovascular risk factor. Osteocyte derived molecules such as fibroblast growth factor 23 (FGF-23) and soluble α Klotho have recently been associated with cardiovascular disease, but their role in alcoholics is unknown. We here analyze the behavior of FGF23 and α Klotho in alcoholics. Ninety-seven alcoholic patients were assessed for liver function, presence of hypertension, diabetes, atrial fibrillation, left ventricular hypertrophy (LVH), vascular calcifications (assessed by chest X-ray) and nutritional status (lean and fat mass measured by densitometry). We measured plasma levels of FGF-23 and serum soluble α Klotho, using ELISA in 97 patients and 20 age- and sex-matched controls. FGF-23 levels were higher in patients than in controls (Z = 3.50; P < 0.001). FGF-23 (Z = 5.03; P < 0.001) and soluble α Klotho (Z = 5.61; P < 0.001) were higher in cirrhotics, and both were related to liver function, independently of serum creatinine FGF-23 levels were higher among alcoholics with diabetes (Z = 2.55; P = 0.011) or hypertension (Z = 2.56; P = 0.01), and increased body fat (ρ = 0.28; P = 0.022 for trunk fat), whereas α Klotho levels were higher in patients with LVH (Z = 2.17; P = 0.03) or atrial fibrillation (Z = 2.34; P = 0.019). FGF-23 was higher in alcoholics than in controls, especially among cirrhotics, and soluble α Klotho levels were also higher among cirrhotics. Both were related to liver function impairment, independently of serum creatinine levels, and also showed significant associations with vascular risk factors, such as hypertension, diabetes or trunk fat amount in the case of FGF-23, or LVH or atrial fibrillation in the case of α Klotho. We report increased values of fibroblast growth factor 23 (FGF-23) and soluble α Klotho in cirrhotic alcoholics. Both molecules are associated with liver function impairment, and with some cardiovascular risk factors such as diabetes, hypertension, increased body fat, left ventricular hypertrophy and atrial fibrillation independently of serum creatinine. © The Author 2017. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Nourse, Marilyn B.; Halpin, Daniel E.; Scatena, Marta; Mortisen, Derek J.; Tulloch, Nathaniel L.; Hauch, Kip D.; Torok-Storb, Beverly; Ratner, Buddy D.; Pabon, Lil; Murry, Charles E.
2010-01-01
Objective Human embryonic stem cells (hESCs) offer a sustainable source of endothelial cells for therapeutic vascularization and tissue engineering, but current techniques for generating these cells remain inefficient. We endeavored to induce and isolate functional endothelial cells from differentiating hESCs. Methods and Results To enhance endothelial cell differentiation above a baseline of ∼2% in embryoid body (EB) spontaneous differentiation, three alternate culture conditions were compared. Vascular endothelial growth factor (VEGF) treatment of EBs showed the best induction, with markedly increased expression of endothelial cell proteins CD31, VE-Cadherin, and von Willebrand Factor, but not the hematopoietic cell marker CD45. CD31 expression peaked around days 10-14. Continuous VEGF treatment resulted in a four- to five-fold enrichment of CD31+ cells but did not increase endothelial proliferation rates, suggesting a primary effect on differentiation. CD31+ cells purified from differentiating EBs upregulated ICAM-1 and VCAM-1 in response to TNFα, confirming their ability to function as endothelial cells. These cells also expressed multiple endothelial genes and formed lumenized vessels when seeded onto porous poly(2-hydroxyethyl methacrylate) scaffolds and implanted in vivo subcutaneously in athymic rats. Collagen gel constructs containing hESC-derived endothelial cells and implanted into infarcted nude rat hearts formed robust networks of patent vessels filled with host blood cells. Conclusions VEGF induces functional endothelial cells from hESCs independent of endothelial cell proliferation. These enrichment methods increase endothelial cell yield, enabling applications for revascularization as well as basic studies of human endothelial biology. We demonstrate the ability of hESC-derived endothelial cells to facilitate vascularization of tissue-engineered implants. PMID:19875721
FOXO3 Modulates Endothelial Gene Expression and Function by Classical and Alternative Mechanisms*
Czymai, Tobias; Viemann, Dorothee; Sticht, Carsten; Molema, Grietje; Goebeler, Matthias; Schmidt, Marc
2010-01-01
FOXO transcription factors represent targets of the phosphatidylinositol 3-kinase/protein kinase B survival pathway controlling important biological processes, such as cell cycle progression, apoptosis, vascular remodeling, stress responses, and metabolism. Recent studies suggested the existence of alternative mechanisms of FOXO-dependent gene expression beyond classical binding to a FOXO-responsive DNA-binding element (FRE). Here we analyzed the relative contribution of those mechanisms to vascular function by comparing the transcriptional and cellular responses to conditional activation of FOXO3 and a corresponding FRE-binding mutant in human primary endothelial cells. We demonstrate that FOXO3 controls expression of vascular remodeling genes in an FRE-dependent manner. In contrast, FOXO3-induced cell cycle arrest and apoptosis occurs independently of FRE binding, albeit FRE-dependent gene expression augments the proapoptotic response. These findings are supported by bioinformatical analysis, which revealed a statistical overrepresentation of cell cycle regulators and apoptosis-related genes in the group of co-regulated genes. Molecular analysis of FOXO3-induced endothelial apoptosis excluded modulators of the extrinsic death receptor pathway and demonstrated important roles for the BCL-2 family members BIM and NOXA in this process. Although NOXA essentially contributed to FRE-dependent apoptosis, BIM was effectively induced in the absence of FRE-binding, and small interfering RNA-mediated BIM depletion could rescue apoptosis induced by both FOXO3 mutants. These data suggest BIM as a critical cell type-specific mediator of FOXO3-induced endothelial apoptosis, whereas NOXA functions as an amplifying factor. Our study provides the first comprehensive analysis of alternatively regulated FOXO3 targets in relevant primary cells and underscores the importance of such genes for endothelial function and integrity. PMID:20123982
A new definition of an acupuncture meridian.
Kovich, Fletcher
2018-05-11
This article provides a new definition of an acupuncture meridian. It suggests that a meridian consists of a distal tract of tissue that is affected by organ function. In the 1960's, Kim discovered the primo vascular system, and regarded the superficial primo vessels as equating to the meridians. Instead, this article suggests that the superficial primo vessels merely underlie the meridians, in that they enable their creation, which is why some meridians are said to occur along the paths of superficial primo vessels. But the meridians themselves do not have a dedicated anatomical structure; instead they are merely tracts of tissue whose normal function is impeded when the related abdominal organ is stressed. It is hypothesised that the organ information is communicated in electrical waves that may travel through the connective tissue sheaths of the superficial primo vessels. Hence the primo vessels serve as an inadvertent transport for this information, but the organ information is independent of the physiological purpose of the primo vascular system, as are the resultant meridians. Copyright © 2018. Published by Elsevier B.V.
Rakebrandt, F; Palombo, C; Swampillai, J; Schön, F; Donald, A; Kozàkovà, M; Kato, K; Fraser, A G
2009-02-01
Wave intensity (WI) in the circulation is estimated noninvasively as the product of instantaneous changes in pressure and velocity. We recorded diameter as a surrogate for pressure, and velocity in the right common carotid artery using an Aloka SSD-5500 ultrasound scanner. We developed automated software, applying the water hammer equation to obtain local wave speed from the slope of a pressure/velocity loop during early systole to separate net WI into individual forwards and backwards-running waves. A quality index was developed to test for noisy data. The timing, duration, peak amplitude and net energy of separated WI components were measured in healthy subjects with a wide age range. Age and arterial stiffness were independent predictors of local wave speed, whereas backwards-travelling waves correlated more strongly with ventricular systolic function than with age-related changes in arterial stiffness. Separated WI offers detailed insight into ventricular-arterial interactions that may be useful for assessing the relative contributions of ventricular and vascular function to wave travel.
The vascular endothelium in diabetes--a therapeutic target?
Mather, Kieren J
2013-03-01
Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.
Uzbekova, D G
2015-01-01
The article describes scientific activity of outstanding pharmacologist, Academician N.P. Kravkov (1865-1924) on studying dynamics of the vascular system in experiment: Using the method of isolated animal organs of animals, N.P. Kravkov discovered self-maintained periodic contractions of vessels independent of the central nervous system and not associated with cardiac contractions. On isolated animal organs (heart, kidneys, spleen, womb, pancreas and others) specialists of the laboratory of N.P. Kravkov studied vascular reactions and sensitivity of vascular zones to administration of pharmacological agents in normal conditions and on various experimental ''pathological" models. For studying physiology and pharmacology of coronary vessels irrespective of cardiac contractions masking change in their lumen N.P. Kravkov suggested his original method of cardiac arrest by means of administration of strophanthin followed by passing through vessels of the unfunctioning heart solutions of various pharmacological substances. N.P. Kravkov and !{is followers studied alterations in vascular tonicity on isolated organs of cadavers of people who had died of various diseases: tuberculosis, typhoid fever and epidemic typhus, scarlet fever, measles, diphtheria, pneumonia et cet. The scientist believed that studying the functional state of vessels on post-mortem material would make it possible to more precisely and accurately solve the problem of intravital alterations thereof N.P. Kravkov's works on physiology and pathology of'the vascular system served as the basis for the developing clinical discipline, i.e. angiology.
Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival.
Schipani, E; Ryan, H E; Didrickson, S; Kobayashi, T; Knight, M; Johnson, R S
2001-11-01
Breakdown or absence of vascular oxygen delivery is a hallmark of many common human diseases, including cancer, myocardial infarction, and stroke. The chief mediator of hypoxic response in mammalian tissues is the transcription factor hypoxia-inducible factor 1 (HIF-1), and its oxygen-sensitive component HIF-1alpha. A key question surrounding HIF-1alpha and the hypoxic response is the role of this transcription factor in cells removed from a functional vascular bed; in this regard there is evidence indicating that it can act as either a survival factor or induce growth arrest and apoptosis. To study more closely how HIF-1alpha functions in hypoxia in vivo, we used tissue-specific targeting to delete HIF-1alpha in an avascular tissue: the cartilaginous growth plate of developing bone. We show here the first evidence that the developmental growth plate in mammals is hypoxic, and that this hypoxia occurs in its interior rather than at its periphery. As a result of this developmental hypoxia, cells that lack HIF-1alpha in the interior of the growth plate die. This is coupled to decreased expression of the CDK inhibitor p57, and increased levels of BrdU incorporation in HIF-1alpha null growth plates, indicating defects in HIF-1alpha-regulated growth arrest occurs in these animals. Furthermore, we find that VEGF expression in the growth plate is regulated through both HIF-1alpha-dependent and -independent mechanisms. In particular, we provide evidence that VEGF expression is up-regulated in a HIF-1alpha-independent manner in chondrocytes surrounding areas of cell death, and this in turn induces ectopic angiogenesis. Altogether, our findings have important implications for the role of hypoxic response and HIF-1alpha in development, and in cell survival in tissues challenged by interruption of vascular flow; they also illustrate the complexities of HIF-1alpha response in vivo, and they provide new insights into mechanisms of growth plate development.
Endothelial dysfunction in patients with obstructive sleep apnoea independent of metabolic syndrome.
Amra, Babak; Karbasi, Elaheh; Hashemi, Mohammad; Hoffmann-Castendiek, Birgit; Golshan, Mohammad
2009-05-01
Obstructive sleep apnoea syndrome (OSAS), characterised by intermittent hypoxia/re-oxygenation, has been identified as an independent risk factor for cardiovascular diseases and endothelial dysfunction. Our aim was to investigate flow-mediated dilatation (FMD) in patients with obstructive sleep apnoea with and without metabolic syndrome. Fifty-two subjects with OSAS diagnosed by polysomnography were classified into 2 groups according to the presence and absence of the metabolic syndrome and also according to the severity: mild to moderate OSAS group and severe OSAS group. Endothelial function of the brachial artery was evaluated by using high-resolution vascular ultrasound. Endothelial-dependent dilatation (EDD) was assessed by establishing reactive hyperaemia and endothelial-independent dilatation (EID) was determined by using sublingual isosorbide dinitrate. Spearman correlation and regression analysis were performed. EDD was not significantly different in patients with OSAS and metabolic syndrome as compared with OSAS without metabolic syndrome (4.62 +/- 0.69 versus 4.49 +/- 0.93, P >0.05). Endothelial dysfunction in OSA may be independent of metabolic syndrome.
Carrillo-Sepúlveda, Maria Alícia; Ceravolo, Graziela S.; Furstenau, Cristina R.; Monteiro, Priscilla de Souza; Bruno-Fortes, Zuleica; Carvalho, Maria Helena; Laurindo, Francisco R.; Tostes, Rita C.; Webb, R. Clinton; Barreto-Chaves, Maria Luiza M.
2013-01-01
Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium. PMID:23637941
Zhou, Lin; Chang, Yuan; Xu, Le; Liu, Zheng; Fu, Qiang; Yang, Yuanfeng; Lin, Zongming; Xu, Jiejie
2016-08-01
Vascular mimicry is a type of tumor cell plasticity. The aim of this study was to determine the prognostic value of vascular mimicry in patients with clear cell renal cell carcinoma. We performed a retrospective cohort study in 387 patients with clear cell renal cell carcinoma who underwent radical nephrectomy at Zhongshan Hospital, Fudan University between 2008 and 2009. Pathological features, baseline patient characteristics and followup data were recorded. Vascular mimicry in clear cell renal cell carcinoma tissue was identified by CD31-periodic acid-Schiff double staining. Univariate and multivariate Cox regression models were used to analyze the impact of prognostic factors on recurrence-free survival. The concordance index and the Akaike information criterion were used to assess the predictive accuracy and sufficiency of different models. Positive vascular mimicry staining occurred in 25 of 387 clear cell renal cell carcinoma cases (6.5%) and it was associated with an increased risk of recurrence (log-rank p <0.001). Incorporating vascular mimicry into pT stage, Fuhrman grade and Leibovich score helped refine individual risk stratification. Moreover, vascular mimicry was identified as an independent prognostic factor (p = 0.001). It was entered into a nomogram together with pT stage, Fuhrman grade, tumor size and necrosis. In the primary cohort the Harrell concordance index for the established nomogram to predict recurrence-free survival was slightly higher than that of the Leibovich model (0.850 vs. 0.823), which failed to reach statistical significance (p = 0.158). Vascular mimicry could be a potential prognosticator for recurrence-free survival in patients with clear cell renal cell carcinoma after radical nephrectomy. Further external validation and functional analysis should be pursued to assess its potential prognostic and therapeutic values for clear cell renal cell carcinoma. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Cracking the omega code: hydraulic architecture of the cycad leaf axis.
Tomlinson, P Barry; Ricciardi, Alison; Huggett, Brett A
2018-03-05
The leaf axis of members of the order Cycadales ('cycads') has long been recognized by its configuration of independent vascular bundles that, in transverse section, resemble the Greek letter omega (hence the 'omega pattern'). This provides a useful diagnostic character for the order, especially when applied to paleobotany. The function of this pattern has never been elucidated. Here we provide a three-dimensional analysis and explain the pattern in terms of the hydraulic architecture of the pinnately compound cycad leaf. The genus Cycas was used as a simple model, because each leaflet is supplied by a single vascular bundle. Sequential sectioning was conducted throughout the leaf axis and photographed with a digital camera. Photographs were registered and converted to a cinematic format, which provided an objective method of analysis. The omega pattern in the petiole can be sub-divided into three vascular components, an abaxial 'circle', a central 'column' and two adaxial 'wings', the last being the only direct source of vascular supply to the leaflets. Each leaflet is supplied by a vascular bundle that has divided or migrated directly from the closest wing bundle. There is neither multiplication nor anastomoses of vascular bundles in the other two components. Thus, as one proceeds from base to apex along the leaf axis, the number of vascular bundles in circle and column components is reduced distally by their uniform migration throughout all components. Consequently, the distal leaflets are irrigated by the more abaxial bundles, guaranteeing uniform water supply along the length of the axis. The omega pattern exemplifies one of the many solutions plants have achieved in supplying distal appendages of an axis with a uniform water supply. Our method presents a model that can be applied to other genera of cycads with more complex vascular organization. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zito, Concetta; Mohammed, Moemen; Todaro, Maria Chiara; Khandheria, Bijoy K; Cusmà-Piccione, Maurizio; Oreto, Giuseppe; Pugliatti, Pietro; Abusalima, Mohamed; Antonini-Canterin, Francesco; Vriz, Olga; Carerj, Scipione
2014-11-01
We evaluated the interplay between left ventricular diastolic function and large-artery stiffness in asymptomatic patients at increased risk of heart failure and no structural heart disease (Stage A). We divided 127 consecutive patients (mean age 49 ± 17 years) with risk factors for heart failure who were referred to our laboratory to rule out structural heart disease into two groups according to presence (Group 1, n = 35) or absence (Group 2, n = 92) of grade I left ventricular diastolic dysfunction. Doppler imaging with high-resolution echo-tracking software was used to measure intima-media thickness (IMT) and stiffness of carotid arteries. Group 1 had significantly higher mean age, blood pressure, left ventricular mass index, carotid IMT and arterial stiffness than Group 2 (P < 0.05). Overall, carotid stiffness indices (β-stiffness index, augmentation index and elastic modulus) and 'one-point' pulse wave velocity each showed inverse correlation with E-wave velocity, E' velocity and E/A ratio, and direct correlation with A-wave velocity, E-wave deceleration time and E/E' ratio (P < 0.05). Arterial compliance showed negative correlations with the echocardiographic indices of left ventricular diastolic function (P < 0.05). On logistic regression analysis, age, hypertension, SBP, pulse pressure, left ventricular mass index, carotid IMT and stiffness parameters were associated with grade I left ventricular diastolic dysfunction (P < 0.05 for each). However, on multivariate logistic analysis, only 'one-point' pulse wave velocity and age were independent predictors (P = 0.038 and P = 0.016, respectively). An independent association between grade I left ventricular diastolic dysfunction and increased arterial stiffness is demonstrated at the earliest stage of heart failure. Hence, assessment of vascular function, beyond cardiac function, should be included in a comprehensive clinical evaluation of these patients.
Lokomat training in vascular dementia: motor improvement and beyond!
Calabrò, Rocco Salvatore; De Luca, Rosaria; Leo, Antonino; Balletta, Tina; Marra, Angela; Bramanti, Placido
2015-12-01
Vascular dementia (VaD) is a general term describing problems with reasoning, planning, judgment, memory, and other thought processes caused by brain damage from impaired blood flow to the brain. Cognitive rehabilitation and physical therapy are the mainstays of dementia treatment, although often ineffective because of the scarce collaboration of the patients. However, emerging data suggest that physical activity may reduce the risk of cognitive impairment, mainly VaD, in older people living independently. Herein, we describe a 72-year-old male affected by VaD, in which traditional cognitive training in addition to intensive gait robotic rehabilitation (by using Lokomat device) led to a significant improvement in the motor and cognitive function. This promising finding may be related either to the intensive and repetitive aerobic exercises or to the task-oriented training with computerized visual feedback, which can be considered as a relevant tool to increase patients' motor output, involvement, and motivation during robotic training.
Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.
Gormley, Padhraig; Anttila, Verneri; Winsvold, Bendik S; Palta, Priit; Esko, Tonu; Pers, Tune H; Farh, Kai-How; Cuenca-Leon, Ester; Muona, Mikko; Furlotte, Nicholas A; Kurth, Tobias; Ingason, Andres; McMahon, George; Ligthart, Lannie; Terwindt, Gisela M; Kallela, Mikko; Freilinger, Tobias M; Ran, Caroline; Gordon, Scott G; Stam, Anine H; Steinberg, Stacy; Borck, Guntram; Koiranen, Markku; Quaye, Lydia; Adams, Hieab H H; Lehtimäki, Terho; Sarin, Antti-Pekka; Wedenoja, Juho; Hinds, David A; Buring, Julie E; Schürks, Markus; Ridker, Paul M; Hrafnsdottir, Maria Gudlaug; Stefansson, Hreinn; Ring, Susan M; Hottenga, Jouke-Jan; Penninx, Brenda W J H; Färkkilä, Markus; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Malik, Rainer; Heath, Andrew C; Madden, Pamela A F; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Kals, Mart; Mägi, Reedik; Pärn, Kalle; Hämäläinen, Eija; Huang, Hailiang; Byrnes, Andrea E; Franke, Lude; Huang, Jie; Stergiakouli, Evie; Lee, Phil H; Sandor, Cynthia; Webber, Caleb; Cader, Zameel; Muller-Myhsok, Bertram; Schreiber, Stefan; Meitinger, Thomas; Eriksson, Johan G; Salomaa, Veikko; Heikkilä, Kauko; Loehrer, Elizabeth; Uitterlinden, Andre G; Hofman, Albert; van Duijn, Cornelia M; Cherkas, Lynn; Pedersen, Linda M; Stubhaug, Audun; Nielsen, Christopher S; Männikkö, Minna; Mihailov, Evelin; Milani, Lili; Göbel, Hartmut; Esserlind, Ann-Louise; Christensen, Anne Francke; Hansen, Thomas Folkmann; Werge, Thomas; Kaprio, Jaakko; Aromaa, Arpo J; Raitakari, Olli; Ikram, M Arfan; Spector, Tim; Järvelin, Marjo-Riitta; Metspalu, Andres; Kubisch, Christian; Strachan, David P; Ferrari, Michel D; Belin, Andrea C; Dichgans, Martin; Wessman, Maija; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret I; Smith, George Davey; Stefansson, Kari; Eriksson, Nicholas; Daly, Mark J; Neale, Benjamin M; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Palotie, Aarno
2016-08-01
Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.
Fernández, Mónica; Calvo-Alén, Jaime; Alarcón, Graciela S; Roseman, Jeffrey M; Bastian, Holly M; Fessler, Barri J; McGwin, Gerald; Vilá, Luis M; Sanchez, Martha L; Reveille, John D
2005-06-01
To determine the differences in clinical manifestations, disease activity, damage accrual, and medication use in systemic lupus erythematosus (SLE) patients as a function of menopausal status at disease onset. Women with SLE as per the criteria of the American College of Rheumatology, with disease duration of =5 years and of Hispanic (Texas and Puerto Rico ancestries), African American, and Caucasian ethnicity, from LUMINA (LUpus in MInorities, NAture versus nurture), a multiethnic, longitudinal cohort, were studied. Menopause at the time of disease onset was defined as self-report of climacteric symptoms, and/or amenorrhea lasting >6 months, and/or oophorectomy, and/or increased follicle-stimulating hormone values for reproductive-age women, and/or treatment with hormone replacement therapy. Patients were divided into premenopausal and postmenopausal categories. Socioeconomic status, cumulative clinical manifestations, disease activity (at study entry or time 0, last visit, and over time), as measured by the Systemic Lupus Activity Measure, and damage accrual, as measured by the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index (at time 0 and at last visit) were compared between the 2 groups of women. Multivariable models were then examined making adjustments for all possible known confounders. Dependent variables in the models were renal involvement, damage accrual, arterial vascular events, and venous thrombosis. Five hundred eighteen women from the LUMINA cohort were included; 436 (84.2%) were premenopausal and 82 (15.8%) were postmenopausal. Disease onset after menopause was more common among Caucasians. Renal involvement was more common in premenopausal women, whereas vascular arterial events were more frequent in postmenopausal women. All other disease manifestations, as well as disease activity, were comparable between both groups. The presence of damage accrual at time 0 and study end was more frequent in postmenopausal women. Age, rather than menopausal status, independently contributed to damage accrual, renal involvement, and vascular arterial events in these women. A hypoestrogenemic state secondary to menopause appears not to be protective against disease activity and damage accrual. Age rather than menopausal status is a strong independent predictor of damage accrual and of vascular events in women with lupus.
Andersson, Charlotte; Lyass, Asya; Larson, Martin G; Spartano, Nicole L; Vita, Joseph A; Benjamin, Emelia J; Murabito, Joanne M; Esliger, Dale W; Blease, Susan J; Hamburg, Naomi M; Mitchell, Gary F; Vasan, Ramachandran S
2015-03-19
Physical activity is associated with several health benefits, including lower cardiovascular disease risk. The independent influence of physical activity on cardiac and vascular function in the community, however, has been sparsely investigated. We related objective measures of moderate- to vigorous-intensity physical activity (MVPA, assessed by accelerometry) to cardiac and vascular indices in 2376 participants of the Framingham Heart Study third generation cohort (54% women, mean age 47 years). Using multivariable regression models, we related MVPA to the following echocardiographic and vascular measures: left ventricular mass, left atrial and aortic root sizes, carotid-femoral pulse wave velocity, augmentation index, and forward pressure wave. Men and women engaged in MVPA 29.9±21.4 and 25.5±19.4 min/day, respectively. Higher values of MVPA (per 10-minute increment) were associated with lower carotid-femoral pulse wave velocity (estimate -0.53 ms/m; P=0.006) and lower forward pressure wave (estimate -0.23 mm Hg; P=0.03) but were not associated with augmentation index (estimate 0.13%; P=0.25). MVPA was associated positively with log(e) left ventricular mass (estimate 0.006 log(e) [g/m(2)]; P=0.0003), left ventricular wall thickness (estimate 0.07 mm; P=0.0001), and left atrial dimension (estimate 0.10 mm; P=0.01). MVPA also tended to be positively associated with aortic root dimension (estimate 0.05 mm; P=0.052). Associations of MVPA with cardiovascular measures were similar, in general, for bouts lasting <10 versus ≥10 minutes. In our community-based sample, greater physical activity was associated with lower vascular stiffness but with higher echocardiographic left ventricular mass and left atrial size. These findings suggest complex relations of usual levels of physical activity and cardiovascular remodeling. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Jablonski, Kristen L.; Gates, Phillip E.; Pierce, Gary L.; Seals, Douglas R.
2012-01-01
Background Age and increasing systolic blood pressure (BP) are associated with vascular endothelial dysfunction, but the factors involved are incompletely understood. We tested the hypothesis that vascular endothelial function is related to dietary sodium intake among middle-aged and older adults (MA and O) with elevated systolic BP. Methods Data were analyzed on 25 otherwise healthy adults aged 48–73 years with high normal systolic BP or stage I systolic hypertension (130–159 mmHg). Self-reported sodium intake was <100 mmol/d in 12 (7 M) subjects (low sodium, 73 ± 6 mmol/d) and between 100 and 200 mmol/d in 13 (9 M) subjects (normal sodium, 144 ± 6 mmol/d). Results Groups did not differ in other dietary factors, age, body weight and composition, BP, metabolic risk factors, physical activity and maximal aerobic capacity. Plasma concentrations of norepinephrine, endothelin-1, oxidized low-density lipoproteins (LDL), antioxidant status and inflammatory markers did not differ between groups. Brachial artery flow-mediated dilation (FMD) was 42% (mm Δ) to 52% (% Δ) higher in the low versus normal sodium group (p <0.05). In all subjects, brachial artery FMD was inversely related to dietary sodium intake (FMD mm Δr =−0.40, p <0.05; %Δr =−0.53, p <0.01). Brachial artery FMD was not related to any other variable. In contrast, endothelium-independent dilation did not differ between groups (p ≥ 0.24) and was not related to sodium intake in the overall group (p ≥ 0.29). Conclusions Low sodium intake is associated with enhanced brachial artery FMD in MA and O with elevated systolic BP. These results suggest that dietary sodium restriction may be an effective intervention for improving vascular endothelial function in this high-risk group. PMID:19723834
van den Heuvel, Mieke; Sorop, Oana; van Ditzhuijzen, Nienke S; de Vries, René; van Duin, Richard W B; Peters, Ilona; van Loon, Janine E; de Maat, Moniek P; van Beusekom, Heleen M; van der Giessen, Wim J; Jan Danser, A H; Duncker, Dirk J
2018-02-01
We studied the effect of bioresorbable vascular scaffold (BVS) implantation on distal coronary endothelial function, in swine on a high fat diet without (HFD) or with diabetes (DM+HFD). Five DM+HFD and five HFD swine underwent BVS implantation on top of coronary plaques, and were studied six months later. Conduit artery segments >5mm proximal and distal to the scaffold and corresponding segments of non-scaffolded coronary arteries, and segments of small arteries within the flow-territory of scaffolded and non-scaffolded arteries were harvested for in vitro vasoreactivity studies. Conduit segments proximal and distal of the BVS edges showed reduced endothelium-dependent vasodilation as compared to control vessels (p≤0.01), with distal segments being most prominently affected(p≤0.01). Endothelial dysfunction was only observed in DM±HFD swine and was principally due to a loss of NO. Endothelium-independent vasodilation and vasoconstriction were unaffected. Surprisingly, segments from the microcirculation distal to the BVS showed enhanced endothelium-dependent vasodilation (p<0.01), whereas endothelium-independent vasodilation and vasoconstriction were unaltered. This enhanced vasorelaxation was only observed in DM+HFD swine, and did not appear to be either NO- or EDHF-mediated. Six months of BVS implantation in DM+HFD swine causes NO-mediated endothelial dysfunction in nearby coronary segments, which is accompanied by a, possibly compensatory, increase in endothelial function of the distal microcirculation. Endothelial dysfunction extending into coronary conduit segments beyond the implantation-site, is in agreement with recent reports expressing concern for late scaffold thrombosis and of early BVS failure in diabetic patients. Copyright © 2017. Published by Elsevier B.V.
Ogawa-Akiyama, Ayu; Sugiyama, Hitoshi; Kitagawa, Masashi; Tanaka, Keiko; Onishi, Akifumi; Yamanari, Toshio; Morinaga, Hiroshi; Uchida, Haruhito Adam; Nakamura, Kazufumi; Ito, Hiroshi; Wada, Jun
2018-01-01
Cystatin C is a cysteine protease inhibitor that is produced by nearly all human cells. The serum level of cystatin C is a stronger predictor of the renal outcome and the risk of cardiovascular events than the creatinine level. The resistive index (RI) on renal Doppler ultrasonography is a good indicator of vascular resistance as well as the renal outcomes in patients with chronic kidney disease (CKD). However, it is unclear whether serum cystatin C is associated with signs of vascular dysfunction, such as the renal RI. We measured the serum cystatin C levels in 101 CKD patients and investigated the relationships between cystatin C and markers of vascular dysfunction, including the renal RI, ankle-brachial pulse wave velocity (baPWV), intima-media thickness (IMT), and cardiac function. The renal RI was significantly correlated with the serum cystatin C level (p < 0.0001, r = 0.6920). The serum cystatin C level was found to be a significant determinant of the renal RI (p < 0.0001), but not the baPWV, in a multivariate regression analysis. The multivariate odds ratio of the serum cystatin C level for a renal RI of more than 0.66 was statistically significant (2.92, p = 0.0106). The area under the receiver-operating characteristic curve comparing the sensitivity and specificity of cystatin C for predicting an RI of more than 0.66 was 0.882 (cutoff value: 2.04 mg/L). In conclusion, the serum cystatin C level is an independent biomarker associated with the renal RI in patients with CKD.
Beer, Sandra; Feihl, François; Ruiz, Juan; Juhan-Vague, Irène; Aillaud, Marie-Françoise; Wetzel, Sandrine Golay; Liaudet, Lucas; Gaillard, Rolf C; Waeber, Bernard
2008-01-01
Aim: Patients with non-insulin-dependent diabetes mellitus (NIDDM) are at increased cardiovascular risk due to an accelerated atherosclerotic process. The present study aimed to compare skin microvascular function, pulse wave velocity (PWV), and a variety of hemostatic markers of endothelium injury [von Willebrand factor (vWF), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (t-PA), tissue factor pathway inhibitor (TFPI), and the soluble form of thrombomodulin (s-TM)] in patients with NIDDM. Methods: 54 patients with NIDDM and 38 sex- and age-matched controls were studied. 27 diabetics had no overt micro- and/or macrovascular complications, while the remainder had either or both. The forearm skin blood flow was assessed by laser-Doppler imaging, which allowed the measurement of the response to iontophoretically applied acetylcholine (endothelium-dependent vasodilation) and sodium nitroprusside (endothelium-independent vasodilation), as well as the reactive hyperemia triggered by the transient occlusion of the circulation. Results: Both endothelial and non-endothelial reactivity were significantly blunted in diabetics, regardless of the presence or the absence of vascular complications. Plasma vWF, TFPI and s-TM levels were significantly increased compared with controls only in patients exhibiting vascular complications. Concentrations of t-PA and PAI-1 were significantly increased in the two groups of diabetics versus controls. Conclusion: In NIDDM, both endothelium-dependent and -independent microvascular skin reactivity are impaired, whether or not underlying vascular complications exist. It also appears that microvascular endothelial dysfunction is not necessarily associated in NIDDM with increased circulating levels of hemostatic markers of endothelial damage known to reflect a hypercoagulable state. PMID:19337558
Lau, Kui Kai; Wong, Yuen Kwun; Chan, Yap Hang; Teo, Kay Cheong; Chan, Koon Ho; Wai Li, Leonard Sheung; Cheung, Raymond Tak Fai; Siu, Chung Wah; Ho, Shu Leong; Tse, Hung Fat
2014-07-01
Visit-to-visit blood pressure variability (BPV) is a simple surrogate marker for the development of atherosclerotic diseases, cardiovascular and all-cause mortality. Nevertheless, the relative prognostic value of BPV in comparison with other established vascular assessments remain uncertain. We prospectively followed-up 656 high-risk patients with diabetes or established cardiovascular or cerebrovascular diseases for the occurrence of major adverse cardiovascular events (MACEs). Baseline brachial endothelial function, carotid intima-media thickness (IMT) and plaque burden, ankle-brachial index and arterial stiffness were determined. Visit-to-visit BPV were recorded during a mean 18 ± 9 outpatient clinic visits. After a mean 81 ± 12 month's follow-up, 123 patients (19%) developed MACEs. Patients who developed a MACE had significantly higher systolic BPV, more severe endothelial function, arterial stiffness and systemic atherosclerotic burden compared to patients who did not develop a MACE (all P<0.01). BPV significantly correlated with all of the vascular assessments (P<0.01). A high carotid IMT had the greatest prognostic value in predicting development of a MACE (area under receiver operating characteristic curve (AUC) 0.69 ± 0.03, P<0.01). A high BPV also had moderate prognostic value in prediction of MACE (AUC 0.65 ± 0.03, P<0.01). After adjustment of confounding factors, a high BPV remained a significant independent predictor of MACE (hazards ratio 1.67, 95% confidence interval 1.14-2.43, P<0.01). Compared with established surrogate markers of atherosclerosis, visit-to-visit BPV provides similar prognostic information and may represent a new and simple marker for adverse outcomes in patients with vascular diseases. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Functional Vascular Study in Hypertensive Subjects with Type 2 Diabetes Using Losartan or Amlodipine
Pozzobon, Cesar Romaro; Gismondi, Ronaldo A. O. C.; Bedirian, Ricardo; Ladeira, Marcia Cristina; Neves, Mario Fritsch; Oigman, Wille
2014-01-01
Background Antihypertensive drugs are used to control blood pressure (BP) and reduce macro- and microvascular complications in hypertensive patients with diabetes. Objectives The present study aimed to compare the functional vascular changes in hypertensive patients with type 2 diabetes mellitus after 6 weeks of treatment with amlodipine or losartan. Methods Patients with a previous diagnosis of hypertension and type 2 diabetes mellitus were randomly divided into 2 groups and evaluated after 6 weeks of treatment with amlodipine (5 mg/day) or losartan (100 mg/day). Patient evaluation included BP measurement, ambulatory BP monitoring, and assessment of vascular parameters using applanation tonometry, pulse wave velocity (PWV), and flow-mediated dilation (FMD) of the brachial artery. Results A total of 42 patients were evaluated (21 in each group), with a predominance of women (71%) in both groups. The mean age of the patients in both groups was similar (amlodipine group: 54.9 ± 4.5 years; losartan group: 54.0 ± 6.9 years), with no significant difference in the mean BP [amlodipine group: 145 ± 14 mmHg (systolic) and 84 ± 8 mmHg (diastolic); losartan group: 153 ± 19 mmHg (systolic) and 90 ± 9 mmHg (diastolic)]. The augmentation index (30% ± 9% and 36% ± 8%, p = 0.025) and augmentation pressure (16 ± 6 mmHg and 20 ± 8 mmHg, p = 0.045) were lower in the amlodipine group when compared with the losartan group. PWV and FMD were similar in both groups. Conclusions Hypertensive patients with type 2 diabetes mellitus treated with amlodipine exhibited an improved pattern of pulse wave reflection in comparison with those treated with losartan. However, the use of losartan may be associated with independent vascular reactivity to the pressor effect. PMID:25014057
Pozzobon, Cesar Romaro; Gismondi, Ronaldo A O C; Bedirian, Ricardo; Ladeira, Marcia Cristina; Neves, Mario Fritsch; Oigman, Wille
2014-07-01
Antihypertensive drugs are used to control blood pressure (BP) and reduce macro- and microvascular complications in hypertensive patients with diabetes. The present study aimed to compare the functional vascular changes in hypertensive patients with type 2 diabetes mellitus after 6 weeks of treatment with amlodipine or losartan. Patients with a previous diagnosis of hypertension and type 2 diabetes mellitus were randomly divided into 2 groups and evaluated after 6 weeks of treatment with amlodipine (5 mg/day) or losartan (100 mg/day). Patient evaluation included BP measurement, ambulatory BP monitoring, and assessment of vascular parameters using applanation tonometry, pulse wave velocity (PWV), and flow-mediated dilation (FMD) of the brachial artery. A total of 42 patients were evaluated (21 in each group), with a predominance of women (71%) in both groups. The mean age of the patients in both groups was similar (amlodipine group: 54.9 ± 4.5 years; losartan group: 54.0 ± 6.9 years), with no significant difference in the mean BP [amlodipine group: 145 ± 14 mmHg (systolic) and 84 ± 8 mmHg (diastolic); losartan group: 153 ± 19 mmHg (systolic) and 90 ± 9 mmHg (diastolic)]. The augmentation index (30% ± 9% and 36% ± 8%, p = 0.025) and augmentation pressure (16 ± 6 mmHg and 20 ± 8 mmHg, p = 0.045) were lower in the amlodipine group when compared with the losartan group. PWV and FMD were similar in both groups. Hypertensive patients with type 2 diabetes mellitus treated with amlodipine exhibited an improved pattern of pulse wave reflection in comparison with those treated with losartan. However, the use of losartan may be associated with independent vascular reactivity to the pressor effect.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-06-15
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-01-01
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093
DeCarlo, Correne A; MacDonald, Stuart W S; Vergote, David; Jhamandas, Jack; Westaway, David; Dixon, Roger A
2016-11-01
Mild cognitive impairment (MCI) is a high-risk condition for progression to Alzheimer's disease (AD). Vascular health is a key mechanism underlying age-related cognitive decline and neurodegeneration. AD-related genetic risk factors may be associated with preclinical cognitive status changes. We examine independent and cross-domain interactive effects of vascular and genetic markers for predicting MCI status and stability. We used cross-sectional and 2-wave longitudinal data from the Victoria Longitudinal Study, including indicators of vascular health (e.g., reported vascular diseases, measured lung capacity and pulse rate) and genetic risk factors-that is, apolipoprotein E (APOE; rs429358 and rs7412; the presence vs absence of ε4) and catechol-O-methyltransferase (COMT; rs4680; met/met vs val/val). We examined associations with objectively classified (a) cognitive status at baseline (not impaired congnitive (NIC) controls vs MCI) and (b) stability or transition of cognitive status across a 4-year interval (stable NIC-NIC vs chronic MCI-MCI or transitional NIC-MCI). Using logistic regression, indicators of vascular health, both independently and interactively with APOE ε4, were associated with risk of MCI at baseline and/or associated with MCI conversion or MCI stability over the retest interval. Several vascular health markers of aging predict MCI risk. Interactively, APOE ε4 may intensify the vascular health risk for MCI. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A multifaceted approach to maximize erectile function and vascular health.
Meldrum, David R; Gambone, Joseph C; Morris, Marge A; Ignarro, Louis J
2010-12-01
To review the role of various factors influencing vascular nitric oxide (NO) and cyclic GMP, and consequently, erectile function and vascular health. Pertinent publications are reviewed. Daily moderate exercise stimulates vascular NO production. Maintenance of normal body weight and waist/hip ratio allows NO stimulation by insulin. Decreased intake of fat, sugar, and simple carbohydrates rapidly converted to sugar reduces the adverse effects of fatty acids and sugar on endothelial NO production. Omega-3 fatty acids stimulate endothelial NO release. Antioxidants boost NO production and prevent NO breakdown. Folic acid, calcium, vitamin C, and vitamin E support the biochemical pathways leading to NO release. Cessation of smoking and avoidance of excessive alcohol preserve normal endothelial function. Moderate use of alcohol and certain proprietary supplements may favorably influence erectile and vascular function. Treatment of any remaining testosterone deficit will both increase erectile function and reduce any associated metabolic syndrome. After production of NO and cyclic GMP are improved, use of phosphodiesterase-5 inhibitors should result in greater success in treating remaining erectile dysfunction. Recent studies have also suggested positive effects of phosphodiesterase-5 inhibitors on vascular function. A multifaceted approach will maximize both erectile function and vascular health. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Shinno, Hiromi; Kurose, Satoshi; Yamanaka, Yutaka; Higurashi, Kyoko; Fukushima, Yaeko; Tsutsumi, Hiromi; Kimura, Yutaka
2017-06-01
Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n = 11; mean age: 48.6 ± 2.8 years) or a half-intervention that included a control period (n = 11; mean age: 46.9 ± 3.6 years). Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.
Ky, Bonnie; French, Benjamin; Ruparel, Kosha; Sweitzer, Nancy K.; Fang, James C.; Levy, Wayne C.; Sawyer, Douglas B.; Cappola, Thomas P.
2011-01-01
Objectives We sought to evaluate placental growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) as clinical biomarkers in chronic heart failure (HF). Background Vascular remodeling is a crucial compensatory mechanism in chronic HF. The angiogenic ligand PlGF and its target receptor fms-like tyrosine kinase 1 (Flt-1) modulate vascular growth and function, but their relevance in human HF is undefined. Methods We measured plasma PlGF and sFlt-1 in 1,403 patients from the Penn Heart Failure Study, a multi-center cohort of chronic systolic HF. Subjects were followed for death, cardiac transplantation, or ventricular assist device placement over a median follow-up of 2 years. Results sFlt-1 was independently associated with measures of HF severity, including NYHA Class (p<0.01) and BNP (p<0.01). Patients in the 4th quartile of sFlt-1 (>379pg/ml) had a 6.17-fold increased risk of adverse outcomes (p<0.01). This association was robust, even after adjustment for the Seattle Failure Model (HR 2.54, 95%CI 1.76–2.27, p<0.01) and clinical confounders including heart failure etiology (HR 1.67, 95%CI 1.06–2.63, p=0.03). Combined assessment of sFlt-1 and BNP exhibited high predictive accuracy at 1-year (AUC 0.791, 95%CI 0.752–0.831), that was greater than either marker alone (p<0.01 and p=0.03, respectively). In contrast, PlGF was not an independent marker of disease severity or outcomes. Conclusions Our findings support a role for sFlt-1 in the biology of human heart failure. With additional study, circulating sFlt-1 may emerge as a clinically useful biomarker to assess the influence of vascular remodeling on clinical outcomes. PMID:21757116
Hwang, Jeong-Hwa; Misumi, Shigeki; Curran-Everett, Douglas; Brown, Kevin K; Sahin, Hakan; Lynch, David A
2011-08-01
The aim of this study was to evaluate the prognostic implications of computed tomography (CT) and physiologic variables at baseline and on sequential evaluation in patients with fibrosing interstitial pneumonia. We identified 72 patients with fibrosing interstitial pneumonia (42 with idiopathic disease, 30 with collagen vascular disease). Pulmonary function tests and CT were performed at the time of diagnosis and at a median follow-up of 12 months, respectively. Two chest radiologists scored the extent of specific abnormalities and overall disease on baseline and follow-up CT. Rate of survival was estimated using the Kaplan-Meier method. Three Cox proportional hazards models were constructed to evaluate the relationship between CT and physiologic variables and rate of survival: model 1 included only baseline variables, model 2 included only serial change variables, and model 3 included both baseline and serial change variables. On follow-up CT, the extent of mixed ground-glass and reticular opacities (P<0.001), pure reticular opacity (P=0.04), honeycombing (P=0.02), and overall extent of disease (P<0.001) was increased in the idiopathic group, whereas these variables remained unchanged in the collagen vascular disease group. Patients with idiopathic disease had a shorter rate of survival than those with collagen vascular disease (P=0.03). In model 1, the extent of honeycombing on baseline CT was the only independent predictor of mortality (P=0.02). In model 2, progression in honeycombing was the only predictor of mortality (P=0.005). In model 3, baseline extent of honeycombing and progression of honeycombing were the only independent predictors of mortality (P=0.001 and 0.002, respectively). Neither baseline nor serial change physiologic variables, nor the presence of collagen vascular disease, was predictive of rate of survival. The extent of honeycombing at baseline and its progression on follow-up CT are important determinants of rate of survival in patients with fibrosing interstitial pneumonia.
RECOVERY OF VASCULAR FUNCTION AFTER EXPOSURE TO A SINGLE BOUT OF SEGMENTAL VIBRATION
Krajnak, Kristine; Waugh, Stacey; Miller, G. Roger; Johnson, Claud
2015-01-01
Work rotation schedules may be used to reduce the negative effects of vibration on vascular function. This study determined how long it takes vascular function to recover after a single exposure to vibration in rats (125 Hz, acceleration 5g). The responsiveness of rat-tail arteries to the vasoconstricting factor UK14304, an α2C-adrenoreceptor agonist, and the vasodilating factor acetylcholine (ACh) were measured ex vivo 1, 2, 7, or 9 d after exposure to a single bout of vibration. Vasoconstriction induced by UK14304 returned to control levels after 1 d of recovery. However, re-dilation induced by ACh did not return to baseline until after 9 d of recovery. Exposure to vibration exerted prolonged effects on peripheral vascular function, and altered vascular responses to a subsequent exposure. To optimize the positive results of work rotation schedules, it is suggested that studies assessing recovery of vascular function after exposure to a single bout of vibration be performed in humans. PMID:25072825
Oxido-reductive regulation of vascular remodeling by receptor tyrosine kinase ROS1
Ali, Ziad A.; de Jesus Perez, Vinicio; Yuan, Ke; Orcholski, Mark; Pan, Stephen; Qi, Wei; Chopra, Gaurav; Adams, Christopher; Kojima, Yoko; Leeper, Nicholas J.; Qu, Xiumei; Zaleta-Rivera, Kathia; Kato, Kimihiko; Yamada, Yoshiji; Oguri, Mitsutoshi; Kuchinsky, Allan; Hazen, Stanley L.; Jukema, J. Wouter; Ganesh, Santhi K.; Nabel, Elizabeth G.; Channon, Keith; Leon, Martin B.; Charest, Alain; Quertermous, Thomas; Ashley, Euan A.
