Mu, Chun-sun; Zhang, Ping; Kong, Chun-yan; Li, Yang-ning
2015-09-01
To study the application of Bayes probability model in differentiating yin and yang jaundice syndromes in neonates. Totally 107 jaundice neonates who admitted to hospital within 10 days after birth were assigned to two groups according to syndrome differentiation, 68 in the yang jaundice syndrome group and 39 in the yin jaundice syndrome group. Data collected for neonates were factors related to jaundice before, during and after birth. Blood routines, liver and renal functions, and myocardial enzymes were tested on the admission day or the next day. Logistic regression model and Bayes discriminating analysis were used to screen factors important for yin and yang jaundice syndrome differentiation. Finally, Bayes probability model for yin and yang jaundice syndromes was established and assessed. Factors important for yin and yang jaundice syndrome differentiation screened by Logistic regression model and Bayes discriminating analysis included mothers' age, mother with gestational diabetes mellitus (GDM), gestational age, asphyxia, or ABO hemolytic diseases, red blood cell distribution width (RDW-SD), platelet-large cell ratio (P-LCR), serum direct bilirubin (DBIL), alkaline phosphatase (ALP), cholinesterase (CHE). Bayes discriminating analysis was performed by SPSS to obtain Bayes discriminant function coefficient. Bayes discriminant function was established according to discriminant function coefficients. Yang jaundice syndrome: y1= -21. 701 +2. 589 x mother's age + 1. 037 x GDM-17. 175 x asphyxia + 13. 876 x gestational age + 6. 303 x ABO hemolytic disease + 2.116 x RDW-SD + 0. 831 x DBIL + 0. 012 x ALP + 1. 697 x LCR + 0. 001 x CHE; Yin jaundice syndrome: y2= -33. 511 + 2.991 x mother's age + 3.960 x GDM-12. 877 x asphyxia + 11. 848 x gestational age + 1. 820 x ABO hemolytic disease +2. 231 x RDW-SD +0. 999 x DBIL +0. 023 x ALP +1. 916 x LCR +0. 002 x CHE. Bayes discriminant function was hypothesis tested and got Wilks' λ =0. 393 (P =0. 000). So Bayes discriminant function was proved to be with statistical difference. To check Bayes probability model in discriminating yin and yang jaundice syndromes, coincidence rates for yin and yang jaundice syndromes were both 90% plus. Yin and yang jaundice syndromes in neonates could be accurately judged by Bayesian discriminating functions.
Long, Yong-Ling; Li, Zheng-Mu
2013-07-01
To observe the effect of Jingui Shenqi Pill (JSP) and its disassembled recipes (supplementing Shen yang, supplementing Shen yin, and supplementing Shen yang and Shen yin) on ovarian functions of female rats of Shen yang deficiency syndrome (SYDS). Totally 55 SD female rats were randomly divided into 5 groups, i.e., the normal control group, the model group, the Shen yang supplementing group, the Shen yin supplementing group, the Shen yang and Shen yin supplementing group, 11 in each group. Except the normal control group, rats in the rest group were injected with hydrocortisone at the daily dose of 25 mg/kg at the muscle of femoribus internus for 12 successive days. From the 13th day after successful modeling, rats were administered by gastrogavage with different recipes at the dose of 1 mL/100 g (2.75 g/kg Shen yang supplementing recipe; 6.25 g/kg Shen yin supplementing recipe; 6.75 g/kg JSP), once daily for 20 successive days. Equal volume of normal saline was given to those in the normal control group and the model group, once daily for 20 successive days. Blood was withdrawn from the orbit on the 2nd day after intervention. The serum estradiol (E2) and progesterone (P) were detected using ELISA. The weight of uterus and ovarian index (VI) were calculated. The pathological changes were observed by HE staining. The general condition of rats in the Shen yang and Shen yin supplementing group were improved. The body weight (g) was added by 35.0 +/- 12.5 in the normal control group, 16.7 +/- 7.4 in the model group, 20.2 +/- 6.9 in the Shen yang supplementing group, 18.3 +/- 3.6 in the Shen yin supplementing group, and 29.4 +/- 12.2 in the Shen yang and Shen yin supplementing group. The uterus VI (mg/100 g) was 183.4 +/- 11.6 in the normal control group,144.0 +/- 6.5 in the model group,158.7 +/- 6.3 in the Shen yang supplementing group,152.1 +/- 6.9 in the Shen yin supplementing group, and 172.8 +/- 8.1 in the Shen yang and Shen yin supplementing group. The ovarian VI (mg/100 g) were 32.9 +/- 2.4 in the normal control group, 22.6 +/- 1.1 in the model group, 25.0 +/- 1.4 in the Shen yang supplementing group, 23.0 +/- 0.4 in the Shen yin supplementing group, and 31.4 +/- 3.3 in the Shen yang and Shen yin supplementing group. Compared with the model group, the body weight and ovarian VI increased in the Shen yang supplementing group and the Shen yang and Shen yin supplementing group (P < 0.05, P < 0.01). The uterus VI increased in each medicated group (P < 0.05, P < 0.01). Compared with the Shen yang supplementing group and the Shen yin supplementing group, all indices increased in the Shen yang and Shen yin supplementing group (P < 0.05, P < 0.01). The E2 and P levels increased in the Shen yang supplementing group and the Shen yang and Shen yin supplementing group (P < 0.05, P < 0.01). The content of E2 (pg/mL) was 22.1 +/- 9.4 in the normal control group, 9.8 +/- 3.0 in the model group, 11.3 +/- 2.2 in the Shen yang supplementing group, 10.5 +/- 0.8 in the Shen yin supplementing group, and 16.0 +/- 5.5 in the Shen yang and Shen yin supplementing group. The content of P (ng/mL) was 14.6 +/- 7.5 in the normal control group, 4.3 +/- 1.8 in the model group, 8.3 +/- 2.8 in the Shen yang supplementing group, 5.9 +/- 2.9 in the Shen yin supplementing group, and 9.5 +/- 3.4 in the Shen yang and Shen yin supplementing group. Compared with the Shen yang supplementing group and the Shen yin supplementing group, the E2 level increased in the Shen yang and Shen yin supplementing group (P < 0.05, P < 0.01). Compared with the Shen yin supplementing group, the P level increased in the Shen yang and Shen yin supplementing group (P < 0.05). Compared with the model group, the ovarian follicle at each stage increased and pathological follicular ovarian follicles decreased in the Shen yang and Shen yin supplementing group (P < 0.01). Less primary follicles, secondary follicles, and mature follicles could be seen in the Shen yang supplementing group and the Shen yin supplementing group. The total numbers of all-level follicles were obviously higher in the Shen yang and Shen yin supplementing group than in the Shen yang supplementing group and the Shen yin supplementing group (P < 0.05). The number of pathological follicles was obviously less in the Shen yang and Shen yin supplementing group than in the Shen yin supplementing group (P < 0.05). As for SYDS, JSP and its dissembled recipes could improve damaged ovarian functions to some degree. But better effect could not be obtained by Shen yang supplementing method or Shen yin supplementing method alone. Shen yang and Shen yin supplementing method could elevate the efficacy.
Dietary Potassium: a Key Mediator of the Cardiovascular Response to Dietary Sodium Chloride
Kanbay, Mehmet; Bayram, Yeter; Solak, Yalcin; Sanders, Paul W.
2014-01-01
Potassium and sodium share a yin/yang relationship in the regulation of blood pressure (BP). BP is directly associated with the total body sodium and negatively correlated with the total body potassium. Epidemiologic, experimental, and clinical studies have demonstrated that potassium is a significant regulator of BP and further improves cardiovascular outcomes. Hypertensive cardiovascular damage, stroke and stroke-related death are accelerated by salt intake but could be prevented by increased dietary potassium intake. The antihypertensive effect of potassium supplementation appears to occur through several mechanisms that include regulation of vascular sensitivity to catecholamines, promotion of natriuresis, limiting plasma renin activity, and improving endothelial function. In the absence of chronic kidney disease, the combined evidence supports a diet high in potassium content serves a vasculoprotective function, especially in the setting of salt-sensitive hypertension and prehypertension. PMID:23735420
Dietary potassium: a key mediator of the cardiovascular response to dietary sodium chloride.
Kanbay, Mehmet; Bayram, Yeter; Solak, Yalcin; Sanders, Paul W
2013-01-01
Potassium and sodium share a yin/yang relationship in the regulation of blood pressure (BP). BP is directly associated with the total body sodium and negatively correlated with the total body potassium. Epidemiologic, experimental, and clinical studies have shown that potassium is a significant regulator of BP and further improves cardiovascular outcomes. Hypertensive cardiovascular damage, stroke, and stroke-related death are accelerated by salt intake but might be curbed by increasing dietary potassium intake. The antihypertensive effect of potassium supplementation appears to occur through several mechanisms that include regulation of vascular sensitivity to catecholamines, promotion of natriuresis, limiting plasma renin activity, and improving endothelial function. In the absence of chronic kidney disease, the combined evidence suggests that a diet rich in potassium content serves a vasculoprotective function, particularly in the setting of salt-sensitive hypertension and prehypertension. Copyright © 2013 American Society of Hypertension. All rights reserved.
The Yin and Yang of YY1 in the nervous system
He, Ye; Casaccia-Bonnefil, Patrizia
2008-01-01
The transcription factor Yin Yang 1 (YY1) is a multifunctional protein that can activate or repress gene expression depending on the cellular context. YY1 is ubiquitously expressed and highly conserved between species. However its role varies in diverse cell types and includes proliferation, differentiation and apoptosis. This review will focus on the function of YY1 in the nervous system including its role in neural development, neuronal function, developmental myelination and neurological disease. The multiple functions of YY1 in distinct cell types are reviewed and the possible mechanisms underlying the cell specificity for these functions are discussed. PMID:18485096
[Talk about nomenclature of twelve meridians from quantitative yin-yang theory].
Zhao, Xi-xin; Wang, Xue-xia; Zhao, Zhao; Ran, Peng-fei; Lü, Xiao-rui
2009-03-01
Based on leads provided by Neijing and other literature, analyze origins of the three-yin and the three-yang and the their respective contents of yin and yang, indicating the principle that the order of yang-qi from more to less is Yang ming, Tai yang, Shao yang, and the order of yin-qi is Tai yin, Shao yin, Jue yin. According to the location of five (six) zang-organs, respective yin-qi content is defined, and according to the principle of more yin-qi matches more, and less yin-qi matches less, five (six) zang-organs match each other. The zang-organs above the diaphragm joints with The Hand-Channels and the zang-organs below the diaphragm with The Foot-Channels, completing the nomenclature of twelve meridians. The names of the six yang-channels correspond to the yin-channels of the exterior-interior relationship, the yin-channels link with hands (feet), and the yang-channels also link with hands (feet), and the amount of yin-qi of the zang-organs corresponding to the yin-channels and the amount of yang-qi of the fu-organs corresponding to yang-channels are in a state of balance. Based on this principle, nomenclature of six channels are completed. Emphasize that the nomenclature of twelve meridians contains profound TCM theories, especially, TCM, by yin-yang, three-yin and three- yang, illustrates living phenomena from the whole to the system and organ level in human body, and the scientific principle "yin-yang can be unlimitedly divided" and its significance, which must guide the studies on living phenomena with modern life sciences from the whole to the molecular level.
Cellular traditional Chinese medicine on photobiomodulation
NASA Astrophysics Data System (ADS)
Liu, Timon Cheng-Yi; Cheng, Lei; Liu, Jiang; Wang, Shuang-Xi; Xu, Xiao-Yang; Deng, Xiao-Yuan; Liu, Song-Hao
2006-09-01
Although yin-yang is one of the basic models of traditional Chinese medicine (TCM) for TCM objects such as whole body, five zangs or six fus, they are widely used to discuss cellular processes in papers of famous journals such as Cell, Nature, or Science. In this paper, the concept of the degree of difficulty (DD) of a process was introduced to redefine yin and yang and extend the TCM yin-yang model to the DD yin-yang model so that we have the DD yin-yang inter-transformation, the DD yin-yang antagonism, the DD yin-yang interdependence and the DD yin ping yang mi, which and photobiomodulation (PBM) on cells are supported by each other. It was shown that healthy cells are in the DD yin ping yang mi so that there is no PBM, and there is PBM on non-healthy cells until the cells become healthy so that PBM can be called a cellular rehabilitation. The DD yin-yang inter-transformation holds for our biological information model of PBM. The DD yin-yang antagonism and the DD yin-yang interdependence also hold for a series of experimental studies such as the stimulation of DNA synthesis in HeLa cells after simultaneous irradiation with narrow-band red light and a wide-band cold light, or consecutive irradiation with blue and red light.
Intermediate coupled superconductivity in yttrium intermetallics
NASA Astrophysics Data System (ADS)
Sharma, Ramesh; Ahmed, Gulzar; Sharma, Yamini
2017-09-01
Non-magnetic YIn3, LaIn3 and LuIn3 with a superconducting transition temperature Tc of 0.78, 0.71 and 0.24 K were investigated for superconductivity. Similarly, rare-earth compound LaSn3 has been reported to exhibit superconductivity around 6.25 K, whereas the non-magnetic YSn3 is a superconductor with Tc of 7 K. The substitution of 13th group In-atoms by 14th group Sn-atoms is seen to enhance Tc by nearly one order, although the lattice parameters increase by ∼1.0% in YSn3 compared to YIn3 compound. It is observed from the ground state properties that the slight difference in the energy band structures of YIn3, YIn2Sn and YSn3 gives rise to various complex Fermi surfaces which are multiply connected and exhibit vast differences. The Fermi level lies on a sharp peak in YSn3 which has a higher density of states N(EF), whereas Fermi level lies on the shoulder of a sharp peak in YIn3. The electron localization function (ELF) and difference charge density maps clearly illustrate the difference in the nature of bonding; the Ysbnd Sn bonds are clearly more ionic (due to larger bond length) than Ysbnd In bonds. These results are consistent with the Bader charges which show loss of charges from Y-atoms and a gain of charges by In/Sn atoms. The dynamical properties also clearly illustrate the difference in the nature of bonds in YX3 intermetallics. A softening of the lowermost acoustic modes is observed in YIn3, whereas all the modes in YSn3 are observed to have positive frequencies which imply its greater stability. Since λel-ph < 1, both YIn3 and YSn3 compounds exhibit type I superconductivity according to BCS theory. However, the smaller N(EF) obtained from the density of states (DOS); the electron-phonon coupling constant λel-ph obtained from the temperature dependent specific heat as well as the instability in phonon modes due to stronger Ysbnd In and Insbnd In bonds in YIn3 may be the cause of lower Tc and filamentary nature of superconductivity. Insertion of Sn-atom in the YIn3 lattice further consolidates the superconducting nature due to increase in N(EF) and γ (electronic component of specific heat), along with lowering of the frequency of imaginary modes from 5.6 THz to 1.5-0.6 THz. Thus Tc is directly related to the valence electron concentration and ternary YIn2Sn may exhibit intermediate superconducting transition temperature.
Influence of I-ching (Yijing, or The Book Of Changes) on Chinese medicine, philosophy and science.
Lu, Dominic P
2013-01-01
I-Ching or Yi-Jing ([see text] also known as The Book of Changes) is the earliest classic in China. It simply explained the formation of the universe and the relationship of man to the universe. Most, if not all, branches of various knowledge, including traditional Chinese medicine, can be traced back its origin to this Book in which Fu Shi ([see text] 2852 B.C.) theorized how the universe was formed, through his keen observation of environment and orbits of sun, moon and stars. He used symbols to represent his views. The essence of I-Ching is basically the expression and function of Yang symbolized as "--" (from <---->) and Yin symbolized "- -" (from --><--), and [see text] Yin and Yang as interaction and circulation of Yang and Yin. Both Yin and Yang were derived from the same origin, Tai-Chi. Fu Shi believed Yin and Yang were the two opposite background force and energy that make the universe as what it is. Yang and Yin manifest in great variety of phenomena such as mind and body, masculine and feminine, sun and moon, hot and cold, heaven and earth, positive and negative electricity etc. The entire theory of Chinese medicine is based on the theories of Yin and Yang as well as that of 5 Element Cycles which are also related to the orderly arrangement of 8 trigrams ([see text]) by King Wen ([see text]1099-1050 B.C.). The 5 Elements Theory explains the "check and balance" mechanism created by the background force of Yin and Yang Qi and illustrated the relationships that are either strengthened or weakened by "acting and controlling" among the 5 elements. I-Ching has exerted profound influences on some well- known European philosophers and scientists, notably Leibnitz and Hegel. Between I-Ching and modern cosmology and the physics of sub-atomic particles, there are some basic theories in common.
Du, Juan; Zhong, Maofeng; Liu, Dong; Liang, Shufang; Liu, Xiaolin; Cheng, Binbin; Zhang, Yani; Yin, Zifei; Wang, Yuan; Ling, Changquan
2017-01-01
Traditional Chinese medicine formulates treatment according to body constitution (BC) differentiation. Different constitutions have specific metabolic characteristics and different susceptibility to certain diseases. This study aimed to assess the characteristic genes of gan-shen Yin deficiency constitution in different diseases. Fifty primary liver cancer (PLC) patients, 94 hypertension (HBP) patients, and 100 diabetes mellitus (DM) patients were enrolled and classified into gan-shen Yin deficiency group and non-gan-shen Yin deficiency group according to the body constitution questionnaire to assess the clinical manifestation of patients. The mRNA expressions of 17 genes in PLC patients with gan-shen Yin deficiency were different from those without gan-shen Yin deficiency. However, considering all patients with PLC, HBP, and DM, only MLH3 was significantly lower in gan-shen Yin deficiency group than that in non-gen-shen Yin deficiency. By ROC analysis, the relationship between MLH3 and gan-shen Yin deficiency constitution was confirmed. Treatment of MLH3 (-/- and -/+) mice with Liuweidihuang wan, classical prescriptions for Yin deficiency, partly ameliorates the body constitution of Yin deficiency in MLH3 (-/+) mice, but not in MLH3 (-/-) mice. MLH3 might be one of material bases of gan-shen Yin deficiency constitution.
Yue, Patrick Ying Kit; Mak, Nai Ki; Cheng, Yuen Kit; Leung, Kar Wah; Ng, Tzi Bun; Fan, David Tai Ping; Yeung, Hin Wing; Wong, Ricky Ngok Shun
2007-01-01
In Chinese medicine, ginseng (Panax ginseng C.A. Meyer) has long been used as a general tonic or an adaptogen to promote longevity and enhance bodily functions. It has also been claimed to be effective in combating stress, fatigue, oxidants, cancer and diabetes mellitus. Most of the pharmacological actions of ginseng are attributed to one type of its constituents, namely the ginsenosides. In this review, we focus on the recent advances in the study of ginsenosides on angiogenesis which is related to many pathological conditions including tumor progression and cardiovascular dysfunctions. Angiogenesis in the human body is regulated by two sets of counteracting factors, angiogenic stimulators and inhibitors. The 'Yin and Yang' action of ginseng on angiomodulation was paralleled by the experimental data showing angiogenesis was indeed related to the compositional ratio between ginsenosides Rg1 and Rb1. Rg1 was later found to stimulate angiogenesis through augmenting the production of nitric oxide (NO) and vascular endothelial growth factor (VEGF). Mechanistic studies revealed that such responses were mediated through the PI3K→Akt pathway. By means of DNA microarray, a group of genes related to cell adhesion, migration and cytoskeleton were found to be up-regulated in endothelial cells. These gene products may interact in a hierarchical cascade pattern to modulate cell architectural dynamics which is concomitant to the observed phenomena in angiogenesis. By contrast, the anti-tumor and anti-angiogenic effects of ginsenosides (e.g. Rg3 and Rh2) have been demonstrated in various models of tumor and endothelial cells, indicating that ginsenosides with opposing activities are present in ginseng. Ginsenosides and Panax ginseng extracts have been shown to exert protective effects on vascular dysfunctions, such as hypertension, atherosclerotic disorders and ischemic injury. Recent work has demonstrates the target molecules of ginsenosides to be a group of nuclear steroid hormone receptors. These lines of evidence support that the interaction between ginsenosides and various nuclear steroid hormone receptors may explain the diverse pharmacological activities of ginseng. These findings may also lead to development of more efficacious ginseng-derived therapeutics for angiogenesis-related diseases. PMID:17502003
Shen, Minxue; Cui, Yuanwu; Hu, Ming; Xu, Linyong
2017-01-13
The study aimed to validate a scale to assess the severity of "Yin deficiency, intestine heat" pattern of functional constipation based on the modern test theory. Pooled longitudinal data of 237 patients with "Yin deficiency, intestine heat" pattern of constipation from a prospective cohort study were used to validate the scale. Exploratory factor analysis was used to examine the common factors of items. A multidimensional item response model was used to assess the scale with the presence of multidimensionality. The Cronbach's alpha ranged from 0.79 to 0.89, and the split-half reliability ranged from 0.67 to 0.79 at different measurements. Exploratory factor analysis identified two common factors, and all items had cross factor loadings. Bidimensional model had better goodness of fit than the unidimensional model. Multidimensional item response model showed that the all items had moderate to high discrimination parameters. Parameters indicated that the first latent trait signified intestine heat, while the second trait characterized Yin deficiency. Information function showed that items demonstrated highest discrimination power among patients with moderate to high level of disease severity. Multidimensional item response theory provides a useful and rational approach in validating scales for assessing the severity of patterns in traditional Chinese medicine.
Guo, Jian-chun; Xiao, Li-na; Xun, Yun-hao
2012-08-01
To study on the correlation between chronic asymptomatic HBV carriers (ASC) of yin asthenia constitution and genotypes of HLA-DRB1 and HLA DQA1 alleles. Totally 105 ASC were assigned to two groups according to their constitutions, i.e., the yin asthenia group (47 cases) and the non-yin asthenia group (58 cases). The genotypes of HLA-DRB1 and HLA DQA1 alleles were determined using PCR-SSP. The gene frequency of HLA-DRB1 * 09 allele and HLA-DQA1 * 0301 allele (being 12.1% and 19.1%) were obviously lower in the yin asthenia group than in the non-yin asthenia group (being 27.8% and 39.7%, P < 0.05). The gene frequency of HLA-DRB1 * 11 allele and HLA-DQA1 * 0501 allele were obviously higher in the yin asthenia group (being 12.1% and 28.7%) than in the non-yin asthenia group (4.3% and 9.5%), showing statistical difference (P < 0.05, P < 0.01). HLA-DRB1 * 09 allele and HLA-DQA1 * 0301 allele might be the molecular bases for non-yin asthenia patients with ASC. HLA-DRB1 * 11 allele and HLA-DQA1 * 0501 allele might be the molecular bases for yin asthenia patients with ASC.
Yakama Indian Nation Treaty rights and development of cleanup standards for D and D and ER actions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jim, R.; Barry, B.
The Yakama Indian Nation (YIN) is a sovereign government located in the Northwestern United States. In 1855, the US government recognized Yakama Nation dominion on 12.2 million acres of land, or more than one-quarter of present-day Washington State. In the Treaty of 1855 between US and Yakama representatives, the YIN ceded control on 10.8 million acres of its ancestral land to the US government, but retained certain perpetual rights to that land. The Hanford Nuclear Site is located on Yakama ceded land, upon which the YIN retains rights to fish, hunt, gather roots and berries, and to pasture horses andmore » cattle. The YIN has been recognized by the US Department of Energy as having regulatory authority concerning Hanford operations. This authority requires incorporation of YIN Treaty rights in the development of environmental cleanup standards for D and D and ER actions. The legal and policy framework upon which YIN environmental protection standards are based includes protection of the health, safety and well-being of YIN Tribal members, protection of the environment necessary to support Treaty protected resources, and preservation of the culture which sustains the unique YIN lifestyle and religion. The basis for Yakama cleanup standards will address risk, environmental, and cultural factors. It is recognized that the unique Yakama lifestyle and diet create specific exposure pathways for hazardous and radioactive materials which are not routinely factored into risk models used to calculate doses.« less
APC Yin-Yang haplotype associated with colorectal cancer risk
GARRE, P.; DE LA HOYA, M.; INIESTA, P.; ROMERA, A.; LLOVET, P.; GONZALEZ, S.; PEREZ-SEGURA, P.; CAPELLA, G.; DIAZ-RUBIO, E.; CALDES, T.
2010-01-01
The Yin-Yang haplotype is defined as two mismatched haplotypes (Yin and Yang) representing the majority of the existing haplotypes in a particular genomic region. The human adenomatous polyposis coli (APC) gene shows a Yin-Yang haplotype pattern accounting for 84% of all of the haplotypes existing in the Spanish population. Several association studies have been published regarding APC gene variants (SNPs and haplotypes) and colorectal cancer (CRC) risk. However, no studies concerning diplotype structure and CRC risk have been conducted. The aim of the present study was to investigate whether the APC Yin-Yang homozygote diplotype is over-represented in patients with sporadic CRC when compared to its distribution in controls, and its association with CRC risk. TaqMan® assays were used to genotype three tagSNPs selected across the APC Yin-Yang region. Frequencies of the APC Yin-Yang tagSNP alleles, haplotype and diplotype of 378 CRC cases and 642 controls were compared. Two Spanish CRC group samples were included [Hospital Clínico San Carlos in Madrid (HCSC) and Instituto Catalán de Oncología in Barcelona (ICO)]. Analysis of 157 consecutive CRC patients and 405 control subjects from HCSC showed a significative effect for the risk of CRC (OR=1.93; 95% CI 1.32–2.81; P=0.001). However, this effect was not confirmed in 221 CRC patients and 237 control subjects from ICO (OR=0.89; 95% CI 0.61–1.28; P=0.521). We found a significant association between the APC homozygote Yin-Yang diplotype and the risk of colorectal cancer in the HCSC samples. However, we did not observe this association in the ICO samples. These observations suggest that a study with a larger Spanish cohort is necessary to confirm the effects of the APC Yin-Yang diplotype on the risk of CRC. PMID:22993613
APC Yin-Yang haplotype associated with colorectal cancer risk.
Garre, P; DE LA Hoya, M; Iniesta, P; Romera, A; Llovet, P; Gonzalez, S; Perez-Segura, P; Capella, G; Diaz-Rubio, E; Caldes, T
2010-09-01
The Yin-Yang haplotype is defined as two mismatched haplotypes (Yin and Yang) representing the majority of the existing haplotypes in a particular genomic region. The human adenomatous polyposis coli (APC) gene shows a Yin-Yang haplotype pattern accounting for 84% of all of the haplotypes existing in the Spanish population. Several association studies have been published regarding APC gene variants (SNPs and haplotypes) and colorectal cancer (CRC) risk. However, no studies concerning diplotype structure and CRC risk have been conducted. The aim of the present study was to investigate whether the APC Yin-Yang homozygote diplotype is over-represented in patients with sporadic CRC when compared to its distribution in controls, and its association with CRC risk. TaqMan(®) assays were used to genotype three tagSNPs selected across the APC Yin-Yang region. Frequencies of the APC Yin-Yang tagSNP alleles, haplotype and diplotype of 378 CRC cases and 642 controls were compared. Two Spanish CRC group samples were included [Hospital Clínico San Carlos in Madrid (HCSC) and Instituto Catalán de Oncología in Barcelona (ICO)]. Analysis of 157 consecutive CRC patients and 405 control subjects from HCSC showed a significative effect for the risk of CRC (OR=1.93; 95% CI 1.32-2.81; P=0.001). However, this effect was not confirmed in 221 CRC patients and 237 control subjects from ICO (OR=0.89; 95% CI 0.61-1.28; P=0.521). We found a significant association between the APC homozygote Yin-Yang diplotype and the risk of colorectal cancer in the HCSC samples. However, we did not observe this association in the ICO samples. These observations suggest that a study with a larger Spanish cohort is necessary to confirm the effects of the APC Yin-Yang diplotype on the risk of CRC.
Cryptanalysis and Improvement of the Semi-quantum Secret Sharing Protocol
NASA Astrophysics Data System (ADS)
Gao, Xiang; Zhang, Shibin; Chang, Yan
2017-08-01
Recently, Xie et al. Int. J. Theor. Phys. 54, 3819-3824, (2015) proposed a Semi-quantum secret sharing protocol (SQSS). Yin et al. Int. J. Theor. Phys. 55: 4027-4035, (2016) pointed out that this protocol suffers from the intercept-resend attack. Yin et al. also proposed an improved protocol. However, we find out that Yin et al.'s paper has some problems, we analyze Yin et al.'s paper, then proposed the improved semi-quantum secret sharing protocol. Our protocol is more secure and efficient, most importantly, our protocol satisfies the condition of semi-quantum.
[Effect of extracts from Dendrobii ifficinalis flos on hyperthyroidism Yin deficiency mice].
Lei, Shan-shan; Lv, Gui-yuan; Jin, Ze-wu; Li, Bo; Yang, Zheng-biao; Chen, Su-hong
2015-05-01
Some unhealthy life habits, such as long-term smoking, heavy drinking, sexual overstrain and frequent stay-up could induce the Yin deficiency symptoms of zygomatic red and dysphoria. Stems of Dendrobii officinalis flos (DOF) showed the efficacy of nourishing Yin. In this study, the hyperthyroidism Yin deficiency model was set up to study the yin nourishing effect and action mechanism of DOF, in order to provide the pharmacological basis for developing DOF resources and decreasing resource wastes. ICR mice were divided into five groups: the normal control group, the model control group, the positive control group and DOF extract groups (6.4 g · kg(-1)). Except for the normal group, the other groups were administrated with thyroxine for 30 d to set up the hyperthyroidism yin deficiency model. At the same time, the other groups were administrated with the corresponding drugs for 30 d. After administration for 4 weeks, the signs (facial temperature, pain domain, heart rate and autonomic activity) in mice were measured, and the facial and ear micro-circulation blood flow were detected by laser Doppler technology. After the last administration, all mice were fasted for 12 hours, blood were collected from their orbits, and serum were separated to detect AST, ALT, TG and TP by the automatic biochemistry analyzer and test T3, T4 and TSH levels by ELISA. (1) Compared with the normal control group, the model control group showed significant increases in facial and ear micro-circulation blood flow, facial temperature and heart rate (P < 0.05, P < 0.01), serum AST, ALT (P < 0.01), T3 level (P < 0.05), TSH level (P < 0.05) and notable deceases in pain domain (P < 0.01), TG level (P < 0.01). (2) Compared with the model control group, extracts from DOF (6 g · kg(-1)) could notably reduce facial and ear micro-circulation blood flow, facial temperature and heart rate (P < 0.05, P < 0.01) and AST (P < 0.05) and enhance pain domain (P < 0.01) and TG (P < 0.01). Extracts from DOF (4 g · kg(-1)) could remarkably reduce AST and ALT levels (P < 0.01, 0.05). Extracts from DOF (6 g · kg(-1) 4 g · kg(-1)) could significantly reduce T3 and increase serum TSH level (P < 0.05). DOF could improve Yin deficiency symptoms of zygomatic red and dysphoria in mice as well as liver function injury caused by overactive thyroid axis. According to its action mechanism, DOF may show yin nourishing and hepatic protective effects by impacting thyroxin substance metabolism, improving micro-circulation and reducing heart rate.
1989-10-01
Coord: Elev.PROTECTIVE CSG He~qht I Material /Type El e~. ________Diameter Elie.hI____ Depth BGS ___________Weep Hole (YIN) HSe.ht __ GUARD POSTS (YIN...Tremied I Y/14) SCR EE N Type Dimeter - --Slot Size Ck Type SUMP (YIN) Interval OGS Lcngth - 90tt0m Cop (YIN) BACKFILL PLUG Material ...for transport to the laboratory. The remaining liners will then be extruded and the material used for lithologic description and other analyses. The
Emitter Number Estimation by the General Information Theoretic Criterion from Pulse Trains
2002-12-01
negative log likelihood function plus a penalty function. The general information criteria by Yin and Krishnaiah [11] are different from the regular...548-551, Victoria, BC, Canada, March 1999 DRDC Ottawa TR 2002-156 11 11. L. Zhao, P. P. Krishnaiah and Z. Bai, “On some nonparametric methods for
Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality
Donohoe, Mary E.; Zhang, Xiaolin; McGinnis, Lynda; Biggers, John; Li, En; Shi, Yang
1999-01-01
Yin Yang 1 (YY1) is a zinc finger-containing transcription factor and a target of viral oncoproteins. To determine the biological role of YY1 in mammalian development, we generated mice deficient for YY1 by gene targeting. Homozygosity for the mutated YY1 allele results in embryonic lethality in the mouse. YY1 mutants undergo implantation and induce uterine decidualization but rapidly degenerate around the time of implantation. A subset of YY1 heterozygote embryos are developmentally retarded and exhibit neurulation defects, suggesting that YY1 may have additional roles during later stages of mouse embryogenesis. Our studies demonstrate an essential function for YY1 in the development of the mouse embryo. PMID:10490658
HART-II: Prediction of Blade-Vortex Interaction Loading
2003-09-01
14:30 (2) Improvement of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5...of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5) Aeroelastic Stability Analysis of...of DLR Rotor Aero- acoustic Code ( APSIM ) and its Valida- tion with Analytic Solution J. Yin, J. Delfs (5) Aeroelastic Stability Analysis of
Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes.
Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E; Zhang, Zhao-feng
2016-03-18
Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0-2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes.
Castro-Chavez, Fernando
2014-01-01
Objective The objective of this article is to demonstrate that the genetic code can be studied and represented in a 3-D Sphered Cube for bioinformatics and for education by using the graphical help of the ancient “Book of Changes” or I Ching for the comparison, pair by pair, of the three basic characteristics of nucleotides: H-bonds, molecular structure, and their tautomerism. Methods The source of natural biodiversity is the high plasticity of the genetic code, analyzable with a reverse engineering of its 2-D and 3-D representations (here illustrated), but also through the classical 64-hexagrams of the ancient I Ching, as if they were the 64-codons or words of the genetic code. Results In this article, the four elements of the Yin/Yang were found by correlating the 3×2=6 sets of Cartesian comparisons of the mentioned properties of nucleic acids, to the directionality of their resulting blocks of codons grouped according to their resulting amino acids and/or functions, integrating a 384-codon Sphered Cube whose function is illustrated by comparing six brain peptides and a promoter of osteoblasts from Humans versus Neanderthal, as well as to Negadi’s work on the importance of the number 384 within the genetic code. Conclusions Starting with the codon/anticodon correlation of Nirenberg, published in full here for the first time, and by studying the genetic code and its 3-D display, the buffers of reiteration within codons codifying for the same amino acid, displayed the two long (binary number one) and older Yin/Yang arrows that travel in opposite directions, mimicking the parental DNA strands, while annealing to the two younger and broken (binary number zero) Yin/Yang arrows, mimicking the new DNA strands; the graphic analysis of the of the genetic code and its plasticity was helpful to compare compatible sequences (human compatible to human versus neanderthal compatible to neanderthal), while further exploring the wondrous biodiversity of nature for educational purposes. PMID:25340175
Xu, Weiwei; Meng, Xianjun; Zhu, Anning; Wang, Yu; Luo, Wuyougumo; Kuang, Zifang
2017-01-12
Professor ZHANG Yongshu , who studied from professor LIU Zhangjie , is a famous acupuncturist in Quanzhou of Southern Fujian. The publications authored by professor ZHANG Yongshu were collected in this study to summarize his academic characteristics of acupuncture and moxibustion. The result indicated he highly valued the regulation of yang qi , and established the theory of "developing yang to nourish yin ", which proposes to develop yang qi to achieve the effect of culturing yin ; he summarized eight methods to regulate the governor vessel and conception vessel, which can condition the body's yin and yang ; he paid attention to moxibustion therapy and its dosage, and made the best of direct moxibustion. In addition, he focused on meridian theory with effective application of meridian syndrome differentiation; in clinical treatment, he regulated the hand- yangming meridian to treat diseases by nourishing yang , generating yin and regulating fu .
Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes
Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E.; Zhang, Zhao-feng
2016-01-01
Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0–2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes. PMID:26988425
Wong, Tin-Long; An, Ya-Qi; Yan, Bing-Chao; Yue, Rui-Qi; Zhang, Tian-Bo; Ho, Hing-Man; Ren, Tian-Jing; Fung, Hau-Yee; Ma, Dik-Lung; Leung, Chung-Hang; Liu, Zhong-Liang; Pu, Jian-Xin; Han, Quan-Bin; Sun, Han-Dong
2016-06-05
YinHuang drop pill (YHDP) is a new preparation, derived from the traditional YinHuang (YH) decoction. Since drop pills are one of the newly developed forms of Chinese patent drugs, not much research has been done regarding the quality and efficacy. This study aims to establish a comprehensive quantitative analysis of the chemical profile of YHDP. ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify 34 non-sugar small molecules including 15 flavonoids, 9 phenolic acids, 5 saponins, 1 iridoid, and 4 iridoid glycosides in YHDP samples, and 26 of them were quantitatively determined. Sugar composition of YHDP in terms of fructose, glucose and sucrose was examined via a high performance liquid chromatography-evaporative light scattering detector on an amide column (HPLC-NH2P-ELSD). Macromolecules were examined by high performance gel permeation chromatography coupled with ELSD (HPGPC-ELSD). The content of the drop pill's skeleton component PEG-4000 was also quantified via ultra-high performance liquid chromatography coupled with charged aerosol detector (UHPLC-CAD). The results showed that up to 73% (w/w) of YHDP could be quantitatively determined. Small molecules accounted for approximately 5%, PEG-4000 represented 68%, while no sugars or macromolecules were found. Furthermore, YHDP showed no significant differences in terms of daily dosage, compared to YinHuang granules and YinHuang oral liquid; however, it has a higher small molecules content compared to YinHuang lozenge. Copyright © 2016 Elsevier B.V. All rights reserved.
Chinese-English Rocketry Dictionary. Volume 3
1979-03-01
xiezhen diania 14] Q i. plate tank 1’? yangil yanghuara $, anodic oxidation process 18 yangji yinji dianya I3 A.j - I t anode -cathode voltage...talo Gu Yin yin aao ou Ylng Yin ta’u Ou YU You taluan cuan Yuing Yawg talui cul 341 tau tm yuan ruan toa ’Wg Cown Yft ye. tfu tu Yfln t’tian tuant...tanhuang Jiahe mopian 94f X laE f(4 ’m’. #j spring-loaded membrane 14 tanhuang Jiaju A1 A -)t spring clawp 15 tanhuang Jianshendian A1 &c A V -’P spring
Yin, Zi-Wei
2017-10-24
A new species of the arnylliine ant-loving beetle genus Awas Löbl, A. helii Yin, sp. n., collected with Ectomomyrmex ants in Sichuan, SW China, is described and illustrated. The new taxon externally resembles A. kayan Yin & Li from Hunan, central China, but can be readily separated by the different forms of the pronotum and elytra, and details of the aedeagal structures. New collecting data for Awas loebli Yin & Li in eastern China, as well as some notes on the biology of the genus are provided.
Traditional Chinese medicine on the effects of low-intensity laser irradiation on cells
NASA Astrophysics Data System (ADS)
Liu, Timon C.; Duan, Rui; Li, Yan; Cai, Xiongwei
2002-04-01
In previous paper, process-specific times (PSTs) are defined by use of molecular reaction dynamics and time quantum theory established by TCY Liu et al., and the change of PSTs representing two weakly nonlinearly coupled bio-processes are shown to be parallel, which is called time parallel principle (TPP). The PST of a physiological process (PP) is called physiological time (PT). After the PTs of two PPs are compared with their Yin-Yang property of traditional Chinese medicine (TCM), the PST model of Yin and Yang (YPTM) was put forward: for two related processes, the process of small PST is Yin, and the other process is Yang. The Yin-Yang parallel principle (YPP) was put forward in terms of YPTM and TPP, which is the fundamental principle of TCM. In this paper, we apply it to study TCM on the effects of low intensity laser on cells, and successfully explained observed phenomena.
Li, Ming-Song; Liu, Zhenzhen; Liu, Jin-Qing; Zhu, Xiaotong; Liu, Zhihao; Bai, Xue-Feng
2015-01-01
Accumulating evidences from animal studies have indicated that both endogenous and exogenous IL-27, an IL-12 family of cytokine, can increase antitumor T-cell activities and inhibit tumor growth. IL-27 can modulate Treg responses, and program effector T cells into a unique T-effector stem cell (TSEC) phenotype, which enhances T-cell survival in the tumor microenvironment. However, animal studies also suggest that IL-27 induces molecular pathways such as IL-10, PD-L1 and CD39, which may downregulate tumor-specific T-cell responses. In this review paper, we will discuss the Yin and Yang aspects of IL-27 in the induction of tumor-specific T-cell responses, and the potential impacts of these functions of IL-27 in the design of cancer immunotherapy.
Li, Xiaojun; Zhu, Lang
2015-07-01
Some oracle bone inscriptions of the Yin-Shang Dynasties were related to the stomatology, including special terms of diseases of the mouth, tongue and teeth which were classified, and proper nouns of some special diseases. Moreover, witch doctors' exploration for the causes of oral diseases, the observation on different stages of oral diseases, and the records of oral disease treatment were also involved. All of these reflected the sprouting stage of stomatology in the Yin-Shang Dynasties in ancient China.
The Oncogenic Role of Yin Yang 1
Zhang, Qiang; Stovall, Daniel B.; Inoue, Kazushi; Sui, Guangchao
2012-01-01
Yin Yang 1 (YY1) is a transcription factor with diverse and complex biological functions. YY1 either activates or represses gene transcription, depending on the stimuli received by the cells and its association with other cellular factors. Since its discovery, a biological role for YY1 in tumor development and progression has been suggested because of its regulatory activities toward multiple cancer-related proteins and signaling pathways and its overexpression in most cancers. In this review, we primarily focus on YY1 studies in cancer research, including the regulation of YY1 as a transcription factor, its activities independent of its DNA binding ability, the functions of its associated proteins, and mechanisms regulating YY1 expression and activities. We also discuss the correlation of YY1 expression with clinical outcomes of cancer patients and its target potential in cancer therapy. Although there is not a complete consensus about the role of YY1 in cancers based on its activities of regulating oncogene and tumor suppressor expression, most of the currently available evidence supports a proliferative or oncogenic role of YY1 in tumorigenesis. PMID:22248053
Jin, Yan; Tan, Yingling; Hu, Xiaozhen; Zhu, Bin; Zheng, Qinghui; Zhang, Zijiao; Zhu, Guoying; Yu, Qian; Jin, Zhong; Zhu, Jia
2017-05-10
Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity. Here, we demonstrate a scalable and low-cost process to produce a porous yin-yang hybrid composite anode with graphene coating through high energy ball-milling and selective chemical etching. With void space to buffer the expansion, the produced functional electrodes demonstrate stable cycling performance of 910 mAh g -1 over 600 cycles at a rate of 0.5C for Si-graphene "yin" particles and 750 mAh g -1 over 300 cycles at 0.2C for Sn-graphene "yang" particles. Therefore, we open up a new approach to fabricate alloy anode materials at low-cost, low-energy consumption, and large scale. This type of porous silicon or tin composite with graphene coating can also potentially play a significant role in thermoelectrics and optoelectronics applications.
Antioxidant activity of 45 Chinese herbs and the relationship with their TCM characteristics
Banbury, Linda K.; Leach, David N.
2008-01-01
Here, 45 Chinese herbs that regulate blood circulation were analyzed for antioxidant activity using the oxygen radical absorbance capacity (ORAC) assay. A recent publication by Ou et al. identified a close relationship between in vitro antioxidant activity and classification of Chinese herbs as yin or yang. The 45 Chinese herbs in this study could be assigned the traditional characteristics of natures (cold, cool, hot and warm), flavors (pungent, sweet, sour, bitter and salty) and functions (arresting bleeding, promoting blood flow to relieve stasis, nourishing blood and clearing away heat from blood). These characteristics are generalized according to the theory of yin and yang. We identified a broad range, 40–1990 µmol Trolox Equivalent/g herbs, of antioxidant activity in water extracts. There was no significant correlation between ORAC values and natures or functions of the herbs. There was a significant relationship between flavors and ORAC values. Bitter and/or sour herbs had the highest ORAC values, pungent and/or sweet herbs the lowest. Other flavors had intermediate values. Flavors also correspond with the yin/yang relationship and our results are supportive of the earlier publication. We reported for the first time antioxidant properties of many Chinese herbs. High antioxidant herbs were identified as Spatholobus suberectus vine (1990 µmol TE/g), Sanguisorba officinalis root (1940 µmol TE/g), Agrimonia pilosa herb (1440 µmol TE/g), Artemisia anomala herb (1400 µmol TE/g), Salvia miltiorrhiza root (1320 µmol TE/g) and Nelembo nucifera leaf (1300 µmol TE/g). Antioxidant capacity appears to correlate with the flavors of herbs identified within the formal TCM classification system and may be a useful guide in describing their utility and biochemical mechanism of action. PMID:18955214
Liu, Liang-Feng; Song, Ju-Xian; Lu, Jia-Hong; Huang, Ying-Yu; Zeng, Yu; Chen, Lei-Lei; Durairajan, Siva Sundara Kumar; Han, Quan-Bin; Li, Min
2015-01-01
Tianma Gouteng Yin (TGY) is a traditional Chinese medicine (TCM) decoction widely used to treat symptoms associated with typical Parkinson’s disease (PD). In this study, the neuroprotective effects of water extract of TGY were tested on rotenone-intoxicated and human α-synuclein transgenic Drosophila PD models. In addition, the neuroprotective effect of TGY was also evaluated in the human dopaminergic neuroblastoma SH-SY5Y cell line treated with rotenone and the rotenone intoxicated hemi-parkinsonian rats. In rotenone-induced PD models, TGY improved survival rate, alleviated impaired locomotor function of Drosophila, mitigated the loss of dopaminergic neurons in hemi-parkinsonian rats and alleviated apoptotic cell death in SH-SY5Y cells; in α-synuclein transgenic Drosophila, TGY reduced the level of α-synuclein and prevented degeneration of dopaminergic neurons. Conclusively, TGY is neuroprotective in PD models both in vivo and in vitro. PMID:26578166
Experimental Research Into High Barometric Oxygen Prevention of Guinea Pig Hearing Loss,
1992-08-28
PREVENTION OF GUINEA PIG HEARING LOSS by Yin Jiacai, Sun Fang ren, et al. DTIC MLECTE •<• EP 2 9 1992 Approved for public release, Distribution unlimited...PREVENTION OF GUINEA PIG HEARING LOSS By: Yin Jiacai, Sun Fang ren, et al. English pages: 9 Source: Chung-Hua I Shueh Tsa Chih, Vol. 65, Nr. 11, Nov.eember...Distributionf._DL~~~t .•b • / or __ Dlist szeccat .lef ’ ~1 EXPERIMENTAL RESEARCH INTO HIGH BAROMETRIC OXYGEN PREVENTION OF GUINEA PIG HEARING LOSS BY: Yin
Wang, Wang; Xiang, Hong; Xu, Huiying; Liang, Lina; Sui, Hua; Zhan, Libin; Lu, Xiaoguang
2017-01-01
Numerous researches supported that microbiota can influence behavior and modulate cognitive function through “microbiota-gut-brain” axis. Our previous study has demonstrated that ZiBuPiYin recipe (ZBPYR) possesses excellent pharmacological effects against diabetes-associated cognitive decline. To elucidate the role of ZBPYR in regulating the balance of gut microbiota to improve psychological-stress-induced diabetes-associated cognitive decline (PSDACD), we compared blood glucose, behavioral and cognitive functions and diversity of the bacterial community among experimental groups. The Zucker diabetic fatty (ZDF) rats with PSDACD exhibited behavioral and cognitive anomalies showing as increased anxiety- and depression-like behaviors and decreased learning and memory abilities. High-throughput sequencing of the bacterial 16S rRNA gene revealed that Roseburia and Coprococcus were decreased in ZDF rats with PSDACD compared with control group. Notably, these changes were reversed by ZBPYR treatment. Our findings indicate that ZBPYR might prevent PSDACD by maintaining the compositions of gut microbiota, which could be developed as a new therapy for T2D with PSDACD. PMID:28099913
Gu, Chunyan; Zhou, Wen; Wang, Wang; Xiang, Hong; Xu, Huiying; Liang, Lina; Sui, Hua; Zhan, Libin; Lu, Xiaoguang
2017-04-25
Numerous researches supported that microbiota can influence behavior and modulate cognitive function through "microbiota-gut-brain" axis. Our previous study has demonstrated that ZiBuPiYin recipe (ZBPYR) possesses excellent pharmacological effects against diabetes-associated cognitive decline. To elucidate the role of ZBPYR in regulating the balance of gut microbiota to improve psychological-stress-induced diabetes-associated cognitive decline (PSDACD), we compared blood glucose, behavioral and cognitive functions and diversity of the bacterial community among experimental groups. The Zucker diabetic fatty (ZDF) rats with PSDACD exhibited behavioral and cognitive anomalies showing as increased anxiety- and depression-like behaviors and decreased learning and memory abilities. High-throughput sequencing of the bacterial 16S rRNA gene revealed that Roseburia and Coprococcus were decreased in ZDF rats with PSDACD compared with control group. Notably, these changes were reversed by ZBPYR treatment. Our findings indicate that ZBPYR might prevent PSDACD by maintaining the compositions of gut microbiota, which could be developed as a new therapy for T2D with PSDACD.
Synthesis and Structure Property Studies of Toughened Epoxy Resins Via Functionalized Polysiloxanes.
1987-09-30
34 87S N4 SYNTHESIS RNO STRUCTURE PROPERTY STUDIES OF OP NDD mEPOXY RESINS YIN FU.. (U) VIROINIR POLYTECHNIC INST OM STNTE UNIY RCKSBURG DEPT OF C.. J...Classification) Synthesis and Structure Property Studies of Toughened Epoxy Resins Via Functionalized Polysiloxanes 12. PERSONALAUTHOR(S) J. 5. HitTIe... Resins , Toughening 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Epoxy resins chemically modified with functionally
Formative assessment as a vehicle for changing classroom practice in a specific cultural context
NASA Astrophysics Data System (ADS)
Chen, Jingping
2015-09-01
In this commentary, I interpret Xinying Yin and Gayle Ann Buck's collaborative action research from a social-cultural perspective. Classroom implementation of formative assessment is viewed as interaction between this assessment method and the local learning culture. I first identify Yin and Buck's definition of the formative assessment, and then analyze the role of formative assessment in the change of local learning culture. Based on the practice of Yin and Buck I emphasize the significance of their "bottom up" strategy to the teachers' epistemological change. I believe that this strategy may provide practicable solutions to current Chinese educational problems as well as a means for science educators to shift toward systematic professional development.
Wang, Tian; Chen, Jieyu; Sun, Xiaomin; Xiang, Lei; Zhou, Lin; Li, Fei; Lin, Changsong; Jiang, Pingping; Wu, Shengwei; Xiao, Ya; Cheng, Jingru; Luo, Ren; Liu, Yanyan; Zhao, Xiaoshan
2015-01-01
To explore the effects of traditional Chinese medicine constitution (TCMC) on transformation of good health status to suboptimal health status (SHS), we conducted a nested case-control study among college students in China. During the 18-month mean follow-up time, 543 cases of SHS (42.7%) occurred in 1273 healthy students. There was a significant (P = 0.000) and marked reduction in SHMS V1.0 total score in the case group at the 18-month follow-up (69.32 ± 5.45) compared with baseline (78.60 ± 4.70), but there was no significant change in the control group. Conditional logistic regression analysis showed that respondents reporting Yin-deficiency and Qi-deficiency were, respectively, 2.247 and 2.198 times more likely to develop SHS, while tendency to Yin-deficiency and tendency to Damp-heat were, respectively, 1.642 and 1.506 times more likely to develop SHS. However, the Balanced Constitution was a significant protective factor (OR 0.649; P < 0.05). Altogether, these findings demonstrate that Yin-deficiency, Qi-deficiency, tendency to Yin-deficiency, and tendency to Damp-heat appeared to induce a change in health status to SHS, while the Balanced Constitution seemed to restrain this change. We conclude that regulating the unbalanced TCMC (such as Yin-deficiency and Qi-deficiency) may prevent a healthy status developing into SHS or lead to the regression of SHS. PMID:26346320
[The medical theory of Lee Je-ma and its character].
Lee, Kyung-Lock
2005-12-01
Lee Je-ma 1837-1900) was a prominent scholar as well as an Korean physician. classified every people into four distinctive types: greater yang [tai yang] person, lesser yin [shao yin] person, greater yin [tai yin] person, lesser yin [shao yin] person. This theory would dictate proper treatment for each type in accordance with individual differences of physical and temperament features. Using these four types he created The Medical Science of Four Types. This article is intended to look into the connection between Lee Je-Ma's 'The Medical Science of Four Types' and 'The Modern' with organizing his ideas about the human body and the human being. Through The Modern, the theory of human being underwent a complete change. Human being in The Premodern, which was determined by sex, age and social status has been changed to the individual human being, which is featured by equality. Lee Je-Ma's medical theory of The Medical Science of Four Types would be analyzed as follow. His concept of human body is oriented toward observable objectivity. But on the other hand, it still remains transcendent status of medical science, which is subordinated by philosophy. According to Lee Je-Ma's theory of human being, human is an equal individual in a modern way of thinking, not as a part of hierarchical group. But on the other hand, it still remains incomplete from getting rid of morality aspect that includes virtue and vice in the concept of human body. The common factors in Lee Je-Ma's ideas about the human body and the human being is 'Dualism of mind and body that means all kinds of status and results depends on each individual. As is stated above, Lee Je-Ma's medical theory has many aspects of The Modern and it proves that Korean traditional medicine could be modernized by itself.
Formative Assessment as a Vehicle for Changing Classroom Practice in a Specific Cultural Context
ERIC Educational Resources Information Center
Chen, Jingping
2015-01-01
In this commentary, I interpret Xinying Yin and Gayle Ann Buck's collaborative action research from a social-cultural perspective. Classroom implementation of formative assessment is viewed as interaction between this assessment method and the local learning culture. I first identify Yin and Buck's definition of the formative assessment, and then…
Written formative assessment and silence in the classroom
NASA Astrophysics Data System (ADS)
Lee Hang, Desmond Mene; Bell, Beverley
2015-09-01
In this commentary, we build on Xinying Yin and Gayle Buck's discussion by exploring the cultural practices which are integral to formative assessment, when it is viewed as a sociocultural practice. First we discuss the role of assessment and in particular oral and written formative assessments in both western and Samoan cultures, building on the account of assessment practices in the Chinese culture given by Yin and Buck. Secondly, we document the cultural practice of silence in Samoan classroom's which has lead to the use of written formative assessment as in the Yin and Buck article. We also discuss the use of written formative assessment as a scaffold for teacher development for formative assessment. Finally, we briefly discuss both studies on formative assessment as a sociocultural practice.
Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations
1989-12-18
a student of John Burns, spent 3 years at Brown working with Tom Banks. His speciality is in control theory, in particular for viscoelastic...diffusion equation, SIAM J. Appld Maih, 39, (2), (1980), 272-289. [ 3 ] J. R. Cannon and H. M. Yin, A uniqueness theorem for a class of parabolic inverse...2.6) where H is a C’ function. This equation is of second kind Volterra type and can be u!uiquely solved for the function 0. Thus k = A
A single dopant atom in silicon sees the light
NASA Astrophysics Data System (ADS)
Rogge, Sven
2014-03-01
Optical access to a single qubit is very attractive since it allows for readout with unprecedented high spectral resolution and long distance coupling. Substantial progress has been demonstrated for nitrogen-vacancy centers in diamond (Bernien, Nature, 2013). Optical access to qubits in silicon been an important goal but has to date only been achieved in the ensemble limit (Steger, Science, 2012). Here, we present the photoionization of an individual erbium dopant in silicon (Yin, Nature, 2013). A single-electron transistor is used as a single-shot charge detector to observe the resonant ionization of a single atom as a function of photon energy. This allows for optical addressing and electrical detection of individual erbium dopants with exceptionally narrow line width. The hyperfine coupling is clearly resolved which paves the way to single shot readout of the nuclear spin. This hybrid approach is a first step towards an optical interface to dopants in silicon. in collaboration with Chunming Yin, Milos Rancic, Gabriele G. de Boo, Nikolas Stavrias, Jeffrey C. McCallum, Matthew J. Sellars.
Wu, Yiling
2011-06-01
According to the self-discipline of traditional Chinese medicine, vessel-collateral theory was constructed systematically, which was important to improving prevention and treatment level of vasculopathy. The hypothesis of "homeostasis (Cheng), compensatory auto-adaptation (Zhi), regulation (Tiao) and equilibrium (Ping)" based on the "qi-yin-yang-five elements" coupled with the ying (nutrients)-wei (defense) theory, has become the core content of the vessel-collateral theory. Clinical and laboratory trials have been developed to further confirm the scientific connotations of the hypothesis, such as Tong Xin Luo capsule, as the representative drugs of vessel collateral theory, showed good efficacy in protecting the vascular endothelium, stabilizing the vulnerable plaque and reducing the blood vessel spasm. "Sou, ti, shu, tong" was the characteristics of Tong Xin Luo capsule in treating "microvascular damage" as the core mechanism of acute myocardial infarction, cerebral infarction and microvascular complications of diabetes. Shen Song Yang Xin capsules in the treatment of arrhythmia have made integrated adjustment advantage. Qi Li Qiang Xin capsules have been made treating both manifestation and root cause of chronic heart failure. These research have improved prevention and treatment level of major vascular system diseases.
[The Yin and Yang movement in the cosmology of Chinese medicine].
Coutinho, Bernardo Diniz; Dulcetti, Pérola Goretti Sichero
2015-01-01
After being developed in the East, based on Taoist cosmology, Chinese medicine has been practiced in the West based on scientific foundations and biomedical paradigms. Some traditional elements of this philosophy were abandoned, such as the theory of Yin and Yang, knowledge that is essential for understanding the health-disease process resulting from the circulation of the body's energy flow. This article studies the movement of the dual elements of Yin and Yang in Chinese medical teaching, seeking to understand how this line of thought developed and how it has contributed towards establishing a system of diagnosis and therapy. The methodology employed was to analyze literature on the subject, based on theoretical references to Taoist thought and traditional Chinese medicine.
Ellis, Peter D; Martin, Karen M; Rickman, Colin; Metcalfe, James C; Kemp, Paul R
2002-01-01
Recent evidence has implicated CC(A/T(richG))GG (CArG) boxes, binding sites for serum response factor (SRF), in the regulation of expression of a number of genes in response to changes in the actin cytoskeleton. In many cases, the activity of SRF at CArG boxes is modulated by transcription factors binding to overlapping (e.g. Yin Yang 1, YY1) or adjacent (e.g. ets) binding sites. However, the mechanisms by which SRF activity is regulated by the cytoskeleton have not been determined. To investigate these mechanisms, we screened for cells that did or did not increase the activity of a fragment of the promoter for a smooth-muscle (SM)-specific gene SM22alpha, in response to changes in actin cytoskeletal polymerization induced by LIM kinase. These experiments showed that vascular SM cells (VSMCs) and C2C12 cells increased the activity of promoters containing at least one of the SM22alpha CArG boxes (CArG near) in response to LIM kinase, whereas P19 cells did not. Bandshift assays using a probe to CArG near showed that P19 cells lacked detectable YY1 DNA binding to the CArG box in contrast with the other two cell types. Expression of YY1 in P19 cells inhibited SM22alpha promoter activity and conferred responsiveness to LIM kinase. Mutation of the CArG box to inhibit YY1 or SRF binding indicated that both factors were required for the LIM kinase response in VSMCs and C2C12 cells. The data indicate that changes in the actin cytoskeletal organization modify SRF activity at CArG boxes by modulating YY1-dependent inhibition. PMID:12023898
Interpersonal Harmony and Conflict for Chinese People: A Yin-Yang Perspective.
Huang, Li-Li
2016-01-01
This article provides an overview on a series of original studies conducted by the author. The aim here is to present the ideas that the author reconstructed, based on the dialectics of harmonization, regarding harmony and conflict embodied in traditional Chinese thought, and to describe how a formal psychological theory/model on interpersonal harmony and conflict was developed based on the Yin-Yang perspective. The paper also details how essential theories on interpersonal harmony and conflict were constructed under this formal model by conducting a qualitative study involving in-depth interviews with 30 adults. Psychological research in Western society has, intriguingly, long been focused more on interpersonal conflict than on interpersonal harmony. By contrast, the author's work started from the viewpoint of a materialist conception of history and dialectics of harmonization in order to reinterpret traditional Chinese thought. Next, a "dynamic model of interpersonal harmony and conflict" was developed, as a formal psychological theory, based on the real-virtual notions in the Yin-Yang perspective. Under this model, interpersonal harmony and conflict can be classified into genuine versus superficial harmony and authentic versus virtual focus conflict, and implicit/hidden conflict is regarded as superficial harmony. Subsequently, the author conducted a series of quantitative studies on interpersonal harmony and conflict within parent-child, supervisor-subordinate, and friend-friend relationships in order to verify the construct validity and the predictive validity of the dynamic model of interpersonal harmony and conflict. The claim presented herein is that Chinese traditional thought and the psychological theory/model based on the Yin-Yang perspective can be combined. Accordingly, by combining qualitative and quantitative empirical research, the relative substantial theory can be developed and the concepts can be validated. Thus, this work represents the realization of a series of modern Chinese indigenous psychological research studies rooted in traditional cultural thought and the Yin-Yang perspective. The work also mirrors the current conflict-management research that has incorporated the Chinese notion of harmony and adopted the Yin-Yang perspective on culture.
Two new species of Nomuraius Hlaváč (Coleoptera: Staphylinidae: Pselaphinae) from southern China.
Huang, Meng-Chi; Yin, Zi-Wei
2018-03-22
Two new Chinese species of the tyrine genus Nomuraius Hlaváč, N. excavatus Huang Yin, sp. n. (Guangxi), and N. nanlingensis Huang Yin, sp. n. (Guangdong), are described and illustrated. The identification key and distributional map of the genus are updated to include the new data.
Quasi-thermodynamic analysis of MOVPE growth of Ga xAl yIn 1- x- yN
NASA Astrophysics Data System (ADS)
Lu, Da-Cheng; Duan, Shukun
2002-01-01
A quasi-thermodynamic model of metalorganic vapor phase epitaxy (MOVPE) growth of Ga xAl yIn 1- x- yN alloys has been proposed. In view of the complex growth behavior of Ga xAl yIn 1- x- yN, we focus our attention on the gallium-rich quaternary alloys that are lattice matched to GaN, In 0.15Ga 0.85N or Al 0.15Ga 0.85N, which are widely used in the GaN-based optoelectronic devices. The relationship between GaAlInN alloy composition and input molar ratio of group III metalorganic compounds at various growth conditions has been calculated. The influence of growth temperature, nitrogen fraction in the carrier gas, input partial pressure of group III metalorganics, reactor pressure, V/III ratio and the decomposition rate of ammonia on the composition of deposited alloys are studied systematically. Based on these calculated results, we can find out the appropriate growth conditions for the MOVPE growth of Ga xAl yIn 1- x- yN alloy lattice matched to GaN, In 0.15Ga 0.85N or Al 0.15Ga 0.85N.
Relations between Eastern Four Pillars Theory and Western Measures of Personality Traits
Jung, Seung Ah
2015-01-01
Purpose The present study investigated the validity of personality classification using four pillars theory, a tradition in China and northeastern Asia. Materials and Methods Four pillars analyses were performed for 148 adults on the basis of their birth year, month, day, and hour. Participants completed two personality tests, the Korean version of Temperament and Character Inventory-Revised-Short Version (TCI) and the Korean Inventory of Interpersonal Problems; scores were correlated with four pillars classification elements. Mean difference tests (e.g., t-test, ANOVA) were compared with groups classified by four pillars index. Results There were no significant correlations between personality scale scores and total yin/yang number (i.e., the 8 heavenly or earthly stems), and no significant between-groups results for classifications by yin/yang day stem and the five elements. There were significant but weak (r=0.18-0.29) correlations between the five elements and personality scale scores. For the six gods and personality scales, there were significant but weak (r=0.18-0.25) correlations. Features predicted by four pillars theory were most consistent when participants were grouped according to the yin/yang of the day stem and dominance of yin/yang numbers in the eight heavenly or earthly stems. Conclusion Although the major criteria of four pillars theory were not independently correlated with personality scale scores, correlations emerged when participants were grouped according to the composite yin/yang variable. Our results suggest the utility of four pillars theory (beyond fortune telling or astrology) for classifying personality traits and making behavioral predictions. PMID:25837175
Karpouzas, D G; Tsiamis, G; Trevisan, M; Ferrari, F; Malandain, C; Sibourg, O; Martin-Laurent, F
2016-09-01
Pesticides end up in soil where they interact with soil microorganisms in various ways. On the Yin Side of the interaction, pesticides could exert toxicity on soil microorganisms, while on the Yang side of interaction, pesticides could be used as energy source by a fraction of the soil microbial community. The LOVE TO HATE project is an IAPP Marie Curie project which aims to study these complex interactions of pesticides with soil microorganisms and provide novel tools which will be useful both for pesticide regulatory purposes and agricultural use. On the Yin side of the interactions, a new regulatory scheme for assessing the soil microbial toxicity of pesticides will be proposed based on the use of advanced standardized tools and a well-defined experimental tiered scheme. On the Yang side of the interactions, advanced molecular tools like amplicon sequencing and functional metagenomics will be applied to define microbes that are involved in the rapid transformation of pesticides in soils and isolate novel pesticide biocatalysts. In addition, a functional microarray has been designed to estimate the biodegradation genetic potential of the microbial community of agricultural soils for a range of pesticide groups.
[Yin Care--a natural product for prophylactics and treatment of vaginal infections].
Mikhova, M; Batashki, I; Ivanov, St
2007-01-01
A prospective study, including 60 patients with vaginal discharge has been made at Maternity hospital "Majchin dom"--Sofia for the period November 2006- February 2007. In 32 patients no causative agent has been revealed. They have been counseled to use Yin Care--vaginal lotion for 3 months in prophylactic concentration. 88.4% reported for diminished discharge. No adverse effects have been observed. In 11 patients suffering from bacterial vaginitis, caused by S. Epidermidis, S. Aureus, Enterococcus and E. Coli cure was achieved in 72.7% of cases. 17 women with Candida vaginitis have been included in the study. After standard antifungal treatment, 8 of them continued therapy with Yin Care. Recurrence of disease has been observed in only one case, while in the group treated with antifungal medication only recurrence has been observed in 2 cases.
Wang, Zheng-Shan; Zhang, Qi-Cheng
2013-07-01
In the Wu xing da yi (The Gist of Five Phases), written by Xiao Ji of the Sui Dynasty, there were 9 quotations cited from Huang di nei jing (Inner Canon of Huangdi). By comparison with current version of Huang di nei jing, most of the descriptions are similar, yet still with some differences, such as yin-yang nature of the five zang visceras, the liver being the root of "pi ji", the spleen being the root of "cang lin" etc. Wu xing da yi epitomizes the books about yin-yang and five phases before the Sui Dynasty, while Xiao Ji's quotations from Huang di nei jing interpreted from the views of yin-yang and five phases, are different from the annotations of later ages.
2005-03-01
ethnography , grounded theory , phenomenological , case study , and content analysis. As ethnography is based upon a longitudinal study in...a qualitative methodology consisting of a case study strategy is warranted for this research project. Yin (2003) lists five components of research ...systems. Journal of End User Computing, 12(3), 14. Yin, R. K. (2003). Case Study Research : Design and
76 FR 52952 - Student Services Contract EP-11-D-000403 Yin Gu; Transfer of Data
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2011-0038; FRL-8884-1] Student Services Contract EP-11... Business Information (CBI) by the submitter, will be transferred to Student Services Contract EP- 11-D-000403 Yin Gu in accordance with 40 CFR 2.307(h)(3) and 2.308(i)(2). Student Services Contract EP-11-D...
Traditional Chinese medicine for prevention and treatment of hepatocarcinoma: From bench to bedside
Hu, Bing; Wang, Shuang-Shuang; Du, Qin
2015-01-01
Traditional Chinese medicine (TCM) has played a positive role in the management of hepatocarcinoma. Hepatocarcinoma patients may present Qi-stagnation, damp-heat, blood stasis, Qi-deficiency, Yin-deficiency and other TCM syndromes (Zheng). Modern treatments such as surgery, transarterial chemoembolization (TACE) and high intensity focus ultrasound treatment would influence the manifestation of TCM syndromes. Herbs with traditional efficacy of tonifying Qi, blood and Yin, soothing liver-Qi stagnation, clearing heat and detoxifying and dissolving stasis, have been demonstrated to be potent to prevent hepatocarcinogenesis. TCM has been widely used in all aspects of integrative therapy in hepatocarcinoma, including surgical resection, liver transplantation, TACE, local ablative therapies and even as monotherapy for middle-advanced stage hepatocarcinoma. Clinical practices have confirmed that TCM is effective to alleviate clinical symptoms, improve quality of life and immune function, prevent recurrence and metastasis, delay tumor progression, and prolong survival time in hepatocarcinoma patients. The effective mechanism of TCM against hepatocarcinoma is related to inducing apoptosis, autophagy, anoikis and cell senescence, arresting cell cycle, regulating immune function, inhibiting metastasis and angiogenesis, reversing drug resistance and enhancing effects of chemotherapy. Along with the progress of research in this field, TCM will contribute more to the prevention and treatment of hepatocarcinoma. PMID:26019736
Moncayo, Roy; Moncayo, Helga; Ulmer, Hanno; Kainz, Hartmann
2004-08-01
To investigate pathogenetic mechanisms related to the lacrimal and lymphatic glands in patients with thyroid-associated orbitopathy (TAO), and the potential of applied kinesiology diagnosis and homeopathic therapeutic measures. Prospective. Thyroid outpatient unit and a specialized center for complementary medicine (WOMED, Innsbruck; R.M. and H.M.). Thirty-two (32) patients with TAO, 23 with a long-standing disease, and 9 showing discrete initial changes. All patients were euthyroid at the time of the investigation. Clinical investigation was done, using applied kinesiology methods. Departing from normal reacting muscles, both target organs as well as therapeutic measures were tested. Affected organs will produce a therapy localization (TL) that turns a normal muscle tone weak. Using the same approach, specific counteracting therapies (i.e., tonsillitis nosode and lymph mobilizing agents) were tested. Change of lid swelling, of ocular movement discomfort, ocular lock, tonsil reactivity and Traditional Chinese Medicine criteria including tenderness of San Yin Jiao (SP6) and tongue diagnosis were recorded in a graded fashion. Positive TL reactions were found in the submandibular tonsillar structures, the pharyngeal tonsils, the San Yin Jiao point, the lacrimal gland, and with the functional ocular lock test. Both Lymphdiaral (Pascoe, Giessen, Germany) and the homeopathic preparation chronic tonsillitis nosode at a C3 potency (Spagyra, Grödig, Austria) counteracted these changes. Both agents were used therapeutically over 3-6 months, after which all relevant parameters showed improvement. Our study demonstrates the involvement of lymphatic structures and flow in the pathogenesis of TAO. The tenderness of the San Yin Jiao point correlates to the above mentioned changes and should be included in the clinical evaluation of these patients.
Lung Cancer-Specific Circular RNAs as Biomarkers
2017-08-01
Award Number: W81XWH-16-1-0239 TITLE: Lung Cancer-Specific Circular RNAs as Biomarkers PRINCIPAL INVESTIGATOR: Yin-Yuan Mo CONTRACTING...Specific Circular RNAs as Biomarkers 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0239 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yin-Yuan Mo Betty...14. ABSTRACT The major goal of this application is to determine whether lung cancer cells differentially express circular RNAs such that these
ERIC Educational Resources Information Center
Tam, Frank Wai-Ming; Lai, Manhong; Lam, Ka-Ka
2007-01-01
In Chinese society, there are two Confucian teachings that have become guiding values for many teachers and have had profound influence on their educational practices for nearly 2,500 years. These values are "yin cai shi jiao" and "you jiao wu lei." The direct translation of yin cai shi jiao is "to carry out teaching based…
Affar, El Bachir; Gay, Frédérique; Shi, Yujiang; Liu, Huifei; Huarte, Maite; Wu, Su; Collins, Tucker; Li, En; Shi, Yang
2006-01-01
Constitutive ablation of the Yin Yang 1 (YY1) transcription factor in mice results in peri-implantation lethality. In this study, we used homologous recombination to generate knockout mice carrying yy1 alleles expressing various amounts of YY1. Phenotypic analysis of yy1 mutant embryos expressing ∼75%, ∼50%, and ∼25% of the normal complement of YY1 identified a dosage-dependent requirement for YY1 during late embryogenesis. Indeed, reduction of YY1 levels impairs embryonic growth and viability in a dose-dependent manner. Analysis of the corresponding mouse embryonic fibroblast cells also revealed a tight correlation between YY1 dosage and cell proliferation, with a complete ablation of YY1 inducing cytokinesis failure and cell cycle arrest. Consistently, RNA interference-mediated inhibition of YY1 in HeLa cells prevents cytokinesis, causes proliferative arrest, and increases cellular sensitivity to various apoptotic agents. Genome-wide expression profiling identified a plethora of YY1 target genes that have been implicated in cell growth, proliferation, cytokinesis, apoptosis, development, and differentiation, suggesting that YY1 coordinates multiple essential biological processes through a complex transcriptional network. These data not only shed new light on the molecular basis for YY1 developmental roles and cellular functions, but also provide insight into the general mechanisms controlling eukaryotic cell proliferation, apoptosis, and differentiation. PMID:16611997
Electron-phonon superconductivity in YIn3
NASA Astrophysics Data System (ADS)
Billington, D.; Llewellyn-Jones, T. M.; Maroso, G.; Dugdale, S. B.
2013-08-01
First-principles calculations of the electron-phonon coupling were performed on the cubic intermetallic compound YIn3. The electron-phonon coupling constant was found to be λep = 0.42. Using the Allen-Dynes formula with a Coulomb pseudopotential of μ* = 0.10, a Tc of approximately 0.77 K is obtained which is reasonably consistent with the experimentally observed temperature (between 0.8 and 1.1 K). The results indicate that conventional electron-phonon coupling is capable of producing the superconductivity in this compound.
Fold Prediction of VP24 Protein of Ebola and Marburg Viruses using de novo Fragment Assembly
2009-05-15
Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., 1998. All-atom empirical potential for molecular modeling and dynamics studies of...aqueous forms that may be related to its role as a matrix protein. Specifically, the molecular weight of VP24 oligomers was determined using differ...dielectric electrostatic function. Next, the PARAM22 plus generalized Born molecular volume solvation (GBMV2) (Lee et al., 2003) energy (including a 15
Practical State Machine Replication with Confidentiality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Sisi; Zhang, Haibin
2016-01-01
We study how to enable arbitrary randomized algorithms in Byzantine fault-tolerant (BFT) settings. We formalize a randomized BFT protocol and provide a simple and efficient construction that can be built on any existing BFT protocols while adding practically no overhead. We go one step further to revisit a confidential BFT protocol (Yin et al., SOSP '03). We show that their scheme is potentially susceptible to safety and confidentiality attacks. We then present a new protocol that is secure in the stronger model we formalize, by extending the idea of a randomized BFT protocol. Our protocol uses only efficient symmetric cryptography,more » while Yin et al.'s uses costly threshold signatures. We implemented and evaluated our protocols on microbenchmarks and real-world use cases. We show that our randomized BFT protocol is as efficient as conventional BFT protocols, and our confidential BFT protocol is two to three orders of magnitude faster than Yin et al.'s, which is less secure than ours.« less
Identification of a Gene on Chromosome 18q21 Involved in Suppressing Metastatic Prostate Cancer
2005-12-01
manuscript: Padalecki SS, Weldon KS, Reveles XT, Buller CL, Grubbs B, Cui Y, Yin JJ, Hall DC, Hummer BT, Weissman BE, Dallas M , Guise TA, Leach RJ...B, Cui Y, Yin JJ, Hall DC, Hummer BT, Weissman BE, Dallas M , Guise TA, Leach RJ, Johnson-Pais TL 2003. Chromosome 18 suppresses prostate cancer...Postdoctoral Fellow Devon C. Hall – Graduate Student References Chen J, Sun M , Lee S, Zhou G, Rowley JD, Wang SM 2002. Identifying novel
Daraiseh, Susan I; Kassardjian, Ari; Alexander, Karen E; Rizkallah, Raed; Hurt, Myra M
2018-05-25
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways. Copyright © 2018. Published by Elsevier B.V.
Ju, Hui-Dong; Li, Liang; Zhang, Lu-Ping
2017-09-26
Durettenema guangdongense gen. et sp. nov. is described from Hipposideros larvatus (Horsfield) (Chiroptera: Rhinolophidae) in Guangdong Province, China. The new genus differs from the other genera of subfamily Molineinae in the structure of the synlophe, the absence of lateral alae, the arrangement of the bursa rays, the shape of the spicules, the female tail and the presence of gubernaculum. Meanwhile, considering the morphological characters of Macielia rhinolophi Yin, 1980, including the pattern of the bursa ray, the shape of the spicules, and the female tail, this species should be transferred to the genus Durettenema, as D. rhinolophi (Yin, 1980) comb. nov., which can be distinguished from D. guangdongense in the shape of the ovejector. In addition, the ITS-1 sequences of D. guangdongense were also analysed, these sequence added new data for the molecular diagnosis of trichostrongylid nematodes.
Yuan, Lin; Zhang, Pei-tong; Yang, Zong-yan
2011-07-01
To study the qi deficiency syndrome distribution and quality of life (QOL) of patients with advanced non-small cell lung cancer (NSCLC). A questionnaire survey was conducted in 120 patients with advanced NSCLC using the QOL scale "Functional Assessment of Cancer Therapy" (FACT-L) (Version 4.0). Meanwhile, syndrome typing was performed. On the basis of results of syndrome typing, patients of different syndrome types were grouped and compared, thus studying the distribution of advanced NSCLC patients of qi deficiency syndrome and qi deficiency syndrome correlated QOL features. Qi deficiency, blood stasis, yin deficiency, phlegm and dampness dominated in syndrome types of the 120 patients with advanced NSCLC. Of syndrome types accounting for larger ratios in 112 patients, pure qi deficiency syndrome accounted for 30.36% (34 cases), qi deficiency and blood stasis syndrome for 18. 75% (21 cases), both qi and yin deficiency syndrome for 10. 71% (12 cases). There was no correlation between the appearance of qi deficiency syndrome and patients' age, sex, pathological typing (adenocarcinoma/squamous carcinoma), or the disease duration. NSCLC patients in phase IV were mostly complicated with qi deficiency syndrome (P<0.05). Scores of physical states, emotional states, functional states, and total scores in the FACT-L scale were lower in those complicated with qi deficiency syndrome (89 cases) than in those without complicated qi deficiency syndrome (31 cases), showing statistical difference (P<0.01, P<0.05). The scores of the lung cancer specific module (additional concerns) in the FACT-L scale showed statistical difference, sequenced as qi deficiency and blood stasis syndrome > pure qi deficiency syndrome > both qi and yin deficiency syndrome (P<0.05). Qi deficiency syndrome is the main syndrome of advanced NSCLC. The QOL of advanced NSCLC patients complicated with qi deficiency syndrome was poorer than those without complicated qi deficiency syndrome. Besides, along with the aggravation of qi deficiency syndrome, the QOL decreased somewhat. It suggested that symptomatic treatment of qi deficiency syndrome could improve advanced NSCLC patients' QOL.
Decreased Genetic Dosage of Hepatic Yin Yang 1 Causes Diabetic-Like Symptoms
Verdeguer, Francisco; Blättler, Sharon M.; Cunningham, John T.; Hall, Jessica A.; Chim, Helen
2014-01-01
Insulin sensitivity in liver is characterized by the ability of insulin to efficiently inhibit glucose production and fatty acid oxidation as well as promote de novo lipid biosynthesis. Specific dysregulation of glucose and lipid metabolism in liver is sufficient to cause insulin resistance and type 2 diabetes; this is seen by a selective inability of insulin to suppress glucose production while remaining insulin-sensitive to de novo lipid biosynthesis. We have previously shown that the transcription factor Yin Yang 1 (YY1) controls diabetic-linked glucose and lipid metabolism gene sets in skeletal muscle, but whether liver YY1-targeted metabolic genes impact a diabetic phenotype is unknown. Here we show that decreased genetic dosage of YY1 in liver causes insulin resistance, hepatic lipid accumulation, and dyslipidemia. Indeed, YY1 liver-specific heterozygous mice exhibit blunted activation of hepatic insulin signaling in response to insulin. Mechanistically, YY1, through direct recruitment to promoters, functions as a suppressor of genes encoding for metabolic enzymes of the gluconeogenic and lipogenic pathways and as an activator of genes linked to fatty acid oxidation. These counterregulatory transcriptional activities make targeting hepatic YY1 an attractive approach for treating insulin-resistant diabetes. PMID:24467246
Krzystek, J; Telser, Joshua; Li, Jun; Subramanian, M A
2015-09-21
A variety of new oxide-based materials based on hexagonal phase of YInO3 have been recently described. In some of these materials, the In(III) ions are substituted by Mn(III), which finds itself in a trigonal-bipyramidal (TBP) coordination environment. While YInO3 is colorless and YMnO3 is black, mixed systems YIn1-xMnxO3 (0.02 < x < 0.25) display intense blue color and have been proposed as novel blue pigments. Since the Mn(III) ion is paramagnetic, its presence imparts distinct magnetic properties to the whole class of materials. These properties were investigated by electron paramagnetic resonance (EPR) in its high-frequency and -field version (HFEPR), a technique ideally suited for transition metal ions such as Mn(III) that, in contrast to, for example, Mn(II), are difficult to study by EPR at (conventional) low frequency and field. YIn1-xMnxO3 with 0.02 < x < 0.2 exhibited high-quality HFEPR spectra up to room temperature that could be interpreted as arising from isolated S = 2 paramagnets. A simple ligand-field model, based on the structure and optical spectra, explains the spin Hamiltonian parameters provided by HFEPR, which were D = +3.0 cm(-1), E = 0; g⊥ = 1.99, g∥ = 2.0. This study demonstrates the general applicability of a combined spectroscopic and classical theoretical approach to understanding the electronic structure of novel materials containing paramagnetic dopants. Moreover, HFEPR complements optical and other experimental methods as being a sensitive probe of dopant level.
Park, Young-Jae; Lee, Jin-Moo; Yoo, Seung-Yeon; Park, Young-Bae
2016-04-01
To examine whether color parameters of tongue inspection (TI) using a digital camera was reliable and valid, and to examine which color parameters serve as predictors of symptom patterns in terms of East Asian medicine (EAM). Two hundred female subjects' tongue substances were photographed by a mega-pixel digital camera. Together with the photographs, the subjects were asked to complete Yin deficiency, Phlegm pattern, and Cold-Heat pattern questionnaires. Using three sets of digital imaging software, each digital image was exposure- and white balance-corrected, and finally L* (luminance), a* (red-green balance), and b* (yellow-blue balance) values of the tongues were calculated. To examine intra- and inter-rater reliabilities and criterion validity of the color analysis method, three raters were asked to calculate color parameters for 20 digital image samples. Finally, four hierarchical regression models were formed. Color parameters showed good or excellent reliability (0.627-0.887 for intra-class correlation coefficients) and significant criterion validity (0.523-0.718 for Spearman's correlation). In the hierarchical regression models, age was a significant predictor of Yin deficiency (β = 0.192), and b* value of the tip of the tongue was a determinant predictor of Yin deficiency, Phlegm, and Heat patterns (β = - 0.212, - 0.172, and - 0.163). Luminance (L*) was predictive of Yin deficiency (β = -0.172) and Cold (β = 0.173) pattern. Our results suggest that color analysis of the tongue using the L*a*b* system is reliable and valid, and that color parameters partially serve as symptom pattern predictors in EAM practice.
The exploration of contrasting pathways in Triple Negative Breast Cancer (TNBC).
Narrandes, Shavira; Huang, Shujun; Murphy, Leigh; Xu, Wayne
2018-01-04
Triple Negative Breast Cancers (TNBCs) lack the appropriate targets for currently used breast cancer therapies, conferring an aggressive phenotype, more frequent relapse and poorer survival rates. The biological heterogeneity of TNBC complicates the clinical treatment further. We have explored and compared the biological pathways in TNBC and other subtypes of breast cancers, using an in silico approach and the hypothesis that two opposing effects (Yin and Yang) pathways in cancer cells determine the fate of cancer cells. Identifying breast subgroup specific components of these opposing pathways may aid in selecting potential therapeutic targets as well as further classifying the heterogeneous TNBC subtype. Gene expression and patient clinical data from The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used for this study. Gene Set Enrichment Analysis (GSEA) was used to identify the more active pathways in cancer (Yin) than in normal and the more active pathways in normal (Yang) than in cancer. The clustering analysis was performed to compare pathways of TNBC with other types of breast cancers. The association of pathway classified TNBC sub-groups to clinical outcomes was tested using Cox regression model. Among 4729 curated canonical pathways in GSEA database, 133 Yin pathways (FDR < 0.05) and 71 Yang pathways (p-value <0.05) were discovered in TNBC. The FOXM1 is the top Yin pathway while PPARα is the top Yang pathway in TNBC. The TNBC and other types of breast cancers showed different pathways enrichment significance profiles. Using top Yin and Yang pathways as classifier, the TNBC can be further subtyped into six sub-groups each having different clinical outcomes. We first reported that the FOMX1 pathway is the most upregulated and the PPARα pathway is the most downregulated pathway in TNBC. These two pathways could be simultaneously targeted in further studies. Also the pathway classifier we performed in this study provided insight into the TNBC heterogeneity.
A YinYang bipolar fuzzy cognitive TOPSIS method to bipolar disorder diagnosis.
Han, Ying; Lu, Zhenyu; Du, Zhenguang; Luo, Qi; Chen, Sheng
2018-05-01
Bipolar disorder is often mis-diagnosed as unipolar depression in the clinical diagnosis. The main reason is that, different from other diseases, bipolarity is the norm rather than exception in bipolar disorder diagnosis. YinYang bipolar fuzzy set captures bipolarity and has been successfully used to construct a unified inference mathematical modeling method to bipolar disorder clinical diagnosis. Nevertheless, symptoms and their interrelationships are not considered in the existing method, circumventing its ability to describe complexity of bipolar disorder. Thus, in this paper, a YinYang bipolar fuzzy multi-criteria group decision making method to bipolar disorder clinical diagnosis is developed. Comparing with the existing method, the new one is more comprehensive. The merits of the new method are listed as follows: First of all, multi-criteria group decision making method is introduced into bipolar disorder diagnosis for considering different symptoms and multiple doctors' opinions. Secondly, the discreet diagnosis principle is adopted by the revised TOPSIS method. Last but not the least, YinYang bipolar fuzzy cognitive map is provided for the understanding of interrelations among symptoms. The illustrated case demonstrates the feasibility, validity, and necessity of the theoretical results obtained. Moreover, the comparison analysis demonstrates that the diagnosis result is more accurate, when interrelations about symptoms are considered in the proposed method. In a conclusion, the main contribution of this paper is to provide a comprehensive mathematical approach to improve the accuracy of bipolar disorder clinical diagnosis, in which both bipolarity and complexity are considered. Copyright © 2018 Elsevier B.V. All rights reserved.
Berle, Christine; Cobbin, Deirdre; Smith, Narelle; Zaslawski, Christopher
2011-11-01
Pattern diagnosis is an integral aspect of Chinese medicine (CM). CM differentiates biomedical diseases into patterns, based upon the patient's symptoms and signs. Pattern identification (PI) is used to diagnose, direct the treatment principle and determine the treatment protocol. Most CM research has used fixed formula treatments for Western-defined diseases with outcomes measured using objective biomedical markers. This article presents an innovative method used in a randomised controlled pilot study using acupuncture for participants with hepatitis C virus. Each participant's CM patterns were identified and quantified at baseline which directed the treatment protocol for the treatment group. Data identified that while each participant expressed different patterns at baseline all participants displayed multiple patterns. Six patterns showed some expression by all 16 participants; Liver (Gan) yin vacuity expressing a group aggregate mean percentage of 47.2, binding depression of Liver qi 46.9, and Liver Kidney (Shen) yin vacuity 45.1. Further sub category gender grouping revealed that pattern ranking changed with gender; Liver yin vacuity (male 53.4%, female 51.93%), binding depression of Liver qi (male 50.0%, female 42.86%) and Liver Kidney yin vacuity (male 42.9%, female 47.96%). The quantification of CM patterns described in this article permitted statistical evaluation of presenting CM patterns. Although this methodology is in its infancy it may have potential use in the integration of PI with rigorous evidence based clinical research. Biomedical markers often do not relate to symptom/signs and therefore this innovative measure may offer an additional CM evaluation methodology and further CM PI understanding.
Liu, Chia-Yu; Ko, Pin-Hao; Yen, Hung-Rong; Cheng, Chen-Hung; Li, Yu-Hsien; Liao, Zih-Han; Hsu, Chung-Hua
2016-08-01
This study examined the effects of a traditional Chinese medicine decoction, Kuan-Sin-Yin (KSY), on patients with chronic hepatitis C (CHC) in a randomised and placebo-controlled clinical trial. This trial enrolled 70 subjects with CHC who were randomised into 2 groups each with 35 participants. In total, 29 participants in the therapeutic group took 100mL of the herbal decoction daily, whereas 28 in the control group took an herbal placebo with the same dose and frequency for the 6-week study. The primary outcomes were liver function and viral load. Secondary measurements included haematopoietic and biochemical profiles, safety parameters, and a quality of life survey. All measurements were collected at the beginning of the study and after 6 weeks. In within-group analysis, significant decreases of glutamate pyruvate transaminase (GPT) 31.7±75.2IU/L and glutamate oxaloacetate transaminase (GOT) 20.3±45.7IU/L were found in the KSY group (p=0.031 and 0.024, respectively). In the between-group analysis, KSY reduced serum GOT and GPT levels by more than 20IU/L (p=0.027 and 0.047, respectively). KSY also significantly decreased viral load by 0.3 log units (p=0.047). In addition, KSY significantly decreased serum triglyceride 16.9±27.5mg/dL (p=0.024). This study demonstrates that taking the KSY herbal decoction for 6 weeks improves liver function and serum triglyceride levels and is safe for patients with CHC. The potential long-term effects of KSY on lipid metabolism related hepatoprotection and viral clearance warrant further investigation. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J.
2015-04-01
Yin et al. have described an innovative filter-less optical millimeter-wave generation scheme for octotupling of a 10 GHz RF oscillator, or sedecimtupling of a 5 GHz RF oscillator using two parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). The great merit of their design is the suppression of all harmonics except those of order ? (octotupling) or all harmonics except those of order ? (sedecimtupling), where ? is an integer. A demerit of their scheme is the requirement to set a precise RF signal modulation index in order to suppress the zeroth order optical carrier. The purpose of this comment is to show that, in the case of the octotupling function, all harmonics may be suppressed except those of order ?, where ? is an odd integer, by the simple addition of an optical ? phase shift between the two DP-MZMs and an adjustment of the RF drive phases. Since the carrier is suppressed in the modified architecture, the octotupling circuit is thereby released of the strict requirement to set the drive level to a precise value without any significant increase in circuit complexity.
Leak testing and repair of fusion devices
NASA Astrophysics Data System (ADS)
Kozman, T. A.
1983-06-01
The leak testing, reporting and vacuum leak repair techniques of the MPTF yin-yang number one magnet system, the world's largest superconducting magnet system, are discussed. Based on this experience, techniques are developed for testing and repairing leaks on the 42 MPTF-B magnets. The leak hunting techniques for the yin-yang magnet systems were applied to two helium circuits (the coil bundle and guard vacuum; both require helium flow for magnet cooldown). Additionally, during MPTF-B operation there are warm water plasma shields and piping that require leak checking.
The Yin and Yang of Calcium Effects on Synaptic Vesicle Endocytosis
Wu, Xin-Sheng
2014-01-01
A large number of studies suggest that calcium triggers and accelerates vesicle endocytosis at many synapses and non-neuronal secretory cells. However, many studies show that prolonging the duration of the stimulation train, which induces more calcium influx, slows down endocytosis; and several studies suggest that instead of triggering endocytosis, calcium actually inhibits endocytosis. Here we addressed this apparent conflict at a large nerve terminal, the calyx of Held in rat brainstem, in which recent studies suggest that transient calcium increase up to tens of micromolar concentration at the micro/nano domain triggers endocytosis. By dialyzing 0–1 μm calcium into the calyx via a whole-cell pipette, we found that slow endocytosis was inhibited by calcium dialysis in a concentration-dependent manner. Thus, prolonged, small, and global calcium increase inhibits endocytosis, whereas transient and large calcium increase at the micro/nano domain triggers endocytosis and facilitates endocytosis. This yin and yang effect of calcium may reconcile apparent conflicts regarding whether calcium accelerates or inhibits endocytosis. Whether endocytosis is fast or slow depends on the net outcome between the yin and yang effect of calcium. PMID:24523554
Niu, Hua; Cao, Haibo; Wang, Yin
Professor WANG Yin 's academic thoughts and clinical application for difficult and miscellaneous di-seases, especially acupuncture for spleen-stomach care, are introduced. Based on TCM basic theory and "ten needles for elderly" by WANG Yueting , Professor WANG Yin proposes the acupuncture for spleen-stomach care. In this method, three-element acupoint selection is applied; the conception vessel, spleen meridian of foot taiyin and stomach meridian of foot yangming were selected. The deep and penetration acupuncture with 0.4 mm×100 mm elongated needles is used at Zhongwan (CV 12), Qihai (CV 6) and Zigong (EX-CA 1), and the mild reinforcing-reducing method is used at remaining acupoints. According to the severity of diseases, fire acupuncture combined with blood-letting cupping is applied at Tianshu (ST 25), Xuehai (SP 10) and Yinlingquan (SP 9); gene-rally, two acupoints are selected and 1 to 3 mL blood-letting is appropriate. The modification based on this me-thod can be applied for various difficult and miscellaneous diseases, leading to superior efficacy.
Convenient, Sensitive and High-Throughput Method for Screening Botanic Origin
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Jiang, Chao; Liu, Libing; Yu, Shulin; Cui, Zhanhu; Chen, Min; Lin, Shufang; Wang, Shu; Huang, Luqi
2014-06-01
In this work, a rapid (within 4-5 h), sensitive and visible new method for assessing botanic origin is developed by combining loop-mediated isothermal amplification with cationic conjugated polymers. The two Chinese medicinal materials (Jin-Yin-Hua and Shan-Yin-Hua) with similar morphology and chemical composition were clearly distinguished by gene SNP genotyping assays. The identification of plant species in Patented Chinese drugs containing Lonicera buds is successfully performed using this detection system. The method is also robust enough to be used in high-throughput screening. This new method is very helpful to identify herbal materials, and is beneficial for detecting safety and quality of botanic products.
Blanch, N; Clifton, P M; Keogh, J B
2015-03-01
To review the relationships between: 1) Potassium and endothelial function; 2) Fruits and vegetables and endothelial function; 3) Potassium and other measures of vascular function; 4) Fruits and vegetables and other measures of vascular function. An electronic search for intervention trials investigating the effect of potassium, fruits and vegetables on vascular function was performed in MEDLINE, EMBASE and the Cochrane Library. Potassium appears to improve endothelial function with a dose of >40 mmol/d, however the mechanisms for this effect remain unclear. Potassium may improve measures of vascular function however this effect may be dependent on the effect of potassium on blood pressure. The effect of fruit and vegetables on endothelial function independent of confounding variables is less clear. Increased fruit and vegetable intake may improve vascular function only in high risk populations. Increasing dietary potassium appears to improve vascular function but the effect of increasing fruit and vegetable intake per se on vascular function is less clear. Copyright © 2014 Elsevier B.V. All rights reserved.
The Effects of Yin, Yang and Qi in the Skin on Pain.
Adams, James David
2016-01-29
The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang) and antagonists (yin) that help the body control pain. Acupuncture works through modulation of these receptor activities (qi) in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients.
The Effects of Yin, Yang and Qi in the Skin on Pain
Adams, James David
2016-01-01
The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang) and antagonists (yin) that help the body control pain. Acupuncture works through modulation of these receptor activities (qi) in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients. PMID:28930115
The yin and yang of sleep and attention
Kirszenblat, Leonie; van Swinderen, Bruno
2015-01-01
Sleep is not a single state, but a complex set of brain processes that supports a number of physiological needs. Sleep deprivation is known to affect attention in many animals, suggesting that a key function of sleep is to regulate attention. Conversely, tasks that require more attention drive sleep need and sleep intensity. Attention involves the ability to filter incoming stimuli based on their relative salience, and this is likely to require coordinated synaptic activity across the brain. This capacity may have only become possible with the evolution of related neural mechanisms that support two key sleep functions: stimulus suppression and synaptic plasticity. We argue here that sleep and attention may have co-evolved as brain states that regulate each other. PMID:26602764
Roles of Oestrogen Receptors α and β in Behavioural Neuroendocrinology: Beyond Yin/Yang
Rissman, E. F.
2009-01-01
Oestrogen receptor β (ERβ) was discovered more than 10 years ago. It is widely distributed in the brain. In some areas, such as the entorhinal cortex, it is present as the only ER, whereas in other regions, such as the bed nucleus of the stria terminalis and preoptic area, it can be found co-expressed with ERα, often within the same neurones. These ERs share ligands, and there are several complex relationships between the two receptors. Initially, the relationship between them was labelled as ‘yin/yang’, meaning that the actions of each complemented those of the other, but now, years later, other relationships have been described. Based on evidence from neuroendocrine and behavioural studies, three types of interactions between the two oestrogen receptors are described in this review. The first relationship is antagonistic; this is evident from studies on the role of oestrogen in spatial learning. When oestradiol is given in a high, chronic dose, spatial learning is impaired. This action of oestradiol requires ERα, and when ERβ is not functional, lower doses of oestradiol have this negative effect on behaviour. The second relationship between the two receptors is one that is synergistic, and this is illustrated in the combined effects of the two receptors on the production of the neuropeptide oxytocin and its receptor. The third relationship is sequential; separate actions of the two receptors are postulated in activation and organisation of sexually dimorphic reproductive behaviours. Future studies on all of these topics will inform us about how ER selective ligands might affect oestrogen functions at the organismal level. PMID:18601711
[Research on syndrome distribution features, etiologies, and pathogeneses of Japanese encephalitis].
Tu, Jin-Wen; Dong, Meng-Jiu; Liu, Zhi-Yong; Zhu, Qing-Jing; Zhu, Chao-Min; Li, Li; Wan, Hu; Lan, Ying; Li, Yun; Chen, Jun
2014-03-01
To explore Chinese medical syndrome distribution features of Japanese encephalitis (JE), and to analyze its correlation between syndromes and features of etiologies and pathogeneses. Recruited were 277 patients with confirmative diagnosis of JE from Wuhan Medical Treatment Center, Children's Hospital Affiliated to Chongqing Medical University, Fifth People's Hospital of Guiyang City, Hangzhou Sixth People's Hospital, and Chengdu Hospital of Infectious Diseases between July to September 2012. Chinese medical syndrome distribution features were summarized from their general materials and detailed records of clinical data, including medical history, symptoms and signs, tongue fur, and pulse figures.The frequency of symptoms and signs was calculated according to mild, ordinary, severe, extreme severe degrees. The distribution of Chinese medical syndromes was summarized. And its correlation between syndromes and features of etiologies and pathogeneses were analyzed. After clustering analysis, Chinese medical syndromes of JE could be categorized as four groups: toxicity accumulation in Fei and Wei syndrome (TAFWS), brain collateral impaired by poison syndrome (BCIPS), depression of toxicity in the pericardium syndrome (DTPS), exhaustion of yin and yang syndrome (EYYS). BCIPS and DTPS were dominated, accounting for 74.0% (205 cases). The main causes covered evil of summer heat [accounting for 92.42% (256/277 cases)], heat [accounting for 87.73% (243/277 cases)], and toxin [accounting for 99.64% (276/277 cases)]. The four Chinese medical syndrome types of JE met Chinese medical clinical features of encephalitis. It is induced by infestation of dampness-heat, resulting in toxicity accumulation in Fei and Wei, brain collateral impaired by poison, depression of toxicity in the pericardium. Yin fluid and blood is exhausted as time goes by. Qi and yin are impaired to form intermingled deficiency and excess, and finally causing exhaustion of yin and yang.
NASA Astrophysics Data System (ADS)
Zhou, Yuncheng; Jiang, Peng; Kuang, Jianlei; Yang, Xueshan; Cao, Wenbin
2018-07-01
The YIn1-xMnxO3 (0.1 ≤x ≤ 0.5) blue pigment samples are successfully prepared through a sol-gel process followed by microwave assisted sintering process. All the samples are shown single phases in the X-ray diffraction results. In the morphology study from scanning electronic microscope, the samples are composed of loosely connected small particles. The oxidation state of Mn is confirmed to be 3 + from the results of X-ray photonelectronic scan. The optical properties are characterized by UV-Visible spectrum and UV-visible-NIR spectrum. The samples exhibit intense blue color and they show small absorption in infrared region.
Convenient, sensitive and high-throughput method for screening botanic origin.
Yuan, Yuan; Jiang, Chao; Liu, Libing; Yu, Shulin; Cui, Zhanhu; Chen, Min; Lin, Shufang; Wang, Shu; Huang, Luqi
2014-06-23
In this work, a rapid (within 4-5 h), sensitive and visible new method for assessing botanic origin is developed by combining loop-mediated isothermal amplification with cationic conjugated polymers. The two Chinese medicinal materials (Jin-Yin-Hua and Shan-Yin-Hua) with similar morphology and chemical composition were clearly distinguished by gene SNP genotyping assays. The identification of plant species in Patented Chinese drugs containing Lonicera buds is successfully performed using this detection system. The method is also robust enough to be used in high-throughput screening. This new method is very helpful to identify herbal materials, and is beneficial for detecting safety and quality of botanic products.
Belak, Zachery R; Ovsenek, Nicholas; Eskiw, Christopher H
2018-05-23
Yin-Yang 1 (YY1) is a highly conserved transcription factor possessing RNA-binding activity. A putative YY1 homologue was previously identified in the developmental model organism Strongylocentrotus purpuratus (the purple sea urchin) by genomic sequencing. We identified a high degree of sequence similarity with YY1 homologues of vertebrate origin which shared 100% protein sequence identity over the DNA- and RNA-binding zinc-finger region with high similarity in the N-terminal transcriptional activation domain. SpYY1 demonstrated identical DNA- and RNA-binding characteristics between Xenopus laevis and S. purpuratus indicating that it maintains similar functional and biochemical properties across widely divergent deuterostome species. SpYY1 binds to the consensus YY1 DNA element, and also to U-rich RNA sequences. Although we detected SpYY1 RNA-binding activity in ova lysates and observed cytoplasmic localization, SpYY1 was not associated with maternal mRNA in ova. SpYY1 expressed in Xenopus oocytes was excluded from the nucleus and associated with maternally expressed cytoplasmic mRNA molecules. These data demonstrate the existence of an YY1 homologue in S. purpuratus with similar structural and biochemical features to those of the well-studied vertebrate YY1; however, the data reveal major differences in the biological role of YY1 in the regulation of maternally expressed mRNA in the two species.