2014-01-01
Angioplasty and stenting is the primary treatment for flow-limiting atherosclerosis; however, this strategy is limited by pathological vascular remodeling. Using a systems approach, we identified a role for the network hub gene glutathione peroxidase-1 (GPX1) in pathological remodeling following human blood vessel stenting. Constitutive deletion of Gpx1 in atherosclerotic mice recapitulated this phenotype of increased vascular smooth muscle cell (VSMC) proliferation and plaque formation. In an independent patient cohort, gene variant pair analysis identified an interaction of GPX1 with the orphan protooncogene receptor tyrosine kinase ROS1. A meta-analysis of the only genome-wide association studies of human neointima-induced in-stent stenosis confirmed the association of the ROS1 variant with pathological remodeling. Decreased GPX1 expression in atherosclerotic mice led to reductive stress via a time-dependent increase in glutathione, corresponding to phosphorylation of the ROS1 kinase activation site Y2274. Loss of GPX1 function was associated with both oxidative and reductive stress, the latter driving ROS1 activity via s-glutathiolation of critical residues of the ROS1 tyrosine phosphatase SHP-2. ROS1 inhibition with crizotinib and deglutathiolation of SHP-2 abolished GPX1-mediated increases in VSMC proliferation while leaving endothelialization intact. Our results indicate that GPX1-dependent alterations in oxido-reductive stress promote ROS1 activation and mediate vascular remodeling. PMID:25401476
Vu, Thiennu H.; Alemayehu, Yemisrach; Werb, Zena
2009-01-01
The study of distal lung morphogenesis and vascular development would be greatly facilitated by an in vitro or ex vivo experimental model. In this study we show that the growth of mouse embryonic day 12.5 lung rudiments implanted underneath the kidney capsules of syngeneic or immunodeficient hosts follows closely lung development in utero. The epithelium develops extensively with both proximal and distal differentiation to the saccular stage. The vasculature also develops extensively. Large blood vessels accompany large airways and capillaries develop within the saccular walls. Interestingly, vessels in the lung grafts develop from endothelial progenitor cells endogenous to the explants and host vessels do not vascularize the grafts independently. This suggests that embryonic lungs possess mechanisms to prevent the inappropriate ingrowth of surrounding vessels. However, vessels in the lung grafts do connect to host vessels, showing that embryonic lungs have the ability to stimulate host angiogenesis and recruit host vessel connections. These data support the hypothesis that the lung vasculature develops by both vasculogenic and angiogenic processes: a vascular network develops in situ in lung mesenchyme, which is then connected to angiogenic processes from central vessels. The lung renal capsule allograft is thus an excellent model to study the development of the pulmonary vasculature and of late fetal lung development that requires a functional blood supply. PMID:12591600
Triiodothyronine Potentiates Vasorelaxation via PKG/VASP Signaling in Vascular Smooth Muscle Cells.
Samuel, Sherin; Zhang, Kuo; Tang, Yi-Da; Gerdes, A Martin; Carrillo-Sepulveda, Maria Alicia
2017-01-01
Vascular relaxation caused by Triiodothyronine (T3) involves direct activation of endothelial cells (EC) and vascular smooth muscle cells (VSMC). Activation of protein kinase G (PKG) has risen as a novel contributor to the vasorelaxation mechanism triggered by numerous stimuli. We hypothesize that T3-induced vasorelaxation involves PKG/vasodilator-stimulated phosphoprotein (VASP) signaling pathway in VSMC. Human aortic endothelial cells (HAEC) and VSMC were treated with T3 for short (2 to 60 minutes) and long term (24 hours). Nitric oxide (NO) production was measured using DAF-FM. Expression of protein targets was determined using western blot. For functional studies, rat aortas were isolated and treated with T3 for 20 minutes and mounted in a wire myograph. Relaxation was measured by a concentration-dependent response to acetylcholine (ACh) and sodium nitroprusside (SNP). Aortas stimulated with T3 exhibited augmented sensitivity to ACh and SNP-induced relaxation, endothelium-dependent and endothelium-independent responses, respectively. T3 directly increased vasorelaxation, which was abolished in the presence of a PKG inhibitor. T3 markedly induced phosphorylation of Akt, eNOS and consequently increased NO production in EC. Likewise, T3 induced phosphorylation of VASP at serine 239 via the PKG pathway in VSMC. Our findings have uncovered a PKG/VASP signaling pathway in VSMC as a key molecular mechanism underlying T3-induced vascular relaxation. © 2017 The Author(s)Published by S. Karger AG, Basel.
Arterial tree tracking from anatomical landmarks in magnetic resonance angiography scans
NASA Astrophysics Data System (ADS)
O'Neil, Alison; Beveridge, Erin; Houston, Graeme; McCormick, Lynne; Poole, Ian
2014-03-01
This paper reports on arterial tree tracking in fourteen Contrast Enhanced MRA volumetric scans, given the positions of a predefined set of vascular landmarks, by using the A* algorithm to find the optimal path for each vessel based on voxel intensity and a learnt vascular probability atlas. The algorithm is intended for use in conjunction with an automatic landmark detection step, to enable fully automatic arterial tree tracking. The scan is filtered to give two further images using the top-hat transform with 4mm and 8mm cubic structuring elements. Vessels are then tracked independently on the scan in which the vessel of interest is best enhanced, as determined from knowledge of typical vessel diameter and surrounding structures. A vascular probability atlas modelling expected vessel location and orientation is constructed by non-rigidly registering the training scans to the test scan using a 3D thin plate spline to match landmark correspondences, and employing kernel density estimation with the ground truth center line points to form a probability density distribution. Threshold estimation by histogram analysis is used to segment background from vessel intensities. The A* algorithm is run using a linear cost function constructed from the threshold and the vascular atlas prior. Tracking results are presented for all major arteries excluding those in the upper limbs. An improvement was observed when tracking was informed by contextual information, with particular benefit for peripheral vessels.
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth
Jackson, William F.
2017-01-01
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression and function of large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. PMID:28212804
Endo, Arisa; Suzuki, Makoto; Akagi, Atsumi; Chiba, Naoyuki; Ishizaka, Ikuyo; Matsunaga, Atsuhiko; Fukuda, Michinari
2015-03-01
The purpose of this study was to examine the reliability and validity of the Upper-body Dressing Scale (UBDS) for buttoned shirt dressing, which evaluates the learning process of new component actions of upper-body dressing in patients diagnosed with dementia and hemiparesis. This was a preliminary correlational study of concurrent validity and reliability in which 10 vascular dementia patients with hemiparesis were enrolled and assessed repeatedly by six occupational therapists by means of the UBDS and the dressing item of the Functional Independence Measure (FIM). Intraclass correlation coefficient was 0.97 for intra-rater reliability and 0.99 for inter-rater reliability. The level of correlation between UBDS score and FIM dressing item scores was -0.93. UBDS scores for paralytic hand passed into the sleeve and sleeve pulled up beyond the shoulder joint were worse than the scores for the other components of the task. The UBDS has good reliability and validity for vascular dementia patients with hemiparesis. Further research is needed to investigate the relation between UBDS score and the effect of intervention and to clarify sensitivity or responsiveness of the scale to clinical change. Copyright © 2014 John Wiley & Sons, Ltd.
Age and Vascular Burden Determinants of Cortical Hemodynamics Underlying Verbal Fluency.
Heinzel, Sebastian; Metzger, Florian G; Ehlis, Ann-Christine; Korell, Robert; Alboji, Ahmed; Haeussinger, Florian B; Wurster, Isabel; Brockmann, Kathrin; Suenkel, Ulrike; Eschweiler, Gerhard W; Maetzler, Walter; Berg, Daniela; Fallgatter, Andreas J
2015-01-01
Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer's disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands. Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated. Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics. Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline and dementia.
Beatty, P. Robert
2017-01-01
Dengue virus (DENV) is the most prevalent, medically important mosquito-borne virus. Disease ranges from uncomplicated dengue to life-threatening disease, characterized by endothelial dysfunction and vascular leakage. Previously, we demonstrated that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability in a systemic mouse model and human pulmonary endothelial cells, where NS1 disrupts the endothelial glycocalyx-like layer. NS1 also triggers release of inflammatory cytokines from PBMCs via TLR4. Here, we examined the relative contributions of inflammatory mediators and endothelial cell-intrinsic pathways. In vivo, we demonstrated that DENV NS1 but not the closely-related West Nile virus NS1 triggers localized vascular leak in the dorsal dermis of wild-type C57BL/6 mice. In vitro, we showed that human dermal endothelial cells exposed to DENV NS1 do not produce inflammatory cytokines (TNF-α, IL-6, IL-8) and that blocking these cytokines does not affect DENV NS1-induced endothelial hyperpermeability. Further, we demonstrated that DENV NS1 induces vascular leak in TLR4- or TNF-α receptor-deficient mice at similar levels to wild-type animals. Finally, we blocked DENV NS1-induced vascular leak in vivo using inhibitors targeting molecules involved in glycocalyx disruption. Taken together, these data indicate that DENV NS1-induced endothelial cell-intrinsic vascular leak is independent of inflammatory cytokines but dependent on endothelial glycocalyx components. PMID:29121099
López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Di Pietro, Antonio
2010-01-01
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source–independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the ΔmeaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi. PMID:20639450
Regulation of circadian blood pressure: from mice to astronauts.
Agarwal, Rajiv
2010-01-01
Circadian variation is commonly seen in healthy people; aberration in these biological rhythms is an early sign of disease. Impaired circadian variation of blood pressure (BP) has been shown to be associated with greater target organ damage and with an elevated risk of cardiovascular events independent of the BP load. The purpose of this review is to examine the physiology of circadian BP variation and propose a tripartite model that explains the regulation of circadian BP. The time-keeper in mammals resides centrally in the suprachiasmatic nucleus. Apart from this central clock, molecular clocks exist in most peripheral tissues including vascular tissue and the kidney. These molecular clocks regulate sodium balance, sympathetic function and vascular tone. A physiological model is proposed that integrates our understanding of molecular clocks in mice with the circadian BP variation among humans. The master regulator in this proposed model is the sleep-activity cycle. The equivalents of peripheral clocks are endothelial and adrenergic functions. Thus, in the proposed model, the variation in circadian BP is dependent upon three major factors: physical activity, autonomic function, and sodium sensitivity. The integrated consideration of physical activity, autonomic function, and sodium sensitivity appears to explain the physiology of circadian BP variation and the pathophysiology of disrupted BP rhythms in various conditions and disease states. Our understanding of molecular clocks in mice may help to explain the provenance of blunted circadian BP variation even among astronauts.
Fortier, Catherine; Desjardins, Marie-Pier; Agharazii, Mohsen
2018-03-01
Aortic stiffness, measured by carotid-femoral pulse wave velocity (cf-PWV), is used for the prediction of cardiovascular risk. This mini-review describes the nonlinear relationship between cf-PWV and operational blood pressure, presents the proposed methods to adjust for this relationship, and discusses a potential place for aortic-brachial PWV ratio (a measure of arterial stiffness gradient) as a blood pressure-independent measure of vascular aging. PWV is inherently dependent on the operational blood pressure. In cross-sectional studies, PWV adjustment for mean arterial pressure (MAP) is preferred, but still remains a nonoptimal approach, as the relationship between PWV and blood pressure is nonlinear and varies considerably among individuals due to heterogeneity in genetic background, vascular tone, and vascular remodeling. Extrapolations from the blood pressure-independent stiffness parameter β (β 0 ) have led to the creation of stiffness index β, which can be used for local stiffness. A similar approach has been used for cardio-ankle PWV to generate a blood pressure-independent cardio-ankle vascular index (CAVI). It was recently demonstrated that stiffness index β and CAVI remain slightly blood pressure-dependent, and a more appropriate formula has been proposed to make the proper adjustments. On the other hand, the negative impact of aortic stiffness on clinical outcomes is thought to be mediated through attenuation or reversal of the arterial stiffness gradient, which can also be influenced by a reduction in peripheral medium-sized muscular arteries in conditions that predispose to accelerate vascular aging. Arterial stiffness gradient, assessed by aortic-brachial PWV ratio, is emerging to be at least as good as cf-PWV for risk prediction, but has the advantage of not being affected by operating MAP. The negative impacts of aortic stiffness on clinical outcomes are proposed to be mediated through attenuation or reversal of arterial stiffness gradient. Aortic-brachial PWV ratio, a measure of arterial stiffness gradient, is independent of MAP.
Novaković, Marko; Prokšelj, Katja; Starc, Vito; Jug, Borut
2017-06-01
Adults after surgical repair of tetralogy of Fallot (ToF) may have impaired vascular and cardiac autonomic function. Thus, we wanted to assess interrelations between heart rate variability (HRV) and heart rate recovery (HRR), as parameters of cardiac autonomic function, and arterial stiffness, as a parameter of vascular function, in adults with repaired ToF as compared to healthy controls. In a case-control study of adults with repaired ToF and healthy age-matched controls we measured: 5-min HRV variability (with time and frequency domain data collected), carotid artery stiffness (through pulse-wave analysis using echo-tracking ultrasound) and post-exercise HRR (cycle ergometer exercise testing). Twenty-five patients with repaired ToF (mean age 38 ± 10 years) and 10 healthy controls (mean age 39 ± 8 years) were included. Selected HRR and HRV (time-domain) parameters, but not arterial stiffness were significantly reduced in adults after ToF repair. Moreover, a strong association between late/slow HRR (after 2, 3 and 4 min) and carotid artery stiffness was detected in ToF patients (r = -0.404, p = 0.045; r = -0.545, p = 0.005 and r = -0.545, p = 0.005, respectively), with statistical significance retained even after adjusting for age, gender, resting heart rate and β-blockers use (r = -0.393, p = 0.024 for HRR after 3 min). Autonomic cardiac function is impaired in patients with repaired ToF, and independently associated with vascular function in adults after ToF repair, but not in age-matched healthy controls. These results might help in introducing new predictors of cardiovascular morbidity in a growing population of adults after surgical repair of ToF.
Regular physical exercise improves endothelial function in heart transplant recipients.
Schmidt, Alice; Pleiner, Johannes; Bayerle-Eder, Michaela; Wiesinger, Günther F; Rödler, Suzanne; Quittan, Michael; Mayer, Gert; Wolzt, Michael
2002-04-01
Impaired endothelial function is detectable in heart transplant (HTX) recipients and regarded as risk factor for coronary artery disease. We have studied whether endothelial function can be improved in HTX patients participating in a regular physical training program as demonstrated in patients with chronic heart failure, hypertension and coronary artery disease. Male HTX patients and healthy, age-matched controls were studied. Seven HTX patients (age: 60 +/- 6 yr; 6 +/- 2 yr of HTX) participated in an outpatient training program, six HTX patients (age: 63 +/- 8 yr; 7 +/- 1 yr of HTX) maintained a sedentary lifestyle without regular physical exercise since transplantation. A healthy control group comprised six subjects (age: 62 +/- 6 yr). Vascular function was assessed by flow-mediated dilation of the brachial artery (FMD). Systemic haemodynamic responses to intravenous infusion of the endothelium independent vasodilator sodium nitroprusside (SNP) and to NG-monomethyl-L-arginine (L-NMMA), an inhibitor of constitutive nitric oxide synthase, were also measured. Resting heart rate was significantly lower (p < 0.05) in healthy controls (66 +/- 13) than in the HTX training group (83 +/- 11) and in non-training HTX patients (91 +/- 9), baseline blood pressure also tended to be lower in healthy subjects and in the training HTX patients. FMD was significantly higher (p < 0.05) in the control group (8.4 +/- 2.2%) and in the training group (7.1 +/- 2.4%), compared with non-training HTX patients (1.4 +/- 0.8%). The response of systolic blood pressure (p = 0.08) and heart rate (p < 0.05) to L-NMMA was reduced in sedentary HTX patients compared with healthy controls and heart rate response to SNP was also impaired in sedentary HTX patients. Regular aerobic physical training restores vascular function in HTX patients, who are at considerable risk for developing vascular complications. This effect is demonstrable in conduit and systemic resistance arteries.
Independent effects of early-life experience and trait aggression on cardiovascular function
Rana, Samir; Pugh, Phyllis C.; Katz, Erin; Stringfellow, Sara A.; Lin, Chee Paul; Wyss, J. Michael; Stauss, Harald M.; White, C. Roger; Clinton, Sarah M.
2016-01-01
Early-life experience (ELE) can significantly affect life-long health and disease, including cardiovascular function. Specific dimensions of emotionality also modify risk of disease, and aggressive traits along with social inhibition have been established as independent vulnerability factors for the progression of cardiovascular disease. Yet, the biological mechanisms mediating these associations remain poorly understood. The present study utilized the inherently stress-susceptible and socially inhibited Wistar-Kyoto rats to determine the potential influences of ELE and trait aggression (TA) on cardiovascular parameters throughout the lifespan. Pups were exposed to maternal separation (MS), consisting of daily 3-h separations of the entire litter from postnatal day (P)1 to P14. The rats were weaned at P21, and as adults were instrumented for chronic radiotelemetry recordings of blood pressure and heart rate (HR). Adult aggressive behavior was assessed using the resident-intruder test, which demonstrated that TA was independent of MS exposure. MS-exposed animals (irrespective of TA) had significantly lower resting HR accompanied by increases in HR variability. No effects of MS on resting blood pressure were detected. In contrast, TA correlated with increased resting mean, systolic, and diastolic arterial pressures but had no effect on HR. TA rats (relative to nonaggressive animals) also manifested increased wall-to-lumen ratio in the thoracic aorta, increased sensitivity to phenylephrine-induced vascular contractility, and increased norepinephrine content in the heart. Together these data suggest that ELE and TA are independent factors that impact baseline cardiovascular function. PMID:27280432
Gómez-Marcos, Manuel Ángel; Recio-Rodríguez, José Ignacio; Patino-Alonso, María Carmen; Agudo-Conde, Cristina; Rodríguez-Sanchez, Emiliano; Maderuelo-Fernandez, Jose Angel; Gómez-Sánchez, Leticia; Gomez-Sanchez, Marta; García-Ortiz, Luís
2016-01-01
Objectives We prospectively examined the impact of type 2 diabetes compared with metabolic syndrome (MetS) on the development of vascular disease over 4 years as determined by anatomic and functional markers of vascular disease. By comparing the vascular outcomes of the 2 disorders, we seek to determine the independent effect of elevated glucose levels on vascular disease. Setting 2 primary care centres in Salamanca, Spain. Participants We performed a prospective observational study involving 112 patients (68 with type 2 diabetes and 44 with MetS) who were followed for 4 years. Primary and secondary outcome measures Measurements included blood pressure, blood glucose, lipids, smoking, body mass index, waist circumference, Homeostasis Model Assessment Insulin Resistance (HOMA-IR), hs-c-reactive protein and fibrinogen levels. We also evaluated vascular, carotid intima media thickness (IMT), pulse wave velocity (PWV) and ankle/brachial index, heart and renal target organ damage (TOD). The haemodynamic parameters were central (CAIx) and peripheral (PAIx) augmentation indices. Results In year 4, participants with type 2 diabetes had increased IMT thickness. These patients had more plaques and an IMT>0.90 mm. In participants with MetS, we only found an increase in the number of plaques. We found no changes in PWV, CAIx and PAIx. The patients with diabetes had a greater frequency of vascular TOD. There were no differences neither in renal nor cardiac percentage of TOD in the patients with MetS or diabetes mellitus type 2. Conclusions This prospective study showed that the evolution of vascular TOD is different in participants with type 2 diabetes compared with those with MetS. While IMT and PWV increased in type 2 diabetes, these were not modified in MetS. The renal and cardiac TOD evolution, as well as the PAIx and CAIx, did not change in either group. Trial registration number NCT01065155; Results. PMID:27251684
Nogueira, Leonardo; Trisko, Breanna M; Lima-Rosa, Frederico L; Jackson, Jason; Lund-Palau, Helena; Yamaguchi, Masahiro; Breen, Ellen C
2018-05-23
Cigarette smoke components directly alter muscle fatigue resistance and intracellular muscle fibre Ca 2+ handling independent of a change in lung structure. Changes in muscle vascular structure are associated with a depletion of satellite cells. Sarcoplasmic reticulum Ca 2+ uptake is substantially impaired in myofibres during fatiguing contractions in mice treated with cigarette smoke extract. Cigarette smokers exhibit exercise intolerance before a decline in respiratory function. In the present study, the direct effects of cigarette smoke on limb muscle function were tested by comparing cigarette smoke delivered to mice by weekly injections of cigarette smoke extract (CSE), or nose-only exposure (CS) 5 days each week, for 8 weeks. Cigarette smoke delivered by either route did not alter pulmonary airspace size. Muscle fatigue measured in situ was 50% lower in the CSE and CS groups than in control. This was accompanied by 34% and 22% decreases in soleus capillary-to-fibre ratio of the CSE and CS groups, respectively, and a trend for fewer skeletal muscle actin-positive arterioles (P = 0.07). In addition, fewer quiescent satellite cells (Nes+Pax7+) were associated with soleus fibres in mice with skeletal myofibre VEGF gene deletion (decreased 47%) and CS exposed (decreased 73%) than with control fibres. Contractile properties of isolated extensor digitorum longus and soleus muscles were impaired. In flexor digitorum brevis myofibres isolated from CSE mice, fatigue resistance was diminished by 43% compared to control and CS myofibres, and this was accompanied by a pronounced slowing in relaxation, an increase in intracellular Ca 2+ accumulation, and a slowing in sarcoplasmic reticulum Ca 2+ uptake. These data suggest that cigarette smoke components may impair hindlimb muscle vascular structure, fatigue resistance and myofibre calcium handling, and these changes ultimately affect contractile efficiency of locomotor muscles independent of a change in lung function. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Schmidt, Frank; Kolle, Kristoffer; Kreuder, Katharina; Schnorbus, Boris; Wild, Philip; Hechtner, Marlene; Binder, Harald; Gori, Tommaso; Münzel, Thomas
2015-01-01
Epidemiological studies suggest the existence of a relationship between aircraft noise exposure and increased risk for myocardial infarction and stroke. Patients with established coronary artery disease and endothelial dysfunction are known to have more future cardiovascular events. We therefore tested the effects of nocturnal aircraft noise on endothelial function in patients with or at high risk for coronary artery disease. 60 Patients (50p 1-3 vessels disease; 10p with a high Framingham Score of 23%) were exposed in random and blinded order to aircraft noise and no noise conditions. Noise was simulated in the patients' bedroom and consisted of 60 events during one night. Polygraphy was recorded during study nights, endothelial function (flow-mediated dilation of the brachial artery), questionnaires and blood sampling were performed on the morning after each study night. The mean sound pressure levels L eq(3) measured were 46.9 ± 2.0 dB(A) in the Noise 60 nights and 39.2 ± 3.1 dB(A) in the control nights. Subjective sleep quality was markedly reduced by noise from 5.8 ± 2.0 to 3.7 ± 2.2 (p < 0.001). FMD was significantly reduced (from 9.6 ± 4.3 to 7.9 ± 3.7%; p < 0.001) and systolic blood pressure was increased (from 129.5 ± 16.5 to 133.6 ± 17.9 mmHg; p = 0.030) by noise. The adverse vascular effects of noise were independent from sleep quality and self-reported noise sensitivity. Nighttime aircraft noise markedly impairs endothelial function in patients with or at risk for cardiovascular disease. These vascular effects appear to be independent from annoyance and attitude towards noise and may explain in part the cardiovascular side effects of nighttime aircraft noise.
Montoya, Jessica L.; Iudicello, Jennifer; Fazeli, Pariya L.; Hong, Suzi; Potter, Michael; Ellis, Ronald J.; Grant, Igor; Letendre, Scott L.; Moore, David J.
2016-01-01
Background HIV is associated with elevated markers of vascular remodeling that may contribute to arterial fibrosis and stiffening, and changes in pulse pressure (PP). These changes may, in turn, deleteriously affect autoregulation of cerebral blood flow and neurocognitive function. Methods To evaluate these mechanisms, we studied markers of vascular remodeling, PP, and neurocognitive function among older (≥50 years of age) HIV-infected (HIV+; n = 72) and HIV-seronegative (HIV-; n = 36) adults. Participants completed standardized neurobehavioral and neuromedical assessments. Neurocognitive functioning was evaluated using a well-validated comprehensive battery. Three plasma biomarkers of vascular remodeling (i.e., angiopoietin 2, Tie-2, and vascular endothelial growth factor; VEGF) were collected. Results HIV+ and HIV- participants had similar levels of plasma Ang-2 (p = .48), Tie-2 (p = .27), VEGF (p = .18), and PP (p = .98). In a multivariable regression model, HIV interacted with Tie-2 (β = .41, p < .01) and VEGF (β = −.43, p = .01) on neurocognitive function, such that lower Tie-2 and higher VEGF values were associated with worse neurocognitive function for HIV+ participants. Greater Tie-2 values were associated with increased PP (r = .31, p < .01). In turn, PP demonstrated a quadratic association with neurocognitive function (β = −.33, p = .01), such that lower and higher, relative to mean sample, PP values were associated with worse neurocognitive function. Conclusions These findings indicate that vascular remodeling and altered cerebral blood flow autoregulation contribute to neurocognitive function. Furthermore, HIV moderates the association between vascular remodeling and neurocognitive function but not the association between PP and neurocognitive function. PMID:27828873
Torgrimson, Britta N; Meendering, Jessica R; Kaplan, Paul F; Minson, Christopher T
2007-06-01
Oral contraceptive pills (OCPs) are a popular contraception method. Currently, lower-dose ethinyl estradiol formulations are most commonly prescribed, although they have been linked to increased arterial vascular risk. The aim of this study was to investigate endothelial function in healthy young women using lower-dose ethinyl estradiol OCPs. We examined flow-mediated, endothelium-dependent and nitroglycerin-mediated, endothelium-independent vasodilation of the brachial artery, comparing two doses of ethinyl estradiol/levonorgestrel OCPs in 15 healthy young women on two study days: once during the active phase and once during the placebo phase of an OCP cycle. Group low dose (LD) (n=7) active pills contained 150 microg levonorgestrel/30 microg ethinyl estradiol versus Group very low dose (VLD) (n=8) with 100 microg levonorgestrel/20 microg ethinyl estradiol. Endothelium-dependent vasodilation was lower during the active phase in Group VLD (5.33 +/- 1.77% vs. 7.23 +/- 2.60%; P=0.024). This phase difference was not observed in Group LD (8.00 +/- 0.970% vs. 7.61 +/- 1.07%; P=0.647). Endothelium-independent vasodilation did not differ between phases in either group. Finally, we measured endothelium-dependent vasodilation in two additional women who received 10 microg of unopposed ethinyl estradiol. Endothelium-dependent vasodilation was increased by unopposed ethinyl estradiol compared with the placebo phase (10.88 +/- 2.34% vs. 6.97 +/- 1.83%). These results suggest that levonorgestrel may antagonize the activity of ethinyl estradiol. Thus both the progestin type and estradiol dose need to be considered when assessing arterial vascular risk of OCP use in women.
Lewis, Gregory D; Ngo, Debby; Hemnes, Anna R; Farrell, Laurie; Domos, Carly; Pappagianopoulos, Paul P; Dhakal, Bishnu P; Souza, Amanda; Shi, Xu; Pugh, Meredith E; Beloiartsev, Arkadi; Sinha, Sumita; Clish, Clary B; Gerszten, Robert E
2016-01-19
Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements. This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction. We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30). In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension. Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Human Immunodeficiency Virus nef signature sequences are associated with pulmonary hypertension.
Almodovar, Sharilyn; Knight, Rob; Allshouse, Amanda A; Roemer, Sarah; Lozupone, Catherine; McDonald, Daniel; Widmann, Jeremy; Voelkel, Norbert F; Shelton, Robert J; Suarez, Edu B; Hammer, Kenneth W; Goujard, Cecile; Petrosillo, Nicola; Simonneau, Gerald; Hsue, Priscilla Y; Humbert, Marc; Flores, Sonia C
2012-06-01
Severe pulmonary hypertension (PH) associated with vascular remodeling is a long-term complication of HIV infection (HIV-PH) affecting 1/200 infected individuals vs. 1/200,000 frequency in the uninfected population. Factors accounting for increased PH susceptibility in HIV-infected individuals are unknown. Rhesus macaques infected with chimeric SHIVnef virions but not with SIV display PH-like pulmonary vascular remodeling suggesting that HIV-Nef is associated with PH; these monkeys showed changes in nef sequences that correlated with pathogenesis after passage in vivo. We further examined whether HIV-nef alleles in HIV-PH subjects have signature sequences associated with the disease phenotype. We evaluated specimens from participants with and without HIV-PH from European Registries and validated results with samples collected as part of the Lung-HIV Studies in San Francisco. We found that 10 polymorphisms in nef were overrepresented in blood cells or lung tissue specimens from European HIV-PH individuals but significantly less frequent in HIV-infected individuals without PH. These polymorphisms mapped to known functional domains in Nef. In the validation cohort, 7/10 polymorphisms in the HIV-nef gene were confirmed; these polymorphisms arose independently from viral load, CD4(+) T cell counts, length of infection, and antiretroviral therapy status. Two out of 10 polymorphisms were previously reported in macaques with PH-like pulmonary vascular remodeling. Cloned recombinant Nef proteins from clinical samples down-regulated CD4, suggesting that these primary isolates are functional. This study offers new insights into the association between Nef polymorphisms in functional domains and the HIV-PH phenotype. The utility of these polymorphisms as predictors of PH should be examined in a larger population.
Osmenda, Grzegorz; Maciąg, Joanna; Wilk, Grzegorz; Maciąg, Anna; Nowakowski, Daniel; Loster, Jolanta; Dembowska, Elżbieta; Robertson, Douglas; Guzik, Tomasz; Cześnikiewicz-Guzik, Marta
2017-02-01
The presence of oral inflammation has recently been linked with the pathogenesis of cardiovascular diseases. While numerous studies have described links between periodontitis and endothelial dysfunction, little is known about the influence of denture-related stomatitis (DRS) on cardiovascular risk. Therefore, the aim of this study was to determine whether the treatment of DRS can lead to improvement of the clinical measures of vascular dysfunction. The DRS patients were treated with a local oral antifungal agent for 3 weeks. Blood pressure, flow-mediated dilatation (FMD) and nitroglycerine-mediated vascular dilatation (NMD) were measured during three study visits: before treatment, one day and two months after conclusion of antifungal therapy. Flow-mediated dilatation measurements showed significant improvement of endothelial function 2 months after treatment (FMD median 5%, 95 CI: 3-8.3 vs. 11%, 95% CI: 8.8-14.4; p < 0.01), while there was no difference in control, endothelium-independent vasorelaxations (NMD; median = 15.3%, 95% CI: 10.8-19.3 vs. 12.7%, 95% CI: 10.6-15; p = 0.3). Other cardiovascular parameters such as systolic (median = 125 mm Hg; 95% CI: 116-129 vs. 120 mm Hg, 95% CI: 116-126; p = 0.1) as well as diastolic blood pressure and heart rate (median = 65.5 bpm, 95% CI: 56.7-77.7 vs. 71 bpm, 95% CI: 66.7-75; p = 0.5) did not change during or after the treatment. Treatment of DRS is associated with improvement of endothelial function. Since endothelial dysfunction is known to precede the development of severe cardiovascular disorders such as atherosclerosis and hypertension, patients should be more carefully screened for DRS in general dental practice, and immediate DRS treatment should be advised.
Chichger, Havovi; Braza, Julie; Duong, Huetran; Boni, Geraldine; Harrington, Elizabeth O
2016-06-01
Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.
Coutu, Jean-Philippe; Lindemer, Emily R; Konukoglu, Ender; Salat, David H
2017-06-01
We previously demonstrated 2 statistically distinct factors of degeneration in Alzheimer's disease: one strongly related to white matter damage and age interpreted as "age- and vascular-related", and the other related to cortical atrophy thought to represent "neurodegenerative changes associated with Alzheimer's disease". Those factors are now replicated in a distinct cross-sectional data set of 364 participants from the Alzheimer's Disease Neuroimaging Initiative and their interpretation is improved using correlations with CSF biomarkers. Furthermore, we now show that changes in both factors over 2 years are independently associated with decline in Mini-Mental State Examination score in a longitudinal subset of 116 individuals with mild cognitive impairment. Progression in the "age- and vascular-related" factor was greater for individuals with 2 APOE ε4 alleles and linked to a greater attributable change in Mini-Mental State Examination than the "neurodegenerative" factor. These results suggest benefits of targeting white matter and vascular health to complement interventions focused on the neurodegenerative aspect of the disease, even in individuals with little discernable vascular comorbidity. Copyright © 2017 Elsevier Inc. All rights reserved.
Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology.
Augustin, Hellmut G; Koh, Gou Young
2017-08-25
Blood vessels form one of the body's largest surfaces, serving as a critical interface between the circulation and the different organ environments. They thereby exert gatekeeper functions on tissue homeostasis and adaptation to pathologic challenge. Vascular control of the tissue microenvironment is indispensable in development, hemostasis, inflammation, and metabolism, as well as in cancer and metastasis. This multitude of vascular functions is mediated by organ-specifically differentiated endothelial cells (ECs), whose cellular and molecular heterogeneity has long been recognized. Yet distinct organotypic functional attributes and the molecular mechanisms controlling EC differentiation and vascular bed-specific functions have only become known in recent years. Considering the involvement of vascular dysfunction in numerous chronic and life-threatening diseases, a better molecular understanding of organotypic vasculatures may pave the way toward novel angiotargeted treatments to cure hitherto intractable diseases. This Review summarizes recent progress in the understanding of organotypic vascular differentiation and function. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
He, De-Hua; Lin, Jin-Xiu; Zhang, Liang-Min; Xu, Chang-Sheng; Xie, Qiang
2017-03-15
Pharmacological treatment of prehypertension may ameliorate hypertension and improve vascular structure and function. This study investigated 1) whether early treatment with either losartan or amlodipine at the onset of prehypertension can prevent hypertension and 2) whether losartan and amlodipine equally improve vascular remodeling and function in a rat model of hypertension. Stroke-prone spontaneously hypertensive (SHRSP) rats were administered losartan, amlodipine or saline for 6 or 16weeks at the onset of prehypertension. Wistar-Kyoto rats were used as a control. All groups were observed for 40weeks. Systolic blood pressure was measured using the tail-cuff method. Vascular structure and function were determined by microscopy and vascular ring contractility assays, respectively. Angiotensin II (Ang II) and aldosterone (Aldo) were measured by radioimmunoassays. Angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) expression was measured by western blot. Losartan effectively reduced progression from prehypertension to hypertension as well as vascular remodeling and improved vascular contractility in SHRSP rats. Long-term losartan (16weeks) had greater benefits than short-term (6weeks) treatment. Losartan increased Ang II and decreased Aldo levels in the serum and vessel walls of resistance vessels in a time-dependent manner. Losartan significantly decreased AT1R and increased AT2R vascular expression. Amlodipine had no effect on vascular AT1R and AT2R expression. Losartan administered at the onset of prehypertension is more effective than amlodipine in ameliorating hypertension and improving vascular remodeling and function, which is likely mediated by the renin-angiotensin-aldosterone system. Copyright © 2017 Elsevier Inc. All rights reserved.
Aerobic exercise and other healthy lifestyle factors that influence vascular aging.
Santos-Parker, Jessica R; LaRocca, Thomas J; Seals, Douglas R
2014-12-01
Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote "resistance" against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. Copyright © 2014 The American Physiological Society.
Aerobic exercise and other healthy lifestyle factors that influence vascular aging
Santos-Parker, Jessica R.; LaRocca, Thomas J.
2014-01-01
Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote “resistance” against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. PMID:25434012
Pericyte–fibroblast transition promotes tumor growth and metastasis
Hosaka, Kayoko; Yang, Yunlong; Seki, Takahiro; Fischer, Carina; Dubey, Olivier; Fredlund, Erik; Hartman, Johan; Religa, Piotr; Ishii, Yoko; Sasahara, Masakiyo; Larsson, Ola; Cossu, Giulio; Cao, Renhai; Lim, Sharon; Cao, Yihai
2016-01-01
Vascular pericytes, an important cellular component in the tumor microenvironment, are often associated with tumor vasculatures, and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte–fibroblast transition (PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that PDGF-BB-PDGFRβ signaling promotes PFT both in vitro and in in vivo tumors. Genome-wide expression analysis indicates that PDGF-BB–activated pericytes acquire mesenchymal progenitor features. Pharmacological inhibition and genetic deletion of PDGFRβ ablate the PDGF-BB–induced PFT. Genetic tracing of pericytes with two independent mouse strains, TN-AP-CreERT2:R26R-tdTomato and NG2-CreERT2:R26R-tdTomato, shows that PFT cells gain stromal fibroblast and myofibroblast markers in tumors. Importantly, coimplantation of PFT cells with less-invasive tumor cells in mice markedly promotes tumor dissemination and invasion, leading to an increased number of circulating tumor cells and metastasis. Our findings reveal a mechanism of vascular pericytes in PDGF-BB–promoted cancer invasion and metastasis by inducing PFT, and thus targeting PFT may offer a new treatment option of cancer metastasis. PMID:27608497
Karampelas, Michael; Sim, Dawn A; Chu, Colin; Carreno, Ester; Keane, Pearse A; Zarranz-Ventura, Javier; Westcott, Mark; Lee, Richard W J; Pavesio, Carlos E
2015-06-01
To investigate the relationships between peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography (FA). Cross-sectional, consecutive case series. Consecutive ultra-widefield FA images were collected from 82 uveitis patients (82 eyes) in a single center. The extent of peripheral vasculitis, capillary nonperfusion, and vessel leakage were quantified. Parameters included: (1) foveal avascular zone area and macular leakage, (2) peripheral diffuse capillary leakage and ischemia, (3) peripheral vasculitis, and (4) leakage from neovascularization. Central macular thickness measurements were derived with optical coherence tomography. Main outcome measures were correlations between central and peripheral fluorangiographic changes as well as associations between visual function, ultra-widefield FA-derived metrics, and central macular thickness. Although central leakage was associated with peripheral leakage (r = 0.553, P = .001), there was no association between foveal avascular zone size and peripheral ischemia (r = 0.114, P = .324), regardless of the underlying uveitic diagnosis. Peripheral ischemia was, however, correlated to neovascularization-related leakage (r = 0.462, P = .001) and focal vasculitis (r = 0.441, P = .001). Stepwise multiple regression analysis revealed that a poor visual acuity was independently associated with foveal avascular zone size and central macular thickness (R(2)-adjusted = 0.45, P = .001). We present a large cohort of patients with uveitis imaged with ultra-widefield FA and further describe novel methods for quantification of peripheral vascular pathology, in an attempt to identify visually significant parameters. Although we observed that relationships exist between peripheral vessel leakage, vasculitis, and ischemia, it was only macular ischemia and increased macular thickness that were independently associated with a reduced visual acuity. Copyright © 2015 Elsevier Inc. All rights reserved.
Sudo, Felipe Kenji; Amado, Patricia; Alves, Gilberto Sousa; Laks, Jerson; Engelhardt, Eliasz
2017-01-01
Subcortical Vascular Cognitive Impairment (SVCI) is a clinical continuum of vascular-related cognitive impairment, including Vascular Mild Cognitive Impairment (VaMCI) and Vascular Dementia. Deficits in Executive Function (EF) are hallmarks of the disorder, but the best methods to assess this function have yet to be determined. The insidious and almost predictable course of SVCI and the multidimensional concept of EF suggest that a temporal dissociation of impairments in EF domains exists early in the disorder. This study aims to review and analyze data from the literature about performance of VaMCI patients on the most used EF tests through a meta-analytic approach. Medline, Web of Knowledge and PsycINFO were searched, using the terms: "vascular mild cognitive impairment" OR "vascular cognitive impairment no dementia" OR "vascular mild neurocognitive disorder" AND "dysexecutive" OR "executive function". Meta-analyses were conducted for each of the selected tests, using random-effect models. Systematic review showed major discrepancies among the results of the studies included. Meta-analyses evidenced poorer performance on the Trail-Making Test part B and the Stroop color test by VaMCI patients compared to controls. A continuum of EF impairments has been proposed in SVCI. Early deficits appear to occur in cognitive flexibility and inhibitory control.
García-Canton, Cesar; Bosch, Elvira; Ramírez, Ana; Gonzalez, Yeray; Auyanet, Ingrid; Guerra, Rita; Perez, Miguel A; Fernández, Ernesto; Toledo, Agustín; Lago, Mar; Checa, Maria D
2011-07-01
Cardiovascular disease (CVD) is the leading cause of death among chronic kidney disease (CKD) patients. Vascular calcification is highly prevalent in this population and is an independent predictor of cardiovascular mortality. Vascular calcification in uraemic patients is known to be an active and regulated process subject to the action of many promoting and inhibitory factors. The role of vitamin D in this process remains controversial. We evaluated the relationship between serum levels of 25-hydroxyvitamin D (25(OH)D) and vascular calcification evaluated by plain X-ray images, in predialysis patients with CKD stages 4 and 5. We performed a cross-sectional study with 210 CKD patients stages 4 and 5 managed at our predialysis unit. Patients were 63.5 ± 13 years of age, 60.5% males, 64.8% diabetics and 47.1% with a history of CVD. Plain X-ray images of pelvis, hands and lateral lumbar spine from all subjects were studied for calculation of semiquantitative vascular calcification scores as described by Adragao and Kauppila. We found a high prevalence of vascular calcification in our population. Adragao scores revealed only 47 patients (22.4%) without vascular calcification and 120 (57.1%) with scores higher than 3. Kauppila scores revealed only 29 patients (13.8%) without aortic calcifications and 114 patients (54.3%) with scores higher than 7. Higher vascular calcification scores were related to older age, diabetes, history of CVD and lower levels of 25(OH)D. Only 18.5% of patients had adequate levels of 25(OH)D (> 30 ng/mL), 53.7% of them had insufficient levels (15-30 ng/mL) and 27.8% had deficient levels (< 15 ng/mL). Multivariate analysis showed that age, diabetes and CVD were directly associated and 25(OH)D levels were inversely associated with vascular calcifications. Our results show an independent and negative association between serum levels of 25(OH)D and vascular calcification. Further and larger prospective studies are needed to clarify the possible role of vitamin D deficiency in the development of vascular calcification in CKD patients.
Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology
Lee, Vivian K.; Kim, Diana Y.; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao
2014-01-01
We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis were reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886
Lipoprotein(a) levels predict adverse vascular events after acute myocardial infarction.
Mitsuda, Takayuki; Uemura, Yusuke; Ishii, Hideki; Takemoto, Kenji; Uchikawa, Tomohiro; Koyasu, Masayoshi; Ishikawa, Shinji; Miura, Ayako; Imai, Ryo; Iwamiya, Satoshi; Ozaki, Yuta; Kato, Tomohiro; Shibata, Rei; Watarai, Masato; Murohara, Toyoaki
2016-12-01
Lipoprotein(a) [Lp(a)], which is genetically determined, has been reported as an independent risk factor for atherosclerotic vascular disease. However, the prognostic value of Lp(a) for secondary vascular events in patients after coronary artery disease has not been fully elucidated. This 3-year observational study included a total of 176 patients with ST-elevated myocardial infarction (STEMI), whose Lp(a) levels were measured within 24 h after primary percutaneous coronary intervention. We divided enrolled patients into two groups according to Lp(a) level and investigated the association between Lp(a) and the incidence of major adverse cardiac and cerebrovascular events (MACCE). A Kaplan-Meier analysis demonstrated that patients with higher Lp(a) levels had a higher incidence of MACCE than those with lower Lp(a) levels (log-rank P = 0.034). A multivariate Cox regression analysis revealed that Lp(a) levels were independently correlated with the occurrence of MACCE after adjusting for other classical risk factors of atherosclerotic vascular diseases (hazard ratio 1.030, 95 % confidence interval: 1.011-1.048, P = 0.002). In receiver-operating curve analysis, the cutoff value to maximize the predictive power of Lp(a) was 19.0 mg/dl (area under the curve = 0.674, sensitivity 69.2 %, specificity 62.0 %). Evaluation of Lp(a) in addition to the established coronary risk factors improved their predictive value for the occurrence of MACCE. In conclusion, Lp(a) levels at admission independently predict secondary vascular events in patients with STEMI. Lp(a) might provide useful information for the development of secondary prevention strategies in patients with myocardial infarction.
Non-traditional Serum Lipid Variables and Recurrent Stroke Risk
Park, Jong-Ho; Lee, Juneyoung; Ovbiagele, Bruce
2014-01-01
Background and Purpose Expert consensus guidelines recommend low-density lipoprotein cholesterol (LDL-C) as the primary serum lipid target for recurrent stroke risk reduction. However, mounting evidence suggests that other lipid parameters might be additional therapeutic targets or at least also predict cardiovascular risk. Little is known about the effects of non-traditional lipid variables on recurrent stroke risk. Methods We analyzed the Vitamin Intervention for Stroke Prevention study database comprising 3680 recent (<120 days) ischemic stroke patients followed up for 2 years. Independent associations of baseline serum lipid variables with recurrent ischemic stroke (primary outcome) and the composite endpoint of ischemic stroke/coronary heart disease (CHD)/vascular death (secondary outcomes) were assessed. Results Of all variables evaluated, only triglycerides (TG)/high-density lipoprotein cholesterol (HDL-C) ratio was consistently and independently related to both outcomes: compared with the lowest quintile, the highest TG/HDL-C ratio quintile was associated with stroke (adjusted hazard ratio, 1.56; 95% CI, 1.05−2.32) and stroke/CHD/vascular death (1.39; 1.05−1.83), including adjustment for lipid modifier use. Compared with the lowest quintile, the highest total cholesterol/HDL-C ratio quintile was associated with stroke/CHD/vascular death (1.45; 1.03−2.03). LDL-C/HDL-C ratio, non-HDL-C, elevated TG alone, and low HDL-C alone were not independently linked to either outcome. Conclusions Of various non-traditional lipid variables, elevated baseline TG/HDL-C and TC/HDL-C ratios predict future vascular risk after a stroke, but only elevated TG/HDL-C ratio is related to risk of recurrent stroke. Future studies should assess the role of TG/HDL as a potential therapeutic target for global vascular risk reduction after stroke. PMID:25236873
TAM Receptor Signaling in Immune Homeostasis
Rothlin, Carla V.; Carrera-Silva, Eugenio A.; Bosurgi, Lidia; Ghosh, Sourav
2015-01-01
The TAM receptor tyrosine kinases (RTKs)—TYRO3, AXL, and MERTK—together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease. PMID:25594431
The use of a projection method to simplify portal and hepatic vein segmentation in liver anatomy.