In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells
Pérez-Palacios, Raquel; Macías-Redondo, Sofía; Climent, María; Contreras-Moreira, Bruno; Muniesa, Pedro; Schoorlemmer, Jon
2016-01-01
Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as opposed to YY1, suggesting that YY2 exerts unique contributions to gene regulation. YY2 binding was not generally associated with gene promoters. However, several YY2 binding sites are linked to long noncoding RNA (lncRNA) genes and we show that the expression levels of a few of those are Yy2-dependent. PMID:27191592
van Wietmarschen, Herman A; van der Greef, Jan; Schroën, Yan; Wang, Mei
2013-12-12
Rehmannia Six Formula (R6, Chinese name is Liu Wei Di Huang Wan) is one of the most important classic Chinese medicine formula used to treat metabolic disorders related to aging. It was first reported in the Chinese medicine book titled 'Xiao Er Yao Zheng Zhi Jue by Qian Yi' (Chinese Song dynasty: 1035-1117). In modern times it is therefore often used to treat diabetes, pre-diabetes, fatigue and people with metabolic syndrome. The aim of this study is to measure changes in symptoms, clinical parameters and serum metabolite profiles during R6 treatment of human subjects with features of metabolic syndrome. Symptoms, clinical parameters and serum metabolites were measured before and after 4 and 8 weeks of R6 treatment. Nonlinear Principal Component Analysis was applied for the first time to conduct an integrated analysis of the three data sets. Correlation structures were compared before treatment and after 4 and 8 weeks of treatment. Additionally, a State Space Grid approach was used to study personalized changes in symptom profiles. The symptoms 'hectic fever' and 'spontaneous sweating' were found to be most relieved during R6 treatment. Most of the symptoms were less correlated with other variables after 8 weeks of R6 treatment. LDL-C, total cholesterol, systolic blood pressure and waist size were found to decrease during R6 treatment. Additionally, 10 of the 15 measured phosphatidylcholines were found to decrease. Personalized symptom profiles as described by Chinese medical terms show that most Yin deficiencies are addressed first by R6 treatment. However, in subjects with reduced or less Yin deficiency but which do have a substantial Qi deficiency a reduction of Qi deficiency is subsequently observed. R6 treatment was shown to improve the lipid profile indicating a reduction of cardiovascular risk. Additionally, the changes observed in correlation structure indicate a different angle of looking at treatment effects. Less strong correlations between symptoms and metabolites suggest a healthier situation after R6 treatment. A State Space Grid analysis showed that the effect of R6 was different for the Yin deficiency subjects and the Qi deficiency subjects. The observed decrease of Yin deficiency related symptoms is in agreement with the use of R6 in Chinese medicine to nourish Yin. Observing individual differences in treatment effects is therefore an essential step in the development of personalized medicine. © 2013 Elsevier Ireland Ltd. All rights reserved.
Bardoxolone: augmenting the Yin in chronic kidney disease.
Thomas, Merlin C
2011-10-01
Nrf-2 (NF-E2-related factor 2) is a regulator of anti-oxidant, anti-inflammatory and detoxification pathways. Coordinated augmentation of these key defence pathways via Nrf-2 signalling is being investigated for the treatment of chronic diseases, including diabetes and its complications. The first to reach commercial development is the triterpenoid, bardoxolone methyl. In recent clinical trial, bardoxolone rapidly improved kidney function on average by 5-10 ml/min within 4 weeks of therapy. Importantly, this improvement was sustained during one year of active treatment. This suggests that rather that overworking a failing system, bardoxolone appeared to safely augment renal function, at least to one year. If similar improvements in kidney function can be reproduced in the upcoming BEACON trial, it will represent a major advance on conventional therapy and new way to bring balance to the failing kidney.
Zhao, Hong; Li, Wen-Wei; Gao, Jun-Peng
2007-09-01
To observe the curative effect of the recipe for nourishing Gan-Shen on Parkinson's disease (PD) of Gan-Shen yin deficiency type. One hundred and twenty-one PD patients were ran-domly assigned by blocking design to the control group and the treated group in the ratio of 1:1. All were treated according to the international medication guiding principle for PD treatment, but the treated group was ad-ministered with the recipe for nourishing Gan-Shen additionally. The treatment course lasted for 12 consecutive months, and the end point was the end of the 12th month. The unified Parkinson's disease rating scale (UP-DRS) score, TCM primary and secondary symptom scores were evaluated before treatment, every 3 months of treatment and at the end point. The average daily levodopa dose and the Hoehn & Yahr grading were assessed before treatment and at the end point. After treatment, UPDRS score in both groups showed an ascending trend at a slower rate in the treated groups than in the control group. At the 9th and 12th month of medication, a significant difference was found in UPDRS score between the two groups (P < 0.05), and the TCM symptom score was obviously lower in the treated group than in the control group (P < 0.05). At the end point of the trial, the average daily levodopa dose used was lower in the treated group than in the control group (P < 0.05) and there was no significant difference in the Hoehn & Yahr score between the two groups (P > 0.05). The recipe for norishing Gan-Shen can slow the ascending trend of UPDRS score in the PD patients, improve the symptoms of Gan-Shen yin deficiency, and decrease the daily levodopa dose used, showing a curative effect on PD of Gan-Shen yin deficiency type.
Yan, Bei; A, Ji-Ye; Hao, Hai-Ping; Wang, Guang-Ji; Liu, Lin-Sheng; Zha, Wei-Bin; Zhang, Ying; Gu, Sheng-Hua
2011-08-01
In order to explore the scientific connotation of "Fangzhengduiying (formula corresponding to pattern types)", "Qiyinliangxuzheng (Qi and Yin deficiency pattern)" of myocardial ischemia rat model and GC-TOF/MS based metabonomic method were used for comparing the effects of Sheng-mai injection, Salvia injection and propranolol in the present study. After data processing and pattern recognition, Sheng-mai injection showed better efficacy than the other two drugs in accordance with not only visual observation from PLS-DA scores plots but also the number of abnormal endogenous compounds restored to the normal level. Further studies showed that Sheng-mai injection could normalize the level of plasma endothelin-1, the index related to cardiovascular diseases and sleep disorders, which verified the results of metabonomics. Finally, the regulated metabolites and related metabolic pathways were analyzed, and it was supposed that the effects of Sheng-mai injection involved in the alternation of energy metabolism, lipid metabolism, amino acids metabolism, and so on. These findings provided scientific evidence to Shengmai "Fang" used for "Qi and Yin deficiency pattern" correspondingly, indicating that metabonomics has great potential in traditional Chinese medical research, which provides a novel approach and way to modernization of traditional Chinese medicine.
Peripheral vascular dysfunction in migraine: a review
2013-01-01
Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826
Han, Shu-Hui; Li, Kang-Zeng; Zheng, Jian-Ming; Zheng, Zhi-Xiong; Lin, Miao-Chun; Xu, Ming-Yuan; Yue, Zeng-Chang
2013-02-01
To investigate the distribution features of Chinese medical constitutions in hypertension complicated diabetes patients. Recruited were 251 primary hypertension inpatients at the Department of Neurology and the Department of Cardiology, Mindong Hospital of Ningde City from October 2010 to March 2011. They were assigned to two groups according to whether they were complicated with diabetes, i.e., the primary hypertension complicated diabetes (as the case group, 78 cases) and the primary hypertension without complicated diabetes (as the control group, 173 cases). The constitution types were investigated by questionnaire. The constitution type distribution was compared between the two groups. The data including gender, age, and the distribution of the constitution type were compared between the two groups. The levels of TG, TC, LDL-C, Hb, FPG, and ALB were detected on the 2nd day after admission. The levels of TG, TC, LDL-C, Hb, and ALB were compared be- tween the two groups in patients of yin deficiency constitution, phlegm dampness constitution, and qi deficiency constitution. There was no statistical difference in the hypertension grading, the disease course, and chronic disease complications between the two groups (P > 0.05). The main constitution types were yin deficiency (accounting for 26.0%), phlegm dampness (accounting for 19.1%), and qi deficiency (accounting for 19.1%) in the control group. The main constitution types were yin deficiency (accounting for 32.1%), phlegm dampness (accounting for 30.8%), and qi deficiency (accounting for 17.9%) in the case group. The ratio of phlegm dampness type in the case group was higher than that in the control group with statistical difference (P = 0.041). There was no statistical difference in the constitution distribution in the same gender between the two groups (P > 0.05). There was no statistical difference in the constitution distribution in those younger than 80 years between the two groups (P > 0.05). Compared with those older than 80 years in the control group, the ratio of phlegm dampness was higher, and the ratios of yang deficiency, yin deficiency, qi deficiency, and dampness heat were lower in the case group with statistical difference (P = 0.020). There was no statistical difference in the constitution distribution among different age stages in the case group (P > 0. 05). But there was statistical difference in the constitution distribution among different age stages in the control group (P < 0.05). The yin deficiency and qi deficiency constitutions were dominated in thinner patients of the control group, while yin deficiency constitution was dominated in thinner patients of the case group, showing no statistical difference between the two groups (P > 0.05). There was no statistical difference in the distribution of constitution type in overweight patients between the two groups (P = 0.458). Compared with those of gentle type constitution in the same group, the levels of TC and LDL-C increased in those of phlegm dampness constitution in the two groups (P < 0.05). The level of TC increased in those of qi deficiency constitution in the case group. The level of Hb decreased in those of qi deficiency constitution in the control group (P < 0.05). Compared with those of qi deficiency constitution in the same group, the levels of TC and Hb obviously increased in those of phlegm dampness constitution in the control group (P < 0.05). The level of ALB increased in those of yin deficiency constitution in the case group (P < 0. 05). Compared with the control group, the level of FPG of those of each constitution increased in the case group (P < 0.05) ,.and the level of TC increased in those of qi deficiency constitution (P = 0.007). The main constitution types of hypertension complicated diabetes patients were yin deficiency, phlegm dampness, and qi deficiency. The ratio of phlegm dampness was higher in hypertension complicated diabetes patients than hypertension without complicated diabetes patients. The levels of TC and LDL-C were higher in those of phlegm dampness constitution type. The level of TC was higher in hypertension complicated diabetes patients of qi deficiency constitution.
Fu, Chen; Zhang, Nevin Lianwen; Chen, Bao-Xin; Chen, Zhou Rong; Jin, Xiang Lan; Guo, Rong-Juan; Chen, Zhi-Gang; Zhang, Yun-Ling
2017-05-01
To treat patients with vascular mild cognitive impairment (VMCI) using traditional Chinese medicine (TCM), it is necessary to classify the patients into TCM syndrome types and to apply different treatments to different types. In this paper, we investigate how to properly carry out the classification for patients with VMCI aged 50 or above using a novel data-driven method known as latent tree analysis (LTA). A cross-sectional survey on VMCI was carried out in several regions in Northern China between February 2008 and February 2012 which resulted in a data set that involves 803 patients and 93 symptoms. LTA was performed on the data to reveal symptom co-occurrence patterns, and the patients were partitioned into clusters in multiple ways based on the patterns. The patient clusters were matched up with syndrome types, and population statistics of the clusters are used to quantify the syndrome types and to establish classification rules. Eight syndrome types are identified: Qi deficiency, Qi stagnation, Blood deficiency, Blood stasis, Phlegm-dampness, Fire-heat, Yang deficiency, and Yin deficiency. The prevalence and symptom occurrence characteristics of each syndrome type are determined. Quantitative classification rules are established for determining whether a patient belongs to each of the syndrome types. A solution for the TCM syndrome classification problem for patients with VMCI and aged 50 or above is established based on the LTA of unlabeled symptom survey data. The results can be used as a reference in clinic practice to improve the quality of syndrome differentiation and to reduce diagnosis variances across physicians. They can also be used for patient selection in research projects aimed at finding biomarkers for the syndrome types and in randomized control trials aimed at determining the efficacy of TCM treatments of VMCI.
On spectral synthesis on zero-dimensional Abelian groups
NASA Astrophysics Data System (ADS)
Platonov, S. S.
2013-09-01
Let G be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let C(G) be the space of all complex-valued continuous functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is said to be an invariant subspace if it is invariant with respect to the translations \\tau_y\\colon f(x)\\mapsto f(x+y), y\\in G. In the paper, it is proved that any invariant subspace \\mathscr H admits spectral synthesis, that is, \\mathscr H coincides with the closed linear span of the characters of G belonging to \\mathscr H. Bibliography: 25 titles.
Cabrera-Baez, M; Iwamoto, W; Magnavita, E T; Osorio-Guillén, J M; Ribeiro, R A; Avila, M A; Rettori, C
2014-04-30
Interest in the electronic structure of the intermetallic compound YIn3 has been renewed with the recent discovery of superconductivity at T ∼ 1 K, which may be filamentary in nature. In this work we perform electron spin resonance (ESR) experiments on Gd(3+) doped YIn3 (Y1-xGdxIn3; 0.001 ⪅ x ⩽̸ 0.08), showing that the spin-lattice relaxation of the Gd(3+) ions, due to the exchange interaction between the Gd(3+) localized magnetic moment and the conduction electrons (ce), is processed via the presence of s-, p- and d-type ce at the YIn3 Fermi level. These findings are revealed by the Gd(3+) concentration dependence of the Korringa-like relaxation rate d(ΔH)/dT and g-shift (Δg = g - 1.993), that display bottleneck relaxation behavior for the s-electrons and unbottleneck behavior for the p- and d-electrons. The Korringa-like relaxation rates vary from 22(2) Oe/K for x ⪅ 0.001 to 8(2) Oe/K for x = 0.08 and the g-shift values change, respectively, from a positive Δg = +0.047(10) to a negative Δg = -0.008(4). Analysis in terms of a three-band ce model allows the extraction of the corresponding exchange interaction parameters Jfs, Jfp and Jfd.
Zhang, Yin; Liu, Yue; Li, Yannan; Zhao, Xia; Zhuo, Lin; Zhou, Ajian; Zhang, Li; Su, Zeqi; Chen, Cen; Du, Shiyu; Liu, Daming; Ding, Xia
2018-03-22
Chronic atrophic gastritis (CAG) is the precancerous stage of gastric carcinoma. Traditional Chinese Medicine (TCM) has been widely used in treating CAG. This study aimed to reveal core pathogenesis of CAG by validating the TCM syndrome patterns and provide evidence for optimization of treatment strategies. This is a cross-sectional study conducted in 4 hospitals in China. Hierarchical clustering analysis (HCA) and complex system entropy clustering analysis (CSECA) were performed, respectively, to achieve syndrome pattern validation. Based on HCA, 15 common factors were assigned to 6 syndrome patterns: liver depression and spleen deficiency and blood stasis in the stomach collateral, internal harassment of phlegm-heat and blood stasis in the stomach collateral, phlegm-turbidity internal obstruction, spleen yang deficiency, internal harassment of phlegm-heat and spleen deficiency, and spleen qi deficiency. By CSECA, 22 common factors were assigned to 7 syndrome patterns: qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency. Combination of qi deficiency, qi stagnation, blood stasis, phlegm turbidity, heat, yang deficiency, and yin deficiency may play a crucial role in CAG pathogenesis. In accord with this, treatment strategies by TCM herbal prescriptions should be targeted to regulating qi, activating blood, resolving turbidity, clearing heat, removing toxin, nourishing yin, and warming yang. Further explorations are needed to verify and expand the current conclusions.
Jin, Rui; Zhang, Bing; Liu, Xiao-Qing; Liu, Sen-Mao; Liu, Xin; Li, Lian-Zhen; Zhang, Qian; Xue, Chun-Miao
2011-07-01
The properties of Chinese materia medica are believed to be the summarization of the effects of biological performance on the various body states. Systemic discussion of chemical-factor elements, body-condition elements, biological-performance elements and their interrelationships is needed for research into the properties of Chinese materia medica. Following the practical characteristics of Chinese medicine, the three-element mathematical model was formed by introducing some mathematical concepts and methods and was used to study the cold or hot property of Chinese medicine, and to investigate the difference in biological performances of the two properties. By using the concept of different functionality of Chinese medicine on abnormal states and the idea of interaction in mathematics, the effects of chemical-factor elements and body-condition elements were normalized to the amount of biological performance which was represented by some important indicators. The three-element mathematical model was formed with scatter plots through four steps, including effect separation, intensity calculation, frequency statistics and relevance analysis. A comparison pharmacology experiment of administration of hot property medicines, Fuzi (Radix Aconiti Lateralis Preparata) and Rougui (Cortex Cinnamomi), and cold property medicines, Huangbai (Cortex Phellodendri) and Zhizi (Fructus Gardeniae) on normal and glucocorticoid-induced yang-deficiency and yin-deficiency states was designed. The results were analyzed by the mathematical model. The scatter plots were the main output of model analysis. The expression of cold property and hot property was able to be quantified by frequency distribution of biological indexes of administrations on yang-deficiency and yin-deficiency states in the "efficacy zone" and "toxicity zone" of the plots and by the relevance analysis. The ratios of biological indicator frequency in the "efficacy zone" of administrations on yang-deficiency state and yin-deficiency state were 7:3 for Fuzi, 3:3 for Rougui, 4:4 for Huangbai and 1:5 for Zhizi. The sums of the biological indicator frequency in the "toxicity zone" of administration on the two states were 4 for Fuzi, 0 for Rougui, 2 for Huangbai and 4 for Zhizi. The relevance analysis showed that the order from Fuzi, Rougui, Huangbai to Zhizi was proportional to the change from "be true of yang-deficiency state" to "be true of yin-deficiency state". The extent of the hot property decreased while that of the cold property increased in the order of Fuzi, Rougui, Huangbai and Zhizi. The stronger the efficacy of above medicines is, the more obvious the toxicity displayed. The three-element mathematical model employed in this study is effectively capable of explaining the different biological expressions between hot property medicines and cold property medicines. This suggests that it may provide a mathematical tool and theoretical basis for the modern interpretation of cold property and hot property of Chinese medicine, and provide new ideas for further studing into the essence of Chinese medicine property theory.
Lian, Fang; Wu, Hai-cui; Sun, Zhen-gao; Guo, Ying; Shi, Lei; Xue, Ming-yue
2014-07-01
To observe the effects of Liuwei Dihuang Granule ([symbols; see text], LDG) for tonifying Kidney (Shen) on the outcomes of in vitro fertilization pre-embryo transfer (IVF-ET) of infertility women with Kidney-yin deficiency syndrome and to explore its mechanism by detecting the proteome expression in the follicular fluid. Sixty-six infertility patients of Kidney-yin deficiency syndrome who would undergo IVF-ET, were randomly assigned to a treatment group and a control group according to a random number table, 33 cases in each group. Another 33 cases of non-Kidney-yin deficiency syndrome was taken as a syndrome-control group. Besides Western routine therapy, LDG was given 3 menstrual cycles before IVF to the treatment group, and a placebo granule to the control and syndrome-control groups. The scores of Kidney-yin deficiency symptoms (sore waist and knees, dry vagina, dysphoria with feverish sensation in the chest, palms and soles, etc.) were assessed, the number of retrieved oocytes, rates of high quality oocytes and embryos, fertility rate and clinical pregnancy rate were recorded, and the follicular fluid was collected on the day when the ovum was picked up, the differential protein expression was detected using two-dimensional gel electrophoresis, and then, matrix assisted laser desorption ionization time-of flight mass spectrometry (MALDI-TOF-MS) was applied to identify the proteins. The syndrome score in the treatment group decreased significantly from 16.09±2.58 to 8.67±2.13, while it changed insignificantly in the control group, with a significant difference in the lowering score between the two groups (P<0.05); the high quality rates of oocytes and embryos and clinical pregnancy rate were all superior in the treatment group to the control group (82.29% vs 78.08%, 76.76% vs 68.79%, 63.64% vs 36.36%, all P<0.05). The protein expression map from the follicular fluid showed that compared with the control group, 33 differential protein expressions were found in the syndrome-control group, among which 18 were down-regulated, and 15 up-regulated; in the treatment group 28 differential protein expressions were found, among which 15 were down-regulated, and 13 up-regulated. Through MALDI-TOF-MS, 14 proteins were identified (P<0.05). For the infertility patients undergoing IVF, LDG could alleviate clinical symptoms, improve rates of high quality oocytes and embryos, so as to raise clinical pregnancy rate. The mechanism may be through regulating proteome expression in the follicular fluid to improve the developmental microenvironment for oocytes which would lead to a successful embryo implantation.
Virtue Existential Career Model: A Dialectic and Integrative Approach Echoing Eastern Philosophy
Liu, Shu-Hui; Hung, Jui-Ping; Peng, Hsin-I; Chang, Chia-Hui; Lu, Yi-Jen
2016-01-01
Our Virtue Existential Career (VEC) model aims at complementing western modernism and postmodernism career theories with eastern philosophy. With dialectical philosophy and virtue-practice derived from the Classic of Changes, the VEC theoretical foundation incorporates merits from Holland typology, Minnesota Theory of Work Adjustment, Social Cognitive Career Theory, Meaning Therapy, Narrative Approach Career Counseling, and Happenstance Learning Theory. While modernism considers a matched job as an ideal career vision and prefers rational strategies (controlling and realizing) to achieve job security; postmodernism prefers appreciating and adapting strategies toward openness and appreciates multiple possible selves and occupations, our model pursues a blending of security and openness via controlling-and-realizing and appreciating-and-adapting interwoven with each other in a dialectical and harmonious way. Our VEC counseling prototype aims at a secular goal of living on the earth with ways and harmony (安身以法以和) and an ultimate end to spiral up to the wisdom of living up to the way of heaven (天道) with mind and virtue (立命以心以德). A VEC counseling process of five major career strategies, metaphorical stories of qian and kun, and experiential activities are developed to deliver VEC concepts. The VEC model and prototype presented in this research is the product of an action research following Lewin's (1946) top-to-down model. Situated structure analyses were conducted to further investigate the adequacy of this version of VEC model and prototype. Data from two groups (one for stranded college graduates and the other for growing college students) revealed empirical supports. Yang type of career praxes tends to induce actualization, which resulting in realistic goals and concrete action plans; yin type of career praxes tends to increase self-efficacy, which resulting in positive attitude toward current situatedness and future development. Acceptance and dialectic thinking often result from yin-yang-blending career praxes. Growing developers benefit from a strategy sequence of yang-yin-synthesized; stranded developers from a strategy sequence of yin-yang-synthesized. Our contributions and limitations are discussed in the context of developing indigenous career theories and practices for a globalized and ever-changing world. PMID:27895604
Virtue Existential Career Model: A Dialectic and Integrative Approach Echoing Eastern Philosophy.
Liu, Shu-Hui; Hung, Jui-Ping; Peng, Hsin-I; Chang, Chia-Hui; Lu, Yi-Jen
2016-01-01
Our Virtue Existential Career (VEC) model aims at complementing western modernism and postmodernism career theories with eastern philosophy. With dialectical philosophy and virtue-practice derived from the Classic of Changes , the VEC theoretical foundation incorporates merits from Holland typology, Minnesota Theory of Work Adjustment, Social Cognitive Career Theory, Meaning Therapy, Narrative Approach Career Counseling, and Happenstance Learning Theory. While modernism considers a matched job as an ideal career vision and prefers rational strategies ( controlling and realizing ) to achieve job security; postmodernism prefers appreciating and adapting strategies toward openness and appreciates multiple possible selves and occupations, our model pursues a blending of security and openness via controlling-and-realizing and appreciating-and-adapting interwoven with each other in a dialectical and harmonious way. Our VEC counseling prototype aims at a secular goal of living on the earth with ways and harmony () and an ultimate end to spiral up to the wisdom of living up to the way of heaven () with mind and virtue (). A VEC counseling process of five major career strategies, metaphorical stories of qian and kun , and experiential activities are developed to deliver VEC concepts. The VEC model and prototype presented in this research is the product of an action research following Lewin's (1946) top-to-down model. Situated structure analyses were conducted to further investigate the adequacy of this version of VEC model and prototype. Data from two groups (one for stranded college graduates and the other for growing college students) revealed empirical supports. Y ang type of career praxes tends to induce actualization, which resulting in realistic goals and concrete action plans; yin type of career praxes tends to increase self-efficacy, which resulting in positive attitude toward current situatedness and future development. Acceptance and dialectic thinking often result from yin -y ang- blending career praxes. Growing developers benefit from a strategy sequence of yang-yin -synthesized; stranded developers from a strategy sequence of yin-yang -synthesized. Our contributions and limitations are discussed in the context of developing indigenous career theories and practices for a globalized and ever-changing world.
Han, Gajin; Park, Jae-Woo; Ko, Seok-Jae; Son, Jihee; Seon, Jongki; Kim, Juyeon; Kim, Seulki; Yeo, Inkwon; Ryu, Bongha; Kim, Jinsung
2013-09-03
Xerostomia, a subjective sense of dry mouth, is not generally regarded a disease despite its high prevalence among the elderly, and therefore continues to impair affected patients' quality of life. In traditional Korean medicine, 'Yin-Deficiency' has been implicated in the pathogenesis of xerostomia among the elderly. Yukmijihwang-tang is a famous herbal prescription used to relieve 'Yin-Deficiency', and reportedly has antioxidant effects; therefore, it is postulated that Yukmijihwang-tang can be used to treat xerostomia in the elderly. However, to our knowledge, no clinical trial has been conducted on the effects of Yukmijihwang-tang on xerostomia. Thus, we designed a randomized clinical trial to investigate the effects and safety of Yukmijihwang-tang on xerostomia in the elderly. In addition, we will clarify the aforementioned assumption that 'Yin-Deficiency' is the major cause of xerostomia in the elderly by identifying a correlation between xerostomia and 'Yin-Deficiency'. This randomized, double-blind, placebo-controlled trial will be carried out at two centers: Kyung Hee University Korean Medicine Hospital and Kyung Hee University Hospital at Gangdong. We will recruit 96 subjects aged 60-80 years who have experienced xerostomia for 3 months prior to participation. Subjects who present with score >40 on the visual analogue scale for xerostomia and unstimulated salivary flow rate under 0.3mL/min will be included and the randomization will be carried out by an independent statistician by using a random number creation program. The subjects and all researchers except the statistician will be blinded to the group assignment. Yukmijihwang-tang or placebo will be administered to each group for 8 weeks. The primary outcome is change in the scores for the visual analogue scale for xerostomia and the dry mouth symptom questionnaire from 0 to 8 weeks. It will be assessed whether Yukmijihwang-tang can be used as a new herbal treatment for xerostomia in the elderly by demonstrating its therapeutic effects in a well-designed clinical trial. ClinicalTrials.gov Identifier: NCT01579877.
2013-01-01
Background Xerostomia, a subjective sense of dry mouth, is not generally regarded a disease despite its high prevalence among the elderly, and therefore continues to impair affected patients’ quality of life. In traditional Korean medicine, ‘Yin-Deficiency’ has been implicated in the pathogenesis of xerostomia among the elderly. Yukmijihwang-tang is a famous herbal prescription used to relieve ‘Yin-Deficiency’, and reportedly has antioxidant effects; therefore, it is postulated that Yukmijihwang-tang can be used to treat xerostomia in the elderly. However, to our knowledge, no clinical trial has been conducted on the effects of Yukmijihwang-tang on xerostomia. Thus, we designed a randomized clinical trial to investigate the effects and safety of Yukmijihwang-tang on xerostomia in the elderly. In addition, we will clarify the aforementioned assumption that ‘Yin-Deficiency’ is the major cause of xerostomia in the elderly by identifying a correlation between xerostomia and ‘Yin-Deficiency’. Methods/Design This randomized, double-blind, placebo-controlled trial will be carried out at two centers: Kyung Hee University Korean Medicine Hospital and Kyung Hee University Hospital at Gangdong. We will recruit 96 subjects aged 60-80 years who have experienced xerostomia for 3 months prior to participation. Subjects who present with score >40 on the visual analogue scale for xerostomia and unstimulated salivary flow rate under 0.3mL/min will be included and the randomization will be carried out by an independent statistician by using a random number creation program. The subjects and all researchers except the statistician will be blinded to the group assignment. Yukmijihwang-tang or placebo will be administered to each group for 8 weeks. The primary outcome is change in the scores for the visual analogue scale for xerostomia and the dry mouth symptom questionnaire from 0 to 8 weeks. Discussion It will be assessed whether Yukmijihwang-tang can be used as a new herbal treatment for xerostomia in the elderly by demonstrating its therapeutic effects in a well-designed clinical trial. Trial registration ClinicalTrials.gov Identifier: NCT01579877 PMID:24004451
An ancient Chinese wisdom for metabolic engineering: Yin-Yang
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen G.; He, Lian; Wang, Qingzhao
In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell “powerhouse” prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysismore » model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create “minimal cells” or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering« less
An ancient Chinese wisdom for metabolic engineering: Yin-Yang
Wu, Stephen G.; He, Lian; Wang, Qingzhao; ...
2015-03-20
In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are interconnected and interdependent. This concept also holds true in microbial cell factories, where Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to redirect carbon fluxes. On the other hand, microbial metabolism loses significant free energy as heat when converting sugar into ATP; while maintenance energy expenditures further aggravate ATP shortage. The limitation of cell “powerhouse” prevents hosts from achieving high carbon yields and rates. Via an Escherichia coli flux balance analysismore » model, we further demonstrate the penalty of ATP cost on biofuel synthesis. To ensure cell powerhouse being sufficient in microbial cell factories, we propose five principles: 1. Take advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on pathways or genetic parts without significant ATP burden. 3. Combine microbial production with chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create “minimal cells” or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis can be used to quantify both carbon and energy metabolisms. The fluxomics results are essential to evaluate the industrial potential of laboratory strains, avoiding false starts and dead ends during metabolic engineering« less
Patterns of linkage disequilibrium and haplotype distribution in disease candidate genes.
Long, Ji-Rong; Zhao, Lan-Juan; Liu, Peng-Yuan; Lu, Yan; Dvornyk, Volodymyr; Shen, Hui; Liu, Yong-Jun; Zhang, Yuan-Yuan; Xiong, Dong-Hai; Xiao, Peng; Deng, Hong-Wen
2004-05-24
The adequacy of association studies for complex diseases depends critically on the existence of linkage disequilibrium (LD) between functional alleles and surrounding SNP markers. We examined the patterns of LD and haplotype distribution in eight candidate genes for osteoporosis and/or obesity using 31 SNPs in 1,873 subjects. These eight genes are apolipoprotein E (APOE), type I collagen alpha1 (COL1A1), estrogen receptor-alpha (ER-alpha), leptin receptor (LEPR), parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1), transforming growth factor-beta1 (TGF-beta1), uncoupling protein 3 (UCP3), and vitamin D (1,25-dihydroxyvitamin D3) receptor (VDR). Yin yang haplotypes, two high-frequency haplotypes composed of completely mismatching SNP alleles, were examined. To quantify LD patterns, two common measures of LD, D' and r2, were calculated for the SNPs within the genes. The haplotype distribution varied in the different genes. Yin yang haplotypes were observed only in PTHR1 and UCP3. D' ranged from 0.020 to 1.000 with the average of 0.475, whereas the average r2 was 0.158 (ranging from 0.000 to 0.883). A decay of LD was observed as the intermarker distance increased, however, there was a great difference in LD characteristics of different genes or even in different regions within gene. The differences in haplotype distributions and LD patterns among the genes underscore the importance of characterizing genomic regions of interest prior to association studies.
[Vascular aging, arterial hypertension and physical activity].
Schmidt-Trucksäss, A; Weisser, B
2011-11-01
The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.
Li, Jun; Lorger, Simon; Stalick, Judith K; Sleight, Arthur W; Subramanian, M A
2016-10-03
We recently reported that an allowed d-d transition of trigonal bipyramidal (TBP) Mn 3+ is responsible for the bright blue color in the YIn 1-x Mn x O 3 solid solution. The crystal field splitting between a'(d z 2 ) and e'(d x 2 -y 2 , d xy ) energy levels is very sensitive to the apical Mn-O distance. We therefore applied chemical pressure to compress the apical Mn-O distance in YIn 1-x Mn x O 3 , move the allowed d-d transition to higher energy, and thereby tune the color from blue to violet/purple. This was accomplished by substituting smaller cations such as Ti 4+ /Zn 2+ and Al 3+ onto the TBP In/Mn site, which yielded novel violet/purple phases. The general formula is YIn 1-x-2y-z Mn x Ti y Zn y Al z O 3 (x = 0.005-0.2, y = 0.1-0.4, and z ≤ 0.1), where the color darkens with the increasing amount of Mn. Higher y or small additions of Al provide a more reddish hue to the resulting purple colors. Substituting other rare earth cations for Y has little impact on color. Crystal structure analysis by neutron powder diffraction confirms a shorter apical Mn-O distance compared with that in the blue YIn 1-x Mn x O 3 . Magnetic susceptibility measurements verify the 3+ oxidation state for Mn. Diffuse reflection spectra were obtained over the wavelength region 200-2500 nm. All samples show excellent near-infrared reflectance comparable to that of commercial TiO 2 , making them ideal for cool pigment applications such as energy efficient roofs of buildings and cars where reducing solar heat to save energy is desired. In a comparison with commercial purple pigments, such as Co 3 (PO 4 ) 2 , our pigments are much more thermally stable and chemically inert, and are neither toxic nor carcinogenic.
Effects of addition of Ta and Y ions to InZnO thin film transistors by sol-gel process.
Son, Dae-Ho; Kim, Dae-Hwan; Kim, Jung-Hye; Park, Si-Nae; Sung, Shi-Joon; Kang, Jin-Kyu
2013-06-01
We have investigated the effects of the addition of tantalum (Ta) and yttrium (Y) ions to InZnO thin film transistors (TFTs) using the sol-gel process. TaInZnO and YInZnO TFTs had significantly lower off current and higher on-to-off current ratio than InZnO TFTs. Ta and Y ions have strong affinity to oxygen and so suppress the formation of free electron carriers in thin films; they play an important role in enhancing the electrical characteristic due to their high oxygen bonding ability. The optimized TaInZnO and YInZnO TFTs showed high on/off ratio and low subthreshold swing.
The vascular endothelium in diabetes--a therapeutic target?
Mather, Kieren J
2013-03-01
Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.
Huang, Chaolian; Wang, Mingming; Kong, Xiaolin; Liu, Guannan
2018-01-01
Objective To explore the characters of traditional Chinese medicine (TCM) syndromes after percutaneous coronary intervention (PCI) and to provide syndrome study theoretical evidence for TCM differentiation treatment after PCI through retrospective study. Methods Patients with coronary heart disease (CHD) who underwent PCI in Cardiovascular Intervention Center of Wangjing Hospital during Dec. 2012 to Dec. 2014 and met the inclusion criteria were enrolled. Retrospective study was then conducted based on patients' clinical document and angiography data to explore the distribution pattern of TCM syndromes. Results 801 patients were recruited in the study. TCM syndromes in descending order of their incidence were Qi deficiency and blood stasis syndrome, heart blood stasis syndrome, Qi and Yin deficiency syndrome, phlegm and blood stasis syndrome, Qi stagnation and blood stasis syndrome, Yang asthenia syndrome, heart and kidney yin deficiency syndrome to cold congeal, and blood stasis syndrome in a more to less order. Qi deficiency and blood stasis syndrome was in the most (occurring in 298 patients, 37.20%); Qi and Yin deficiency syndrome occurred in 163 patients (20.35%); heart blood stasis syndrome was shown in 126 patients (15.73%); phlegm and blood stasis syndrome was shown in 95 patients (11.86%). Conclusion Qi deficiency and blood stasis syndrome was closely associated with post-PCI bleeding, implying that this syndrome might serve as a powerful predictor of GI bleeding as well as a potential supplement to the current predicting and scoring system of bleeding such as CRUSADE.
Zhang, Quan-Bao; Meng, Xiang-Ting; Jia, Qing-An; Bu, Yang; Ren, Zheng-Gang; Zhang, Bo-Heng; Tang, Zhao-You
2016-09-01
Objective Both the Chinese herbal compound Songyou Yin (SYY) and swimming exercise have been shown to have protective effects against liver cancer in animal models. In this study, we investigated whether SYY and moderate swimming (MS) have enhanced effect on suppressing progression of liver cancer by immunomodulation. Methods C57BL/6 mice were transplanted with Hepa1-6 murine liver cancer cell lines and received treatment with SYY alone or SYY combined with MS. The green fluorescent protein (GFP)-positive metastatic foci in lungs were imaged with a stereoscopic fluorescence microscope. Flow cytometry was used to test the proportion of CD4 +, CD8 + T cells in peripheral blood and the proportions of CD4 + CD25 + Foxp3 + Treg cells in peripheral blood, spleen, and tumor tissues. Cytokine transforming growth factor (TGF)-β1 level in serum was detected by ELISA. Results SYY plus MS significantly suppressed the growth and lung metastasis of liver cancer and prolonged survival in tumor-burdened mice. SYY plus MS markedly raised the CD4 to CD8 ratio in peripheral blood and lowered the serum TGF-β1 level and the proportions of Treg cells in peripheral blood, spleen, and tumor tissue. The effects of the combined intervention were significantly superior to SYY or MS alone. Conclusion The combined application of SYY and MS exerted an enhanced effect on suppressing growth and metastasis of liver cancer by strengthening immunity. © The Author(s) 2015.
The "yin and yang" of the adrenal and gonadal systems in elite military men.
Taylor, Marcus K; Hernández, Lisa M; Kviatkovsky, Shiloah A; Schoenherr, Matthew R; Stone, Michael S; Sargent, Paul
2017-05-01
We recently established daily, free-living profiles of the adrenal hormone cortisol, the (primarily adrenal) anabolic precursor dehydroepiandrosterone (DHEA) and the (primarily gonadal) anabolic hormone testosterone in elite military men. A prevailing view is that adrenal and gonadal systems reciprocally modulate each other; however, recent paradigm shifts prompted the characterization of these systems as parallel, cooperative processes (i.e. the "positive coupling" hypothesis). In this study, we tested the positive coupling hypothesis in 57 elite military men by evaluating associations between adrenal and gonadal biomarkers across the day. Salivary DHEA was moderately and positively coupled with salivary cortisol, as was salivary testosterone. Anabolic processes (i.e. salivary DHEA and testosterone) were also positively and reliably coupled across the day. In multivariate models, salivary DHEA and cortisol combined to account for substantial variance in salivary testosterone concentrations across the day, but this was driven almost exclusively by DHEA. This may reflect choreographed adrenal release of DHEA with testicular and/or adrenal release of testosterone, systemic conversion of DHEA to testosterone, or both. DHEA and testosterone modestly and less robustly predicted cortisol concentrations; this was confined to the morning, and testosterone was the primary predictor. Altogether, top-down co-activation of adrenal and gonadal hormone secretion may complement bottom-up counter-regulatory functions to foster anabolic balance and neuronal survival; hence, the "yin and yang" of adrenal and gonadal systems. This may be an adaptive process that is amplified by stress, competition, and/or dominance hierarchy.
Han, KA; Patel, Y; Lteif, AA; Chisholm, R; Mather, KJ
2011-01-01
Background Individual effects of hyperglycemia and obesity to impair vascular health are recognized. However, the relative contributions of dysglycemia versus other obesity-related traits to vascular dysfunction have not been systematically evaluated. Methods We undertook a cross-sectional evaluation of factors contributing to vascular function in 271 consecutive subjects, categorized as non-obese normal glucose tolerant (n=115), non-obese dysglycemic (n=32), obese normal glucose tolerant (n=57), obese dysglycemic (n=38), or type 2 diabetic (n=29). Vascular function was measured invasively as leg blood flow responses to methacholine chloride, an endothelium-dependent vasodilator. Categorical and continuous analyses were used to assess the contributions of hyperglycemia to vascular dysfunction. Results Even among normoglycemic subjects, obese subjects had impaired vascular function compared to non-obese subjects (p=0.004). Vascular function was also impaired in non-obese dysglycemic subjects (p=0.04 versus non-obese normoglycemic subjects), to a level comparable to normoglycemic obese subjects. Within obese subject groups, gradations of dysglycemia including the presence of diabetes were not associated with further worsening of these vascular responses beyond the effect of obesity alone (p=NS comparing all obese groups, p<0.001 versus lean normoglycemic subjects). In univariate and multivariable modeling analyses we found that effects of glycemia were less powerful than effects of insulin resistance and obesity on vascular dysfunction. Conclusions Dysglycemia contributes to impaired vascular function in non-obese subjects, but obesity and insulin resistance are more important determinants of vascular function in obese and diabetic subjects. PMID:21309061
Shinno, Hiromi; Kurose, Satoshi; Yamanaka, Yutaka; Higurashi, Kyoko; Fukushima, Yaeko; Tsutsumi, Hiromi; Kimura, Yutaka
2017-06-01
Maintenance and enhancement of vascular endothelial function contribute to the prevention of cardiovascular disease and prolong a healthy life expectancy. Given the reversible nature of vascular endothelial function, interventions to improve this function might prevent arteriosclerosis. Accordingly, we studied the effects of a 6-month static stretching intervention on vascular endothelial function (reactive hyperaemia peripheral arterial tonometry index: RH-PAT index) and arterial stiffness (brachial-ankle pulse wave velocity: baPWV) and investigated the reversibility of these effects after a 6-month detraining period following intervention completion. The study evaluated 22 healthy, non-smoking, premenopausal women aged ≥40 years. Subjects were randomly assigned to the full-intervention (n = 11; mean age: 48.6 ± 2.8 years) or a half-intervention that included a control period (n = 11; mean age: 46.9 ± 3.6 years). Body flexibility and vascular endothelial function improved significantly after 3 months of static stretching. In addition to these improvements, arterial stiffness improved significantly after a 6-month intervention. However, after a 6-month detraining period, vascular endothelial function, flexibility, and arterial stiffness all returned to preintervention conditions, demonstrating the reversibility of the obtained effects. A 3-month static stretching intervention was found to improve vascular endothelial function, and an additional 3-month intervention also improved arterial stiffness. However, these effects were reversed by detraining.
RECOVERY OF VASCULAR FUNCTION AFTER EXPOSURE TO A SINGLE BOUT OF SEGMENTAL VIBRATION
Krajnak, Kristine; Waugh, Stacey; Miller, G. Roger; Johnson, Claud
2015-01-01
Work rotation schedules may be used to reduce the negative effects of vibration on vascular function. This study determined how long it takes vascular function to recover after a single exposure to vibration in rats (125 Hz, acceleration 5g). The responsiveness of rat-tail arteries to the vasoconstricting factor UK14304, an α2C-adrenoreceptor agonist, and the vasodilating factor acetylcholine (ACh) were measured ex vivo 1, 2, 7, or 9 d after exposure to a single bout of vibration. Vasoconstriction induced by UK14304 returned to control levels after 1 d of recovery. However, re-dilation induced by ACh did not return to baseline until after 9 d of recovery. Exposure to vibration exerted prolonged effects on peripheral vascular function, and altered vascular responses to a subsequent exposure. To optimize the positive results of work rotation schedules, it is suggested that studies assessing recovery of vascular function after exposure to a single bout of vibration be performed in humans. PMID:25072825
Liu, Xiao-Mei; Bao; Zhaorigetu; Zhuang, Xin-Ying; Que, Ling; Tian, Chang-Jiang
2013-10-01
Clinical traditional Chinese pharmacology is the subject that study of basic theory of traditional Chinese medicine, property of Chinese materia medica and clinical application. The study on the standardization research of the terminology of clinical traditional Chinese pharmacology is an important premise and foundation to standardization, modernization and internationalization, informationization construction of clinical traditional Chinese pharmacology and is also the important content of the subject construction. To provide some exploring ideas for clinical traditional Chinese pharmacology noun terminology standardization, this article elaborates the concept of strengthening Yin with bitter-flavor herbs in several aspects, such as connotation and the historical origin, the clinical application in the traditional, modern clinic application, and the modern basic research and so on.
Yang, Yong; Yan, Zhikun; Fu, Xiaoqing; Dong, Liwen; Xu, Linhai; Wang, Jun; Cheng, Genmiao
2014-11-01
To analyze the efficacy of different surgical methods in treating palmar hyperhidrosis and the compensatory hyperhidrosis after surgery and to observe the efficacy of "Energy-boosting and Yin-nourishing anti-perspirant formula" on postsurgical hyperhidrosis patients. Two-hundred patients were randomly assigned to groups A (Chinese and Western medicine, T4 transection plus "Energy-boosting and Yin-nourishing anti-perspirant formula") and B (Western medicine, T4 transection). The surgical efficiency, recurrence rate, compensatory hyperhidrosis, and the long-term life quality were compared. Another 100 cases (group C, T2 transection) were analyzed as a control group. After surgery, the palmar hyperhidrosis and armpit sweating were relieved in all the three group patients and in 34 % of patients combined with plantar hyperhidrosis, the symptoms were relieved. Transient palmar hyperhidrosis was found in three cases at day 2 to day 5 postoperatively. One case of Horner's syndrome and one case recurrence were found in group C patients. The compensatory sweating of various degrees occurred in all the three groups. There were 25, 24, and 43 cases in groups A, B, and C, respectively. There is a significant difference between groups C, A, and B. The compensatory sweating in 13 cases of group A and four cases of group B had different degrees of improvement in the follow-up 6 months after surgery. There is a significant difference. Thoracoscopic bilateral T4 sympathetic chain and the Kuntz resection are the optimized surgical treatments for the palmar hyperhidrosis. "Energy-boosting and Yin-nourishing anti-perspirant formula" is effective in treating the postoperative compensatory sweating.
A multifaceted approach to maximize erectile function and vascular health.
Meldrum, David R; Gambone, Joseph C; Morris, Marge A; Ignarro, Louis J
2010-12-01
To review the role of various factors influencing vascular nitric oxide (NO) and cyclic GMP, and consequently, erectile function and vascular health. Pertinent publications are reviewed. Daily moderate exercise stimulates vascular NO production. Maintenance of normal body weight and waist/hip ratio allows NO stimulation by insulin. Decreased intake of fat, sugar, and simple carbohydrates rapidly converted to sugar reduces the adverse effects of fatty acids and sugar on endothelial NO production. Omega-3 fatty acids stimulate endothelial NO release. Antioxidants boost NO production and prevent NO breakdown. Folic acid, calcium, vitamin C, and vitamin E support the biochemical pathways leading to NO release. Cessation of smoking and avoidance of excessive alcohol preserve normal endothelial function. Moderate use of alcohol and certain proprietary supplements may favorably influence erectile and vascular function. Treatment of any remaining testosterone deficit will both increase erectile function and reduce any associated metabolic syndrome. After production of NO and cyclic GMP are improved, use of phosphodiesterase-5 inhibitors should result in greater success in treating remaining erectile dysfunction. Recent studies have also suggested positive effects of phosphodiesterase-5 inhibitors on vascular function. A multifaceted approach will maximize both erectile function and vascular health. Copyright © 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Wong, Yee Chi Peggy
2016-07-01
From a perspective of Chinese medicine (CM), persons with unregulated "unhealthy" body constitution (BC) will further develop chronic diseases, such as diabetes mellitus (DM). Conventional dietary therapy with nutrition component has its limitations in the regulation of "unhealthy" BC. However, empirical evidence supports that "unhealthy" BC can be regulated with food natures and flavors from a perspective of CM. Presentations of "unhealthy" BC types, such as Yin-deficiency, Yang-deficiency and Yin-Yang-deficiency were found in persons with DM. It would be necessary to regulate the "unhealthy" BC presentations with integration of conventional dietary therapy and Chinese food therapy. The ultimate goal is to either stabilize glycaemic control or prevent the development of other chronic diseases leading to reduction of disease burden, such as disease-related poor quality of life, stress of healthcare professionals and the rising of healthcare cost.
Dark Energy and Gravity: Yin and Yang of the Universe Artist Concept
2011-05-19
New results from NASA Galaxy Evolution Explorer and the Anglo-Australian Telescope atop Siding Spring Mountain in Australia confirm that dark energy is a smooth, uniform force that now dominates over the effects of gravity.
A parametric method for determining the number of signals in narrow-band direction finding
NASA Astrophysics Data System (ADS)
Wu, Qiang; Fuhrmann, Daniel R.
1991-08-01
A novel and more accurate method to determine the number of signals in the multisource direction finding problem is developed. The information-theoretic criteria of Yin and Krishnaiah (1988) are applied to a set of quantities which are evaluated from the log-likelihood function. Based on proven asymptotic properties of the maximum likelihood estimation, these quantities have the properties required by the criteria. Since the information-theoretic criteria use these quantities instead of the eigenvalues of the estimated correlation matrix, this approach possesses the advantage of not requiring a subjective threshold, and also provides higher performance than when eigenvalues are used. Simulation results are presented and compared to those obtained from the nonparametric method given by Wax and Kailath (1985).
Montoya, Jessica L.; Iudicello, Jennifer; Fazeli, Pariya L.; Hong, Suzi; Potter, Michael; Ellis, Ronald J.; Grant, Igor; Letendre, Scott L.; Moore, David J.
2016-01-01
Background HIV is associated with elevated markers of vascular remodeling that may contribute to arterial fibrosis and stiffening, and changes in pulse pressure (PP). These changes may, in turn, deleteriously affect autoregulation of cerebral blood flow and neurocognitive function. Methods To evaluate these mechanisms, we studied markers of vascular remodeling, PP, and neurocognitive function among older (≥50 years of age) HIV-infected (HIV+; n = 72) and HIV-seronegative (HIV-; n = 36) adults. Participants completed standardized neurobehavioral and neuromedical assessments. Neurocognitive functioning was evaluated using a well-validated comprehensive battery. Three plasma biomarkers of vascular remodeling (i.e., angiopoietin 2, Tie-2, and vascular endothelial growth factor; VEGF) were collected. Results HIV+ and HIV- participants had similar levels of plasma Ang-2 (p = .48), Tie-2 (p = .27), VEGF (p = .18), and PP (p = .98). In a multivariable regression model, HIV interacted with Tie-2 (β = .41, p < .01) and VEGF (β = −.43, p = .01) on neurocognitive function, such that lower Tie-2 and higher VEGF values were associated with worse neurocognitive function for HIV+ participants. Greater Tie-2 values were associated with increased PP (r = .31, p < .01). In turn, PP demonstrated a quadratic association with neurocognitive function (β = −.33, p = .01), such that lower and higher, relative to mean sample, PP values were associated with worse neurocognitive function. Conclusions These findings indicate that vascular remodeling and altered cerebral blood flow autoregulation contribute to neurocognitive function. Furthermore, HIV moderates the association between vascular remodeling and neurocognitive function but not the association between PP and neurocognitive function. PMID:27828873
Sudo, Felipe Kenji; Amado, Patricia; Alves, Gilberto Sousa; Laks, Jerson; Engelhardt, Eliasz
2017-01-01
Subcortical Vascular Cognitive Impairment (SVCI) is a clinical continuum of vascular-related cognitive impairment, including Vascular Mild Cognitive Impairment (VaMCI) and Vascular Dementia. Deficits in Executive Function (EF) are hallmarks of the disorder, but the best methods to assess this function have yet to be determined. The insidious and almost predictable course of SVCI and the multidimensional concept of EF suggest that a temporal dissociation of impairments in EF domains exists early in the disorder. This study aims to review and analyze data from the literature about performance of VaMCI patients on the most used EF tests through a meta-analytic approach. Medline, Web of Knowledge and PsycINFO were searched, using the terms: "vascular mild cognitive impairment" OR "vascular cognitive impairment no dementia" OR "vascular mild neurocognitive disorder" AND "dysexecutive" OR "executive function". Meta-analyses were conducted for each of the selected tests, using random-effect models. Systematic review showed major discrepancies among the results of the studies included. Meta-analyses evidenced poorer performance on the Trail-Making Test part B and the Stroop color test by VaMCI patients compared to controls. A continuum of EF impairments has been proposed in SVCI. Early deficits appear to occur in cognitive flexibility and inhibitory control.
He, De-Hua; Lin, Jin-Xiu; Zhang, Liang-Min; Xu, Chang-Sheng; Xie, Qiang
2017-03-15
Pharmacological treatment of prehypertension may ameliorate hypertension and improve vascular structure and function. This study investigated 1) whether early treatment with either losartan or amlodipine at the onset of prehypertension can prevent hypertension and 2) whether losartan and amlodipine equally improve vascular remodeling and function in a rat model of hypertension. Stroke-prone spontaneously hypertensive (SHRSP) rats were administered losartan, amlodipine or saline for 6 or 16weeks at the onset of prehypertension. Wistar-Kyoto rats were used as a control. All groups were observed for 40weeks. Systolic blood pressure was measured using the tail-cuff method. Vascular structure and function were determined by microscopy and vascular ring contractility assays, respectively. Angiotensin II (Ang II) and aldosterone (Aldo) were measured by radioimmunoassays. Angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) expression was measured by western blot. Losartan effectively reduced progression from prehypertension to hypertension as well as vascular remodeling and improved vascular contractility in SHRSP rats. Long-term losartan (16weeks) had greater benefits than short-term (6weeks) treatment. Losartan increased Ang II and decreased Aldo levels in the serum and vessel walls of resistance vessels in a time-dependent manner. Losartan significantly decreased AT1R and increased AT2R vascular expression. Amlodipine had no effect on vascular AT1R and AT2R expression. Losartan administered at the onset of prehypertension is more effective than amlodipine in ameliorating hypertension and improving vascular remodeling and function, which is likely mediated by the renin-angiotensin-aldosterone system. Copyright © 2017 Elsevier Inc. All rights reserved.
Surface Piercing Propeller Performance
2005-09-01
solid body ( hydrodynamic cavitation ) or by high-intensity sound waves (acoustic cavitation). A Research study done by Yin Lu Young at UT studied and...discusses the effect of hydrodynamic cavitation , which occurs when pressure drops below the saturated vapor pressure, consequently resulting in the
... 15 horny goat weed species are known as “yin yang huo” in Chinese medicine. Horny goat weed is used for weak back and knees, joint pain, osteoarthritis, mental and physical fatigue, memory loss, high blood pressure, heart disease, bronchitis, liver disease, HIV/AIDS, polio, a ...
Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology.
Augustin, Hellmut G; Koh, Gou Young
2017-08-25
Blood vessels form one of the body's largest surfaces, serving as a critical interface between the circulation and the different organ environments. They thereby exert gatekeeper functions on tissue homeostasis and adaptation to pathologic challenge. Vascular control of the tissue microenvironment is indispensable in development, hemostasis, inflammation, and metabolism, as well as in cancer and metastasis. This multitude of vascular functions is mediated by organ-specifically differentiated endothelial cells (ECs), whose cellular and molecular heterogeneity has long been recognized. Yet distinct organotypic functional attributes and the molecular mechanisms controlling EC differentiation and vascular bed-specific functions have only become known in recent years. Considering the involvement of vascular dysfunction in numerous chronic and life-threatening diseases, a better molecular understanding of organotypic vasculatures may pave the way toward novel angiotargeted treatments to cure hitherto intractable diseases. This Review summarizes recent progress in the understanding of organotypic vascular differentiation and function. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Creating Perfused Functional Vascular Channels Using 3D Bio-Printing Technology
Lee, Vivian K.; Kim, Diana Y.; Ngo, Haygan; Lee, Young; Seo, Lan; Yoo, Seung-Schik; Vincent, Peter A.; Dai, Guohao
2014-01-01
We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis were reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition. PMID:24965886
ABJ theory in the higher spin limit
NASA Astrophysics Data System (ADS)
Hirano, Shinji; Honda, Masazumi; Okuyama, Kazumi; Shigemori, Masaki
2016-08-01
We study the conjecture made by Chang, Minwalla, Sharma, and Yin on the duality between the {N}=6 Vasiliev higher spin theory on AdS4 and the {N}=6 Chern-Simons-matter theory, so-called ABJ theory, with gauge group U( N) × U( N + M). Building on our earlier results on the ABJ partition function, we develop the systematic 1 /M expansion, corresponding to the weak coupling expansion in the higher spin theory, and compare the leading 1 /M correction, with our proposed prescription, to the one-loop free energy of the {N}=6 Vasiliev theory. We find an agreement between the two sides up to an ambiguity that appears in the bulk one-loop calculation.
Aerobic exercise and other healthy lifestyle factors that influence vascular aging.
Santos-Parker, Jessica R; LaRocca, Thomas J; Seals, Douglas R
2014-12-01
Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote "resistance" against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. Copyright © 2014 The American Physiological Society.
Aerobic exercise and other healthy lifestyle factors that influence vascular aging
Santos-Parker, Jessica R.; LaRocca, Thomas J.
2014-01-01
Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote “resistance” against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. PMID:25434012
Intricacies in arrangement of SNP haplotypes suggest "Great Admixture" that created modern humans.
Dutta, Rajib; Mainsah, Joseph; Yatskiv, Yuriy; Chakrabortty, Sharmistha; Brennan, Patrick; Khuder, Basil; Qiu, Shuhao; Fedorova, Larisa; Fedorov, Alexei
2017-06-05
Inferring history from genomic sequences is challenging and problematic because chromosomes are mosaics of thousands of small Identicalby-descent (IBD) fragments, each of them having their own unique story. However, the main events in recent evolution might be deciphered from comparative analysis of numerous loci. A paradox of why humans, whose effective population size is only 10 4 , have nearly three million frequent SNPs is formulated and examined. We studied 5398 loci evenly covering all human autosomes. Common haplotypes built from frequent SNPs that are present in people from various populations have been examined. We demonstrated highly non-random arrangement of alleles in common haplotypes. Abundance of mutually exclusive pairs of common haplotypes that have different alleles at every polymorphic position (so-called Yin/Yang haplotypes) was found in 56% of loci. A novel widely spread category of common haplotypes named Mosaic has been described. Mosaic consists of numerous pieces of Yin/Yang haplotypes and represents an ancestral stage of one of them. Scenarios of possible appearance of large number of frequent human SNPs and their habitual arrangement in Yin/Yang common haplotypes have been evaluated with an advanced genomic simulation algorithm. Computer modeling demonstrated that the observed arrangement of 2.9 million frequent SNPs could not originate from a sole stand-alone population. A "Great Admixture" event has been proposed that can explain peculiarities with frequent SNP distributions. This Great Admixture presumably occurred 100-300 thousand years ago between two ancestral populations that had been separated from each other about a million years ago. Our programs and algorithms can be applied to other species to perform evolutionary and comparative genomics.
Kakizaki, Fumihiko; Sonoshita, Masahiro; Miyoshi, Hiroyuki; Itatani, Yoshiro; Ito, Shinji; Kawada, Kenji; Sakai, Yoshiharu; Taketo, M Mark
2016-11-01
We recently found that the product of the AES gene functions as a metastasis suppressor of colorectal cancer (CRC) in both humans and mice. Expression of amino-terminal enhancer of split (AES) protein is significantly decreased in liver metastatic lesions compared with primary colon tumors. To investigate its downregulation mechanism in metastases, we searched for transcriptional regulators of AES in human CRC and found that its expression is reduced mainly by transcriptional dysregulation and, in some cases, by additional haploidization of its coding gene. The AES promoter-enhancer is in a typical CpG island, and contains a Yin-Yang transcription factor recognition sequence (YY element). In human epithelial cells of normal colon and primary tumors, transcription factor YY2, a member of the YY family, binds directly to the YY element, and stimulates expression of AES. In a transplantation mouse model of liver metastases, however, expression of Yy2 (and therefore of Aes) is downregulated. In human CRC metastases to the liver, the levels of AES protein are correlated with those of YY2. In addition, we noticed copy-number reduction for the AES coding gene in chromosome 19p13.3 in 12% (5/42) of human CRC cell lines. We excluded other mechanisms such as point or indel mutations in the coding or regulatory regions of the AES gene, CpG methylation in the AES promoter enhancer, expression of microRNAs, and chromatin histone modifications. These results indicate that Aes may belong to a novel family of metastasis suppressors with a CpG-island promoter enhancer, and it is regulated transcriptionally. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Quantitative Reasoning in Problem Solving
ERIC Educational Resources Information Center
Ramful, Ajay; Ho, Siew Yin
2015-01-01
In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.
Zeng, Ling-na; Ma, Zhi-jie; Zhao, Yan-ling; Zhang, Lin-dong; Li, Rui-sheng; Wang, Jia-bo; Zhang, Ping; Yan, Dan; Li, Qi; Jiang, Bing-qian; Pu, Shi-biao; Lü, Yang; Xiao, Xiao-he
2013-02-15
Chromium nephrotoxicity (CrNT) is thought to occur through the oxidant lesion mechanism. There is still a lack of specific remedies against CrNT. We primarily screened Chinese herbal medicines with a potential protective effect against CrNT, e.g., rhubarb (Rheum palmatum L.). However, the active constituents in rhubarb and its mechanisms remain unclear. In this study, the total rhubarb extract (TR) was successively separated into three parts: total anthraquinone extract (TA), total tannin extract (TT) and remaining component extract (RC). The effects of each extract on the potassium dichromate (K(2)Cr(2)O(7))-induced nephrotoxicity in rats were comparatively assessed. The results showed that only the administration of TT protected the kidney function in K(2)Cr(2)O(7)-injured rats. Besides, TT showed significant activity to scavenge hydroxyl radicals, which is considered to be the dominant lesion product generated by hexavalent chromium. TT also showed a reduced ability to transform toxic high valence chromium ions into non-toxic low valence ions. And TT was able to further precipitate chromium ions. These results suggested that rhubarb tannins treat CrNT as a free radical scavenger, reductant, and metal precipitant. The multiple protective routes of the plant tannins reveal a superior option for development into a promising natural remedy against CrNT. In addition, the opposite effects of rhubarb anthraquinones in treating CrNT were observed compared to rhubarb tannins, which suggested the duo-directional effects (Yin and Yang) of herbal medicines should be addressed. Copyright © 2012 Elsevier B.V. All rights reserved.
Detecting Disease in Radiographs with Intuitive Confidence
2015-01-01
This paper argues in favor of a specific type of confidence for use in computer-aided diagnosis and disease classification, namely, sine/cosine values of angles represented by points on the unit circle. The paper shows how this confidence is motivated by Chinese medicine and how sine/cosine values are directly related with the two forces Yin and Yang. The angle for which sine and cosine are equal (45°) represents the state of equilibrium between Yin and Yang, which is a state of nonduality that indicates neither normality nor abnormality in terms of disease classification. The paper claims that the proposed confidence is intuitive and can be readily understood by physicians. The paper underpins this thesis with theoretical results in neural signal processing, stating that a sine/cosine relationship between the actual input signal and the perceived (learned) input is key to neural learning processes. As a practical example, the paper shows how to use the proposed confidence values to highlight manifestations of tuberculosis in frontal chest X-rays. PMID:26495433
Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor
Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying
2013-01-01
Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188
Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...
Huby, Maria P.; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A.; Doursout, Marie-Francoise; Holcomb, John B.; Wade, Charles E.; Ko, Tien C.
2015-01-01
Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared to normal individuals, plasma adiponectin levels decreased to 49% in HS patients prior to resuscitation (p<0.05) and increased to 64% post resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared to baseline (p<0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS. PMID:26263440
Green tea (Camellia sinensis) catechins and vascular function.
Moore, Rosalind J; Jackson, Kim G; Minihane, Anne M
2009-12-01
The health benefits of green tea (Camellia sinensis) catechins are becoming increasingly recognised. Amongst the proposed benefits are the maintenance of endothelial function and vascular homeostasis and an associated reduction in atherogenesis and CVD risk. The mounting evidence for the influential effect of green tea catechins on vascular function from epidemiological, human intervention and animal studies is subject to review together with exploration of the potential mechanistic pathways involved. Epigallocatechin-3-gallate, one of the most abundant and widely studied catechin found in green tea, will be prominent in the present review. Since there is a substantial inconsistency in the published data with regards to the impact of green tea catechins on vascular function, evaluation and interpretation of the inter- and intra-study variability is included. In conclusion, a positive effect of green tea catechins on vascular function is becoming apparent. Further studies in animal and cell models using physiological concentrations of catechins and their metabolites are warranted in order to gain some insight into the physiology and molecular basis of the observed beneficial effects.
Review of gestational diabetes mellitus effects on vascular structure and function.
Jensen, Louise A; Chik, Constance L; Ryan, Edmond A
2016-05-01
Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.
Yu, Guohua; Zhang, Yanqiong; Ren, Weiqiong; Dong, Ling; Li, Junfang; Geng, Ya; Zhang, Yi; Li, Defeng; Xu, Haiyu; Yang, Hongjun
2017-01-01
For decades in China, the Yin-Huang-Qing-Fei capsule (YHQFC) has been widely used in the treatment of chronic bronchitis, with good curative effects. Owing to the complexity of traditional Chinese herbal formulas, the pharmacological mechanism of YHQFC remains unclear. To address this problem, a network pharmacology-based strategy was proposed in this study. At first, the putative target profile of YHQFC was predicted using MedChem Studio, based on structural and functional similarities of all available YHQFC components to the known drugs obtained from the DrugBank database. Then, an interaction network was constructed using links between putative YHQFC targets and known therapeutic targets of chronic bronchitis. Following the calculation of four topological features (degree, betweenness, closeness, and coreness) of each node in the network, 475 major putative targets of YHQFC and their topological importance were identified. In addition, a pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes pathway database indicated that the major putative targets of YHQFC are significantly associated with various pathways involved in anti-inflammation processes, immune responses, and pathological changes caused by asthma. More interestingly, eight major putative targets of YHQFC (interleukin [IL]-3, IL-4, IL-5, IL-10, IL-13, FCER1G, CCL11, and EPX) were demonstrated to be associated with the inflammatory process that occurs during the progression of asthma. Finally, a molecular docking simulation was performed and the results exhibited that 17 pairs of chemical components and candidate YHQFC targets involved in asthma pathway had strong binding efficiencies. In conclusion, this network pharmacology-based investigation revealed that YHQFC may attenuate the inflammatory reaction of chronic bronchitis by regulating its candidate targets, which may be implicated in the major pathological processes of the asthma pathway.
Yin and Yang of ginseng pharmacology: ginsenosides vs gintonin
Im, Dong-soon; Nah, Seung-yeol
2013-01-01
Ginseng, the root of Panax ginseng, has been used in traditional Chinese medicine as a tonic herb that provides many beneficial effects. Pharmacologic studies in the last decades have shown that ginsenosides (ginseng saponins) are primarily responsible for the actions of ginseng. However, the effects of ginseng are not fully explained by ginsenosides. Recently, another class of active ingredients called gintonin was identified. Gintonin is a complex of glycosylated ginseng proteins containing lysophosphatidic acids (LPAs) that are the intracellular lipid mitogenic mediator. Gintonin specifically and potently activates the G protein-coupled receptors (GPCRs) for LPA. Thus, the actions of ginseng are now also linked to LPA and its GPCRs. This linkage opens new dimensions for ginseng pharmacology and LPA therapeutics. In the present review, we evaluate the pharmacology of ginseng with the traditional viewpoint of Yin and Yang components. Furthermore, we will compare ginsenoside and gintonin based on the modern view of molecular pharmacology in terms of ion channels and GPCRs. PMID:24122014
Ramos, Joyce S; Dalleck, Lance C; Tjonna, Arnt Erik; Beetham, Kassia S; Coombes, Jeff S
2015-05-01
Vascular dysfunction is a precursor to the atherosclerotic cascade, significantly increasing susceptibility to cardiovascular events such as myocardial infarction or stroke. Previous studies have revealed a strong relationship between vascular function and cardiorespiratory fitness (CRF). Thus, since high-intensity interval training (HIIT) is a potent method of improving CRF, several small randomized trials have investigated the impact on vascular function of HIIT relative to moderate-intensity continuous training (MICT). The aim of this study was to systematically review the evidence and quantify the impact on vascular function of HIIT compared with MICT. Three electronic databases (PubMed, Embase, and MEDLINE) were searched (until May 2014) for randomized trials comparing the effect of at least 2 weeks of HIIT and MICT on vascular function. HIIT protocols involved predominantly aerobic exercise at a high intensity, interspersed with active or passive recovery periods. We performed a meta-analysis to compare the mean difference in the change in vascular function assessed via brachial artery flow-mediated dilation (FMD) from baseline to post-intervention between HIIT and MICT. The impact of HIIT versus MICT on CRF, traditional cardiovascular disease (CVD) risk factors, and biomarkers associated with vascular function (oxidative stress, inflammation, and insulin resistance) was also reviewed across included studies. Seven randomized trials, including 182 patients, met the eligibility criteria and were included in the meta-analysis. A commonly used HIIT prescription was four intervals of 4 min (4 × 4 HIIT) at 85-95% of maximum or peak heart rate (HRmax/peak), interspersed with 3 min of active recovery at 60-70% HRmax/peak, three times per week for 12-16 weeks. Brachial artery FMD improved by 4.31 and 2.15% following HIIT and MICT, respectively. This resulted in a significant (p < 0.05) mean difference of 2.26%. HIIT also had a greater tendency than MICT to induce positive effects on secondary outcome measures, including CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity. HIIT is more effective at improving brachial artery vascular function than MICT, perhaps due to its tendency to positively influence CRF, traditional CVD risk factors, oxidative stress, inflammation, and insulin sensitivity. However, the variability in the secondary outcome measures, coupled with the small sample sizes in these studies, limits this finding. Nonetheless, this review suggests that 4 × 4 HIIT, three times per week for at least 12 weeks, is a powerful form of exercise to enhance vascular function.
Tonal Flip-Flop in Chinese Dialects.
ERIC Educational Resources Information Center
Yue-Hashimoto, Anne O.
1986-01-01
Tonal "flip-flop" (reversal of pitch value in which a direct exchange of value between two items is necessarily involved) can be found in a significant number of modern Chinese dialects, where an opposite pitch pattern is observed for the traditional Yin/Yang dichotomy of tones. (Author/CB)
Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W
2017-01-01
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.
Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W.
2017-01-01
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects. PMID:28575130
Acute effect of mineralocorticoid receptor antagonism on vascular function in healthy older adults.
Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H; English, Mark; Talcott, Susanne; Jaffe, Iris Z; Christou, Demetra D
2016-01-01
Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 years; mean±SE, 53-79 years) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4 mg) following eplerenone (100 mg/dose, 2 doses, 24h between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6%, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOS(Ser1177) to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5%, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77±4/2 mmHg, P≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure. Copyright © 2015 Elsevier Inc. All rights reserved.
Age and Vascular Burden Determinants of Cortical Hemodynamics Underlying Verbal Fluency.
Heinzel, Sebastian; Metzger, Florian G; Ehlis, Ann-Christine; Korell, Robert; Alboji, Ahmed; Haeussinger, Florian B; Wurster, Isabel; Brockmann, Kathrin; Suenkel, Ulrike; Eschweiler, Gerhard W; Maetzler, Walter; Berg, Daniela; Fallgatter, Andreas J
2015-01-01
Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer's disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands. Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated. Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics. Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline and dementia.
Boddi, M; Poggesi, L; Coppo, M; Zarone, N; Sacchi, S; Tania, C; Neri Serneri, G G
1998-03-01
A growing body of evidence supports the existence of a tissue-based renin-angiotensin system (RAS) in the vasculature, but the functional capacity of vascular RAS was not investigated in humans. In 28 normotensive healthy control subjects, the metabolism of angiotensins through vascular tissue was investigated in normal, low, and high sodium diets by the measurement of arterial-venous gradient of endogenous angiotensin (Ang) I and Ang II in two different vascular beds (forearm and leg), combined with the study of 125I-Ang I and 125I-Ang II kinetics. In normal sodium diet subjects, forearm vascular tissue extracted 36+/-6% of 125I-Ang I and 30+/-5% of 125I-Ang II and added 14.9+/-5.1 fmol x 100 mL(-1) x min(-1) of de novo formed Ang I and 6.2+/-2.8 fmol x 100 mL(-1) x min(-1) of Ang II to antecubital venous blood. Fractional conversion of 125I-Ang I through forearm vascular tissue was about 12%. Low sodium diet increased (P<.01) plasma renin activity, whereas de novo Ang I and Ang II formation by forearm vascular tissue became undetectable. Angiotensin degradation (33+/-7% for Ang I and 30+/-7% for Ang II) was unchanged, and vascular fractional conversion of 125I-Ang I decreased from 12% to 6% (P<.01). In high sodium diet subjects, plasma renin activity decreased, and de novo Ang I and Ang II formation by forearm vascular tissue increased to 22 and 14 fmol x 100 mL(-1) x min(-1), respectively (P<.01). Angiotensin degradation did not significantly change, whereas fractional conversion of 125I-Ang I increased from 12% to 20% (P<.01). Leg vascular tissue functional activities of RAS paralleled those of forearm vascular tissue both at baseline and during different sodium intake. These results provide consistent evidence for the existence of a functional tissue-based RAS in vascular tissue of humans. The opposite changes of plasma renin activity and vascular angiotensin formation indicate that vascular RAS is independent from but related to circulating RAS.
The Yin and Yang of Tuning History
ERIC Educational Resources Information Center
Nováky, György
2017-01-01
History as a subject area is facing increasing demands from the society to be more profitable and, sometimes, more conformist. The Tuning methodology, developed in cooperation with a large number of Universities worldwide, could offer a viable and sustainable way to take societal needs into account without compromising academic soundness.
Acute vascular effects of waterpipe smoking: Importance of physical activity and fitness status.
Alomari, Mahmoud A; Khabour, Omar F; Alzoubi, Karem H; Shqair, Dana M; Stoner, Lee
2015-06-01
While new forms of tobacco, including waterpipe (WP) smoking, continue to gain popularity, limited literature has examined the vascular health consequences. The purpose of the current study was to examine: (i) the acute WP-induced changes in vascular function; (ii) whether acute changes in vascular function are modified by lifestyle behaviors (habitual physical activity, physical fitness). Fifty three (22.7 y, 36% F, 23.4 kg/m(2)) otherwise healthy WP smokers were recruited. Strain-gauge plethysmography was used to measure forearm blood flow, vascular resistance, venous capacitance, and venous outflow at rest and following occlusion. Habitual physical activity was determined using the Arabic version of short-form international physical activity questionnaire, while physical fitness was assessed using the 6 min walk test and handgrip strength. Partial correlations were used to examine the relationships between post-smoking vascular function and lifestyle behaviors, controlling for pre-smoking vascular measures. (i) WP had a small effect on forearm post-occlusion blood flow (d = -0.19), a moderate effect on venous outflow (d = 0.30), and a moderate effect on post-occlusion vascular resistance (d = 0.32). (ii) Total habitual physical activity strongly correlated with resting blood flow (r = 0.50) and moderately with vascular resistance (r = -0.40). Handgrip strength moderately correlated with venous capacitance (r = 0.30) and post-occlusion blood flow (r = 0.30), while 6 min walked distance moderately correlated with resting venous capacitance (r = 0.30). Waterpipe smoking is associated with immediate changes in vascular function, which are exacerbated in individuals with low habitual physical activity and physical fitness levels in young otherwise healthy individuals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The yin and yang of formative research in designing serious (exer-)games
USDA-ARS?s Scientific Manuscript database
Despite its relevance, formative research on games may be an undervalued part of the game development process. At the 2014 International Society of Behavioral Nutrition and Physical Activity exergaming preconference satellite meeting, a roundtable discussion was held to assemble experiences and sugg...
Deleterious effects of tributyltin on porcine vascular stem cells physiology.
Bernardini, Chiara; Zannoni, Augusta; Bertocchi, Martina; Bianchi, Francesca; Salaroli, Roberta; Botelho, Giuliana; Bacci, Maria Laura; Ventrella, Vittoria; Forni, Monica
2016-01-01
The vascular functional and structural integrity is essential for the maintenance of the whole organism and it has been demonstrated that different types of vascular progenitor cells resident in the vessel wall play an important role in this process. The purpose of the present research was to observe the effect of tributyltin (TBT), a risk factor for vascular disorders, on porcine Aortic Vascular Precursor Cells (pAVPCs) in term of cytotoxicity, gene expression profile, functionality and differentiation potential. We have demonstrated that pAVPCs morphology deeply changed following TBT treatment. After 48h a cytotoxic effect has been detected and Annexin binding assay demonstrated that TBT induced apoptosis. The transcriptional profile of characteristic pericyte markers has been altered: TBT 10nM substantially induced alpha-SMA, while, TBT 500nM determined a significant reduction of all pericyte markers. IL-6 protein detected in the medium of pAVPCs treated with TBT at both doses studied and with a dose response. TBT has interfered with normal pAVPC functionality preventing their ability to support a capillary-like network. In addition TBT has determined an increase of pAVPC adipogenic differentiation. In conclusion in the present paper we have demonstrated that TBT alters the vascular stem cells in terms of structure, functionality and differentiating capability, therefore effects of TBT in blood should be deeply explored to understand the potential vascular risk associated with the alteration of vascular stem cell physiology. Copyright © 2016 Elsevier Inc. All rights reserved.
Professional Formation in Hong Kong: Yin & Yang in a Free-Market Economy?
ERIC Educational Resources Information Center
Forrester, Victor
2007-01-01
The relationship between the professional formation of beginning teachers, education reforms and Hong Kong's free-market economy is explored. An overview of educational change and then beginning teachers' professional formation within the context of economic cycles provides a contextual background against which two research projects are…
Pericyte function in the physiological central nervous system.
Muramatsu, Rieko; Yamashita, Toshihide
2014-01-01
Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Vascular delay of the latissimus dorsi muscle: an essential component of cardiomyoplasty.
Carroll, S M; Carroll, C M; Stremel, R W; Heilman, S J; Tobin, G R; Barker, J H
1997-04-01
Cardiomyoplasty (CMP) uses the latissimus dorsi muscle (LDM) to assist the heart in cases of cardiac failure. Distal ischemia and necrosis of the LDM is a recognized complication of CMP that can reduce distal muscle function and the mechanical effectiveness of CMP. Canine (n = 9) LDMs were subjected to a 10-day period of vascular delay followed by a simulated CMP. Two weeks after simulated CMP (corresponding to the healing delay between CMP and the onset of LDM stimulation used in the clinical setting), LDM perfusion was measured in the distal, middle, and proximal segments of the muscle, and circumferential (distal and middle squeezing muscle function) and longitudinal (proximal pulling muscle function) force generation and fatigue rates were measured. The results were compared with the contralateral nondelayed simulated CMP. Muscle perfusion was significantly (p < 0.05) greater in the distal and middle segments of vascular-delayed LDMs. Circumferential muscle force generation and fatigue rates were significantly (p < 0.05) improved in the vascular-delayed LDMs. Vascular delay can significantly improve LDM perfusion and function in a model that closely reflects clinical CMP, and the use of vascular delay may improve clinical outcomes in CMP.
The use of microtechnology and nanotechnology in fabricating vascularized tissues.
Obregón, Raquel; Ramón-Azcón, Javier; Ahadian, Samad; Shiku, Hitoshi; Bae, Hojae; Ramalingam, Murugan; Matsue, Tomokazu
2014-01-01
Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.
Practical alternatives to chronic caloric restriction for optimizing vascular function with ageing
Seals, Douglas R.
2016-01-01
Abstract Calorie restriction (CR) in the absence of malnutrition exerts a multitude of physiological benefits with ageing in model organisms and in humans including improvements in vascular function. Despite the well‐known benefits of chronic CR, long‐term energy restriction is not likely to be a feasible healthy lifestyle strategy in humans due to poor sustained adherence, and presents additional concerns if applied to normal weight older adults. This review summarizes what is known about the effects of CR on vascular function with ageing including the underlying molecular ‘energy‐ and nutrient‐sensing’ mechanisms, and discusses the limited but encouraging evidence for alternative pharmacological and lifestyle interventions that may improve vascular function with ageing by mimicking the beneficial effects of long‐term CR. PMID:27641062
Le, Yun-Zheng
2017-10-01
Müller glia (MG) are major retinal supporting cells that participate in retinal metabolism, function, maintenance, and protection. During the pathogenesis of diabetic retinopathy (DR), a neurovascular disease and a leading cause of blindness, MG modulate vascular function and neuronal integrity by regulating the production of angiogenic and trophic factors. In this article, I will (1) briefly summarize our work on delineating the role and mechanism of MG-modulated vascular function through the production of vascular endothelial growth factor (VEGF) and on investigating VEGF signaling-mediated MG viability and neural protection in diabetic animal models, (2) explore the relationship among VEGF and neurotrophins in protecting Müller cells in in vitro models of diabetes and hypoxia and its potential implication to neuroprotection in DR and hypoxic retinal diseases, and (3) discuss the relevance of our work to the effectiveness and safety of long-term anti-VEGF therapies, a widely used strategy to combat DR, diabetic macular edema, neovascular age-related macular degeneration, retinopathy of prematurity, and other hypoxic retinal vascular disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets.
Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Bloch, Wilhelm; Eberbeck, Dietmar; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela
2016-01-26
Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS(-/-) mice ex and in vivo. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function.
Higashi, Yukihito
2017-06-01
It is well known that there is an association of lower urinary tract symptoms/benign prostatic hypertrophy with cardiovascular disease, suggesting that lower urinary tract symptoms/benign prostatic hypertrophy is a risk factor for cardiovascular events. Vascular function, including endothelial function and vascular smooth muscle function, is involved in the pathogenesis, maintenance and development of atherosclerosis, leading to cardiovascular events. Vascular dysfunction per se should also contribute to lower urinary tract symptoms/benign prostatic hypertrophy. Both lower urinary tract symptoms/benign prostatic hypertrophy and vascular dysfunction have cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus, aging, obesity and smoking. Inactivation of the phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate-nitric oxide pathway causes lower urinary tract symptoms/benign prostatic hypertrophy through an enhancement of sympathetic nervous activity, endothelial dysfunction, increase in Rho-associated kinase activity and vasoconstriction, and decrease in blood flow of pelvic viscera. Both endogenous nitric oxide and exogenous nitric oxide act as vasodilators on vascular smooth muscle cells through an increase in the content of cyclic guanosine 3',5'-monophosphate, which is inactivated by phosphodiesterase type 5. In a clinical setting, phosphodiesterase type 5 inhibitors are widely used in patients with lower urinary tract symptoms/benign prostatic hypertrophy. Phosphodiesterase type 5 inhibitors might have beneficial effects on vascular function through not only inhibition of cyclic guanosine 3',5'-monophosphate degradation, but also increases in testosterone levels and nitric oxide bioavailability, increase in the number and improvement of the function of endothelial progenitor cells, and decrease in insulin resistance. In the present review, the relationships between lower urinary tract symptoms/benign prostatic hypertrophy, the phosphodiesterase type 5-nitric oxide-cyclic guanosine 3',5'-monophosphate pathway, vascular function and cardiovascular outcomes are examined. © 2017 The Japanese Urological Association.
NASA Technical Reports Server (NTRS)
Yin, Wan-Lee
1992-01-01
The stress-function-based variational method of Yin (1991) is extended and modified into a combined layer/sublaminate approach applicable to a laminated strip composed of a large number of differently orientated, anisotropic elastic plies. Lekhnitskii's (1963) stress functions are introduced into two interior layers adjacent to a particular interface. The remaining layers are grouped into an upper sublaminate and a lower sublaminate. The stress functions are expanded in truncated power series of the thickness coordinate, and the differential equations governing the coefficient functions are derived by using the complementary virtual work principle. The layer/sublaminate approach limits the dimension of the eigenvalue problem to a fixed number irrespective of the number of layers in the sublaminate, so that reasonably accurate solutions of the interlaminar stresses can be computed with extreme ease. For symmetric, four-layer, angle-ply and cross-ply laminates, a comparison of the previous analysis results based on the pure layer model and new results based on two different layer/sublaminate models indicates reasonable over-all agreement in the interlaminar stresses and superior agreement in the total peeling and shearing force.
Dissatisfaction Theory in the 21st Century
ERIC Educational Resources Information Center
Adler, Louise
2010-01-01
This case study uses two theoretical lenses to analyze political events in a Southern California school district: dissatisfaction theory and groupthink. The case study technique of pattern matching was used to frame the analysis (Yin, 2009). Data for 1992-2008 was gathered from interviews, the Orange County Registrar of Voters, newspapers,…
The Yang and Yin of the Communications Future: Positive Technology and Negative Messages.
ERIC Educational Resources Information Center
Haskins, Jack B.
Future developments in communication technology promise to have both positive and negative effects on information sources, messages, the media, and audiences. An increased tendency toward monopolistic control, for example, might accompany improvement in information management. A significant problem already in evidence among information…
Exploring Employee Engagement from the Employee Perspective: Implications for HRD
ERIC Educational Resources Information Center
Shuck, M. Brad; Rocco, Tonette S.; Albornoz, Carlos A.
2011-01-01
Purpose: The purpose of this paper is to examine an employee's unique experience of being engaged in their work. Design/methodology/approach: Following Yin's case study design method, researchers collected documents, conducted semi-structured interviews and recorded observations at a large multinational service corporation ranked as one of the…
Blood pressure and mesenteric resistance arterial function after spaceflight
NASA Technical Reports Server (NTRS)
Hatton, Daniel C.; Yue, Qi; Chapman, Justin; Xue, Hong; Dierickx, Jacqueline; Roullet, Chantal; Coste, Sarah; Roullet, Jean Baptiste; McCarron, David A.
2002-01-01
Ground studies indicate that spaceflight may diminish vascular contraction. To examine that possibility, vascular function was measured in spontaneously hypertensive rats immediately after an 18-day shuttle flight. Isolated mesenteric resistance arterial responses to cumulative additions of norepinephrine, acetylcholine, and sodium nitroprusside were measured using wire myography within 17 h of landing. After flight, maximal contraction to norepinephrine was attenuated (P < 0.001) as was relaxation to acetylcholine (P < 0.001) and sodium nitroprusside (P < 0.05). At high concentrations, acetylcholine caused vascular contraction in vessels from flight animals but not in vessels from vivarium control animals (P < 0.05). The results are consistent with data from ground studies and indicate that spaceflight causes both endothelial-dependent and endothelial-independent alterations in vascular function. The resulting decrement in vascular function may contribute to orthostatic intolerance after spaceflight.
Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads; Slingsby, Martina H Lundberg; Åkerström, Thorbjörn; Sylow, Lykke; Richter, Erik A; Hellsten, Ylva
2017-08-15
Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day -1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2%) and to 12 W of active exercise (by 9 ± 1%), indicating impaired vascular function. A reduced flow response to passive and active exercise was paralleled by a significant up-regulation of platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho family GTPase Rac1 protein expression in the muscle tissue, as well as an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. The phosphorylation status was not acutely altered with passive leg movement. These findings indicate that a regular intake of high levels of sucrose can impair vascular mechanotransduction and increase the oxidative stress potential, and suggest that dietary excessive sugar intake may contribute to the development of vascular disease. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Knowledge Management Model: Practical Application for Competency Development
ERIC Educational Resources Information Center
Lustri, Denise; Miura, Irene; Takahashi, Sergio
2007-01-01
Purpose: This paper seeks to present a knowledge management (KM) conceptual model for competency development and a case study in a law service firm, which implemented the KM model in a competencies development program. Design/methodology/approach: The case study method was applied according to Yin (2003) concepts, focusing a six-professional group…
Critical Endothelial Regulation by LRP5 during Retinal Vascular Development.
Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H; Nagao, Masashi; Warman, Matthew L; Olsen, Bjorn R
2016-01-01
Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature.
Critical Endothelial Regulation by LRP5 during Retinal Vascular Development
Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.
2016-01-01
Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698
Yin, Zi-Wei; Steiner, Helmut
2017-10-17
A new osoriine species, Mimogonellus dreybrodti Yin & Steiner, sp. n., collected from a cave in Houaphanh Province, Laos, is described and illustrated. This represents the third Mimogonellus species in Asia, and the first in the genus known to inhabit a cave environment.
Wray, D. Walter; Amann, Markus
2016-01-01
The aging process appears to be a precursor to many age-related diseases, perhaps the most impactful of which is cardiovascular disease (CVD). Heart disease, a manifestation of CVD, is the leading cause of death in the USA, and heart failure (HF), a syndrome that develops as a consequence of heart disease, now affects almost six million American. Importantly, as this is an age-related disease, this number is likely to grow along with the ever-increasing elderly population. Hallmarks of the aging process and HF patients with a reduced ejection fraction (HFrEF) include exercise intolerance, premature fatigue, and limited oxygen delivery and utilization, perhaps as a consequence of diminished peripheral vascular function. Free radicals and oxidative stress have been implicated in this peripheral vascular dysfunction, as a redox imbalance may directly impact the function of the vascular endothelium. This review aims to bring together studies that have examined the impact of oxidative stress on peripheral vascular function and oxygen delivery and utilization with both healthy aging and HFrEF. PMID:27392715
Counterfactual quantum cryptography based on weak coherent states
NASA Astrophysics Data System (ADS)
Yin, Zhen-Qiang; Li, Hong-Wei; Yao, Yao; Zhang, Chun-Mei; Wang, Shuang; Chen, Wei; Guo, Guang-Can; Han, Zheng-Fu
2012-08-01
In the “counterfactual quantum cryptography” scheme [T.-G. Noh, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.230501 103, 230501 (2009)], two legitimate distant peers may share secret-key bits even when the information carriers do not travel in the quantum channel. The security of this protocol with an ideal single-photon source has been proved by Yin [Z.-Q. Yin, H. W. Li, W. Chen, Z. F. Han, and G. C. Guo, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.042335 82, 042335 (2010)]. In this paper, we prove the security of the counterfactual-quantum-cryptography scheme based on a commonly used weak-coherent-laser source by considering a general collective attack. The basic assumption of this proof is that the efficiency and dark-counting rate of a single-photon detector are consistent for any n-photon Fock states. Then through randomizing the phases of the encoding weak coherent states, Eve's ancilla will be transformed into a classical mixture. Finally, the lower bound of the secret-key-bit rate and a performance analysis for the practical implementation are both given.
[Self-consciousness in elderly persons with cognitive impairment and vascular dementia].
Dubinina, E A; Novikova, Yu G; Kalitskaya, A V; Finagentova, N V
2016-01-01
Self-consciousness was compared in 17 elderly (aged 65-89 years old) persons with cognitive impairment without dementia and 17 patients with vascular dementia. Neurocognitive functions and mental health complaints were evaluated. Neuropsychological assessment included evaluation of higher psychological functions, such as attention, memory, conceptualization, gnosis (optic, acoustic), manual skill, speech. Older persons with cognitive impairment assessed their neurocognitive functions adequately. Patients with vascular dementia usually denied cognitive deficit or explained it as a result of aging. Regardless of physical health, older persons with cognitive impairment have active attitude to aging. They could find ways of compensation of cognitive deficits without assistance. Patients with vascular dementia could not compensate their cognitive deficit even with support.
Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia.
Jain, Swati; Sharma, Bhupesh
2015-12-01
Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia. Copyright © 2015 Elsevier Inc. All rights reserved.
Cosmology of Universe Particles and Beyond
NASA Astrophysics Data System (ADS)
Xu, Wei
2016-06-01
For the first time in history, all properties of cosmology particles are uncovered and described concisely and systematically, known as the elementary particles in contemporary physics.Aligning with the synthesis of the virtual and physical worlds in a hierarchical taxonomy of the universe, this theory refines the topology framework of cosmology, and presents a new perspective of the Yin Yang natural laws that, through the processes of creation and reproduction, the fundamental elements generate an infinite series of circular objects and a Yin Yang duality of dynamic fields that are sequenced and transformed states of matter between the virtual and physical worlds.Once virtual objects are transformed, they embody various enclaves of energy states, known as dark energy, quarks, leptons, bosons, protons, and neutrons, characterized by their incentive oscillations of timestate variables in a duality of virtual realities: energy and time, spin and charge, mass and space, symmetry and antisymmetry.As a consequence, it derives the fully-scaled quantum properties of physical particles in accordance with numerous historical experiments, and has overcome the limitations of uncertainty principle and the Standard Model, towards concisely exploring physical nature and beyond...
Relations of mitochondrial genetic variants to measures of vascular function.
Fetterman, Jessica L; Liu, Chunyu; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M; Levy, Daniel
2018-05-01
Mitochondrial genetic variation with resultant alterations in oxidative phosphorylation may influence vascular function and contribute to cardiovascular disease susceptibility. We assessed relations of peptide-encoding variants in the mitochondrial genome with measures of vascular function in Framingham Heart Study participants. Of 258 variants assessed, 40 were predicted to have functional consequences by bioinformatics programs. A maternal pattern of heritability was estimated to contribute to the variability of aortic stiffness. A putative association with a microvascular function measure was identified that requires replication. The methods we have developed can be applied to assess the relations of mitochondrial genetic variation to other phenotypes. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Sudo, Felipe Kenji; Amado, Patricia; Alves, Gilberto Sousa; Laks, Jerson; Engelhardt, Eliasz
2017-01-01
ABSTRACT. Background. Subcortical Vascular Cognitive Impairment (SVCI) is a clinical continuum of vascular-related cognitive impairment, including Vascular Mild Cognitive Impairment (VaMCI) and Vascular Dementia. Deficits in Executive Function (EF) are hallmarks of the disorder, but the best methods to assess this function have yet to be determined. The insidious and almost predictable course of SVCI and the multidimensional concept of EF suggest that a temporal dissociation of impairments in EF domains exists early in the disorder. Objective: This study aims to review and analyze data from the literature about performance of VaMCI patients on the most used EF tests through a meta-analytic approach. Methods: Medline, Web of Knowledge and PsycINFO were searched, using the terms: “vascular mild cognitive impairment” OR “vascular cognitive impairment no dementia” OR “vascular mild neurocognitive disorder” AND “dysexecutive” OR “executive function”. Meta-analyses were conducted for each of the selected tests, using random-effect models. Results: Systematic review showed major discrepancies among the results of the studies included. Meta-analyses evidenced poorer performance on the Trail-Making Test part B and the Stroop color test by VaMCI patients compared to controls. Conclusion: A continuum of EF impairments has been proposed in SVCI. Early deficits appear to occur in cognitive flexibility and inhibitory control. PMID:29354217
Employing Case Study Methodology in Special Educational Settings
ERIC Educational Resources Information Center
Rouse, Angelise M.
2016-01-01
In general, case studies are a preferred strategy when "how" or "why" questions are being posed, when the investigator has little control over events, and when the focus is on a contemporary phenomenon within some real-life context (Yin, 2009). This article will examine the advantages and disadvantages of employing case study…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Shuangye
2012-06-01
Shuangye Yin on "Finished prokaryotic genome assemblies from a low-cost combination of short and long reads"; at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Study Abroad as Professional Development: Voices of In-Service Spanish Teachers
ERIC Educational Resources Information Center
Jochum, Christopher J.; Rawlings, Jared R.; Tejada, Ana María
2015-01-01
The purpose of this qualitative inquiry was to understand how four in-service Spanish teachers interpreted their participation in a summer study abroad program and how the experience contributed to their ongoing professional development and language proficiency. Using a multiple case design (Simons, 2009; Stake, 2005; Yin, 2009), the researchers…
Student Perceptions of Online Writing Center Designs for Fully Online Programs
ERIC Educational Resources Information Center
Simpson, Shelah Y.
2017-01-01
In this multiple-case study, the author investigated fully online students' perceptions of and experiences with asynchronous and synchronous writing support options of an institutional writing center and a commercial tutoring service. This dissertation used a multiple-case study design (Merriam, 1998, 2009; Yin, 2009) to ascertain which features…
Yin Yang 1 Is a Critical Repressor of Matrix Metalloproteinase-9 Expression in Brain Neurons*
Rylski, Marcin; Amborska, Renata; Zybura, Katarzyna; Mioduszewska, Barbara; Michaluk, Piotr; Jaworski, Jacek; Kaczmarek, Leszek
2008-01-01
Membrane depolarization controls long lasting adaptive neuronal changes in brain physiology and pathology. Such responses are believed to be gene expression-dependent. Notably, however, only a couple of gene repressors active in nondepolarized neurons have been described. In this study, we show that in the unstimulated rat hippocampus in vivo, as well as in the nondepolarized brain neurons in primary culture, the transcriptional regulator Yin Yang 1 (YY1) is bound to the proximal Mmp-9 promoter and strongly represses Mmp-9 transcription. Furthermore, we demonstrate that monoubiquitinated and CtBP1 (C-terminal binding protein 1)-bound YY1 regulates Mmp-9 mRNA synthesis in rat brain neurons controlling its transcription apparently via HDAC3-dependent histone deacetylation. In conclusion, our data suggest that YY1 exerts, via epigenetic mechanisms, a control over neuronal expression of MMP-9. Because MMP-9 has recently been shown to play a pivotal role in physiological and pathological neuronal plasticity, YY1 may be implicated in these phenomena as well. PMID:18940814
Potential Therapeutics for Vascular Cognitive Impairment and Dementia.
Sun, Miao-Kun
2017-10-16
As the human lifespan increases, the number of people affected by age-related dementia is growing at an epidemic pace. Vascular pathology dramatically affects cognitive profiles, resulting in dementia and cognitive impairment. While vascular dementia itself constitutes a medical challenge, hypoperfusion/vascular risk factors enhance amyloid toxicity and other memory-damaging factors and hasten Alzheimer's disease (AD) and other memory disorders' progression, as well as negatively affect treatment outcome. Few therapeutic options are, however, currently available to improve the prognosis of patients with vascular dementia and cognitive impairment, mixed AD dementia with vascular pathology, or other memory disorders. Emerging evidence, however, indicates that, like AD and other memory disorders, synaptic impairment underlies much of the memory impairment in the cognitive decline of vascular cognitive impairment and vascular dementia. Effective rescues of the memory functions might be achieved through synaptic and memory therapeutics, targeting distinct molecular signaling pathways that support the formation of new synapses and maintaining their connections. Potential therapeutic agents include: 1) memory therapeutic agents that rescue synaptic and memory functions after the brain insults; 2) anti-pathologic therapeutics and an effective management of vascular risk factors; and 3) preventative therapeutic agents that achieve memory therapy through functional enhancement. Their development and potential as clinically effective memory therapeutics for vascular cognitive impairment and dementia are discussed in this review. These therapeutic agents are also likely to benefit patients with AD and/or other types of memory disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yeh, Yi-Chun; Huang, Mei-Feng; Hwang, Shang-Jyh; Tsai, Jer-Chia; Liu, Tai-Ling; Hsiao, Shih-Ming; Yang, Yi-Hsin; Kuo, Mei-Chuan; Chen, Cheng-Sheng
2016-07-01
Patients with chronic kidney disease (CKD) have been found to have cognitive impairment. However, the core features and clinical correlates of cognitive impairment are still unclear. Elevated homocysteine levels are present in CKD, and this is a risk factor for cognitive impairment and vascular diseases in the general population. Thus, this study investigated the core domains of cognitive impairment and investigated the associations of homocysteine level and vascular burden with cognitive function in patients with CKD. Patients with CKD aged ≥ 50 years and age- and sex-matched normal comparisons were enrolled. The total fasting serum homocysteine level was measured. Vascular burden was assessed using the Framingham Cardiovascular Risk Scale. Cognitive function was evaluated using comprehensive neuropsychological tests. A total of 230 patients with CKD and 92 comparisons completed the study. Memory impairment and executive dysfunction were identified as core features of cognitive impairment in the CKD patients. Among the patients with CKD, higher serum homocysteine levels (β = -0.17, p = 0.035) and higher Framingham Cardiovascular Risk Scale scores (β = -0.18, p = 0.013) were correlated with poor executive function independently. However, an association with memory function was not noted. Our results showed that an elevated homocysteine level and an increased vascular burden were independently associated with executive function, but not memory, in CKD patients. This findings suggested the co-existence of vascular and non-vascular hypotheses regarding executive dysfunction in CKD patients. Meanwhile, other risk factors related to CKD itself should be investigated in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Wang, Xijun; Lv, Haitao; Sun, Hui; Jiang, Xingang; Wu, Zeming; Sun, Wenjun; Wang, Ping; Liu, Lian; Bi, Kaishun
2008-01-01
A completely validated method based on HPLC coupled with photodiode array detector (HPLC-UV) was described for evaluating and controlling quality of Yin Chen Hao Tang extract (YCHTE). First, HPLC-UV fingerprint chromatogram of YCHTE was established for preliminarily elucidating amount and chromatographic trajectory of chemical constituents in YCHTE. Second, for the first time, five mainly bioactive constituents in YCHTE were simultaneously determined based on fingerprint chromatogram for furthermore controlling the quality of YCHTE quantitatively. The developed method was applied to analyze 12 batches of YCHTE samples which consisted of herbal drugs from different places of production, showed acceptable linearity, intraday (RSD <5%), interday precision (RSD <4.80%), and accuracy (RSD <2.80%). As a result, fingerprint chromatogram determined 15 representative general fingerprint peaks, and the fingerprint chromatogram resemblances are all better than 0.9996. The contents of five analytes in different batches of YCHTE samples do not indicate significant difference. So, it is concluded that the developed HPLC-UV method is a more fully validated and complete method for evaluating and controlling the quality of YCHTE.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
...), Executive Order 12047 of March 27, 1978, the Foreign Affairs Reform and Restructuring Act of 1998 (112 Stat..., New York, New York, from on or about February 24, 2010, until on or about May 24, 2010, and at...
Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh
2015-01-01
SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257
Robischon, Marcel; Du, Juan; Miura, Eriko; Groover, Andrew
2011-03-01
The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.
NASA Astrophysics Data System (ADS)
Gao, Gan
2017-11-01
In this paper, we show that the attack strategy [A. Yin and F. Fu, Mod. Phys. Lett. B 30 (2016) 1650415] fails, that is, the last agent and other agents cannot get the sender’s secret keys without being detected by using the attack strategy.
Written Formative Assessment and Silence in the Classroom
ERIC Educational Resources Information Center
Lee Hang, Desmond Mene; Bell, Beverley
2015-01-01
In this commentary, we build on Xinying Yin and Gayle Buck's discussion by exploring the cultural practices which are integral to formative assessment, when it is viewed as a sociocultural practice. First we discuss the role of assessment and in particular oral and written formative assessments in both western and Samoan cultures, building on the…
A Study of Odd- and Even-Number Cultures
ERIC Educational Resources Information Center
Nishiyama, Yutaka
2006-01-01
Japanese prefer odd numbers, whereas Westerners emphasize even numbers, an observation that is clear from the distribution of number-related words in Japanese and English dictionaries. In this article, the author explains why these two cultures differ by surveying the history of numbers, including yin-yang thought from ancient China, ancient Greek…
The Ethics of Clinical Care and the Ethics of Clinical Research: Yin and Yang.
Kowalski, Charles J; Hutchinson, Raymond J; Mrdjenovich, Adam J
2017-02-01
The Belmont Report's distinction between research and the practice of accepted therapy has led various authors to suggest that these purportedly distinct activities should be governed by different ethical principles. We consider some of the ethical consequences of attempts to separate the two and conclude that separation fails along ontological, ethical, and epistemological dimensions. Clinical practice and clinical research, as with yin and yang, can be thought of as complementary forces interacting to form a dynamic system in which the whole exceeds the sum of its parts. Just as effective clinical practice cannot exist without clinical research, meaningful clinical research requires the context of clinical practice. We defend this thesis by triangulation, that is, by outlining how multiple investigators have reached this conclusion on the basis of varied theoretical and applied approaches. More confidence can be placed in a result if different methods/viewpoints have led to that result. © The Author 2017. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhu, Di-Cheng; Chung, Sun-Lin; Niu, Yaoling
2016-02-01
The Greater Tibetan Plateau, also known in China as the Qinghai-Tibet Plateau or the Qingzang Plateau, is a tectonic amalgamation of numbers of continental collision events from the northwest in the early Paleozoic to the southwest in the Cenozoic (cf. Dewey et al., 1988; Pan et al., 2012; Yin and Harrison, 2000). These collision events resulted in orogenic belts that record the prolonged albeit complex histories of opening and closing of Tethyan ocean basins and associated tectonic and magmatic responses (cf. Chung et al., 2005; Pan et al., 2012; Song et al., 2014; Yin and Harrison, 2000; Zhu et al., 2013, 2015). Although many aspects related to these events have been recently synthesized with elegance by Pan et al. (2012) and Zhu et al. (2013) using data and observations made available since 2000, many scientific questions, such as the duration of oceanic basins, the collisional and accretionary processes of different terranes, the processes responsible for crustal growth, and the mechanisms for economic mineralization, remain underdeveloped and require further investigations with additional data.