Huang, Shaohui; Wang, Boliang; Cheng, Ming; Huang, Xiaoyang; Ju, Ying
2008-12-01
In living donor liver transplantation, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Couinaud divided the liver into 8 functionally independent segments. However, this method is not simple to perform in 3D space directly. Thus, we propose a rapid method to segment the liver based on the hepatic vessel tree. The most important step of this method is vascular projection. By carefully selecting a projection plane, a 3D point can be fixed in the projection plane. This greatly helps in rapid classification. This method was validated by applying it to a 3D liver depicted on CT images, and the result was in good agreement with Couinaud's classification.
Diabetic cardiomyopathy: Where are we 40 years later?
Sharma, Vijay; McNeill, John H
2006-01-01
Diabetic cardiomyopathy is a cardiac disease that arises as a result of the diabetic state, independent of vascular or valvular pathology. It manifests initially as asymptomatic diastolic dysfunction, which progresses to symptomatic heart failure. The compliance of the heart wall is decreased and contractile function is impaired. The pathophysiology is incompletely understood, but appears to be initiated both by hyperglycemia and changes in cardiac metabolism. These changes induce oxidative stress and activate a number of secondary messenger pathways, leading to cardiac hypertrophy, fibrosis and cell death. Alterations in contractile proteins and intracellular ions impair excitation-contraction coupling, while decreased autonomic responsiveness and autonomic neuropathy impair its regulation. Extensive structural abnormalities also occur, which have deleterious mechanical and functional consequences. PMID:16568154
Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...
Vascular flora and macroscopic fauna on the Fernow Experimental Forest
Darlene M. Madarish; Jane L. Rodrigue; Mary Beth Adams
2002-01-01
This report is the first comprehensive inventory of the vascular flora and macroscopic fauna known to occur within the Fernow Experimental Forest in north-central West Virignia. The compendium is based on information obtained from previous surveys, current research, and the personal observations of USDA Forest Service personnel and independent scientists. More than 750...
Dalsing, Michael C; Makaroun, Michel S; Harris, Linda M; Mills, Joseph L; Eidt, John; Eckert, George J
2012-02-01
Methods of learning may differ between generations and even the level of training or the training paradigm, or both. To optimize education, it is important to optimize training designs, and the perspective of those being trained can aid in this quest. The Association of Program Directors in Vascular Surgery leadership sent a survey to all vascular surgical trainees (integrated [0/5], independent current and new graduates [5 + 2]) addressing various aspects of the educational experience. Of 412 surveys sent, 163 (∼40%) responded: 46 integrated, 96 fellows, and 21 graduates. The survey was completed by 52% of the integrated residents, 59% of the independent residents, and 20% of the graduates. When choosing a program for training, the integrated residents are most concerned with program atmosphere and the independent residents with total clinical volume. Concerns after training were thoracic and thoracoabdominal aneurysm procedures and business aspects: 40% to 50% integrated, and 60% fellows/graduates. Integrated trainees found periprocedural discussion the best feedback (79%), with 9% favoring written test review. Surgical training and vascular laboratory and venous training were judged "just right" by 87% and ∼71%, whereas business aspects needed more emphasis (65%-70%). Regarding the 80-hour workweek, 82% felt it prevented fatigue, and 24% thought it was detrimental to patient care. Independent program trainees also found periprocedural discussion the best feedback (71%), with 12% favoring written test review. Surgical training and vascular laboratory/venous training were "just right" by 87% and 60% to 70%, respectively, whereas business aspects needed more emphasis (∼65%-70%). Regarding the 80-hour workweek, 62% felt it was detrimental to patient care, and 42% felt it prevented fatigue. A supportive environment and adequate clinical volume will attract trainees to a program. For "an urgent need to know," the integrated trainees are especially turning to online texts rather than traditional textbooks, which suggests an opportunity for a shift in educational focus. Point-of-care is the best time for education and feedback, suggesting a continued need for dedicated faculty. The business side of training is underserved and should be addressed. Copyright © 2012. Published by Mosby, Inc.
Green tea (Camellia sinensis) catechins and vascular function.
Moore, Rosalind J; Jackson, Kim G; Minihane, Anne M
2009-12-01
The health benefits of green tea (Camellia sinensis) catechins are becoming increasingly recognised. Amongst the proposed benefits are the maintenance of endothelial function and vascular homeostasis and an associated reduction in atherogenesis and CVD risk. The mounting evidence for the influential effect of green tea catechins on vascular function from epidemiological, human intervention and animal studies is subject to review together with exploration of the potential mechanistic pathways involved. Epigallocatechin-3-gallate, one of the most abundant and widely studied catechin found in green tea, will be prominent in the present review. Since there is a substantial inconsistency in the published data with regards to the impact of green tea catechins on vascular function, evaluation and interpretation of the inter- and intra-study variability is included. In conclusion, a positive effect of green tea catechins on vascular function is becoming apparent. Further studies in animal and cell models using physiological concentrations of catechins and their metabolites are warranted in order to gain some insight into the physiology and molecular basis of the observed beneficial effects.
Huby, Maria P.; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A.; Doursout, Marie-Francoise; Holcomb, John B.; Wade, Charles E.; Ko, Tien C.
2015-01-01
Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared to normal individuals, plasma adiponectin levels decreased to 49% in HS patients prior to resuscitation (p<0.05) and increased to 64% post resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared to baseline (p<0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS. PMID:26263440
Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W
2017-01-01
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.
Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W.
2017-01-01
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects. PMID:28575130
Bilateral, independent juvenile nasopharyngeal angiofibroma: case report.
Mørkenborg, M-L; Frendø, M; Stavngaard, T; Von Buchwald, C
2015-10-01
Juvenile nasopharyngeal angiofibroma is a benign, vascular tumour that primarily occurs in adolescent males. Despite its benign nature, aggressive growth patterns can cause potential life-threatening complications. Juvenile nasopharyngeal angiofibroma is normally unilateral, originating from the sphenopalatine artery, but bilateral symptoms can occur if a large tumour extends to the contralateral side of the nasopharynx. This paper presents the first reported case of true bilateral extensive juvenile nasopharyngeal angiofibroma involving clinically challenging pre-surgical planning and surgical strategy. A 21-year-old male presented with increasing bilateral nasal obstruction and discharge. Examination revealed tumours bilaterally and imaging demonstrated non-contiguous tumours. Pre-operative angiography showed strictly ipsilateral vascular supplies requiring bilateral embolisation. Radical removal performed as one-step, computer-assisted functional endoscopic sinus surgery was performed. The follow-up period was uncomplicated. This case illustrates the importance of suspecting bilateral juvenile nasopharyngeal angiofibroma in patients presenting with bilateral symptoms. Our management, including successful pre-operative planning, enabled one-step total removal of both tumours and rapid patient recovery.
Sander, Tilmann H.; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz
2010-01-01
Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds. PMID:20145717
Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.
Rhee, Siyeon; Chung, Jae I; King, Devin A; D'amato, Gaetano; Paik, David T; Duan, Anna; Chang, Andrew; Nagelberg, Danielle; Sharma, Bikram; Jeong, Youngtae; Diehn, Maximilian; Wu, Joseph C; Morrison, Ashby J; Red-Horse, Kristy
2018-01-25
During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues-sinus venosus and endocardium-causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall.
Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz
2010-01-01
Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.
Dissociable spatial and non-spatial attentional deficits after circumscribed thalamic stroke.
Kraft, Antje; Irlbacher, Kerstin; Finke, Kathrin; Kaufmann, Christian; Kehrer, Stefanie; Liebermann, Daniela; Bundesen, Claus; Brandt, Stephan A
2015-03-01
Thalamic nuclei act as sensory, motor and cognitive relays between multiple subcortical areas and the cerebral cortex. They play a crucial role in cognitive functions such as executive functioning, memory and attention. In the acute period after thalamic stroke attentional deficits are common. The precise functional relevance of specific nuclei or vascular sub regions of the thalamus for attentional sub functions is still unclear. The theory of visual attention (TVA) allows the measurement of four independent attentional parameters (visual short term memory storage capacity (VSTM), visual perceptual processing speed, selective control and spatial weighting). We combined parameter-based assessment based on TVA with lesion symptom mapping in standard stereotactic space in sixteen patients (mean age 41.2 ± 11.0 SD, 6 females), with focal thalamic lesions in the medial (N = 9), lateral (N = 5), anterior (N = 1) or posterior (N = 1) vascular territories of the thalamus. Compared with an age-matched control group of 52 subjects (mean age 40.1 ± 6.4, 35 females), the patients with thalamic lesions were, on the group level, mildly impaired in visual processing speed and VSTM. Patients with lateral thalamic lesions showed a deficit in processing speed while all other TVA parameters were within the normal range. Medial thalamic lesions can be associated with a spatial bias and extinction of targets either in the ipsilesional or the contralesional field. A posterior case with a thalamic lesion of the pulvinar replicated a finding of Habekost and Rostrup (2006), demonstrating a spatial bias to the ipsilesional field, as suggested by the neural theory of visual attention (NTVA) (Bundesen, Habekost, & Kyllingsbæk, 2011). A case with an anterior-medial thalamic lesion showed reduced selective attentional control. We conclude that lesions in distinct vascular sub regions of the thalamus are associated with distinct attentional syndromes (medial = spatial bias, lateral = processing speed). Copyright © 2015 Elsevier Ltd. All rights reserved.
Keymel, Stefanie; Schueller, Benedikt; Sansone, Roberto; Wagstaff, Rabea; Steiner, Stephan; Kelm, Malte; Heiss, Christian
2018-03-01
Epidemiological studies have shown increased morbidity and mortality in patients with coronary artery disease (CAD) and chronic obstructive pulmonary disease (COPD). We aimed to characterize the oxygen dependence of endothelial function in patients with CAD and coexisting COPD. In CAD patients with and without COPD ( n = 33), we non-invasively measured flow-mediated dilation (FMD) and intima-media thickness (IMT) of the brachial artery (BA), forearm blood flow (FBF), and perfusion of the cutaneous microcirculation with laser Doppler perfusion imaging (LDPI). In an experimental setup, vascular function was assessed in healthy volunteers ( n = 5) breathing 12% oxygen or 100% oxygen in comparison to room air. COPD was associated with impaired FMD (3.4 ±0.5 vs. 4.2 ±0.6%; p < 0.001) and increased IMT (0.49 ±0.04 vs. 0.44 ±0.04 mm; p <0.01), indicating functional and structural alterations of the BA in COPD. Forearm blood flow and LDPI were comparable between the groups. Flow-mediated dilation correlated with capillary oxygen pressure (pO 2 , r = 0.608). Subgroup analysis in COPD patients with pO 2 > 65 mm Hg and pO 2 ≤ 65 mm Hg revealed even lower FMD in patients with lower pO 2 (3.0 ±0.5 vs. 3.7 ±0.4%; p < 0.01). Multivariate analysis showed that pO 2 was a predictor of FMD independent of the forced expiratory volume and pack years. Exposure to hypoxic air led to an acute decrease in FMD, whereby exposure to 100% oxygen did not change vascular function. Our data suggest that in CAD patients with COPD, decreased systemic oxygen levels lead to endothelial dysfunction, underlining the relevance of cardiopulmonary interaction and the potential importance of pulmonary treatment in secondary prevention of vascular disease.
NASA Astrophysics Data System (ADS)
Hoefer, Heinrich Friedrich Philipp Till Nikolaus
Vascular networks are required to support the formation and function of three-dimensional tissues. Biodegradable scaffolds are being considered in order to promote vascularization where natural regeneration of lost or destroyed vascular networks fails. Particularly; composite materials are expected to fulfill the complex demands of a patient's body to support wound healing. Microbial biopolyesters are being regarded as such second and third generation biomaterials. Methylobacterium extorquens is one of several microorganisms that should be considered for the production of advanced polyhydroxyalkanoates (PHAs). M. extorquens displays a distinct advantage in that it is able to utilize methanol as an inexpensive substrate for growth and biopolyester production. The design of functionalized PHAs, which would be made of both saturated short-chain-length (scl, C ≤ 5) and unsaturated medium-chain-length (mcl, 6 ≤ C ≤ 14) monomeric units, aimed at combining desirable material properties of inert scl/mcl-PHAs with those of functionalized mcl-PHAs. By independently inserting the phaC1 or the phaC2 gene from Pseudomonas fluorescens GK13, recombinant M. extorquens strains were obtained which were capable of producing PHAs containing C-C double bonds. A fermentation process was developed to obtain gram quantities of biopolyesters employing the recombinant M. extorquens ATCC 55366 strain which harbored the phaC2 gene of P. fluorescens GK13, the better one of the two strains at incorporating unsaturated monomeric units. The PHAs produced were found in a blend of scl-PHAs and functionalized scl/mcl-PHAs (4 ≤ C ≤ 6), which were the products of the native and of the recombinant PHA synthase, respectively. Thermo-mechanical analysis confirmed that the functionalized scl/mcl-PHAs exhibited the desirable material properties expected. This project contributed to current research on polyhydroxyalkanoates at different levels. The terminal double bonds of the functionalized scl/mcl-PHAs are amenable to chemical modifications and could be transformed into reactive functional groups for covalently linking other biomacromolecules. It is anticipated that these biopolyesters will be utilized as tissue engineering materials in the future, due to their functionality and thermo-mechanical properties. Keywords: biopolyesters, functionalized polyhydroxyalkanoates, Methylobacterium extorquens, genetic modification, fermentation in pilot-scale operators, material characterization, thermo-mechanical properties, tissue engineering
Yang, Woo-In; Shim, Chi Y; Bang, Woo D; Oh, Chang M; Chang, Hyuk J; Chung, Namsik; Ha, Jong-Won
2011-12-01
Arterial elastic properties change with aging. Measurements of pulse wave velocity and augmentation index are useful for the evaluation of arterial stiffness. However, they likely represent only global characteristics of the arterial tree rather than local vascular alterations. The aim of this study was to evaluate whether local vascular properties assessed by velocity vector imaging differed with aging. Vascular properties of carotid arteries with ages were assessed in 100 healthy volunteers (52 men) ranging from 20 to 68 years using velocity vector imaging. The peak circumferential strain and strain rate of the six segments in left common carotid arteries were analyzed and the standard deviation of the time to peak circumferential strain and strain rate of the six segments, representing the synchronicity of the arterial expansion, were calculated. Central blood pressure, augmentation index and pulse wave velocity were assessed by commercially available radial artery tonometry, the SphygmoCor system (AtCor Medical, West Ryde, Australia). A validated generalized transfer function was used to acquire the central aortic pressures and pressure waveforms. Pulse wave velocity, augmentation index and velocity vector imaging parameters showed significant changes with age. However, the age-related changes in pulse wave velocity, augmentation index and velocity vector imaging parameters were different. The increase in pulse wave velocity was more prominent in older individuals, whereas the changes in augmentation index and carotid strain and strain rate were evident earlier, at the age of 30 years. Unlike augmentation index, which showed little change in older individuals, the standard deviation of time to peak strain and strain rate showed a steady increase from younger to older individuals. Asynchronous arterial expansion could be a useful discriminative marker of vascular aging independent of individual's age.
Inhibition of FOXO1/3 promotes vascular calcification.
Deng, Liang; Huang, Lu; Sun, Yong; Heath, Jack M; Wu, Hui; Chen, Yabing
2015-01-01
Vascular calcification is a characteristic feature of atherosclerosis, diabetes mellitus, and end-stage renal disease. We have demonstrated that activation of protein kinase B (AKT) upregulates runt-related transcription factor 2 (Runx2), a key osteogenic transcription factor that is crucial for calcification of vascular smooth muscle cells (VSMC). Using mice with SMC-specific deletion of phosphatase and tensin homolog (PTEN), a major negative regulator of AKT, the present studies uncovered a novel molecular mechanism underlying PTEN/AKT/FOXO (forkhead box O)-mediated Runx2 upregulation and VSMC calcification. SMC-specific PTEN deletion mice were generated by crossing PTEN floxed mice with SM22α-Cre transgenic mice. The PTEN deletion resulted in sustained activation of AKT that upregulated Runx2 and promoted VSMC calcification in vitro and arterial calcification ex vivo. Runx2 knockdown did not affect proliferation but blocked calcification of the PTEN-deficient VSMC, suggesting that PTEN deletion promotes Runx2-depedent VSMC calcification that is independent of proliferation. At the molecular level, PTEN deficiency increased the amount of Runx2 post-transcriptionally by inhibiting Runx2 ubiquitination. AKT activation increased phosphorylation of FOXO1/3 that led to nuclear exclusion of FOXO1/3. FOXO1/3 knockdown in VSMC phenocopied the PTEN deficiency, demonstrating a novel function of FOXO1/3, as a downstream signaling of PTEN/AKT, in regulating Runx2 ubiquitination and VSMC calcification. Using heterozygous SMC-specific PTEN-deficient mice and atherogenic ApoE(-/-) mice, we further demonstrated AKT activation, FOXO phosphorylation, and Runx2 ubiquitination in vascular calcification in vivo. Our studies have determined a new causative effect of SMC-specific PTEN deficiency on vascular calcification and demonstrated that FOXO1/3 plays a crucial role in PTEN/AKT-modulated Runx2 ubiquitination and VSMC calcification. © 2014 American Heart Association, Inc.
Liu, Jinbo; Liu, Huan; Zhao, Hongwei; Shang, Guangyun; Zhou, Yingyan; Li, Lihong; Wang, Hongyu
2017-01-01
Cardio-ankle vascular index (CAVI) was supposed to be an independent predictor for vascular-related events. Biomarkers such as homocysteine (Hcy), N-terminal pro-brain natriuretic peptide (NT-proBNP), and urine albumin(microalbumin) (UAE) have involved the pathophysiological development of arteriosclerosis. The present study was to investigate relationship between CAVI and biomarkers in vascular-related diseases. A total of 656 subjects (M/F 272/384) from department of Vascular Medicine were enrolled into our study. They were divided into four groups according to the numbers of suffered diseases, healthy group (group 0: subjects without diseases of hypertension, diabetes mellitus (DM), coronary heart disease (CHD); n = 186), group 1 (with one of diseases of hypertension, CHD, DM; n = 237), group 2 (with two of diseases of hypertension, CHD, DM; n = 174), and group 3 (with all diseases of hypertension, CHD, DM; n = 59). CAVI was measured by VS-1000 apparatus. CAVI was increasing with increasing numbers of suffered vascular-related diseases. Similar results were found in the parameters of biomarkers such as Hcy, log NT-ProBNP, and log UAE. There were positive correlation between log NT-proBNP, Hcy, log UAE, and CAVI in the entire study group and nonhealthy group. Positive correlation between log UAE and CAVI were found in the entire study group after adjusting for age, body mass index (BMI), blood pressure, uric acid, and lipids. Multivariate analysis showed that log UAE was an independent associating factor of CAVI in all subjects. CAVI was significantly higher in subjects with hypertension, CHD, and DM. There was correlation between arterial stiffness and biomarkers such as NT-proBNP, Hcy, and UAE.
Kajikawa, Masato; Nakashima, Ayumu; Maruhashi, Tatsuya; Iwamoto, Yumiko; Iwamoto, Akimichi; Matsumoto, Takeshi; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Taguchi, Akira; Noma, Kensuke; Higashi, Yukihito
2014-01-01
Poor oral health is an independent predictor of cardiovascular outcome. Endothelial dysfunction is the initial step of atherosclerosis, resulting in cardiovascular outcomes; but there is no information on the association between oral health and endothelial function. The purpose of this study was to determine the relationships between oral health and endothelial function. A total of 190 subjects who underwent health examinations (mean age, 57±18 years), including patients with cardiovascular disease, completed a questionnaire on oral health and frequency of tooth brushing, and underwent measurement of vascular function, flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation. The subjects were divided into 2 groups according to frequency of tooth brushing (≥twice/day and
Review of gestational diabetes mellitus effects on vascular structure and function.
Jensen, Louise A; Chik, Constance L; Ryan, Edmond A
2016-05-01
Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.
Raz, Naftali; Rodrigue, Karen M; Kennedy, Kristen M; Land, Susan
2009-01-01
Several single nucleotide polymorphisms have been linked to neural and cognitive variation in healthy adults. We examined contribution of three polymorphisms frequently associated with individual differences in cognition (Catechol-O-Methyl-Transferase Val158Met, Brain-Derived-Neurotrophic-Factor Val66Met, and Apolipoprotein E epsilon4) and a vascular risk factor (hypertension) in a sample of 189 volunteers (age 18-82). Genotypes were determined from buccal culture samples, and cognitive performance was assessed in 4 age-sensitive domains?fluid intelligence, executive function (inhibition), associative memory, and processing speed. We found that younger age and COMT Met/Met genotype, associated with low COMT activity and higher prefrontal dopamine content, were independently linked to better performance in most of the tested domains. Homozygotes for Val allele of BDNF polymorphism exhibited better associative memory and faster speed of processing than the Met allele carriers, with greater effect for women and persons with hypertension. Carriers of ApoE epsilon4 allele evidenced steeper age-related increase in costs of Stroop color interference, but showed no negative effects on memory. The findings indicate that age-related cognitive performance is differentially affected by distinct genetic factors and their interactions with vascular health status. (c) 2009 APA, all rights reserved.
Lang, Clemens; Seyfang, Leonhard; Ferrari, Julia; Gattringer, Thomas; Greisenegger, Stefan; Willeit, Karin; Toell, Thomas; Krebs, Stefan; Brainin, Michael; Kiechl, Stefan; Willeit, Johann; Lang, Wilfried; Knoflach, Michael
2017-03-01
Ischemic strokes associated with atrial fibrillation (AF) are more severe than those of other cause. We aim to study potential sex effects in this context. In this cross-sectional study, 74 425 adults with acute ischemic stroke from the Austrian Stroke Unit Registry were included between March 2003 and January 2016. In 63 563 patients, data on the National Institutes of Health Stroke Scale on admission to the stroke unit, presence of AF, vascular risk factors, and comorbidities were complete. Analysis was done by a multivariate regression model. Stroke severity in general increased with age. AF-related strokes were more severe than strokes of other causes. Sex-related differences in stroke severity were only seen in stroke patients with AF. Median (Q 25 , 75 ) National Institutes of Health Stroke Scale score points were 9 (4,17) in women and 6 (3,13) in men ( P <0.001). The interaction between AF and sex on stroke severity was independent of age, previous functional status, vascular risk factors, and vascular comorbidities and remained significant in various subgroups. Women with AF do not only have an increased risk of stroke when compared with men but also experience more severe strokes. © 2017 American Heart Association, Inc.
Tanaka, Naofumi; Meguro, Kenichi; Ishikawa, Hiroyasu; Yamaguchi, Satoshi
2013-10-01
The aim is to investigate the effect of a comprehensive physical and psychosocial approach on functional outcome and cerebral glucose metabolism in poststroke vascular dementia (PSVaD). Ten PSVaD patients participated in the study. They were diagnosed according to the National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherché et l'Enseignement en Neurosciences (NINDS-AIREN) criteria and needed physical assistance in sit-to-stand transfer activities. Six were enrolled in a comprehensive program consisted of an individualized task-specific exercise regimen of transfer training and a psychosocial intervention program. The other 4 patients participated in the control group. The programs were undertaken over a period of 2 months. Outcomes were the scores on the Mini-Mental State Examination and the Functional Independence Measure (FIM), and on cerebral glucose metabolism determined by (18)F-fluorodeoxyglucose positron emission tomography performed before and at the end of the program. The score on the transfer mobility subscale of the FIM increased at the end of the program in all patients who received the comprehensive program. Regional glucose metabolism was increased in the right insular cortex at the end of the combined program. Control patients showed no change in FIM score or regional cerebral metabolism. A combined approach may be associated with an increase in glucose metabolism of the right insula cortex in PSVaD patients.
Endothelial function varies according to insulin resistance disease type.
Beckman, Joshua A; Goldfine, Allison B; Dunaif, Andrea; Gerhard-Herman, Marie; Creager, Mark A
2007-05-01
We examined the relationship between insulin resistance and vascular function in three insulin-resistant states (type 2 diabetes, non-HIV lipodystrophic diabetes, and nondiabetic polycystic ovary syndrome [PCOS]) and in healthy control subjects. The population included 12 women with type 2 diabetes, 6 with lipodystrophic diabetes, 10 with PCOS, and 19 healthy female subjects. Metabolic measures included insulin sensitivity by the homeostasis model assessment, lipids, free fatty acids, and adiponectin. High-resolution B-mode ultrasound was used to determine endothelium-dependent and -independent vasodilation. Type 2 diabetic, liposdystrophic, and PCOS subjects were insulin resistant compared with control subjects (P = 0.001). Flow-mediated vasodilation was reduced in diabetic (3.4 +/- 1.3%) compared with control (7.3 +/- 1.1%) subjects but not in lipodystrophic (7.7 +/- 1.2%) or PCOS (9.9 +/- 0.7%) subjects (P = 0.005). Nitroglycerin-mediated vasodilation was attenuated in both diabetic (15.2 +/- 2.0%) and lipodystrophic (16.7 +/- 3.6%) subjects compared with healthy control (24.6 +/- 2.4%) and PCOS (23.2 +/- 1.8%) subjects (P = 0.019). Insulin resistance, free fatty acids, adiponectin, or C-reactive protein did not associate with vascular dysfunction. Among these different types of patients with insulin resistance, we found abnormal endothelium-dependent vasodilation only in the patients with type 2 diabetes. We postulate that variations in the mechanism of insulin resistance may affect endothelial function differently than glucose homeostasis.
[New World of Vascular-Function Developed with CAVI, PWV and ABI].
Shirai, Kohji
2014-09-01
Arteriosclerotic diseases are becoming a serious problem all over the world. However, the evaluation of arteriosclerosis quantitatively and non-invasively has been very difficult. Pulse-wave velocities have been used globally. Their significance was mostly established, but the problem is that PWV depends on the blood pressure at the time of measurement. The cardio-ankle vascular index (CAVI) was recently presented and produced from the stiffness parameter beta theory and Bramwell-Hill's equation. CAVI was independent from the blood pressure at the time of measurement. CAVI showed high values in arteriosclerotic diseases, such as coronary stenosis, cervical arteriosclerosis, cerebral infarction, and chronic kidney diseases. Furthermore, CAVI reflected so-called risk factors such as hypertension, diabetes mellitus, dyslipidemia, and smoking. Also, controlling most of those risk factors improved CAVI. A low ankle-brachial blood pressure index (ABI) (< 0.9) reflected stenosis of the femoral artery. ABI (0.9-0.99) has been reported to be a predictor of coronary artery diseases. A combination of those indices might be useful in practical medicine. Furthermore, it is known that arterial stiffness reflects the Windkessel function. The positive correlation between CAVI and the left ventricular function indicated that the heart-arterial relationship could be evaluated using CAVI. Therefore, a new study field involving a collaborating system between heart muscle and arteries could be developed using CAVI.
Zielonka, Matthias; Xia, Jingjing; Friedel, Roland H; Offermanns, Stefan; Worzfeld, Thomas
2010-09-10
Plexins serve as receptors for semaphorins and play important roles in the developing nervous system. Plexin-B2 controls decisive developmental programs in the neural tube and cerebellum. However, whether Plexin-B2 also regulates biological functions in adult nonneuronal tissues is unknown. Here we show by two methodologically independent approaches that Plexin-B2 is expressed in discrete cell types of several nonneuronal tissues in the adult mouse. In the vasculature, Plexin-B2 is selectively expressed in functionally specialized endothelial cells. In endocrine organs, Plexin-B2 localizes to the pancreatic islets of Langerhans and to both cortex and medulla of the adrenal gland. Plexin-B2 expression is also detected in certain types of immune and epithelial cells. In addition, we report on a systematic comparison of the expression patterns of Plexin-B2 and its ligand Sema4C, which show complementarity or overlap in some but not all tissues. Furthermore, we demonstrate that Plexin-B2 and its family member Plexin-B1 display largely nonredundant expression patterns. This work establishes Plexin-B2 and Sema4C as potential regulators of the vascular and endocrine system and provides an anatomical basis to understand the biological functions of this ligand-receptor pair. Copyright 2010 Elsevier Inc. All rights reserved.
Waloszek, Joanna M; Byrne, Michelle L; Woods, Michael J; Nicholas, Christian L; Bei, Bei; Murray, Greg; Raniti, Monika; Allen, Nicholas B; Trinder, John
2015-04-01
Depression is recognised as an independent cardiovascular risk factor in adults. Identifying this relationship early on in life is potentially important for the prevention of cardiovascular disease (CVD). This study investigated whether clinical depression is associated with multiple physiological markers of CVD risk in adolescents from the general community. Participants aged 12-18 years were recruited from the general community and screened for depressive symptoms. Individuals with high and low depressive symptoms were administered a diagnostic interview. Fifty participants, 25 with a current depressive episode and 25 matched healthy controls, subsequently completed cardiovascular assessments. Variables assessed were automatic brachial and continuous beat-to-beat finger arterial blood pressure, heart rate, vascular functioning by pulse amplitude tonometry following reactive hyperaemia and pulse transit time (PTT) at rest. Blood samples were collected to measure cholesterol, glucose and glycohaemoglobin levels and an index of cumulative risk of traditional cardiovascular risk factors was calculated. Depressed adolescents had a significantly lower reactive hyperaemia index and shorter PTT, suggesting deterioration in vascular integrity and structure. Higher fasting glucose and triglyceride levels were also observed in the depressed group, who also had higher cumulative risk scores indicative of increased engagement in unhealthy behaviours and higher probability of advanced atherosclerotic lesions. The sample size and number of males who completed all cardiovascular measures was small. Clinically depressed adolescents had poorer vascular functioning and increased CVD risk compared to controls, highlighting the need for early identification and intervention for the prevention of CVD in depressed youth. Copyright © 2015 Elsevier B.V. All rights reserved.
Kayamori, Hiromi; Shimizu, Ippei; Yoshida, Yohko; Hayashi, Yuka; Suda, Masayoshi; Ikegami, Ryutaro; Katsuumi, Goro; Wakasugi, Takayuki; Minamino, Tohru
2018-05-30
Vascular cells have a finite lifespan and eventually enter irreversible growth arrest called cellular senescence. We have previously suggested that vascular cell senescence contributes to the pathogenesis of human atherosclerosis. Amlodipine is a mixture of two enantiomers, one of which (S- enantiomer) has L-type channel blocking activity, while the other (R+ enantiomer) shows ~1000-fold weaker channel blocking activity than S- enantiomer and has other unknown effects. It has been reported that amlodipine inhibits the progression of atherosclerosis in humans, but the molecular mechanism of this beneficial effect remains unknown. Apolipoprotein E-deficient mice on a high-fat diet were treated with amlodipine, its R+ enantiomer or vehicle for eight weeks. Compared with vehicle treatment, both amlodipine and the R+ enantiomer significantly reduced the number of senescent vascular cells and inhibited plaque formation to a similar extent. Expression of the pro-inflammatory molecule interleukin-1β was markedly upregulated in vehicle-treated mice, but was inhibited to a similar extent by treatment with amlodipine or the R+ enantiomer. Likewise, activation of p53 (a critical inducer of senescence) was markedly suppressed by treatment with amlodipine or the R+ enantiomer. These results suggest that amlodipine inhibits vascular cell senescence and protects against atherogenesis at least partly by a mechanism that is independent of calcium channel blockade.
Espeland, Mark A; Beavers, Kristen M; Gibbs, Bethany Barone; Johnson, Karen C; Hughes, Timothy M; Baker, Laura D; Jakicic, John; Korytkowski, Mary; Miller, Marsha; Bray, George A
2015-10-01
Ankle-brachial index (ABI) and interartery systolic blood pressure differences, as markers of vascular disease, are plausible risk factors for deficits in cognitive function among overweight and obese adults with type 2 diabetes. The ABI and maximum interartery differences (MIAD) in systolic blood pressures were assessed annually for five years among 479 participants assigned to the control condition in a randomized clinical trial of a behavioral weight loss intervention. A battery of standardized cognitive function tests was administered 4 to 5 years later. Analyses of covariance were used to assess relationships that ABI, MIAD, and progression of ABI and MIAD had with cognitive function. There was a curvilinear relationship between ABI and a composite index of cognitive function (p = 0.03), with lower ABI being associated with poorer function. In graded fashions, both greater MIAD and increases in MIAD over time also had modest relationships with poorer verbal memory (both p ≤ 0.05), processing speed (both p ≤ 0.05), and composite cognitive function (both p < 0.04). These relationships were independent of each other and remained evident after extensive covariate adjustment. In overweight and obese adults with type 2 diabetes, lower ABI and larger interartery systolic blood pressure differences have modest, independent, graded relationships with poorer cognitive function 4-5 years later. Copyright © 2014 John Wiley & Sons, Ltd.
Acute vascular effects of waterpipe smoking: Importance of physical activity and fitness status.
Alomari, Mahmoud A; Khabour, Omar F; Alzoubi, Karem H; Shqair, Dana M; Stoner, Lee
2015-06-01
While new forms of tobacco, including waterpipe (WP) smoking, continue to gain popularity, limited literature has examined the vascular health consequences. The purpose of the current study was to examine: (i) the acute WP-induced changes in vascular function; (ii) whether acute changes in vascular function are modified by lifestyle behaviors (habitual physical activity, physical fitness). Fifty three (22.7 y, 36% F, 23.4 kg/m(2)) otherwise healthy WP smokers were recruited. Strain-gauge plethysmography was used to measure forearm blood flow, vascular resistance, venous capacitance, and venous outflow at rest and following occlusion. Habitual physical activity was determined using the Arabic version of short-form international physical activity questionnaire, while physical fitness was assessed using the 6 min walk test and handgrip strength. Partial correlations were used to examine the relationships between post-smoking vascular function and lifestyle behaviors, controlling for pre-smoking vascular measures. (i) WP had a small effect on forearm post-occlusion blood flow (d = -0.19), a moderate effect on venous outflow (d = 0.30), and a moderate effect on post-occlusion vascular resistance (d = 0.32). (ii) Total habitual physical activity strongly correlated with resting blood flow (r = 0.50) and moderately with vascular resistance (r = -0.40). Handgrip strength moderately correlated with venous capacitance (r = 0.30) and post-occlusion blood flow (r = 0.30), while 6 min walked distance moderately correlated with resting venous capacitance (r = 0.30). Waterpipe smoking is associated with immediate changes in vascular function, which are exacerbated in individuals with low habitual physical activity and physical fitness levels in young otherwise healthy individuals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Stewart, Frances M; Freeman, Dilys J; Ramsay, Jane E; Greer, Ian A; Caslake, Muriel; Ferrell, William R
2007-03-01
Obesity in pregnancy is increasing and is a risk factor for metabolic pathology such as preeclampsia. In the nonpregnant, obesity is associated with dyslipidemia, vascular dysfunction, and low-grade chronic inflammation. Our aim was to measure microvascular endothelial function in lean and obese pregnant women at intervals throughout their pregnancies and at 4 months after delivery. Plasma markers of endothelial function, inflammation, and placental function and their association with microvascular function were also assessed. Women in the 1st trimester of pregnancy were recruited, 30 with a body mass index (BMI) less than 30 kg/m(2) and 30 with a BMI more than or equal to 30 kg/m(2) matched for age, parity, and smoking status. In vivo endothelial-dependent and -independent microvascular function was measured using laser Doppler imaging in the 1st, 2nd, and 3rd trimesters of pregnancy and at 4 months postnatal. Plasma markers of endothelial activation [soluble intercellular cell adhesion molecule-1 (sVCAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF), and plasminogen activator inhibitor (PAI)-1], inflammation (IL-6, TNFalpha, C-reactive protein, and IL-10), and placental function (PAI-1/PAI-2 ratio) were also assessed at each time point. The pattern of improving endothelial function during pregnancy was the same for lean and obese, but endothelial-dependent vasodilation was significantly lower (P < 0.05) in the obese women at each trimester (51, 41, and 39%, respectively). In the postpartum period, the improvement in endothelial-dependent vasodilation persisted in the lean women but declined to near 1st trimester levels in the obese (lean/obese difference, 115%; P < 0.01). There was a small but significant difference in endothelial-independent vasodilation between the two groups, lean response being greater than obese (P = 0.021), and response declined in both groups in the postpartum period. In multivariate analysis, time of sampling had the most impact on endothelial-independent function [18.5% (adjusted sum of squares expressed as a percentage of total means squared), P < 0.001 for sodium nitroprusside response; 9.8%, P < 0.001 for acetylcholine response], and obesity had the most impact on endothelial-dependent microvascular function (1.7%, P = 0.046 for sodium nitroprusside response; 19.3%, P < 0.001 for acetylcholine response). Time of sampling (11.2%, P < 0.001), IL-6 (4.0%, P = 0.002), and IL-10 (2.4%, P = 0.018) were significant independent contributors to variation in endothelial-dependent microvascular function. When obesity was entered into the model, the association with IL-6 and IL-10 was no longer significant, and obesity explained 6.8% (P < 0.001) of the variability in endothelial-dependent microvascular function. In the 1st trimester, obese women had a significantly higher PAI-1/PAI-2 ratio [obese median (interquartile range), 0.87 (0.54-1.21) vs. lean 0.30 (0.21-0.47), P < 0.001), reflecting the lower PAI-2 levels in obese pregnant women. In a multivariate analysis, 1st trimester BMI (7.6%, P = 0.012), IL-10 (8.2%, P < 0.001), and sVCAM-1 (0.73%, P = 0.007) contributed to the 1st trimester PAI-1/PAI-2 ratio. Obese mothers have a lower endothelium-dependent and -independent vasodilation when compared with lean counterparts. There was a higher PAI-1/ PAI-2 ratio in the 1st trimester in obese women, which improved later in pregnancy. Obese pregnancy is associated with chronic preexisting endothelial activation and impairment of endothelial function secondary to increased production of inflammatory T-helper cells-2 cytokines.
Wang, De-Guo; Zhang, Feng-Xiang; Chen, Ming-Long; Zhu, Hong-Jun; Yang, Bing; Cao, Ke-Jiang
2014-04-01
Mesenchymal stem cells (MSCs) with elevated levels of connexin 43 (Cx43) have been shown to exhibit improved protection for ischemic hearts. However, it remains unclear whether Cx43 is involved in the paracrine actions of angiogenesis, the major mechanism of cell therapy. In the present study, an in vitro model with deprivation of oxygen and a murine myocardial infarction model with permanent ligation of the left anterior‑descending (LAD) coronary artery were used to determine whether gap junctions in MSCs promote angiogenesis. It was observed that MSCs that overexpressed Cx43 (MSCs‑Cx43), improve the cardiac function of infarcted myocardium as compared with control MSCs (MSCs‑vector) and MSCs with Cx43 knocked down by small interfering RNA (MSCs‑siCx43), accompanied with a reduction of infarct size and an increase in the vascular density and maturity. Increased levels of representative angiogenic factors [vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)] were produced by MSCs‑Cx43 compared with MSCs‑siCx43 in vivo and in vitro. However, neither Cx43 formed gap junction specific inhibitor (Cx43 mimetic peptide) or gap junction opener (antiarrhythmic peptide) affected the production of VEGF and bFGF in MSCs under hypoxic stress. These data support the hypothesis that Cx43 in MSCs promotes angiogenesis in the infarcted heart, independent of gap junction formation.
Ramos, Joyce S; Dalleck, Lance C; Tjonna, Arnt Erik; Beetham, Kassia S; Coombes, Jeff S
2015-05-01
Vascular dysfunction is a precursor to the atherosclerotic cascade, significantly increasing susceptibility to cardiovascular events such as myocardial infarction or stroke. Previous studies have revealed a strong relationship between vascular function and cardiorespiratory fitness (CRF). Thus, since high-intensity interval training (HIIT) is a potent method of improving CRF, several small randomized trials have investigated the impact on vascular function of HIIT relative to moderate-intensity continuous training (MICT). The aim of this study was to systematically review the evidence and quantify the impact on vascular function of HIIT compared with MICT. Three electronic databases (PubMed, Embase, and MEDLINE) were searched (until May 2014) for randomized trials comparing the effect of at least 2 weeks of HIIT and MICT on vascular function. HIIT protocols involved predominantly aerobic exercise at a high intensity, interspersed with active or passive recovery periods. We performed a meta-analysis to compare the mean difference in the change in vascular function assessed via brachial artery flow-mediated dilation (FMD) from baseline to post-intervention between HIIT and MICT. The impact of HIIT versus MICT on CRF, traditional cardiovascular disease (CVD) risk factors, and biomarkers associated with vascular function (oxidative stress, inflammation, and insulin resistance) was also reviewed across included studies. Seven randomized trials, including 182 patients, met the eligibility criteria and were included in the meta-analysis. A commonly used HIIT prescription was four intervals of 4 min (4 × 4 HIIT) at 85-95% of maximum or peak heart rate (HRmax/peak), interspersed with 3 min of active recovery at 60-70% HRmax/peak, three times per week for 12-16 weeks. Brachial artery FMD improved by 4.31 and 2.15% following HIIT and MICT, respectively. This resulted in a significant (p < 0.05) mean difference of 2.26%. HIIT also had a greater tendency than MICT to induce positive effects on secondary outcome measures, including CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity. HIIT is more effective at improving brachial artery vascular function than MICT, perhaps due to its tendency to positively influence CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity. However, the variability in the secondary outcome measures, coupled with the small sample sizes in these studies, limits this finding. Nonetheless, this review suggests that 4 × 4 HIIT, three times per week for at least 12 weeks, is a powerful form of exercise to enhance vascular function.
López-Cancio, Elena; Ricciardi, Ana Clara; Sobrino, Tomás; Cortés, Jordi; de la Ossa, Natalia Pérez; Millán, Mónica; Hernández-Pérez, María; Gomis, Meritxell; Dorado, Laura; Muñoz-Narbona, Lucía; Campos, Francisco; Arenillas, Juan F; Dávalos, Antoni
2017-02-01
Physical activity (PhA) prior to stroke has been associated with good outcomes after the ischemic insult, but there is scarce data on the involved molecular mechanisms. We studied consecutive acute ischemic stroke patients admitted to a single tertiary stroke center. Prestroke PhA was evaluated with the International Physical Activity Questionnaire (metabolic equivalent of minutes/week). We studied several circulating angiogenic and neurogenic factors at different time points: vascular endothelial growth factor (VEGF), granulocyte colony-stimulating factor (G-CSF), and brain-derived neurotrophic factor (BDNF) at admission, day 7, and at 3 months. We considered good functional outcome at 3 months (modified Rankin scale ≤ 2) as primary end point, and final infarct volume as secondary outcome. We studied 83 patients with at least 2 time point serum determinations (mean age 69.6 years, median National Institutes of Health Stroke Scale 17 at admission). Patients more physically active before stroke had a significantly higher increment of serum VEGF on the seventh day when compared to less active patients. This increment was an independent predictor of good functional outcome at 3 months and was associated with smaller infarct volume in multivariate analyses adjusted for relevant covariates. We did not find independent associations of G-CSF or BDNF levels neither with level of prestroke PhA nor with stroke outcomes. Although there are probably more molecular mechanisms by which PhA exerts its beneficial effects in stroke outcomes, our observation regarding the potential role of VEGF is plausible and in line with previous experimental studies. Further research in this field is needed. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Structural and functional imaging for vascular targeted photodynamic therapy
NASA Astrophysics Data System (ADS)
Li, Buhong; Gu, Ying; Wilson, Brian C.
2017-02-01
Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.
Improving interMediAte Risk management. MARK study
2011-01-01
Background Cardiovascular risk functions fail to identify more than 50% of patients who develop cardiovascular disease. This is especially evident in the intermediate-risk patients in which clinical management becomes difficult. Our purpose is to analyze if ankle-brachial index (ABI), measures of arterial stiffness, postprandial glucose, glycosylated hemoglobin, self-measured blood pressure and presence of comorbidity are independently associated to incidence of vascular events and whether they can improve the predictive capacity of current risk equations in the intermediate-risk population. Methods/Design This project involves 3 groups belonging to REDIAPP (RETICS RD06/0018) from 3 Spanish regions. We will recruit a multicenter cohort of 2688 patients at intermediate risk (coronary risk between 5 and 15% or vascular death risk between 3-5% over 10 years) and no history of atherosclerotic disease, selected at random. We will record socio-demographic data, information on diet, physical activity, comorbidity and intermittent claudication. We will measure ABI, pulse wave velocity and cardio ankle vascular index at rest and after a light intensity exercise. Blood pressure and anthropometric data will be also recorded. We will also quantify lipids, glucose and glycosylated hemoglobin in a fasting blood sample and postprandial capillary glucose. Eighteen months after the recruitment, patients will be followed up to determine the incidence of vascular events (later follow-ups are planned at 5 and 10 years). We will analyze whether the new proposed risk factors contribute to improve the risk functions based on classic risk factors. Discussion Primary prevention of cardiovascular diseases is a priority in public health policy of developed and developing countries. The fundamental strategy consists in identifying people in a high risk situation in which preventive measures are effective and efficient. Improvement of these predictions in our country will have an immediate, clinical and welfare impact and a short term public health effect. Trial Registration Clinical Trials.gov Identifier: NCT01428934 PMID:21992621
Lee, Jason E.; Patel, Kirit; Almodóvar, Sharilyn; Tuder, Rubin M.; Flores, Sonia C.