Catino, Anna B; Hubbard, Rebecca A; Chirinos, Julio A; Townsend, Ray; Keefe, Stephen; Haas, Naomi B; Puzanov, Igor; Fang, James C; Agarwal, Neeraj; Hyman, David; Smith, Amanda M; Gordon, Mary; Plappert, Theodore; Englefield, Virginia; Narayan, Vivek; Ewer, Steven; ElAmm, Chantal; Lenihan, Daniel; Ky, Bonnie
2018-03-01
Sunitinib, used widely in metastatic renal cell carcinoma, can result in hypertension, left ventricular dysfunction, and heart failure. However, the relationships between vascular function and cardiac dysfunction with sunitinib are poorly understood. In a multicenter prospective study of 84 metastatic renal cell carcinoma patients, echocardiography, arterial tonometry, and BNP (B-type natriuretic peptide) measures were performed at baseline and at 3.5, 15, and 33 weeks after sunitinib initiation, correlating with sunitinib cycles 1, 3, and 6. Mean change in vascular function parameters and 95% confidence intervals were calculated. Linear regression models were used to estimate associations between vascular function and left ventricular ejection fraction, longitudinal strain, diastolic function (E/e'), and BNP. After 3.5 weeks of sunitinib, mean systolic blood pressure increased by 9.5 mm Hg (95% confidence interval, 2.0-17.1; P =0.02) and diastolic blood pressure by 7.2 mm Hg (95% confidence interval, 4.3-10.0; P <0.001) across all participants. Sunitinib resulted in increases in large artery stiffness (carotid-femoral pulse wave velocity) and resistive load (total peripheral resistance and arterial elastance; all P <0.05) and changes in pulsatile load (total arterial compliance and wave reflection). There were no statistically significant associations between vascular function and systolic dysfunction (left ventricular ejection fraction and longitudinal strain). However, baseline total peripheral resistance, arterial elastance, and aortic impedance were associated with worsening diastolic function and filling pressures over time. In patients with metastatic renal cell carcinoma, sunitinib resulted in early, significant increases in blood pressure, arterial stiffness, and resistive and pulsatile load within 3.5 weeks of treatment. Baseline vascular function parameters were associated with worsening diastolic but not systolic function. © 2018 American Heart Association, Inc.
Charting the Learning Journey of a Group of Adults Returning to Education
ERIC Educational Resources Information Center
Mooney, Des
2011-01-01
Using a qualitative case study method the researcher studied a group of adult returning students completing a childcare course. Methods used included focus groups, a questionnaire and observations. Using a holistic analysis approach (Yin 2003) of the case the researcher then focused on a number of key issues. From this analysis the themes of…
Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming
2016-07-01
Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4-phenylbutyrate increased the nuclear levels of nuclear factor-E2-related factor 2, and decreased the nuclear levels of nuclear factor κB in hypoxic vascular smooth muscle cells. 4-phenylbutyrate has beneficial effects for traumatic hemorrhagic shock including improving animal survival and protecting organ function. These beneficial effects of 4-phenylbutyrate in traumatic hemorrhagic shock result from its vascular function protection via attenuation of the oxidative stress and mitochondrial permeability transition pore opening. Nuclear factor-E2-related factor 2 and nuclear factor-κB may be involved in 4-phenylbutyrate-mediated inhibition of oxidative stress.
[Primary Study on Noninvasive Detection of Vascular Function Based on Finger Temperature Change].
Dong, Qing; Li, Xia; Wan, Yungao; Lu, Gaoquan; Wang, Xinxin; Zhang, Kuan
2016-02-01
By studying the relationship between fingertip temperature changes and arterial function during vascular reactivity test, we established a new non-invasive method for detecting vascular function, in order to provide an assistance for early diagnosis and prevention of cardiovascular diseases. We customized three modules respectively for blood occlusion, measurement of finger temperature and blood oxygen acquisition, and then we established the hardware of data acquisition system. And the software was programmed with Labview. Healthy subjects [group A, n = 24, (44.6 ± 9.0) years] and subjects with cardiovascular diseases [group B, n = 33, (57.2 ± 9.9) years)] were chosen for the study. Subject's finger temperature, blood oxygen and occlusion pressure of block side during and after unilateral arm brachial artery occlusion were recorded, as well as some other regular physiological indexes. By time-domain analysis, we extracted 12 parameters from fingertip temperature signal, including the initial temperature (Ti), temperature rebound (TR), the time of the temperature recovering to initial status (RIt) and other parameters from the finger temperature signal. We in the experiment also measured other regular physiological body mass index (BMI), systolic blood pressure (SBP), diastiolic blood pressure (DBP) and so on. Results showed that 8 parameters difference between the two group of data were significant. based on the statistical results. A discriminant function of vascular function status was established afterwards. We found in the study that the changes of finger temperature during unilateral arms brachial artery occlusion and open were closely related to vascular function. We hope that the method presented in this article could lay a foundation of early detection of vascular function.
The Nature of Episodic Memory Deficits in MCI with and without Vascular Burden
ERIC Educational Resources Information Center
Villeneuve, Sylvia; Massoud, Fadi; Bocti, Christian; Gauthier, Serge; Belleville, Sylvie
2011-01-01
This study measured episodic memory deficits in individuals with mild cognitive impairment (MCI) as a function of their vascular burden. Vascular burden was determined clinically by computing the number of vascular risk factors and diseases and neuroradiologically by assessing the presence and severity of white matter lesions (WML). Strategic…
Notch Signaling in Vascular Smooth Muscle Cells
Baeten, J.T.; Lilly, B.
2018-01-01
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease. PMID:28212801
Haynes, Andrew; Linden, Matthew D; Chasland, Lauren C; Nosaka, Kazunori; Maiorana, Andrew; Dawson, Ellen A; Dembo, Lawrence H; Naylor, Louise H; Green, Daniel J
2017-06-01
Evidence-based guidelines recommend exercise therapy for patients with chronic heart failure (CHF). Such patients have increased atherothrombotic risk. Exercise can transiently increase platelet activation and reactivity and decrease vascular function in healthy participants, although data in CHF are scant. Eccentric (ECC) cycling is a novel exercise modality that may be particularly suited to patients with CHF, but the acute impacts of ECC cycling on platelet and vascular function are currently unknown. Our null hypothesis was that ECC and concentric (CON) cycling, performed at matched external workloads, would not induce changes in platelet or vascular function in patients with CHF. Eleven patients with heart failure with reduced ejection fraction (HFrEF) took part in discrete bouts of ECC and CON cycling. Before and immediately after exercise, vascular function was assessed by measuring diameter and flow-mediated dilation (FMD) of the brachial artery. Platelet function was measured by the flow cytometric determination of glycoprotein IIb/IIIa activation and granule exocytosis in the presence and absence of platelet agonists. ECC cycling increased baseline artery diameter (pre: 4.0 ± 0.8 mm vs. post: 4.2 ± 0.7 mm; P = 0.04) and decreased FMD%. When changes in baseline artery diameter were accounted for, the decrease in FMD post-ECC cycling was no longer significant. No changes were apparent after CON. Neither ECC nor CON cycling resulted in changes to any platelet-function measures (all P > 0.05). These results suggest that both ECC and CON cycling, at a moderate intensity and short duration, can be performed by patients with HFrEF without detrimental impacts on vascular or platelet function. NEW & NOTEWORTHY This is the first evidence to indicate that eccentric (ECC) cycling can be performed relatively safely by patients with chronic heart failure (CHF), as it did not result in impaired vascular or platelet function compared with conventional cycling. This is important, as acute exercise can transiently increase atherothrombotic risk, and ECC cycling is a novel exercise modality that may be particularly suited to patients with CHF. Copyright © 2017 the American Physiological Society.
Liu, Xiangju; Qiu, Jie; Zhao, Shaohua; You, Beian; Ji, Xiang; Wang, Yan; Cui, Xiaopei; Wang, Qian; Gao, Haiqing
2012-11-01
Recent studies indicate that chronic ouabain treatment leads to hypertension and hypertensive vascular remodeling. Grape seed proanthocyanidin extract (GSPE) has been reported to be effective in treating arteriosclerosis, while little is known about its effect on systolic blood pressure and vascular remodeling. In this study, the effects of GSPE on systolic blood pressure and vascular remodeling were analyzed by treating ouabain-induced hypertensive rats with GSPE (250 mg/kg·d). The expression of nitric oxide (NO) and endothelin-1 (ET-1) in thoracic aorta was examined by ELISA; the mRNA and protein levels of TGF-β1 were detected using real-time PCR and western blotting, respectively. The results showed that the systolic blood pressure was significantly decreased following treatment with GSPE, with blocked vascular remodeling. The ET-1 content was reduced while NO production was increased in the GSPE group, which showed improved vascular endothelial function. Moreover, GSPE also reduced TGF-β1 expression in the thoracic aorta, which is a determinant in vascular remodeling. In conclusion, GSPE antagonized ouabain-induced hypertension and vascular remodeling and is recommended as a potential anti-hypertensive agent for patients with hypertensive vascular diseases.
Bachschmid, Markus M.; Schildknecht, Stefan; Matsui, Reiko; Zee, Rebecca; Haeussler, Dagmar; Cohen, Richard A.; Pimental, David; van der Loo, Bernd
2013-01-01
Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the ‘free radical theory of aging’ but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis. PMID:22380696
ERIC Educational Resources Information Center
Gaboury, Placide
1987-01-01
Asserts that Western society has neglected its Yin dimension, the positive and creative aspects of tenderness, receptivity, compassion, understanding, surrender, and intuition and has overdeveloped its capacity to dominate, control, analyze, and rationalize. Describes how Western society has lost touch with real being which cannot be released as…
Submersed Aquatic Vegetation Modeling Output Online
2005-11-01
La Grange Pool of the Upper Mississippi River System: U.S. Geologi- cal Survey Upper Midwest Environmental Science Center, La Crosse, Wisconsin...information, please contact: Yao Yin1, Jim Rogala2, and Jason Rohweder3 USGS Upper Midwest Environmental Science Center 2630 Fanta Reed Road La Crosse, WI
Theoretical models for coronary vascular biomechanics: Progress & challenges
Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.
2013-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Dietary saturated and unsaturated fats as determinants of blood pressure and vascular function.
Hall, Wendy L
2009-06-01
The amount and type of dietary fat have long been associated with the risk of CVD. Arterial stiffness and endothelial dysfunction are important risk factors in the aetiology of CHD. A range of methods exists to assess vascular function that may be used in nutritional science, including clinic and ambulatory blood pressure monitoring, pulse wave analysis, pulse wave velocity, flow-mediated dilatation and venous occlusion plethysmography. The present review focuses on the quantity and type of dietary fat and effects on blood pressure, arterial compliance and endothelial function. Concerning fat quantity, the amount of dietary fat consumed habitually appears to have little influence on vascular function independent of fatty acid composition, although single high-fat meals postprandially impair endothelial function compared with low-fat meals. The mechanism is related to increased circulating lipoproteins and NEFA which may induce pro-inflammatory pathways and increase oxidative stress. Regarding the type of fat, cross-sectional data suggest that saturated fat adversely affects vascular function whereas polyunsaturated fat (mainly linoleic acid (18 : 2n-6) and n-3 PUFA) are beneficial. EPA (20 : 5n-3) and DHA (22 : 6n-3) can reduce blood pressure, improve arterial compliance in type 2 diabetics and dyslipidaemics, and augment endothelium-dependent vasodilation. The mechanisms for this vascular protection, and the nature of the separate physiological effects induced by EPA and DHA, are priorities for future research. Since good-quality observational or interventional data on dietary fatty acid composition and vascular function are scarce, no further recommendations can be suggested in addition to current guidelines at the present time.
Yang, Qiaoling; Yang, Fan; Tang, Xiaowen; Ding, Lili; Xu, Ying; Xiong, Yinhua; Wang, Zhengtao; Yang, Li
2015-04-16
Yin-Chen-Hao-Tang (YCHT), a commonly used as a traditional chinese medicine for liver disease. Several studies indicated that YCHT may improving hepatic triglyceride metabolism and anti-apoptotic response as well as decreasing oxidative stress .However, little is known about the role of YCHT in chlorpromazine (CPZ) -induced chlolestatic liver injury. Therefore, we aimed to facilitate the understanding of the pathogenesis of cholestatic liver injury and evaluate the effect of Yin-Chen-Hao-Tang (YCHT) on chlorpromazine (CPZ)-induced cholestatic liver injury in rats based on the change of bile acids (BAs) and free fatty acids (FFAs) alone with the biochemical indicators and histological examination. We conducted an experiment on CPZ-induced cholestatic liver injury in Wistar rats with and without YCHT for nine consecutive days. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) were measured to evaluate the protective effect of YCHT against chlorpromazine (CPZ)-induced cholestatic liver injury. Histopathology of the liver tissue showed that pathological injuries were relieved after YCHT pretreatment. In addition, ultra-performance lipid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) and gas chromatography coupled with mass spectrometry (GC-MS) was applied to determine the content of bile acids, free fatty acids, respectively. Obtained data showed that YCHT attenuated the effect of CPZ-induced cholestatic liver injury, which was manifested by the serum biochemical parameters and histopathology of the liver tissue. YCHT regulated the lipid levels as indicated by the reversed serum levels of TC, TG, and LDL-C. YCHT also regulated the disorder of BA and FFA metabolism by CPZ induction. Results indicated that YCHT exerted a protective effect on CPZ-induced cholestasis liver injury. The variance of BA and FFA concentrations can be used to evaluate the cholestatic liver injury caused by CPZ and the hepatoprotective effect of YCHT.
Structural and functional imaging for vascular targeted photodynamic therapy
NASA Astrophysics Data System (ADS)
Li, Buhong; Gu, Ying; Wilson, Brian C.
2017-02-01
Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.
The Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone
Khayat, Maan T.
2017-01-01
Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases. PMID:28884118
Vascular Cognitive Impairment.
Dichgans, Martin; Leys, Didier
2017-02-03
Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts. © 2017 American Heart Association, Inc.
A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct
Valarmathi, Mani T.; Fuseler, John W.; Davis, Jeffrey M.; Price, Robert L.
2017-01-01
Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty. PMID:28194397
Role of oxidative stress and nitric oxide in atherothrombosis
Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph
2008-01-01
During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590
Potential benefits of exercise on blood pressure and vascular function.
Pal, Sebely; Radavelli-Bagatini, Simone; Ho, Suleen
2013-01-01
Physical activity seems to enhance cardiovascular fitness during the course of the lifecycle, improve blood pressure, and is associated with decreased prevalence of hypertension and coronary heart disease. It may also delay or prevent age-related increases in arterial stiffness. It is unclear if specific exercise types (aerobic, resistance, or combination) have a better effect on blood pressure and vascular function. This review was written based on previous original articles, systematic reviews, and meta-analyses indexed on PubMed from years 1975 to 2012 to identify studies on different types of exercise and the associations or effects on blood pressure and vascular function. In summary, aerobic exercise (30 to 40 minutes of training at 60% to 85% of predicted maximal heart rate, most days of the week) appears to significantly improve blood pressure and reduce augmentation index. Resistance training (three to four sets of eight to 12 repetitions at 10 repetition maximum, 3 days a week) appears to significantly improve blood pressure, whereas combination exercise training (15 minutes of aerobic and 15 minutes of resistance, 5 days a week) is beneficial to vascular function, but at a lower scale. Aerobic exercise seems to better benefit blood pressure and vascular function. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Haugwitz, Marion; Sandmann, Angela
2010-01-01
Understanding biological structures and functions is often difficult because of their complexity and micro-structure. For example, the vascular system is a complex and only partly visible system. Constructing models to better understand biological functions is seen as a suitable learning method. Models function as simplified versions of real…
Regulation of thrombosis and vascular function by protein methionine oxidation
Gu, Sean X.; Stevens, Jeff W.
2015-01-01
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980
Thoughts on Internal and External Quality Assurance
ERIC Educational Resources Information Center
Zhang, Jianxin
2012-01-01
Quality assurance of higher education is made up of two parts: internal quality assurance (IQA) and external quality assurance (EQA). Both belong to a union of the coexistence and balance of yin and yang. But in reality there exists a paradox of "confusion of quality assurance (QA) subject consciousness, singularity of social QA and lack of QA…
Trouble in Paradise: Self-Assessment and the Tao
ERIC Educational Resources Information Center
Pinner, Richard
2016-01-01
In this article I outline how and why I have established a self-assessment system for class participation scores in an English-speaking skills course at a Japanese university. I explain how my experience with one particular student, who personally admitted to having abused the system, led me to realize that elements from Yin and Yang have been…
Balancing the Yin and Yang: The Role of Universities in Developing Softer Skills in Accountancy
ERIC Educational Resources Information Center
Evans, Carl; Gbadamosi, Gbolahan; Wells, Jamie; Scott, Ian
2012-01-01
This paper presents an examination of the importance of softer skills in the accountancy profession and a discussion of the contribution that universities can make in supporting the development of these skills. With employers increasingly demanding a greater range of softer skills such as effective communication, the paper is intended to challenge…
2017-10-01
AWARD NUMBER: W81XWH-16-1-0610 TITLE: Improving Cognitive Function in Veterans with Gulf War Illness by Improving Cerebral Vascular Function...From - To) 15 Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Improving Cognitive Function in Veterans with Gulf War Illness by...investigate a relationship between cognitive impairment in Veterans with Gulf War Illness (GWI) and reduced vasodilatory function. One of the multiple
Kuckleburg, Christopher J.; Newman, Peter J.
2013-01-01
The principle role of the vascular endothelium is to present a semi-impermeable barrier to soluble factors and circulating cells, while still permitting the passage of leukocytes from the bloodstream into the tissue. The process of diapedesis involves the selective disruption of endothelial cell junctions, an event that could in theory compromise vascular integrity. It is therefore somewhat surprising that neutrophil transmigration does not significantly impair endothelial barrier function. We examined whether neutrophils might secrete factors that promote vascular integrity during the latter stages of neutrophil transmigration, and found that neutrophil proteinase 3 (PR3) – a serine protease harbored in azurophilic granules – markedly enhanced barrier function in endothelial cells. PR3 functioned in this capacity both in its soluble form and in a complex with cell-surface NB1. PR3-mediated enhancement of endothelial cell junctional integrity required its proteolytic activity, as well as endothelial cell expression of the protease-activated receptor, PAR-2. Importantly, PR3 suppressed the vascular permeability changes and disruption of junctional proteins induced by the action of PAR-1 agonists. These findings establish the potential for neutrophil-derived PR3 to play a role in reestablishing vascular integrity following leukocyte transmigration, and in protecting endothelial cells from PAR-1-induced permeability changes that occur during thrombotic and inflammatory events. PMID:23202369
Rabelo, Luiza A; Todiras, Mihail; Nunes-Souza, Valéria; Qadri, Fatimunnisa; Szijártó, István András; Gollasch, Maik; Penninger, Josef M; Bader, Michael; Santos, Robson A; Alenina, Natalia
2016-01-01
Accumulating evidence indicates that angiotensin-converting enzyme 2 (ACE2) plays a critical role in cardiovascular homeostasis, and its altered expression is associated with major cardiac and vascular disorders. The aim of this study was to evaluate the regulation of vascular function and assess the vascular redox balance in ACE2-deficient (ACE2-/y) animals. Experiments were performed in 20-22 week-old C57BL/6 and ACE2-/y male mice. Evaluation of endothelium-dependent and -independent relaxation revealed an impairment of in vitro and in vivo vascular function in ACE2-/y mice. Drastic reduction in eNOS expression at both protein and mRNA levels, and a decrease in •NO concentrations were observed in aortas of ACE2-/y mice in comparison to controls. Consistently, these mice presented a lower plasma and urine nitrite concentration, confirming reduced •NO availability in ACE2-deficient animals. Lipid peroxidation was significantly increased and superoxide dismutase activity was decreased in aorta homogenates of ACE2-/y mice, indicating impaired antioxidant capacity. Taken together, our data indicate, that ACE2 regulates vascular function by modulating nitric oxide release and oxidative stress. In conclusion, we elucidate mechanisms by which ACE2 is involved in the maintenance of vascular homeostasis. Furthermore, these findings provide insights into the role of the renin-angiotensin system in both vascular and systemic redox balance.
Storage or Retrieval Deficit: The Yin and Yang of Amnesia
ERIC Educational Resources Information Center
Hardt, Oliver; Wang, Szu-Han; Nader, Karim
2009-01-01
To this day, it remains unresolved whether experimental amnesia reflects failed memory storage or the inability to retrieve otherwise intact memory. Methodological as well as conceptual reasons prevented deciding between these two alternatives: The absence of recovery from amnesia is typically taken as supporting storage impairment…
Metaphors of the Co-Taught Classroom.
ERIC Educational Resources Information Center
Adams, Lois; Cessna, Kay
1993-01-01
Discussions with exemplary Colorado general and special education coteachers led to development of three metaphors for the coteaching process: (1) yin and yang (the uniqueness and unity of the two teachers); (2) the dance (the rhythm, fluidity, and automaticity of effective collaboration); and (3) the particle and the stream (the thriving of…
Case Study of an Institutionalized Urban Comprehensive School Physical Activity Program
ERIC Educational Resources Information Center
Doolittle, Sarah A.; Rukavina, Paul B.
2014-01-01
This single case study (Yin, 2009) compares an established urban physical education/ sport/physical activity program with two models: Comprehensive School Physical Activity Program/CSPAP (AAHPERD, 2013; CDC, 2013); and Lawson's propositions (2005) for sport, exercise and physical education for empowerment and community development to determine…
Enhancing Poetry Writing through Technology: The Yin and the Yang.
ERIC Educational Resources Information Center
Roberts, Sherron Killingsworth; Schmidt, Denise
2002-01-01
Describes the outcome of an innovative mentoring program that paired technology faculty and methods faculty in order to form partnerships to facilitate the modeling of technology for preservice teachers. Discusses the creation of useful applications for enhancing poetry writing through technology for elementary school students. (SG)
The "Yin" and "Yang" of Cell Cycle Progression and Differentiation in the Oligodendroglial Lineage
ERIC Educational Resources Information Center
Nguyen, Laurent; Borgs, Laurence; Vandenbosch, Renaud; Mangin, Jean-Marie; Beukelaers, Pierre; Moonen, Gustave; Gallo, Vittorio; Malgrange, Brigitte; Belachew, Shibeshih
2006-01-01
In white matter disorders such as leukodystrophies (LD), periventricular leucomalacia (PVL), or multiple sclerosis (MS), the hypomyelination or the remyelination failure by oligodendrocyte progenitor cells involves errors in the sequence of events that normally occur during development when progenitors proliferate, migrate through the white…
2004-05-01
Advantage Nontoxic to humans and resident microbial populations Cyclodextrins are widely used in pharmaceuticals, food processing, and cosmetics ...dechlorination of tetrachloroethene by the Fenton reaction. Environ. Sci. Technol., 17 (9): 1689-1694. 25. Yin, Y., Allen, H.E., 1999: In situ chemical
Applying Scientific Principles to Resolve Student Misconceptions
ERIC Educational Resources Information Center
Yin, Yue
2012-01-01
Misconceptions about sinking and floating phenomena are some of the most challenging to overcome (Yin 2005), possibly because explaining sinking and floating requires students to understand challenging topics such as density, force, and motion. Two scientific principles are typically used in U.S. science curricula to explain sinking and floating:…
Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R
2008-06-01
The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.
Montezano, Augusto C; De Lucca Camargo, Livia; Persson, Patrik; Rios, Francisco J; Harvey, Adam P; Anagnostopoulou, Aikaterini; Palacios, Roberto; Gandara, Ana Caroline P; Alves-Lopes, Rheure; Neves, Karla B; Dulak-Lis, Maria; Holterman, Chet E; de Oliveira, Pedro Lagerblad; Graham, Delyth; Kennedy, Christopher; Touyz, Rhian M
2018-06-15
NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus , an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N -acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca 2+ ] i , increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus , gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Stonehouse, Welma; Brinkworth, Grant D; Thompson, Campbell H; Abeywardena, Mahinda Y
2016-11-01
In vitro, ex vivo and animal studies suggest palm-based tocotrienols and carotenes enhance vascular function, but limited data in humans exists. The aim was to examine the effects of palm-tocotrienols (TRF- 80) and palm-carotene (CC-60) supplementation on vascular function and cardiovascular disease (CVD) risk factors in adults at increased risk of impaired vascular function. Ninety men and women (18-70 yr, 20-45 kg/m 2 ) with type 2 diabetes, impaired fasting glucose and/or elevated waist circumference were randomised to consume either TRF-80 (420 mg/day tocotrienol + 132 mg/day tocopherol), CC-60 (21 mg/day carotenes) or placebo (palm olein) supplements for 8 weeks. Brachial artery flow-mediated dilation (FMD), other physiological and circulatory markers of vascular function, lipid profiles, glucose, insulin and inflammatory markers were assessed pre- and post-supplementation. Pairwise comparisons were performed using mixed effects longitudinal models (n = 87, n = 3 withdrew before study commencement). Plasma α- and β-carotene and α-, δ- and γ-tocotrienol concentrations increased in CC-60 and TRF-80 groups, respectively, compared to placebo (mean ± SE difference in total plasma carotene change between CC-60 and placebo: 1.5 ± 0.13 μg/ml, p < 0.0001; total plasma tocotrienol change between TRF-80 and placebo: 0.36 ± 0.05 μg/ml, p < 0.0001). Neither FMD (treatment x time effect for CC-60 vs. placebo, p = 0.71; TRF-80 vs. placebo, p = 0.80) nor any other vascular function and CVD outcomes were affected by treatments. CC-60 and TRF-80 supplementation increased bioavailability of palm-based carotenes and tocotrienols but had no effects, superior or detrimental, on vascular function or CVD risk factors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Targeting vascular (endothelial) dysfunction
Steven, Sebastian; Weber, Alina; Shuvaev, Vladimir V.; Muzykantov, Vladimir R.; Laher, Ismail; Li, Huige; Lamas, Santiago
2016-01-01
Abstract Cardiovascular diseases are major contributors to global deaths and disability‐adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti‐inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:27187006
Charlot, Keyne; Romana, Marc; Moeckesch, Berenike; Jumet, Stéphane; Waltz, Xavier; Divialle-Doumdo, Lydia; Hardy-Dessources, Marie-Dominique; Petras, Marie; Tressières, Benoît; Tarer, Vanessa; Hue, Olivier; Etienne-Julan, Maryse; Antoine-Jonville, Sophie; Connes, Philippe
2016-01-01
Vascular resistance and tissue perfusion may be both affected by impaired vascular function and increased blood viscosity. Little is known about the effects of vascular function on the occurrence of painful vaso-occlusive crises (VOC) in children with sickle cell anemia (SCA). The aim of the present study was to determine which side of the balance (blood viscosity or vascular function) is the most deleterious in SCA and increases the risk for frequent hospitalized VOC. Microvascular function, microcirculatory oxygenation and blood viscosity were determined in a group of 22 SCA children/adolescents at steady state and a group of 13 healthy children/adolescents. Univariate analyses demonstrated blunted microvascular reactivity during local thermal heating test and decreased microcirculatory oxygenation in SCA children compared to controls. Multivariate analysis revealed that increased blood viscosity and decreased microcirculatory oxygenation were independent risk factors of frequent VOC in SCA. In contrast, the level of microvascular dysfunction does not predict VOC rate. In conclusion, increased blood viscosity is usually well supported in healthy individuals where vascular function is not impaired. However, in the context of SCA, microvascular function is impaired and any increase of blood viscosity or decrease in microcirculatory oxygenation would increase the risks for frequent VOC. Copyright © 2015 Elsevier Inc. All rights reserved.
Ginsberg, Michael; James, Daylon; Ding, Bi-Sen; Nolan, Daniel; Geng, Fuqiang; Butler, Jason M; Schachterle, William; Pulijaal, Venkat R; Mathew, Susan; Chasen, Stephen T; Xiang, Jenny; Rosenwaks, Zev; Shido, Koji; Elemento, Olivier; Rabbany, Sina Y; Rafii, Shahin
2012-01-01
ETS transcription factors ETV2, FLI1 and ERG1 specify pluripotent stem cells into endothelial cells (ECs). However, these ECs are unstable and drift towards non-vascular cell fates. We show that human mid-gestation c-Kit− lineage-committed amniotic cells (ACs) can be readily reprogrammed into induced vascular endothelial cells (iVECs). Transient ETV2 expression in ACs generated proliferative but immature iVECs, while co-expression with FLI1/ERG1 endowed iVECs with a vascular repertoire and morphology matching mature stable ECs. Brief TGFβ-inhibition functionalized VEGFR2 signaling, augmenting specification of ACs to iVECs. Genome-wide transcriptional analyses showed that iVECs are similar to adult ECs in which vascular-specific genes are turned on and non-vascular genes are silenced. Functionally, iVECs form long-lasting patent vasculature in Matrigel plugs and regenerating livers. Thus, short-term ETV2 expression and TGFβ-inhibition along with constitutive ERG1/FLI1 co-expression reprogram mature ACs into durable and functional iVECs with clinical-scale expansion potential. Public banking of HLA-typed iVECs would establish a vascular inventory for treatment of genetically diverse disorders. PMID:23084400
Gender Bias in Singaporean Primary School English Coursebooks
ERIC Educational Resources Information Center
Ong, Chye Wah; Jacobs, George M.
2000-01-01
Schools can have an important effect on children's developing views of gender roles, and coursebooks form an important element of children's school experience. In 1996, we read an article by Anthea Fraser Gupta and Ameline Lee Su Yin that described gender bias in a 1980s primary school English coursebook series used in Singapore schools. We had…
The Impacts of Remedial Interventions on Learning Chinese for Low-Achieving First Graders
ERIC Educational Resources Information Center
Chen, Shu-Li; Tzeng, Shih-Jay; Chu, Szu-Yin; Chen, Hsin-Ying
2016-01-01
The purpose of this study was to investigate whether a Chinese phonetic script, Zhu-Yin-Fu-Hao (ZYFH), influences low achievers in learning Chinese. In this quasi experimental design, 21 students were assigned to the experimental group, while the other 31 students were distributed to the control group. Two interventions were implemented throughout…
Shimokawa, Hiroaki; Satoh, Kimio
2015-05-01
Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.
Hardtke, C S; Berleth, T
1998-01-01
The vascular tissues of flowering plants form networks of interconnected cells throughout the plant body. The molecular mechanisms directing the routes of vascular strands and ensuring tissue continuity within the vascular system are not known, but are likely to depend on general cues directing plant cell orientation along the apical-basal axis. Mutations in the Arabidopsis gene MONOPTEROS (MP) interfere with the formation of vascular strands at all stages and also with the initiation of the body axis in the early embryo. Here we report the isolation of the MP gene by positional cloning. The predicted protein product contains functional nuclear localization sequences and a DNA binding domain highly similar to a domain shown to bind to control elements of auxin inducible promoters. During embryogenesis, as well as organ development, MP is initially expressed in broad domains that become gradually confined towards the vascular tissues. These observations suggest that the MP gene has an early function in the establishment of vascular and body patterns in embryonic and post-embryonic development. PMID:9482737
Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica
2018-01-01
We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.
Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.
Marchand, Melanie; Anderson, Erica K; Phadnis, Smruti M; Longaker, Michael T; Cooke, John P; Chen, Bertha; Reijo Pera, Renee A
2014-01-01
Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.
The Association Between Kidney Disease and Cardiovascular Risk in a Multiethnic Cohort
Nickolas, Thomas L.; Khatri, Minesh; Boden-Albala, Bernadette; Kiryluk, Krzysztof; Luo, Xiaodong; Gervasi-Franklin, Palma; Paik, Myunghee; Sacco, Ralph L.
2011-01-01
Background and Purpose The objective of this study was to determine the relationship between chronic kidney disease (CKD), race–ethnicity, and vascular outcomes. Methods A prospective, multiracial cohort of 3298 stroke-free subjects with 6.5 years of mean follow-up time for vascular outcomes (stroke, myocardial infarction, vascular death) was used. Kidney function was estimated using serum creatinine and Cockcroft-Gault formula. Cox proportional hazards models were fitted to evaluate the relationship between kidney function and vascular outcomes. Results In multivariate analysis, Cockcroft-Gault formula between 15 and 59 mL/min was associated with a significant 43% increased stroke risk in the overall cohort. Blacks with Cockcroft-Gault formula between 15 and 59 mL/min had significantly increased risk of both stroke (hazard ratio, 2.65; 95% CI, 1.47 to 4.77) and combined vascular outcomes (hazard ratio, 1.59; 95% CI, 1.10–2.92). Conclusion Chronic kidney disease is a significant risk factor for stroke and combined vascular events, especially in blacks. PMID:18617655
Zhao, Lei; Liao, Xiu-jun; Yang, Guan-gen; Mao, Wei-ming; Zhang, Xiu-feng; Deng, Qun; Wu, Wen-jing
2014-10-01
To explore the distribution characteristics of basic syndromes and its related factors in patients with chronic functional constipation (CFC). The complete data of 538 patients with CFC were collected and initial database was established with Epidata 3. 0. TCM syndrome typing was performed. The distribution characteristics of basic syndromes were analyzed using SPSS 17. 0 Software. The univariate and multivariate Logistic regression analyses were performed with SPSS 17. 0 Software to determine basic syndrome related factors such as age, engaged professionals, sleep quality, depression, mental stress, interpersonal relations, work fatigue, stimulating beverage, exercise conditions, Western medicine type of constipation, and so on. The TCM syndrome frequency of CFC patients was sequenced from high to low as qi deficiency syndrome (380 cases, 70.6%), qi stagnation syndrome (337 cases, 62.6%), blood deficiency syndrome (234 cases, 43.5%), yin deficiency syndrome (220 cases, 40.9%), yang deficiency syndrome (197 cases, 36.6%), and others(58 cases, 10. 8%) . Most patients were complicated with complex syndromes, and the most common complex syndromes were qi deficiency complicated qi stagnation syndrome (275 cases, 51.1%) and qi deficiency complicated blood deficiency syndrome (222 cases, 41.3%). Aging, work fatigue, and exercise conditions were main related factors for qi deficiency syndrome (P <0. 01, P <0. 05). Poor emotional (depression and anxiety tendencies), mental stress, interpersonal relations, defecation barriers constipation were main related factors for qi stagnation syndrome (P <0.01). Sleep quality and poor emotional (depression and anxiety tendencies) were main related factors for blood deficiency syndrome (P <0. 01, P < 0.05). Stimulating beverages were main related factor for yin deficiency syndrome (P <0.05). Engaged in mental work and slow transit constipation were main related factors for yang deficiency syndrome (P < 0. 01, P <0. 05). CFC is featured as complex syndromes. The most common complex syndromes were qi deficiency complicated qi stagnation syndrome and qi deficiency complicated blood deficiency syndrome. Basic syndrome related factors such as age, engaged professionals, sleep quality, poor emotional (depression and anxiety tendencies), mental stress, interpersonal relations, work fatigue, stimulating beverage, exercise conditions, Western medicine type of constipation were associated with the distribution of CFC syndromes.
Wei, Wei; Motoike, Toshiyuki; Krzeszinski, Jing Y.; Jin, Zixue; Xie, Xian-Jin; Dechow, Paul C.; Yanagisawa, Masashi; Wan, Yihong
2014-01-01
SUMMARY Orexin neuropeptides promote arousal, appetite, reward, and energy expenditure. However, whether orexin affects bone mass accrual is unknown. Here we show that orexin functions centrally through orexin receptor 2 (OX2R) in the brain to enhance bone formation. OX2R-null mice exhibit low-bone-mass owing to elevated circulating leptin; whereas central administration of an OX2R-selective agonist augments bone mass. Conversely, orexin also functions peripherally through orexin receptor 1 (OX1R) in the bone to suppress bone formation. OX1R-null mice exhibit high-bone-mass owing to a mesenchymal stem cell differentiation shift from adipocyte to osteoblast that results from higher osseous ghrelin expression. The central action is dominant over the peripheral action because bone mass is reduced in orexin-null and OX1R2R-double-null mice but enhanced in orexin over-expressing transgenic mice. These findings reveal orexin as a critical rheostat of skeletal homeostasis that exerts a yin-yang dual regulation, and highlight orexin as a therapeutic target for osteoporosis. PMID:24794976
Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Davis, Simon W; Shafto, Meredith A; Taylor, Jason R; Williams, Nitin; Cam-Can; Rowe, James B
2015-06-01
In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood-oxygenation level-dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting-state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath-hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age-related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population-based Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task-based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task-based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Henson, Richard N. A.; Tyler, Lorraine K.; Davis, Simon W.; Shafto, Meredith A.; Taylor, Jason R.; Williams, Nitin; Cam‐CAN; Rowe, James B.
2015-01-01
Abstract In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task‐based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical. Hum Brain Mapp 36:2248–2269, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:25727740
2011-03-09
develops neoplasia in cyclic AMP-responsive tissues. Cancer Res, 65, 4506-14. 28. Kirschner, L. S., Yin, Z., Jones, G. N. & Mahoney , E. 2009. Mouse models...Neurosci, 29, 14299-308. 60. Roseboom, P. H., Nanda, S. A., Bakshi, V. P., Trentani, A., Newman , S. M. & Kalin, N. H. 2007. Predator threat induces
The Yin and Yang of Formative Research in Designing Serious (Exer-)games.
DeSmet, Ann; Palmeira, António; Beltran, Alicia; Brand, Leah; Davies, Vanessa Fernandes; Thompson, Debbe
2015-02-01
Despite its relevance, formative research on games may be an undervalued part of the game development process. At the 2014 International Society of Behavioral Nutrition and Physical Activity exergaming preconference satellite meeting, a roundtable discussion was held to assemble experiences and suggestions on enhancing the use of formative research in the development of active videogames (i.e., exergames). This article presents a summary of the concepts discussed. The discussants concluded that, although formative research may slightly expand the project timeline, the potential benefits include a game more in line with preferences of the intended users, with better operationalized theoretical constructs and broader stakeholder support, facilitating implementation and sustainability. It also improves the efficiency of other research parts because of a lower dropout rate of participants. Formative, qualitative research is thus a necessary complement to quantitative measurements of intervention outcomes, in a sort of Yin and Yang dynamic. An adapted version of formative research that casts a wider net may, however, be needed, involving both behavioral scientists and game developers, expanding the topics beyond the game's looks and soliciting the opinions of a larger group of stakeholders, such as implementers, gatekeepers, and funders.
Dynamics of pulsatile flow in fractal models of vascular branching networks.
Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt
2009-07-01
Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.
Lee, Dustin M; Battson, Micah L; Jarrell, Dillon K; Hou, Shuofei; Ecton, Kayl E; Weir, Tiffany L; Gentile, Christopher L
2018-04-27
Type 2 diabetes (T2D) is associated with generalized vascular dysfunction characterized by increases in large artery stiffness, endothelial dysfunction, and vascular smooth muscle dysfunction. Sodium glucose cotransporter 2 inhibitors (SGLT2i) represent the most recently approved class of oral medications for the treatment of T2D, and have been shown to reduce cardiovascular and overall mortality. Although it is currently unclear how SGLT2i decrease cardiovascular risk, an improvement in vascular function is one potential mechanism. The aim of the current study was to examine if dapagliflozin, a widely prescribed STLT2i, improves generalized vascular dysfunction in type 2 diabetic mice. In light of several studies demonstrating a bi-directional relation between orally ingested medications and the gut microbiota, a secondary aim was to determine the effects of dapagliflozin on the gut microbiota. Male diabetic mice (Db, n = 24) and control littermates (Con; n = 23) were randomized to receive either a standard diet or a standard diet containing dapagliflozin (60 mg dapagliflozin/kg diet; 0.006%) for 8 weeks. Arterial stiffness was assessed by aortic pulse wave velocity; endothelial function and vascular smooth muscle dysfunction were assessed by dilatory responses to acetylcholine and sodium nitroprusside, respectively. Compared to untreated diabetic mice, diabetic mice treated with dapagliflozin displayed significantly lower arterial stiffness (Db = 469 cm/s vs. Db + dapa = 435 cm/s, p < 0.05), and improvements in endothelial dysfunction (area under the curve [AUC] Db = 57.2 vs. Db + dapa = 117.0, p < 0.05) and vascular smooth muscle dysfunction (AUC, Db = 201.7 vs. Db + dapa = 285.5, p < 0.05). These vascular improvements were accompanied by reductions in hyperglycemia and circulating markers of inflammation. The microbiota of Db and Con mice were distinctly different, and dapagliflozin treatment was associated with minor alterations in gut microbiota composition, particularly in Db mice, although these effects did not conclusively mediate the improvements in vascular function. Dapagliflozin treatment improves arterial stiffness, endothelial dysfunction and vascular smooth muscle dysfunction, and subtly alters microbiota composition in type 2 diabetic mice. Collectively, the improvements in generalized vascular function may represent an important mechanism underlying the cardiovascular benefits of SGLT2i treatment.
Re-Imagining Affect with Study: Implications from a Daoist Wind-Story and Yin-Yang Movement
ERIC Educational Resources Information Center
Zhao, Weili; Ford, Derek R.
2018-01-01
Within educational philosophy and theory there has recently been a re-turn to the concept and practices of studying as an alternative or oppositional educational logic to push back against learning as the predominant mode of educational engagement. While promising, we believe that this research on studying has been limited in a few ways. First,…
ERIC Educational Resources Information Center
Mayrand, Georges
1993-01-01
Describes contemporary educational thought as polarized between the reductionist views of utilitarianism and the unifying views of holism. Explains cultural evolution in terms of the Taoist principles of yin and yang. Evaluates current trends in education, and raises epistemological problems. Discusses the potential effect of utilitarian and…
ERIC Educational Resources Information Center
Association for Education in Journalism and Mass Communication.
The Miscellaneous Studies Division of these Proceedings contains the following 13 papers: "A Trend, Imagined or Real? A Comparative Study of Development Journalism and Public Journalism" (Jiafei Yin); "Investigative Reporting about Minorities in America" (Tim Gallimore and Lillian Dunlap); "A Defining Moment: Who Says What…
Cardiovascular and Hemostatic Disorders: Role of STIM and Orai Proteins in Vascular Disorders.
Tanwar, Jyoti; Trebak, Mohamed; Motiani, Rajender K
2017-01-01
Store-operated Ca 2+ entry (SOCE) mediated by STIM and Orai proteins is a highly regulated and ubiquitous signaling pathway that plays an important role in various cellular and physiological functions. Endoplasmic reticulum (ER) serves as the major site for intracellular Ca 2+ storage. Stromal Interaction Molecule 1/2 (STIM1/2) sense decrease in ER Ca 2+ levels and transmits the message to plasma membrane Ca 2+ channels constituted by Orai family members (Orai1/2/3) resulting in Ca 2+ influx into the cells. This increase in cytosolic Ca 2+ in turn activates a variety of signaling cascades to regulate a plethora of cellular functions. Evidence from the literature suggests that SOCE dysregulation is associated with several pathophysiologies, including vascular disorders. Interestingly, recent studies have suggested that STIM proteins may also regulate vascular functions independent of their contribution to SOCE. In this updated book chapter, we will focus on the physiological role of STIM and Orai proteins in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in vascular disease.
Single speckle SRS threshold as determined by electron trapping, collisions and speckle duration
NASA Astrophysics Data System (ADS)
Rose, Harvey; Daughton, William; Yin, Lin; Langdon, Bruce
2008-11-01
Speckle SRS intensity threshold has been shown to increase with spatial dimension, D, because both diffraction and trapped electron escape rate increase with D, though the net effect is to substantially decrease the threshold compared to 1D linear gain calculations. On the other hand, the apparent threshold appears to decrease with integration time in PIC simulations. We present an optimum nonlinearly resonant calculation of the SRS threshold, taking into account large fluctuations of the SRS seed reflectivity, R0. Such fluctuations, absent in 1D, are caused by a gap in the linear reflectivity gain spectrum which leads to an exponential probability distribution for R0. While the SRS threshold intensity is of course finite, these fluctuations lead to a decrease of apparent threshold with increasing speckle lifetime. L. Yin et al., Physics of Plasmas 15, 013109 (2008). D. S. Montgomery et al., 9, 2311(2002). Bruce Langdon et al., 38^th Anomalous Absorption Conference (2008). Harvey A. Rose, Physics of Plasmas 10, 1468 (2003). Harvey A. Rose and L. Yin, Physics of Plasmas 15, 042311 (2008)., Harvey A. Rose and David A. Russell, Phys. Plasma 8, 4784 (2001).
Deuteron Coulomb Excitation in Peripheral Collisions with a Heavy Ion
NASA Astrophysics Data System (ADS)
Du, Weijie; Yin, Peng; Li, Yang; Chen, Guangyao; Zuo, Wei; Zhao, Xingbo; Vary, James P.
2017-09-01
We develop an ab initio time-dependent Basis Function (tBF) method to solve non-perturbative and time-dependent problems in non-relativistic quantum mechanics. As a test problem, we apply this method to the Coulomb excitation of a deuteron by an impinging heavy ion. We employ wave functions for the bound and excited states of the deuterium system based on a realistic nucleon-nucleon interaction and study the evolution of the transition probability, the r.m.s. radius and the r.m.s. momentum of the system during the scattering process. The dependencies of these quantities on the external field strength and the bombarding energy are also analyzed and compared to corresponding results obtained from first-order perturbation theory. The time evolution of both the charge and the momentum distributions is shown. This work was supported in part by the U. S. Department of Energy (DOE) under Grants No. DESC0008485 (SciDAC/NUCLEI) and DE-FG02-87ER40371. W. Zuo and P. Yin are supported by the National Natural Science Foundation of China (11435014).
Cross, M D; Mills, N L; Al-Abri, M; Riha, R; Vennelle, M; Mackay, T W; Newby, D E; Douglas, N J
2008-07-01
The obstructive sleep apnoea/hypopnoea syndrome (OSAHS) is associated with hypertension and increased cardiovascular risk, particularly when accompanied by marked nocturnal hypoxaemia. The mechanisms of these associations are unclear. We hypothesised that OSAHS combined with severe nocturnal hypoxaemia causes impaired vascular function that can be reversed by continuous positive airways pressure (CPAP) therapy. We compared vascular function in two groups of patients with OSAHS: 27 with more than 20 4% desaturations/h (desaturator group) and 19 with no 4% and less than five 3% desaturations/h (non-desaturator group). In a randomised, double blind, placebo controlled, crossover trial, the effect of 6 weeks of CPAP therapy on vascular function was determined in the desaturator group. In all studies, vascular function was assessed invasively by forearm venous occlusion plethysmography during intra-arterial infusion of endothelium dependent (acetylcholine 5-20 microg/min and substance P 2-8 pmol/min) and independent (sodium nitroprusside 2-8 microg/min) vasodilators. Compared with the non-desaturator group, patients with OSAHS and desaturations had reduced vasodilatation to all agonists (p = 0.007 for all). The apnoea/hypopnoea index and desaturation frequency were inversely related to peak vasodilatation with acetylcholine (r = -0.44, p = 0.002 and r = -0.43, p = 0.003) and sodium nitroprusside (r = -0.42, p = 0.009 and r = -0.37, p = 0.02). In comparison with placebo, CPAP therapy improved forearm blood flow to all vasodilators (p = 0.01). Patients with OSAHS and frequent nocturnal desaturations have impaired endothelial dependent and endothelial independent vasodilatation that is proportional to hypoxaemia and is improved by CPAP therapy. Impaired vascular function establishes an underlying mechanism for the adverse cardiovascular consequences of OSAHS.
Hydrogel Bioprinted Microchannel Networks for Vascularization of Tissue Engineering Constructs
Bertassoni, Luiz E.; Cecconi, Martina; Manoharan, Vijayan; Nikkhah, Mehdi; Hjortnaes, Jesper; Cristino, Ana Luiza; Barabaschi, Giada; Demarchi, Danilo; Dokmeci, Mehmet R.; Yang, Yunzhi; Khademhosseini, Ali
2014-01-01
Vascularization remains a critical challenge in tissue engineering. The development of vascular networks within densely populated and metabolically functional tissues facilitate transport of nutrients and removal of waste products, thus preserving cellular viability over a long period of time. Despite tremendous progress in fabricating complex tissue constructs in the past few years, approaches for controlled vascularization within hydrogel based engineered tissue constructs have remained limited. Here, we report a three dimensional (3D) micromolding technique utilizing bioprinted agarose template fibers to fabricate microchannel networks with various architectural features within photo cross linkable hydrogel constructs. Using the proposed approach, we were able to successfully embed functional and perfusable microchannels inside methacrylated gelatin (GelMA), star poly (ethylene glycol-co-lactide) acrylate (SPELA), poly (ethylene glycol) dimethacrylate (PEGDMA) and poly (ethylene glycol) diacrylate (PEGDA) hydrogels at different concentrations. In particular, GelMA hydrogels were used as a model to demonstrate the functionality of the fabricated vascular networks in improving mass transport, cellular viability and differentiation within the cell-laden tissue constructs. In addition, successful formation of endothelial monolayers within the fabricated channels was confirmed. Overall, our proposed strategy represents an effective technique for vascularization of hydrogel constructs with useful applications in tissue engineering and organs on a chip. PMID:24860845
Sukmana, Irza
2012-01-01
The guidance of endothelial cell organization into a capillary network has been a long-standing challenge in tissue engineering. Some research efforts have been made to develop methods to promote capillary networks inside engineered tissue constructs. Capillary and vascular networks that would mimic blood microvessel function can be used to subsequently facilitate oxygen and nutrient transfer as well as waste removal. Vascularization of engineering tissue construct is one of the most favorable strategies to overpass nutrient and oxygen supply limitation, which is often the major hurdle in developing thick and complex tissue and artificial organ. This paper addresses recent advances and future challenges in developing three-dimensional culture systems to promote tissue construct vascularization allowing mimicking blood microvessel development and function encountered in vivo. Bioreactors systems that have been used to create fully vascularized functional tissue constructs will also be outlined. PMID:22623881
APOC3 may not be a predictor of risk of ischemic vascular disease in the Chinese population
Wang, Qing-Yun; Zeng, Wei; Liu, Hui; Wu, Ying-Ying; Hu, Bei; Hu, Yu
2014-01-01
The genetic background of ischemic vascular disease is actively being explored. Several studies have shown that inhibition of APOC3 significantly reduces plasma levels of apolipoprotein C3 and triglycerides. Recently, the TG and HDL Working Group and Jørgensen et al. reported that loss-of-function mutations in APOC3 are associated with decreased triglyceride levels and a reduced risk of ischemic vascular disease in European and African individuals. We performed a replication study in 4470 Chinese participants. The coding regions of APOC3 were amplified and re-sequenced. However, only synonymous and intronic variants with no functional consequences were identified. None of the loss-of-function mutations reported in European and African individuals were observed. Therefore, APOC3 may not be an ideal predictor for risk of ischemic vascular disease in the Chinese population. PMID:25653838
APOC3 may not be a predictor of risk of ischemic vascular disease in the Chinese population.
Tang, Liang; Cheng, Zhi-Peng; Wang, Qing-Yun; Zeng, Wei; Liu, Hui; Wu, Ying-Ying; Hu, Bei; Hu, Yu
2014-01-01
The genetic background of ischemic vascular disease is actively being explored. Several studies have shown that inhibition of APOC3 significantly reduces plasma levels of apolipoprotein C3 and triglycerides. Recently, the TG and HDL Working Group and Jørgensen et al. reported that loss-of-function mutations in APOC3 are associated with decreased triglyceride levels and a reduced risk of ischemic vascular disease in European and African individuals. We performed a replication study in 4470 Chinese participants. The coding regions of APOC3 were amplified and re-sequenced. However, only synonymous and intronic variants with no functional consequences were identified. None of the loss-of-function mutations reported in European and African individuals were observed. Therefore, APOC3 may not be an ideal predictor for risk of ischemic vascular disease in the Chinese population.
Whole Organ Tissue Vascularization: Engineering the Tree to Develop the Fruits.
Pellegata, Alessandro F; Tedeschi, Alfonso M; De Coppi, Paolo
2018-01-01
Tissue engineering aims to regenerate and recapitulate a tissue or organ that has lost its function. So far successful clinical translation has been limited to hollow organs in which rudimental vascularization can be achieved by inserting the graft into flaps of the omentum or muscle fascia. This technique used to stimulate vascularization of the graft takes advantage of angiogenesis from existing vascular networks. Vascularization of the engineered graft is a fundamental requirement in the process of engineering more complex organs, as it is crucial for the efficient delivery of nutrients and oxygen following in-vivo implantation. To achieve vascularization of the organ many different techniques have been investigated and exploited. The most promising results have been obtained by seeding endothelial cells directly into decellularized scaffolds, taking advantage of the channels remaining from the pre-existing vascular network. Currently, the main hurdle we need to overcome is achieving a fully functional vascular endothelium, stable over a long time period of time, which is engineered using a cell source that is clinically suitable and can generate, in vitro , a yield of cells suitable for the engineering of human sized organs. This review will give an overview of the approaches that have recently been investigated to address the issue of vascularization in the field of tissue engineering of whole organs, and will highlight the current caveats and hurdles that should be addressed in the future.
Regulation and function of endothelial glycocalyx layer in vascular diseases.
Sieve, Irina; Münster-Kühnel, Anja K; Hilfiker-Kleiner, Denise
2018-01-01
In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. The glycocalyx, composed of glycoconjugates and proteoglycans, is an integral component of the ESL and a key element in inter- and intracellular communication and tissue homeostasis. In pathophysiological conditions (atherosclerosis, infection, ischemia/reperfusion injury, diabetes, trauma and acute lung injury) glycocalyx-degrading factors, i.e. reactive oxygen and nitrogen species, matrix metalloproteinases, heparanase and sialidases, damage the ESL, thereby impairing endothelial functions. This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies. Copyright © 2017 Elsevier Inc. All rights reserved.
Stem cell function during plant vascular development
Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka
2013-01-01
The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537
Regulation of thrombosis and vascular function by protein methionine oxidation.
Gu, Sean X; Stevens, Jeff W; Lentz, Steven R
2015-06-18
Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.
Microbiota-specific Th17 Cells: Yin and Yang in Regulation of Inflammatory Bowel Disease.
Wu, Wei; Chen, Feidi; Liu, Zhanju; Cong, Yingzi
2016-06-01
Multiple mechanisms are involved in regulation of host response to microbiota to maintain the intestinal homeostasis. Th17 cells are enriched in the intestinal lamina propria under steady conditions. Many studies have demonstrated that microbiota-reactive Th17 cells in the intestines mediate the pathogenesis of inflammatory bowel diseases. However, clinical trials of anti-interleukin-17A or anti-interleukin-17RA antibodies in patients with Crohn's Disease show no improvement or even exacerbation of disease. Accumulating data has also indicated that Th17 cells may provide a protective effect as well to the intestines from inflammatory insults under homeostasis regulation, even under inflammatory conditions. Thus both proinflammatory and anti-inflammatory functions of intestinal Th17 cells have emerged under various conditions. In this review article, we will summarize recent progresses of Th17 cells in regulation of intestinal homeostasis and in the pathogenesis of inflammatory bowel diseases.
Cuneo, Anthony A.; Autieri, Michael V.
2012-01-01
Common to multiple vascular diseases, including atherosclerosis, interventional restenosis, and transplant vasculopathy, is a localized inflammatory reaction. Activated vascular smooth muscle cells (VSMC) respond to local inflammation and migrate from the media into the lumen of the vessel where they proliferate and synthesize cytokines which they respond to in an autocrine fashion, sustaining the progression of the lesion. The deleterious effects of pro-inflammatory cytokines, particularly immunomodulatory interleukins, on vascular pathophysiology and development of these maladaptive processes have been the subject of intense study. Although a great deal of attention has been given to the negative effects of pro-inflammatory cytokines and interleukins, relatively little has been reported on the potentially beneficial paracrine and autocrine effects of anti-inflammatory interleukins on the vascular response to injury. The vast majority of emphasis on secretion and function of anti-inflammatory mediators has been placed on leukocytes. Consequently, the role of non-immune cells, and direct effects of anti-inflammatory interleukins on vascular cells is poorly understood. We will review the molecular mechanisms whereby anti-inflammatory interleukins inhibit signal transduction and gene expression in inflammatory cells. We will review studies in which beneficial “indirect” effects of anti-inflammatory interleukins on progression of vascular disease are achieved by modulation of immune function. We will also present the limited studies in which “direct” effects of these interleukins on VSMC and endothelial cells dampen the vascular response to injury. We propose that expression of immunomodulatory cytokines by activated vasculature may represent an auto-regulatory feed back mechanism to promote resolution of the vascular response to injury. PMID:19601851
Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.
2017-01-01
The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654
KLF2 and KLF4 control endothelial identity and vascular integrity
Sangwung, Panjamaporn; Zhou, Guangjin; Nayak, Lalitha; Chan, E. Ricky; Kang, Dong-Won; Zhang, Rongli; Lu, Yuan; Sugi, Keiki; Fujioka, Hisashi; Shi, Hong; Lapping, Stephanie D.; Ghosh, Chandra C.; Higgins, Sarah J.; Parikh, Samir M.; Jain, Mukesh K.
2017-01-01
Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal. PMID:28239661
Peng, Hao-Fan; Liu, Jin Yu
2011-01-01
Our laboratory recently reported a new source of smooth muscle cells (SMCs) derived from hair follicle (HF) mesenchymal stem cells. HF-SMCs demonstrated high proliferation and clonogenic potential as well as contractile function. In this study, we aimed at engineering the vascular media using HF-SMCs and a natural biomaterial, namely small intestinal submucosa (SIS). Engineering functional vascular constructs required application of mechanical force, resulting in actin reorganization and cellular alignment. In turn, cell alignment was necessary for development of receptor- and nonreceptor-mediated contractility as soon as 24 h after cell seeding. Within 2 weeks in culture, the cells migrated into SIS and secreted collagen and elastin, the two major extracellular matrix components of the vessel wall. At 2 weeks, vascular reactivity increased significantly up to three- to fivefold and mechanical properties were similar to those of native ovine arteries. Taken together, our data demonstrate that the combination of HF-SMCs with SIS resulted in mechanically strong, biologically functional vascular media with potential for arterial implantation. PMID:21083418
Engineering Pre-vascularized Scaffolds for Bone Regeneration.
Barabaschi, Giada D G; Manoharan, Vijayan; Li, Qing; Bertassoni, Luiz E
2015-01-01
Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaffold. Unavailability of a well-defined vasculature also results in ineffective integration of scaffolds to the host vasculature upon implantation. Arguably, one of the greatest challenges in engineering clinically relevant bone substitutes, therefore, has been the development of vascularized bone scaffolds. Various approaches ranging from peptide and growth factor functionalized biomaterials to hyper-porous scaffolds have been proposed to address this problem with reasonable success. An emerging alternative to address this challenge has been the fabrication of pre-vascularized scaffolds by taking advantage of biomanufacturing techniques, such as soft- and photo-lithography or 3D bioprinting, and cell-based approaches, where functional capillaries are engineered in cell-laden scaffolds prior to implantation. These strategies seek to engineer pre-vascularized tissues in vitro, allowing for improved anastomosis with the host vasculature upon implantation, while also improving cell viability and tissue development in vitro. This book chapter provides an overview of recent methods to engineer pre-vascularized scaffolds for bone regeneration. We first review the development of functional blood capillaries in bony structures and discuss controlled delivery of growth factors, co-culture systems, and on-chip studies to engineer vascularized cell-laden biomaterials. Lastly, we review recent studies using microfabrication techniques and 3D printing to engineer pre-vascularized scaffolds for bone tissue engineering.
Vascular and renal function in experimental thyroid disorders.
Vargas, Félix; Moreno, Juan Manuel; Rodríguez-Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Alvarez-Guerra, Miriam; García-Estañ, Joaquín
2006-02-01
This review focuses on the effects of thyroid hormones in vascular and renal systems. Special emphasis is given to the mechanisms by which thyroid hormones affect the regulation of body fluids, vascular resistance and, ultimately, blood pressure. Vascular function is markedly affected by thyroid hormones that produce changes in vascular reactivity and endothelial function in hyper- and hypothyroidism. The hypothyroid state is accompanied by a marked decrease in sensitivity to vasoconstrictors, especially to sympathetic agonists, alteration that may play a role in the reduced blood pressure of hypothyroid rats, as well as in the preventive effects of hypothyroidism on experimental hypertension. Moreover, in hypothyroid rats, the endothelium-dependent and nitric oxide donors vasodilation is reduced. Conversely, the vessels from hyperthyroid rats showed an increased endothelium-dependent responsiveness that may be secondary to the shear-stress induced by the hyperdynamic circulation, and that may contribute to the reduced vascular resistance characteristic of this disease. Thyroid hormones also have important effects in the kidney, affecting renal growth, renal haemodynamics, and salt and water metabolism. In hyperthyroidism, there is a resetting of the pressure-natriuresis relationship related to hyperactivity of the renin-angiotensin system, which contributes to the arterial hypertension associated with this endocrine disease. Moreover, thyroid hormones affect the development and/or maintenance of various forms of arterial hypertension. This review also describes recent advances in our understanding of thyroid hormone action on nitric oxide and oxidative stress in the regulation of cardiovascular and renal function and in the long-term control of blood pressure.
Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X
2015-12-01
Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-05
... research; quasi-experimental research; and other appropriate methods. The program of research and... designs such as quasi-experimental, single- subject, qualitative, and experimental research. This research.... Figlio, D.N., Rush, M. & Yin, L. (2010). Is it live or is it Internet? Experimental estimates of the...
Rapid Naming Speed and Chinese Character Recognition
ERIC Educational Resources Information Center
Liao, Chen-Huei; Georgiou, George K.; Parrila, Rauno
2008-01-01
We examined the relationship between rapid naming speed (RAN) and Chinese character recognition accuracy and fluency. Sixty-three grade 2 and 54 grade 4 Taiwanese children were administered four RAN tasks (colors, digits, Zhu-Yin-Fu-Hao, characters), and two character recognition tasks. RAN tasks accounted for more reading variance in grade 4 than…
Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.
Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W
2014-12-01
The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.
Effects of cranberry juice consumption on vascular function in patients with coronary artery disease
USDA-ARS?s Scientific Manuscript database
Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...
Phytochemical genistein in the regulation of vascular function: new insights.
Si, Hongwei; Liu, Dongmin
2007-01-01
Genistein, a natural bioactive compound derived from legumes, has drawn wide attention during the last decade because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data from animal and in vitro studies suggest a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Recent studies found that genistein exerts a novel non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Further studies demonstrated that genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These new findings reveal the novel roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential for inflammatory-related vascular disease.
Bretón-Romero, Rosa; Wang, Na; Palmisano, Joseph; Larson, Martin G; Vasan, Ramachandran S; Mitchell, Gary F; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M
2016-12-01
Experimental studies link oscillatory flow accompanied by flow reversal to impaired endothelial cell function. The relation of flow reversal with vascular function and arterial stiffness remains incompletely defined. We measured brachial diastolic flow patterns along with vasodilator function in addition to tonometry-based central and peripheral arterial stiffness in 5708 participants (age 47±13 years, 53% women) in the Framingham Heart Study Offspring and Third Generation cohorts. Brachial artery diastolic flow reversal was present in 35% of the participants. In multivariable regression models, the presence of flow reversal was associated with lower flow-mediated dilation (3.9±0.2 versus 5.0±0.2%; P<0.0001) and reactive hyperemic flow velocity (50±0.99 versus 57±0.93 cm/s; P<0.0001). The presence of flow reversal (compared with absence) was associated with higher central aortic stiffness (carotid-femoral pulse wave velocity 9.3±0.1 versus 8.9±0.1 m/s), lower muscular artery stiffness (carotid-radial pulse wave velocity 9.6±0.1 versus 9.8±0.1 m/s), and higher forearm vascular resistance (5.32±0.03 versus 4.66±0.02 log dyne/s/cm 5 ; P<0.0001). The relations of diastolic flow velocity with flow-mediated dilation, aortic stiffness, and forearm vascular resistance were nonlinear, with a steeper decline in vascular function associated with increasing magnitude of flow reversal. In our large, community-based sample, brachial artery flow reversal was common and associated with impaired vasodilator function and higher aortic stiffness. Our findings are consistent with the concept that flow reversal may contribute to vascular dysfunction. © 2016 American Heart Association, Inc.
A Teacher's Activities Guide for Chinese New Year - Gung Hei Fat Choy.
ERIC Educational Resources Information Center
Sonoma County Superintendent of Schools, Santa Rosa, CA.
This teacher's guide is designed to provide information and activities on the Chinese New Year and on aspects of the culture and heritage of the Chinese-American. Background material is given on the history of Chinese immigration to America, the lunar calendar, the Chinese cycle of years, the Chinese zodiac, the philosophical concept of yin and…
Langerhans Cells: the 'Yin and Yang' of HIV Restriction and Transmission.
Mayr, Luzia; Su, Bin; Moog, Christiane
2017-03-01
Langerhans cells are specialized sentinels present in the epidermis expressing Langerin, a specific C-type lectin receptor involved in HIV capture and destruction. Recently, the specific mechanism leading to this HIV restriction was discovered. Nevertheless, Langerhans cells can be infected and the way HIV escapes this restriction needs to be unraveled. Copyright © 2017. Published by Elsevier Ltd.
; International Journal of Energy Research 32 (5), 379-407. Ahn, K.S., Shet, S., Deutsch, T., Jiang, C.S., Yan, Y and Sustainable Energy, an AIP journal. Research Interests Dr. Turner has been recognized as a methods, definitions, and reporting protocols." Journal of Materials Research 25 (01), 3-16. Yin, W.J
Jovanovski, Elena; Zurbau, Andreea
2015-01-01
Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk. PMID:25954727
Jovanovski, Elena; Zurbau, Andreea; Vuksan, Vladimir
2015-04-01
Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endothelial vasodilatory system. Thus, in theory, a carbohydrate restricted diet may preserve the integrity of the arterial system. This review attempts to provide insight on whether low-carbohydrate diets have a favorable or detrimental impact on vascular function, or it is perhaps the quality of carbohydrate that should direct dietary recommendations. Research to date suggests that diets low in carbohydrate amount may negatively impact vascular endothelial function. Conversely, it appears that maintaining recommended carbohydrate intake with utilization of low glycemic index foods generates a more favorable vascular profile. Understanding these relationships will aid in deciphering the diverging role of modulating quantity and quality of carbohydrates on cardiovascular risk.
Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Yuan Z.; Aggarwal, M.
2016-01-01
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function. PMID:27037223
[Textural research on the origin and evolution of the"theory of drying dampness"and its initiator].
Zhou, X M; Hu, J P
2016-07-28
There are two different records, namely,"vulnerability to dampness in autumn"and"dryness prevailing"in autumn, in the Neijing ( Inner Canon ). In the Jin and Yuan Dynasties, Liu Wansu supplemented the pathogenesis of dryness pathogen, whereas Wang Andao explained the contradictory records in the Neijing . In the Qing Dynasty, Yu Chang definitely challenged the theory"vulnerability to dampness in autumn"of the Neijing ,triggering a debate on the recognition of"drying dampness". In fact, Yu Guopei was the initiator of"theory of drying dampness", who discussed the nature of Yin and Yang of"drying dampness"based on the laws of correspondence between human body and natural environment, elucidating that drying dampness should be the root of both exogenous disease and internal damage, and elaborating the etiology and pathogenesis of"drying dampness", the diagnosis and the nature of the drugs for drying dampness. Shi Shoutang inherited Yu's theory and made a further development. In modern times, some scholars advocated that"drying dampness"should be consideredalong with Yin and Yang, superficies and interior, excess and deficiency, cold and heat, as the guiding principle for syndrome differentiation.
Vascular repair strategies in type 2 diabetes: novel insights
Kuschnerus, Kira; Landmesser, Ulf
2015-01-01
Impaired functions of vascular cells are responsible for the majority of complications in patients with type 2 diabetes (T2D). Recently a better understanding of mechanisms contributing to development of vascular dysfunction and the role of systemic inflammatory activation and functional alterations of several secretory organs, of which adipose tissue has more recently been investigated, has been achieved. Notably, the progression of vascular disease within the context of T2D appears to be driven by a multitude of incremental signaling shifts. Hence, successful therapies need to target several mechanisms in parallel, and over a long time period. This review will summarize the latest molecular strategies and translational developments of cardiovascular therapy in patients with T2D. PMID:26543824
Li, Xiao-ping; Lin, Shu; Ye, Shuang
2011-08-01
To study the therapeutic efficacy of Modified Zigui Decoction (MZD) in treatment of polycystic ovary syndrome of Gan-Shen yin deficiency syndrome. 66 polycystic ovary syndrome patients of Gan-Shen yin deficiency syndrome were randomly assigned to the MZD group (Group A) and the Westem medicine group (Group B), 33 patients in each. Patients in Group A orally took MZD, while those in Group B orally took Diane-35. Their menstrual cycle rate, basal body temperature (BBT), the ovarian size, the number of follicles, and changes of endocrine hormones were observed before treatment, the first menstrual cycle, and the sixth menstrual cycle after treatment. (1) The normal rate of one menstrual cycle after stopping taking medicine was 57.58% in Group A and 63.64% in Group B. There was no statistical difference between the two groups (P>0.05). The normal rate of six menstrual cycles after stopping taking medicine was 45. 45% in Group A and 21.21% in Group B. The former was superior to the latter, showing statistical difference (P<0.05). (2) The biphasic BBT rates of one menstrual cycle after stopping taking medicine were somewhat elevated in the two groups, better than before treatment respectively (P<0.01). But there was no statistical difference between the two groups (P>0.05). The biphasic BBT rate of six menstrual cycles after stopping taking medicine was 45.45% in Group A and 18.18% in Group B. The former was superior to the latter, showing statistical difference (P<0.05). (3) The bilateral ovarian volume of one menstrual cycle after stopping taking medicine was obviously reduced in both groups (P<0.01). The bilateral ovarian volume of six menstrual cycles after stopping taking medicine was still more reduced than before treatment in Group A (P<0.01), while it returned to the size of before treatment in Group B (P>0.05). (4) The number of follicles of one menstrual cycle after stopping taking medicine was obviously reduced in both groups (P<0.01). The number of follicles of six menstrual cycles after stopping taking medicine was still reduced in Group A (P<0.01), while it returned to the number before treatment in Group B (P>0.05). (5) The luteinizing hormone (LH), testosterone (T), LH/FSH ratio of one menstrual cycle after stopping taking medicine were obviously reduced in both groups (P<0.01). They were still more reduced six menstrual cycles after stopping taking medicine than before treatment in Group A (P<0.01), while they returned to the levels of before treatment in Group B (P>0.05). MZD could effectively treat patients with polycystic ovary syndrome of Gan-Shen yin deficiency syndrome. Besides, its long-term efficacy was more stable and lasting.
Zhou, Yingying; Fan, Jia; Zhu, Huayuan; Ji, Li; Fan, Wenyong; Kapoor, Isha; Wang, Yue; Wang, Yuan; Zhu, Guoqing; Wang, Juejin
2017-12-01
Calcium influx from activated voltage-gated calcium channel Ca V 1.2 in vascular smooth muscle cells is indispensable for maintaining myogenic tone and blood pressure. The function of Ca V 1.2 channel can be optimized by alternative splicing, one of post-transcriptional modification mechanisms. The splicing factor Rbfox2 is known to regulate the Ca V 1.2 pre-mRNA alternative splicing events during neuronal development. However, Rbfox2's roles in modulating the key function of vascular Ca V 1.2 channel and in the pathogenesis of hypertension remain elusive. Here, we report that the proportion of Ca V 1.2 channels with alternative exon 9* is increased by 10.3%, whereas that with alternative exon 33 is decreased by 10.5% in hypertensive arteries. Surprisingly, the expression level of Rbfox2 is increased ≈3-folds, presumably because of the upregulation of a dominant-negative isoform of Rbfox2. In vascular smooth muscle cells, we find that knockdown of Rbfox2 dynamically increases alternative exon 9*, whereas decreases exon 33 inclusion of Ca V 1.2 channels. By patch-clamp studies, we show that diminished Rbfox2-induced alternative splicing shifts the steady-state activation and inactivation curves of vascular Ca V 1.2 calcium channel to hyperpolarization, which makes the window current potential to more negative. Moreover, siRNA-mediated knockdown of Rbfox2 increases the pressure-induced vascular myogenic tone of rat mesenteric artery. Taken together, our data indicate that Rbfox2 modulates the functions of vascular Ca V 1.2 calcium channel by dynamically regulating the expressions of alternative exons 9* and 33, which in turn affects the vascular myogenic tone. Therefore, our work suggests a key role for Rbfox2 in hypertension, which provides a rational basis for designing antihypertensive therapies. © 2017 American Heart Association, Inc.
HIV-1, Reactive Oxygen Species and Vascular Complications
Porter, Kristi M.; Sutliff, Roy L.
2012-01-01
Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529
Circumferentially aligned fibers guided functional neoartery regeneration in vivo.
Zhu, Meifeng; Wang, Zhihong; Zhang, Jiamin; Wang, Lina; Yang, Xiaohu; Chen, Jingrui; Fan, Guanwei; Ji, Shenglu; Xing, Cheng; Wang, Kai; Zhao, Qiang; Zhu, Yan; Kong, Deling; Wang, Lianyong
2015-08-01
An ideal vascular graft should have the ability to guide the regeneration of neovessels with structure and function similar to those of the native blood vessels. Regeneration of vascular smooth muscle cells (VSMCs) with circumferential orientation within the grafts is crucial for functional vascular reconstruction in vivo. To date, designing and fabricating a vascular graft with well-defined geometric cues to facilitate simultaneously VSMCs infiltration and their circumferential alignment remains a great challenge and scarcely reported in vivo. Thus, we have designed a bi-layered vascular graft, of which the internal layer is composed of circumferentially aligned microfibers prepared by wet-spinning and an external layer composed of random nanofibers prepared by electrospinning. While the internal circumferentially aligned microfibers provide topographic guidance for in vivo regeneration of circumferentially aligned VSMCs, the external random nanofibers can offer enhanced mechanical property and prevent bleeding during and after graft implantation. VSMCs infiltration and alignment within the scaffold was then evaluated in vitro and in vivo. Our results demonstrated that the circumferentially oriented VSMCs and longitudinally aligned ECs were successfully regenerated in vivo after the bi-layered vascular grafts were implanted in rat abdominal aorta. No formation of thrombosis or intimal hyperplasia was observed up to 3 month post implantation. Further, the regenerated neoartery exhibited contraction and relaxation property in response to vasoactive agents. This new strategy may bring cell-free small diameter vascular grafts closer to clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jiang, Bin; Suen, Rachel; Wertheim, Jason A; Ameer, Guillermo A
2016-12-12
Thrombosis within small-diameter vascular grafts limits the development of bioartificial, engineered vascular conduits, especially those derived from extracellular matrix (ECM). Here we describe an easy-to-implement strategy to chemically modify vascular ECM by covalently linking a collagen binding peptide (CBP) to heparin to form a heparin derivative (CBP-heparin) that selectively binds a subset of collagens. Modification of ECM with CBP-heparin leads to increased deposition of functional heparin (by ∼7.2-fold measured by glycosaminoglycan composition) and a corresponding reduction in platelet binding (>70%) and whole blood clotting (>80%) onto the ECM. Furthermore, addition of CBP-heparin to the ECM stabilizes long-term endothelial cell attachment to the lumen of ECM-derived vascular conduits, potentially through recruitment of heparin-binding growth factors that ultimately improve the durability of endothelialization in vitro. Overall, our findings provide a simple yet effective method to increase deposition of functional heparin on the surface of ECM-based vascular grafts and thereby minimize thrombogenicity of decellularized tissue, overcoming a significant challenge in tissue engineering of bioartificial vessels and vascularized organs.
Ye, Zusen; Zhang, Zhizhong; Zhang, Hao; Hao, Yonggang; Zhang, Jun; Liu, Wenhua; Xu, Gelin; Liu, Xinfeng
2017-03-01
Our objective is to investigate whether C-reactive protein (CRP) and homocysteine (Hcy) levels in the acute phase of large-artery atherosclerotic stroke predict long-term functional disability and recurrent vascular events. Patients with first-ever large-artery atherosclerotic ischemic stroke were prospectively registered in the Nanjing Stroke Registry Program between January 2012 and June 2014. Venous blood samples were collected within 2 weeks after the index stroke. Patients were followed up for 1 year. The Kaplan-Meier method was performed in survival analysis. Multiple logistic regression analysis and Cox proportional hazard model were applied to identify predictors of functional disability and recurrent vascular events, respectively. A total of 625 eligible patients (458 males) were evaluated. During the 1-year follow-up period, 63 patients suffered recurrent vascular events. An elevated CRP level is an independent predictor of poor functional disability at 1 year (P for trend = .002), in both males (P for trend = .017) and females (P for trend = .042). Hcy showed no relationship with functional disability. No significant relationship between CRP and Hcy levels and recurrent vascular events was found in total patients in multiple models. Stratified by sex, high Hcy levels were associated with recurrent vascular events in females (P for trend = .036) but not in males. Elevated CRP levels are associated with poor functional disability in patients with large-artery atherosclerotic stroke at 1 year, and Hcy is a relatively moderate predictor of recurrent vascular events in female patients with large-artery atherosclerotic stroke at 1 year. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Sox17 drives functional engraftment of endothelium converted from non-vascular cells.
Schachterle, William; Badwe, Chaitanya R; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M; Rafii, Shahin
2017-01-16
Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function.
Ren, Bin
2018-04-24
FoxO1 has emerged as an important regulator of angiogenesis. Recent work published in this Journal shows that FoxO1 regulates VEGF expression in keratinocytes and is required for angiogenesis in wound healing. Since FoxO1 also regulates CD36 transcription, and endothelial cell differentiation and vascular maturation, this transcription factor may be essential for the formation of functional vascular networks via coupling the regulation of CD36 in vascular endothelial cells under physiological and pathological conditions. Although many outstanding questions remain to be answered, the mechanisms by which FoxO1 regulates VEGF in keratinocytes provide insight into the development of functional angiogenesis and further our understanding of vascular biology. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Brant, Luisa C C; Wang, Na; Ojeda, Francisco M; LaValley, Michael; Barreto, Sandhi M; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S; Palmisano, Joseph N; Münzel, Thomas; Blankenberg, Stefan; Wild, Philipp S; Zeller, Tanja; Ribeiro, Antonio L P; Schnabel, Renate B; Hamburg, Naomi M
2017-03-08
Microvascular dysfunction is a marker of early vascular disease that predicts cardiovascular events. Whether metabolically healthy obese individuals have impaired microvascular function remains unclear. The aim of this study was to evaluate the relation of obesity phenotypes stratified by metabolic status to microvascular function. We meta-analyzed aggregate data from 3 large cohorts (Brazilian Longitudinal Study of Adult Health, the Framingham Heart Study, and the Gutenberg Heart Study; n=16 830 participants, age range 19-90, 51.3% men). Regression slopes between cardiovascular risk factors and microvascular function, measured by peripheral arterial tonometry (PAT), were calculated. Individuals were classified as normal-weight, overweight, or obese by body mass index (BMI) and stratified by healthy or unhealthy metabolic status based on metabolic syndrome using the ATP-III criteria. Male sex, BMI, and metabolic risk factors were associated with higher baseline pulse amplitude and lower PAT ratio. There was stepwise impairment of vascular measures from normal weight to obesity in both metabolic status strata. Metabolically healthy obese individuals had more impaired vascular function than metabolically healthy normal-weight individuals (baseline pulse amplitude 6.12±0.02 versus 5.61±0.01; PAT ratio 0.58±0.01 versus 0.76±0.01, all P <0.0001). Metabolically unhealthy obese individuals had more impaired vascular function than metabolically healthy obese individuals (baseline pulse amplitude 6.28±0.01 versus 6.12±0.02; PAT ratio 0.49±0.01 versus 0.58±0.01, all P <0.0001). Metabolically healthy obese individuals have impaired microvascular function, though the degree of impairment is less marked than in metabolically unhealthy obese individuals. Our findings suggest that obesity is detrimental to vascular health irrespective of metabolic status. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Garriga, Marina; Milà, Marta; Mir, Manzoor; Al-Baradie, Raid; Huertas, Sonia; Castejon, Cesar; Casas, Laura; Badenes, Dolors; Giménez, Nuria; Font, M. Angels; Gonzalez, Jose M.; Ysamat, Maria; Aguilar, Miguel; Slevin, Mark; Krupinski, Jerzy
2015-01-01
Alzheimer’s disease (AD) and vascular dementia (VaD) are the most common cause of dementia. Cerebral ischemia is a major risk factor for development of dementia. 123I-FP-CIT SPECT (DaTScan) is a complementary tool in the differential diagnoses of patients with incomplete or uncertain Parkinsonism. Additional application of DaTScan enables the categorization of Parkinsonian disease with dementia (PDD), and its differentiation from pure AD, and may further contribute to change the therapeutic decision. The aim of this study was to analyze the vascular contribution towards dementia and mild cognitive impairment (MCI). We evaluated the utility of DaTScan for the early diagnosis of dementia in patients with and without a clinical vascular component, and the association between neuropsychological function, vascular component and dopaminergic function on DaTScan. One-hundred and five patients with MCI or the initial phases of dementia were studied prospectively. We developed an initial assessment using neurologic examination, blood tests, cognitive function tests, structural neuroimaging and DaTScan. The vascular component was later quantified in two ways: clinically, according to the Framingham Risk Score (FRS) and by structural neuroimaging using Wahlund Scale Total Score (WSTS). Early diagnosis of dementia was associated with an abnormal DaTScan. A significant association was found between a high WSTS and an abnormal DaTScan (p < 0.01). Mixed AD was the group with the highest vascular component, followed by the VaD group, while MCI and pure AD showed similar WSTS. No significant associations were found between neuropsychological impairment and DaTScan independently of associated vascular component. DaTScan seems to be a good tool to discriminate, in a first clinical assessment, patients with MCI from those with established dementia. There was bigger general vascular affectation observable in MRI or CT in patients with abnormal dopaminergic uptake seen on DaTScan. PMID:26190980
Grienenberger, Etienne; Douglas, Carl J.
2014-01-01
Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189
Carroll, S M; Heilman, S J; Stremel, R W; Tobin, G R; Barker, J H
1997-04-01
Ischemia of the distal portion of the latissimus dorsi muscle occurs in muscle transfer for cardiomyoplasty and reduces distal muscle contractility and thus the mechanical effectiveness of cardiomyoplasty. We hypothesized that muscle function would be improved by a vascular delay procedure that increases distal muscle perfusion of the latissimus dorsi muscle. The latissimus dorsi muscles of 10 adult mongrel dogs were subjected to a vascular delay procedure on one side and a sham procedure on the other. Following 10 days of vascular delay, muscle perfusion was measured with a laser-Doppler perfusion imager before and after elevation of the muscles as flaps based only on their thoracodorsal neurovascular pedicles. The muscles were wrapped and sutured around silicone chambers (simulating cardiomyoplasty), a stimulating electrode was placed around each thoracodorsal nerve, and the muscles were stimulated to contract in both rhythmic and tetanic fashion. Circumferential (distal and middle latissimus dorsi muscle function) force generation and fatigue rates were measured independently. Circumferential muscle force, circumferential and longitudinal fatigue rate, and distal, middle, and overall perfusion were significantly (p < 0.05) improved in delayed muscle compared with nondelayed muscle. We found that a vascular delay procedure and a 10-day delay adaptation period significantly improve latissimus dorsi muscle flap perfusion and function, particularly in the distal and middle portions of the muscle. Delay should be considered as a means of improving the clinical outcome in cardiomyoplasty.
Kappus, Rebecca M; Bunsawat, Kanokwan; Brown, Michael D; Phillips, Shane A; Haus, Jacob M; Baynard, Tracy; Fernhall, Bo
2017-10-01
African-Americans have a higher prevalence of hypertension compared with whites, possibly due to elevated oxidative stress and subsequent vascular dysfunction. It is unclear the contribution of aging on oxidative stress and vascular function in a racially diverse cohort. Ninety-three young and older African-American and white participants received antioxidant (AOX) or placebo supplementation in a double-blind, randomized, cross-over design. Measures of endothelial function (reactive hyperemia, flow-mediated dilation), exercise blood flow, and biomarkers of oxidative stress and AOX activity were measured following supplementation. In young adults, there were racial differences in resistance vessel response to reactive hyperemia and no effects of race on macrovascular function following AOX supplementation. Following AOX supplementation, older white adults improved while African-Americans reduced resistance vessel function responses to reactive hyperemia, whereas macrovascular function improved in both races, with a greater increase in African-Americans. There were racial differences in blood flow normalized to lean mass during handgrip exercise at 20% maximal voluntary contraction in the young group and AOX supplementation led to increased forearm vascular conductance in older whites with a decrease in older African-Americans. There was a supplement effect in superoxide dismutase activity in younger adults only. The results of the current study show that there are differential effects of AOX supplementation on macrovascular and resistance vessel function, and this is impacted by both age and race.
ERIC Educational Resources Information Center
Baytak, Ahmet; Land, Susan M.
2011-01-01
This study employed a case study design (Yin, "Case study research, design and methods," 2009) to investigate the processes used by 5th graders to design and develop computer games within the context of their environmental science unit, using the theoretical framework of "constructionism." Ten fifth graders designed computer games using "Scratch"…
ERIC Educational Resources Information Center
Roth, Gene L., Ed.
These proceedings contain the texts of five research reports that were presented at a conference dealing with trade and industrial education. The following papers are included: "A Survey of Teacher Attitudes and Beliefs Related to the Use of Microcomputers in Vocational Education," by Steve Chi-Yin Yuen; "Retraining for Robotics and Other Forms of…
Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis
Lu, Leina; Sun, Kun; Chen, Xiaona; Zhao, Yu; Wang, Lijun; Zhou, Liang; Sun, Hao; Wang, Huating
2013-01-01
Skeletal muscle differentiation is orchestrated by a network of transcription factors, epigenetic regulators, and non-coding RNAs. The transcription factor Yin Yang 1 (YY1) silences multiple target genes in myoblasts (MBs) by recruiting Ezh2 (Enhancer of Zeste Homologue2). To elucidate genome-wide YY1 binding in MBs, we performed chromatin immunoprecipitation (ChIP)-seq and found 1820 specific binding sites in MBs with a large portion residing in intergenic regions. Detailed analysis demonstrated that YY1 acts as an activator for many loci in addition to its known repressor function. No significant co-occupancy was found between YY1 and Ezh2, suggesting an additional Ezh2-independent function for YY1 in MBs. Further analysis of intergenic binding sites showed that YY1 potentially regulates dozens of large intergenic non-coding RNAs (lincRNAs), whose function in myogenesis is underexplored. We characterized a novel muscle-associated lincRNA (Yam-1) that is positively regulated by YY1. Yam-1 is downregulated upon differentiation and acts as an inhibitor of myogenesis. We demonstrated that Yam-1 functions through in cis regulation of miR-715, which in turn targets Wnt7b. Our findings not only provide the first genome-wide picture of YY1 association in muscle cells, but also uncover the functional role of lincRNA Yam-1. PMID:23942234
Emter, Craig A; Tharp, Darla L; Ivey, Jan R; Ganjam, Venkataseshu K; Bowles, Douglas K
2011-10-01
Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.
Jakobsson, Lars; van Meeteren, Laurens A
2013-05-15
Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor β (TGF-β) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-β family in the mouse. Copyright © 2013 Elsevier Inc. All rights reserved.
Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis.
Schaer, Christian A; Deuel, Jeremy W; Schildknecht, Daniela; Mahmoudi, Leila; Garcia-Rubio, Ines; Owczarek, Catherine; Schauer, Stefan; Kissner, Reinhard; Banerjee, Uddyalok; Palmer, Andre F; Spahn, Donat R; Irwin, David C; Vallelian, Florence; Buehler, Paul W; Schaer, Dominik J
2016-05-15
Hemolysis occurs not only in conditions such as sickle cell disease and malaria but also during transfusion of stored blood, extracorporeal circulation, and sepsis. Cell-free Hb depletes nitric oxide (NO) in the vasculature, causing vasoconstriction and eventually cardiovascular complications. We hypothesize that Hb-binding proteins may preserve vascular NO signaling during hemolysis. Characterization of an archetypical function by which Hb scavenger proteins could preserve NO signaling during hemolysis. We investigated NO reaction kinetics, effects on arterial NO signaling, and tissue distribution of cell-free Hb and its scavenger protein complexes. Extravascular translocation of cell-free Hb into interstitial spaces, including the vascular smooth muscle cell layer of rat and pig coronary arteries, promotes vascular NO resistance. This critical disease process is blocked by haptoglobin. Haptoglobin does not change NO dioxygenation rates of Hb; rather, the large size of the Hb:haptoglobin complex prevents Hb extravasation, which uncouples NO/Hb interaction and vasoconstriction. Size-selective compartmentalization of Hb functions as a substitute for red blood cells after hemolysis and preserves NO signaling in the vasculature. We found that evolutionarily and structurally unrelated Hb-binding proteins, such as PIT54 found in avian species, functionally converged with haptoglobin to protect NO signaling by sequestering cell-free Hb in large protein complexes. Sequential compartmentalization of Hb by erythrocytes and scavenger protein complexes is an archetypical mechanism, which may have supported coevolution of hemolysis and normal vascular function. Therapeutic supplementation of Hb scavengers may restore vascular NO signaling and attenuate disease complications in patients with hemolysis.
Dekkers, I A; de Mutsert, R; de Vries, A P J; Rosendaal, F R; Cannegieter, S C; Jukema, J W; le Cessie, S; Rabelink, T J; Lamb, H J; Lijfering, W M
2018-03-01
Essentials Why venous thrombosis is more prevalent in chronic kidney disease is unclear. We investigated whether renal and vascular function are associated with hypercoagulability. Coagulation factors showed a procoagulant shift with impaired renal and vascular function. This suggests that renal and vascular function play a role in the etiology of thrombosis. Background Impaired renal and vascular function have been associated with venous thrombosis, but the mechanism is unclear. Objectives We investigated whether estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), and pulse wave velocity (PWV) are associated with a procoagulant state. Methods In this cross-sectional analysis of the NEO Study, eGFR, UACR, fibrinogen, and coagulation factors (F)VIII, FIX and FXI were determined in all participants (n = 6536), and PWV was assessed in a random subset (n = 2433). eGFR, UACR and PWV were analyzed continuously and per percentile: per six categories for eGFR (> 50 th [reference] to < 1st) and UACR (< 50 th [reference] to > 99th), and per four categories (< 50 th [reference] to > 95th percentile) for PWV. Linear regression was used and adjusted for age, sex, total body fat, smoking, education, ethnicity, total cholesterol, C-reactive protein (CRP) and vitamin K antagonists use (FIX). Results Mean age was 55.6 years, mean eGFR 86.0 (12SD) mL 1.73 m - ² and median UACR 0.4 mg mmol -1 (25th, 75th percentile; 0.3, 0.7). All coagulation factors showed a procoagulant shift with lower renal function and albuminuria. For example, FVIII was 22 IU dL -1 (95% CI, 13-32) higher in the eGFR < 1st percentile compared with the > 50th percentile, and FVIII was 12 IU dL -1 (95% CI, 3-22) higher in the UACR > 99th percentile compared with the < 50th percentile. PWV was positively associated with coagulation factors FIX and FXI in continuous analysis; per m/s difference in PWV, FIX was 2.0 IU dL -1 (95% CI, 0.70-3.2) higher. Conclusions Impaired renal and vascular function was associated with higher levels of coagulation factors, underlining the role of renal function and vascular function in the development of venous thrombosis. © 2017 International Society on Thrombosis and Haemostasis.
Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties
NASA Technical Reports Server (NTRS)
Huemmrich, Karl F.; Gamon, John; Tweedie, Craig; Campbell, Petya K.; Landis, David R.; Middleton, Elizabeth M.
2013-01-01
Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013+/-0.001, 0.0018+/-0.0002, and 0.0012+/-0.0001 mol C/mol absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals.
Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries
Singh, Charanpreet; Wong, Cynthia S.; Wang, Xungai
2015-01-01
Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants. PMID:26133386
Rathnayake, Kumari M; Weech, Michelle; Jackson, Kim G; Lovegrove, Julie A
2018-03-16
CVD are the leading cause of death in women globally, with ageing associated with progressive endothelial dysfunction and increased CVD risk. Natural menopause is characterised by raised non-fasting TAG concentrations and impairment of vascular function compared with premenopausal women. However, the mechanisms underlying the increased CVD risk after women have transitioned through the menopause are unclear. Dietary fat is an important modifiable risk factor relating to both postprandial lipaemia and vascular reactivity. Meals rich in SFA and MUFA are often associated with greater postprandial TAG responses compared with those containing n-6 PUFA, but studies comparing their effects on vascular function during the postprandial phase are limited, particularly in postmenopausal women. The present review aimed to evaluate the acute effects of test meals rich in SFA, MUFA and n-6 PUFA on postprandial lipaemia, vascular reactivity and other CVD risk factors in postmenopausal women. The systematic search of the literature identified 778 publications. The impact of fat-rich meals on postprandial lipaemia was reported in seven relevant studies, of which meal fat composition was compared in one study described in three papers. An additional study determined the impact of a high-fat meal on vascular reactivity. Although moderately consistent evidence suggests detrimental effects of high-fat meals on postprandial lipaemia in postmenopausal (than premenopausal) women, there is insufficient evidence to establish the impact of meals of differing fat composition. Furthermore, there is no robust evidence to conclude the effect of meal fatty acids on vascular function or blood pressure. In conclusion, there is an urgent requirement for suitably powered robust randomised controlled trials to investigate the impact of meal fat composition on postprandial novel and established CVD risk markers in postmenopausal women, an understudied population at increased cardiometabolic risk.
ERIC Educational Resources Information Center
Fitterling, James M.; And Others
1988-01-01
A behavioral package was used to shape and maintain adherence of five adult females with recurring vascular headache to a program of aerobic exercise training. Results demonstrated a functional relationship between the behavioral package and exercise adherence, as well as clinically significant collateral reductions in vascular headache activity…
Inapparent pulmonary vascular disease in an ex-heroin user
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonelli Incalzi, R.; Ludovico Maini, C.; Giuliano Bonetti, M.
1986-04-01
A severe pulmonary vascular derangement, usually reported in drug addicts, was diagnosed in a 28-year-old asymptomatic ex-heroin user by means of fortuitously performed pulmonary perfusion imaging. Neither physical findings nor pulmonary function tests, aroused suspicion of the diagnosis. A search for asymptomatic pulmonary vascular disease probably should be undertaken in drug addicts.
BIOLOGICAL AND BIOPHYSICAL PROPERTIES OF VASCULAR CONNEXIN CHANNELS
Johnstone, Scott; Isakson, Brant; Locke, Darren
2010-01-01
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell type-independent and cell type-specific transcription factors, posttranslational modification and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this review in the physiological and pathophysiological context of vessel function. PMID:19815177
Jarajapu, Yagna P R
2017-01-01
In recent years, previously unknown functions have been conferred to the RAAS and have been explored in mechanistic studies and disease models. Implication of bone marrow stem/progenitor cells in the cardiovascular protective or detrimental effects of RAAS is a prominent advancement because of the translational significance. Selected members of RAAS are now known to modulate migration, proliferation, and mobilization of bone marrow cells in response to ischemic insult, which are sensitive indicators of vascular repair-relevant functions. In this Chapter, protocols for most frequently used, in vitro, ex vivo, and in vivo assays to explore the potential of RAAS members to stimulate vascular repair-relevant functions of bone marrow stem/progenitor cells of human and murine origin.
Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.
Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao
2016-09-01
Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.
Lin, Ai-Ling; Zheng, Wei; Halloran, Jonathan J; Burbank, Raquel R; Hussong, Stacy A; Hart, Matthew J; Javors, Martin; Shih, Yen-Yu Ian; Muir, Eric; Solano Fonseca, Rene; Strong, Randy; Richardson, Arlan G; Lechleiter, James D; Fox, Peter T; Galvan, Veronica
2013-01-01
Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias. PMID:23801246
Tharp, Darla L.; Ivey, Jan R.; Ganjam, Venkataseshu K.; Bowles, Douglas K.
2011-01-01
Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy. PMID:21841018
Sirtuins, Cell Senescence, and Vascular Aging.
Kida, Yujiro; Goligorsky, Michael S
2016-05-01
The sirtuins (SIRTs) constitute a class of proteins with nicotinamide adenine dinucleotide-dependent deacetylase or adenosine diphosphate-ribosyltransferase activity. Seven SIRT family members have been identified in mammals, from SIRT1, the best studied for its role in vascular aging, to SIRT7. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are nuclear. Extensive studies have clearly revealed that SIRT proteins regulate diverse cell functions and responses to stressors. Vascular aging involves the aging process (senescence) of endothelial and vascular smooth muscle cells. Two types of cell senescence have been identified: (1) replicative senescence with telomere attrition; and (2) stress-induced premature senescence without telomere involvement. Both types of senescence induce vascular cell growth arrest and loss of vascular homeostasis, and contribute to the initiation and progression of cardiovascular diseases. Previous mechanistic studies have revealed in detail that SIRT1, SIRT3, and SIRT6 show protective functions against vascular aging, and definite vascular function of other SIRTs is under investigation. Thus, direct SIRT modulation and nicotinamide adenine dinucleotide stimulation of SIRT are promising candidates for cardiovascular disease therapy. A small number of pilot studies have been conducted to assess SIRT modulation in humans. These clinical studies have not yet provided convincing evidence that SIRT proteins alleviate morbidity and mortality in patients with cardiovascular diseases. The outcomes of multiple ongoing clinical trials are awaited to define the efficacy of SIRT modulators and SIRT activators in cardiovascular diseases, along with the potential adverse effects of chronic SIRT modulation. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Yotti, Raquel; Bermejo, Javier; Gutiérrez-Ibañes, Enrique; Pérez del Villar, Candelas; Mombiela, Teresa; Elízaga, Jaime; Benito, Yolanda; González-Mansilla, Ana; Barrio, Alicia; Rodríguez-Pérez, Daniel; Martínez-Legazpi, Pablo; Fernández-Avilés, Francisco
2015-02-10
Systemic arterial load impacts the symptomatic status and outcome of patients with calcific degenerative aortic stenosis (AS). However, assessing vascular properties is challenging because the arterial tree's behavior could be influenced by the valvular obstruction. This study sought to characterize the interaction between valvular and vascular functions in patients with AS by using transcatheter aortic valve replacement (TAVR) as a clinical model of isolated intervention. Aortic pressure and flow were measured simultaneously using high-fidelity sensors in 23 patients (mean 79 ± 7 years of age) before and after TAVR. Blood pressure and clinical response were registered at 6-month follow-up. Systolic and pulse arterial pressures, as well as indices of vascular function (vascular resistance, aortic input impedance, compliance, and arterial elastance), were significantly modified by TAVR, exhibiting stiffer vascular behavior post-intervention (all, p < 0.05). Peak left ventricular pressure decreased after TAVR (186 ± 36 mm Hg vs. 162 ± 23 mm Hg, respectively; p = 0.003) but remained at >140 mm Hg in 70% of patients. Wave intensity analysis showed abnormally low forward and backward compression waves at baseline, increasing significantly after TAVR. Stroke volume decreased (-21 ± 19%; p < 0.001) and correlated with continuous and pulsatile indices of arterial load. In the 48 h following TAVR, a hypertensive response was observed in 12 patients (52%), and after 6-month follow-up, 5 patients required further intensification of discharge antihypertensive therapy. Vascular function in calcific degenerative AS is conditioned by the upstream valvular obstruction that dampens forward and backward compression waves in the arterial tree. An increase in vascular load after TAVR limits the procedure's acute afterload relief. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Lopez, Alexandra
2017-01-01
This study focused on discovering what instructors' experiences help elementary school students develop not only academically but also socially. This qualitative multiple case study method was guided by Yin, and the purpose of the study was to investigate effective instruction strategies from the perspective of instructors who worked in an…
Vive la Difference: What We Learn from Each Other by Teaching Together
ERIC Educational Resources Information Center
Rehling, Lu; Lindeman, Neil
2010-01-01
The authors are similar in sharing the academic discipline of professional writing and of both having had experience as writers and editors in the workplace, but they are different in many other and obvious ways. The students notice these differences, using, in course assessments, descriptive phrases to describe the contrast that include "yin and…
Venturelli, Massimo; Layec, Gwenael; Trinity, Joel; Hart, Corey R; Broxterman, Ryan M; Richardson, Russell S
2017-01-01
Passive leg movement (PLM)-induced hyperemia is a novel approach to assess vascular function, with a potential clinical role. However, in some instances, the varying chronotropic response induced by PLM has been proposed to be a potentially confounding factor. Therefore, we simplified and modified the PLM model to require just a single PLM (sPLM), an approach that may evoke a peripheral hemodynamic response, allowing a vascular function assessment, but at the same time minimizing central responses. To both characterize and assess the utility of sPLM, in 12 healthy subjects, we measured heart rate (HR), stroke volume, cardiac output (CO), mean arterial pressure (MAP), leg blood flow (LBF), and calculated leg vascular conductance (LVC) during both standard PLM, consisting of passive knee flexion and extension performed at 1 Hz for 60 s, and sPLM, consisting of only a single passive knee flexion and extension over 1 s. During PLM, MAP transiently decreased (5 ± 1 mmHg), whereas both HR and CO increased from baseline (6.0 ± 1.1 beats/min, and 0.8 ± 0.01 l/min, respectively). Following sPLM, MAP fell similarly (5 ± 2 mmHg; P = 0.8), but neither HR nor CO responses were identifiable. The peak LBF and LVC response was similar for PLM (993 ± 189 ml/min; 11.9 ± 1.5 ml·min -1 ·mmHg -1 , respectively) and sPLM (878 ± 119 ml/min; 10.9 ± 1.6 ml·min -1 ·mmHg -1 , respectively). Thus sPLM represents a variant of the PLM approach to assess vascular function that is more easily performed and evokes a peripheral stimulus that induces a significant hyperemia, but does not generate a potentially confounding, chronotropic response, which may make sPLM more useful clinically. Using the single passive leg movement (PLM) technique, a variant of the vascular function assessment PLM, we have identified a novel peripheral vascular assessment method that is more easily performed than PLM, which, by not evoking potentially confounding central hemodynamic responses, may be more useful clinically.
Skin integrated with perfusable vascular channels on a chip.
Mori, Nobuhito; Morimoto, Yuya; Takeuchi, Shoji
2017-02-01
This paper describes a method for fabricating perfusable vascular channels coated with endothelial cells within a cultured skin-equivalent by fixing it to a culture device connected to an external pump and tubes. A histological analysis showed that vascular channels were constructed in the skin-equivalent, which showed a conventional dermal/epidermal morphology, and the endothelial cells formed tight junctions on the vascular channel wall. The barrier function of the skin-equivalent was also confirmed. Cell distribution analysis indicated that the vascular channels supplied nutrition to the skin-equivalent. Moreover, the feasibility of a skin-equivalent containing vascular channels as a model for studying vascular absorption was demonstrated by measuring test molecule permeation from the epidermal layer into the vascular channels. The results suggested that this skin-equivalent can be used for skin-on-a-chip applications including drug development, cosmetics testing, and studying skin biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vascular heterogeneity in the kidney.
Molema, Grietje; Aird, William C
2012-03-01
Blood vessels and their endothelial lining are uniquely adapted to the needs of the underlying tissue. The structure and function of the vasculature varies both between and within different organs. In the kidney, the vascular architecture is designed to function both in oxygen/nutrient delivery and filtration of blood according to the homeostatic needs of the body. Here, we review spatial and temporal differences in renal vascular phenotypes in both health and disease. Copyright © 2012 Elsevier Inc. All rights reserved.
Transient Receptor Potential Channels in the Vasculature
Earley, Scott; Brayden, Joseph E.
2015-01-01
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234
Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles
Tykocki, Nathan R.; Boerman, Erika M.; Jackson, William F.
2017-01-01
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body’s tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. PMID:28333380
Towards organ printing: engineering an intra-organ branched vascular tree.
Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir
2010-03-01
Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.