2011-01-01
Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial endothelial (HPAECs) and smooth muscle (HPASMCs) cells, bovine PAECs, and human EA.hy926 endothelial cells. Golgi structure was also investigated in cells in tissue sections of pulmonary vascular lesions in idiopathic PAH (IPAH) and in macaques infected with a chimeric simian immunodeficiency virus containing the human immunodeficiency virus (HIV)-nef gene (SHIV-nef) with subcellular three-dimensional (3D) immunoimaging. Compounds with NO scavenging activity including 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), methylene blue, N-acetylcysteine, and hemoglobin markedly fragmented the Golgi in all cell types evaluated as did monocrotaline pyrrole, while LY-83583, sildenafil, fasudil, Y-27632, Tiron, Tempol, or H2O2 did not. Golgi fragmentation by NO scavengers was inhibited by diethylamine NONOate, was evident in HPAECs after selective knockdown of endothelial nitric oxide synthase using small interfering RNA (siRNA), was independent of microtubule organization, required the GTPase dynamin 2, and was accompanied by depletion of α-soluble N-ethylmaleimide-sensitive factor (NSF) acceptor protein (α-SNAP) from Golgi membranes and codispersal of the SNAP receptor (SNARE) Vti1a with giantin. Golgi fragmentation was confirmed in endothelial and smooth muscle cells in pulmonary arterial lesions in IPAH and the SHIV-nef-infected macaque with subcellular 3D immunoimaging. In SHIV-nef-infected macaques Golgi fragmentation was observed in cells containing HIV-nef-bearing endosomes. The observed Golgi fragmentation suggests that NO plays a significant role in modulating global protein trafficking patterns that contribute to changes in the cell surface landscape and functional signaling in vascular cells. PMID:21217069
NASA Astrophysics Data System (ADS)
Daghighi, Yasaman; Heidari, Hossein; Taylor, Hayden
2018-02-01
A predominant unsolved challenge in tissue engineering is the need of a robust technique for producing vascular networks, particularly when modeling human brain tissue. The availability of reliable in vitro human brain microvasculature models would advance our understanding of its function and would provide a platform for highthroughput drug screening. Current strategies for modeling vascularized brain tissue suffer from limitations such as (1) culturing non-human cell lines, (2) limited multi-cell co-culture, and (3) the effects of neighboring physiologically unrealistic rigid polymeric surfaces, such as solid membranes. We demonstrate a new micro-engineered platform that can address these shortcomings. Specifically, we have designed and prototyped a molding system to enable the precise casting of 100μm-diameter coaxial hydrogel structures laden with the requisite cells to mimic a vascular lumen. Here we demonstrate that a fine wire with diameter 130 μm or a needle with outer diameter 300 μm can be used as a temporary mold insert, and agarose-collagen composite matrix can be cast around these inserts and thermally gelled. When the wire or needle is retracted under the precise positional control afforded by our system, a microchannel is formed which is then seeded with human microvascular endothelial cells. After seven days of culture these cells produce an apparently confluent monolayer on the channel walls. In principle, this platform could be used to create multilayered cellular structures. By arranging a fine wire and a hollow needle coaxially, three distinct zones could be defined in the model: first, the bulk gel surrounding the needle; then, after needle retraction, a cylindrical shell of matrix; and finally, after retraction of the wire, a lumen. Each zone could be independently cell-seeded. To this end, we have also successfully 3D cultured human astrocytes and SY5Y glial cells in our agarose-collagen matrix. Our approach ultimately promises scalable and repeatable production of vascular structures with physiologically realistic mechanical properties.
Higashi, Yukihito
2017-06-01
It is well known that there is an association of lower urinary tract symptoms/benign prostatic hypertrophy with cardiovascular disease, suggesting that lower urinary tract symptoms/benign prostatic hypertrophy is a risk factor for cardiovascular events. Vascular function, including endothelial function and vascular smooth muscle function, is involved in the pathogenesis, maintenance and development of atherosclerosis, leading to cardiovascular events. Vascular dysfunction per se should also contribute to lower urinary tract symptoms/benign prostatic hypertrophy. Both lower urinary tract symptoms/benign prostatic hypertrophy and vascular dysfunction have cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus, aging, obesity and smoking. Inactivation of the phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate-nitric oxide pathway causes lower urinary tract symptoms/benign prostatic hypertrophy through an enhancement of sympathetic nervous activity, endothelial dysfunction, increase in Rho-associated kinase activity and vasoconstriction, and decrease in blood flow of pelvic viscera. Both endogenous nitric oxide and exogenous nitric oxide act as vasodilators on vascular smooth muscle cells through an increase in the content of cyclic guanosine 3',5'-monophosphate, which is inactivated by phosphodiesterase type 5. In a clinical setting, phosphodiesterase type 5 inhibitors are widely used in patients with lower urinary tract symptoms/benign prostatic hypertrophy. Phosphodiesterase type 5 inhibitors might have beneficial effects on vascular function through not only inhibition of cyclic guanosine 3',5'-monophosphate degradation, but also increases in testosterone levels and nitric oxide bioavailability, increase in the number and improvement of the function of endothelial progenitor cells, and decrease in insulin resistance. In the present review, the relationships between lower urinary tract symptoms/benign prostatic hypertrophy, the phosphodiesterase type 5-nitric oxide-cyclic guanosine 3',5'-monophosphate pathway, vascular function and cardiovascular outcomes are examined. © 2017 The Japanese Urological Association.
Kim, Byung-Su; Chung, Pil-Wook; Park, Kwang-Yeol; Won, Hong-Hee; Bang, Oh Young; Chung, Chin-Sang; Lee, Kwang Ho; Kim, Gyeong-Moon
2017-10-01
Ischemic stroke patients often have intracranial atherosclerosis (ICAS), despite heterogeneity in the cause of stroke. We tested the hypothesis that ICAS burden can independently reflect the risk of long-term vascular outcome. This was a retrospective cohort study analyzing data from a prospective stroke registry enrolling consecutive patients with acute ischemic stroke or transient ischemic attack. A total of 1081 patients were categorized into no ICAS, single ICAS, and advanced ICAS (ICAS ≥2 different intracranial arteries) groups. Primary and secondary end points were time to occurrence of recurrent ischemic stroke and composite vascular outcome, respectively. Study end points by ICAS burden were compared using Cox proportional hazards models in overall and propensity-matched patients. ICAS was present in 405 patients (37.3%). During a median 5-year follow-up, recurrent stroke and composite vascular outcome occurred in 6.8% and 16.8% of patients, respectively. As the number of ICAS increased, the risk for study end points increased after adjustment of potential covariates (hazard ratio per 1 increase in ICAS, 1.19; 95% confidence interval, 1.01-1.42 for recurrent ischemic stroke and hazard ratio, 1.18; 95% confidence interval, 1.05-1.33 for composite vascular outcome). The hazard ratios (95% confidence interval) for recurrent stroke and composite vascular outcome in patients with advanced ICAS compared with those without ICAS were 1.56 (0.88-2.74) and 1.72 (1.17-2.53), respectively, in the overall patients. The corresponding values in the propensity-matched patients were 1.28 (0.71-2.30) and 1.95 (1.27-2.99), respectively. ICAS burden was independently associated with the risk of subsequent composite vascular outcome in patients with ischemic stroke. These findings suggest that ICAS burden can reflect the risk of long-term vascular outcome. © 2017 American Heart Association, Inc.
Stirban, Alin; Kotsi, Paraskevi; Franke, Knut; Strijowski, Ulf; Cai, Weijing; Götting, Christian; Tschoepe, Diethelm
2013-05-01
Recent evidence indicates that heat-enhanced food advanced glycation end products (AGEs) adversely affect vascular function. The aim of this study was to examine the acute effects of an oral load of heat-treated, AGE-modified β-lactoglobulins (AGE-BLG) compared with heat-treated, nonglycated BLG (C-BLG) on vascular function in patients with type 2 diabetes mellitus (T2DM). In a double-blind, controlled, randomized, crossover study, 19 patients with T2DM received, on two different occasions, beverages containing either AGE-BLG or C-BLG. We measured macrovascular [brachial ultrasound of flow-mediated dilatation (FMD)] and microvascular (laser-Doppler measurements of reactive hyperemia in the hand) functions at baseline (T0), 90 (T90), and 180 (T180) min. Following the AGE-BLG, FMD decreased at T90 by 80% from baseline and remained decreased by 42% at T180 (P < 0.05 vs. baseline, P < 0.05 vs. C-BLG at T90). By comparison, following C-BLG, FMD decreased by 27% at T90 and 51% at T180 (P < 0.05 vs. baseline at T180). A significant decrease in nitrite (T180) and nitrate (T90 and T180), as well as a significant increase in N(ε)-carboxymethyllisine, accompanied intake of AGE-BLG. There was no change in microvascular function caused by either beverage. In patients with T2DM, acute oral administration of a single AGE-modified protein class significantly though transiently impaired macrovascular function in concert with decreased nitric oxide bioavailability. These AGE-related changes were independent of heat treatment.
McGrae McDermott, Mary; Kerwin, Diana R; Liu, Kiang; Martin, Gary J; O'Brien, Erin; Kaplan, Heather; Greenland, Philip
2001-01-01
OBJECTIVE To determine the prevalence of unrecognized lower extremity peripheral arterial disease (PAD) among men and women aged 55 years and older in a general internal medicine (GIM) practice and to identify characteristics and functional performance associated with unrecognized PAD. DESIGN Cross-sectional. SETTING Academic medical center. PARTICIPANTS We identified 143 patients with known PAD from the noninvasive vascular laboratory, and 239 men and women aged 55 and older with no prior PAD history from a GIM practice. Group 1 consisted of patients with PAD consecutively identified from the noninvasive vascular laboratory (n = 143). Group 2 included GIM practice patients found to have an ankle brachial index less than 0.90, consistent with PAD (n = 34). Group 3 consisted of GIM practice patients without PAD (n = 205). MEASUREMENTS AND MAIN RESULTS Leg functioning was assessed with the 6-minute walk, 4-meter walking velocity, and Walking Impairment Questionnaire (WIQ). Of GIM practice patients, 14% had unrecognized PAD. Only 44% of patients in Group 2 had exertional leg symptoms. Distances achieved in the 6-minute walk were 1,130, 1,362, and 1,539 feet for Groups 1, 2, and 3, respectively, adjusting for age, gender, and race (P < .001). The degree of difficulty walking due to leg symptoms as reported on the WIQ was comparable between Groups 2 and 3 and significantly greater in Group 1 than Group 2. In multiple logistic regression analysis including Groups 2 and 3, current cigarette smoking was associated independently with unrecognized PAD (odds ratio [OR], 6.82; 95% confidence interval [95% CI], 1.55 to 29.93). Aspirin therapy was nearly independently associated with absence of PAD (OR, 0.37; 95% CI, 0.12 to 1.12). CONCLUSION Unrecognized PAD is common among men and women aged 55 years and older in GIM practice and is associated with impaired lower extremity functioning. Ankle brachial index screening may be necessary to diagnose unrecognized PAD in a GIM practice. PMID:11422635
Effects of High Dietary HEME Iron and Radiation on Cardiovascular Function
NASA Technical Reports Server (NTRS)
Westby, Christian M.; Brown, A. K.; Platts, S. H.
2012-01-01
The radiation related health risks to astronauts is of particular concern to NASA. Data support that exposure to radiation is associated with a number of disorders including a heightened risk for cardiovascular diseases. Independent of radiation, altered nutrient status (e.g. high dietary iron) also increases ones risk for cardiovascular disease. However, it is unknown whether exposure to radiation in combination with high dietary iron further increases ones cardiovascular risk. The intent of our proposal is to generate compulsory data examining the combined effect of radiation exposure and iron overload on sensitivity to radiation injury to address HRP risks: 1) Risk Factor of Inadequate Nutrition; 2) Risk of Cardiac Rhythm Problems; and 3) Risk of Degenerative Tissue or other Health Effects from Space Radiation. Towards our goal we propose two distinct pilot studies using the following specific aims: Vascular Aim 1: To determine the short-term consequences of the independent and combined effects of exposure to gamma radiation and elevated body iron stores on measures of endothelial function and cell viability and integrity. We hypothesize that animals that have high body iron stores and are exposed to gamma radiation will show a greater reduction in endothelial dependent nitric oxid production and larger pathological changes in endothelial integrity than animals that have only 1 of those treatments (either high iron stores or exposure to gamma radiation). Vascular Aim 2: Identify and compare the effects of gamma radiation and elevated body iron stores on the genetic and epigenetic regulation of proteins associated with endothelial cell function. We hypothesize that modifications of epigenetic control and posttranslational expression of proteins associated with endothelial cell function will be differentially altered in rats with high body iron stores and exposed to gamma radiation compared to rats with only 1 type of treatment. Cardiac Aim 1: To determine the short-term consequences of the independent and combined effects of gamma radiation and elevated body iron stores on measures of cardiac structure. We hypothesize that modifications to cardiac structure and function will be greater in rats with high body iron stores and exposed to gamma radiation than in rats that have only 1 of those treatments. Cardiac Aim 2: Identify and compare the effects of gamma radiation and elevated body iron stores on the genetic and epigenetic regulation of proteins associated with cardiac structure and function. We hypothesize that modifications of epigenetic control and posttranslational expression of proteins associated with cardiac contractile function will be differentially altered in rats with high body iron stores and exposed to gamma radiation compared to rats with only 1 type of treatment.
The use of microtechnology and nanotechnology in fabricating vascularized tissues.
Obregón, Raquel; Ramón-Azcón, Javier; Ahadian, Samad; Shiku, Hitoshi; Bae, Hojae; Ramalingam, Murugan; Matsue, Tomokazu
2014-01-01
Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.
Practical alternatives to chronic caloric restriction for optimizing vascular function with ageing
Seals, Douglas R.
2016-01-01
Abstract Calorie restriction (CR) in the absence of malnutrition exerts a multitude of physiological benefits with ageing in model organisms and in humans including improvements in vascular function. Despite the well‐known benefits of chronic CR, long‐term energy restriction is not likely to be a feasible healthy lifestyle strategy in humans due to poor sustained adherence, and presents additional concerns if applied to normal weight older adults. This review summarizes what is known about the effects of CR on vascular function with ageing including the underlying molecular ‘energy‐ and nutrient‐sensing’ mechanisms, and discusses the limited but encouraging evidence for alternative pharmacological and lifestyle interventions that may improve vascular function with ageing by mimicking the beneficial effects of long‐term CR. PMID:27641062
Deleterious effects of tributyltin on porcine vascular stem cells physiology.
Bernardini, Chiara; Zannoni, Augusta; Bertocchi, Martina; Bianchi, Francesca; Salaroli, Roberta; Botelho, Giuliana; Bacci, Maria Laura; Ventrella, Vittoria; Forni, Monica
2016-01-01
The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Potential Therapeutics for Vascular Cognitive Impairment and Dementia.
Sun, Miao-Kun
2017-10-16
As the human lifespan increases, the number of people affected by age-related dementia is growing at an epidemic pace. Vascular pathology dramatically affects cognitive profiles, resulting in dementia and cognitive impairment. While vascular dementia itself constitutes a medical challenge, hypoperfusion/vascular risk factors enhance amyloid toxicity and other memory-damaging factors and hasten Alzheimer's disease (AD) and other memory disorders' progression, as well as negatively affect treatment outcome. Few therapeutic options are, however, currently available to improve the prognosis of patients with vascular dementia and cognitive impairment, mixed AD dementia with vascular pathology, or other memory disorders. Emerging evidence, however, indicates that, like AD and other memory disorders, synaptic impairment underlies much of the memory impairment in the cognitive decline of vascular cognitive impairment and vascular dementia. Effective rescues of the memory functions might be achieved through synaptic and memory therapeutics, targeting distinct molecular signaling pathways that support the formation of new synapses and maintaining their connections. Potential therapeutic agents include: 1) memory therapeutic agents that rescue synaptic and memory functions after the brain insults; 2) anti-pathologic therapeutics and an effective management of vascular risk factors; and 3) preventative therapeutic agents that achieve memory therapy through functional enhancement. Their development and potential as clinically effective memory therapeutics for vascular cognitive impairment and dementia are discussed in this review. These therapeutic agents are also likely to benefit patients with AD and/or other types of memory disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Understanding the physiology of mindfulness: aortic hemodynamics and heart rate variability.
May, Ross W; Bamber, Mandy; Seibert, Gregory S; Sanchez-Gonzalez, Marcos A; Leonard, Joseph T; Salsbury, Rebecca A; Fincham, Frank D
2016-01-01
Data were collected to examine autonomic and hemodynamic cardiovascular modulation underlying mindfulness from two independent samples. An initial sample (N = 185) underwent laboratory assessments of central aortic blood pressure and myocardial functioning to investigated the association between mindfulness and cardiac functioning. Controlling for religiosity, mindfulness demonstrated a strong negative relationship with myocardial oxygen consumption and left ventricular work but not heart rate or blood pressure. A second sample (N = 124) underwent a brief (15 min) mindfulness inducing intervention to examine the influence of mindfulness on cardiovascular autonomic modulation via blood pressure variability and heart rate variability. The intervention had a strong positive effect on cardiovascular modulation by decreasing cardiac sympathovagal tone, vasomotor tone, vascular resistance and ventricular workload. This research establishes a link between mindfulness and cardiovascular functioning via correlational and experimental methodologies in samples of mostly female undergraduates. Future directions for research are outlined.
Le, Yun-Zheng
2017-10-01
Müller glia (MG) are major retinal supporting cells that participate in retinal metabolism, function, maintenance, and protection. During the pathogenesis of diabetic retinopathy (DR), a neurovascular disease and a leading cause of blindness, MG modulate vascular function and neuronal integrity by regulating the production of angiogenic and trophic factors. In this article, I will (1) briefly summarize our work on delineating the role and mechanism of MG-modulated vascular function through the production of vascular endothelial growth factor (VEGF) and on investigating VEGF signaling-mediated MG viability and neural protection in diabetic animal models, (2) explore the relationship among VEGF and neurotrophins in protecting Müller cells in in vitro models of diabetes and hypoxia and its potential implication to neuroprotection in DR and hypoxic retinal diseases, and (3) discuss the relevance of our work to the effectiveness and safety of long-term anti-VEGF therapies, a widely used strategy to combat DR, diabetic macular edema, neovascular age-related macular degeneration, retinopathy of prematurity, and other hypoxic retinal vascular disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vascular delay of the latissimus dorsi muscle: an essential component of cardiomyoplasty.
Carroll, S M; Carroll, C M; Stremel, R W; Heilman, S J; Tobin, G R; Barker, J H
1997-04-01
Cardiomyoplasty (CMP) uses the latissimus dorsi muscle (LDM) to assist the heart in cases of cardiac failure. Distal ischemia and necrosis of the LDM is a recognized complication of CMP that can reduce distal muscle function and the mechanical effectiveness of CMP. Canine (n = 9) LDMs were subjected to a 10-day period of vascular delay followed by a simulated CMP. Two weeks after simulated CMP (corresponding to the healing delay between CMP and the onset of LDM stimulation used in the clinical setting), LDM perfusion was measured in the distal, middle, and proximal segments of the muscle, and circumferential (distal and middle squeezing muscle function) and longitudinal (proximal pulling muscle function) force generation and fatigue rates were measured. The results were compared with the contralateral nondelayed simulated CMP. Muscle perfusion was significantly (p < 0.05) greater in the distal and middle segments of vascular-delayed LDMs. Circumferential muscle force generation and fatigue rates were significantly (p < 0.05) improved in the vascular-delayed LDMs. Vascular delay can significantly improve LDM perfusion and function in a model that closely reflects clinical CMP, and the use of vascular delay may improve clinical outcomes in CMP.
Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets.
Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Bloch, Wilhelm; Eberbeck, Dietmar; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela
2016-01-26
Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS(-/-) mice ex and in vivo. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function.
Gómez-Marcos, Manuel Ángel; Recio-Rodríguez, José Ignacio; Patino-Alonso, María Carmen; Agudo-Conde, Cristina; Rodríguez-Sanchez, Emiliano; Maderuelo-Fernandez, Jose Angel; Gómez-Sánchez, Leticia; Gomez-Sanchez, Marta; García-Ortiz, Luís
2016-06-01
We prospectively examined the impact of type 2 diabetes compared with metabolic syndrome (MetS) on the development of vascular disease over 4 years as determined by anatomic and functional markers of vascular disease. By comparing the vascular outcomes of the 2 disorders, we seek to determine the independent effect of elevated glucose levels on vascular disease. 2 primary care centres in Salamanca, Spain. We performed a prospective observational study involving 112 patients (68 with type 2 diabetes and 44 with MetS) who were followed for 4 years. Measurements included blood pressure, blood glucose, lipids, smoking, body mass index, waist circumference, Homeostasis Model Assessment Insulin Resistance (HOMA-IR), hs-c-reactive protein and fibrinogen levels. We also evaluated vascular, carotid intima media thickness (IMT), pulse wave velocity (PWV) and ankle/brachial index, heart and renal target organ damage (TOD). The haemodynamic parameters were central (CAIx) and peripheral (PAIx) augmentation indices. In year 4, participants with type 2 diabetes had increased IMT thickness. These patients had more plaques and an IMT>0.90 mm. In participants with MetS, we only found an increase in the number of plaques. We found no changes in PWV, CAIx and PAIx. The patients with diabetes had a greater frequency of vascular TOD. There were no differences neither in renal nor cardiac percentage of TOD in the patients with MetS or diabetes mellitus type 2. This prospective study showed that the evolution of vascular TOD is different in participants with type 2 diabetes compared with those with MetS. While IMT and PWV increased in type 2 diabetes, these were not modified in MetS. The renal and cardiac TOD evolution, as well as the PAIx and CAIx, did not change in either group. NCT01065155; Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
[Self-consciousness in elderly persons with cognitive impairment and vascular dementia].
Dubinina, E A; Novikova, Yu G; Kalitskaya, A V; Finagentova, N V
2016-01-01
Self-consciousness was compared in 17 elderly (aged 65-89 years old) persons with cognitive impairment without dementia and 17 patients with vascular dementia. Neurocognitive functions and mental health complaints were evaluated. Neuropsychological assessment included evaluation of higher psychological functions, such as attention, memory, conceptualization, gnosis (optic, acoustic), manual skill, speech. Older persons with cognitive impairment assessed their neurocognitive functions adequately. Patients with vascular dementia usually denied cognitive deficit or explained it as a result of aging. Regardless of physical health, older persons with cognitive impairment have active attitude to aging. They could find ways of compensation of cognitive deficits without assistance. Patients with vascular dementia could not compensate their cognitive deficit even with support.
Pericyte function in the physiological central nervous system.
Muramatsu, Rieko; Yamashita, Toshihide
2014-01-01
Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.
Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R
2016-01-01
Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature.
Critical Endothelial Regulation by LRP5 during Retinal Vascular Development
Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.
2016-01-01
Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698
Mokhaneli, Maserame Cleopatra; Fourie, Carla Maria T; Botha, Shani; Mels, Catharina Martha C
2016-08-01
A loss of arterial elasticity increases the risk for cardiovascular events. Oxidative injury to the vessel wall may be one of the underlying mechanisms influencing arterial elasticity. We compared markers of oxidative stress, antioxidant capacity, inflammation, windkessel compliance (Cwk), and total peripheral resistance (TPR) in black and white South Africans. Associations of arterial compliance and vascular resistance (as indicated by TPR) with oxidative stress, antioxidant capacity and inflammatory markers were also investigated. We included 146 black and 181 white men and women. Measurements from the Finometer device were used to calculate Cwk and TPR while thiobarbituric acids reactive substances (TBARS), glutathione peroxidase (GPx), C-reactive protein (CRP), and interleukin-6 (IL-6) were analyzed in serum or urine samples. Black participants had higher TPR, TBARS, GPx, CRP, and IL-6 levels (all p ≤ 0.018) and lower Cwk (both p ≤ 0.013) compared to white participants. Multiple regression analyses revealed independent associations of Cwk (β = -0.27, p = 0.015) and TPR (β = 0.18, p = 0.018) with TBARS in black participants, while Cwk (β = -0.10; p = 0.019) and TPR (β = 0.13, p = 0.047) were independently associated with GPx in white participants. Decreased arterial compliance and increased vascular resistance associated with increased oxidative damage independent of hypertensive status in black participants. These results suggest that oxidative stress plays a role in early vascular changes in a black population prone to the development of cardiovascular disease.
NASA Astrophysics Data System (ADS)
Liu, Yuanyuan; Jiang, Weijian; Yang, Yang; Pu, Huayan; Peng, Yan; Xin, Liming; Zhang, Yi; Sun, Yu
2018-01-01
Constructing vascular scaffolds is important in tissue engineering. However, scaffolds with characteristics such as multiple layers and a certain degree of spatial morphology still cannot be readily constructed by current vascular scaffolds fabrication techniques. This paper presents a three-layered bifurcated vascular scaffold with a curved structure. The technique combines 3D printed molds and casting hydrogel and fugitive ink to create vessel-mimicking constructs with customizable structural parameters. Compared with other fabrication methods, the technique can create more native-like 3D geometries. The diameter and wall thickness of the fabricated constructs can be independently controlled, providing a feasible approach for vascular scaffold construction. Enzymatically-crosslinked gelatin was used as the scaffold material. The morphology and mechanical properties were evaluated. Human umbilical cord derived endothelial cells (HUVECs) were seeded on the scaffolds and cultured for 72 h. Cell viability and morphology were assessed. The results showed that the proposed process had good application potentials, and will hopefully provide a feasible approach for constructing vascular scaffolds.
Catino, Anna B; Hubbard, Rebecca A; Chirinos, Julio A; Townsend, Ray; Keefe, Stephen; Haas, Naomi B; Puzanov, Igor; Fang, James C; Agarwal, Neeraj; Hyman, David; Smith, Amanda M; Gordon, Mary; Plappert, Theodore; Englefield, Virginia; Narayan, Vivek; Ewer, Steven; ElAmm, Chantal; Lenihan, Daniel; Ky, Bonnie
2018-03-01
Sunitinib, used widely in metastatic renal cell carcinoma, can result in hypertension, left ventricular dysfunction, and heart failure. However, the relationships between vascular function and cardiac dysfunction with sunitinib are poorly understood. In a multicenter prospective study of 84 metastatic renal cell carcinoma patients, echocardiography, arterial tonometry, and BNP (B-type natriuretic peptide) measures were performed at baseline and at 3.5, 15, and 33 weeks after sunitinib initiation, correlating with sunitinib cycles 1, 3, and 6. Mean change in vascular function parameters and 95% confidence intervals were calculated. Linear regression models were used to estimate associations between vascular function and left ventricular ejection fraction, longitudinal strain, diastolic function (E/e'), and BNP. After 3.5 weeks of sunitinib, mean systolic blood pressure increased by 9.5 mm Hg (95% confidence interval, 2.0-17.1; P =0.02) and diastolic blood pressure by 7.2 mm Hg (95% confidence interval, 4.3-10.0; P <0.001) across all participants. Sunitinib resulted in increases in large artery stiffness (carotid-femoral pulse wave velocity) and resistive load (total peripheral resistance and arterial elastance; all P <0.05) and changes in pulsatile load (total arterial compliance and wave reflection). There were no statistically significant associations between vascular function and systolic dysfunction (left ventricular ejection fraction and longitudinal strain). However, baseline total peripheral resistance, arterial elastance, and aortic impedance were associated with worsening diastolic function and filling pressures over time. In patients with metastatic renal cell carcinoma, sunitinib resulted in early, significant increases in blood pressure, arterial stiffness, and resistive and pulsatile load within 3.5 weeks of treatment. Baseline vascular function parameters were associated with worsening diastolic but not systolic function. © 2018 American Heart Association, Inc.
Impact of American-style football participation on vascular function.
Kim, Jonathan H; Sher, Salman; Wang, Francis; Berkstresser, Brant; Shoop, James L; Galante, Angelo; Al Mheid, Ibhar; Ghasemzadeh, Nima; Hutter, Adolph M; Williams, B Robinson; Sperling, Laurence S; Weiner, Rory B; Quyyumi, Arshed A; Baggish, Aaron L
2015-01-15
Although hypertension is common in American-style football (ASF) players, the presence of concomitant vascular dysfunction has not been previously characterized. We sought to examine the impact of ASF participation on arterial stiffness and to compare metrics of arterial function between collegiate ASF participants and nonathletic collegiate controls. Newly matriculated collegiate athletes were studied longitudinally during a single season of ASF participation and were then compared with healthy undergraduate controls. Arterial stiffness was characterized using applanation tonometry (SphygmoCor). ASF participants (n = 32, 18.4 ± 0.5 years) were evenly comprised of Caucasians (n = 14, 44%) and African-Americans (n = 18, 56%). A single season of ASF participation led to an increase in central aortic pulse pressure (27 ± 4 vs 34 ± 8 mm Hg, p <0.001). Relative to controls (n = 47), pulse wave velocity was increased in ASF participants (5.6 ± 0.7 vs 6.2 ± 0.9 m/s, p = 0.002). After adjusting for height, weight, body mass index, systolic blood pressure, and diastolic blood pressure, ASF participation was independently predictive of increased pulse wave velocity (β = 0.33, p = 0.04). In conclusion, ASF participation leads to changes in central hemodynamics and increased arterial stiffness. Copyright © 2015 Elsevier Inc. All rights reserved.
Diaz, K M; Veerabhadrappa, P; Kashem, M A; Thakkar, S R; Feairheller, D L; Sturgeon, K M; Ling, C; Williamson, S T; Kretzschmar, J; Lee, H; Grimm, H; Babbitt, D M; Vin, C; Fan, X; Crabbe, D L; Brown, M D
2013-11-01
The purpose of this study was to investigate the association of visit-to-visit and 24-h blood pressure (BP) variability with markers of endothelial injury and vascular function. We recruited 72 African Americans who were non-diabetic, non-smoking and free of cardiovascular (CV) and renal disease. Office BP was measured at three visits and 24-h ambulatory BP monitoring was conducted to measure visit-to-visit and 24-h BP variability, respectively. The 5-min time-course of brachial artery flow-mediated dilation and nitroglycerin-mediated dilation were assessed as measures of endothelial and smooth muscle function. Fasted blood samples were analyzed for circulating endothelial microparticles (EMPs). Significantly lower CD31+CD42- EMPs were found in participants with high visit-to-visit systolic blood pressure (SBP) variability or high 24-h diastolic blood pressure (DBP) variability. Participants with high visit-to-visit DBP variability had significantly lower flow-mediated dilation and higher nitroglycerin-mediated dilation at multiple time-points. When analyzed as continuous variables, 24-h mean arterial pressure variability was inversely associated with CD62+ EMPs; visit-to-visit DBP variability was inversely associated with flow-mediated dilation normalized by smooth muscle function and was positively associated with nitroglycerin-mediated dilation; and 24-h DBP variability was positively associated with nitroglycerin-mediated dilation. All associations were independent of age, gender, body mass index and mean BP. In conclusion, in this cohort of African Americans visit-to-visit and 24-h BP variability were associated with measures of endothelial injury, endothelial function and smooth muscle function. These results suggest that BP variability may influence the pathogenesis of CV disease, in part, through influences on vascular health.
Current and future initiatives for vascular health management in clinical practice
Cameron, James D; Asmar, Roland; Struijker-Boudier, Harry; Shirai, Kohji; Sirenko, Yuriy; Kotovskaya, Yulia; Topouchian, Jirar
2013-01-01
Central arterial structure and function comprise a primary determinant of vascular health, and are integral to the important concept of ventriculo-vascular coupling or interaction. Central aortic stiffening is a major influence on central blood pressure, and directly relates to coronary perfusion. The joint session of the International Society of Vascular Health (Eastern Region) and the Ukrainian Congress of Cardiology was held in Kiev, Ukraine, on September 23, 2011; it provided an expert forum to discuss arterial evaluations, clinical applications, and progress toward translating arterial protection into cardiovascular benefits. The conclusions of the expert panel were: Aortic stiffness is not presently a treatment target but may be useful for substratifying cardiovascular risk in individuals in order to better target the intensity of conventional therapy, and it may be useful in assessing response to treatment.Crosstalk between macro- and microcirculation in hypertension has important implications for pharmacological treatment. An antihypertensive regimen should abolish the vicious cycle between the increased resistance in the microcirculation and the increased stiffness of the larger arteries. Such treatment should be based on drugs with multiple actions on the vascular tree, or on drug combinations that target the various segments of the arterial system.Several blood pressure-independent mechanisms of large artery stiffness exist. Future considerations for clinical understanding of large artery stiffness should involve new drugs and new evaluation methods – with a focus on vascular health, for the initiation of cardiovascular prevention, for newly designed studies for treatment evaluation, and for new studies of drug combinations.Arterial stiffening is a sign of cardiovascular aging and is a major factor affecting the biomechanics of large arteries. Arterial stiffness is an attractive therapeutic target in terms of vascular aging. Healthy lifestyle, physical exercise, and smoking cessation are the most effective ways of preventing and treating early vascular aging. Long-term effects of cardiovascular drugs on arterial stiffness need to be further investigated.The emerging clinical data on the cardio ankle vascular index (CAVI) technique of arterial health assessment is presented, showing that the CAVI is elevated in aging, coronary artery diseases, chronic kidney disease, hypertension, diabetes mellitus, smoking, and stress. The CAVI decreased with the administration of statins, angiotensin II receptor blocking agents, and calcium channel blockers. The CAVI is suggested as an important predictor of cardiovascular diseases. Future development of a clinical understanding of large artery stiffness is important and should include consideration of new drugs and new evaluation methods, with a focus on vascular health aimed at cardiovascular prevention. PMID:23745049
Doyon, Anke; Kracht, Daniela; Bayazit, Aysun K; Deveci, Murat; Duzova, Ali; Krmar, Rafael T; Litwin, Mieczyslaw; Niemirska, Anna; Oguz, Berna; Schmidt, Bernhard M W; Sözeri, Betul; Querfeld, Uwe; Melk, Anette; Schaefer, Franz; Wühl, Elke
2013-09-01
Carotid intima-media thickness (cIMT) and carotid artery distensibility are reliable screening methods for vascular alterations and the assessment of cardiovascular risk in adult and pediatric cohorts. We sought to establish an international reference data set for the childhood and adolescence period and explore the impact of developmental changes in body dimensions and blood pressure (BP) on carotid wall thickness and elasticity. cIMT, the distensibility coefficient, the incremental modulus of elasticity, and the stiffness index β were assessed in 1155 children aged 6 to 18 years and sex-specific reference charts normalized to age or height were constructed from 1051 nonobese and nonhypertensive children. The role of body dimensions, BP, and family history, as well as the association between cIMT and distensibility, was investigated. cIMT increased and distensibility decreased with age, height, body mass index, and BP. A significant sex difference was apparent from the age of 15 years. Age- and height-normalized cIMT and distensibility values differed in children who are short or tall for their age. By stepwise multivariate analysis, standardized systolic BP and body mass index were independently positively associated with cIMT SD scores (SDS). Systolic BP SDS independently predicted all distensibility measures. Distensibility coefficient SDS was negatively and β SDS positively associated with cIMT SDS, whereas incremental modulus of elasticity was independent of cIMT. Morphological and functional aspects of the common carotid artery are particularly influenced by age, body dimensions, and BP. The reference charts established in this study allow to accurately compare vascular phenotypes of children with chronic conditions with those of healthy children.
A-type potassium currents in smooth muscle.
Amberg, Gregory C; Koh, Sang Don; Imaizumi, Yuji; Ohya, Susumu; Sanders, Kenton M
2003-03-01
A-type currents are voltage-gated, calcium-independent potassium (Kv) currents that undergo rapid activation and inactivation. Commonly associated with neuronal and cardiac cell-types, A-type currents have also been identified and characterized in vascular, genitourinary, and gastrointestinal smooth muscle cells. This review examines the molecular identity, biophysical properties, pharmacology, regulation, and physiological function of smooth muscle A-type currents. In general, this review is intended to facilitate the comparison of A-type currents present in different smooth muscles by providing a comprehensive report of the literature to date. This approach should also aid in the identification of areas of research requiring further attention.
Distribution patterns in the native vascular flora of Iceland.
Wasowicz, Pawel; Pasierbiński, Andrzej; Przedpelska-Wasowicz, Ewa Maria; Kristinsson, Hörður
2014-01-01
The aim of our study was to reveal biogeographical patterns in the native vascular flora of Iceland and to define ecological factors responsible for these patterns. We analysed dataset of more than 500,000 records containing information on the occurrence of vascular plants. Analysis of ecological factors included climatic (derived from WORLDCLIM data), topographic (calculated from digital elevation model) and geological (bedrock characteristics) variables. Spherical k-means clustering and principal component analysis were used to detect biogeographical patterns and to study the factors responsible for them. We defined 10 biotic elements exhibiting different biogeographical patterns. We showed that climatic (temperature-related) and topographic variables were the most important factors contributing to the spatial patterns within the Icelandic vascular flora and that these patterns are almost completely independent of edaphic factors (bedrock type). Our study is the first one to analyse the biogeographical differentiation of the native vascular flora of Iceland.
Palpant, Nathan J; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M
2007-09-01
Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to establish methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody-tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies.
Palpant, Nathan J.; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M.
2007-01-01
Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to derive methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot, and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation, and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies. PMID:17706246
Moran, C; Tapp, R J; Hughes, A D; Magnussen, C G; Blizzard, L; Phan, T G; Beare, R; Witt, N; Venn, A; Münch, G; Amaratunge, B C; Srikanth, V
2016-01-01
It is uncertain whether small vessel disease underlies the relationship between Type 2 Diabetes Mellitus (T2DM) and brain atrophy. We aimed to study whether retinal vascular architecture, as a proxy for cerebral small vessel disease, may modify or mediate the associations of T2DM with brain volumes. In this cross-sectional study using Magnetic Resonance Imaging (MRI) scans and retinal photographs in 451 people with and without T2DM, we measured brain volumes, geometric measures of retinal vascular architecture, clinical retinopathy, and MRI cerebrovascular lesions. There were 270 people with (mean age 67.3 years) and 181 without T2DM (mean age 72.9 years). T2DM was associated with lower gray matter volume (p = 0.008). T2DM was associated with greater arteriolar diameter (p = 0.03) and optimality ratio (p = 0.04), but these associations were attenuated by adjustments for age and sex. Only optimality ratio was associated with lower gray matter volume (p = 0.03). The inclusion of retinal measures in regression models did not attenuate the association of T2DM with gray matter volume. The association of T2DM with lower gray matter volume was independent of retinal vascular architecture and clinical retinopathy. Retinal vascular measures or retinopathy may not be sufficiently sensitive to confirm a microvascular basis for T2DM-related brain atrophy.
Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads; Slingsby, Martina H Lundberg; Åkerström, Thorbjörn; Sylow, Lykke; Richter, Erik A; Hellsten, Ylva
2017-08-15
Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day -1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2%) and to 12 W of active exercise (by 9 ± 1%), indicating impaired vascular function. A reduced flow response to passive and active exercise was paralleled by a significant up-regulation of platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho family GTPase Rac1 protein expression in the muscle tissue, as well as an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. The phosphorylation status was not acutely altered with passive leg movement. These findings indicate that a regular intake of high levels of sucrose can impair vascular mechanotransduction and increase the oxidative stress potential, and suggest that dietary excessive sugar intake may contribute to the development of vascular disease. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Gen, Shikou; Inoue, Tsutomu; Nodaira, Yuka; Ikeda, Naofumi; Kobayashi, Kazuhiro; Watanabe, Yusuke; Kanno, Yoshihiko; Nakamoto, Hidetomo; Suzuki, Hiromichi
2008-01-01
In the present study, we examined the association between vascular and valvular calcification and the prognosis of patients on continuous ambulatory peritoneal dialysis (CAPD). Data were collected from the records of patients introduced onto CAPD therapy during 1999 - 2006 at the Department of Nephrology, Saitama Medical University. At the start of CAPD, cardiac and vascular echography were used to examine 162 patients (average age: 56 +/- 5 years; 58 men, 104 women; 43 with and 119 without diabetes) for evaluation of vascular and valvular calcification. Both vascular and valvular calcification were found in 32 patients. Vascular calcification was found in 16, and valvular calcification in 11. Over 5 years, 11 patients suffered from cardiovascular disease (7 with stroke, 4 with myocardial infarction). All of these patients had vascular or valvular calcification at the start of CAPD therapy. We also used Cox hazard analysis to examine values for Ca, P, Ca x P, intact parathyroid hormone (iPTH), and lipids. None of these values were independent contributory factors for incidence of cardiovascular disease in patients on CAPD. These data suggest the importance of vascular and valvular echography to evaluate patients on CAPD, especially at the start of CAPD therapy. Vascular and valvular calcification are important factors for determining the prognosis of patients on CAPD.
Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age☆
Sikka, Gautam; Miller, Karen L.; Steppan, Jochen; Pandey, Deepesh; Jung, Sung M.; Fraser, Charles D.; Ellis, Carla; Ross, Daniel; Vandegaer, Koenraad; Bedja, Djahida; Gabrielson, Kathleen; Walston, Jeremy D.; Berkowitz, Dan E.; Barouch, Lili A.
2013-01-01
Cardiovascular dysfunction is a primary independent predictor of age-related morbidity and mortality. Frailty is associated with activation of inflammatory pathways and fatigue that commonly presents and progresses with age. Interleukin 10 (IL-10), the cytokine synthesis inhibitory factor, is an anti-inflammatory cytokine produced by immune and non-immune cells. Homozygous deletion of IL-10 in mice yields a phenotype that is consistent with human frailty, including age-related increases in serum inflammatory mediators, muscular weakness, higher levels of IGF-1 at midlife, and early mortality. While emerging evidence suggests a role for IL-10 in vascular protection, a clear mechanism has not yet been elucidated. Methods In order to evaluate the role of IL-10 in maintenance of vascular function, force tension myography was utilized to access ex-vivo endothelium dependent vasorelaxation in vessels isolated from IL-10 knockout IL-10(tm/tm) and control mice. Pulse wave velocity ((PWV), index of stiffness) of vasculature was measured using ultrasound and blood pressure was measured using the tail cuff method. Echocardiography was used to elucidated structure and functional changes in the heart. Results Mean arterial pressures were significantly higher in IL-10(tm/tm) mice as compared to C57BL6/wild type (WT) controls. PWV was increased in IL-10(tm/tm) indicating stiffer vasculature. Endothelial intact aortic rings isolated from IL-10(tm/tm) mice demonstrated impaired vasodilation at low acetylcholine doses and vasoconstriction at higher doses whereas vasorelaxation responses were preserved in rings from WT mice. Cyclo-oxygenase (COX-2)/thromboxane A2 inhibitors improved endothelial dependent vasorelaxation and reversed vasoconstriction. Left ventricular end systolic diameter, left ventricular mass, isovolumic relaxation time, fractional shortening and ejection fraction were all significantly different in the aged IL-10(tm/tm) mice compared to WT mice. Conclusion Aged IL-10(tm/tm) mice have stiffer vessels and decreased vascular relaxation due to an increase in eicosanoids, specifically COX-2 activity and resultant thromboxane A2 receptor activation. Our results also suggest that aging IL-10(tm/tm) mice have an increased heart size and impaired cardiac function compared to age-matched WT mice. While further studies will be necessary to determine if this age-related phenotype develops as a result of inflammatory pathway activation or lack of IL-10, it is essential for maintaining the vascular compliance and endothelial function during the aging process. Given that a similar cardiovascular phenotype is present in frail, older adults, these findings further support the utility of the IL-10(tm/tm) mouse as a model of frailty. PMID:23159957
Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming
2016-07-01
Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4-phenylbutyrate increased the nuclear levels of nuclear factor-E2-related factor 2, and decreased the nuclear levels of nuclear factor κB in hypoxic vascular smooth muscle cells. 4-phenylbutyrate has beneficial effects for traumatic hemorrhagic shock including improving animal survival and protecting organ function. These beneficial effects of 4-phenylbutyrate in traumatic hemorrhagic shock result from its vascular function protection via attenuation of the oxidative stress and mitochondrial permeability transition pore opening. Nuclear factor-E2-related factor 2 and nuclear factor-κB may be involved in 4-phenylbutyrate-mediated inhibition of oxidative stress.
Goto, Toshihiko; Wakami, Kazuaki; Mori, Kento; Kikuchi, Shohei; Fukuta, Hidekatsu; Ohte, Nobuyuki
2016-09-01
Increased aortic stiffness may be an important cause of acute heart failure (AHF). Clinical scenario (CS), which classifies the pathophysiology of AHF based on the initial systolic blood pressure (sBP), was proposed to provide the most appropriate therapy for AHF patients. In CS, elevated aortic stiffness, vascular failure, has been considered as a feature of patients categorized as CS1 (sBP > 140 mmHg at initial presentation). However, whether elevated aortic stiffness, vascular failure, is present in such patients has not been fully elucidated. Therefore, we assessed aortic stiffness in AHF patients using the cardio-ankle vascular index (CAVI), which is considered to be independent of instantaneous blood pressure. Sixty-four consecutive AHF patients (mean age, 70.6 ± 12.8 years; 39 men) were classified with CS, based on their initial sBP: CS1: sBP > 140 mmHg (n = 29); CS2: sBP 100-140 mmHg (n = 22); and CS3: sBP < 100 mmHg (n = 13). There were significant group differences in CAVI (CS1 vs. CS2 vs. CS3: 9.7 ± 1.4 vs. 8.4 ± 1.7 vs. 8.3 ± 1.7, p = 0.006, analysis of variance). CAVI was significantly higher in CS1 than in CS2 (p = 0.02) and CS3 (p = 0.04). CAVI did not significantly correlate with sBP at the time of measurement of CAVI (r = 0.24 and p = 0.06). Aortic stiffness assessed using blood pressure-independent methodology apparently increased in CS1 AHF patients. We conclude that vascular failure is a feature of CS1 AHF initiation.
Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.
Jain, Swati; Sharma, Bhupesh
2015-12-01
Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.
Wagle, Jørgen; Farner, Lasse; Flekkøy, Kjell; Bruun Wyller, Torgeir; Sandvik, Leiv; Fure, Brynjar; Stensrød, Brynhild; Engedal, Knut
2011-01-01
To identify prognostic factors associated with functional outcome at 13 months in a sample of stroke rehabilitation patients. Specifically, we hypothesized that cognitive functioning early after stroke would predict long-term functional outcome independently of other factors. 163 stroke rehabilitation patients underwent a structured neuropsychological examination 2-3 weeks after hospital admittance, and their functional status was subsequently evaluated 13 months later with the modified Rankin Scale (mRS) as outcome measure. Three predictive models were built using linear regression analyses: a biological model (sociodemographics, apolipoprotein E genotype, prestroke vascular factors, lesion characteristics and neurological stroke-related impairment); a functional model (pre- and early post-stroke cognitive functioning, personal and instrumental activities of daily living, ADL, and depressive symptoms), and a combined model (including significant variables, with p value <0.05, from the biological and functional models). A combined model of 4 variables best predicted long-term functional outcome with explained variance of 49%: neurological impairment (National Institute of Health Stroke Scale; β = 0.402, p < 0.001), age (β = 0.233, p = 0.001), post-stroke cognitive functioning (Repeatable Battery of Neuropsychological Status, RBANS; β = -0.248, p = 0.001) and prestroke personal ADL (Barthel Index; β = -0.217, p = 0.002). Further linear regression analyses of which RBANS indexes and subtests best predicted long-term functional outcome showed that Coding (β = -0.484, p < 0.001) and Figure Copy (β = -0.233, p = 0.002) raw scores at baseline explained 42% of the variance in mRS scores at follow-up. Early post-stroke cognitive functioning as measured by the RBANS is a significant and independent predictor of long-term functional post-stroke outcome. Copyright © 2011 S. Karger AG, Basel.