Electrical Control of Silicon Photonic Crystal Cavity by Graphene
2012-01-01
Henriksen, E. A.; Jiang, Z.; Hao, Z.; Martin, M. C.; Kim, P.; Stormer , H. L.; Basov, D. N. Nat. Phys. 2008, 4 (7), 532−535. (4) Liu, M.; Yin, X...Zhang, Y.; Tan, Y.-W.; Stormer , H. L.; Kim, P. Nature 2005, 438 (7065), 201−204. (21) Cho, J. H.; Lee, J.; Xia, Y.; Kim, B.; He, Y.; Renn, M. J
How Many Formative Assessment Angels Can Dance on the Head of a Meta-Analytic Pin: 0.2
ERIC Educational Resources Information Center
Kingston, Neal; Nash, Brooke
2012-01-01
In their critique of Kingston and Nash (2011), Briggs, Ruiz-Primo, Furtak, Shepard, and Yin (2012) make several major points. First, Kingston and Nash's conclusions about the state of research on the efficacy of formative assessment are similar to other researchers, "including some of the authors." Second, their research may be unique in that they…
Marine Forces Reserve: Accelerating Knowledge Flow through Asynchronous Learning Technologies
2014-12-19
pedagogic techniques that are infeasible in the classroom, and they suggest that in some respects technologically intermediated learning can be even better...appropriate for this research (Yin, 1994). We employ multiple techniques for data collection in the field. Foremost, through a unique relationship between...initial interpretations are both grounded firmly in the data and meaningful to organization participants. The Researchers’ relationship with the focal
Effectiveness of Acupressure Treatment for Pain Management and Fatigue Relief in Gulf War Veterans
2013-10-01
measures. II. KEYWORDS Acupressure, Reiki , Gulf War Illness, fatigue, chronic headache, musculoskeletal pain, electroencephalography, non-invasive...Consultant) Ernie Betz (Consultant – Reiki ) Wenning Zhao (Consultant) Yin Fang PhD (Consultant) Vlodek Siemionow PhD (Consultant) Due to...Zhao and Ms. Alice Langholt were recruited to provide the Acupressure and Reiki interventions. Dr. Juliet Hou was recruited as a medical monitor
Liu, Huan; Liu, Jinbo; Zhao, Hongwei; Zhou, Yingyan; Li, Lihong; Wang, Hongyu
2018-03-01
The study was done to establish the relationship between serum uric acid (UA) and vascular function and structure parameters including carotid femoral pulse wave velocity (CF-PWV), carotid radial pulse wave velocity (CR-PWV), cardio ankle vascular index (CAVI), ankle brachial index (ABI), and carotid intima-media thickness (CIMT), and the gender difference in a real-world population from China. A total of 979 subjects were enrolled (aged 60.86±11.03 years, male 416 and female 563). Value of UA was divided by 100 (UA/100) for analysis. Body mass index (BMI), diastolic blood pressure (DBP), fasting plasma glucose (FPG), UA, and UA/100 were significantly higher in males compared with females (all p<0.05); pulse pressure (PP), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C) were lower in males than females (all p<0.05). All vascular parameters including CF-PWV, CR-PWV, CAVI, ABI, and CIMT were higher in males than females (all p<0.05). Multiple linear regression analysis showed that UA/100 was independently positively linearly correlated with CAVI (B=0.143, p=0.001) and negatively correlated with ABI in the male population (B=-0.012, p=0.020). In people with higher UA, the risk of higher CF-PWV was 1.593 (p<0.05). 1. All vascular parameters were higher in males than females. There was no gender difference in the relationship between UA and vascular markers except in ABI. 2. UA was independently linearly correlated with CAVI. 3. In people with higher UA level, the risk of higher CF-PWV increased. Therefore, higher UA may influence the vascular function mainly instead of vascular structure.
NASA Astrophysics Data System (ADS)
Roy Chaudhuri, Tista
An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre-treated with sHH-inhibitor led to a 90% lifespan extension in animals that received a single cycle of the combined regimen, and a 200% extension in animals receiving 3-cycles of treatment, compared to control animals or those receiving either of the agents alone. We surmise that direct or indirect modulation of tumor vasculature can provide new opportunities for combination therapies that could improve delivery and efficacy of both small- and large- molecular weight agents in treatment-resistant solid tumors.
Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh
2016-01-01
Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function. PMID:26759702
Afsar, Baris; Elsurer, Rengin; Covic, Adrian; Kanbay, Mehmet
2012-01-01
Arteriovenous fistulas (AVF) are the vascular access of choice for hemodialysis (HD) compared with arteriovenous grafts (AVG) and central venous catheters (CVC). In spite of increasing recognition of importance of a patient's perception of health-related quality of life (HRQOL) and depression, few studies have assessed the association of vascular access type with HRQOL and depression. The purpose of our study was to examine HRQOL and depression among patients with different vascular access. Severity of symptoms of depression and HRQOL were assessed by Beck Depression Inventory (BDI) and Short Form-36 (SF-36), respectively. Vascular access was reported as one of three options; AVF, AVG, and CVC. In total, 136 patients were included; 104 had AVF, 15 had AVG, and 17 had CVC. BDI and HRQOL parameters differed among patients with different vascular access types. In post hoc analysis, BDI and HRQOL subscales were not different between patients with AVF and AVG. Patients with CVC had lower physical functioning (P:.001), role-physical limitation (P:.015), general health perception (P:.017), vitality (P:.010), social functioning (P:.004), role-emotional (P:.008), mental health (P:.001), physical component summary score (P:.017), and mental component summary score (P:.006) when compared to patients with AVF. Patients with CVC had lower physical functioning (P:.044), role-emotional (P:.044) and mental health scores (P:.04) when compared to patients with AVG. Having a CVC may negatively influence HRQOL in HD patients. Vascular access type does not seem to be related to depressed mood in HD.
Millwood, Iona Y; Bennett, Derrick A; Walters, Robin G; Clarke, Robert; Waterworth, Dawn; Johnson, Toby; Chen, Yiping; Yang, Ling; Guo, Yu; Bian, Zheng; Hacker, Alex; Yeo, Astrid; Parish, Sarah; Hill, Michael R; Chissoe, Stephanie; Peto, Richard; Cardon, Lon; Collins, Rory; Li, Liming; Chen, Zhengming
2016-01-01
Background: Lipoprotein-associated phospholipase A2 (Lp-PLA2) has been implicated in development of atherosclerosis; however, recent randomized trials of Lp-PLA2 inhibition reported no beneficial effects on vascular diseases. In East Asians, a loss-of-function variant in the PLA2G7 gene can be used to assess the effects of genetically determined lower Lp-PLA2. Methods: PLA2G7 V279F (rs76863441) was genotyped in 91 428 individuals randomly selected from the China Kadoorie Biobank of 0.5 M participants recruited in 2004–08 from 10 regions of China, with 7 years’ follow-up. Linear regression was used to assess effects of V279F on baseline traits. Logistic regression was conducted for a range of vascular and non-vascular diseases, including 41 ICD-10 coded disease categories. Results: PLA2G7 V279F frequency was 5% overall (range 3–7% by region), and 9691 (11%) participants had at least one loss-of-function variant. V279F was not associated with baseline blood pressure, adiposity, blood glucose or lung function. V279F was not associated with major vascular events [7141 events; odds ratio (OR) = 0.98 per F variant, 95% confidence interval (CI) 0.90-1.06] or other vascular outcomes, including major coronary events (922 events; 0.96, 0.79-1.18) and stroke (5967 events; 1.00, 0.92-1.09). Individuals with V279F had lower risks of diabetes (7031 events; 0.91, 0.84-0.98) and asthma (182 events; 0.53, 0.28-0.98), but there was no association after adjustment for multiple testing. Conclusions: Lifelong lower Lp-PLA2 activity was not associated with major risks of vascular or non-vascular diseases in Chinese adults. Using functional genetic variants in large-scale prospective studies with linkage to a range of health outcomes is a valuable approach to inform drug development and repositioning. PMID:27301456
Kaess, Bernhard M; Harris, William S; Lacey, Sean; Larson, Martin G; Hamburg, Naomi M; Vita, Joseph A; Robins, Sander J; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S
2015-02-01
Polyunsaturated fatty acids have been associated with beneficial influences on cardiovascular health. However, the underlying mechanisms are not clear, and data on the relations of polyunsaturated fatty acids to subclinical disease measures such as vascular stiffness and cardiac function are sparse and inconclusive. In a large community-based cohort, we examined the relations of omega-3 and other fatty acids to a comprehensive panel of vascular function measures (assessing microvascular function and large artery stiffness), cardiac structure and left ventricular function. Red blood cell (RBC) membrane fatty acid composition, a measure of long-term fatty acid intake, was assessed in participants of the Framingham Offspring Study and Omni cohorts and related to tonometry-derived measures of vascular stiffness and to a panel of echocardiographic traits using partial correlations. Up to n=3055 individuals (56% women, mean age 66 years) were available for analyses. In age- and sex-adjusted models, higher RBC omega-3 content was moderately associated (p≤0.002) with several measures of vascular stiffness and function in a protective direction. However, after multivariable adjustment, only an association of higher RBC omega-3 content with lower carotid-femoral pulse wave velocity (a measure of aortic stiffness) remained significant (r = -0.06, p=0.002). In secondary analyses, higher linoleic acid, the major nutritional omega-6 fatty acid, was associated with smaller left atrial size, even after multivariable adjustment (r = -0.064, p<0.001). In conclusion, in our cross-sectional community-based study, we found several associations consistent with the notion of protective effects of omega-3 and linoleic acid. The clinical significance of these modest associations remains to be elucidated. © The Author(s) 2014.
VA Vascular Injury Study (VAVIS): VA-DoD extremity injury outcomes collaboration.
Shireman, Paula K; Rasmussen, Todd E; Jaramillo, Carlos A; Pugh, Mary Jo
2015-02-03
Limb injuries comprise 50-60% of U.S. Service member's casualties of wars in Afghanistan and Iraq. Combat-related vascular injuries are present in 12% of this cohort, a rate 5 times higher than in prior wars. Improvements in medical and surgical trauma care, including initial in-theatre limb salvage approaches (IILS) have resulted in improved survival and fewer amputations, however, the long-term outcomes such as morbidity, functional decline, and risk for late amputation of salvaged limbs using current process of care have not been studied. The long-term care of these injured warfighters poses a significant challenge to the Department of Defense (DoD) and Department of Veterans Affairs (VA). The VA Vascular Injury Study (VAVIS): VA-DoD Extremity Injury Outcomes Collaborative, funded by the VA, Health Services Research and Development Service, is a longitudinal cohort study of Veterans with vascular extremity injuries. Enrollment will begin April, 2015 and continue for 3 years. Individuals with a validated extremity vascular injury in the Department of Defense Trauma Registry will be contacted and will complete a set of validated demographic, social, behavioral, and functional status measures during interview and online/ mailed survey. Primary outcome measures will: 1) Compare injury, demographic and geospatial characteristics of patients with IILS and identify late vascular surgery related limb complications and health care utilization in Veterans receiving VA vs. non-VA care, 2) Characterize the preventive services received by individuals with vascular repair and related outcomes, and 3) Describe patient-reported functional outcomes in Veterans with traumatic vascular limb injuries. This study will provide key information about the current process of care for Active Duty Service members and Veterans with polytrauma/vascular injuries at risk for persistent morbidity and late amputation. The results of this study will be the first step for clinicians in VA and military settings to generate evidence-based treatment and care approaches to these injuries. It will identify areas where rehabilitation medicine and vascular specialty care or telehealth options are needed to allow for better planning, resource utilization, and improved DoD-to-VA care transitions.
Redox signaling, Nox5 and vascular remodeling in hypertension.
Montezano, Augusto C; Tsiropoulou, Sofia; Dulak-Lis, Maria; Harvey, Adam; Camargo, Livia De Lucca; Touyz, Rhian M
2015-09-01
Extensive data indicate a role for reactive oxygen species (ROS) and redox signaling in vascular damage in hypertension. However, molecular mechanisms underlying these processes remain unclear, but oxidative post-translational modification of vascular proteins is critical. This review discusses how proteins are oxidatively modified and how redox signaling influences vascular smooth muscle cell growth and vascular remodeling in hypertension. We also highlight Nox5 as a novel vascular ROS-generating oxidase. Oxidative stress in hypertension leads to oxidative imbalance that affects vascular cell function through redox signaling. Many Nox isoforms produce ROS in the vascular wall, and recent findings show that Nox5 may be important in humans. ROS regulate signaling by numerous processes including cysteine oxidative post-translational modification such as S-nitrosylation, S-glutathionylation and sulfydration. In vascular smooth muscle cells, this influences cellular responses to oxidative stimuli promoting changes from a contractile to a proliferative phenotype. In hypertension, Nox-induced ROS production is increased, leading to perturbed redox signaling through oxidative modifications of vascular proteins. This influences mitogenic signaling and cell cycle regulation, leading to altered cell growth and vascular remodeling in hypertension.
Eriksson, Maria J.; Fritz, Tomas; Nyberg, Gunnar; Östenson, Claes Göran; Krook, Anna; Zierath, Juleen R.; Caidahl, Kenneth
2015-01-01
To determine whether Nordic walking improves cardiovascular function in middle-aged women and men, we included 121 with normal glucose tolerance, 33 with impaired glucose tolerance and 47 with Type 2 diabetes mellitus in a randomized controlled study. The intervention group added Nordic walking 5 h/week for 4 months to their ordinary activities. Aortic pulse wave velocity, aortic augmentation index, stiffness index, reflection index, intima–media thickness in the radial and carotid arteries, echogenicity of the carotid intima–media and systemic vascular resistance were measured. While baseline blood pressure did not differ by gender or diagnosis, aortic augmentation index was found to be higher in women in all groups. Vascular function was unchanged with intervention, without differences by gender or diagnosis. In conclusion, 4 months of Nordic walking is an insufficient stimulus to improve vascular function. Future studies should consider hard endpoints in addition to measures of vascular health, as well as larger population groups, long-term follow-up and documented compliance to exercise training. PMID:26092821
Zhang, Bo; Wang, Xu; Li, Shao
2013-01-01
The scientific understanding of traditional Chinese medicine (TCM) has been hindered by the lack of methods that can explore the complex nature and combinatorial rules of herbal formulae. On the assumption that herbal ingredients mainly target a molecular network to adjust the imbalance of human body, here we present a-self-developed TCM network pharmacology platform for discovering herbal formulae in a systematic manner. This platform integrates a set of network-based methods that we established previously to catch the network regulation mechanism and to identify active ingredients as well as synergistic combinations for a given herbal formula. We then provided a case study on an antirheumatoid arthritis (RA) formula, Qing-Luo-Yin (QLY), to demonstrate the usability of the platform. We revealed the target network of QLY against RA-related key processes including angiogenesis, inflammatory response, and immune response, based on which we not only predicted active and synergistic ingredients from QLY but also interpreted the combinatorial rule of this formula. These findings are either verified by the literature evidence or have the potential to guide further experiments. Therefore, such a network pharmacology strategy and platform is expected to make the systematical study of herbal formulae achievable and to make the TCM drug discovery predictable. PMID:23653662
The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility
Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh
2015-01-01
Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function. PMID:25995821
NASA Astrophysics Data System (ADS)
Spitz, Kathleen; Bozic, Ivan; Desai, Vineet; Rao, Gopikrishna M.; Pollock, Lana M.; Anand-Apte, Bela; Tao, Yuankai K.
2017-02-01
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are two of the leading causes of blindness and visual impairment in the world. Neovascularization results in severe vision loss in DR and AMD and, thus, there is an unmet need to identify mechanisms of pathogenesis and novel anti-angiogenic therapies. Zebrafish is a leading model organism for studying human disease pathogenesis, and the highly conserved drug activity between zebrafish and humans and their ability to readily absorb small molecules dissolved in water has benefited pharmaceutical discovery. Here, we use optical coherence tomography (OCT) and OCT angiography (OCT-A) to perform noninvasive, in vivo retinal imaging in a zebrafish model of vascular leakage. Zebrafish were treated with diethylaminobenzaldehyde (DEAB) to induce vascular leakage and imaged with OCT and OCT-A at six time points over two weeks: baseline one day before treatment and one, three, six, eight, and ten days post treatment. Longitudinal functional imaging showed significant vascular response immediately after DEAB treatment. Observed vascular changes included partial or complete vascular occlusion immediately after treatment and reperfusion during a two-week period. Increased vascular tortuosity several days post treatment indicated remodeling, and bifurcations and collateral vessel formation were also observed. In addition, significant treatment response variabilities were observed in the contralateral eye of the same animal. Anatomical and functional normalization was observed in most animals by ten days post treatment. These preliminary results motivate potential applications of OCT-A as a tool for studying pathogenesis and therapeutic screening in zebrafish models of retinal vascular disease.
Lifestyle and metabolic approaches to maximizing erectile and vascular health.
Meldrum, D R; Gambone, J C; Morris, M A; Esposito, K; Giugliano, D; Ignarro, L J
2012-01-01
Oxidative stress and inflammation, which disrupt nitric oxide (NO) production directly or by causing resistance to insulin, are central determinants of vascular diseases including ED. Decreased vascular NO has been linked to abdominal obesity, smoking and high intakes of fat and sugar, which all cause oxidative stress. Men with ED have decreased vascular NO and circulating and cellular antioxidants. Oxidative stress and inflammatory markers are increased in men with ED, and all increase with age. Exercise increases vascular NO, and more frequent erections are correlated with decreased ED, both in part due to stimulation of endothelial NO production by shear stress. Exercise and weight loss increase insulin sensitivity and endothelial NO production. Potent antioxidants or high doses of weaker antioxidants increase vascular NO and improve vascular and erectile function. Antioxidants may be particularly important in men with ED who smoke, are obese or have diabetes. Omega-3 fatty acids reduce inflammatory markers, decrease cardiac death and increase endothelial NO production, and are therefore critical for men with ED who are under age 60 years, and/or have diabetes, hypertension or coronary artery disease, who are at increased risk of serious or even fatal cardiac events. Phosphodiesterase inhibitors have recently been shown to improve antioxidant status and NO production and allow more frequent and sustained penile exercise. Some angiotensin II receptor blockers decrease oxidative stress and improve vascular and erectile function and are therefore preferred choices for lowering blood pressure in men with ED. Lifestyle modifications, including physical and penile-specific exercise, weight loss, omega-3 and folic acid supplements, reduced intakes of fat and sugar, and improved antioxidant status through diet and/or supplements should be integrated into any comprehensive approach to maximizing erectile function, resulting in greater overall success and patient satisfaction, as well as improved vascular health and longevity.
Imaging of cerebrovascular pathology in animal models of Alzheimer's disease
Klohs, Jan; Rudin, Markus; Shimshek, Derya R.; Beckmann, Nicolau
2014-01-01
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature. PMID:24659966
Adolescents with vascular frontal lesion: A neuropsychological follow up case study.
Chávez, Clara L; Yáñez, Guillermina; Catroppa, Cathy; Rojas, Sulema; Escartin, Erick; Hearps, Stephen J C; García, Antonio
2016-01-01
The objective of this research was to identify clinically significant changes in cognitive functions in three adolescents who underwent surgery for resection of a focal vascular lesion in the frontal lobe. Cognitive functions, executive function, behavior regulation, emotion regulation, and social abilities were assessed prior to surgery, six and 24 months post-discharge. Significant clinical changes were observed during all the assessments. Cognitive changes after surgery are not homogeneous. Most of the significant clinical changes were improvements. Especially the significant clinical changes presented in EF domains were only improvements; these results suggest that EF were affected by the vascular lesion and benefitted by the surgery. After resection of a vascular lesion between 15 and 16 years of age the affected executive functions can continue the maturation process. Our results highlight the importance that assessments must include emotional aspects, even if deficits in these domains are not presented in the acute phase. Rehabilitation methods should promote the development of skills that help patients and their families to manage the emotional and behavioral changes that emerge once they are discharged from the hospital. Copyright © 2015 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
NADPH Oxidases in Vascular Pathology
Konior, Anna; Schramm, Agata; Czesnikiewicz-Guzik, Marta
2014-01-01
Abstract Significance: Reactive oxygen species (ROS) play a critical role in vascular disease. While there are many possible sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases play a central role. They are a source of “kindling radicals,” which affect other enzymes, such as nitric oxide synthase endothelial nitric oxide synthase or xanthine oxidase. This is important, as risk factors for atherosclerosis (hypertension, diabetes, hypercholesterolemia, and smoking) regulate the expression and activity of NADPH oxidases in the vessel wall. Recent Advances: There are seven isoforms in mammals: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and Duox2. Nox1, Nox2, Nox4, and Nox5 are expressed in endothelium, vascular smooth muscle cells, fibroblasts, or perivascular adipocytes. Other homologues have not been found or are expressed at very low levels; their roles have not been established. Nox1/Nox2 promote the development of endothelial dysfunction, hypertension, and inflammation. Nox4 may have a role in protecting the vasculature during stress; however, when its activity is increased, it may be detrimental. Calcium-dependent Nox5 has been implicated in oxidative damage in human atherosclerosis. Critical Issues: NADPH oxidase-derived ROS play a role in vascular pathology as well as in the maintenance of normal physiological vascular function. We also discuss recently elucidated mechanisms such as the role of NADPH oxidases in vascular protection, vascular inflammation, pulmonary hypertension, tumor angiogenesis, and central nervous system regulation of vascular function and hypertension. Future Directions: Understanding the role of individual oxidases and interactions between homologues in vascular disease is critical for efficient pharmacological regulation of vascular NADPH oxidases in both the laboratory and clinical practice. Antioxid. Redox Signal. 20, 2794–2814. PMID:24180474
Ridano, Magali E; Subirada, Paula V; Paz, María C; Lorenc, Valeria E; Stupirski, Juan C; Gramajo, Ana L; Luna, José D; Croci, Diego O; Rabinovich, Gabriel A; Sánchez, María C
2017-05-16
Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.
Row, Sindhu; Peng, Haofan; Schlaich, Evan M; Koenigsknecht, Carmon; Andreadis, Stelios T; Swartz, Daniel D
2015-05-01
To engineer and implant vascular grafts in the arterial circulation of a pre-clinical animal model and assess the role of donor medial cells in graft remodeling and function. Vascular grafts were engineered using Small Intestinal Submucosa (SIS)-fibrin hybrid scaffold and implanted interpositionally into the arterial circulation of an ovine model. We sought to demonstrate implantability of SIS-Fibrin based grafts; examine the remodeling; and determine whether the presence of vascular cells in the medial wall was necessary for cellular infiltration from the host and successful remodeling of the implants. We observed no occlusions or anastomotic complications in 18 animals that received these grafts. Notably, the grafts exhibited unprecedented levels of host cell infiltration that was not limited to the anastomotic sites but occurred through the lumen as well as the extramural side, leading to uniform cell distribution. Incoming cells remodeled the extracellular matrix and matured into functional smooth muscle cells as evidenced by expression of myogenic markers and development of vascular reactivity. Interestingly, tracking the donor cells revealed that their presence was beneficial but not necessary for successful grafting. Indeed, the proliferation rate and number of donor cells decreased over time as the vascular wall was dominated by host cells leading to significant remodeling and development of contractile function. These results demonstrate that SIS-Fibrin grafts can be successfully implanted into the arterial circulation of a clinically relevant animal model, improve our understanding of vascular graft remodeling and raise the possibility of engineering mural cell-free arterial grafts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exercise training improves vascular mitochondrial function
Park, Song-Young; Rossman, Matthew J.; Gifford, Jayson R.; Bharath, Leena P.; Bauersachs, Johann; Richardson, Russell S.; Abel, E. Dale; Symons, J. David
2016-01-01
Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1, isocitrate dehydrogenase (Idh) 2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser1177), and suppressed reactive oxygen species generation (all P < 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520
Juhas, Mark; Engelmayr, George C.; Fontanella, Andrew N.; Palmer, Gregory M.; Bursac, Nenad
2014-01-01
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration. PMID:24706792
Vascular pattern of the dentate gyrus is regulated by neural progenitors.
Pombero, Ana; Garcia-Lopez, Raquel; Estirado, Alicia; Martinez, Salvador
2018-05-01
Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role. Whereas it is well known that vascular development controls neural proliferation in the embryonary and in the adult brain, by releasing neurotrophic factors; the potential influence of neural cells on vascular components during angiogenesis is largely unknown. We have demonstrated that the reduction of neural progenitors leads to a significant impairment of vascular development. Since VEGF is a potential regulator in the neurogenesis-angiogenesis crosstalk, we were interested in assessing the possible role of this molecule in the hippocampal neurovascular development. Our results showed that VEGF is the molecule involved in the regulation of vascular development by neural progenitor cells in the DG.
Gover-Proaktor, Ayala; Granot, Galit; Pasmanik-Chor, Metsada; Pasvolsky, Oren; Shapira, Saar; Raz, Oshrat; Raanani, Pia; Leader, Avi
2018-05-09
The tyrosine kinase inhibitors (TKIs), nilotinib, ponatinib, and dasatinib (but not bosutinib or imatinib), are associated with vascular adverse events (VAEs) in chronic myeloid leukemia (CML). Though the mechanism is inadequately understood, an effect on vascular cells has been suggested. We investigated the effect of imatinib, nilotinib, dasatinib, bosutinib, and ponatinib on tube formation, cell viability, and gene expression of human vascular endothelial cells (HUVECs). We found a distinct genetic profile in HUVECs treated with dasatinib, ponatinib, and nilotinib compared to bosutinib and imatinib, who resembled untreated samples. However, unique gene expression and molecular pathway alterations were detected between dasatinib, ponatinib, and nilotinib. Angiogenesis/blood vessel-related pathways and HUVEC function (tube formation/viability) were adversely affected by dasatinib, ponatinib, and nilotinib but not by imatinib or bosutinib. These results correspond to the differences in VAE profiles of these TKIs, support a direct effect on vascular cells, and provide direction for future research.
Computer-aided design of microvasculature systems for use in vascular scaffold production.
Mondy, William Lafayette; Cameron, Don; Timmermans, Jean-Pierre; De Clerck, Nora; Sasov, Alexander; Casteleyn, Christophe; Piegl, Les A
2009-09-01
In vitro biomedical engineering of intact, functional vascular networks, which include capillary structures, is a prerequisite for adequate vascular scaffold production. Capillary structures are necessary since they provide the elements and compounds for the growth, function and maintenance of 3D tissue structures. Computer-aided modeling of stereolithographic (STL) micro-computer tomographic (micro-CT) 3D models is a technique that enables us to mimic the design of vascular tree systems containing capillary beds, found in tissues. In our first paper (Mondy et al 2009 Tissue Eng. at press), using micro-CT, we studied the possibility of using vascular tissues to produce data capable of aiding the design of vascular tree scaffolding, which would help in the reverse engineering of a complete vascular tree system including capillary bed structures. In this paper, we used STL models of large datasets of computer-aided design (CAD) data of vascular structures which contained capillary structures that mimic those in the dermal layers of rabbit skin. Using CAD software we created from 3D STL models a bio-CAD design for the development of capillary-containing vascular tree scaffolding for skin. This method is designed to enhance a variety of therapeutic protocols including, but not limited to, organ and tissue repair, systemic disease mediation and cell/tissue transplantation therapy. Our successful approach to in vitro vasculogenesis will allow the bioengineering of various other types of 3D tissue structures, and as such greatly expands the potential applications of biomedical engineering technology into the fields of biomedical research and medicine.
Endothelial microparticles: Sophisticated vesicles modulating vascular function
Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R
2015-01-01
Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447
Silicon Nanostructures, Excitonic Interactions, Laser Consequences
2008-07-11
etching using an anodized aluminum oxide membrane as mask. The results described here lay a solid foundation for the next phase of development aimed at...achieved though reactive-ion-etching using an anodized aluminum oxide membrane as mask. The results described here lay a solid foundation for the next...Materials, April 4, 2006 issue). 6. Aijun Yin, Marian Tzolov, David Cardimona and Jimmy Xu, "Fabrication of Highly Ordered Anodic Aluminum Oxide
Left-right and Yin-Yang balance of biophoton emission from hands.
Yang, Joon-mo; Choi, Chunho; Hyun-hee; Woo, Won-myung; Yi, Seung-ho; Soh, Kwang-sup; Yang, Jong Soo; Choi, C
2004-01-01
Yearlong measurements of biophotons from palm and back of hand of three healthy people were performed. The detection of biophoton was done with two photomultiplier tubes whose spectral range was from 300 nm to 650 nm. The measurement was done on a circular area of diameter 46 mm whose centers were at the acupuncture point Laogong (PC8) of a palm and the mid-point of a back, respectively. The emission rates from the dorsa showed strong seasonal dependence which is consistent with the active nature of Yang meridians, while the palm sides show less seasonal dependence as they belong to the passive Yin meridians. This could be quantified simply by the standard deviations from the yearly average: They were 47.6 counts per second (cps), 66.1 cps and 66.0 cps from the dorsa, and 23.8 cps, 29.7 cps and 30.4 cps from the palms of subject 1, 2 and 3, respectively. Biophoton emission revealed qualitative individual tendencies: The subjects 1 and 2 emitted more strongly from the left dorsa, while the subject 3 from the right dorsum. The left-right balance of biophoton emission was well kept for normal people, which is in contrast with the severe imbalance for some stroke patients. Thus biophoton measurement has a diagnostic potential that encourages more studies.
Baroreflex-Mediated Heart Rate and Vascular Resistance Responses 24 h after Maximal Exercise
2003-01-01
of normal physiological function in bedridden patients and astronauts. The implication for failure of CVP and plasma volume to return to baseline... FUNCTION , BLOOD PRES- SURE, CENTRAL VENOUS PRESSURE, PHENYLEPHRINE, NECK PRESSURE, LOWER BODY NEGATIVE PRESSURE, COUNTERMEASURES Increased incidence of...orthostatic hypotension and intol-erance in humans is associated with vascular hypovole-mia and attenuated cardiovascular reflex functions
Rhee, Sung W; Stimers, Joseph R; Wang, Wenze; Pang, Li
2009-05-01
In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.
Rhee, Sung W.; Stimers, Joseph R.; Wang, Wenze; Pang, Li
2009-01-01
In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (CaL) current and vascular tone is increased because of increased expression of the noncardiac form of the CaL (Cav1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Cav1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Cav1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Cav1.2 expression by 61% and decreased the CaL current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Cav1.2, it did not affect the CaL expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Cav1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Cav1.2 siRNA without similarly affecting cardiac CaL expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension. PMID:19244098
Wang, Jie-Hua
2012-08-01
Adaptation is an eternal theme of biological evolution. The paper aims at exploring the conception of positive correlation between traditional Chinese medicine (TCM) and human homeostatic evolution based on medical perspective. Discussions mainly involve TCM conforming to natural laws and natural evolution of life, spontaneous harmonization of yin and yang and operating system of human self-healing, modern human immunology and human endogenous immune function in TCM, self-homeostasis of human micro-ecological state and balance mechanism on regulating base in TCM, as well as adaptation-eternal theme of biological evolution and safeguarding adaptability-value of TCM. In perspective of medicine, theory and practice of TCM are in positive correlation with human homeostatic evolution, and what TCM tries to maintain is human intrinsic adaptive capability to disease and nature. Therefore, it is the core value of TCM, which is to be further studied, explored, realized and known to the world.
Vascular function in diabetic individuals in association with particulate matter
Rationale: Exposure to ambient air pollution has been shown to be associated with cardiovascular effects, especially in people with chronic diseases such as diabetes. The purpose of this study was to analyze the short-term effects of air pollution on vascular function in two pane...
Sox17 drives functional engraftment of endothelium converted from non-vascular cells
Schachterle, William; Badwe, Chaitanya R.; Palikuqi, Brisa; Kunar, Balvir; Ginsberg, Michael; Lis, Raphael; Yokoyama, Masataka; Elemento, Olivier; Scandura, Joseph M.; Rafii, Shahin
2017-01-01
Transplanting vascular endothelial cells (ECs) to support metabolism and express regenerative paracrine factors is a strategy to treat vasculopathies and to promote tissue regeneration. However, transplantation strategies have been challenging to develop, because ECs are difficult to culture and little is known about how to direct them to stably integrate into vasculature. Here we show that only amniotic cells could convert to cells that maintain EC gene expression. Even so, these converted cells perform sub-optimally in transplantation studies. Constitutive Akt signalling increases expression of EC morphogenesis genes, including Sox17, shifts the genomic targeting of Fli1 to favour nearby Sox consensus sites and enhances the vascular function of converted cells. Enforced expression of Sox17 increases expression of morphogenesis genes and promotes integration of transplanted converted cells into injured vessels. Thus, Ets transcription factors specify non-vascular, amniotic cells to EC-like cells, whereas Sox17 expression is required to confer EC function. PMID:28091527
Panchatcharam, Manikandan; Salous, Abdel K; Brandon, Jason; Miriyala, Sumitra; Wheeler, Jessica; Patil, Pooja; Sunkara, Manjula; Morris, Andrew J; Escalante-Alcalde, Diana; Smyth, Susan S
2014-04-01
Lipid phosphate phosphatase 3 (LPP3), encoded by the PPAP2B gene, is an integral membrane enzyme that dephosphorylates, and thereby terminates, the G-protein-coupled receptor-mediated signaling actions of lysophosphatidic acid (LPA) and sphingosine-1-phosphate. LPP3 is essential for normal vascular development in mice, and a common PPAP2B polymorphism is associated with increased risk of coronary artery disease in humans. Herein, we investigate the function of endothelial LPP3 to understand its role in the development and human disease. We developed mouse models with selective LPP3 deficiency in endothelial and hematopoietic cells. Tyrosine kinase Tek promoter-mediated inactivation of Ppap2b resulted in embryonic lethality because of vascular defects. LPP3 deficiency in adult mice, achieved using a tamoxifen-inducible Cre transgene under the control of the Tyrosine kinase Tek promoter, enhanced local and systemic inflammatory responses. Endothelial, but not hematopoietic, cell LPP3 deficiency led to significant increases in vascular permeability at baseline and enhanced sensitivity to inflammation-induced vascular leak. Endothelial barrier function was restored by pharmacological or genetic inhibition of either LPA production by the circulating lysophospholipase D autotaxin or of G-protein-coupled receptor-dependent LPA signaling. Our results identify a role for the autotaxin/LPA-signaling nexus as a mediator of endothelial permeability in inflammation and demonstrate that LPP3 limits these effects. These findings have implications for therapeutic targets to maintain vascular barrier function in inflammatory states.
Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks
Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo
2016-01-01
We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079
Khatami, Mahin
2009-01-01
Acute inflammation is a highly regulated defense mechanism of immune system possessing two well-balanced and biologically opposing arms termed apoptosis ('Yin') and wound healing ('Yang') processes. Unresolved or chronic inflammation (oxidative stress) is perhaps the loss of balance between 'Yin' and 'Yang' that would induce co-expression of exaggerated or 'mismatched' apoptotic and wound healing factors in the microenvironment of tissues ('immune meltdown'). Unresolved inflammation could initiate the genesis of many age-associated chronic illnesses such as autoimmune and neurodegenerative diseases or tumors/cancers. In this perspective 'birds' eye' view of major interrelated co-morbidity risk factors that participate in biological shifts of growth-arresting ('tumoricidal') or growth-promoting ('tumorigenic') properties of immune cells and the genesis of chronic inflammatory diseases and cancer will be discussed. Persistent inflammation is perhaps a common denominator in the genesis of nearly all age-associated health problems or cancer. Future challenging opportunities for diagnosis, prevention, and/or therapy of chronic illnesses will require an integrated understanding and identification of developmental phases of inflammation-induced immune dysfunction and age-associated hormonal and physiological readjustments of organ systems. Designing suitable cohort studies to establish the oxido-redox status of adults may prove to be an effective strategy in assessing individual's health toward developing personal medicine for healthy aging.
Pathophysiological consequences of VEGF-induced vascular permeability
NASA Astrophysics Data System (ADS)
Weis, Sara M.; Cheresh, David A.
2005-09-01
Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.
Münzel, Thomas; Daiber, Andreas; Steven, Sebastian; Tran, Lan P.; Ullmann, Elisabeth; Kossmann, Sabine; Schmidt, Frank P.; Oelze, Matthias; Xia, Ning; Li, Huige; Pinto, Antonio; Wild, Philipp; Pies, Kai; Schmidt, Erwin R.; Rapp, Steffen; Kröller-Schön, Swenja
2017-01-01
Abstract Aims Epidemiological studies indicate that traffic noise increases the incidence of coronary artery disease, hypertension and stroke. The underlying mechanisms remain largely unknown. Field studies with nighttime noise exposure demonstrate that aircraft noise leads to vascular dysfunction, which is markedly improved by vitamin C, suggesting a key role of oxidative stress in causing this phenomenon. Methods and results We developed a novel animal model to study the vascular consequences of aircraft noise exposure. Peak sound levels of 85 and mean sound level of 72 dBA applied by loudspeakers for 4 days caused an increase in systolic blood pressure, plasma noradrenaline and angiotensin II levels and induced endothelial dysfunction. Noise increased eNOS expression but reduced vascular NO levels because of eNOS uncoupling. Noise increased circulating levels of nitrotyrosine, interleukine-6 and vascular expression of the NADPH oxidase subunit Nox2, nitrotyrosine-positive proteins and of endothelin-1. FACS analysis demonstrated an increase in infiltrated natural killer-cells and neutrophils into the vasculature. Equal mean sound pressure levels of white noise for 4 days did not induce these changes. Comparative Illumina sequencing of transcriptomes of aortic tissues from aircraft noise-treated animals displayed significant changes of genes in part responsible for the regulation of vascular function, vascular remodelling, and cell death. Conclusion We established a novel and unique aircraft noise stress model with increased blood pressure and vascular dysfunction associated with oxidative stress. This animal model enables future studies of molecular mechanisms, mitigation strategies, and pharmacological interventions to protect from noise-induced vascular damage. PMID:28329261
Kumar, Gaurav; Chhabra, Aastha; Mishra, Shalini; Kalam, Haroon; Kumar, Dhiraj; Meena, Ramniwas; Ahmad, Yasmin; Bhargava, Kalpana; Prasad, Dipti N.; Sharma, Manish
2016-01-01
Hypobaric Hypoxia (HH) is an established risk factor for various neuro-physiological perturbations including cognitive impairment. The origin and mechanistic basis of such responses however remain elusive. We here combined systems level analysis with classical neuro-physiological approaches, in a rat model system, to understand pathological responses of brain to HH. Unbiased ‘statistical co-expression networks’ generated utilizing temporal, differential transcriptome signatures of hippocampus—centrally involved in regulating cognition—implicated perturbation of Glio-Vascular homeostasis during early responses to HH, with concurrent modulation of vasomodulatory, hemostatic and proteolytic processes. Further, multiple lines of experimental evidence from ultra-structural, immuno-histological, substrate-zymography and barrier function studies unambiguously supported this proposition. Interestingly, we show a significant lowering of H2S levels in the brain, under chronic HH conditions. This phenomenon functionally impacted hypoxia-induced modulation of cerebral blood flow (hypoxic autoregulation) besides perturbing the strength of functional hyperemia responses. The augmentation of H2S levels, during HH conditions, remarkably preserved Glio-Vascular homeostasis and key neuro-physiological functions (cerebral blood flow, functional hyperemia and spatial memory) besides curtailing HH-induced neuronal apoptosis in hippocampus. Our data thus revealed causal role of H2S during HH-induced early Glio-Vascular dysfunction and consequent cognitive impairment. PMID:27211559
GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.
Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng
2016-02-01
The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. Copyright © 2016 Elsevier GmbH. All rights reserved.
Towards organ printing: engineering an intra-organ branched vascular tree
Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir
2013-01-01
Importance of the field Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. Areas covered in this review We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. What the reader will gain The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. Take home message It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a ‘built in’ intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a ‘built in’ intra-organ branched vascular tree. PMID:20132061
Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis
2013-10-01
Pharmaceuticals , Inc., Department of Defense grants PC05031 (to P.E. Thorpe) and PC080475 (to Y. Yin), an NIH-supported Small Animal Imaging Research Program...PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012...Army Medical Research And Materiel Command 11. SPONSOR/MONITOR’S REPORT Fort Detrick, Maryland NUMBER(S) 21702-5012 12. DISTRIBUTION / AVAILABILITY
Traditional Chinese medicine typing of affective disorders and treatment.
Zhang, L D; Zhang, Y L; Xu, S H; Zhou, G; Jin, S B
1994-01-01
According to the theory of Traditional Chinese Medicine (TCM), 50 patients with affective disorders were typed into the categories of depressed liver resulting in fire, mild Yang deficiency and mild Yin deficiency and were treated with Xiao Yao San Jia Wei. The results are 26 patients with marked improvement, 17 patients with improvement and 7 patients with no improvement.
Software for the Parallel Solution of Systems of Ordinary Differential Equations
1991-02-01
x real g (ndim) , x (O:nmax*maxnp) , yin (1) real vout (flout) , left , right equivalence # (n,vin(l)),(ndimc,vin(2)),(ninc, vin ( 3 )) # ’ (noutc,vin(4...ninc, vin ( 3 )) #, (noutc,vin(4)) , (m,vin(5)), (mp,vin(6)) #, (h,vin(7)), (left,vin(8)), (right,vin(9)) #, (g(1) ,vin(10)) #,(x(O),vin(10+ndim
Costa, Rafael M; Filgueira, Fernando P; Tostes, Rita C; Carvalho, Maria Helena C; Akamine, Eliana H; Lobato, Nubia S
2016-09-01
The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Yuan-Qing; Yan, Jian-Ye; Gong, Li-Min; Luo, Kun; Li, Shun-Xiang; Yang, Yan-Tao; Xie, Yu
2014-08-01
To explore the component difference of the serum containing essential oil from Yin Teng Gu Bi Kang prescription in pathologic and physiologic rat models, and to reveal the material basis of its efficacy of activating blood circulation. The essential oils were obtained by CO2 supercritical fluid extraction and the ingredients of the essential oils in vitro and in vivo (under physiological and pathological status) were analyzed by GC-MS to compare differences of the essential oil under physiological and pathological status in rats. 32 components were identified with the main components of Z-ligustilide (39.23%) and d-limonene (21.7%) in the essential oil. In vivo analysis on the essential oil indicated that 16 components were identified, 7 existed originally in essential oil and 9 were metabolites under physiological status; while 22 components were identified, 10 existed originally in essential oil and 12 were metabolites under pathological status (acute blood stasis). There were 7 common prototypes and 8 common metabolites under different physiological status. The absorption and metabolism of essential oils were affected by blood stasis and the compounds migrating to blood may be the effective substance in activating blood circulation.
Varadharaj, Saradhadevi; Kelly, Owen J.; Khayat, Rami N.; Kumar, Purnima S.; Ahmed, Naseer; Zweier, Jay L.
2017-01-01
In vascular diseases, including hypertension and atherosclerosis, vascular endothelial dysfunction (VED) occurs secondary to altered function of endothelial nitric oxide synthase (eNOS). A novel redox regulated pathway was identified through which eNOS is uncoupled due to S-glutathionylation of critical cysteine residues, resulting in superoxide free radical formation instead of the vasodilator molecule, nitric oxide. In addition, the redox sensitive cofactor tetrahydrobiopterin, BH4, is also essential for eNOS coupling. Antioxidants, either individually or combined, can modulate eNOS uncoupling by scavenging free radicals or impairing specific radical generating pathways, thus preventing oxidative stress and ameliorating VED. Epidemiological evidence and dietary guidelines suggest that diets high in antioxidants, or antioxidant supplementation, could preserve vascular health and prevent cardiovascular diseases (CVDs). Therefore, the purpose of this review is to highlight the possible role of dietary antioxidants in regulating eNOS function and uncoupling which is critical for maintenance of vascular health with normal blood flow/circulation and prevention of VED. We hypothesize that a conditioned dietary approach with suitable antioxidants may limit systemic oxidation, maintain a beneficial ratio of reduced to oxidized glutathione, and other redox markers, and minimize eNOS uncoupling serving to prevent CVD and possibly other chronic diseases. PMID:29164133
Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder
Moises, H W; Wollschläger, D; Binder, H
2015-01-01
In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P<0.001), vasoregulation (that is, perivascular (P<0.001) and shear stress (P<0.01), cerebral ischemia (P<0.001), neurodevelopment (P<0.001) and postischemic repair (P<0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P=0.020) combined with downregulated synaptic (P=0.005) genes, and ND/repair (P=0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina. PMID:26261884
Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder.
Moises, H W; Wollschläger, D; Binder, H
2015-08-11
In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P < 0.001), vasoregulation (that is, perivascular (P < 0.001) and shear stress (P < 0.01), cerebral ischemia (P < 0.001), neurodevelopment (P < 0.001) and postischemic repair (P < 0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P = 0.020) combined with downregulated synaptic (P = 0.005) genes, and ND/repair (P = 0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina.
Scandal and Tragedy Or Acquisition Lessons Relearned by the F-35 Program
2017-01-01
Ribbon Commission on Defense Management , referred to as the Packard Commission Report, determined that MDAPs take too long to develop, cost too much...understanding program management discipline. Yin (1994) and Patton (2002) believed a deep-rooted and multilevel case study analysis could help formulate... management ), good recommendations come from open questions, often applying the researcher’s and SME’s own expe- riences, instead of from scientific
ERIC Educational Resources Information Center
2003
The International Communication Division of the proceedings contains the following 18 papers: "Press Freedom in Asia: New Paradigm Needed in Building Theories" (Jiafei Yin); "Entertainment East and West: A Comparison of Prime-Time U.S. and Asian TV Content Using the Methodology of the National Television Violence Study" (Anne…
Top1 May Do More Than Relax DNA | Center for Cancer Research
Topoisomerase 1 (Top1) is an enzyme with a well known role in relaxing DNA supercoils by making reversible nicks in DNA. The ribonuclease (RNase) H class of enzymes is equally well known for removing ribonucleotides from hybrid duplex DNA when they are misincorporated during DNA replication. Recently, Shar-yin Huang, Ph.D., and Yves Pommier, M.D., Ph.D., in CCR’s Laboratory of
Non-Duality, Simplicity and the Chong Mai
2018-01-01
Abstract Chinese Medicine (CM) suggests that the root of all disease lies in separation from the Tao, which occurs when Yin and Yang differentiate. Chong Mai–focused acupuncture can theoretically address this level, but an adjusted therapeutic approach could be necessary to produce the best results. In this article, the author explores some context and needling strategies used to work effectively with the Chong Mai in a unique way. PMID:29410715
Weng, Shu-Wen; Chen, Bor-Chyuan; Wang, Yu-Chiao; Liu, Chun-Kai; Chang, Ching-Mao
2016-01-01
Traditional Chinese medicine (TCM) has long been used for patients with psoriasis. This study aimed to investigate TCM usage in patients with psoriasis. We analyzed a cohort of one million individuals representing the 23 million enrollees randomly selected from the National Health Insurance Research Database in Taiwan. We identified 28,510 patients newly diagnosed with psoriasis between 2000 and 2010. Among them, 20,084 (70.4%) patients were TCM users. Patients who were female, younger, white-collar workers and lived in urbanized area tended to be TCM users. The median interval between the initial diagnosis of psoriasis to the first TCM consultation was 12 months. More than half (N = 11,609; 57.8%) of the TCM users received only Chinese herbal medicine. Win-qing-yin and Bai-xian-pi were the most commonly prescribed Chinese herbal formula and single herb, respectively. The core prescription pattern comprised Mu-dan-pi, Wen-qing-yin, Zi-cao, Bai-xian-pi, and Di-fu-zi. Patients preferred TCM than Western medicine consultations when they had metabolic syndrome, hepatitis, rheumatoid arthritis, alopecia areata, Crohn's disease, cancer, depression, fatty liver, chronic airway obstruction, sleep disorder, and allergic rhinitis. In conclusion, TCM use is popular among patients with psoriasis in Taiwan. Future clinical trials to investigate its efficacy are warranted. PMID:27822287
ERIC Educational Resources Information Center
Skevakis, Anthony
2010-01-01
The purpose of this explanatory single-case case study (Yin, 2003) was to investigate teachers' perceptions of a principal's leadership behavior associated with the integration of a one-to-one laptop program in a parochial secondary school. The sample included the school principal and teachers who have had at least one year of teaching experience…
Functional preservation of vascular smooth muscle tissue
NASA Technical Reports Server (NTRS)
Alexander, W. C.; Hutchins, P. M.; Kimzey, S. L.
1973-01-01
The ionic and cellular feedback relationships operating to effect the vascular decompensatory modifications were examined to reveal procedures for implementing protective measures guarding against vascular collapse when returning from a weightless environment to that of the earth's gravity. The surgical procedures for preparing the rat cremaster, and the fixation methods are described. Abstracts of publications resulting from this research are included.
Zachariah, Justin P; Rong, Jian; Larson, Martin G; Hamburg, Naomi M; Benjamin, Emelia J; Vasan, Ramachandran S; Mitchell, Gary F
2018-02-01
Vascular function varies with age because of physiological and pathological factors. We examined relations of longitudinal change in vascular function with change in metabolic traits. Longitudinal changes in vascular function and metabolic traits were examined in 5779 participants (mean age, 49.8±14.5 years; 54% women) who attended sequential examinations of the Framingham Offspring, Third Generation, and Omni-1 and Omni-2 cohorts. Multivariable regression analysis related changes in vascular measures (dependent variables), including carotid-femoral pulse wave velocity (CFPWV), forward pressure wave amplitude, characteristic impedance, central pulse pressure, and mean arterial pressure (MAP), with change in body mass index, fasting total:high-density lipoprotein cholesterol ratio, serum triglycerides, and blood glucose. Analyses accounted for baseline value of each vascular and metabolic measure, MAP change, and multiple comparisons. On follow-up (mean, 5.9±0.6 years), aortic stiffness (CFPWV, 0.2±1.6 m/s), and pressure pulsatility (forward pressure wave, 1.2±12.4 mm Hg; characteristic impedance, 23±73 dyne×sec/cm 5 ; central pulse pressure, 2.6±14.7 mm Hg; all P <0.0001) increased, whereas MAP fell (-3±10 mm Hg; P <0.0001). Worsening of each metabolic trait was associated with increases in CFPWV and MAP ( P <0.0001 for all associations) and an increase in MAP was associated with an increase in CFPWV. Overall, worsening metabolic traits were associated with worsening aortic stiffness and MAP. Opposite net change in aortic stiffness and MAP suggests that factors other than distending pressure contributed to the observed increase in aortic stiffness. Change in metabolic traits explained a greater proportion of the change in CFPWV and MAP than baseline metabolic values. © 2017 American Heart Association, Inc.
Enzymatic regulation of functional vascular networks using gelatin hydrogels
Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh
2015-01-01
To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296
Zhao, Haiyong; Xu, Canxin; Lee, Tae-Jin; Liu, Fang; Choi, Kyunghee
2017-04-01
The major goal in regenerative medicine is to repair and restore injured, diseased or aged tissue function, thereby promoting general health. As such, the field of regenerative medicine has great translational potential in undertaking many of the health concerns and needs that we currently face. In particular, hematopoietic and vascular systems supply oxygen and nutrients and thus play critical roles in tissue development and tissue regeneration. Additionally, tissue vasculature serves as a tissue stem cell niche and thus contributes to tissue homeostasis. Notably, hematopoietic and vascular systems are sensitive to injury and subject to regeneration. As such, successful hematopoietic and vascular regeneration is prerequisite for efficient tissue repair and organismal survival and health. Recent studies have established that the interplay among the ETS transcription factor ETV2, vascular endothelial growth factor, and its receptor VEGFR2/FLK1 is essential for hematopoietic and vascular development. Emerging studies also support the role of these three factors and possible interplay in hematopoietic and vascular regeneration. Comprehensive understanding of the molecular mechanisms involved in the regulation and function of these three factors may lead to more effective approaches in promoting tissue repair and regeneration. Developmental Dynamics 246:318-327, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels
Sekine, Hidekazu; Shimizu, Tatsuya; Sakaguchi, Katsuhisa; Dobashi, Izumi; Wada, Masanori; Yamato, Masayuki; Kobayashi, Eiji; Umezu, Mitsuo; Okano, Teruo
2013-01-01
In vitro fabrication of functional vascularized three-dimensional tissues has been a long-standing objective in the field of tissue engineering. Here we report a technique to engineer cardiac tissues with perfusable blood vessels in vitro. Using resected tissue with a connectable artery and vein as a vascular bed, we overlay triple-layer cardiac cell sheets produced from coculture with endothelial cells, and support the tissue construct with media perfused in a bioreactor. We show that endothelial cells connect to capillaries in the vascular bed and form tubular lumens, creating in vitro perfusable blood vessels in the cardiac cell sheets. Thicker engineered tissues can be produced in vitro by overlaying additional triple-layer cell sheets. The vascularized cardiac tissues beat and can be transplanted with blood vessel anastomoses. This technique may create new opportunities for in vitro tissue engineering and has potential therapeutic applications. PMID:23360990
Vanilloid Receptor-1 (TRPV1) Expression and Function in the Vasculature of the Rat
Czikora, Ágnes; Pásztor, Enikő T.; Dienes, Beatrix; Bai, Péter; Csernoch, László; Rutkai, Ibolya; Csató, Viktória; Mányiné, Ivetta S.; Pórszász, Róbert; Édes, István; Papp, Zoltán; Boczán, Judit
2014-01-01
Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1. PMID:24217926
Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor.