Relations of mitochondrial genetic variants to measures of vascular function.
Fetterman, Jessica L; Liu, Chunyu; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M; Levy, Daniel
2018-05-01
Mitochondrial genetic variation with resultant alterations in oxidative phosphorylation may influence vascular function and contribute to cardiovascular disease susceptibility. We assessed relations of peptide-encoding variants in the mitochondrial genome with measures of vascular function in Framingham Heart Study participants. Of 258 variants assessed, 40 were predicted to have functional consequences by bioinformatics programs. A maternal pattern of heritability was estimated to contribute to the variability of aortic stiffness. A putative association with a microvascular function measure was identified that requires replication. The methods we have developed can be applied to assess the relations of mitochondrial genetic variation to other phenotypes. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Wray, D. Walter; Amann, Markus
2016-01-01
The aging process appears to be a precursor to many age-related diseases, perhaps the most impactful of which is cardiovascular disease (CVD). Heart disease, a manifestation of CVD, is the leading cause of death in the USA, and heart failure (HF), a syndrome that develops as a consequence of heart disease, now affects almost six million American. Importantly, as this is an age-related disease, this number is likely to grow along with the ever-increasing elderly population. Hallmarks of the aging process and HF patients with a reduced ejection fraction (HFrEF) include exercise intolerance, premature fatigue, and limited oxygen delivery and utilization, perhaps as a consequence of diminished peripheral vascular function. Free radicals and oxidative stress have been implicated in this peripheral vascular dysfunction, as a redox imbalance may directly impact the function of the vascular endothelium. This review aims to bring together studies that have examined the impact of oxidative stress on peripheral vascular function and oxygen delivery and utilization with both healthy aging and HFrEF. PMID:27392715
Effects of cranberry juice consumption on vascular function in patients with coronary artery disease
USDA-ARS?s Scientific Manuscript database
Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...
Impaired vascular function in normoglycemic mice prone to autoimmune diabetes: role of nitric oxide.
Traupe, Tobias; Nett, Philipp C; Frank, Beat; Tornillo, Luigi; Hofmann-Lehmann, Regina; Terracciano, Luigi M; Barton, Matthias
2007-02-28
Type 1 diabetes is an immuno-inflammatory condition which increases the risk of cardiovascular disease, particularly in young adults. This study investigated whether vascular function is altered in mice prone to autoimmune diabetes and whether the nitric oxide (NO)-cyclic GMP axis is involved. Aortic rings suspended in organ chambers and precontracted with phenylephrine were exposed to cumulative concentrations of acetylcholine. To investigate the role of NO, some experiments were performed in the presence of either 1400W (N-(3-aminomethyl)benzyl-acetamidine hydrochloride), a selective inhibitor of the iNOS-isoform, L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride), an inhibitor of all three NOS-isoforms, or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a selective inhibitor of guanylate cyclase. Moreover, contractility to phenylephrine, big endothelin-1, and endothelin-1 was assessed and histological analysis and iNOS immunohistochemistry were performed. Endothelium-dependent relaxation was reduced in prediabetic NOD mice (78+/-4 vs. 88+/-2%, respectively, P<0.05 vs. control) despite normal plasma glucose levels (n.s. vs. control). Preincubation with 1400W further attenuated responses in prediabetic (P<0.05 vs. untreated) but not in diabetic or in control mice. In contrast, basal NO bioactivity remained unaffected until the onset of diabetes in NOD mice. Contractile responses to big endothelin-1 and endothelin-1 were reduced in prediabetic animals (P<0.05 vs. control), whereas in diabetic mice only responses to big endothelin-1 were decreased (P<0.05 vs. control). These data demonstrate that endothelium-dependent and -independent vascular function in NOD mice is abnormal already in prediabetes in the absence of structural injury. Early proinflammatory activation due to iNOS in diabetes-prone NOD mice appears to be one of the mechanisms contributing to impaired vasoreactivity.
Bora-Singhal, Namrata; Nguyen, Jonathan; Schaal, Courtney; Perumal, Deepak; Singh, Sandeep; Coppola, Domenico; Chellappan, Srikumar
2015-06-01
Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression. © 2015 AlphaMed Press.
Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice
Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.
2014-01-01
Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (P<0.05). Myostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of myostatin improves NO‐, but not PGI2‐ or EDHF‐mediated vasodilation in obese mice; this vasodilation improvement is mediated by down‐regulation of superoxide. PMID:24965025
Klonizakis, Markos; Alkhatib, Ahmad; Middleton, Geoff
2014-09-01
Preserving endothelial function and microvascular integrity is suggested to reduce cardiovascular disease risk. It was recently shown that the age-dependent decline in endothelial and microvascular integrity may be reversed when combining exercise with Mediterranean diet (MD) in an 8-week intervention. The present study investigates whether the risk-reduction improvement in microcirculatory and cardiorespiratory functions are sustained in this age-group after a 1-year follow-up. Twenty sedentary healthy participants (age, 55±4years) from the original study underwent cardiopulmonary exercise tolerance test and were assessed for their upper- and lower-limb vascular endothelial cutaneous vascular conductance (CVC) using laser Doppler fluximetry (LDF) with endothelium-dependent [ACh (acetylcholine chloride)] and endothelium-independent [SNP (sodium nitroprusside)] vasodilation, 1year after completing the intervention. Both MD and exercise groups appeared to have an improved microvascular responses, in comparison to baseline as far as ACh is concerned. Exploring the interactions between the time point and the original group, however, revealed a stronger improvement in the MD group in comparison to the exercise group, for ACh (p=0.04, d=0.41). In the upper body, the time point and group interaction for ACh, indicated a better improvement for MD, without however statistical significance (p=0.07, d=0.24). Additionally, cardiorespiratory improvement in ventilatory threshold was maintained, 1year after (12.2±3.0 vs. 13.2±3.2ml∙kg(-1)∙min(-1), p<0.05). The original improvements from an 8-week exercise and MD intervention were still evident, particularly in the microcirculatory and cardiorespiratory assessments, 1year after the initial study. This suggests that a brief intervention combining MD with exercise in this high-risk group promises long-term health benefits. Copyright © 2014 Elsevier Inc. All rights reserved.
Tanaka, Atsushi; Kawaguchi, Atsushi; Tomiyama, Hirofumi; Ishizu, Tomoko; Matsumoto, Chisa; Higashi, Yukihito; Takase, Bonpei; Suzuki, Toru; Ueda, Shinichiro; Yamazaki, Tsutomu; Furumoto, Tomoo; Kario, Kazuomi; Inoue, Teruo; Koba, Shinji; Takemoto, Yasuhiko; Hano, Takuzo; Sata, Masataka; Ishibashi, Yutaka; Maemura, Koji; Ohya, Yusuke; Furukawa, Taiji; Ito, Hiroshi; Yamashina, Akira; Node, Koichi
2018-06-06
The endothelial dysfunction-arterial stiffness-atherosclerosis continuum plays an important pathophysiological role in hypertension. The aim of this study was to investigate the cross-sectional association between serum uric acid (SUA) and vascular markers related to this continuum, and to assess the longitudinal association between SUA and endothelial function that represents the initial step of the continuum. We evaluated the baseline associations between SUA levels and vascular markers that included flow-mediated vasodilatation (FMD), brachial-ankle pulse wave velocity (baPWV), and common carotid artery intima-media thickness (CCA-IMT) in 648 subjects receiving antihypertensive treatment. The longitudinal association between baseline SUA levels and FMD measured at 1.5 and 3 yr of follow-up was also investigated. At baseline, modest, but significant correlations were observed between SUA and FMD in females (r = -0.171), baPWV in males with SUA >368.78 μmol/L (r = -0.122) and in females with a SUA level ≤ 362.83 μmol/L (r = 0.217), mean CCA-IMT in females with a SUA level ≤ 333.09 μmol/L (r = 0.139), and max CCA-IMT in females with SUA level ≤ 333.09 μmol/L (r = 0.138). A longitudinal association between SUA and FMD was less observed in males. In females, the baseline SUA was associated significantly with FMD values at 1.5 yr (r = -0.211), and SUA levels >237.92 μmol/L were associated significantly and independently with FMD values at 3 yr (r = -0.166). Lower SUA levels were associated with better vascular markers of the continuum, especially in females. Furthermore, we observed a longitudinal association between SUA and endothelial function, suggesting SUA level may be a potential marker of the continuum in hypertension. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters.
Hunter, Amanda L; Unosson, Jon; Bosson, Jenny A; Langrish, Jeremy P; Pourazar, Jamshid; Raftis, Jennifer B; Miller, Mark R; Lucking, Andrew J; Boman, Christoffer; Nyström, Robin; Donaldson, Kenneth; Flapan, Andrew D; Shah, Anoop S V; Pung, Louis; Sadiktsis, Ioannis; Masala, Silvia; Westerholm, Roger; Sandström, Thomas; Blomberg, Anders; Newby, David E; Mills, Nicholas L
2014-12-09
Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m³ particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4-6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all). Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.
Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane
2016-05-01
The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.
Merino, Jordi; Kones, Richard; Ferré, Raimon; Plana, Núria; Girona, Josefa; Aragonés, Gemma; Ibarretxe, Daiana; Heras, Mercedes; Masana, Luis
2014-01-01
Low carbohydrate diets have become increasingly popular for weight loss. Although they may improve some metabolic markers, particularly in type 2 diabetes mellitus (T2D) or metabolic syndrome (MS), their net effect on vascular function remains unclear. Evaluate the relation between dietary macronutrient composition and the small artery reactive hyperaemia index (saRHI), a marker of small artery vascular function, in a cohort of MS patients. This cross-sectional study included 160 MS patients. Diet was evaluated by a 3-day food-intake register and reduced to a novel low-carbohydrate diet score (LCDS). Physical examination, demographic, biochemical and anthropometry parameters were recorded, and saRHI was measured in each patient. Individuals in the lowest LCDS quartile (Q1; 45% carbohydrate, 19% protein, 31% fat) had higher saRHI values than those in the top quartile (Q4; 30% carbohydrate, 25% protein, 43% fat) (1.84±0.42 vs. 1.55±0.25, P=.012). These results were similar in T2D patients (Q1=1.779±0.311 vs. Q4=1.618±0.352, P=.011) and also in all of the MS components, except for low HDLc. Multivariate analysis demonstrated that individuals in the highest LCDS quartile, that is, consuming less carbohydrates, had a significantly negative coefficient of saRHI which was independent of confounders (HR: -0.747; 95%CI: 0.201, 0.882; P=.029). These data suggest that a dietary pattern characterized by a low amount of carbohydrate, but reciprocally higher amounts of fat and protein, is associated with poorer vascular reactivity in patients with MS and T2D. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.
Sudo, Felipe Kenji; Amado, Patricia; Alves, Gilberto Sousa; Laks, Jerson; Engelhardt, Eliasz
2017-01-01
ABSTRACT. Background. Subcortical Vascular Cognitive Impairment (SVCI) is a clinical continuum of vascular-related cognitive impairment, including Vascular Mild Cognitive Impairment (VaMCI) and Vascular Dementia. Deficits in Executive Function (EF) are hallmarks of the disorder, but the best methods to assess this function have yet to be determined. The insidious and almost predictable course of SVCI and the multidimensional concept of EF suggest that a temporal dissociation of impairments in EF domains exists early in the disorder. Objective: This study aims to review and analyze data from the literature about performance of VaMCI patients on the most used EF tests through a meta-analytic approach. Methods: Medline, Web of Knowledge and PsycINFO were searched, using the terms: “vascular mild cognitive impairment” OR “vascular cognitive impairment no dementia” OR “vascular mild neurocognitive disorder” AND “dysexecutive” OR “executive function”. Meta-analyses were conducted for each of the selected tests, using random-effect models. Results: Systematic review showed major discrepancies among the results of the studies included. Meta-analyses evidenced poorer performance on the Trail-Making Test part B and the Stroop color test by VaMCI patients compared to controls. Conclusion: A continuum of EF impairments has been proposed in SVCI. Early deficits appear to occur in cognitive flexibility and inhibitory control. PMID:29354217
Schreuder, Tim H A; Duncker, Dirk J; Hopman, Maria T E; Thijssen, Dick H J
2014-11-01
In type 2 diabetes patients, endothelin (ET) receptor blockade may enhance blood flow responses to exercise training. The combination of exercise training and ET receptor blockade may represent a more potent stimulus than training alone to improve vascular function, physical fitness and glucose homeostasis. We assessed the effect of an 8 week exercise training programme combined with either ET blockade or placebo on vasculature, fitness and glucose homeostasis in people with type 2 diabetes. In a double-blind randomized controlled trial, brachial endothelium-dependent and ‑independent dilatation (using flow-mediated dilatation and glyceryl trinitrate, respectively), glucose homeostasis (using Homeostasis Model Assessment for Insulin Resistance (HOMA-IR)) and physical fitness (maximal cycling test) were assessed in 18 men with type 2 diabetes (60 ± 6 years old). Subjects underwent an 8 week exercise training programme, with half of the subjects receiving ET receptor blockade (bosentan) and the other half a placebo, followed by reassessment of the tests above. Exercise training improved physical fitness to a similar extent in both groups, but we did not detect changes in vascular function in either group. This study suggests that there is no adaptation in brachial and femoral artery endothelial function after 8 weeks of training in type 2 diabetes patients. Endothelin receptor blockade combined with exercise training does not additionally alter conduit artery endothelial function or physical fitness in type 2 diabetes. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Pileggi, Antonello; Molano, R Damaris; Ricordi, Camillo; Zahr, Elsie; Collins, Jill; Valdes, Rafael; Inverardi, Luca
2006-05-15
Transplantation of pancreatic islets for the treatment of type 1 diabetes allows for physiologic glycemic control and insulin-independence when sufficient islets are implanted via the portal vein into the liver. Intrahepatic islet implantation requires specific infrastructure and expertise, and risks inherent to the procedure include bleeding, thrombosis, and elevation of portal pressure. Additionally, the relatively higher drug metabolite concentrations in the liver may contribute to the delayed loss of graft function of recent clinical trials. Identification of alternative implantation sites using biocompatible devices may be of assistance improving graft outcome. A desirable bioartificial pancreas should be easy to implant, biopsy, and retrieve, while allowing for sustained graft function. The subcutaneous (SC) site may require a minimally invasive procedure performed under local anesthesia, but its use has been hampered so far by lack of early vascularization, induction of local inflammation, and mechanical stress on the graft. Chemically diabetic rats received syngeneic islets into the liver or SC into a novel biocompatible device consisting of a cylindrical stainless-steel mesh. The device was implanted 40 days prior to islet transplantation to allow embedding by connective tissue and neovascularization. Reversal of diabetes and glycemic control was monitored after islet transplantation. Syngeneic islets transplanted into a SC, neovascularized device restored euglycemia and sustained function long-term. Removal of graft-bearing devices resulted in hyperglycemia. Explanted grafts showed preserved islets and intense vascular networks. Ease of implantation, biocompatibility, and ability to maintain long-term graft function support the potential of our implantable device for cellular-based reparative therapies.
Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh
2015-01-01
SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257
Stonehouse, Welma; Brinkworth, Grant D; Thompson, Campbell H; Abeywardena, Mahinda Y
2016-11-01
In vitro, ex vivo and animal studies suggest palm-based tocotrienols and carotenes enhance vascular function, but limited data in humans exists. The aim was to examine the effects of palm-tocotrienols (TRF- 80) and palm-carotene (CC-60) supplementation on vascular function and cardiovascular disease (CVD) risk factors in adults at increased risk of impaired vascular function. Ninety men and women (18-70 yr, 20-45 kg/m 2 ) with type 2 diabetes, impaired fasting glucose and/or elevated waist circumference were randomised to consume either TRF-80 (420 mg/day tocotrienol + 132 mg/day tocopherol), CC-60 (21 mg/day carotenes) or placebo (palm olein) supplements for 8 weeks. Brachial artery flow-mediated dilation (FMD), other physiological and circulatory markers of vascular function, lipid profiles, glucose, insulin and inflammatory markers were assessed pre- and post-supplementation. Pairwise comparisons were performed using mixed effects longitudinal models (n = 87, n = 3 withdrew before study commencement). Plasma α- and β-carotene and α-, δ- and γ-tocotrienol concentrations increased in CC-60 and TRF-80 groups, respectively, compared to placebo (mean ± SE difference in total plasma carotene change between CC-60 and placebo: 1.5 ± 0.13 μg/ml, p < 0.0001; total plasma tocotrienol change between TRF-80 and placebo: 0.36 ± 0.05 μg/ml, p < 0.0001). Neither FMD (treatment x time effect for CC-60 vs. placebo, p = 0.71; TRF-80 vs. placebo, p = 0.80) nor any other vascular function and CVD outcomes were affected by treatments. CC-60 and TRF-80 supplementation increased bioavailability of palm-based carotenes and tocotrienols but had no effects, superior or detrimental, on vascular function or CVD risk factors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.
2016-01-01
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223
The Nature of Episodic Memory Deficits in MCI with and without Vascular Burden
ERIC Educational Resources Information Center
Villeneuve, Sylvia; Massoud, Fadi; Bocti, Christian; Gauthier, Serge; Belleville, Sylvie
2011-01-01
This study measured episodic memory deficits in individuals with mild cognitive impairment (MCI) as a function of their vascular burden. Vascular burden was determined clinically by computing the number of vascular risk factors and diseases and neuroradiologically by assessing the presence and severity of white matter lesions (WML). Strategic…
Notch Signaling in Vascular Smooth Muscle Cells
Baeten, J.T.; Lilly, B.
2018-01-01
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801
Zhang, Baichen; Tolstikov, Vladimir; Turnbull, Colin; Hicks, Leslie M.; Fiehn, Oliver
2010-01-01
Cucurbitaceous plants (cucurbits) have long been preferred models for studying phloem physiology. However, these species are unusual in that they possess two different phloem systems, one within the main vascular bundles [fascicular phloem (FP)] and another peripheral to the vascular bundles and scattered through stem and petiole cortex tissues [extrafascicular phloem (EFP)]. We have revisited the assumption that the sap released after shoot incision originates from the FP, and also investigated the long-standing question of why the sugar content of this sap is ~30-fold less than predicted for requirements of photosynthate delivery. Video microscopy and phloem labeling experiments unexpectedly reveal that FP very quickly becomes blocked upon cutting, whereas the extrafascicular phloem bleeds for extended periods. Thus, all cucurbit phloem sap studies to date have reported metabolite, protein, and RNA composition and transport in the relatively minor extrafascicular sieve tubes. Using tissue dissection and direct sampling of sieve tube contents, we show that FP in fact does contain up to 1 M sugars, in contrast to low-millimolar levels in the EFP. Moreover, major phloem proteins in sieve tubes of FP differ from those that predominate in the extrafascicular sap, and include several previously uncharacterized proteins with little or no homology to databases. The overall compositional differences of the two phloem systems strongly indicate functional isolation. On this basis, we propose that the fascicular phloem is largely responsible for sugar transport, whereas the extrafascicular phloem may function in signaling, defense, and transport of other metabolites. PMID:20566864
Thompson, Abby K.; Newens, Katie J.; Jackson, Kim G.; Wright, John; Williams, Christine M.
2012-01-01
Our objective was to determine whether the endothelial nitric oxide synthase (eNOS) Glu298Asp polymorphism influences vascular response to raised NEFA enriched with saturated fatty acids (SFA) or long-chain (LC) n-3 polyunsaturated fatty acids (PUFA). Subjects were prospectively recruited for genotype (Glu298, n = 30 and Asp298, n = 29; balanced for age and gender) consumed SFA on two occasions, with and without the substitution of 0.07 g fat/kg body weight with LC n-3 PUFA, and with heparin infusion to elevate NEFA. Endothelial function was measured before and after NEFA elevation (240 min), with blood samples taken every 30 min. Flow-mediated dilation (FMD) decreased following SFA alone and increased following SFA+LC n-3 PUFA. There were 2-fold differences in the change in FMD response to the different fat loads between the Asp298 and Glu298 genotypes (P = 0.002) and between genders (P < 0.02). Sodium nitroprusside-induced reactivity, measured by laser Doppler imaging with iontophoresis, was significantly greater with SFA+LC n-3 PUFA in all female subjects (P < 0.001) but not in males. Elevated NEFA influences both endothelial-dependent and endothelial-independent vasodilation during the postprandial phase. Effects of fat composition appear to be genotype and gender dependent, with the greatest difference in vasodilatory response to the two fat loads seen in the Asp298 females. PMID:22847178
Haynes, Andrew; Linden, Matthew D; Chasland, Lauren C; Nosaka, Kazunori; Maiorana, Andrew; Dawson, Ellen A; Dembo, Lawrence H; Naylor, Louise H; Green, Daniel J
2017-06-01
Evidence-based guidelines recommend exercise therapy for patients with chronic heart failure (CHF). Such patients have increased atherothrombotic risk. Exercise can transiently increase platelet activation and reactivity and decrease vascular function in healthy participants, although data in CHF are scant. Eccentric (ECC) cycling is a novel exercise modality that may be particularly suited to patients with CHF, but the acute impacts of ECC cycling on platelet and vascular function are currently unknown. Our null hypothesis was that ECC and concentric (CON) cycling, performed at matched external workloads, would not induce changes in platelet or vascular function in patients with CHF. Eleven patients with heart failure with reduced ejection fraction (HFrEF) took part in discrete bouts of ECC and CON cycling. Before and immediately after exercise, vascular function was assessed by measuring diameter and flow-mediated dilation (FMD) of the brachial artery. Platelet function was measured by the flow cytometric determination of glycoprotein IIb/IIIa activation and granule exocytosis in the presence and absence of platelet agonists. ECC cycling increased baseline artery diameter (pre: 4.0 ± 0.8 mm vs. post: 4.2 ± 0.7 mm; P = 0.04) and decreased FMD%. When changes in baseline artery diameter were accounted for, the decrease in FMD post-ECC cycling was no longer significant. No changes were apparent after CON. Neither ECC nor CON cycling resulted in changes to any platelet-function measures (all P > 0.05). These results suggest that both ECC and CON cycling, at a moderate intensity and short duration, can be performed by patients with HFrEF without detrimental impacts on vascular or platelet function. NEW & NOTEWORTHY This is the first evidence to indicate that eccentric (ECC) cycling can be performed relatively safely by patients with chronic heart failure (CHF), as it did not result in impaired vascular or platelet function compared with conventional cycling. This is important, as acute exercise can transiently increase atherothrombotic risk, and ECC cycling is a novel exercise modality that may be particularly suited to patients with CHF. Copyright © 2017 the American Physiological Society.
Fernandez-Gonzalez, Angeles; Alex Mitsialis, S.; Liu, Xianlan
2012-01-01
Bronchopulmonary dysplasia (BPD) is characterized by simplified alveolarization and arrested vascular development of the lung with associated evidence of endothelial dysfunction, inflammation, increased oxidative damage, and iron deposition. Heme oxygenase-1 (HO-1) has been reported to be protective in the pathogenesis of diseases of inflammatory and oxidative etiology. Because HO-1 is involved in the response to oxidative stress produced by hyperoxia and is critical for cellular heme and iron homeostasis, it could play a protective role in BPD. Therefore, we investigated the effect of HO-1 in hyperoxia-induced lung injury using a neonatal transgenic mouse model with constitutive lung-specific HO-1 overexpression. Hyperoxia triggered an increase in pulmonary inflammation, arterial remodeling, and right ventricular hypertrophy that was attenuated by HO-1 overexpression. In addition, hyperoxia led to pulmonary edema, hemosiderosis, and a decrease in blood vessel number, all of which were markedly improved in HO-1 overexpressing mice. The protective vascular response may be mediated at least in part by carbon monoxide, due to its anti-inflammatory, antiproliferative, and antiapoptotic properties. HO-1 overexpression, however, did not prevent alveolar simplification nor altered the levels of ferritin and lactoferrin, proteins involved in iron binding and transport. Thus the protective mechanisms elicited by HO-1 overexpression primarily preserve vascular growth and barrier function through iron-independent, antioxidant, and anti-inflammatory pathways. PMID:22287607
Predicted shortage of vascular surgeons in the United Kingdom: A matter for debate?
Harkin, D W; Beard, J D; Shearman, C P; Wyatt, M G
2016-10-01
Vascular surgery became a new independent surgical specialty in the United Kingdom (UK) in 2013. In this matter for debate we discuss the question, is there a "shortage of vascular surgeons in the United Kingdom?" We used data derived from the "Vascular Surgery United Kingdom Workforce Survey 2014", NHS Employers Electronic Staff Records (ESR), and the National Vascular Registry (NVR) surgeon-level public report to estimate current and predict future workforce requirements. We estimate there are approximately 458 Consultant Vascular Surgeons for the current UK population of 63 million, or 1 per 137,000 population. In several UK Regions there are a large number of relatively small teams (3 or less) of vascular surgeons working in separate NHS Trusts in close geographical proximity. In developed countries, both the number and complexity of vascular surgery procedures (open and endovascular) per capita population is increasing, and concerns have been raised that demand cannot be met without a significant expansion in numbers of vascular surgeons. Additional workforce demand arises from the impact of population growth and changes in surgical work-patterns with respect to gender, working-life-balance and 7-day services. We predict a future shortage of Consultant Vascular Surgeons in the UK and recommend an increase in training numbers and an expansion in the UK Consultant Vascular Surgeon workforce to accommodate population growth, facilitate changes in work-patterns and to create safe sustainable services. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Liu, Xiangju; Qiu, Jie; Zhao, Shaohua; You, Beian; Ji, Xiang; Wang, Yan; Cui, Xiaopei; Wang, Qian; Gao, Haiqing
2012-11-01
Recent studies indicate that chronic ouabain treatment leads to hypertension and hypertensive vascular remodeling. Grape seed proanthocyanidin extract (GSPE) has been reported to be effective in treating arteriosclerosis, while little is known about its effect on systolic blood pressure and vascular remodeling. In this study, the effects of GSPE on systolic blood pressure and vascular remodeling were analyzed by treating ouabain-induced hypertensive rats with GSPE (250 mg/kg·d). The expression of nitric oxide (NO) and endothelin-1 (ET-1) in thoracic aorta was examined by ELISA; the mRNA and protein levels of TGF-β1 were detected using real-time PCR and western blotting, respectively. The results showed that the systolic blood pressure was significantly decreased following treatment with GSPE, with blocked vascular remodeling. The ET-1 content was reduced while NO production was increased in the GSPE group, which showed improved vascular endothelial function. Moreover, GSPE also reduced TGF-β1 expression in the thoracic aorta, which is a determinant in vascular remodeling. In conclusion, GSPE antagonized ouabain-induced hypertension and vascular remodeling and is recommended as a potential anti-hypertensive agent for patients with hypertensive vascular diseases.
Bachschmid, Markus M.; Schildknecht, Stefan; Matsui, Reiko; Zee, Rebecca; Haeussler, Dagmar; Cohen, Richard A.; Pimental, David; van der Loo, Bernd
2013-01-01
Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the ‘free radical theory of aging’ but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis. PMID:22380696
2017-01-01
Endothelial nitric-oxide synthase (eNOS) and its bioactive product, nitric oxide (NO), mediate many endothelial cell functions, including angiogenesis and vascular permeability. For example, vascular endothelial growth factor (VEGF)-mediated angiogenesis is inhibited upon reduction of NO bioactivity both in vitro and in vivo. Moreover, genetic disruption or pharmacological inhibition of eNOS attenuates angiogenesis during tissue repair, resulting in delayed wound closure. These observations emphasize that eNOS-derived NO can promote angiogenesis. Intriguingly, eNOS activity is regulated by nitric-oxide synthase trafficking inducer (NOSTRIN), which sequesters eNOS, thereby attenuating NO production. This has prompted significant interest in NOSTRIN's function in endothelial cells. We show here that NOSTRIN affects the functional transcriptome of endothelial cells by down-regulating several genes important for invasion and angiogenesis. Interestingly, the effects of NOSTRIN on endothelial gene expression were independent of eNOS activity. NOSTRIN also affected the expression of secreted cytokines involved in inflammatory responses, and ectopic NOSTRIN overexpression functionally restricted endothelial cell proliferation, invasion, adhesion, and VEGF-induced capillary tube formation. Furthermore, NOSTRIN interacted directly with TNF receptor-associated factor 6 (TRAF6), leading to the suppression of NFκB activity and inhibition of AKT activation via phosphorylation. Interestingly, TNF-α-induced NFκB pathway activation was reversed by NOSTRIN. We found that the SH3 domain of NOSTRIN is involved in the NOSTRIN-TRAF6 interaction and is required for NOSTRIN-induced down-regulation of endothelial cell proteins. These results have broad biological implications, as aberrant NOSTRIN expression leading to deactivation of the NFκB pathway, in turn triggering an anti-angiogenic cascade, might inhibit tumorigenesis and cancer progression. PMID:28235804
Kerwin, Diana R.; Zhang, Yinghua; Kotchen, Jane Morley; Espeland, Mark A.; Van Horn, Linda; McTigue, Kathleen M.; Robinson, Jennifer G.; Powell, Lynda; Kooperberg, Charles; Coker, Laura H.; Hoffmann, Raymond
2010-01-01
OBJECTIVES To determine if body weight (BMI) is independently associated with cognitive function in postmenopausal women and the relationship between body fat distribution as estimated by waist-hip-ratio (WHR) and cognitive function. DESIGN Cross-sectional data analysis SETTING Baseline data from the Women's Health Initiative (WHI) hormone trials. PARTICIPANTS 8745 postmenopausal women aged 65–79 years, free of clinical evidence of dementia and completed baseline evaluation in the Women's Health Initiative (WHI) hormone trials. MEASUREMENTS Participants completed a Modified Mini-Mental State Examination (3MSE), health and lifestyle questionnaires, and standardized measurements of height, weight, body circumferences and blood pressure. Statistical analysis of associations between 3MSE scores, BMI and WHR after controlling for known confounders. RESULTS With the exception of smoking and exercise, vascular disease risk factors, including hypertension, waist measurement, heart disease and diabetes, were significantly associated with 3MSE score and were included as co-variables in subsequent analyses. BMI was inversely related to 3MSE scores, for every 1 unit increase in BMI, 3MSE decrease 0.988 (p=.0001) after adjusting for age, education and vascular disease risk factors. BMI had the most pronounced association with poorer cognitive functioning scores among women with smaller waist measurements. Among women with the highest WHR, cognitive scores increased with BMI. CONCLUSION Increasing BMI is associated with poorer cognitive function in women with smaller WHR. Higher WHR, estimating central fat mass, is associated with higher cognitive function in this cross-sectional study. Further research is needed to clarify the mechanism for this association. PMID:20646100
Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice
Andrukhova, Olena; Slavic, Svetlana; Zeitz, Ute; Riesen, Sabine C.; Heppelmann, Monika S.; Ambrisko, Tamas D.; Markovic, Mato; Kuebler, Wolfgang M.
2014-01-01
The vitamin D hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] is essential for the preservation of serum calcium and phosphate levels but may also be important for the regulation of cardiovascular function. Epidemiological data in humans have shown that vitamin D insufficiency is associated with hypertension, left ventricular hypertrophy, increased arterial stiffness, and endothelial dysfunction in normal subjects and in patients with chronic kidney disease and type 2 diabetes. However, the pathophysiological mechanisms underlying these associations remain largely unexplained. In this study, we aimed to decipher the mechanisms by which 1,25(OH)2D3 may regulate systemic vascular tone and cardiac function, using mice carrying a mutant, functionally inactive vitamin D receptor (VDR). To normalize calcium homeostasis in VDR mutant mice, we fed the mice lifelong with the so-called rescue diet enriched with calcium, phosphate, and lactose. Here, we report that VDR mutant mice are characterized by lower bioavailability of the vasodilator nitric oxide (NO) due to reduced expression of the key NO synthesizing enzyme, endothelial NO synthase, leading to endothelial dysfunction, increased arterial stiffness, increased aortic impedance, structural remodeling of the aorta, and impaired systolic and diastolic heart function at later ages, independent of changes in the renin-angiotensin system. We further demonstrate that 1,25(OH)2D3 is a direct transcriptional regulator of endothelial NO synthase. Our data demonstrate the importance of intact VDR signaling in the preservation of vascular function and may provide a mechanistic explanation for epidemiological data in humans showing that vitamin D insufficiency is associated with hypertension and endothelial dysfunction. PMID:24284821
Diaz, Keith M; Veerabhadrappa, Praveen; Kashem, Mohammed A; Feairheller, Deborah L; Sturgeon, Kathleen M; Williamson, Sheara T; Crabbe, Deborah L; Brown, Michael D
2012-01-01
Visit-to-visit clinic blood pressure variability (BPV) and 24-h BPV have both been identified as independent risk factors for cardiovascular (CV) morbidity and mortality; however, the mechanisms contributing to the increased CV risk as yet are unclear. The purpose of this study was to assess the relationship between BPV and endothelial function in a cohort of putatively healthy African Americans. A total of 36 African Americans who were sedentary, non-diabetic, non-smoking, free of CV and renal disease and not on antihypertensive medication followed an American Heart Association low fat, low salt diet for 6 weeks. Upon completion of the 6-week dietary stabilization period, participants underwent 24-h ambulatory BP monitoring and had their office blood pressure (BP) measured on 3 separate days. Right brachial artery diameter was assessed at rest, during reactive hyperemia (flow-mediated vasodilation: FMD), and after nitroglycerin administration (nitroglycerin-mediated vasodilation: NMD). Participants classified as having decreased endothelial function according to either %FMD or the FMD/NMD ratio had significantly higher 24-h BPV and a trend for higher visit-to-visit BPV when compared with participants with normal endothelial function. Continuous variable analyses revealed a significant positive association between NMD and 24-h diastolic BPV (DBPV). Visit-to-visit systolic BPV (SBPV), 24-h SBPV and 24-h DBPV were all negatively associated with the FMD/NMD ratio. All relationships remained significant after adjustment for age, body mass index and mean BP levels. These results may suggest that BPV is increased in African Americans with decreased endothelial function and is associated with the vascular smooth muscle response to nitric oxide.
O'Regan, D J; Borland, J A; Chester, A H; Pennell, D J; Yacoub, M; Pepper, J R
1997-09-01
The use of the Mayo Stripper to harvest the long saphenous vein has been shown to improve morbidity from leg wound incisions. It has not been universally accepted because of a perceived increase in injury to the venous conduit. To compare the function of undistended autologous long saphenous vein harvested by a Mayo stripper with the traditional 'open' technique in the same patient (n = 12) appearance. Vascular reactivity was assessed in isolated organ baths. Contractile function was measured in response to increasing concentrations (10(-9)-10(-5) mol) of 5-hydroxytryptamine and noradrenaline. This was calculated as a percentage of the maximum contractile response to 90 mM KCl measured in millinewtons (mN) (control 41.4 +/- 12.1, (n = 11), open technique 35.8 +/- 11.1, (n = 11), Mayo stripper 33.7 +/- 15.9, (n = 11)). The endothelial dependent and independent function was assessed with acetylcholine and sodium nitroprusside, respectively. There was no significant difference in response to both constrictors and dilators between vein taken with the Mayo stripper compared with the traditional open technique (n = 6 for each observation; P > 0.05 by ANOVA). Histological examination by light microscopy of the vessel segments removed with the Mayo stripper was unable to show any significant damage to the vessel wall. Both functional and morphological studies were conducted by 'blinded' observers. One-year follow-up with magnetic resonance angiography (MRA) and stress thallium tomography demonstrated a patency rate with lower and upper estimates of 80 and 94%. We have shown that harvesting the long saphenous vein with a Mayo stripper does not compromise vascular reactivity of the long saphenous vein or long-term patency.
Vascular Cognitive Impairment.
Dichgans, Martin; Leys, Didier
2017-02-03
Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts. © 2017 American Heart Association, Inc.
Robischon, Marcel; Du, Juan; Miura, Eriko; Groover, Andrew
2011-03-01
The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.
Niyogi, Krishna K; Truong, Thuy B
2013-06-01
All photosynthetic organisms need to regulate light harvesting for photoprotection. Three types of flexible non-photochemical quenching (NPQ) mechanisms have been characterized in oxygenic photosynthetic cyanobacteria, algae, and plants: OCP-, LHCSR-, and PSBS-dependent NPQ. OCP-dependent NPQ likely evolved first, to quench excess excitation in the phycobilisome (PB) antenna of cyanobacteria. During evolution of eukaryotic algae, PBs were lost in the green and secondary red plastid lineages, while three-helix light-harvesting complex (LHC) antenna proteins diversified, including LHCSR proteins that function in dissipating excess energy rather than light harvesting. PSBS, an independently evolved member of the LHC protein superfamily, seems to have appeared exclusively in the green lineage, acquired a function as a pH sensor that turns on NPQ, and eventually replaced LHCSR in vascular plants. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Primary Study on Noninvasive Detection of Vascular Function Based on Finger Temperature Change].
Dong, Qing; Li, Xia; Wan, Yungao; Lu, Gaoquan; Wang, Xinxin; Zhang, Kuan
2016-02-01
By studying the relationship between fingertip temperature changes and arterial function during vascular reactivity test, we established a new non-invasive method for detecting vascular function, in order to provide an assistance for early diagnosis and prevention of cardiovascular diseases. We customized three modules respectively for blood occlusion, measurement of finger temperature and blood oxygen acquisition, and then we established the hardware of data acquisition system. And the software was programmed with Labview. Healthy subjects [group A, n = 24, (44.6 ± 9.0) years] and subjects with cardiovascular diseases [group B, n = 33, (57.2 ± 9.9) years)] were chosen for the study. Subject's finger temperature, blood oxygen and occlusion pressure of block side during and after unilateral arm brachial artery occlusion were recorded, as well as some other regular physiological indexes. By time-domain analysis, we extracted 12 parameters from fingertip temperature signal, including the initial temperature (Ti), temperature rebound (TR), the time of the temperature recovering to initial status (RIt) and other parameters from the finger temperature signal. We in the experiment also measured other regular physiological body mass index (BMI), systolic blood pressure (SBP), diastiolic blood pressure (DBP) and so on. Results showed that 8 parameters difference between the two group of data were significant. based on the statistical results. A discriminant function of vascular function status was established afterwards. We found in the study that the changes of finger temperature during unilateral arms brachial artery occlusion and open were closely related to vascular function. We hope that the method presented in this article could lay a foundation of early detection of vascular function.
Kumagai, Hiroshi; Yoshikawa, Toru; Myoenzono, Kanae; Kosaki, Keisei; Akazawa, Nobuhiko; Asako, Zempo-Miyaki; Tsujimoto, Takehiko; Kidokoro, Tetsuhiro; Tanaka, Kiyoji; Maeda, Seiji
2018-05-05
As arterial stiffness increases in the absence of subjective symptoms, a personal indicator that reflects increased risk of cardiovascular disease is necessary. Penile erection is regulated by vascular function, and atherosclerosis affects the penile artery earlier than it affects the coronary and carotid arteries. Therefore, we hypothesized that deterioration of erectile function could be a marker of increased risk for cardiovascular disease. To test our hypothesis, we assessed erectile function and arterial stiffness in a cross-sectional study. Carotid-femoral pulse wave velocity (PWV), brachial-ankle PWV, femoral-ankle PWV, and arterial stiffness gradient (PWV ratio: carotid-femoral PWV/femoral-ankle PWV) were measured as indexes of central, systemic, and peripheral arterial stiffness and peripheral organ damage, respectively, in 317 adult men. In addition, erectile function was assessed by using the questionnaire International Index of Erectile Function 5 (a descending score indicates worsening of erectile function). The scores of male sexual function were inversely correlated with carotid-femoral PWV ( r s =-0.41), brachial-ankle PWV ( r s =-0.35), femoral-ankle PWV ( r s =-0.19), and PWV ratio ( r s =-0.33). Furthermore, multivariate linear regression analyses revealed that International Index of Erectile Function 5 scores were significantly associated with carotid-femoral PWV (β=-0.22) and PWV ratio (β=-0.25), but not with brachial-ankle PWV and femoral-ankle PWV. Our results indicated that erectile function is independently associated with central arterial stiffness and peripheral organ damage. These findings suggest that male sexual function could be an easily identifiable and independent marker of increased central arterial stiffness and peripheral organ damage. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Ye, Xi; Abou‐Rayyah, Yassir; Bischoff, Joyce; Ritchie, Alison; Sebire, Neil J; Watts, Patrick
2016-01-01
Abstract Infantile haemangioma (IH), the most common neoplasm in infants, is a slowly resolving vascular tumour. Vascular endothelial growth factor A (VEGF‐A), which consists of both the pro‐ and anti‐angiogenic variants, contributes to the pathogenesis of IH. However, the roles of different VEGF‐A variants in IH progression and its spontaneous involution is unknown. Using patient‐derived cells and surgical specimens, we showed that the relative level of VEGF‐A165b was increased in the involuting phase of IH and the relative change in VEGF‐A isoforms may be dependent on endothelial differentiation of IH stem cells. VEGFR signalling regulated IH cell functions and VEGF‐A165b inhibited cell proliferation and the angiogenic potential of IH endothelial cells in vitro and in vivo. The inhibition of angiogenesis by VEGF‐A165b was associated with the extent of VEGF receptor 2 (VEGFR2) activation and degradation and Delta‐like ligand 4 (DLL4) expression. These results indicate that VEGF‐A variants can be regulated by cell differentiation and are involved in IH progression. We also demonstrated that DLL4 expression was not exclusive to the endothelium in IH but was also present in pericytes, where the expression of VEGFR2 is absent, suggesting that pericyte‐derived DLL4 may prevent sprouting during involution, independently of VEGFR2. Angiogenesis in IH therefore appears to be controlled by DLL4 within the endothelium in a VEGF‐A isoform‐dependent manner, and in perivascular cells in a VEGF‐independent manner. The contribution of VEGF‐A isoforms to disease progression also indicates that IH may be associated with altered splicing. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26957058
Pang, Paul; Jin, Xiaohua; Proctor, Brandon M.; Farley, Michelle; Roy, Nilay; Chin, Matthew S.; von Andrian, Ulrich H.; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J.; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J.; Bonventre, Joseph V.; Siedlecki, Andrew M.
2014-01-01
Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 minute injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 minute unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury blood flow was decreased in the inner cortex of wild type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 hours after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMC) to secrete the macrophage chemoattractant, RANTES; a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared to transgenic and non-transgenic mice after the 10 minute injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849
A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct
Valarmathi, Mani T.; Fuseler, John W.; Davis, Jeffrey M.; Price, Robert L.
2017-01-01
Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty. PMID:28194397
Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R
2008-06-01
The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.
Theoretical models for coronary vascular biomechanics: Progress & challenges
Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.
2013-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Evans, Andrew; Rauchhaus, Petra; Whelehan, Patsy; Thomson, Kim; Purdie, Colin A; Jordan, Lee B; Michie, Caroline O; Thompson, Alastair; Vinnicombe, Sarah
2014-01-01
Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospectively analysed from 396 consecutive patients. The mean stiffness values were obtained using the Aixplorer® ultrasound machine from SuperSonic Imagine Ltd. Measurements were taken from a region of interest positioned over the stiffest part of the abnormality. The average of the mean stiffness value obtained from each of two orthogonal image planes was used for analysis. Associations between lymph node involvement and mean lesion stiffness, invasive cancer size, histologic grade, tumour type, ER expression, HER-2 status and vascular invasion were assessed using univariate and multivariate logistic regression. At univariate analysis, invasive size, histologic grade, HER-2 status, vascular invasion, tumour type and mean stiffness were significantly associated with nodal involvement. Nodal involvement rates ranged from 7 % for tumours with mean stiffness <50 kPa to 41 % for tumours with a mean stiffness of >150 kPa. At multivariate analysis, invasive size, tumour type, vascular invasion, and mean stiffness maintained independent significance. Mean stiffness at SWE is an independent predictor of lymph node metastasis and thus can confer prognostic information additional to that provided by conventional preoperative tumour assessment and staging.
Hooghiemstra, Astrid M.; Bertens, Anne Suzanne; Leeuwis, Anna E.; Bron, Esther E.; Bots, Michiel L.; Brunner-La Rocca, Hans-Peter; de Craen, Anton J.M.; van der Geest, Rob J.; Greving, Jacoba P.; Kappelle, L. Jaap; Niessen, Wiro J.; van Oostenbrugge, Robert J.; van Osch, Matthias J.P.; de Roos, Albert; van Rossum, Albert C.; Biessels, Geert Jan; van Buchem, Mark A.; Daemen, Mat J.A.P.; van der Flier, Wiesje M.
2017-01-01
Background Hemodynamic balance in the heart-brain axis is increasingly recognized as a crucial factor in maintaining functional and structural integrity of the brain and thereby cognitive functioning. Patients with heart failure (HF), carotid occlusive disease (COD), and vascular cognitive impairment (VCI) present themselves with complaints attributed to specific parts of the heart-brain axis, but hemodynamic changes often go beyond the part of the axis for which they primarily seek medical advice. The Heart-Brain Study hypothesizes that the hemodynamic status of the heart and the brain is an important but underestimated cause of VCI. We investigate this by studying to what extent hemodynamic changes contribute to VCI and what the mechanisms involved are. Here, we provide an overview of the design and protocol. Methods The Heart-Brain Study is a multicenter cohort study with a follow-up measurement after 2 years among 645 participants (175 VCI, 175 COD, 175 HF, and 120 controls). Enrollment criteria are the following: 1 of the 3 diseases diagnosed according to current guidelines, age ≥50 years, no magnetic resonance contraindications, ability to undergo cognitive testing, and independence in daily life. A core clinical dataset is collected including sociodemographic factors, cardiovascular risk factors, detailed neurologic, cardiac, and medical history, medication, and a physical examination. In addition, we perform standardized neuropsychological testing, cardiac, vascular and brain MRI, and blood sampling. In subsets of participants we assess Alzheimer biomarkers in cerebrospinal fluid, and assess echocardiography and 24-hour blood pressure monitoring. Follow-up measurements after 2 years include neuropsychological testing, brain MRI, and blood samples for all participants. We use centralized state-of-the-art storage platforms for clinical and imaging data. Imaging data are processed centrally with automated standardized pipelines. Results and Conclusions The Heart-Brain Study investigates relationships between (cardio-)vascular factors, the hemodynamic status of the heart and the brain, and cognitive impairment. By studying the complete heart-brain axis in patient groups that represent components of this axis, we have the opportunity to assess a combination of clinical and subclinical manifestations of disorders of the heart, vascular system and brain, with hemodynamic status as a possible binding factor. PMID:29017156
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Radhakrishnan, Krishnan; DiCorleto, Paul E.; Leontiev, Dmitry; Anand-Apte, Bela; Albarran, Brian; Farr, Andrew G.
2005-01-01
Vascular endothelial growth factor-165 (VEGF(sub 165)) stimulated angiogenesis in the quail chorioallantoic membrane (CAM) by vessel expansion from the capillary network. However, lymphangiogenesis was stimulated by the filopodial guidance of tip cells located on blind-ended lymphatic sprouts. As quantified by fractal/generational branching analysis using the computer code VESGEN, vascular density increased maximally at low VEGF concentrations, and vascular diameter increased most at high VEGF concentrations. Increased vascular density and diameter were statistically independent events (r(sub s), -0.06). By fluorescence immunohistochemistry of VEGF receptors VEGFR-1 and VEGFR-2, alpha smooth muscle actin ((alpha) SMA) and a vascular/lymphatic marker, VEGF(sub 165) increased the density and diameter of sprouting lymphatic vessels guided by tip cells (accompanied by the dissociation of lymphatics from blood vessels). Isolated migratory cells expressing (alpha)SMA were recruited to blood vessels, whereas isolated cells expressing VEGFR-2 were recruited primarily to lymphatics. In conclusion, VEGF(sub 165) increased lymphatic vessel density by lymphatic sprouting, but increased blood vessel density by vascular expansion from the capillary network.
Jordan, Jens; Nilsson, Peter M; Kotsis, Vasilios; Olsen, Michael H; Grassi, Guido; Yumuk, Volkan; Hauner, Hans; Zahorska-Markiewicz, Barbara; Toplak, Hermann; Engeli, Stefan; Finer, Nick
2015-03-01
Current cardiovascular risk scores do not include obesity or fat distribution as independent factors, and may underestimate risk in obese individuals. Assessment of early vascular ageing (EVA) biomarkers including arterial stiffness, central blood pressure, carotid intima-media thickness and flow-mediated vasodilation may help to refine risk assessment in obese individuals in whom traditional cardiovascular risk scores and factors suggest no need for specific medical attention. A number of issues need to be addressed before this approach is ready for translation into routine clinical practice. Methodologies for measurements of vascular markers need to be further standardized and less operator-dependent. The utility of these nontraditional risk factors will also need to be proven in sufficiently large and properly designed interventional studies. Indeed, published studies on vascular markers in obesity and weight loss vary in quality and study design, are sometimes conducted in small populations, use a variety of differing methodologies and study differing vascular beds. Finally, current vascular measurements are still crude and may not be sufficient to cover the different aspects of EVA in obesity.
Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M
2018-05-15
In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth factor and endothelial nitric oxide synthase were significantly higher in the stretched limb. These results indicate that daily passive stretching of muscle enhances endothelium-dependent vasodilatation and induces angiogenesis. These microvascular adaptations may contribute to increased muscle blood flow during exercise in muscles that have undergone daily passive stretch. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Kaplon, Rachelle E; Hill, Sierra D; Bispham, Nina Z; Santos-Parker, Jessica R; Nowlan, Molly J; Snyder, Laura L; Chonchol, Michel; LaRocca, Thomas J; McQueen, Matthew B; Seals, Douglas R
2016-06-01
We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass less than 2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ~30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ~30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass ≥ 2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO.
Kaplon, Rachelle E.; Hill, Sierra D.; Bispham, Nina Z.; Santos-Parker, Jessica R.; Nowlan, Molly J.; Snyder, Laura L.; Chonchol, Michel; LaRocca, Thomas J.; McQueen, Matthew B.; Seals, Douglas R.
2016-01-01
We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass<2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ∼30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ∼30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass≥2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO. PMID:27208415
Solini, Anna; Giannini, Livia; Seghieri, Marta; Vitolo, Edoardo; Taddei, Stefano; Ghiadoni, Lorenzo; Bruno, Rosa Maria
2017-10-23
Sodium-glucose cotransporter-2 inhibitors reduce blood pressure (BP) and renal and cardiovascular events in patients with type 2 diabetes through not fully elucidated mechanisms. Aim of this study was to investigate whether dapagliflozin is able to acutely modify systemic and renal vascular function, as well as putative mechanisms. Neuro-hormonal and vascular variables, together with 24 h diuresis, urinary sodium, glucose, isoprostanes and free-water clearance were assessed before and after a 2-day treatment with dapagliflozin 10 mg QD in sixteen type 2 diabetic patients; data were compared with those obtained in ten patients treated with hydrochlorothiazide 12.5 mg QD. Brachial artery endothelium-dependent and independent vasodilation (by flow-mediated dilation) and pulse wave velocity were assessed. Renal resistive index was obtained at rest and after glyceryl trinitrate administration. Differences were analysed by repeated measures ANOVA, considering treatment as between factor and time as within factor; Bonferroni post hoc comparison test was also used. Dapagliflozin decreased systolic BP and induced an increase in 24 h diuresis to a similar extent of hydrochlorothiazide; 24 h urinary glucose and serum magnesium were also increased. 24 h urinary sodium and fasting blood glucose were unchanged. Oxidative stress was reduced, as by a decline in urinary isoprostanes. Flow-mediated dilation was significantly increased (2.8 ± 2.2 to 4.0 ± 2.1%, p < 0.05), and pulse-wave-velocity was reduced (10.1 ± 1.6 to 8.9 ± 1.6 m/s, p < 0.05), even after correction for mean BP. Renal resistive index was reduced (0.62 ± 0.04 to 0.59 ± 0.05, p < 0.05). These vascular modifications were not observed in hydrochlorothiazide-treated individuals. An acute treatment with dapagliflozin significantly improves systemic endothelial function, arterial stiffness and renal resistive index; this effect is independent of changes in BP and occurs in the presence of stable natriuresis, suggesting a fast, direct beneficial effect on the vasculature, possibly mediated by oxidative stress reduction.
Targeting vascular (endothelial) dysfunction
Steven, Sebastian; Weber, Alina; Shuvaev, Vladimir V.; Muzykantov, Vladimir R.; Laher, Ismail; Li, Huige; Lamas, Santiago
2016-01-01
Abstract Cardiovascular diseases are major contributors to global deaths and disability‐adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti‐inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:27187006
Potential benefits of exercise on blood pressure and vascular function.
Pal, Sebely; Radavelli-Bagatini, Simone; Ho, Suleen
2013-01-01
Physical activity seems to enhance cardiovascular fitness during the course of the lifecycle, improve blood pressure, and is associated with decreased prevalence of hypertension and coronary heart disease. It may also delay or prevent age-related increases in arterial stiffness. It is unclear if specific exercise types (aerobic, resistance, or combination) have a better effect on blood pressure and vascular function. This review was written based on previous original articles, systematic reviews, and meta-analyses indexed on PubMed from years 1975 to 2012 to identify studies on different types of exercise and the associations or effects on blood pressure and vascular function. In summary, aerobic exercise (30 to 40 minutes of training at 60% to 85% of predicted maximal heart rate, most days of the week) appears to significantly improve blood pressure and reduce augmentation index. Resistance training (three to four sets of eight to 12 repetitions at 10 repetition maximum, 3 days a week) appears to significantly improve blood pressure, whereas combination exercise training (15 minutes of aerobic and 15 minutes of resistance, 5 days a week) is beneficial to vascular function, but at a lower scale. Aerobic exercise seems to better benefit blood pressure and vascular function. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Rudominer, Rebecca L.; Roman, Mary J.; Devereux, Richard B.; Paget, Stephen A.; Schwartz, Joseph E.; Lockshin, Michael D.; Crow, Mary K.; Sammaritano, Lisa; Levine, Daniel M.; Salmon, Jane E.
2008-01-01
Background Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with premature atherosclerosis, vascular stiffening, and heart failure. Whether RA is associated with underlying structural and functional abnormalities of the left ventricle (LV) is poorly understood. Methods and Results 89 patients with RA without clinical cardiovascular disease and 89 healthy matched controls underwent echocardiography, carotid ultrasonography, and radial tonometry to measure arterial stiffness. RA patients and controls were similar in body size, hypertension and diabetes status, and cholesterol. LV diastolic diameter (4.92 vs. 4.64 cm, p <0.001), mass (136.9 vs. 121.7 g, p = 0.001 or 36.5 vs. 32.9 g/m 2.7, p = 0.01), ejection fraction (EF) (71% vs. 67%, p <0.001), and prevalence of LV hypertrophy (LVH) (18% vs. 6.7%, p = 0.023) were all higher among RA patients. In multivariate analysis, presence of RA (p = 0.004) was an independent correlate of LV mass. Furthermore, RA was independently associated with the presence of LVH (OR 4.14, [95% CI 1.24-13.80; p=0.021]). Among RA patients, age at diagnosis and disease duration were independently related to LV mass. RA patients with LVH were older and had higher systolic pressure, damage index score, C-reactive protein, homocysteine and arterial stiffness index compared to those without LVH. Conclusion RA is associated with increased LV mass. Disease duration is independently related to increased LV mass, suggesting a pathophysiological link between chronic inflammation and LVH. In contrast, LV systolic function is preserved in RA patients indicating that systolic dysfunction is not an intrinsic feature of RA. PMID:19116901
Antidepressant Use among Blacks and Whites in the United States
González, Hector M.; Croghan, Thomas W.; West, Brady T.; Tarraf, Wassim; Williams, David R.; Nesse, Randolph; Taylor, Robert Joseph; Hinton, Ladson; Neighbors, Harold W.; Jackson, James S.
2008-01-01
Objective The study objective was to estimate the prevalence and correlates of antidepressant use by black and white Americans. Methods Data from the Collaborative Psychiatric Epidemiology Surveys (CPES) were analyzed to calculate nationally representative estimates of antidepressant use by black and white Americans. Setting The 48 coterminous United States was the setting. Participants Household residents ages 18 years and older (N=9,723) participated in the study. Main Outcomes The primary outcome was past-year antidepressant use (n=1,004). Results Among individuals with 12-month depressive and anxiety disorders (n=516), blacks (14.6%) had significantly lower (p < 0.001) antidepressant use than whites (32.4%). Depression severity was significantly associated with higher antidepressant use for whites, but not blacks. Psychiatric disorders and vascular disease significantly increased the odds of past-year antidepressant use. The increased prevalence of antidepressant use associated with vascular disease was independent of diagnosable psychiatric disorders. Among respondents not meeting criteria for 12-month depressive and anxiety disorders, lifetime depressive and anxiety disorders and vascular disease significantly increased the odds of antidepressant use. Conclusions Few white and fewer black Americans with depressive and anxiety disorders receive antidepressant treatment. Higher depression severity was associated with more antidepressant use for whites, but not blacks. Antidepressant use was associated with medical conditions related to vascular disease, and these medical conditions were independent of coexisting psychiatric conditions. The results also indicate that many antidepressants are used for maintenance pharmacotherapy for depressive and anxiety disorders as well as common medical conditions associated with vascular disease. PMID:18832498
Franco, O.S.; Paulitsch, F.S.; Pereira, A.P.C.; Teixeira, A.O.; Martins, C.N.; Silva, A.M.V.; Plentz, R.D.M.; Irigoyen, M.C.; Signori, L.U.
2014-01-01
Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia. PMID:24820225
Shah, Ravi; Yeri, Ashish; Das, Avash; Courtright-Lim, Amanda; Ziegler, Olivia; Gervino, Ernest; Ocel, Jeffrey; Quintero-Pinzon, Pablo; Wooster, Luke; Bailey, Cole Shields; Tanriverdi, Kahraman; Beaulieu, Lea M; Freedman, Jane E; Ghiran, Ionita; Lewis, Gregory D; Van Keuren-Jensen, Kendall; Das, Saumya
2017-12-01
Exercise improves cardiometabolic and vascular function, although the mechanisms remain unclear. Our objective was to demonstrate the diversity of circulating extracellular RNA (ex-RNA) release during acute exercise in humans and its relevance to exercise-mediated benefits on vascular inflammation. We performed plasma small RNA sequencing in 26 individuals undergoing symptom-limited maximal treadmill exercise, with replication of our top candidate miRNA in a separate cohort of 59 individuals undergoing bicycle ergometry. We found changes in miRNAs and other ex-RNAs with exercise (e.g., Y RNAs and tRNAs) implicated in cardiovascular disease. In two independent cohorts of acute maximal exercise, we identified miR-181b-5p as a key ex-RNA increased in plasma after exercise, with validation in a separate cohort. In a mouse model of acute exercise, we found significant increases in miR-181b-5p expression in skeletal muscle after acute exercise in young (but not older) mice. Previous work revealed a strong role for miR-181b-5p in vascular inflammation in obesity, insulin resistance, sepsis, and cardiovascular disease. We conclude that circulating ex-RNAs were altered in plasma after acute exercise target pathways involved in inflammation, including miR-181b-5p. Further investigation into the role of known (e.g., miRNA) and novel (e.g., Y RNAs) RNAs is warranted to uncover new mechanisms of vascular inflammation on exercise-mediated benefits on health. NEW & NOTEWORTHY How exercise provides benefits to cardiometabolic health remains unclear. We performed RNA sequencing in plasma during exercise to identify the landscape of small noncoding circulating transcriptional changes. Our results suggest a link between inflammation and exercise, providing rich data on circulating noncoding RNAs for future studies by the scientific community. Copyright © 2017 the American Physiological Society.
Huperzine A for vascular dementia.
Hao, Zilong; Liu, Ming; Liu, Zhiqin; Lv, Donghao
2009-04-15
Huperzine A, a form of herbal medicine, has been considered as an alternative treatment for vascular dementia (VaD) in China. To assess the efficacy and safety of Huperzine A in patients with vascular dementia. The Specialized Register of the Cochrane Dementia and Cognitive Improvement Group (CDCIG) was searched on 7 July 2008 using the terms: huperzi* OR ayapin OR scoparon*. The CDCIG Specialized Register contains records from all major health care databases (The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS) as well as from many trials databases and grey literature sources. The review authors searched the following databases in August 2008 using the terms 'Huperzine A', 'Shishanjianjia', 'Haboyin' and 'Shuangyiping': The Chinese Biomedical Database (CBM) (1977 to August 2008); Chinese Science and Technique Journals Database (VIP) (1989 to August 2008); China National Knowledge Infrastructure (CNKI) (1979 to August 2008); The Chinese Clinical Trials Register (ChiCTR, August 2008); Google (August 2008). In addition, the review authors searched reference lists, relevant clinical trials and contacted researchers in an effort to identify further published and unpublished studies. Randomized controlled trials comparing Huperzine A with placebo in patients with vascular dementia were considered eligible for inclusion. Two review authors independently selected trials for inclusion, assessed trial quality, and extracted data. Only one small trial, involving 14 participants, was included. No significant beneficial effect of Huperzine A on the improvement of cognitive function measured by MMSE for VaD (WMD 2.40; 95% CI -4.78 to 9.58) was observed. No death from all causes at the end of treatment were reported. At present, other outcome measures were not available in any of the trials. Although no statistically significant differences were found between the Huperzine A-treated and control groups, the confidence intervals for the treatment effect estimates were wide and included both clinically significant benefits and clinically significant harms. There is no [convincing] evidence that Huperzine A is of value in vascular dementia based on one small trial. It deserves further research.
Role of oxidative stress and nitric oxide in atherothrombosis
Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph
2008-01-01
During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590
Ginsberg, Michael; James, Daylon; Ding, Bi-Sen; Nolan, Daniel; Geng, Fuqiang; Butler, Jason M; Schachterle, William; Pulijaal, Venkat R; Mathew, Susan; Chasen, Stephen T; Xiang, Jenny; Rosenwaks, Zev; Shido, Koji; Elemento, Olivier; Rabbany, Sina Y; Rafii, Shahin
2012-01-01
ETS transcription factors ETV2, FLI1 and ERG1 specify pluripotent stem cells into endothelial cells (ECs). However, these ECs are unstable and drift towards non-vascular cell fates. We show that human mid-gestation c-Kit− lineage-committed amniotic cells (ACs) can be readily reprogrammed into induced vascular endothelial cells (iVECs). Transient ETV2 expression in ACs generated proliferative but immature iVECs, while co-expression with FLI1/ERG1 endowed iVECs with a vascular repertoire and morphology matching mature stable ECs. Brief TGFβ-inhibition functionalized VEGFR2 signaling, augmenting specification of ACs to iVECs. Genome-wide transcriptional analyses showed that iVECs are similar to adult ECs in which vascular-specific genes are turned on and non-vascular genes are silenced. Functionally, iVECs form long-lasting patent vasculature in Matrigel plugs and regenerating livers. Thus, short-term ETV2 expression and TGFβ-inhibition along with constitutive ERG1/FLI1 co-expression reprogram mature ACs into durable and functional iVECs with clinical-scale expansion potential. Public banking of HLA-typed iVECs would establish a vascular inventory for treatment of genetically diverse disorders. PMID:23084400
Regulation of thrombosis and vascular function by protein methionine oxidation
Gu, Sean X.; Stevens, Jeff W.
2015-01-01
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980
Exploring the effects of coexisting amyloid in subcortical vascular cognitive impairment.
Dao, Elizabeth; Hsiung, Ging-Yuek Robin; Sossi, Vesna; Jacova, Claudia; Tam, Roger; Dinelle, Katie; Best, John R; Liu-Ambrose, Teresa
2015-10-12
Mixed pathology, particularly Alzheimer's disease with cerebrovascular lesions, is reported as the second most common cause of dementia. Research on mixed dementia typically includes people with a primary AD diagnosis and hence, little is known about the effects of co-existing amyloid pathology in people with vascular cognitive impairment (VCI). The purpose of this study was to understand whether individual differences in amyloid pathology might explain variations in cognitive impairment among individuals with clinical subcortical VCI (SVCI). Twenty-two participants with SVCI completed an (11)C Pittsburgh compound B (PIB) position emission tomography (PET) scan to quantify global amyloid deposition. Cognitive function was measured using: 1) MOCA; 2) ADAS-Cog; 3) EXIT-25; and 4) specific executive processes including a) Digits Forward and Backwards Test, b) Stroop-Colour Word Test, and c) Trail Making Test. To assess the effect of amyloid deposition on cognitive function we conducted Pearson bivariate correlations to determine which cognitive measures to include in our regression models. Cognitive variables that were significantly correlated with PIB retention values were entered in a hierarchical multiple linear regression analysis to determine the unique effect of amyloid on cognitive function. We controlled for age, education, and ApoE ε4 status. Bivariate correlation results showed that PIB binding was significantly correlated with ADAS-Cog (p < 0.01) and MOCA (p < 0.01); increased PIB binding was associated with worse cognitive function on both cognitive measures. PIB binding was not significantly correlated with the EXIT-25 or with specific executive processes (p > 0.05). Regression analyses controlling for age, education, and ApoE ε4 status indicated an independent association between PIB retention and the ADAS-Cog (adjusted R-square change of 15.0%, Sig F Change = 0.03). PIB retention was also independently associated with MOCA scores (adjusted R-Square Change of 27.0%, Sig F Change = 0.02). We found that increased global amyloid deposition was significantly associated with greater memory and executive dysfunctions as measured by the ADAS-Cog and MOCA. Our findings point to the important role of co-existing amyloid deposition for cognitive function in those with a primary SVCI diagnosis. As such, therapeutic approaches targeting SVCI must consider the potential role of amyloid for the optimal care of those with mixed dementia. NCT01027858.
2017-10-01
AWARD NUMBER: W81XWH-16-1-0610 TITLE: Improving Cognitive Function in Veterans with Gulf War Illness by Improving Cerebral Vascular Function...From - To) 15 Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Improving Cognitive Function in Veterans with Gulf War Illness by...investigate a relationship between cognitive impairment in Veterans with Gulf War Illness (GWI) and reduced vasodilatory function. One of the multiple
Vascular heterogeneity in the kidney.
Molema, Grietje; Aird, William C
2012-03-01
Blood vessels and their endothelial lining are uniquely adapted to the needs of the underlying tissue. The structure and function of the vasculature varies both between and within different organs. In the kidney, the vascular architecture is designed to function both in oxygen/nutrient delivery and filtration of blood according to the homeostatic needs of the body. Here, we review spatial and temporal differences in renal vascular phenotypes in both health and disease. Copyright © 2012 Elsevier Inc. All rights reserved.
Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction
Barton, Matthias; Baretella, Oliver; Meyer, Matthias R
2012-01-01
Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, ‘premature’ vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using ‘endothelial therapy’ aiming at maintaining or restoring vascular endothelial health. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21557734
Wang, Hsing-I; Yang, Ming-Jie; Wang, Peng-Hui; Wu, Yi-Cheng; Chen, Chih-Yao
2014-12-01
The placental volume and vascular indices are crucial in helping doctors to evaluate early fetal growth and development. Inadequate placental volume or vascularity might indicate poor fetal growth or gestational complications. This study aimed to evaluate the placental volume and vascular indices during the period of 11-14 weeks of gestation in a Taiwanese population. From June 2006 to September 2009, three-dimensional power Doppler ultrasound was performed in 222 normal pregnancies from 11-14 weeks of gestation. Power Doppler ultrasound was applied to the placenta and the placental volume was obtained by a rotational technique (VOCAL). The three-dimensional power histogram was used to assess the placental vascular indices, including the mean gray value, the vascularization index, the flow index, and the vascularization flow index. The placental vascular indices were then plotted against gestational age (GA) and placental volume. Our results showed that the linear regression equation for placental volume using gestational week as the independent variable was placental volume = 18.852 × GA - 180.89 (r = 0.481, p < 0.05). All the placental vascular indices showed a constant distribution throughout the period 11-14 weeks of gestation. A tendency for a reduction in the placental mean gray value with gestational week was observed, but without statistical significance. All the placental vascular indices estimated by three-dimensional power Doppler ultrasonography showed a constant distribution throughout gestation. Copyright © 2014. Published by Elsevier Taiwan.
Kuckleburg, Christopher J.; Newman, Peter J.
2013-01-01
The principle role of the vascular endothelium is to present a semi-impermeable barrier to soluble factors and circulating cells, while still permitting the passage of leukocytes from the bloodstream into the tissue. The process of diapedesis involves the selective disruption of endothelial cell junctions, an event that could in theory compromise vascular integrity. It is therefore somewhat surprising that neutrophil transmigration does not significantly impair endothelial barrier function. We examined whether neutrophils might secrete factors that promote vascular integrity during the latter stages of neutrophil transmigration, and found that neutrophil proteinase 3 (PR3) – a serine protease harbored in azurophilic granules – markedly enhanced barrier function in endothelial cells. PR3 functioned in this capacity both in its soluble form and in a complex with cell-surface NB1. PR3-mediated enhancement of endothelial cell junctional integrity required its proteolytic activity, as well as endothelial cell expression of the protease-activated receptor, PAR-2. Importantly, PR3 suppressed the vascular permeability changes and disruption of junctional proteins induced by the action of PAR-1 agonists. These findings establish the potential for neutrophil-derived PR3 to play a role in reestablishing vascular integrity following leukocyte transmigration, and in protecting endothelial cells from PAR-1-induced permeability changes that occur during thrombotic and inflammatory events. PMID:23202369
Transient Receptor Potential Channels in the Vasculature
Earley, Scott; Brayden, Joseph E.
2015-01-01
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234
Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Davis, Simon W; Shafto, Meredith A; Taylor, Jason R; Williams, Nitin; Cam-Can; Rowe, James B
2015-06-01
In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood-oxygenation level-dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting-state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath-hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age-related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population-based Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task-based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task-based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Henson, Richard N. A.; Tyler, Lorraine K.; Davis, Simon W.; Shafto, Meredith A.; Taylor, Jason R.; Williams, Nitin; Cam‐CAN; Rowe, James B.
2015-01-01
Abstract In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task‐based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. Hum Brain Mapp 36:2248–2269, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:25727740
Damacena-Angelis, Célio; Oliveira-Paula, Gustavo H; Pinheiro, Lucas C; Crevelin, Eduardo J; Portella, Rafael L; Moraes, Luiz Alberto B; Tanus-Santos, Jose E
2017-08-01
Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite ( 15 N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15 N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the Michaelis constant. Together, our results show that nitrate inhibits XOR-mediated NO production from nitrite, and this mechanism may explain how nitrate attenuates the vascular and blood pressure responses to nitrite. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Huperzine A for vascular dementia
Hao, Zilong; Liu, Ming; Liu, Zhiqin; Lu, DongHao
2014-01-01
Background Huperzine A, a form of herbal medicine, has been considered as an alternative treatment for vascular dementia (VaD) in China. Objectives To assess the efficacy and safety of Huperzine A in patients with vascular dementia. Search methods We searched ALOIS: the Cochrane Dementia and Cognitive Improvement Group’s Specialized Register on 10 February 2011 using the terms: chinese, plants, huperzine, HUP, ayapin, scoparon. ALOIS contains records of clinical trials identified from monthly searches of a number of major healthcare databases (The Cochrane Library, MEDLINE, EMBASE, PsycINFO, CINAHL, LILACS), numerous trial registries and grey literature sources. We also searched the following databases in March 2011 using the terms ‘Huperzine A’, ‘Shishanjianjia’, ‘Haboyin’ and ‘Shuangyiping’: The Chinese Biomedical Database (CBM) (1977 to March 2011); Chinese Science and Technique Journals Database (VIP) (1989 to March 2011); China National Knowledge Infrastructure (CNKI) (1979 to March 2011); Google (March 2011). In addition, we searched relevant reference lists. We also contacted researchers to request additional information where necessary. Selection criteria We considered randomized controlled trials comparing Huperzine A with placebo in people with vascular dementia eligible for inclusion. Data collection and analysis Two review authors independently applied the inclusion criteria, assessed trial quality and extracted the data. We resolved any disagreement by discussion. Main results We included only one small trial, involving 14 participants with vascular dementia. No significant effect of Huperzine A on cognitive function measured by MMSE (WMD 2.40; 95% CI −4.78 to 9.58) was observed. There was a significant beneficial effect of Huperzine A on performance of activities of daily living (WMD −13.00; 95% CI −23.24 to −2.76) after six months of treatment. No deaths from any cause at the end of treatment were reported. Behaviour, quality of life and caregiver burden were not assessed in the included trial. Authors’ conclusions There is currently no high quality evidence to support the use of Huperzine A for the treatment of vascular dementia. Further randomized placebo controlled trials are needed to determine whether there is worthwhile benefit. PMID:19370686
Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases
Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine
2016-01-01
Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855
Engineering Pre-vascularized Scaffolds for Bone Regeneration.
Barabaschi, Giada D G; Manoharan, Vijayan; Li, Qing; Bertassoni, Luiz E
2015-01-01
Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaffold. Unavailability of a well-defined vasculature also results in ineffective integration of scaffolds to the host vasculature upon implantation. Arguably, one of the greatest challenges in engineering clinically relevant bone substitutes, therefore, has been the development of vascularized bone scaffolds. Various approaches ranging from peptide and growth factor functionalized biomaterials to hyper-porous scaffolds have been proposed to address this problem with reasonable success. An emerging alternative to address this challenge has been the fabrication of pre-vascularized scaffolds by taking advantage of biomanufacturing techniques, such as soft- and photo-lithography or 3D bioprinting, and cell-based approaches, where functional capillaries are engineered in cell-laden scaffolds prior to implantation. These strategies seek to engineer pre-vascularized tissues in vitro, allowing for improved anastomosis with the host vasculature upon implantation, while also improving cell viability and tissue development in vitro. This book chapter provides an overview of recent methods to engineer pre-vascularized scaffolds for bone regeneration. We first review the development of functional blood capillaries in bony structures and discuss controlled delivery of growth factors, co-culture systems, and on-chip studies to engineer vascularized cell-laden biomaterials. Lastly, we review recent studies using microfabrication techniques and 3D printing to engineer pre-vascularized scaffolds for bone tissue engineering.
ERIC Educational Resources Information Center
Haugwitz, Marion; Sandmann, Angela
2010-01-01
Understanding biological structures and functions is often difficult because of their complexity and micro-structure. For example, the vascular system is a complex and only partly visible system. Constructing models to better understand biological functions is seen as a suitable learning method. Models function as simplified versions of real…
Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A
2015-07-31
Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes. © 2015 American Heart Association, Inc.
Zheng, Chunyu; Azcutia, Veronica; Aikawa, Elena; Figueiredo, Jose-Luiz; Croce, Kevin; Sonoki, Hiroyuki; Sacks, Frank M; Luscinskas, Francis W; Aikawa, Masanori
2013-02-01
Activation of vascular endothelial cells (ECs) contributes importantly to inflammation and atherogenesis. We previously reported that apolipoprotein CIII (apoCIII), found abundantly on circulating triglyceride-rich lipoproteins, enhances adhesion of human monocytes to ECs in vitro. Statins may exert lipid-independent anti-inflammatory effects. The present study examined whether statins suppress apoCIII-induced EC activation in vitro and in vivo. Physiologically relevant concentrations of purified human apoCIII enhanced attachment of the monocyte-like cell line THP-1 to human saphenous vein ECs (HSVECs) or human coronary artery ECs (HCAECs) under both static and laminar shear stress conditions. This process mainly depends on vascular cell adhesion molecule-1 (VCAM-1), as a blocking VCAM-1 antibody abolished apoCIII-induced monocyte adhesion. ApoCIII significantly increased VCAM-1 expression in HSVECs and HCAECs. Pre-treatment with statins suppressed apoCIII-induced VCAM-1 expression and monocyte adhesion, with two lipophilic statins (pitavastatin and atorvastatin) exhibiting inhibitory effects at lower concentration than those of hydrophilic pravastatin. Nuclear factor κB (NF-κB) mediated apoCIII-induced VCAM-1 expression, as demonstrated via loss-of-function experiments, and pitavastatin treatment suppressed NF-κB activation. Furthermore, in the aorta of hypercholesterolaemic Ldlr(-/-) mice, pitavastatin administration in vivo suppressed VCAM-1 mRNA and protein, induced by apoCIII bolus injection. Similarly, in a subcutaneous dorsal air pouch mouse model of leucocyte recruitment, apoCIII injection induced F4/80+ monocyte and macrophage accumulation, whereas pitavastatin administration reduced this effect. These findings further establish the direct role of apoCIII in atherogenesis and suggest that anti-inflammatory effects of statins could improve vascular disease in the population with elevated plasma apoCIII.
Boxma, Paul Y; van den Berg, Else; Geleijnse, Johanna M; Laverman, Gozewijn D; Schurgers, Leon J; Vermeer, Cees; Kema, Ido P; Muskiet, Frits A; Navis, Gerjan; Bakker, Stephan J L; de Borst, Martin H
2012-01-01
Vitamin K is essential for activation of γ-carboxyglutamate (Gla)-proteins including the vascular calcification inhibitor matrix Gla-protein (MGP). Insufficient vitamin K intake leads to production of uncarboxylated, mostly inactive proteins and contributes to an increased cardiovascular risk. In kidney transplant recipients, cardiovascular risk is high but vitamin K intake and status have not been defined. We investigated dietary vitamin K intake, vascular vitamin K status and its determinants in kidney transplant recipients. We estimated vitamin K intake in a cohort of kidney transplant recipients (n = 60) with stable renal function (creatinine clearance 61 [42-77] (median [interquartile range]) ml/min), who were 75 [35-188] months after transplantation, using three-day food records and food frequency questionnaires. Vascular vitamin K status was assessed by measuring plasma desphospho-uncarboxylated MGP (dp-ucMGP). Total vitamin K intake was below the recommended level in 50% of patients. Lower vitamin K intake was associated with less consumption of green vegetables (33 vs 40 g/d, p = 0.06) and increased dp-ucMGP levels (621 vs 852 pmol/L, p<0.05). Accordingly, dp-ucMGP levels were elevated (>500 pmol/L) in 80% of patients. Multivariate regression identified creatinine clearance, coumarin use, body mass index, high sensitivity-CRP and sodium excretion as independent determinants of dp-ucMGP levels. In a considerable part of the kidney transplant population, vitamin K intake is too low for maximal carboxylation of vascular MGP. The high dp-ucMGP levels may result in an increased risk for arterial calcification. Whether increasing vitamin K intake may have health benefits for kidney transplant recipients should be addressed by future studies.
Berberine reduced blood pressure and improved vasodilation in diabetic rats.
Ma, Yu-Guang; Liang, Liang; Zhang, Yin-Bin; Wang, Bao-Feng; Bai, Yun-Gang; Dai, Zhi-Jun; Xie, Man-Jiang; Wang, Zhong-Wei
2017-10-01
Hyperglycemia and hypertension are considered to be the two leading risk factors for vascular disease in diabetic patients. However, few pharmacologic agents could provide a combinational therapy for controlling hyperglycemia and hypertension at the same time in diabetes. The objectives of this study are to investigate whether berberine treatment could directly reduce blood pressure and identify the molecular mechanism underlying the vascular protection of berberine in diabetic rats. Berberine was intragastrically administered with different dosages of 50, 100 and 200 mg/kg/day to diabetic rats for 8 weeks since the injection of streptozotocin. The endothelium-dependent/-independent relaxation in middle cerebral arteries was investigated. The activity of large-conductance Ca 2+ -activated K + channel (BK Ca ) was investigated by recording whole-cell currents, analyzing single-channel activities and assessing the expressions of α- and β1-subunit at protein or mRNA levels. Results of the study suggest that chronic administration of 100 mg/kg/day berberine not only lowered blood glucose but also reduced blood pressure and improved vasodilation in diabetic rats. Furthermore, berberine markedly increased the function and expression of BK Ca β1-subunit in cerebral vascular smooth muscle cells (VSMCs) isolated from diabetic rats or when exposed to hyperglycemia condition. The present study provided initial evidences that berberine reduced blood pressure and improved vasodilation in diabetic rats by activation of BK Ca channel in VSMCs, which suggested that berberine might provide a combinational therapy for controlling hyperglycemia and blood pressure in diabetes. Furthermore, our work indicated that activation of BK Ca channel might be the underlying mechanism responsible for the vascular protection of berberine in diabetes. © 2017 Society for Endocrinology.
Majer, Marcin; Gackowski, Daniel; Różalski, Rafał; Siomek-Górecka, Agnieszka; Oliński, Ryszard; Budzyński, Jacek
2017-01-01
Introduction Endothelial dysfunction is recognized as the earliest disorder in the development of atherosclerosis, in the pathogenesis of which oxidative stress plays a crucial role. The aim of this study was to determine the relationships between non-invasive parameters of vascular dysfunction and oxidative stress. Material and methods Forty-eight individuals without clinical manifestation of atherosclerosis were studied. The plasma concentrations of the following were determined in all 48 subjects: retinol, ascorbic acid, α-tocopherol and uric acid, as well as the products of oxidative DNA damage repair: 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) in blood leukocytes and urine, and 8-oxo-7,8-dihydroguanine (8-oxoGua) in urine. The following parameters of vascular dysfunction were also examined: flow- (FMD) and nitroglycerin- (NMD) mediated dilatation of the brachial artery, pulse pressure (PP), distensibility coefficient (DC), pulsation (PI) and resistance (RI) index, carotid intima-media thickness (cIMT), and ankle-brachial index (ABI). Results Individuals with an FMD value of ≥ 8.8% had significantly higher blood concentrations of antioxidative vitamins and lower concentrations of 8-oxodG in their urine and blood leukocytes than their counterparts. Blood concentration of alpha-tocopherol or ascorbic acid positively correlated with FMD, PI, RI, DC and ABI and negatively with PP and cIMT. The reverse was the case for 8-oxodG in urine and leukocytes. In multiple regression analysis, markers of oxidative DNA damage positively determined the variance in PP and ABI. Conclusions In persons without clinical manifestation of atherosclerosis, oxidative stress was an independent factor associated with vascular wall dysfunction, and a better predictor than smoking and blood concentrations of glucose, lipids and creatinine. PMID:29242843
Clinical effects of phosphodiesterase 3A mutations in inherited hypertension with brachydactyly.
Toka, Okan; Tank, Jens; Schächterle, Carolin; Aydin, Atakan; Maass, Philipp G; Elitok, Saban; Bartels-Klein, Eireen; Hollfinger, Irene; Lindschau, Carsten; Mai, Knut; Boschmann, Michael; Rahn, Gabriele; Movsesian, Matthew A; Müller, Thomas; Doescher, Andrea; Gnoth, Simone; Mühl, Astrid; Toka, Hakan R; Wefeld-Neuenfeld, Yvette; Utz, Wolfgang; Töpper, Agnieszka; Jordan, Jens; Schulz-Menger, Jeanette; Klussmann, Enno; Bähring, Sylvia; Luft, Friedrich C
2015-10-01
Autosomal-dominant hypertension with brachydactyly is a salt-independent Mendelian syndrome caused by activating mutations in the gene encoding phosphodiesterase 3A. These mutations increase the protein kinase A-mediated phosphorylation of phosphodiesterase 3A resulting in enhanced cAMP-hydrolytic affinity and accelerated cell proliferation. The phosphorylated vasodilator-stimulated phosphoprotein is diminished, and parathyroid hormone-related peptide is dysregulated, potentially accounting for all phenotypic features. Untreated patients die prematurely of stroke; however, hypertension-induced target-organ damage is otherwise hardly apparent. We conducted clinical studies of vascular function, cardiac functional imaging, platelet function in affected and nonaffected persons, and cell-based assays. Large-vessel and cardiac functions indeed seem to be preserved. The platelet studies showed normal platelet function. Cell-based studies demonstrated that available phosphodiesterase 3A inhibitors suppress the mutant isoforms. However, increasing cGMP to indirectly inhibit the enzyme seemed to have particular use. Our results shed more light on phosphodiesterase 3A activation and could be relevant to the treatment of severe hypertension in the general population. © 2015 American Heart Association, Inc.
Montezano, Augusto C; De Lucca Camargo, Livia; Persson, Patrik; Rios, Francisco J; Harvey, Adam P; Anagnostopoulou, Aikaterini; Palacios, Roberto; Gandara, Ana Caroline P; Alves-Lopes, Rheure; Neves, Karla B; Dulak-Lis, Maria; Holterman, Chet E; de Oliveira, Pedro Lagerblad; Graham, Delyth; Kennedy, Christopher; Touyz, Rhian M
2018-06-15
NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus , an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N -acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca 2+ ] i , increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus , gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
The Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone
Khayat, Maan T.
2017-01-01
Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases. PMID:28884118
Bretón-Romero, Rosa; Wang, Na; Palmisano, Joseph; Larson, Martin G; Vasan, Ramachandran S; Mitchell, Gary F; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M
2016-12-01
Experimental studies link oscillatory flow accompanied by flow reversal to impaired endothelial cell function. The relation of flow reversal with vascular function and arterial stiffness remains incompletely defined. We measured brachial diastolic flow patterns along with vasodilator function in addition to tonometry-based central and peripheral arterial stiffness in 5708 participants (age 47±13 years, 53% women) in the Framingham Heart Study Offspring and Third Generation cohorts. Brachial artery diastolic flow reversal was present in 35% of the participants. In multivariable regression models, the presence of flow reversal was associated with lower flow-mediated dilation (3.9±0.2 versus 5.0±0.2%; P<0.0001) and reactive hyperemic flow velocity (50±0.99 versus 57±0.93 cm/s; P<0.0001). The presence of flow reversal (compared with absence) was associated with higher central aortic stiffness (carotid-femoral pulse wave velocity 9.3±0.1 versus 8.9±0.1 m/s), lower muscular artery stiffness (carotid-radial pulse wave velocity 9.6±0.1 versus 9.8±0.1 m/s), and higher forearm vascular resistance (5.32±0.03 versus 4.66±0.02 log dyne/s/cm 5 ; P<0.0001). The relations of diastolic flow velocity with flow-mediated dilation, aortic stiffness, and forearm vascular resistance were nonlinear, with a steeper decline in vascular function associated with increasing magnitude of flow reversal. In our large, community-based sample, brachial artery flow reversal was common and associated with impaired vasodilator function and higher aortic stiffness. Our findings are consistent with the concept that flow reversal may contribute to vascular dysfunction. © 2016 American Heart Association, Inc.
Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica
2018-01-01
We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.
Shimokawa, Hiroaki; Satoh, Kimio
2015-05-01
Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.
Hardtke, C S; Berleth, T
1998-01-01
The vascular tissues of flowering plants form networks of interconnected cells throughout the plant body. The molecular mechanisms directing the routes of vascular strands and ensuring tissue continuity within the vascular system are not known, but are likely to depend on general cues directing plant cell orientation along the apical-basal axis. Mutations in the Arabidopsis gene MONOPTEROS (MP) interfere with the formation of vascular strands at all stages and also with the initiation of the body axis in the early embryo. Here we report the isolation of the MP gene by positional cloning. The predicted protein product contains functional nuclear localization sequences and a DNA binding domain highly similar to a domain shown to bind to control elements of auxin inducible promoters. During embryogenesis, as well as organ development, MP is initially expressed in broad domains that become gradually confined towards the vascular tissues. These observations suggest that the MP gene has an early function in the establishment of vascular and body patterns in embryonic and post-embryonic development. PMID:9482737
Impact of American-Style Football Participation on Vascular Function
Kim, Jonathan H.; Sher, Salman; Wang, Francis; Berkstresser, Brant; Shoop, James L.; Galante, Angelo; Mheid, Ibhar Al; Ghasemzadeh, Nima; Hutter, Adolph M.; Williams, B. Robinson; Sperling, Laurence S.; Weiner, Rory B.; Quyyumi, Arshed A.; Baggish, Aaron L.
2014-01-01
Although hypertension is common among American-style football players, the presence of concomitant vascular dysfunction has not previously been characterized. We sought to examine the impact of American-style football participation on arterial stiffness and to compare metrics of arterial function between collegiate American-style football participants and non-athletic collegiate controls. Newly matriculated collegiate athletes were studied longitudinally during a single season of American-style football participation and were then compared to healthy undergraduate controls. Arterial stiffness was characterized by use of applanation tonometry (SphygmoCor®). American-style football participants (N = 32, 18.4 ± 0.5 years old) were evenly comprised of Caucasians (N = 14, 44%) and African-Americans (N = 18, 56%). A single season of American-style football participation led to an increase in central aortic pulse pressure (27 ± 4 vs. 34 ± 8 mm Hg, P <0.001). Relative to controls (N = 47), pulse wave velocity was increased among ASF participants (5.6 ± 0.7 vs. 6.2 ± 0.9 m/s, P = 0.002). After adjusting for height, weight, body-mass index, systolic blood pressure, and diastolic blood pressure, American-style football participation was independently predictive of increased pulse wave velocity (β = 0.33, P = 0.04). In conclusion, American-style football participation leads to changes in central hemodynamics and increased arterial stiffness. PMID:25465938
Cuneo, Anthony A.; Autieri, Michael V.
2012-01-01
Common to multiple vascular diseases, including atherosclerosis, interventional restenosis, and transplant vasculopathy, is a localized inflammatory reaction. Activated vascular smooth muscle cells (VSMC) respond to local inflammation and migrate from the media into the lumen of the vessel where they proliferate and synthesize cytokines which they respond to in an autocrine fashion, sustaining the progression of the lesion. The deleterious effects of pro-inflammatory cytokines, particularly immunomodulatory interleukins, on vascular pathophysiology and development of these maladaptive processes have been the subject of intense study. Although a great deal of attention has been given to the negative effects of pro-inflammatory cytokines and interleukins, relatively little has been reported on the potentially beneficial paracrine and autocrine effects of anti-inflammatory interleukins on the vascular response to injury. The vast majority of emphasis on secretion and function of anti-inflammatory mediators has been placed on leukocytes. Consequently, the role of non-immune cells, and direct effects of anti-inflammatory interleukins on vascular cells is poorly understood. We will review the molecular mechanisms whereby anti-inflammatory interleukins inhibit signal transduction and gene expression in inflammatory cells. We will review studies in which beneficial “indirect” effects of anti-inflammatory interleukins on progression of vascular disease are achieved by modulation of immune function. We will also present the limited studies in which “direct” effects of these interleukins on VSMC and endothelial cells dampen the vascular response to injury. We propose that expression of immunomodulatory cytokines by activated vasculature may represent an auto-regulatory feed back mechanism to promote resolution of the vascular response to injury. PMID:19601851
Lifestyle and metabolic approaches to maximizing erectile and vascular health.
Meldrum, D R; Gambone, J C; Morris, M A; Esposito, K; Giugliano, D; Ignarro, L J
2012-01-01
Oxidative stress and inflammation, which disrupt nitric oxide (NO) production directly or by causing resistance to insulin, are central determinants of vascular diseases including ED. Decreased vascular NO has been linked to abdominal obesity, smoking and high intakes of fat and sugar, which all cause oxidative stress. Men with ED have decreased vascular NO and circulating and cellular antioxidants. Oxidative stress and inflammatory markers are increased in men with ED, and all increase with age. Exercise increases vascular NO, and more frequent erections are correlated with decreased ED, both in part due to stimulation of endothelial NO production by shear stress. Exercise and weight loss increase insulin sensitivity and endothelial NO production. Potent antioxidants or high doses of weaker antioxidants increase vascular NO and improve vascular and erectile function. Antioxidants may be particularly important in men with ED who smoke, are obese or have diabetes. Omega-3 fatty acids reduce inflammatory markers, decrease cardiac death and increase endothelial NO production, and are therefore critical for men with ED who are under age 60 years, and/or have diabetes, hypertension or coronary artery disease, who are at increased risk of serious or even fatal cardiac events. Phosphodiesterase inhibitors have recently been shown to improve antioxidant status and NO production and allow more frequent and sustained penile exercise. Some angiotensin II receptor blockers decrease oxidative stress and improve vascular and erectile function and are therefore preferred choices for lowering blood pressure in men with ED. Lifestyle modifications, including physical and penile-specific exercise, weight loss, omega-3 and folic acid supplements, reduced intakes of fat and sugar, and improved antioxidant status through diet and/or supplements should be integrated into any comprehensive approach to maximizing erectile function, resulting in greater overall success and patient satisfaction, as well as improved vascular health and longevity.
Imaging of cerebrovascular pathology in animal models of Alzheimer's disease
Klohs, Jan; Rudin, Markus; Shimshek, Derya R.; Beckmann, Nicolau
2014-01-01
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature. PMID:24659966
Marchant, Natalie L.; Reed, Bruce R.; Sanossian, Nerses; Madison, Cindee M.; Kriger, Stephen; Dhada, Roxana; Mack, Wendy J.; DeCarli, Charles; Weiner, Michael W.; Mungas, Dan M.; Chui, Helena C.; Jagust, William J.
2013-01-01
Importance β-Amyloid (Aβ) deposition and vascular brain injury (VBI) frequently co-occur and are both associated with cognitive decline in aging. Determining whether a direct relationship exists between them has been challenging. We sought to understand VBI’s influence on cognition and clinical impairment, separate from and in conjunction with pathologic changes associated with Alzheimer disease (AD). Objective To examine the relationship between neuroimaging measures of VBI and brain Aβ deposition and their associations with cognition. Design and Setting A cross-sectional study in a community- and clinic-based sample recruited for elevated vascular disease risk factors. Participants Clinically normal (mean age, 77.1 years [N=30]), cognitively impaired (mean age, 78.0 years [N=24]), and mildly demented (mean age, 79.8 years [N=7]) participants. Interventions Magnetic resonance imaging, Aβ (Pitts-burgh Compound B–positron emission tomographic [PiB-PET]) imaging, and cognitive testing. Main Outcome Measures Magnetic resonance images were rated for the presence and location of infarct (34 infarct-positive participants, 27 infarct-negative participants) and were used to quantify white matter lesion volume. The PiB-PET uptake ratios were used to create a PiB index by averaging uptake across regions vulnerable to early Aβ deposition; PiB positivity (29 PiB-positive participants, 32 PiB-negative participants) was determined from a data-derived threshold. Standardized composite cognitive measures included executive function and verbal and nonverbal memory. Results Vascular brain injury and Aβ were independent in both cognitively normal and impaired participants. Infarction, particularly in cortical and subcortical gray matter, was associated with lower cognitive performance in all domains (P<.05 for all comparisons). Pittsburgh Compound B positivity was neither a significant predictor of cognition nor interacted with VBI. Conclusions and Relevance In this elderly sample with normal cognition to mild dementia, enriched for vascular disease, VBI was more influential than Aβ in contemporaneous cognitive function and remained predictive after including the possible influence of Aβ. There was no evidence that VBI increases the likelihood of Aβ deposition. This finding highlights the importance of VBI in mild cognitive impairment and suggests that the impact of cerebrovascular disease should be considered with respect to defining the etiology of mild cognitive impairment. PMID:23400560
Ma, Yu-Guang; Zhang, Yin-Bin; Bai, Yun-Gang; Dai, Zhi-Jun; Liang, Liang; Liu, Mei; Xie, Man-Jiang; Guan, Hai-Tao
2016-04-12
Vascular dysfunction is a distinctive phenotype in diabetes mellitus. Current treatments mostly focus on the tight glycemic control and few of these treatments have been designed to directly recover the vascular dysfunction in diabetes. As a classical natural medicine, berberine has been explored as a possible therapy for DM. In addition, it is reported that berberine has an extra-protective effect in diabetic vascular dysfunction. However, little is known whether the berberine treatment could ameliorate the smooth muscle contractility independent of a functional endothelium under hyperglycemia. Furthermore, it remains unknown whether berberine affects the arterial contractility by regulating the intracellular Ca(2+) handling in vascular smooth cells (VSMCs) under hyperglycemia. Sprague-Dawley rats were used to establish the diabetic model with a high-fat diet plus injections of streptozotocin (STZ). Berberine (50, 100, and 200 mg/kg/day) were intragastrically administered to control and diabetic rats for 8 weeks since the injection of STZ. The intracellular Ca(2+) handling of isolated cerebral VSMCs was investigated by recording the whole-cell L-type Ca(2+) channel (CaL) currents, assessing the protein expressions of CaL channel, and measuring the intracellular Ca(2+) in response to caffeine. Our results showed that chronic administration of 100 mg/kg/day berberine not only reduced glucose levels, but also inhibited the augmented contractile function of cerebral artery to KCl and 5-hydroxytryptamine (5-HT) in diabetic rats. Furthermore, chronic administration of 100 mg/kg/day berberine significantly inhibited the CaL channel current densities, reduced the α1C-subunit expressions of CaL channel, decreased the resting intracellular Ca(2+) ([Ca(2+)]i) level, and suppressed the Ca(2+) releases from RyRs in cerebral VSMCs isolated from diabetic rats. Correspondingly, acute application of 10 μM berberine could directly inhibit the hyperglycemia-induced CaL currents and suppress the hyperglycemia-induced Ca(2+) releases from RyRs in cerebral VSMCs isolated from normal control rats. Our study indicated that berberine alleviated the cerebral arterial contractility in the rat model of streptozotocin-induced diabetes via regulating the intracellular Ca(2+) handling of smooth muscle cells.
McCracken, James P.; Bhatnagar, Aruni; Conklin, Daniel J.
2016-01-01
Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/. PMID:27016579
Lee, Dustin M; Battson, Micah L; Jarrell, Dillon K; Hou, Shuofei; Ecton, Kayl E; Weir, Tiffany L; Gentile, Christopher L
2018-04-27
Type 2 diabetes (T2D) is associated with generalized vascular dysfunction characterized by increases in large artery stiffness, endothelial dysfunction, and vascular smooth muscle dysfunction. Sodium glucose cotransporter 2 inhibitors (SGLT2i) represent the most recently approved class of oral medications for the treatment of T2D, and have been shown to reduce cardiovascular and overall mortality. Although it is currently unclear how SGLT2i decrease cardiovascular risk, an improvement in vascular function is one potential mechanism. The aim of the current study was to examine if dapagliflozin, a widely prescribed STLT2i, improves generalized vascular dysfunction in type 2 diabetic mice. In light of several studies demonstrating a bi-directional relation between orally ingested medications and the gut microbiota, a secondary aim was to determine the effects of dapagliflozin on the gut microbiota. Male diabetic mice (Db, n = 24) and control littermates (Con; n = 23) were randomized to receive either a standard diet or a standard diet containing dapagliflozin (60 mg dapagliflozin/kg diet; 0.006%) for 8 weeks. Arterial stiffness was assessed by aortic pulse wave velocity; endothelial function and vascular smooth muscle dysfunction were assessed by dilatory responses to acetylcholine and sodium nitroprusside, respectively. Compared to untreated diabetic mice, diabetic mice treated with dapagliflozin displayed significantly lower arterial stiffness (Db = 469 cm/s vs. Db + dapa = 435 cm/s, p < 0.05), and improvements in endothelial dysfunction (area under the curve [AUC] Db = 57.2 vs. Db + dapa = 117.0, p < 0.05) and vascular smooth muscle dysfunction (AUC, Db = 201.7 vs. Db + dapa = 285.5, p < 0.05). These vascular improvements were accompanied by reductions in hyperglycemia and circulating markers of inflammation. The microbiota of Db and Con mice were distinctly different, and dapagliflozin treatment was associated with minor alterations in gut microbiota composition, particularly in Db mice, although these effects did not conclusively mediate the improvements in vascular function. Dapagliflozin treatment improves arterial stiffness, endothelial dysfunction and vascular smooth muscle dysfunction, and subtly alters microbiota composition in type 2 diabetic mice. Collectively, the improvements in generalized vascular function may represent an important mechanism underlying the cardiovascular benefits of SGLT2i treatment.
Regulation and function of endothelial glycocalyx layer in vascular diseases.
Sieve, Irina; Münster-Kühnel, Anja K; Hilfiker-Kleiner, Denise
2018-01-01
In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. The glycocalyx, composed of glycoconjugates and proteoglycans, is an integral component of the ESL and a key element in inter- and intracellular communication and tissue homeostasis. In pathophysiological conditions (atherosclerosis, infection, ischemia/reperfusion injury, diabetes, trauma and acute lung injury) glycocalyx-degrading factors, i.e. reactive oxygen and nitrogen species, matrix metalloproteinases, heparanase and sialidases, damage the ESL, thereby impairing endothelial functions. This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.
Stem cell function during plant vascular development
Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka
2013-01-01
The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537
The Association Between Kidney Disease and Cardiovascular Risk in a Multiethnic Cohort
Nickolas, Thomas L.; Khatri, Minesh; Boden-Albala, Bernadette; Kiryluk, Krzysztof; Luo, Xiaodong; Gervasi-Franklin, Palma; Paik, Myunghee; Sacco, Ralph L.
2011-01-01
Background and Purpose The objective of this study was to determine the relationship between chronic kidney disease (CKD), race–ethnicity, and vascular outcomes. Methods A prospective, multiracial cohort of 3298 stroke-free subjects with 6.5 years of mean follow-up time for vascular outcomes (stroke, myocardial infarction, vascular death) was used. Kidney function was estimated using serum creatinine and Cockcroft-Gault formula. Cox proportional hazards models were fitted to evaluate the relationship between kidney function and vascular outcomes. Results In multivariate analysis, Cockcroft-Gault formula between 15 and 59 mL/min was associated with a significant 43% increased stroke risk in the overall cohort. Blacks with Cockcroft-Gault formula between 15 and 59 mL/min had significantly increased risk of both stroke (hazard ratio, 2.65; 95% CI, 1.47 to 4.77) and combined vascular outcomes (hazard ratio, 1.59; 95% CI, 1.10–2.92). Conclusion Chronic kidney disease is a significant risk factor for stroke and combined vascular events, especially in blacks. PMID:18617655
Baroreflex-Mediated Heart Rate and Vascular Resistance Responses 24 h after Maximal Exercise
2003-01-01
of normal physiological function in bedridden patients and astronauts. The implication for failure of CVP and plasma volume to return to baseline... FUNCTION , BLOOD PRES- SURE, CENTRAL VENOUS PRESSURE, PHENYLEPHRINE, NECK PRESSURE, LOWER BODY NEGATIVE PRESSURE, COUNTERMEASURES Increased incidence of...orthostatic hypotension and intol-erance in humans is associated with vascular hypovole-mia and attenuated cardiovascular reflex functions
Ramanan, Bala; Ahmed, Ayman; Wu, Bian; Causey, Marlin W; Gasper, Warren J; Vartanian, Shant M; Reyzelman, Alexander M; Hiramoto, Jade S; Conte, Michael S
2017-12-01
The objective of this study was to assess midterm functional status, wound healing, and in-hospital resource use among a prospective cohort of patients treated in a tertiary hospital, multidisciplinary Center for Limb Preservation. Data were prospectively gathered on all consecutive admissions to the Center for Limb Preservation from July 2013 to October 2014 with follow-up data collection through January 2016. Limbs were staged using the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) threatened limb classification scheme at the time of hospital admission. Patients with nonatherosclerotic vascular disorders, acute limb ischemia, and trauma were excluded. The cohort included 128 patients with 157 threatened limbs; 8 limbs with unstageable disease were excluded. Mean age (±standard deviation [SD]) was 66 (±13) years, and median follow-up duration (interquartile range) was 395 (80-635) days. Fifty percent (n = 64/128) of patients were readmitted at least once, with a readmission rate of 20% within 30 days of the index admission. Mean total number of admissions per patient (±SD) was 1.9 ± 1.2, with mean (±SD) cumulative length of stay (cLOS) of 17.1 (±17.9) days. During follow-up, 25% of limbs required a vascular reintervention, and 45% developed recurrent wounds. There was no difference in the rate of readmission, vascular reintervention, or wound recurrence by initial WIfI stage (P > .05). At the end of the study period, 23 (26%) were alive and nonambulatory; in 20%, functional status was missing. On both univariate and multivariate analysis, end-stage renal disease and prior functional status predicted ability to ambulate independently (P < .05). WIfI stage was associated with major amputation (P = .01) and cLOS (P = .002) but not with time to wound healing. Direct hospital (inpatient) cost per limb saved was significantly higher in stage 4 patients (P < .05 for all time periods). WIfI stage was associated with cumulative in-hospital costs at 1 year and for the overall follow-up period. Among a population of patients admitted to a tertiary hospital limb preservation service, WIfI stage was predictive of midterm freedom from amputation, cLOS, and hospital costs but not of ambulatory functional status, time to wound healing, or wound recurrence. Patients presenting with limb-threatening conditions require significant inpatient care, have a high frequency of repeated hospitalizations, and are at significant risk for recurrent wounds and leg symptoms at later times. Stage 4 patients require the most intensive care and have the highest initial and aggregate hospital costs per limb saved. However, limb salvage can be achieved in these patients with a dedicated multidisciplinary team approach. Published by Elsevier Inc.
Takayama, Tadateru; Hiro, Takafumi; Yoda, Shunichi; Fukamachi, Daisuke; Haruta, Hironori; Kogo, Takaaki; Mineki, Takashi; Murata, Hironobu; Oshima, Toru; Hirayama, Atsushi
2018-06-01
Vascular endothelial dysfunction plays an important role in the process of atherosclerosis up to the final stage of plaque rupture. Vascular endothelial dysfunction is reversible, and can be recovered by medications and life-style changes. Improvement in endothelial function may reduce cardiovascular events and improve long-term prognosis. A total of 50 patients with stable angina and dyslipidemia were enrolled, including patients who had not received prior treatment with statins and had serum LDL-C levels ≥ 100 mg/dL, and patients who had previously received statin treatment. All agreed to register regardless of their LDL-C level. Rosuvastatin was initially administered at a dose of 2.5 mg and appropriately titrated up to the maximum dose of 20 mg or until LDL-C levels lower than 80 mg/dL were achieved, for 24 weeks. Endothelial function was assessed by the reactive hyperemia peripheral arterial tonometry (RH-PAT) index in the radial artery by Endo-PAT ® 2000 (Endo-PAT ® 2000, software version 3.0.4, Itamar Medical Ltd., Caesarea, Israel). RH-PAT data were digitally analyzed online by Endo-PAT ® 2000 at baseline and at 24 weeks. LDL-C and MDA-LDL-C decreased from 112.6 ± 23.3 to 85.5 ± 20.2 mg/dL and from 135.1 ± 36.4 to 113.9 ± 23.5 mg/dL respectively (p < 0.0001). However, HDL-C, hs-CRP and TG did not change significantly after treatment. RH-PAT index levels significantly improved, from 1.60 ± 0.31 to 1.77 ± 0.57 (p = 0.04) after treatment, and the percent change of the RH-PAT index was 12.8 ± 36.9%. Results of multivariate analysis show that serum LDL-C levels over 24 weeks did not act as a predictor of improvement of the RH-PAT index. However, HbA1c at baseline was an independent predictor which influenced the 24-week RH-PAT index level. The RH-PAT index of patients with high HbA1c at baseline did not improve after administration of rosuvastatin but it did improve in patients with low HbA1c at baseline. Aggressive lowering of LDL-C with rosuvastatin significantly improved the RH-PAT index, suggesting that it may improve endothelial function in patients with coronary artery disease.Clinical Trial Registration No: UMIN-CTR, UMIN000010040.
Magnetization Transfer Ratio Relates to Cognitive Impairment in Normal Elderly
Seiler, Stephan; Pirpamer, Lukas; Hofer, Edith; Duering, Marco; Jouvent, Eric; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold
2014-01-01
Magnetization transfer imaging (MTI) can detect microstructural brain tissue changes and may be helpful in determining age-related cerebral damage. We investigated the association between the magnetization transfer ratio (MTR) in gray and white matter (WM) and cognitive functioning in 355 participants of the Austrian stroke prevention family study (ASPS-Fam) aged 38–86 years. MTR maps were generated for the neocortex, deep gray matter structures, WM hyperintensities, and normal appearing WM (NAWM). Adjusted mixed models determined whole brain and lobar cortical MTR to be directly and significantly related to performance on tests of memory, executive function, and motor skills. There existed an almost linear dose-effect relationship. MTR of deep gray matter structures and NAWM correlated to executive functioning. All associations were independent of demographics, vascular risk factors, focal brain lesions, and cortex volume. Further research is needed to understand the basis of this association at the tissue level, and to determine the role of MTR in predicting cognitive decline and dementia. PMID:25309438
Advanced Restricted Area Entry Control System (Araecs)
2014-06-01
113 f. Vascular Recognition ............................................................115 g. Handwriting Recognition...independent (unconstrained mode). In a system using “text dependent” speech the individual will speak either a fixed password or prompted to say a...specific phrase (e.g. “Please say the following numbers 33, 45, 88”) (National Science and Technology Council 2006). A text independent system is more
Vascular function in diabetic individuals in association with particulate matter
Rationale: Exposure to ambient air pollution has been shown to be associated with cardiovascular effects, especially in people with chronic diseases such as diabetes. The purpose of this study was to analyze the short-term effects of air pollution on vascular function in two pane...
Yang, Tao; Wang, Lei; Xiong, Chang-Ming; He, Jian-Guo; Zhang, Yan; Gu, Qing; Zhao, Zhi-Hui; Ni, Xin-Hai; Fang, Wei; Liu, Zhi-Hong
2014-05-01
It is known that patients with pulmonary hypertension (PH) can have elevated F-FDG uptake in the right ventricle (RV) on PET imaging. This study was designed to assess possible relationship between FDG uptake of ventricles and the function/hemodynamics of the RV in patients with PH. Thirty-eight patients with PH underwent FDG PET imaging in both fasting and glucose-loading conditions. The standard uptake value (SUVs) corrected for partial volume effect in both RV and left ventricle (LV) were measured. The ratio of FDG uptake between RV to LV (SUVR/L) was calculated. Right heart catheterization and cardiac magnetic resonance (CMR) were performed in all patients within 1 week. The FDG uptake levels by the ventricles were compared with the result form the right heart catheterization and CMR. The SUV of RV (SUVR) and SUV of LV were significantly higher in glucose-loading condition than in fasting condition. In both fasting and glucose-loading conditions, SUVR and SUVR/L showed reverse correlation with right ventricular ejection fraction derived from CMR. In addition, in both fasting and glucose-loading conditions, SUVR and SUVR/L showed positive correlations with pulmonary vascular resistance. However, only SUVR/L in glucose-loading condition could independently predict right ventricular ejection fraction after adjusted for age, body mass index, sex, mean right atrial pressure, mean pulmonary arterial pressure, and pulmonary vascular resistance (P = 0.048). The FDG uptake of RV increases with decreased right ventricular function in patients with PH. Increased FDG uptake ratio between RV and LV might be useful to assess the right ventricular function.
Retinal photography: A window into the cardiovascular-brain link in adolescent bipolar disorder.
Naiberg, Melanie R; Hatch, Jessica K; Selkirk, Beth; Fiksenbaum, Lisa; Yang, Victor; Black, Sandra; Kertes, Peter J; Goldstein, Benjamin I
2017-08-15
The burden of cardiovascular disease in bipolar disorder (BD) exceeds what can be explained by traditional cardiovascular risk factors (CVRFs), lifestyle, and/or medications. Moreover, neurocognitive deficits are a core feature of BD, and are also related to CVRFs. We examined retinal vascular photography, a proxy for cerebral microvasculature, in relation to CVRFs, peripheral microvascular function, and neurocognition among BD adolescents. Subjects were 30 adolescents with BD and 32 healthy controls (HC). Retinal photography was conducted using a Topcon TRC 50 DX, Type IA camera, following pupil dilation. Retinal arteriolar and venular caliber was measured, from which the arterio-venular ratio (AVR) was computed. All measures were conducted masked to participant diagnosis. Peripheral arterial tonometry measured endothelial function. Neurocognition was assessed using the Cambridge Neuropsychological Tests Automated Battery. AVR was not significantly different between groups (Cohen's d=0.18, p=0.103). Higher diastolic blood pressure (BP) was associated with lower (worse) AVR in BD (r=-0.441, p=0.015) but not HC (r=-0.192, p=0.293). Similarly, in the BD group only, higher (better) endothelial function was associated with higher AVR (r=0.375, p=0.041). Hierarchical regression models confirmed that, independent of covariates, retinal vascular caliber was significantly associated with diastolic BP and endothelial function in BD. Within the BD group, mood scores were significantly negatively correlated with AVR (β=-0.451, p=0.044). This study's limitations include a small sample size, a cross-sectional study design, and a heterogeneous sample. Retinal photography may offer unique insights regarding the cardiovascular and neurocognitive burden of BD. Larger longitudinal studies are warranted. Copyright © 2017. Published by Elsevier B.V.
Kerwin, Diana R; Zhang, Yinghua; Kotchen, Jane Morley; Espeland, Mark A; Van Horn, Linda; McTigue, Kathleen M; Robinson, Jennifer G; Powell, Lynda; Kooperberg, Charles; Coker, Laura H; Hoffmann, Raymond
2010-08-01
To determine whether body mass index (BMI) is independently associated with cognitive function in postmenopausal women and the relationship between body fat distribution as estimated by waist-hip ratio (WHR). Cross-sectional data analysis. Baseline data from the Women's Health Initiative (WHI) hormone trials. Eight thousand seven hundred forty-five postmenopausal women aged 65 to 79 free of clinical evidence of dementia who completed the baseline evaluation in the WHI hormone trials. Participants completed a Modified Mini-Mental State Examination (3MSE), health and lifestyle questionnaires, and standardized measurements of height, weight, body circumference, and blood pressure. Statistical analysis was performed of associations between 3MSE score, BMI, and WHR after controlling for known confounders. With the exception of smoking and exercise, vascular disease risk factors, including hypertension, waist measurement, heart disease, and diabetes mellitus, were significantly associated with 3MSE score and were included as covariables in subsequent analyses. BMI was inversely related to 3MSE score; for every 1-unit increase in BMI, 3MSE score decreased 0.988 points (P<.001) after adjusting for age, education, and vascular disease risk factors. BMI had the most pronounced association with poorer cognitive functioning scores in women with smaller waist measurements. In women with the highest WHR, cognitive scores increased with BMI. Higher BMI was associated with poorer cognitive function in women with smaller WHR. Higher WHR, estimating central fat mass, was associated with higher cognitive function in this cross-sectional study. Further research is needed to clarify the mechanism for this association. © 2010, Copyright the Authors. Journal compilation © 2010, No claim to original US government works.
Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.
Marchand, Melanie; Anderson, Erica K; Phadnis, Smruti M; Longaker, Michael T; Cooke, John P; Chen, Bertha; Reijo Pera, Renee A
2014-01-01
Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.
Peng, Hao-Fan; Liu, Jin Yu
2011-01-01
Our laboratory recently reported a new source of smooth muscle cells (SMCs) derived from hair follicle (HF) mesenchymal stem cells. HF-SMCs demonstrated high proliferation and clonogenic potential as well as contractile function. In this study, we aimed at engineering the vascular media using HF-SMCs and a natural biomaterial, namely small intestinal submucosa (SIS). Engineering functional vascular constructs required application of mechanical force, resulting in actin reorganization and cellular alignment. In turn, cell alignment was necessary for development of receptor- and nonreceptor-mediated contractility as soon as 24 h after cell seeding. Within 2 weeks in culture, the cells migrated into SIS and secreted collagen and elastin, the two major extracellular matrix components of the vessel wall. At 2 weeks, vascular reactivity increased significantly up to three- to fivefold and mechanical properties were similar to those of native ovine arteries. Taken together, our data demonstrate that the combination of HF-SMCs with SIS resulted in mechanically strong, biologically functional vascular media with potential for arterial implantation. PMID:21083418
Pathophysiological consequences of VEGF-induced vascular permeability
NASA Astrophysics Data System (ADS)
Weis, Sara M.; Cheresh, David A.
2005-09-01
Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.
REQUIREMENT OF ARGININOSUCCINATE LYASE FOR SYSTEMIC NITRIC OXIDE PRODUCTION
Erez, Ayelet; Nagamani, Sandesh CS.; Shchelochkov, Oleg A.; Premkumar, Muralidhar H.; Campeau, Philippe M.; Chen, Yuqing; Garg, Harsha K.; Li, Li; Mian, Asad; Bertin, Terry K.; Black, Jennifer O.; Zeng, Heng; Tang, Yaoping; Reddy, Anilkumar K.; Summar, Marshall; O’Brien, William E.; Harrison, David G.; Mitch, William E.; Marini, Juan C.; Aschner, Judy L.; Bryan, Nathan S.; Lee, Brendan
2012-01-01
Nitric Oxide (NO) plays a critical role in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (Asl) deficiency exhibits a distinct phenotype manifest by multi-organ dysfunction and NO deficiency. Loss of Asl leads to reduced NO synthesis due to decreased endogenous arginine synthesis as well as reduced utilization of extracellular arginine for NO production in both humans and mice. Hence, ASL as seen in other species through evolution has a structural function in addition to its catalytic activity. Importantly, therapy with nitrite rescued the tissue autonomous NO deficiency in hypomorphic Asl mice, while a NOS independent NO donor restored NO-dependent vascular reactivity in subjects with ASL deficiency. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as treatment of NO-related diseases. PMID:22081021
Erectile dysfunction in the cardiovascular patient.
Vlachopoulos, Charalambos; Jackson, Graham; Stefanadis, Christodoulos; Montorsi, Piero
2013-07-01
Erectile dysfunction is common in the patient with cardiovascular disease. It is an important component of the quality of life and it also confers an independent risk for future cardiovascular events. The usual 3-year time period between the onset of erectile dysfunction symptoms and a cardiovascular event offers an opportunity for risk mitigation. Thus, sexual function should be incorporated into cardiovascular disease risk assessment for all men. A comprehensive approach to cardiovascular risk reduction (comprising of both lifestyle changes and pharmacological treatment) improves overall vascular health, including sexual function. Proper sexual counselling improves the quality of life and increases adherence to medication. This review explores the critical connection between erectile dysfunction and cardiovascular disease and evaluates how this relationship may influence clinical practice. Algorithms for the management of patient with erectile dysfunction according to the risk for sexual activity and future cardiovascular events are proposed.
Nitric oxide functions as a signal in plant disease resistance.
Delledonne, M; Xia, Y; Dixon, R A; Lamb, C
1998-08-06
Recognition of an avirulent pathogen triggers the rapid production of the reactive oxygen intermediates superoxide (O2-) and hydrogen peroxide (H2O2). This oxidative burst drives crosslinking of the cell wall, induces several plant genes involved in cellular protection and defence, and is necessary for the initiation of host cell death in the hypersensitive disease-resistance response. However, this burst is not enough to support a strong disease-resistance response. Here we show that nitric oxide, which acts as a signal in the immune, nervous and vascular systems, potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen intermediates and functions independently of such intermediates to induce genes for the synthesis of protective natural products. Moreover, inhibitors of nitric oxide synthesis compromise the hypersensitive disease-resistance response of Arabidopsis leaves to Pseudomonas syringae, promoting disease and bacterial growth. We conclude that nitric oxide plays a key role in disease resistance in plants.
Dynamics of pulsatile flow in fractal models of vascular branching networks.
Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt
2009-07-01
Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.
Sox17 drives functional engraftment of endothelium converted from non-vascular cells.
Schachterle, William; Badwe, Chaitanya R; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M; Rafii, Shahin
2017-01-16
Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function.
KLF2 and KLF4 control endothelial identity and vascular integrity
Sangwung, Panjamaporn; Zhou, Guangjin; Nayak, Lalitha; Chan, E. Ricky; Kang, Dong-Won; Zhang, Rongli; Lu, Yuan; Sugi, Keiki; Fujioka, Hisashi; Shi, Hong; Lapping, Stephanie D.; Ghosh, Chandra C.; Higgins, Sarah J.; Parikh, Samir M.; Jain, Mukesh K.
2017-01-01
Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal. PMID:28239661
Sukmana, Irza
2012-01-01
The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer as well as waste removal. Vascularization of engineering tissue construct is one of the most favorable strategies to overpass nutrient and oxygen supply limitation, which is often the major hurdle in developing thick and complex tissue and artificial organ. This paper addresses recent advances and future challenges in developing three-dimensional culture systems to promote tissue construct vascularization allowing mimicking blood microvessel development and function encountered in vivo. Bioreactors systems that have been used to create fully vascularized functional tissue constructs will also be outlined. PMID:22623881
Ren, Bin
2018-04-24
FoxO1 has emerged as an important regulator of angiogenesis. Recent work published in this Journal shows that FoxO1 regulates VEGF expression in keratinocytes and is required for angiogenesis in wound healing. Since FoxO1 also regulates CD36 transcription, and endothelial cell differentiation and vascular maturation, this transcription factor may be essential for the formation of functional vascular networks via coupling the regulation of CD36 in vascular endothelial cells under physiological and pathological conditions. Although many outstanding questions remain to be answered, the mechanisms by which FoxO1 regulates VEGF in keratinocytes provide insight into the development of functional angiogenesis and further our understanding of vascular biology. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
APOC3 may not be a predictor of risk of ischemic vascular disease in the Chinese population
Wang, Qing-Yun; Zeng, Wei; Liu, Hui; Wu, Ying-Ying; Hu, Bei; Hu, Yu
2014-01-01
The genetic background of ischemic vascular disease is actively being explored. Several studies have shown that inhibition of APOC3 significantly reduces plasma levels of apolipoprotein C3 and triglycerides. Recently, the TG and HDL Working Group and Jørgensen et al. reported that loss-of-function mutations in APOC3 are associated with decreased triglyceride levels and a reduced risk of ischemic vascular disease in European and African individuals. We performed a replication study in 4470 Chinese participants. The coding regions of APOC3 were amplified and re-sequenced. However, only synonymous and intronic variants with no functional consequences were identified. None of the loss-of-function mutations reported in European and African individuals were observed. Therefore, APOC3 may not be an ideal predictor for risk of ischemic vascular disease in the Chinese population. PMID:25653838
APOC3 may not be a predictor of risk of ischemic vascular disease in the Chinese population.
Tang, Liang; Cheng, Zhi-Peng; Wang, Qing-Yun; Zeng, Wei; Liu, Hui; Wu, Ying-Ying; Hu, Bei; Hu, Yu
2014-01-01
The genetic background of ischemic vascular disease is actively being explored. Several studies have shown that inhibition of APOC3 significantly reduces plasma levels of apolipoprotein C3 and triglycerides. Recently, the TG and HDL Working Group and Jørgensen et al. reported that loss-of-function mutations in APOC3 are associated with decreased triglyceride levels and a reduced risk of ischemic vascular disease in European and African individuals. We performed a replication study in 4470 Chinese participants. The coding regions of APOC3 were amplified and re-sequenced. However, only synonymous and intronic variants with no functional consequences were identified. None of the loss-of-function mutations reported in European and African individuals were observed. Therefore, APOC3 may not be an ideal predictor for risk of ischemic vascular disease in the Chinese population.
Vascular and renal function in experimental thyroid disorders.
Vargas, Félix; Moreno, Juan Manuel; Rodríguez-Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Alvarez-Guerra, Miriam; García-Estañ, Joaquín
2006-02-01
This review focuses on the effects of thyroid hormones in vascular and renal systems. Special emphasis is given to the mechanisms by which thyroid hormones affect the regulation of body fluids, vascular resistance and, ultimately, blood pressure. Vascular function is markedly affected by thyroid hormones that produce changes in vascular reactivity and endothelial function in hyper- and hypothyroidism. The hypothyroid state is accompanied by a marked decrease in sensitivity to vasoconstrictors, especially to sympathetic agonists, alteration that may play a role in the reduced blood pressure of hypothyroid rats, as well as in the preventive effects of hypothyroidism on experimental hypertension. Moreover, in hypothyroid rats, the endothelium-dependent and nitric oxide donors vasodilation is reduced. Conversely, the vessels from hyperthyroid rats showed an increased endothelium-dependent responsiveness that may be secondary to the shear-stress induced by the hyperdynamic circulation, and that may contribute to the reduced vascular resistance characteristic of this disease. Thyroid hormones also have important effects in the kidney, affecting renal growth, renal haemodynamics, and salt and water metabolism. In hyperthyroidism, there is a resetting of the pressure-natriuresis relationship related to hyperactivity of the renin-angiotensin system, which contributes to the arterial hypertension associated with this endocrine disease. Moreover, thyroid hormones affect the development and/or maintenance of various forms of arterial hypertension. This review also describes recent advances in our understanding of thyroid hormone action on nitric oxide and oxidative stress in the regulation of cardiovascular and renal function and in the long-term control of blood pressure.
Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis.
Schaer, Christian A; Deuel, Jeremy W; Schildknecht, Daniela; Mahmoudi, Leila; Garcia-Rubio, Ines; Owczarek, Catherine; Schauer, Stefan; Kissner, Reinhard; Banerjee, Uddyalok; Palmer, Andre F; Spahn, Donat R; Irwin, David C; Vallelian, Florence; Buehler, Paul W; Schaer, Dominik J
2016-05-15
Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis. Characterization of an archetypical function by which Hb scavenger proteins could preserve NO signaling during hemolysis. We investigated NO reaction kinetics, effects on arterial NO signaling, and tissue distribution of cell-free Hb and its scavenger protein complexes. Extravascular translocation of cell-free Hb into interstitial spaces, including the vascular smooth muscle cell layer of rat and pig coronary arteries, promotes vascular NO resistance. This critical disease process is blocked by haptoglobin. Haptoglobin does not change NO dioxygenation rates of Hb; rather, the large size of the Hb:haptoglobin complex prevents Hb extravasation, which uncouples NO/Hb interaction and vasoconstriction. Size-selective compartmentalization of Hb functions as a substitute for red blood cells after hemolysis and preserves NO signaling in the vasculature. We found that evolutionarily and structurally unrelated Hb-binding proteins, such as PIT54 found in avian species, functionally converged with haptoglobin to protect NO signaling by sequestering cell-free Hb in large protein complexes. Sequential compartmentalization of Hb by erythrocytes and scavenger protein complexes is an archetypical mechanism, which may have supported coevolution of hemolysis and normal vascular function. Therapeutic supplementation of Hb scavengers may restore vascular NO signaling and attenuate disease complications in patients with hemolysis.
Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs
Bertassoni, Luiz E.; Cecconi, Martina; Manoharan, Vijayan; Nikkhah, Mehdi; Hjortnaes, Jesper; Cristino, Ana Luiza; Barabaschi, Giada; Demarchi, Danilo; Dokmeci, Mehmet R.; Yang, Yunzhi; Khademhosseini, Ali
2014-01-01
Vascularization remains a critical challenge in tissue engineering. The development of vascular networks within densely populated and metabolically functional tissues facilitate transport of nutrients and removal of waste products, thus preserving cellular viability over a long period of time. Despite tremendous progress in fabricating complex tissue constructs in the past few years, approaches for controlled vascularization within hydrogel based engineered tissue constructs have remained limited. Here, we report a three dimensional (3D) micromolding technique utilizing bioprinted agarose template fibers to fabricate microchannel networks with various architectural features within photo cross linkable hydrogel constructs. Using the proposed approach, we were able to successfully embed functional and perfusable microchannels inside methacrylated gelatin (GelMA), star poly (ethylene glycol-co-lactide) acrylate (SPELA), poly (ethylene glycol) dimethacrylate (PEGDMA) and poly (ethylene glycol) diacrylate (PEGDA) hydrogels at different concentrations. In particular, GelMA hydrogels were used as a model to demonstrate the functionality of the fabricated vascular networks in improving mass transport, cellular viability and differentiation within the cell-laden tissue constructs. In addition, successful formation of endothelial monolayers within the fabricated channels was confirmed. Overall, our proposed strategy represents an effective technique for vascularization of hydrogel constructs with useful applications in tissue engineering and organs on a chip. PMID:24860845
Regulation of thrombosis and vascular function by protein methionine oxidation.
Gu, Sean X; Stevens, Jeff W; Lentz, Steven R
2015-06-18
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.
Rathnayake, Kumari M; Weech, Michelle; Jackson, Kim G; Lovegrove, Julie A
2018-03-16
CVD are the leading cause of death in women globally, with ageing associated with progressive endothelial dysfunction and increased CVD risk. Natural menopause is characterised by raised non-fasting TAG concentrations and impairment of vascular function compared with premenopausal women. However, the mechanisms underlying the increased CVD risk after women have transitioned through the menopause are unclear. Dietary fat is an important modifiable risk factor relating to both postprandial lipaemia and vascular reactivity. Meals rich in SFA and MUFA are often associated with greater postprandial TAG responses compared with those containing n-6 PUFA, but studies comparing their effects on vascular function during the postprandial phase are limited, particularly in postmenopausal women. The present review aimed to evaluate the acute effects of test meals rich in SFA, MUFA and n-6 PUFA on postprandial lipaemia, vascular reactivity and other CVD risk factors in postmenopausal women. The systematic search of the literature identified 778 publications. The impact of fat-rich meals on postprandial lipaemia was reported in seven relevant studies, of which meal fat composition was compared in one study described in three papers. An additional study determined the impact of a high-fat meal on vascular reactivity. Although moderately consistent evidence suggests detrimental effects of high-fat meals on postprandial lipaemia in postmenopausal (than premenopausal) women, there is insufficient evidence to establish the impact of meals of differing fat composition. Furthermore, there is no robust evidence to conclude the effect of meal fatty acids on vascular function or blood pressure. In conclusion, there is an urgent requirement for suitably powered robust randomised controlled trials to investigate the impact of meal fat composition on postprandial novel and established CVD risk markers in postmenopausal women, an understudied population at increased cardiometabolic risk.
Diabetes Does Not Influence Selected Clinical Outcomes in Critically Ill Burn Patients
2011-01-01
18464942] 46. Gornik I, Gornik O, Gasparovic V. HbA1c is outcome predictor in diabetic patients with sepsis. Diabetes Research and Clinical Practice...of Surgery. 2009; 96(11):1358–1364. [PubMed: 19847870] 50. O’Sullivan CJ, Hynes N, Mahendran B, et al. Haemoglobin A1c ( HbA1C ) in non-diabetic and...diabetic vascular patients. Is HbA1C an independent risk factor and predictor of adverse outcome? European Journal of Vascular and Endovascular Surgery
Kuo, Li-Yaung; Chen, Cheng-Wei; Shinohara, Wataru; Ebihara, Atsushi; Kudoh, Hiroshi; Sato, Hirotoshi; Huang, Yao-Moan; Chiou, Wen-Liang
2017-03-01
Independent gametophyte ferns are unique among vascular plants because they are sporophyteless and reproduce asexually to maintain their populations in the gametophyte generation. Such ferns had been primarily discovered in temperate zone, and usually hypothesized with (sub)tropical origins and subsequent extinction of sporophyte due to climate change during glaciations. Presumably, independent fern gametophytes are unlikely to be distributed in tropics and subtropics because of relatively stable climates which are less affected by glaciations. Nonetheless, the current study presents cases of two independent gametophyte fern species in subtropic East Asia. In this study, we applied plastid DNA sequences (trnL-L-F and matK + ndhF + chlL datasets) and comprehensive sampling (~80%) of congeneric species for molecular identification and divergence time estimation of these independent fern gametophytes. The two independent gametophyte ferns were found belonging to genus Haplopteris (vittarioids, Pteridaceae) and no genetic identical sporophyte species in East Asia. For one species, divergence times between its populations imply recent oversea dispersal(s) by spores occurred during Pleistocene. By examining their ex situ and in situ fertility, prezygotic sterility was found in these two Haplopteris, in which gametangia were not or very seldom observed, and this prezygotic sterility might attribute to their lacks of functional sporophytes. Our field observation and survey on their habitats suggest microhabitat conditions might attribute to this prezygotic sterility. These findings point to consideration of whether recent climate change during the Pleistocene glaciation resulted in ecophysiological maladaptation of non-temperate independent gametophyte ferns. In addition, we provided a new definition to classify fern gametophyte independences at the population level. We expect that continued investigations into tropical and subtropical fern gametophyte floras will further illustrate the biogeographic significance of non-temperate fern gametophyte independence.
Maass, Anne; Düzel, Sandra; Brigadski, Tanja; Goerke, Monique; Becke, Andreas; Sobieray, Uwe; Neumann, Katja; Lövdén, Martin; Lindenberger, Ulman; Bäckman, Lars; Braun-Dullaeus, Rüdiger; Ahrens, Dörte; Heinze, Hans-Jochen; Müller, Notger G; Lessmann, Volkmar; Sendtner, Michael; Düzel, Emrah
2016-05-01
Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n=21) or to a control group (indoor progressive-muscle relaxation/stretching, n=19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Skin grafting impairs postsynaptic cutaneous vasodilator and sweating responses.
Davis, Scott L; Shibasaki, Manabu; Low, David A; Cui, Jian; Keller, David M; Purdue, Gary F; Hunt, John L; Arnoldo, Brett D; Kowalske, Karen J; Crandall, Craig G
2007-01-01
This study tested the hypothesis that postsynaptic cutaneous vascular responses to endothelial-dependent and -independent vasodilators, as well as sweat gland function, are impaired in split-thickness grafted skin 5 to 9 months after surgery. Intradermal microdialysis membranes were placed in grafted and adjacent control skin, thereby allowing local delivery of the endothelial-dependent vasodilator, acetylcholine (ACh; 1 x 10(-7) to 1 x 10(-1) M at 10-fold increments) and the endothelial-independent nitric oxide donor, sodium nitroprusside (SNP; 5 x 10(-8) to 5 x 10(-2) M at 10-fold increments). Skin blood flow and sweat rate were simultaneously assessed over the semipermeable portion of the membrane. Cutaneous vascular conductance (CVC) was calculated from the ratio of laser Doppler-derived skin blood flow to mean arterial blood pressure. deltaCVC responses from baseline to these drugs were modeled via nonlinear regression curve fitting to identify the dose of ACh and SNP causing 50% of the maximal vasodilator response (EC50). A rightward shift in the CVC dose response curve for ACh was observed in grafted (EC50 = -2.61 +/- 0.44 log M) compared to adjacent control skin (EC50 = -3.34 +/- 0.46 log M; P = .003), whereas the mean EC50 for SNP was similar between grafted (EC50 = -4.21 +/- 0.94 log M) and adjacent control skin (EC50 = -3.87 +/- 0.65 log M; P = 0.332). Only minimal sweating to exogenous ACh was observed in grafted skin whereas normal sweating was observed in control skin. Increased EC50 and decreased maximal CVC responses to the exogenous administration of ACh suggest impairment of endothelial-dependent cutaneous vasodilator responses in grafted skin 5 to 9 months after surgery. Greatly attenuated sweating responses to ACh suggests either abnormal or an absence of functional sweat glands in the grafted skin.
Brant, Luisa C C; Wang, Na; Ojeda, Francisco M; LaValley, Michael; Barreto, Sandhi M; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S; Palmisano, Joseph N; Münzel, Thomas; Blankenberg, Stefan; Wild, Philipp S; Zeller, Tanja; Ribeiro, Antonio L P; Schnabel, Renate B; Hamburg, Naomi M
2017-03-08
Microvascular dysfunction is a marker of early vascular disease that predicts cardiovascular events. Whether metabolically healthy obese individuals have impaired microvascular function remains unclear. The aim of this study was to evaluate the relation of obesity phenotypes stratified by metabolic status to microvascular function. We meta-analyzed aggregate data from 3 large cohorts (Brazilian Longitudinal Study of Adult Health, the Framingham Heart Study, and the Gutenberg Heart Study; n=16 830 participants, age range 19-90, 51.3% men). Regression slopes between cardiovascular risk factors and microvascular function, measured by peripheral arterial tonometry (PAT), were calculated. Individuals were classified as normal-weight, overweight, or obese by body mass index (BMI) and stratified by healthy or unhealthy metabolic status based on metabolic syndrome using the ATP-III criteria. Male sex, BMI, and metabolic risk factors were associated with higher baseline pulse amplitude and lower PAT ratio. There was stepwise impairment of vascular measures from normal weight to obesity in both metabolic status strata. Metabolically healthy obese individuals had more impaired vascular function than metabolically healthy normal-weight individuals (baseline pulse amplitude 6.12±0.02 versus 5.61±0.01; PAT ratio 0.58±0.01 versus 0.76±0.01, all P <0.0001). Metabolically unhealthy obese individuals had more impaired vascular function than metabolically healthy obese individuals (baseline pulse amplitude 6.28±0.01 versus 6.12±0.02; PAT ratio 0.49±0.01 versus 0.58±0.01, all P <0.0001). Metabolically healthy obese individuals have impaired microvascular function, though the degree of impairment is less marked than in metabolically unhealthy obese individuals. Our findings suggest that obesity is detrimental to vascular health irrespective of metabolic status. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Duceppe, Emmanuelle; Lussier, Anne-Renee; Beaulieu-Dore, Roxane; LeManach, Yannick; Laskine, Mikhael; Fafard, Josee; Durand, Madeleine
2018-06-01
Postoperative acute kidney injury (AKI) is frequent after major vascular surgery and is associated with significant morbidity and mortality. It remains unclear whether the administration of combined oral antihypertensive medications on the day of surgery can increase the risk of postoperative AKI. We performed a retrospective cohort study of hypertensive patients undergoing elective major vascular surgery to determine the association between the number of antihypertensive medications continued on the morning of surgery and AKI at 48 hours postoperatively. A total of 406 patients who had undergone suprainguinal vascular surgery were included, and 10.3% suffered postoperative AKI. In multivariable analysis, the number of antihypertensive medications taken on the morning of surgery was independently associated with AKI (P = .026). Compared with patients who took no medication, taking one medication (adjusted odds ratio [aOR], 1.58; 95% confidence interval [CI], 0.68-3.75) and taking two or more medications (aOR, 2.70; 95% CI, 1.13-6.44) were associated with a 1.6-fold and 2.7-fold increased risk of postoperative AKI, respectively. Other predictors of AKI were suprarenal surgery (aOR, 3.37; 95% CI, 1.53-7.44), age (aOR, 2.29 per 10 years; 95% CI, 1.40-3.74), length of surgery (aOR, 1.40 per 1 hour; 95% CI, 1.10-1.76), hemoglobin drop (aOR, 1.37 per 10 g/L; 95% CI, 1.10-1.74), and history of coronary artery disease (aOR, 2.33; 95% CI, 1.08-5.00). In patients undergoing major vascular surgery who are treated with chronic antihypertensive therapy, the administration of antihypertensive drugs on the morning of surgery is independently associated with an increased risk of postoperative AKI. Further prospective studies are needed to confirm this finding. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.
Barton, Matthias; Baretella, Oliver; Meyer, Matthias R
2012-02-01
Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Fujiwara, Atsushi; Morizane, Yuki; Hosokawa, Mio; Kimura, Shuhei; Kumase, Fumiaki; Shiode, Yusuke; Doi, Shinichiro; Hirano, Masayuki; Toshima, Shinji; Hosogi, Mika; Shiraga, Fumio
2016-10-01
To quantify the vascular density of the choroid of normal eyes and to identify the influencing factors using en face images obtained with swept-source optical coherence tomography (SS OCT). Prospective cross-sectional study. One hundred and sixty-three eyes of 163 healthy volunteers (83 female; mean age 42.2 ± 22.6 years) with a corrected visual acuity of ≥1.0 were investigated. En face SS OCT images of the choroid were used for quantitative assessment of the vascular density in the large choroid vessel layer. Relationships between vascular density of the choroid and age, sex, refractive error (RE), axial length (AL), and subfoveal choroidal thickness (SCT) were also investigated. There was a significant negative relationship between vascular density of the choroid and subject age (P < .001). Analysis according to age showed a significant correlation in the group aged >30 years (P < .001), but not in the group aged ≤30 years (P = .225). SCT had a significant positive relationship with vascular density of the choroid (P < .001). However, a significant correlation was not observed between sex, RE, or AL and vascular density of the choroid (P = .981, P = .292, and P = .216, respectively). Multivariable regression analysis with vascular density of the choroid as the dependent variable and age, sex, RE, AL, and SCT as independent variables showed that age and SCT are important determinants of vascular density of the choroid (P < .001). Age and SCT affect vascular density of the choroid. Copyright © 2016 Elsevier Inc. All rights reserved.
Kwantes, Michiel; Liebsch, Daniela; Verelst, Wim
2012-01-01
Land plants have a remarkable life cycle that alternates between a diploid sporophytic and a haploid gametophytic generation, both of which are multicellular and changed drastically during evolution. Classical MIKC MADS-domain (MIKCC) transcription factors are famous for their role in sporophytic development and are considered crucial for its evolution. About the regulation of gametophyte development, in contrast, little is known. Recent evidence indicated that the closely related MIKC* MADS-domain proteins are important for the functioning of the Arabidopsis thaliana male gametophyte (pollen). Furthermore, also in bryophytes, several MIKC* genes are expressed in the haploid generation. Therefore, that MIKC* genes have a similar role in the evolution of the gametophytic phase as MIKCC genes have in the sporophyte is a tempting hypothesis. To get a comprehensive view of the involvement of MIKC* genes in gametophyte evolution, we isolated them from a broad variety of vascular plants, including the lycophyte Selaginella moellendorffii, the fern Ceratopteris richardii, and representatives of several flowering plant lineages. Phylogenetic analysis revealed an extraordinary conservation not found in MIKCC genes. Moreover, expression and interaction studies suggest that a conserved and characteristic network operates in the gametophytes of all tested model organisms. Additionally, we found that MIKC* genes probably evolved from an ancestral MIKCC-like gene by a duplication in the Keratin-like region. We propose that this event facilitated the independent evolution of MIKC* and MIKCC protein networks and argue that whereas MIKCC genes diversified and attained new functions, MIKC* genes retained a conserved role in the gametophyte during land plant evolution.
Regulation of vascular endothelial function by procyanidin-rich foods and beverages.
Caton, Paul W; Pothecary, Mark R; Lees, Delphine M; Khan, Noorafza Q; Wood, Elizabeth G; Shoji, Toshihiko; Kanda, Tomomasa; Rull, Gurvinder; Corder, Roger
2010-04-14
Flavonoid-rich diets are associated with a lower mortality from cardiovascular disease. This has been linked to improvements in endothelial function. However, the specific flavonoids, or biologically active metabolites, conferring these beneficial effects have yet to be fully defined. In this experimental study of the effect of flavonoids on endothelial function cultured endothelial cells have been used as a bioassay with endothelin-1 (ET-1) synthesis being measured an index of the response. Evaluation of the relative effects of extracts of cranberry juice compared to apple, cocoa, red wine, and green tea showed inhibition of ET-1 synthesis was dependent primarily on their oligomeric procyanidin content. Procyanidin-rich extracts of cranberry juice triggered morphological changes in endothelial cells with reorganization of the actin cytoskeleton and increased immunostaining for phosphotyrosine residues. These actions were independent of antioxidant activity. Comparison of the effects of apple procyanidin monomers through heptamer showed a clear structure-activity relationship. Although monomer, dimer, and trimer had little effect on ET-1 synthesis, procyanidin tetramer, pentamer, hexamer, and heptamer produced concentration-dependent decreases with IC(50) values of 5.4, 1.6, 0.9, and 0.7 microM, respectively. Levels of ET-1 mRNA showed a similar pattern of decreases, which were inversely correlated with increased expression of Kruppel-like factor 2 (KLF2), a key endothelial transcription factor with a broad range of antiatherosclerotic actions including suppression of ET-1 synthesis. Future investigations of procyanidin-rich products should assess the role KLF2 induction plays in the beneficial vascular effects of high flavonoid consumption.
Del Brutto, Oscar H; Mera, Robertino M
2018-02-01
The burden of cerebral small vessel disease, sleep disorders, and chronic kidney disease is on the rise in remote rural settings. However, information on potential links between these conditions is limited. We aimed to assess the relationships between these conditions in community-dwelling older adults living in rural Ecuador. Atahualpa residents aged ≥60 years were offered a brain MRI. A venous blood sample was obtained for serum creatinine determination. Baseline interviews and procedures were directed to assess demographics, cardiovascular risk factors, and sleep quality. Using generalized structural equation modeling (GSEM), we assessed the associations between white matter hyperintensities (WMH) of vascular origin, sleep quality and kidney function, as well as the directions of the relationships between these variables. Of 423 candidates, 314 (74%) were enrolled. Moderate-to-severe WMH were noticed in 74 (24%) individuals, poor sleep quality in 101 (31%), and moderate-to-severe chronic kidney disease in 28 (9%). GSEM showed that the direction of the effect was from kidney function to WMH and from the latter to sleep quality. Of independent variables investigated, worse kidney function was associated with age, high glucose levels and male sex. WMH was associated with cholesterol blood levels, blood pressure, level of education and severe edentulism. Poor sleep quality was associated with poor physical activity. This population based study shows that chronic kidney disease is associated with increased severity of WMH, which, in turn, is associated with a poor sleep quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Yingying; Fan, Jia; Zhu, Huayuan; Ji, Li; Fan, Wenyong; Kapoor, Isha; Wang, Yue; Wang, Yuan; Zhu, Guoqing; Wang, Juejin
2017-12-01
Calcium influx from activated voltage-gated calcium channel Ca V 1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of Ca V 1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the Ca V 1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular Ca V 1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of Ca V 1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of Ca V 1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular Ca V 1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular Ca V 1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies. © 2017 American Heart Association, Inc.
Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits.
Pellegata, Alessandro F; Tedeschi, Alfonso M; De Coppi, Paolo
2018-01-01
Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro , a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.
Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.
2017-01-01
The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654
Retinal microvascular changes and subsequent vascular events after ischemic stroke.
De Silva, D A; Manzano, J J F; Liu, E Y; Woon, F-P; Wong, W-X; Chang, H-M; Chen, C; Lindley, R I; Wang, J J; Mitchell, P; Wong, T-Y; Wong, M-C
2011-08-30
Retinal microvasculature changes are associated with vascular events including stroke in healthy populations. It is not known whether retinal microvascular changes predict recurrent vascular events after ischemic stroke. We examined the relationship between retinal microvascular signs and subsequent vascular events in a prospective cohort of 652 acute ischemic stroke patients admitted to a tertiary hospital in Singapore from 2005 to 2007. Retinal photographs taken within 1 week of stroke onset were assessed in a masked manner for quantitative and qualitative measures. Follow-up data over 2-4 years were obtained by standardized telephone interview and then were verified from medical records. Predictors of recurrent vascular events (cerebrovascular, coronary, vascular death, and composite vascular events) were determined using Cox regression models. Follow-up data over a median of 29 months were obtained for 89% (652 patients) of the cohort. After adjustment for covariates including traditional risk factors and index stroke etiology, patients with severe arteriovenous nicking (AVN) were more likely to have a recurrent cerebrovascular event (hazard ratio [HR] 2.28, 95% confidence interval [CI] 1.20-4.33) compared with those without AVN. Patients with severe focal arteriolar narrowing (FAN) were more likely to have a recurrent cerebrovascular event (HR 2.75, 95% CI 1.14-6.63) or subsequent composite vascular event (HR 2.77, 95% CI 1.31-5.86) compared to those without FAN. Retinal microvascular changes predicted subsequent vascular events after ischemic stroke, independent of traditional risk factors and stroke subtype. Thus, retinal imaging has a potential role in predicting the risk of recurrent vascular events after ischemic stroke and in understanding novel vascular risk factors.
Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J
2016-06-01
Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.
Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X
2015-12-01
Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
HIV-1, Reactive Oxygen Species and Vascular Complications
Porter, Kristi M.; Sutliff, Roy L.
2012-01-01
Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529
Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.
Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W
2014-12-01
The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.
Jakobsson, Lars; van Meeteren, Laurens A
2013-05-15
Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse. Copyright © 2013 Elsevier Inc. All rights reserved.
Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles
Tykocki, Nathan R.; Boerman, Erika M.; Jackson, William F.
2017-01-01
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body’s tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. PMID:28333380
Circumferentially aligned fibers guided functional neoartery regeneration in vivo.
Zhu, Meifeng; Wang, Zhihong; Zhang, Jiamin; Wang, Lina; Yang, Xiaohu; Chen, Jingrui; Fan, Guanwei; Ji, Shenglu; Xing, Cheng; Wang, Kai; Zhao, Qiang; Zhu, Yan; Kong, Deling; Wang, Lianyong
2015-08-01
An ideal vascular graft should have the ability to guide the regeneration of neovessels with structure and function similar to those of the native blood vessels. Regeneration of vascular smooth muscle cells (VSMCs) with circumferential orientation within the grafts is crucial for functional vascular reconstruction in vivo. To date, designing and fabricating a vascular graft with well-defined geometric cues to facilitate simultaneously VSMCs infiltration and their circumferential alignment remains a great challenge and scarcely reported in vivo. Thus, we have designed a bi-layered vascular graft, of which the internal layer is composed of circumferentially aligned microfibers prepared by wet-spinning and an external layer composed of random nanofibers prepared by electrospinning. While the internal circumferentially aligned microfibers provide topographic guidance for in vivo regeneration of circumferentially aligned VSMCs, the external random nanofibers can offer enhanced mechanical property and prevent bleeding during and after graft implantation. VSMCs infiltration and alignment within the scaffold was then evaluated in vitro and in vivo. Our results demonstrated that the circumferentially oriented VSMCs and longitudinally aligned ECs were successfully regenerated in vivo after the bi-layered vascular grafts were implanted in rat abdominal aorta. No formation of thrombosis or intimal hyperplasia was observed up to 3 month post implantation. Further, the regenerated neoartery exhibited contraction and relaxation property in response to vasoactive agents. This new strategy may bring cell-free small diameter vascular grafts closer to clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo
2011-01-01
The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (−)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca2+ depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca2+-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca2+-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca2+ depletion. Thus, under Ca2+-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca2+-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-l-arginine methyl ester, suggesting a functional relevance for this phenomenon. PMID:21209365
Gunes, Haci Murat; Yılmaz, Filiz Kizilirmak; Gokdeniz, Tayyar; Demir, Gultekin Gunhan; Guler, Ekrem; Guler, Gamze Babur; Karaca, Oğuz; Cakal, Beytullah; İbişoğlu, Ersin; Boztosun, Bilal
2016-12-01
The aim of the present study was to investigate the relationship between glomerular filtration rate (GFR) and acute post-scaffold recoil (PSR) in patients undergoing bioresorbable scaffold (BVS) implantation. We included 130 patients who underwent everolimus-eluting BVS device (Absorb BVS; Abbott Vascular, Santa Clara, CA, USA) or the novolimus-eluting BVS device (Elixir Medical Corporation) implantations for single or multi-vessel disease. Clinical, angiographic variables and procedural characteristics were defined and pre-procedural GFR was calculated for each patient. Post-procedural angiographic parameters of each patient were analyzed. Primary objective of the study was to evaluate the effect of GFR on angiographic outcomes after BVS implantation while secondary objective was to compare post-procedural angiographic results between the two BVS device groups. Baseline clinical characteristics and angiographic parameters were similar between the two BVS groups. Post-procedural angiographic analysis revealed significantly lower PSR in the DESolve group than the Absorb group (0.10±0.04 vs. 0.13±0.05, p: 0.003). When PSR in the whole study population was evaluated, it was positively correlated with age, tortuosity , calcification and PBR as there was a negative correlation between GFR. Besides GFR were found to be independent predictors for PSR in all groups and the whole study population. In patients undergoing BVS implantation, pre-procedural low GFR is associated with increased post-procedural PSR. Calcification, age, PBR, dyslipidemia and tortuosity are other independent risk factors for PSR. DESolve has lower PSR when compared with Absorb. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Matsushita, Kunihiro; Ballew, Shoshana H.; Sang, Yingying; Kalbaugh, Corey; Loehr, Laura; Hirsch, Alan T.; Tanaka, Hirofumi; Heiss, Gerardo; Windham, B. Gwen; Selvin, Elizabeth; Coresh, Josef
2017-01-01
Background and aims Most prior studies investigating the association of lower extremity peripheral artery disease (PAD) with physical function were small or analyzed selected populations (e.g., patients at vascular clinics or persons with reduced function), leaving particular uncertainty regarding the association in the general community. Methods Among 5,262 ARIC participants (age 71-90 years during 2011-2013), we assessed the cross-sectional association of ankle-brachial index (ABI) with the Short Physical Performance Battery (SPPB) score (0-12), its individual components (chair stands, standing balance, and gait speed) (0-4 points each), and grip strength after accounting for potential confounders, including a history of coronary disease, stroke, or heart failure. Results There were 411 participants (7.8%) with low ABI ≤0.90 and 469 (8.9%) participants with borderline low ABI 0.91-1.00. Both ABI ≤0.90 and 0.91-1.00 were independently associated with poor physical function (SPPB score ≤6) compared to ABI 1.11-1.20 (adjusted odds ratio 2.10 [95% CI 1.55-2.84] and 1.86 [1.38-2.51], respectively). The patterns were largely consistent across subgroups by clinical conditions (e.g., leg pain or other cardiovascular diseases), in every SPPB component, and for grip strength. ABI >1.3 (472 participants [9.0%]), indicative of non-compressible pedal arteries, was related to lower physical function as well but did not necessarily reach significance. Conclusions In community-dwelling older adults, low and borderline low ABI suggestive of PAD were independently associated with poorer systemic physical function compared to those with normal ABI. Clinical attention to PAD as a potential contributor to poor physical function is warranted in community-dwelling older adults. PMID:28012644
Matsushita, Kunihiro; Ballew, Shoshana H; Sang, Yingying; Kalbaugh, Corey; Loehr, Laura R; Hirsch, Alan T; Tanaka, Hirofumi; Heiss, Gerardo; Windham, B Gwen; Selvin, Elizabeth; Coresh, Josef
2017-02-01
Most prior studies investigating the association of lower extremity peripheral artery disease (PAD) with physical function were small or analyzed selected populations (e.g., patients at vascular clinics or persons with reduced function), leaving particular uncertainty regarding the association in the general community. Among 5262 ARIC participants (age 71-90 years during 2011-2013), we assessed the cross-sectional association of ankle-brachial index (ABI) with the Short Physical Performance Battery (SPPB) score (0-12), its individual components (chair stands, standing balance, and gait speed) (0-4 points each), and grip strength after accounting for potential confounders, including a history of coronary disease, stroke, or heart failure. There were 411 participants (7.8%) with low ABI ≤0.90 and 469 (8.9%) participants with borderline low ABI 0.91-1.00. Both ABI ≤0.90 and 0.91-1.00 were independently associated with poor physical function (SPPB score ≤6) compared to ABI 1.11-1.20 (adjusted odds ratio 2.10 [95% CI 1.55-2.84] and 1.86 [1.38-2.51], respectively). The patterns were largely consistent across subgroups by clinical conditions (e.g., leg pain or other cardiovascular diseases), in every SPPB component, and for grip strength. ABI >1.3 (472 participants [9.0%]), indicative of non-compressible pedal arteries, was related to lower physical function as well but did not necessarily reach significance. In community-dwelling older adults, low and borderline low ABI suggestive of PAD were independently associated with poorer systemic physical function compared to those with normal ABI. Clinical attention to PAD as a potential contributor to poor physical function is warranted in community-dwelling older adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Oxidative and inflammatory signals in obesity-associated vascular abnormalities.
Reho, John J; Rahmouni, Kamal
2017-07-15
Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Jarajapu, Yagna P R
2017-01-01
In recent years, previously unknown functions have been conferred to the RAAS and have been explored in mechanistic studies and disease models. Implication of bone marrow stem/progenitor cells in the cardiovascular protective or detrimental effects of RAAS is a prominent advancement because of the translational significance. Selected members of RAAS are now known to modulate migration, proliferation, and mobilization of bone marrow cells in response to ischemic insult, which are sensitive indicators of vascular repair-relevant functions. In this Chapter, protocols for most frequently used, in vitro, ex vivo, and in vivo assays to explore the potential of RAAS members to stimulate vascular repair-relevant functions of bone marrow stem/progenitor cells of human and murine origin.
Vascular repair strategies in type 2 diabetes: novel insights
Kuschnerus, Kira; Landmesser, Ulf
2015-01-01
Impaired functions of vascular cells are responsible for the majority of complications in patients with type 2 diabetes (T2D). Recently a better understanding of mechanisms contributing to development of vascular dysfunction and the role of systemic inflammatory activation and functional alterations of several secretory organs, of which adipose tissue has more recently been investigated, has been achieved. Notably, the progression of vascular disease within the context of T2D appears to be driven by a multitude of incremental signaling shifts. Hence, successful therapies need to target several mechanisms in parallel, and over a long time period. This review will summarize the latest molecular strategies and translational developments of cardiovascular therapy in patients with T2D. PMID:26543824
Sirtuins, Cell Senescence, and Vascular Aging.
Kida, Yujiro; Goligorsky, Michael S
2016-05-01
The sirtuins (SIRTs) constitute a class of proteins with nicotinamide adenine dinucleotide-dependent deacetylase or adenosine diphosphate-ribosyltransferase activity. Seven SIRT family members have been identified in mammals, from SIRT1, the best studied for its role in vascular aging, to SIRT7. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are nuclear. Extensive studies have clearly revealed that SIRT proteins regulate diverse cell functions and responses to stressors. Vascular aging involves the aging process (senescence) of endothelial and vascular smooth muscle cells. Two types of cell senescence have been identified: (1) replicative senescence with telomere attrition; and (2) stress-induced premature senescence without telomere involvement. Both types of senescence induce vascular cell growth arrest and loss of vascular homeostasis, and contribute to the initiation and progression of cardiovascular diseases. Previous mechanistic studies have revealed in detail that SIRT1, SIRT3, and SIRT6 show protective functions against vascular aging, and definite vascular function of other SIRTs is under investigation. Thus, direct SIRT modulation and nicotinamide adenine dinucleotide stimulation of SIRT are promising candidates for cardiovascular disease therapy. A small number of pilot studies have been conducted to assess SIRT modulation in humans. These clinical studies have not yet provided convincing evidence that SIRT proteins alleviate morbidity and mortality in patients with cardiovascular diseases. The outcomes of multiple ongoing clinical trials are awaited to define the efficacy of SIRT modulators and SIRT activators in cardiovascular diseases, along with the potential adverse effects of chronic SIRT modulation. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Yotti, Raquel; Bermejo, Javier; Gutiérrez-Ibañes, Enrique; Pérez del Villar, Candelas; Mombiela, Teresa; Elízaga, Jaime; Benito, Yolanda; González-Mansilla, Ana; Barrio, Alicia; Rodríguez-Pérez, Daniel; Martínez-Legazpi, Pablo; Fernández-Avilés, Francisco
2015-02-10
Systemic arterial load impacts the symptomatic status and outcome of patients with calcific degenerative aortic stenosis (AS). However, assessing vascular properties is challenging because the arterial tree's behavior could be influenced by the valvular obstruction. This study sought to characterize the interaction between valvular and vascular functions in patients with AS by using transcatheter aortic valve replacement (TAVR) as a clinical model of isolated intervention. Aortic pressure and flow were measured simultaneously using high-fidelity sensors in 23 patients (mean 79 ± 7 years of age) before and after TAVR. Blood pressure and clinical response were registered at 6-month follow-up. Systolic and pulse arterial pressures, as well as indices of vascular function (vascular resistance, aortic input impedance, compliance, and arterial elastance), were significantly modified by TAVR, exhibiting stiffer vascular behavior post-intervention (all, p < 0.05). Peak left ventricular pressure decreased after TAVR (186 ± 36 mm Hg vs. 162 ± 23 mm Hg, respectively; p = 0.003) but remained at >140 mm Hg in 70% of patients. Wave intensity analysis showed abnormally low forward and backward compression waves at baseline, increasing significantly after TAVR. Stroke volume decreased (-21 ± 19%; p < 0.001) and correlated with continuous and pulsatile indices of arterial load. In the 48 h following TAVR, a hypertensive response was observed in 12 patients (52%), and after 6-month follow-up, 5 patients required further intensification of discharge antihypertensive therapy. Vascular function in calcific degenerative AS is conditioned by the upstream valvular obstruction that dampens forward and backward compression waves in the arterial tree. An increase in vascular load after TAVR limits the procedure's acute afterload relief. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Runnie, I; Salleh, M N; Mohamed, S; Head, R J; Abeywardena, M Y
2004-06-01
In this study, the vasodilatory actions of nine edible tropical plant extracts were investigated. Ipomoea batatas (sweet potato leaf), Piper betle (betel leaf), Anacardium occidentale (cashew leaf), Gynandropsis gynandra (maman leaf), Carica papaya (papaya leaf), and Mentha arvensis (mint leaf) extracts exhibited more than 50% relaxing effect on aortic ring preparations, while Piper betle and Cymbopogon citratus (lemongrass stalk) showed comparable vasorelaxation on isolated perfused mesenteric artery preparation. The vascular effect on the aortic ring preparations were mainly endothelium-dependent, and mediated by nitric oxide (NO) as supported by the inhibition of action in the presence of N(omega)-nitro-L-arginine (NOLA), an nitric oxide synthase (NOS) inhibitor, or by the removal of endothelium. In contrast, vasodilatory actions in resistance vessels (perfused mesenteric vascular beds) appear to involve several biochemical mediators, including NO, prostanoids, and endothelium-dependent hyperpolarizing factors (EDHFs). Total phenolic contents and antioxidant capacities varied among different extracts and found to be independent of vascular relaxation effects. This study demonstrates that many edible plants common in Asian diets to possess potential health benefits, affording protection at the vascular endothelium level.
Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...
Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya K.; Landis, David R.; Middleton, Elizabeth M.
2013-01-01
Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012+/-0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals.
Eriksson, Maria J.; Fritz, Tomas; Nyberg, Gunnar; Östenson, Claes Göran; Krook, Anna; Zierath, Juleen R.; Caidahl, Kenneth
2015-01-01
To determine whether Nordic walking improves cardiovascular function in middle-aged women and men, we included 121 with normal glucose tolerance, 33 with impaired glucose tolerance and 47 with Type 2 diabetes mellitus in a randomized controlled study. The intervention group added Nordic walking 5 h/week for 4 months to their ordinary activities. Aortic pulse wave velocity, aortic augmentation index, stiffness index, reflection index, intima–media thickness in the radial and carotid arteries, echogenicity of the carotid intima–media and systemic vascular resistance were measured. While baseline blood pressure did not differ by gender or diagnosis, aortic augmentation index was found to be higher in women in all groups. Vascular function was unchanged with intervention, without differences by gender or diagnosis. In conclusion, 4 months of Nordic walking is an insufficient stimulus to improve vascular function. Future studies should consider hard endpoints in addition to measures of vascular health, as well as larger population groups, long-term follow-up and documented compliance to exercise training. PMID:26092821
Jovanovski, Elena; Zurbau, Andreea
2015-01-01
Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk. PMID:25954727
Jovanovski, Elena; Zurbau, Andreea; Vuksan, Vladimir
2015-04-01
Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk.
Yang, Guangming; Peng, Xiaoyong; Wu, Yue; Li, Tao; Liu, Liangming
2017-10-01
We examined the roles played by gap junctions (GJs) and the GJ channel protein connexin 43 (Cx43) in arginine vasopressin (AVP)-induced vasoconstriction after hemorrhagic shock and their relationship to Rho kinase (ROCK) and protein kinase C (PKC). The results showed that AVP induced an endothelium-independent contraction in rat superior mesenteric arteries (SMAs). Blocking the GJs significantly decreased the contractile response of SMAs and vascular smooth muscle cells (VSMCs) to AVP after shock and hypoxia. The selective Cx43-mimetic peptide inhibited the vascular contractile effect of AVP after shock and hypoxia. AVP restored hypoxia-induced decrease of Cx43 phosphorylation at Ser 262 and gap junctional communication in VSMCs. Activation of RhoA with U-46619 increased the contractile effect of AVP. This effect was antagonized by the ROCK inhibitor Y27632 and the Cx43-mimetic peptide. In contrast, neither an agonist nor an inhibitor of PKC had significant effects on AVP-induced contraction after hemorrhagic shock. In addition, silencing of Cx43 with siRNA blocked the AVP-induced increase of ROCK activity in hypoxic VSMCs. In conclusion, AVP-mediated vascular contractile effects are endothelium and myoendothelial gap junction independent. Gap junctions between VSMCs, gap junctional communication, and Cx43 phosphorylation at Ser 262 play important roles in the vascular effects of AVP. RhoA/ROCK, but not PKC, is involved in this process. Copyright © 2017 the American Physiological Society.
Araki, Ippeita; Washio, Marie; Yamashita, Keishi; Hosoda, Kei; Ema, Akira; Mieno, Hiroaki; Moriya, Hiromitsu; Katada, Natsuya; Kikuchi, Shiro; Watanabe, Masahiko
2018-05-01
The prognosis of most patients with stage IB node-negative gastric cancer is good without postoperative chemotherapy; however, about 10% suffer recurrence and inevitably die. We conducted this study to establish the optimal indications for postoperative adjuvant chemotherapy in patients at risk of recurrence. The subjects of this retrospective study were 124 patients with stage IB node-negative gastric cancer, who underwent gastrectomy at the Kitasato University East Hospital, between 2001 and 2010. We reviewed EGFR immunohistochemistry (IHC) as well as clinicopathological factors. Of the 124 patients, 47 (38%) showed intense EGFR IHC (2+ or 3+), with significantly less frequency than in stage II/III advanced gastric cancer (p < 0.001). According to univariate analysis, intense EGFR IHC was significantly associated with relapse-free survival (RFS) (p = 0.023) and associated with overall survival (OS) (p = 0.045) as well as vascular invasion (p = 0.031). On the multivariate Cox proportional hazards model, intense EGFR IHC(p = 0.016) was an independent prognostic predictor for RFS, and both vascular invasion (p = 0.033) and intense EGFR IHC (p = 0.031) were independent prognostic predictors for OS. The combination of both factors increased the risk of recurrence (p = 0.001). In stage IB node-negative gastric cancer, vascular invasion and intense EGFR IHC increase the likelihood of recurrence. We recommend adjuvant chemotherapy for such patients because of the high risk of metachronous recurrence.
Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...
Jiang, Bin; Suen, Rachel; Wertheim, Jason A; Ameer, Guillermo A
2016-12-12
Thrombosis within small-diameter vascular grafts limits the development of bioartificial, engineered vascular conduits, especially those derived from extracellular matrix (ECM). Here we describe an easy-to-implement strategy to chemically modify vascular ECM by covalently linking a collagen binding peptide (CBP) to heparin to form a heparin derivative (CBP-heparin) that selectively binds a subset of collagens. Modification of ECM with CBP-heparin leads to increased deposition of functional heparin (by ∼7.2-fold measured by glycosaminoglycan composition) and a corresponding reduction in platelet binding (>70%) and whole blood clotting (>80%) onto the ECM. Furthermore, addition of CBP-heparin to the ECM stabilizes long-term endothelial cell attachment to the lumen of ECM-derived vascular conduits, potentially through recruitment of heparin-binding growth factors that ultimately improve the durability of endothelialization in vitro. Overall, our findings provide a simple yet effective method to increase deposition of functional heparin on the surface of ECM-based vascular grafts and thereby minimize thrombogenicity of decellularized tissue, overcoming a significant challenge in tissue engineering of bioartificial vessels and vascularized organs.
Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.
Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao
2016-09-01
Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.
Peritoneal Dialysis in Diabetics: There Is Room for More
Cotovio, P.; Rocha, A.; Rodrigues, A.
2011-01-01
End stage renal disease diabetic patients suffer from worse clinical outcomes under dialysis-independently of modality. Peritoneal dialysis offers them the advantages of home therapy while sparing their frail vascular capital and preserving residual renal function. Other benefits and potential risks deserve discussion. Predialysis intervention with early nephrology referral, patient education, and multidisciplinary support are recommended. Skilled and updated peritoneal dialysis protocols must be prescribed to assure better survival. Optimized volume control, glucose-sparing peritoneal dialysis regimens, and elective use of icodextrin are key therapy strategies. Nutritional evaluation and support, preferential use of low-glucose degradation products solutions, and prescription of renin-angiotensin-aldosterone system acting drugs should also be part of the panel to improve diabetic care under peritoneal dialysis. PMID:22013524
... 6th ed. Philadelphia, PA: Elsevier; 2016:chap 23. Patterson JW. Vascular tumors. In: Patterson JW, ed. Weedon's Skin Pathology . 4th ed. Philadelphia, ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...
... 6th ed. Philadelphia, PA: Elsevier; 2016:chap 23. Patterson JW. Vascular tumors. In: Patterson J, ed. Weedon's Skin Pathology . 4th ed. Philadelphia, ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...
Dekkers, I A; de Mutsert, R; de Vries, A P J; Rosendaal, F R; Cannegieter, S C; Jukema, J W; le Cessie, S; Rabelink, T J; Lamb, H J; Lijfering, W M
2018-03-01
Essentials Why venous thrombosis is more prevalent in chronic kidney disease is unclear. We investigated whether renal and vascular function are associated with hypercoagulability. Coagulation factors showed a procoagulant shift with impaired renal and vascular function. This suggests that renal and vascular function play a role in the etiology of thrombosis. Background Impaired renal and vascular function have been associated with venous thrombosis, but the mechanism is unclear. Objectives We investigated whether estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), and pulse wave velocity (PWV) are associated with a procoagulant state. Methods In this cross-sectional analysis of the NEO Study, eGFR, UACR, fibrinogen, and coagulation factors (F)VIII, FIX and FXI were determined in all participants (n = 6536), and PWV was assessed in a random subset (n = 2433). eGFR, UACR and PWV were analyzed continuously and per percentile: per six categories for eGFR (> 50 th [reference] to < 1st) and UACR (< 50 th [reference] to > 99th), and per four categories (< 50 th [reference] to > 95th percentile) for PWV. Linear regression was used and adjusted for age, sex, total body fat, smoking, education, ethnicity, total cholesterol, C-reactive protein (CRP) and vitamin K antagonists use (FIX). Results Mean age was 55.6 years, mean eGFR 86.0 (12SD) mL 1.73 m - ² and median UACR 0.4 mg mmol -1 (25th, 75th percentile; 0.3, 0.7). All coagulation factors showed a procoagulant shift with lower renal function and albuminuria. For example, FVIII was 22 IU dL -1 (95% CI, 13-32) higher in the eGFR < 1st percentile compared with the > 50th percentile, and FVIII was 12 IU dL -1 (95% CI, 3-22) higher in the UACR > 99th percentile compared with the < 50th percentile. PWV was positively associated with coagulation factors FIX and FXI in continuous analysis; per m/s difference in PWV, FIX was 2.0 IU dL -1 (95% CI, 0.70-3.2) higher. Conclusions Impaired renal and vascular function was associated with higher levels of coagulation factors, underlining the role of renal function and vascular function in the development of venous thrombosis. © 2017 International Society on Thrombosis and Haemostasis.
Grienenberger, Etienne; Douglas, Carl J.
2014-01-01
Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189
[Analysis of vascular complications of IABP therapy in open-heart surgery patients 1999-2004].
Kovács, Endre; Becker, Dávid; Daróczi, László; Gálfy, Ildikó; Hüttl, Tivadar; Laczkó, Agnes; Paukovits, Tamas; Vargha, Péter; Szabolcs, Zoltán
2006-04-01
Intraaortic balloon pump (IABP) is being used in cardiac surgery in an increased ratio. IABP therapy involves considerable risk, mainly vascular complications, postoperative bleeding and infection can represent danger. Between 1999 and 2004 out of 4443 open heart surgery operations we have performed intraaortic balloon pump treatment in case of 75 patients. The mean age was 64 years, 23 patients had diabetes mellitus, 47 patients had hypertension, 20 patients had peripheral vascular disease as well. We performed IABP therapy most frequently during isolated coronary bypass operations (42 cases), but also combined operations (implantation of valve prosthesis + coronary bypass) represent a significant part (implantation of aortic valve prosthesis + CABG: 5 cases, implantation of mitral valve prosthesis + CABG: 8 cases). Vascular complications occurred in 10 cases--13.3%--out of 75 patients, including 7 fatal ones. Three cases are due to the IABP treatment itself: Crush syndrome was developed leading to the loss of the patient. Applying the multiple logistic regression model we have examined the effect of the following factors on the occurrence of vascular complications: gender, age, body surface, accompanying diseases (hypertension, diabetes, peripheral vascular disease), the method and timing of insertion. Peripheral vascular disease (p < 0.005) and hypertension (p = 0.01) represent independent risk factors regarding the occurrence of complications. Having performed chi-square test we have not identified significant correlations between mortality and vascular complications. In case of prevailing peripheral vascular disease, the application of alternative insertion techniques--via the ascending aorta, the axillary artery--are recommended.
Lin, Ai-Ling; Zheng, Wei; Halloran, Jonathan J; Burbank, Raquel R; Hussong, Stacy A; Hart, Matthew J; Javors, Martin; Shih, Yen-Yu Ian; Muir, Eric; Solano Fonseca, Rene; Strong, Randy; Richardson, Arlan G; Lechleiter, James D; Fox, Peter T; Galvan, Veronica
2013-01-01
Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias. PMID:23801246
Somo, Sami I.; Akar, Banu; Bayrak, Elif S.; Larson, Jeffery C.; Appel, Alyssa A.; Mehdizadeh, Hamidreza; Cinar, Ali
2015-01-01
Rapid and controlled vascularization within biomaterials is essential for many applications in regenerative medicine. The extent of vascularization is influenced by a number of factors, including scaffold architecture. While properties such as pore size and total porosity have been studied extensively, the importance of controlling the interconnectivity of pores has received less attention. A sintering method was used to generate hydrogel scaffolds with controlled pore interconnectivity. Poly(methyl methacrylate) microspheres were used as a sacrificial agent to generate porous poly(ethylene glycol) diacrylate hydrogels with interconnectivity varying based on microsphere sintering conditions. Interconnectivity levels increased with sintering time and temperature with resultant hydrogel structure showing agreement with template structure. Porous hydrogels with a narrow pore size distribution (130–150 μm) and varying interconnectivity were investigated for their ability to influence vascularization in response to gradients of platelet-derived growth factor-BB (PDGF-BB). A rodent subcutaneous model was used to evaluate vascularized tissue formation in the hydrogels in vivo. Vascularized tissue invasion varied with interconnectivity. At week 3, higher interconnectivity hydrogels had completely vascularized with twice as much invasion. Interconnectivity also influenced PDGF-BB transport within the scaffolds. An agent-based model was used to explore the relative roles of steric and transport effects on the observed results. In conclusion, a technique for the preparation of hydrogels with controlled pore interconnectivity has been developed and evaluated. This method has been used to show that pore interconnectivity can independently influence vascularization of biomaterials. PMID:25603533
NASA Astrophysics Data System (ADS)
Crosnier, Adeline; Fetita, Catalin; Thabut, Gabriel; Brillet, Pierre-Yves
2016-03-01
Whether COPD is generally known as a small airway disease, recent investigations suggest that vascular remodeling could play a key role in disease progression. This paper develops a specific investigation framework in order to evaluate the remodeling of the intrapulmonary vascular network and its correlation with other image or clinical parameters (emphysema score or FEV1) in patients with smoking- or genetic- (alpha-1 antitrypsin deficiency - AATD) related COPD. The developed approach evaluates the vessel caliber distribution per lung or lung region (upper, lower, 10%- and 20%- periphery) in relation with the severity of the disease and computes a remodeling marker given by the area under the caliber distribution curve for radii less than 1.6mm, AUC16. It exploits a medial axis analysis in relation with local caliber information computed in the segmented vascular network, with values normalized with respect to the lung volume (for which a robust segmentation is developed). The first results obtained on a 34-patient database (13 COPD, 13 AATD and 8 controls) showed significant vascular remodeling for COPD and AATD versus controls, with a negative correlation with the emphysema degree for COPD, but not for AATD. Significant vascular remodeling at 20% lung periphery was found both for the severe COPD and AATD patients, but not for the moderate groups. Also the vascular remodeling in AATD did not correlate with the FEV1, nor with DLCO, which might suggest independent mechanisms for bronchial and vascular remodeling in the lung.
Emter, Craig A; Tharp, Darla L; Ivey, Jan R; Ganjam, Venkataseshu K; Bowles, Douglas K
2011-10-01
Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.
Tharp, Darla L.; Ivey, Jan R.; Ganjam, Venkataseshu K.; Bowles, Douglas K.
2011-01-01
Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy. PMID:21841018
Kappus, Rebecca M; Bunsawat, Kanokwan; Brown, Michael D; Phillips, Shane A; Haus, Jacob M; Baynard, Tracy; Fernhall, Bo
2017-10-01
African-Americans have a higher prevalence of hypertension compared with whites, possibly due to elevated oxidative stress and subsequent vascular dysfunction. It is unclear the contribution of aging on oxidative stress and vascular function in a racially diverse cohort. Ninety-three young and older African-American and white participants received antioxidant (AOX) or placebo supplementation in a double-blind, randomized, cross-over design. Measures of endothelial function (reactive hyperemia, flow-mediated dilation), exercise blood flow, and biomarkers of oxidative stress and AOX activity were measured following supplementation. In young adults, there were racial differences in resistance vessel response to reactive hyperemia and no effects of race on macrovascular function following AOX supplementation. Following AOX supplementation, older white adults improved while African-Americans reduced resistance vessel function responses to reactive hyperemia, whereas macrovascular function improved in both races, with a greater increase in African-Americans. There were racial differences in blood flow normalized to lean mass during handgrip exercise at 20% maximal voluntary contraction in the young group and AOX supplementation led to increased forearm vascular conductance in older whites with a decrease in older African-Americans. There was a supplement effect in superoxide dismutase activity in younger adults only. The results of the current study show that there are differential effects of AOX supplementation on macrovascular and resistance vessel function, and this is impacted by both age and race.
Matavelli, Luis C; Zhou, Xiaoyan; Varagic, Jasmina; Susic, Dinko; Frohlich, Edward D
2007-02-01
We have previously shown that salt excess has adverse cardiac effects in spontaneously hypertensive rats (SHR), independent of its increased arterial pressure; however, the renal effects have not been reported. In the present study we evaluated the role of three levels of salt loading in SHR on renal function, systemic and renal hemodynamics, and glomerular dynamics. At 8 wk of age, rats were given a 4% (n = 11), 6% (n = 9), or 8% (n = 11) salt-load diet for the ensuing 8 wk; control rats (n = 11) received standard chow (0.6% NaCl). Rats had weekly 24-h proteinuria and albuminuria quantified. At the end of salt loading, all rats had systemic and renal hemodynamics measured; glomerular dynamics were specially studied by renal micropuncture in the control, 4% and 6% salt-loaded rats. Proteinuria and albuminuria progressively increased by the second week of salt loading in the 6% and 8% salt-loaded rats. Mean arterial pressure increased minimally, and glomerular filtration rate decreased in all salt-loaded rats. The 6% and 8% salt-loaded rats demonstrated decreased renal plasma flow and increased renal vascular resistance and serum creatinine concentration. Furthermore, 4% and 6% salt-loaded rats had diminished single-nephron plasma flow and increased afferent and efferent arteriolar resistances; glomerular hydrostatic pressure also increased in the 6% salt-loaded rats. In conclusion, dietary salt loading as low as 4% dramatically deteriorated renal function, renal hemodynamics, and glomerular dynamics in SHR independent of a minimal further increase in arterial pressure. These findings support the concept of a strong independent causal relationship between salt excess and cardiovascular and renal injury.
Zou, Jun; Yu, Yi; Wu, Ping; Lin, Fu-Jun; Yao, Yao; Xie, Yun; Jiang, Geng-Ru
2016-10-15
Increasing evidence indicated that phosphorus emerged as an important cardiovascular risk factor in patients with chronic kidney disease (CKD). The fact that serum phosphorus was closely linked to vascular and valvar calcification may account for one important reason. However, left ventricular remodeling may also serve as another potential mechanism of the cardiac toxicity of phosphorus. In the present study, we evaluated the association of serum phosphorus with left ventricular remodeling. We investigated consecutive hospitalized patients with pre-dialysis CKD, who did not have symptomatic heart failure or take any phosphorus binder or calcitriol medications. Transthoracic echocardiography was applied to assess their left ventricular remodeling indices, both structural and functional. The 296 study subjects (mean age 56.4years) included 169 (57.1%) men, 203 (68.6%) hypertensive patients. In addition to gender, systolic blood pressure, and estimated glomerular filtration rate, serum phosphorus was an independent determinant of left ventricular mass index (LVMI, P=0.001). Similarly, serum phosphorus was also a determinant of left ventricular end diastolic dimension (P=0.0003), but not of relative wall thickness. In multivariate logistic analyses, serum phosphorus was significantly and independently associated with the prevalence of left ventricular hypertrophy (LVH, odds ratio [OR] 2.38 for each 1mmol/L increase, 95% CI 1.20-4.75, P=0.01). Moreover, the association was only confirmatory in eccentric LVH (OR 3.01, 95% CI 1.43-6.32, P=0.003) but not in concentric LVH (1.38, 95% CI, 0.54-3.49, P=0.50). Serum phosphorus was significantly and independently associated with LVMI and the prevalence of eccentric LVH in hospitalized patients with CKD. Copyright © 2016. Published by Elsevier Ireland Ltd.
Vahl, Torsten P; Gasior, Pawel; Gongora, Carlos A; Ramzipoor, Kamal; Lee, Chang; Cheng, Yanping; McGregor, Jenn; Shibuya, Masahiko; Estrada, Edward A; Conditt, Gerard B; Kaluza, Greg L; Granada, Juan F
2016-12-20
The vascular healing profile of polymers used in bioresorbable vascular scaffolds (BRS) has not been fully characterised in the absence of antiproliferative drugs. In this study, we aimed to compare the polymer biocompatibility profile and vascular healing response of a novel ultrahigh molecular weight amorphous PLLA BRS (FORTITUDE®; Amaranth Medical, Mountain View, CA, USA) against bare metal stent (BMS) controls in porcine coronary arteries. Following device implantation, optical coherence tomography (OCT) evaluation was performed at 0 and 28 days, and at one, two, three and four years. A second group of animals underwent histomorphometric evaluation at 28 and 90 days. At four years, both lumen (BRS 13.19±1.50 mm2 vs. BMS 7.69±2.41 mm2) and scaffold areas (BRS 15.62±1.95 mm2 vs. BMS 8.65±2.37 mm2) were significantly greater for BRS than BMS controls. The degree of neointimal proliferation was comparable between groups. Histology up to 90 days showed comparable healing and inflammation profiles for both devices. At four years, the novel PLLA BRS elicited a vascular healing response comparable to BMS in healthy pigs. Expansive vascular remodelling was evident only in the BRS group, a biological phenomenon that appears to be independent of the presence of antiproliferative drugs.
Row, Sindhu; Peng, Haofan; Schlaich, Evan M; Koenigsknecht, Carmon; Andreadis, Stelios T; Swartz, Daniel D
2015-05-01
To engineer and implant vascular grafts in the arterial circulation of a pre-clinical animal model and assess the role of donor medial cells in graft remodeling and function. Vascular grafts were engineered using Small Intestinal Submucosa (SIS)-fibrin hybrid scaffold and implanted interpositionally into the arterial circulation of an ovine model. We sought to demonstrate implantability of SIS-Fibrin based grafts; examine the remodeling; and determine whether the presence of vascular cells in the medial wall was necessary for cellular infiltration from the host and successful remodeling of the implants. We observed no occlusions or anastomotic complications in 18 animals that received these grafts. Notably, the grafts exhibited unprecedented levels of host cell infiltration that was not limited to the anastomotic sites but occurred through the lumen as well as the extramural side, leading to uniform cell distribution. Incoming cells remodeled the extracellular matrix and matured into functional smooth muscle cells as evidenced by expression of myogenic markers and development of vascular reactivity. Interestingly, tracking the donor cells revealed that their presence was beneficial but not necessary for successful grafting. Indeed, the proliferation rate and number of donor cells decreased over time as the vascular wall was dominated by host cells leading to significant remodeling and development of contractile function. These results demonstrate that SIS-Fibrin grafts can be successfully implanted into the arterial circulation of a clinically relevant animal model, improve our understanding of vascular graft remodeling and raise the possibility of engineering mural cell-free arterial grafts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Afsar, Baris; Elsurer, Rengin; Covic, Adrian; Kanbay, Mehmet
2012-01-01
Arteriovenous fistulas (AVF) are the vascular access of choice for hemodialysis (HD) compared with arteriovenous grafts (AVG) and central venous catheters (CVC). In spite of increasing recognition of importance of a patient's perception of health-related quality of life (HRQOL) and depression, few studies have assessed the association of vascular access type with HRQOL and depression. The purpose of our study was to examine HRQOL and depression among patients with different vascular access. Severity of symptoms of depression and HRQOL were assessed by Beck Depression Inventory (BDI) and Short Form-36 (SF-36), respectively. Vascular access was reported as one of three options; AVF, AVG, and CVC. In total, 136 patients were included; 104 had AVF, 15 had AVG, and 17 had CVC. BDI and HRQOL parameters differed among patients with different vascular access types. In post hoc analysis, BDI and HRQOL subscales were not different between patients with AVF and AVG. Patients with CVC had lower physical functioning (P:.001), role-physical limitation (P:.015), general health perception (P:.017), vitality (P:.010), social functioning (P:.004), role-emotional (P:.008), mental health (P:.001), physical component summary score (P:.017), and mental component summary score (P:.006) when compared to patients with AVF. Patients with CVC had lower physical functioning (P:.044), role-emotional (P:.044) and mental health scores (P:.04) when compared to patients with AVG. Having a CVC may negatively influence HRQOL in HD patients. Vascular access type does not seem to be related to depressed mood in HD.
Sox17 drives functional engraftment of endothelium converted from non-vascular cells
Schachterle, William; Badwe, Chaitanya R.; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M.; Rafii, Shahin
2017-01-01
Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function. PMID:28091527