Granovsky, Alexey E; Rosner, Marsha Rich
2008-04-01
Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.
Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states
NASA Astrophysics Data System (ADS)
Gao, Gan; Wang, Yue; Wang, Dong
2018-03-01
In the paper [Mod. Phys. Lett. B 31 (2017) 1750150], Yin et al. proposed a semi-quantum secret sharing scheme by using Bell states. We find that the proposed scheme cannot finish the quantum secret sharing task. In addition, we also find that the proposed scheme has a security loophole, that is, it will not be detected that the dishonest participant, Charlie attacks on the quantum channel.
Yin, Zi-Wei; Li, Li-Zhen
2014-01-01
A new genus and species of the subtribe Batrisina from western Sarawak, Bryantinus matangus gen. et sp. n., is described, illustrated, and compared with related taxa. In addition, examination of a small series of batrisine material from Thailand revealed a new country record for Cerochusa cilioceps Yin & Nomura, which was previously known only from the island of Hainan in southern China. PMID:25409318
Vascular Ageing and Exercise: Focus on Cellular Reparative Processes.
Ross, Mark D; Malone, Eva; Florida-James, Geraint
2016-01-01
Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with "vascular ageing" and are often accompanied by a reduced ability for the body to repair vascular damage, termed "reendothelialization." Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this "vascular ageing" process.
Ng, Hooi H; Jelinic, Maria; Parry, Laura J; Leo, Chen-Huei
2015-07-15
The vascular effects of exogenous relaxin (Rln) treatment are well established and include decreased myogenic reactivity and enhanced relaxation responses to vasodilators in small resistance arteries. These vascular responses are reduced in older animals, suggesting that Rln is less effective in mediating arterial function with aging. The present study investigated the role of endogenous Rln in the aorta and the possibility that vascular dysfunction occurs more rapidly with aging in Rln-deficient (Rln(-/-)) mice. We compared vascular function and underlying vasodilatory pathways in the aorta of male wild-type (Rln(+/+)) and Rln(-/-) mice at 4 and 16 mo of age using wire myography. Superoxide production, but not nitrotyrosine or NADPH oxidase expression, was significantly increased in the aorta of young Rln(-/-) mice, whereas endothelial nitric oxide (NO) synthase and basal NO availability were both significantly decreased compared with Rln(+/+) mice. In the presence of the cyclooxygenase inhibitor indomethacin, sensitivity to ACh was significantly decreased in young Rln(-/-) mice, demonstrating altered NO-mediated relaxation that was normalized in the presence of a membrane-permeable SOD or ROS scavenger. These vascular phenotypes were not exacerbated in old Rln(-/-) mice and, in most cases, did not differ significantly from old Rln(+/+) mice. Despite the vascular phenotypes in Rln(-/-) mice, endothelium-dependent and -independent vasodilation were not adversely affected. Our data show a role for endogenous Rln in reducing superoxide production and maintaining NO availability in the aorta but also demonstrate that Rln deficiency does not compromise vascular function in this artery or exacerbate endothelial dysfunction associated with aging. Copyright © 2015 the American Physiological Society.
Oxidative and inflammatory signals in obesity-associated vascular abnormalities.
Reho, John J; Rahmouni, Kamal
2017-07-15
Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Gender Differences in Bed Rest: Preliminary Analysis of Vascular Function
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Stenger, Michael B.; Martin, David S.; Freeman-Perez, Sondra A.; Phillips, Tiffany; Ribeiro, L. Christine
2008-01-01
Orthostatic intolerance is a recognized consequence of spaceflight. Numerous studies have shown that women are more susceptible to orthostatic intolerance following spaceflight as well as bed rest, the most commonly used ground-based analog for spaceflight. One of the possible mechanisms proposed to account for this is a difference in vascular responsiveness between genders. We hypothesized that women and men would have differing vascular responses to 90 days of 6-degree head down tilt bed rest. Additionally, we hypothesized that vessels in the upper and lower body would respond differently, as has been shown in the animal literature. Thirteen subjects were placed in bedrest for 90 days (8 men, 5 women) at the Flight Analogs Unit, UTMB. Direct arterial and venous measurements were made with ultrasound to evaluate changes in vascular structure and function. Arterial function was assessed, in the arm and leg, during a reactive hyperemia protocol and during sublingual nitroglycerin administration to gauge the contributions of endothelial dependent and independent dilator function respectively. Venous function was assessed in dorsal hand and foot veins during the administration of pharmaceuticals to assess constrictor and dilator function. Both gender and day effects are seen in arterial dilator function to reactive hyperemia, but none are seen with nitroglycerin. There are also differences in the wall thickness in the arm vs the leg during bed rest, which return toward pre-bed rest levels by day 90. More subjects are required, especially females as there is not sufficient power to properly analyze venous function. Day 90 data are most underpowered.
Cocoa, blood pressure, and vascular function.
Sudano, Isabella; Flammer, Andreas J; Roas, Susanne; Enseleit, Frank; Ruschitzka, Frank; Corti, Roberto; Noll, Georg
2012-08-01
The consumption of a high amount of fruits and vegetables was found to be associated with a lower risk of coronary heart disease and stroke. Epidemiologically, a similar relationship has been found with cocoa, a naturally polyphenol-rich food. Obviously, double blind randomized studies are difficult to perform with cocoa and chocolate, respectively. However, intervention studies strongly suggest that cocoa has several beneficial effects on cardiovascular health, including the lowering of blood pressure, the improvement of vascular function and glucose metabolism, and the reduction of platelet aggregation and adhesion. Several potential mechanisms through which cocoa might exert its positive effects have been proposed, among them activation of nitric oxide synthase, increased bioavailability of nitric oxide as well as antioxidant, and anti-inflammatory properties. It is the aim of this review to summarize the findings of cocoa and chocolate on blood pressure and vascular function.
An update on the blood vessel in migraine.
Brennan, K C; Charles, Andrew
2010-06-01
The cranial blood vessel is considered an integral player in the pathophysiology of migraine, but its perceived role has been subject to much discussion and controversy over the years. We will discuss the evolution in our scientific understanding of cranial blood vessels (primarily arteries) in migraine. Recent developments have clarified the role of cranial blood vessels in the trigemino-vascular system and in cortical spreading depression. An underlying theme is the intimate relation between vascular activity and neural function, and we will emphasize the various roles of the blood vessel that go beyond delivering blood. We conclude that migraine cannot be understood, either from a research or clinical point of view, without an understanding of the vascular derangements that accompany it. Migraine is accompanied by significant derangements in vascular function that may represent important targets for investigation and treatment.
Li, C; Zheng, J; Wang, J; Gui, L
2011-01-01
Blood oxygen level dependent functional magnetic resonance imaging (fMRI) and the Stroop test were used to assess attentional cortex activation in patients with Alzheimer's disease, subcortical vascular dementia, and normal control subjects. Patients with Alzheimer's disease and subcortical vascular dementia demonstrated similar locations of cortical activation, including the bilateral middle and inferior frontal gyri, anterior cingulate and inferior parietal lobule in response to Stroop colour word stimuli. This activation was distinctly decreased in patients with dementia compared with normal control subjects. Different regions of the brain were activated in patients with Alzheimer's disease and subcortical vascular dementia compared with normal controls. fMRI is a useful tool for the study of dementia in humans and has some potential diagnostic value. Further studies with larger numbers of participants are required.
Price, Laura C; Wort, Stephen J; Finney, Simon J; Marino, Philip S; Brett, Stephen J
2010-01-01
Pulmonary vascular dysfunction, pulmonary hypertension (PH), and resulting right ventricular (RV) failure occur in many critical illnesses and may be associated with a worse prognosis. PH and RV failure may be difficult to manage: principles include maintenance of appropriate RV preload, augmentation of RV function, and reduction of RV afterload by lowering pulmonary vascular resistance (PVR). We therefore provide a detailed update on the management of PH and RV failure in adult critical care. A systematic review was performed, based on a search of the literature from 1980 to 2010, by using prespecified search terms. Relevant studies were subjected to analysis based on the GRADE method. Clinical studies of intensive care management of pulmonary vascular dysfunction were identified, describing volume therapy, vasopressors, sympathetic inotropes, inodilators, levosimendan, pulmonary vasodilators, and mechanical devices. The following GRADE recommendations (evidence level) are made in patients with pulmonary vascular dysfunction: 1) A weak recommendation (very-low-quality evidence) is made that close monitoring of the RV is advised as volume loading may worsen RV performance; 2) A weak recommendation (low-quality evidence) is made that low-dose norepinephrine is an effective pressor in these patients; and that 3) low-dose vasopressin may be useful to manage patients with resistant vasodilatory shock. 4) A weak recommendation (low-moderate quality evidence) is made that low-dose dobutamine improves RV function in pulmonary vascular dysfunction. 5) A strong recommendation (moderate-quality evidence) is made that phosphodiesterase type III inhibitors reduce PVR and improve RV function, although hypotension is frequent. 6) A weak recommendation (low-quality evidence) is made that levosimendan may be useful for short-term improvements in RV performance. 7) A strong recommendation (moderate-quality evidence) is made that pulmonary vasodilators reduce PVR and improve RV function, notably in pulmonary vascular dysfunction after cardiac surgery, and that the side-effect profile is reduced by using inhaled rather than systemic agents. 8) A weak recommendation (very-low-quality evidence) is made that mechanical therapies may be useful rescue therapies in some settings of pulmonary vascular dysfunction awaiting definitive therapy. This systematic review highlights that although some recommendations can be made to guide the critical care management of pulmonary vascular and right ventricular dysfunction, within the limitations of this review and the GRADE methodology, the quality of the evidence base is generally low, and further high-quality research is needed.
Angiopoietin–Tie signalling in the cardiovascular and lymphatic systems
Eklund, Lauri; Kangas, Jaakko; Saharinen, Pipsa
2016-01-01
Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)–Tie system is a second endothelial cell specific ligand–receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang–Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang–Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang–Tie system in vascular development and pathogenesis of vascular diseases. PMID:27941161
González-Hernández, Abimael; Marichal-Cancino, Bruno A; Lozano-Cuenca, Jair; López-Canales, Jorge S; Muñoz-Islas, Enriqueta; Ramírez-Rosas, Martha B; Villalón, Carlos M
2016-01-01
Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide belonging to the calcitonin gene peptide superfamily. CGRP is a potent vasodilator with potential therapeutic usefulness for treating vascular-related disease. This peptide is primarily located on C- and A δ -fibers, which have extensive perivascular presence and a dual sensory-efferent function. Although CGRP has two major isoforms ( α -CGRP and β -CGRP), the α -CGRP is the isoform related to vascular actions. Release of CGRP from afferent perivascular nerve terminals has been shown to result in vasodilatation, an effect mediated by at least one receptor (the CGRP receptor). This receptor is an atypical G-protein coupled receptor (GPCR) composed of three functional proteins: (i) the calcitonin receptor-like receptor (CRLR; a seven-transmembrane protein), (ii) the activity-modifying protein type 1 (RAMP1), and (iii) a receptor component protein (RCP). Although under physiological conditions, CGRP seems not to play an important role in vascular tone regulation, this peptide has been strongly related as a key player in migraine and other vascular-related disorders (e.g., hypertension and preeclampsia). The present review aims at providing an overview on the role of sensory fibers and CGRP release on the modulation of vascular tone.
Liang, Zhi-Jie; Huang, Min-Hong; Peng, Qi-Liu; Zou, Dong-Hua; Gu, Rong-He; Xu, Fang-Tian; Gao, Hui; Chen, Zhen-Dong; Chi, Guang-Yi; Wei, Zhong-Heng; Chen, Li; Li, Hong-Mian
2017-01-01
Fat flap transplantation is frequently performed in patients suffering from soft tissue defects resulting from disease or trauma. This study explored the feasibility of constructing vascularized fat flaps using rabbit adipose-derived stem cells (rASCs) and collagen scaffolds in a rabbit model. We evaluated rASCs proliferation, paracrine function, adipogenesis, vascularization, and CD54 expression, with or without HIF-1α transfection in vitro and in vivo. We observed that adipogenic differentiation potential was greater in rASCs with high CD54 expression (CD54+rASCs) than in those with low expression (CD54–rASCs), both in vitro and in vivo. HIF-1α overexpression not only augmented this effect, but also enhanced cell proliferation and paracrine function in vitro. We also demonstrated that HIF-1α-transfected CD54+rASCs showed enhanced paracrine function and adipogenic capacity, and that paracrine function increases expression of angiogenesis-related markers. Thus, CD54+rASCs overexpressing HIF-1α enhanced large volume vascularized fat flap regeneration in rabbits, suggesting CD54 may be an ideal candidate marker for ASCs adipogenic differentiation. PMID:28423354
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Brian James; Yin, Lin; Stark, David James
This proposal sought of order 1M core-hours of Institutional Computing time intended to enable computing by a new LANL Postdoc (David Stark) working under LDRD ER project 20160472ER (PI: Lin Yin) on laser-ion acceleration. The project was “off-cycle,” initiating in June of 2016 with a postdoc hire.
2007-09-01
University Press. Yin, R.K. 2003. Case study research : Design and methods (3rd ed.). Thousand Oaks, CA: SAGE Publications. Yukl, G. 2001...Contingency theory has retained a central place in organization studies research for over half a century. Beginning with the seminal works by Burns and...particularly useful for research designs grounded in contingency theory (Schoonhoven 1981 p. 351; Gupta & Govindarajan 1984; Venkatraman 1989), and
New aspects of vascular remodelling: the involvement of all vascular cell types.
McGrath, John C; Deighan, Clare; Briones, Ana M; Shafaroudi, Majid Malekzadeh; McBride, Melissa; Adler, Jeremy; Arribas, Silvia M; Vila, Elisabet; Daly, Craig J
2005-07-01
Conventionally, the architecture of arteries is based around the close-packed smooth muscle cells and extracellular matrix. However, the adventitia and endothelium are now viewed as key players in vascular growth and repair. A new dynamic picture has emerged of blood vessels in a constant state of self-maintenance. Recent work raises fundamental questions about the cellular heterogeneity of arteries and the time course and triggering of normal and pathological remodelling. A common denominator emerging in hypertensive remodelling is an early increase in adventitial cell density suggesting that adventitial cells drive remodelling and may initiate subsequent changes such as re-arrangement of smooth muscle cells and extracellular matrix. The organization of vascular smooth muscle cells follows regular arrangements that can be modelled mathematically. In hypertension, new patterns can be quantified in these terms and give insights to how structure affects function. As with smooth muscle, little is known about the organization of the vascular endothelium, or its role in vascular remodelling. Current observations suggest that there may be a close relationship between the helical organization of smooth muscle cells and the underlying pattern of endothelial cells. The function of myoendothelial connections is a topic of great current interest and may relate to the structure of the internal elastic lamina through which the connections must pass. In hypertensive remodelling this must present an organizational challenge. The objective of this paper is to show how the functions of blood vessels depend on their architecture and a continuous interaction of different cell types and extracellular proteins.
The link between erectile and cardiovascular health: the canary in the coal mine.
Meldrum, David R; Gambone, Joseph C; Morris, Marge A; Meldrum, Donald A N; Esposito, Katherine; Ignarro, Louis J
2011-08-15
Lifestyle and nutrition have been increasingly recognized as central factors influencing vascular nitric oxide (NO) production and erectile function. This review underscores the importance of NO as the principal mediator influencing cardiovascular health and erectile function. Erectile dysfunction (ED) is associated with smoking, excessive alcohol intake, physical inactivity, abdominal obesity, diabetes, hypertension, and decreased antioxidant defenses, all of which reduce NO production. Better lifestyle choices; physical exercise; improved nutrition and weight control; adequate intake of or supplementation with omega-3 fatty acids, antioxidants, calcium, and folic acid; and replacement of any testosterone deficiency will all improve vascular and erectile function and the response to phosphodiesterase-5 inhibitors, which also increase vascular NO production. More frequent penile-specific exercise improves local endothelial NO production. Excessive intake of vitamin E, calcium, l-arginine, or l-citrulline may impart significant cardiovascular risks. Interventions discussed also lower blood pressure or prevent hypertension. Certain angiotensin II receptor blockers improve erectile function and reduce oxidative stress. In men aged <60 years and in men with diabetes or hypertension, erectile dysfunction can be a critical warning sign for existing or impending cardiovascular disease and risk for death. The antiarrhythmic effect of omega-3 fatty acids may be particularly crucial for these men at greatest risk for sudden death. In conclusion, by better understanding the complex factors influencing erectile and overall vascular health, physicians can help their patients prevent vascular disease and improve erectile function, which provides more immediate motivation for men to improve their lifestyle habits and cardiovascular health. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhang, Xikui; Zhu, Weikun; Lu, Taikun; Chen, Jinchun; Zou, Qiang; Zheng, Qizhong; Chen, Junying; Jiang, Changming; Jin, Guanyu
2017-01-01
The present study aimed to investigate the therapeutic effects of the Chinese herbal medicine Yin Zhi Huang soup (YZS) in an experimental autoimmune prostatitis (EAP) rat model. In total, 48 rats were randomly divided into the following four groups (n = 12/group): saline group, pathological model group, Qianlietai group, and YZS group. We determined the average wet weight of the prostate tissue, the ratio of the wet weight of the prostate tissue to body weight, tumor necrosis factor-alpha (TNF-α) levels in the blood serum, the expression of inducible nitric oxide synthase (iNOS) in the rats' prostate tissues, and the pathological changes in the prostate tissue using light microscopy. YZS reduced the rats' prostate wet weight, the ratio of the prostate wet weight to body weight, and TNF-α levels in the blood serum and inhibited the expression of iNOS in the rats' prostate tissues (P < 0.05). Following YZS treatment, the pathological changes in the rats' prostates were improved compared with those in the model group (P < 0.05). Furthermore, YZS treatment reduced inflammatory changes in the prostate tissue. It also significantly suppressed proinflammatory cytokines, such as TNF-α, and chemokines, such as iNOS, in the rat model of EAP. PMID:29430255
Deng, Longsheng; Zhang, Xikui; Zhu, Weikun; Lu, Taikun; Chen, Jinchun; Zou, Qiang; Zheng, Qizhong; Chen, Junying; Jiang, Changming; Jin, Guanyu
2017-01-01
The present study aimed to investigate the therapeutic effects of the Chinese herbal medicine Yin Zhi Huang soup (YZS) in an experimental autoimmune prostatitis (EAP) rat model. In total, 48 rats were randomly divided into the following four groups ( n = 12/group): saline group, pathological model group, Qianlietai group, and YZS group. We determined the average wet weight of the prostate tissue, the ratio of the wet weight of the prostate tissue to body weight, tumor necrosis factor-alpha (TNF- α ) levels in the blood serum, the expression of inducible nitric oxide synthase (iNOS) in the rats' prostate tissues, and the pathological changes in the prostate tissue using light microscopy. YZS reduced the rats' prostate wet weight, the ratio of the prostate wet weight to body weight, and TNF- α levels in the blood serum and inhibited the expression of iNOS in the rats' prostate tissues ( P < 0.05). Following YZS treatment, the pathological changes in the rats' prostates were improved compared with those in the model group ( P < 0.05). Furthermore, YZS treatment reduced inflammatory changes in the prostate tissue. It also significantly suppressed proinflammatory cytokines, such as TNF- α , and chemokines, such as iNOS, in the rat model of EAP.
Connexins and Pannexins in Vascular Function and Disease.
Molica, Filippo; Figueroa, Xavier F; Kwak, Brenda R; Isakson, Brant E; Gibbins, Jonathan M
2018-06-05
Connexins (Cxs) and pannexins (Panxs) are ubiquitous membrane channel forming proteins that are critically involved in many aspects of vascular physiology and pathology. The permeation of ions and small metabolites through Panx channels, Cx hemichannels and gap junction channels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. This review provides an overview of current knowledge with respect to the pathophysiological role of these channels in large arteries, the microcirculation, veins, the lymphatic system and platelet function. The essential nature of these membrane proteins in vascular homeostasis is further emphasized by the pathologies that are linked to mutations and polymorphisms in Cx and Panx genes.
Zhang, Jing-Jing; Zhu, Yi; Xie, Kun-Ling; Peng, Yun-Peng; Tao, Jin-Qiu; Tang, Jie; Li, Zheng; Xu, Ze-Kuan; Dai, Cun-Cai; Qian, Zhu-Yin; Jiang, Kui-Rong; Wu, Jun-Li; Gao, Wen-Tao; Du, Qing; Miao, Yi
2014-05-29
Increasing evidence indicates an important role of transcription factor Yin Yang-1 (YY1) in human tumorigenesis. However, its function in cancer remains controversial and the relevance of YY1 to pancreatic ductal adenocarcinoma (PDAC) remains to be clarified. In this study, we detected YY1 expression in clinical PDAC tissue samples and cell lines using quantitative RT-PCR, immunohistochemistry and western blotting. We also detected MUC4 and MMP10 mRNA levels in 108 PDAC samples using qRT-PCR and analyzed the correlations between YY1 and MUC4 or MMP10 expression. The role of YY1 in the proliferation, invasion and metastatic abilities of PDAC cells in vitro was studied by CCK-8 assay, cell migration and invasion assays. In vivo pancreatic tumor growth and metastasis was studied by a xenogenous subcutaneously implant model and a tail vein metastasis model. The potential mechanisms underlying YY1 mediated tumor progression in PDAC were explored by digital gene expression (DGE) sequencing, signal transduction pathways blockage experiments and luciferase assays. Statistical analysis was performed using the SPSS 15.0 software. We found that the expression of YY1 in PDACs was higher compared with their adjacent non-tumorous tissues and normal pancreas tissues. However, PDAC patients with high level overexpression of YY1 had better outcome than those with low level overexpression. YY1 expression levels were statistically negatively correlated with MMP10 expression levels, but not correlated with MUC4 expression levels. YY1 overexpression suppressed, whereas YY1 knockdown enhanced, the proliferation, invasion and metastatic properties of BXPC-3 cells, both in vitro and in vivo. YY1 suppresses invasion and metastasis of pancreatic cancer cells by downregulating MMP10 in a MUC4/ErbB2/p38/MEF2C-dependent mechanism. The present study suggested that YY1 plays a negative role, i.e. is a tumor suppressor, in PDAC, and may become a valuable diagnostic and prognostic marker of PDAC.
Marichal-Cancino, Bruno A.; Lozano-Cuenca, Jair; López-Canales, Jorge S.; Muñoz-Islas, Enriqueta; Ramírez-Rosas, Martha B.; Villalón, Carlos M.
2016-01-01
Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide belonging to the calcitonin gene peptide superfamily. CGRP is a potent vasodilator with potential therapeutic usefulness for treating vascular-related disease. This peptide is primarily located on C- and Aδ-fibers, which have extensive perivascular presence and a dual sensory-efferent function. Although CGRP has two major isoforms (α-CGRP and β-CGRP), the α-CGRP is the isoform related to vascular actions. Release of CGRP from afferent perivascular nerve terminals has been shown to result in vasodilatation, an effect mediated by at least one receptor (the CGRP receptor). This receptor is an atypical G-protein coupled receptor (GPCR) composed of three functional proteins: (i) the calcitonin receptor-like receptor (CRLR; a seven-transmembrane protein), (ii) the activity-modifying protein type 1 (RAMP1), and (iii) a receptor component protein (RCP). Although under physiological conditions, CGRP seems not to play an important role in vascular tone regulation, this peptide has been strongly related as a key player in migraine and other vascular-related disorders (e.g., hypertension and preeclampsia). The present review aims at providing an overview on the role of sensory fibers and CGRP release on the modulation of vascular tone. PMID:28116293
Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin
2010-06-14
Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.
Bioprinting of a functional vascularized mouse thyroid gland construct.
Bulanova, Elena A; Koudan, Elizaveta V; Degosserie, Jonathan; Heymans, Charlotte; Pereira, Frederico DAS; Parfenov, Vladislav A; Sun, Yi; Wang, Qi; Akhmedova, Suraya A; Sviridova, Irina K; Sergeeva, Natalia S; Frank, Georgy A; Khesuani, Yusef D; Pierreux, Christophe E; Mironov, Vladimir A
2017-08-18
Bioprinting can be defined as additive biofabrication of three-dimensional (3D) tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. The thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of a functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept. Based on the self-assembly principle, we generated thyroid tissue starting from thyroid spheroids (TS) and allantoic spheroids (AS) as a source of thyrocytes and endothelial cells (EC), respectively. Inspired by mathematical modeling of spheroid fusion, we used an original 3D bioprinter to print TS in close association with AS within a collagen hydrogel. During the culture, closely placed embryonic tissue spheroids fused into a single integral construct, EC from AS invaded and vascularized TS, and epithelial cells from the TS progressively formed follicles. In this experimental setting, we observed formation of a capillary network around follicular cells, as observed during in utero thyroid development when thyroid epithelium controls the recruitment, invasion and expansion of EC around follicles. To prove that EC from AS are responsible for vascularization of the thyroid gland construct, we depleted endogenous EC from TS before bioprinting. EC from AS completely revascularized depleted thyroid tissue. The cultured bioprinted construct was functional as it could normalize blood thyroxine levels and body temperature after grafting under the kidney capsule of hypothyroid mice. Bioprinting of functional vascularized mouse thyroid gland construct represents a further advance in bioprinting technology, exploring the self-assembling properties of tissue spheroids.
Nguyen, T B; Cron, G O; Perdrizet, K; Bezzina, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Sinclair, J; Thornhill, R E; Foottit, C; Zanette, B; Cameron, I G
2015-11-01
Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV. © 2015 by American Journal of Neuroradiology.
Bioengineering a highly vascularized matrix for the ectopic transplantation of islets
Ellis, Cara E; Suuronen, Erik; Yeung, Telford; Seeberger, Karen; Korbutt, Gregory S
2013-01-01
Islet transplantation is a promising treatment for Type 1 diabetes; however limitations of the intra-portal site and poor revascularization of islets must be overcome. We hypothesize that engineering a highly vascularized collagen-based construct will allow islet graft survival and function in alternative sites. In this study, we developed such a collagen-based biomaterial. Neonatal porcine islets (NPIs) were embedded in collagen matrices crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide containing combinations of chondroitin-6-sulfate, chitosan, and laminin, and compared with controls cultured in standard media. Islets were examined for insulin secretory activity after 24 h and 4 d and for apoptotic cell death and matrix integrity after 7 d in vitro. These same NPI/collagen constructs were transplanted subcutaneously in immunoincompetent B6.Rag−/− mice and then assessed for islet survival and vascularization. At all time points assessed during in vitro culture there were no significant differences in insulin secretory activity between control islets and those embedded in the collagen constructs, indicating that the collagen matrix had no adverse effect on islet function. Less cell death was observed in the matrix with all co-polymers compared with the other matrices tested. Immunohistochemical analysis of the grafts post-transplant confirmed the presence of intact insulin-positive islets; grafts were also shown to be vascularized by von Willebrand factor staining. This study demonstrates that a collagen, chondroitin-6-sulfate, chitosan, and laminin matrix supports islet function in vitro and moreover allows islet survival and vascularization post-transplantation; therefore, this bio-engineered vascularized construct is capable of supporting islet survival. PMID:24262950
Lu, Lan; Li, Zhi Jie; Li, Long Fei; Shen, Jing; Zhang, Lin; Li, Ming Xing; Xiao, Zhan Gang; Wang, Jian Hao; Cho, Chi Hin
2017-11-01
Various vascular-targeted agents fused with tumor necrosis factor α (TNFα) have been shown to improve drug absorption into tumor tissues and enhance tumor vascular function. TCP-1 is a peptide selected through in vivo phage library biopanning against a mouse orthotopic colorectal cancer model and is a promising agent for drug delivery. This study further investigated the targeting ability of TCP-1 phage and peptide to blood vessels in an orthotopic gastric cancer model in mice and assessed the synergistic anti-cancer effect of 5-fluorouracil (5-FU) with subnanogram TNFα targeted delivered by TCP-1 peptide. In vivo phage targeting assay and in vivo colocalization analysis were carried out to test the targeting ability of TCP-1 phage/peptide. A targeted therapy for improvement of the therapeutic efficacy of 5-FU and vascular function was performed through administration of TCP-1/TNFα fusion protein in this model. TCP-1 phage exhibited strong homing ability to the orthotopic gastric cancer after phage injection. Immunohistochemical staining suggested that and TCP-1 phage/TCP-1 peptide could colocalize with tumor vascular endothelial cells. TCP-1/TNFα combined with 5-FU was found to synergistically inhibit tumor growth, induce apoptosis and reduce cell proliferation without evident toxicity. Simultaneously, subnanogram TCP-1/TNFα treatment normalized tumor blood vessels. Targeted delivery of low-dose TNFα by TCP-1 peptide can potentially modulate the vascular function of gastric cancer and increase the drug delivery of chemotherapeutic drugs. Copyright © 2017. Published by Elsevier Inc.
Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...
Thyroid function and the risk of dementia: The Rotterdam Study.
Chaker, Layal; Wolters, Frank J; Bos, Daniel; Korevaar, Tim I M; Hofman, Albert; van der Lugt, Aad; Koudstaal, Peter J; Franco, Oscar H; Dehghan, Abbas; Vernooij, Meike W; Peeters, Robin P; Ikram, M Arfan
2016-10-18
To study the role of thyroid function in dementia, cognitive function, and subclinical vascular brain disease with MRI. Analyses were performed within the Rotterdam Study (baseline 1997), a prospective, population-based cohort. We evaluated the association of thyroid-stimulating hormone (TSH) and free thyroxine with incident dementia using Cox models adjusted for age, sex, cardiovascular risk factors, and education. Absolute risks were calculated accounting for death as a competing risk factor. Associations of thyroid function with cognitive test scores and subclinical vascular brain disease (white matter lesions, lacunes, and microbleeds) were assessed with linear or logistic regression. Additionally, we stratified by sex and restricted analyses to normal thyroid function. We included 9,446 participants with a mean age of 65 years. During follow-up (mean 8.0 years), 601 participants had developed dementia. Higher TSH was associated with lower dementia risk in both the full and normal ranges of thyroid function (hazard ratio [HR] 0.90, 95% confidence interval [CI] 0.83-0.98; and HR 0.76, 95% CI 0.64-0.91, respectively). This association was independent of cardiovascular risk factors. Dementia risk was higher in individuals with higher free thyroxine (HR 1.04, 95% CI 1.01-1.07). Absolute 10-year dementia risk decreased from 15% to 10% with higher TSH in older women. Higher TSH was associated with better global cognitive scores (p = 0.021). Thyroid function was not related to subclinical vascular brain disease as indicated by MRI. High and high-normal thyroid function is associated with increased dementia risk. Thyroid function is not related to vascular brain disease as assessed by MRI, suggesting a role for thyroid hormone in nonvascular pathways leading to dementia. © 2016 American Academy of Neurology.
odd skipped related1 reveals a novel role for endoderm in regulating kidney vs. vascular cell fate
Mudumana, Sudha P.; Hentschel, Dirk; Liu, Yan; Vasilyev, Aleksandr; Drummond, Iain A.
2009-01-01
Summary The kidney and vasculature are intimately linked functionally and during development, where nephric and blood/vascular progenitor cells occupy adjacent bands of mesoderm in zebrafish and frog embryos. Developmental mechanisms underlying the differentiation of kidney vs. blood/vascular lineages remain unknown. The odd skipped related1 (osr1) gene encodes a zinc finger transcription factor that is expressed in the germ ring mesendoderm and subsequently in the endoderm and intermediate mesoderm, prior to the expression of definitive kidney or blood/vascular markers. Knockdown of osr1 in zebrafish embryos resulted in a complete, segment-specific loss of anterior kidney progenitors and a compensatory increase in the number of angioblast cells in the same trunk region. Histology revealed a subsequent absence of kidney tubules, enlarged cardinal vein, and expansion of the posterior venous plexus. Altered kidney vs. vascular development correlated with expanded endoderm development in osr1 knockdowns. Combined osr1 loss of function and blockade of endoderm development by knockdown of sox32/casanova rescued anterior kidney development. The results indicate that osr1 activity is required to limit endoderm differentiation from mesendoderm and, in the absence of osr1, excess endoderm alters mesoderm differentiation, shifting the balance from kidney toward vascular development. PMID:18787069
Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei
2018-01-01
Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.
Ashcraft, Kathleen A; Choudhury, Kingshuk Roy; Birer, Sam R; Hendargo, Hansford C; Patel, Pranalee; Eichenbaum, Gary; Dewhirst, Mark W
2018-04-19
Vascular injury after radiation exposure contributes to multiple types of tissue injury through a cascade of events. Some of the earliest consequences of radiation damage include increased vascular permeability and promotion of inflammation, which is partially manifested by increased leukocyte-endothelial (L/E) interactions. We describe herein a novel intravital imaging method to evaluate L/E interactions, as a function of shear stress, and vascular permeability at multiple time points after local irradiation to the ear. This model permitted analysis of quiescent vasculature that was not perturbed by any surgical manipulation prior to imaging. To evaluate the effects of radiation on vascular integrity, fluorescent dextran was injected intravenously and its extravasation in the extravascular space surrounding the ear vasculature was measured at days 3 and 7 after 6 Gy irradiation. The vascular permeability rate increased approximately twofold at both days 3 and 7 postirradiation ( P < 0.05). Leukocyte rolling, which is indicative of L/E interactions, was significantly increased in mice at 24 h postirradiation compared to that of nonirradiated mice. To assess our model, as a means for assessing vascular radioprotectants, we treated additional cohorts of mice with a thrombopoietin mimetic, TPOm (RWJ-800088). In addition to stimulating platelet formation, thrombopoietin can protect vasculature after several forms of injury. Thus, we hypothesized that TPOm would reduce vascular permeability and L/E adhesion after localized irradiation to the ear vasculature of mice. If TPOm reduced these consequences of radiation, it would validate the utility of our intravital imaging method. TPOm reduced radiation-induced vascular leakage to control levels at day 7. Furthermore, L/E cell interactions were also reduced in irradiated mice treated with TPOm, compared with mice receiving irradiation alone, particularly at high shear stress ( P = 0.03, Kruskal-Wallis). We conclude that the ear model is useful for monitoring quiescent normal tissue vascular injury after radiation exposure. Furthermore, the application of TPOm, for preventing early inflammatory response created by damage to vascular endothelium, suggests that this drug may prove useful in reducing toxicities from radiotherapy, which damage microvasculature that critically important to tissue function.
Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits.
Keaney, J F; Gaziano, J M; Xu, A; Frei, B; Curran-Celentano, J; Shwaery, G T; Loscalzo, J; Vita, J A
1993-01-01
Recent evidence suggests that dietary therapy with lipid-soluble antioxidants may be beneficial for patients with atherosclerotic vascular disease but the potential mechanism(s) for these observations remain obscure. Abnormalities in endothelium-dependent control of vascular tone develop early in the course of atherosclerosis and may result from oxidative modification of low density lipoproteins. We examined the role of dietary antioxidants in preserving normal endothelial cell vasodilator function in cholesterol-fed rabbits with particular attention to possible effects on serum lipoproteins, low density lipoprotein oxidation, and atherogenesis. Male New Zealand White rabbits were fed diets containing no additive (controls), 1% cholesterol (cholesterol group), or 1% cholesterol chow supplemented with either beta-carotene (0.6 g/kg of chow) or alpha-tocopherol (1000 international units/kg of chow) for a 28-day period. After dietary therapy, thoracic aortae were harvested for assay of vascular function and for pathologic examination and tissue antioxidant levels. Compared to controls, acetylcholine- and A23187-mediated endothelium-dependent relaxations were significantly impaired in vessels from the cholesterol group (P < 0.001), whereas vessels from animals treated with beta-carotene or alpha-tocopherol demonstrated normal endothelium-dependent arterial relaxation. Preservation of endothelial function was associated with vascular incorporation of alpha-tocopherol and beta-carotene but was unrelated to plasma lipoprotein levels, smooth muscle cell function, or the extent of atherosclerosis. Increased low density lipoprotein resistance to ex vivo copper-mediated oxidation was observed only in the alpha-tocopherol group. Our results suggest that dietary antioxidants may benefit patients with atherosclerosis by preserving endothelial vasodilator function through a mechanism related to vascular tissue antioxidant content and not reflected by assay of low density lipoprotein resistance to ex vivo oxidation. PMID:8265642
Dabiré, Hubert; Barthélémy, Inès; Blanchard-Gutton, Nicolas; Sambin, Lucien; Sampedrano, Carolina Carlos; Gouni, Vassiliki; Unterfinger, Yves; Aguilar, Pablo; Thibaud, Jean-Laurent; Ghaleh, Bijan; Bizé, Alain; Pouchelon, Jean-Louis; Blot, Stéphane; Berdeaux, Alain; Hittinger, Luc; Chetboul, Valérie; Su, Jin Bo
2012-01-01
Little is known about the vascular function and expression of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) in Duchenne muscular dystrophy (DMD). Bradykinin is involved in the regulation of eNOS expression induced by angiotensin-converting enzyme inhibitors. We characterized the vascular function and eNOS and nNOS expression in a canine model of DMD and evaluated the effects of chronic bradykinin treatment. Vascular function was examined in conscious golden retriever muscular dystrophy (GRMD) dogs with left ventricular dysfunction (measured by echocardiography) and in isolated coronary arteries. eNOS and nNOS proteins in carotid arteries were measured by western blot and cyclic guanosine monophosphate (cGMP) content was analyzed by radioimmunoassay. Compared with controls, GRMD dogs had an impaired vasodilator response to acetylcholine. In isolated coronary artery, acetylcholine-elicited relaxation was nearly absent in placebo-treated GRMD dogs. This was explained by reduced nNOS and eNOS proteins and cGMP content in arterial tissues. Chronic bradykinin infusion (1 μg/min, 4 weeks) restored in vivo and in vitro vascular response to acetylcholine to the level of control dogs. This effect was NO-mediated through upregulation of eNOS and nNOS expression. In conclusion, this study is the first to demonstrate that DMD is associated with NO-mediated vascular endothelial dysfunction linked to an altered expression of eNOS and nNOS, which can be overcome by bradykinin. PMID:22193759
Alkatan, Mohammed; Machin, Daniel R; Baker, Jeffrey R; Akkari, Amanda S; Park, Wonil; Tanaka, Hirofumi
2016-01-01
Swimming exercise is an ideal and excellent form of exercise for patients with osteoarthritis (OA). However, there is no scientific evidence that regular swimming reduces vascular dysfunction and inflammation and elicits similar benefits compared with land-based exercises such as cycling in terms of reducing vascular dysfunction and inflammation in patients with OA. Forty-eight middle-aged and older patients with OA were randomly assigned to swimming or cycling training groups. Cycling training was included as a non-weight-bearing land-based comparison group. After 12 weeks of supervised exercise training, central arterial stiffness, as determined by carotid-femoral pulse wave velocity, and carotid artery stiffness, through simultaneous ultrasound and applanation tonometry, decreased significantly after both swimming and cycling training. Vascular endothelial function, as determined by brachial flow-mediated dilation, increased significantly after swimming but not after cycling training. Both swimming and cycling interventions reduced interleukin-6 levels, whereas no changes were observed in other inflammatory markers. In conclusion, these results indicate that regular swimming exercise can exert similar or even superior effects on vascular function and inflammatory markers compared with land-based cycling exercise in patients with OA who often has an increased risk of developing cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.
VESGEN Software for Mapping and Quantification of Vascular Regulators
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.
2012-01-01
VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.
Microbiota-specific Th17 cells: Yin and Yang in regulation of inflammatory bowel disease
Wei, Wu; Feidi, Chen; Zhanju, Liu; Yingzi, Cong
2016-01-01
Multiple mechanisms are involved in regulation of host response to microbiota to maintain the intestinal homeostasis. Th17 cells are enriched in the intestinal lamina propria (LP) under steady conditions. Many studies have demonstrated that microbiota reactive Th17 cells in the intestines mediate the pathogenesis of inflammatory bowel diseases. However, clinical trials of anti-IL-17A or anti-IL-17RA antibodies in patients with Crohn’s Disease show no improvement or even exacerbation of disease. Accumulating data has also indicated that Th17 cells may provide a protective effect as well to the intestines from inflammatory insults under homeostasis regulation, even under inflammatory conditions. Thus both pro-inflammatory and anti-inflammatory functions of intestinal Th17 cells have emerged under various conditions. In this review article, we will summarize recent progresses of Th17 cells in regulation of intestinal homeostasis as well as in the pathogenesis of inflammatory bowel diseases. PMID:27057688
Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...
Nederlof, Rianne; Xie, Chaoqin; Eerbeek, Otto; Koeman, Anneke; Milstein, Dan MJ; Hollmann, Markus W; Mik, Egbert G; Warley, Alice; Southworth, Richard; Akar, Fadi G.; Zuurbier, Coert J
2013-01-01
Rationale We have shown that partial dissociation of HKII from mitochondria in the intact heart using low dose (200 nM) TAT-HKII prevents the cardioprotective effects of ischemic preconditioning (IPC) whereas high-dose (10 μM) TAT-HKII administration results in rapid myocardial dysfunction, mitochondrial depolarization and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely due to vasoconstriction and ensuing ischemia. Objective To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium. Methods and Results Using a variety of complementary techniques, including mitochondrial membrane potential (ΔΨm) imaging, high-resolution optical action potential (AP) mapping, analysis of lactate production, NADH epifluorescence, lactate dehydrogenase (LDH) release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of IPC, is not associated with ischemia or ischemic-injury. Conclusions Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia; thereby, lending further credence to the role of mitochondria bound HKII as a critical regulator of cardiac function, ischemia-reperfusion (IR) injury, and cardioprotection by IPC. PMID:23329797
Alteration of Developmental and Pathological Retinal Angiogenesis in angptl4-deficient Mice*
Perdiguero, Elisa Gomez; Galaup, Ariane; Durand, Mélanie; Teillon, Jérémie; Philippe, Josette; Valenzuela, David M.; Murphy, Andrew J.; Yancopoulos, George D.; Thurston, Gavin; Germain, Stéphane
2011-01-01
Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions. PMID:21832056
Zhan, Yi; Fu, Guo; Zhou, Xiang; He, Bo; Yan, Li-Wei; Zhu, Qing-Tang; Gu, Li-Qiang; Liu, Xiao-Lin; Qi, Jian
2017-12-01
Complex extremity trauma commonly involves both soft tissue and vascular injuries. Traditional two-stage surgical repair may delay rehabilitation and functional recovery, as well as increase the risk of infections. We report a single-stage reconstructive surgical method that repairs soft tissue defects and vascular injuries with flow-through free flaps to improve functional outcomes. Between March 2010 and December 2016 in our hospital, 5 patients with severe upper extremity trauma received single-stage reconstructive surgery, in which a flow-through anterolateral thigh free flap was applied to repair soft tissue defects and vascular injuries simultaneously. Cases of injured artery were reconstructed with the distal trunk of the descending branch of the lateral circumflex femoral artery. A segment of adjacent vein was used if there was a second artery injury. Patients were followed to evaluate their functional recoveries, and received computed tomography angiography examinations to assess peripheral circulation. Two patients had post-operative thumb necrosis; one required amputation, and the other was healed after debridement and abdominal pedicle flap repair. The other 3 patients had no major complications (infection, necrosis) to the recipient or donor sites after surgery. All the patients had achieved satisfactory functional recovery by the end of the follow-up period. Computed tomography angiography showed adequate circulation in the peripheral vessels. The success of these cases shows that one-step reconstructive surgery with flow-through anterolateral thigh free flaps can be a safe and effective treatment option for patients with complex upper extremity trauma with soft tissue defects and vascular injuries. Copyright © 2017. Published by Elsevier Ltd.
Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh
2015-11-01
Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse after 1 month of implantation. We reported a method for preparing autologous extracellular matrix scaffolds, murine collagen-Ph hydrogels, and demonstrated its suitability for use in supporting human progenitor cell-based formation of 3D vascular networks in vitro and in vivo. Results showed extensive human vascular networks can be generated within 7 days, engineered vascular density inside collagen-Ph constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with existing vasculature to further support the survival of host muscle tissues. Moreover, optimized conditions of cell-laden collagen-Ph hydrogel resulted in not only improving the long-term differentiation of transplanted MSCs into mineralized osteoblasts, but the collagen-Ph hydrogel also improved an increased of adipocytes within the vascularized bioengineered tissue in a mouse. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhao, Jing; Xie, Ming; Liu, Jin-Na; Wang, Bang-Zhong
2018-04-11
Ethnopharmacology relevance Based on basic theories of Chinese medicine, Yi-Qi-Yang-Yin-Hua-Tan-Qu-Yu (YQYYHTQY) recipe was constituted by eleven kinds of Chinese herbs and effective in treatment of type 2 diabetes (T2DM). But the therapy target was unclear. In this study, we used the serum proteome labeled by iTRAQ to find therapy target of YQYYHTQY recipe on T2DM. The rat model was induced by high-fat diet (HFD) and streptozotocin (STZ, 30mg/kg). Drugs were administered to rats once daily for 14 days. Related laboratory parameters were observed. Serum proteome were compared between T2DM and YQYYHTQY group using the iTRAQ labeling quantitative proteomics technique. Functional differential proteins were analysis by STRING software. Target proteins were confirmed by ELISA kits. Hyperglycemia, hyperinsulinemia, insulin resistance, decrease of glucose transporter, depilation, less activity, flock together, depression, ecchymosis of tongue and tail appearance, the typical diabetic patients "a little more than three" symptoms, as well as the decrease of grip strength, serum cyclic adenosine monophosphate (cAMP)/ cyclic guanosine monophosphate (cGMP) ratio, serum high density lipoprotein-cholesterol (HDL-C) and the increase of serum triglyceride (TG), total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), thromboxane B 2 (TXB 2 )/ 6-keto prostaglandin F1α (6-keto PGF1α) ratio, endothelin-1 (ET-1) levels were found in T2DM group. After drugs treatment, all the above indexes almost were improved in different degrees and effect of YQYYHTQY recipe was superior to pioglitazone hydrochloride. In addition, there were 23 differential proteins, 5 up-regulated and 18 down-regulated proteins. Of them, there were 4 proteins related with diabetes, blood and behavior. Cell division control protein 42 homolog (CDC42) and Ras homolog gene family member A (RhoA) were the therapy targets of YQYYHTQY recipe on T2DM. YQYYHTQY recipe showed therapy effect on T2DM. CDC42 and RhoA proteins were the therapy targets of YQYYHTQY recipe. Copyright © 2018 Elsevier Ireland Ltd. All rights reserved.
Grain-Structure Development in Heavily Cold-Rolled Alpha-Titanium (Postprint)
2014-04-01
H.P. Lee, C. Esling , H.J. Bunge, Textures Microstruct. 7 (1988) 317–337. [10] S. Nourbakhsh, T.D. O’Brien, Mater. Sci. Eng. 100 (1988) 109–114. [11...2010) 4536–4548. [20] Y. Zhong, F. Yin, K. Nagai, J. Mater. Res. 23 (2008) 2954–2966. [21] M.J. Philippe, M. Serghat, P. Van Houtte, C. Esling , Acta
O'Donnell, Emma; Goodman, Jack M; Mak, Susanna; Harvey, Paula J
2014-05-01
Exercise-trained hypoestrogenic premenopausal women with functional hypothalamic amenorrhea (ExFHA) exhibit impaired endothelial function. The vascular effects of an acute bout of exercise, a potent nitric oxide stimulus, in these women are unknown. Three groups were studied: recreationally active ExFHA women (n = 12; 24.2 ± 1.2 years of age; mean ± SEM), and recreationally active (ExOv; n = 14; 23.5 ± 1.2 years of age) and sedentary (SedOv; n = 15; 23.1 ± 0.5 years of age) ovulatory eumenorrheic women. Calf blood flow (CBF) and brachial artery flow-mediated dilation (FMD) were evaluated using plethysmographic and ultrasound techniques, respectively, both before and 1 hour after 45 minutes of moderate-intensity exercise. Endothelium-independent dilation was assessed at baseline using glyceryl trinitrate. Calf vascular resistance (CVR) and brachial peak shear rate, as determined by the area under the curve (SRAUCpk), were also calculated. FMD and glyceryl trinitrate responses were lower (P < .05) in ExFHA (2.8% ± 0.4% and 11.6% ± 0.7%, respectively) than ExOv (8.8% ± 0.7% and 16.7% ± 1.3%) and SedOv (8.0% ± 0.5% and 17.1% ± 1.8%). SRAUCpk was also lower (P < .05) in ExFHA. Normalization of FMD for SRAUCpk (FMD/SRAUCpk) did not alter (P > .05) the findings. CBF was lower (P < .05) and CVR higher (P < .05) in ExFHA. After exercise, FMD and SRAUCpk were augmented (P < .05), but remained lower (P < .05), in ExFHA. FMD/SRAUCpk no longer differed (P > .05) between the groups. CBF in ExFHA was increased (P < .05) and CVR decreased (P < .05) to levels observed in ovulatory women. Acute dynamic exercise improves vascular function in ExFHA women. Although the role of estrogen deficiency per se is unclear, our findings suggest that low shear rate and increased vasoconstrictor tone may play a role in impaired basal vascular function in these women.
Al-Dashti, Yousef A; Holt, Roberta R; Stebbins, Charles L; Keen, Carl L; Hackman, Robert M
2018-05-02
An individual's diet affects numerous physiological functions and can play an important role in reducing the risk of cardiovascular disease. Epidemiological and clinical studies suggest that dietary flavanols can be an important modulator of vascular risk. Diets and plant extracts rich in flavanols have been reported to lower blood pressure, especially in prehypertensive and hypertensive individuals. Flavanols may act in part through signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxing and constricting factors. During exercise, flavanols have been reported to modulate metabolism and respiration (e.g., maximal oxygen uptake, O 2 cost of exercise, and energy expenditure), and reduce oxidative stress and inflammation, resulting in increased skeletal muscle efficiency and endurance capacity. Flavanol-induced reductions in blood pressure during exercise may decrease the work of the heart. Collectively, these effects suggest that flavanols can act as an ergogenic aid to help delay the onset of fatigue. More research is needed to better clarify the effects of flavanols on vascular function, blood pressure regulation, and exercise performance and establish safe and effective levels of intake. Flavanol-rich foods and food products can be useful components of a healthy diet and lifestyle program for those seeking to better control their blood pressure or to enhance their physical activity. Key teaching points • Epidemiological and clinical studies indicate that dietary flavanols can reduce the risk of vascular disease. • Diets and plant extracts rich in flavanols have been reported to lower blood pressure and improve exercise performance in humans. • Mechanisms by which flavanols may reduce blood pressure function include alterations in signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxation and constriction factors. • Mechanisms by which flavanols may enhance exercise performance include modulation of metabolism and respiration (e.g., maximal oxygen uptake, O 2 cost of exercise, and energy expenditure) and reduction of oxidative stress and inflammation. These effects can result in increased skeletal muscle efficiency and endurance capacity. • Further research is needed to clarify the amount, timing, and frequency of flavanol intake for blood pressure regulation and exercise performance.
Giachini, Fernanda Regina; Galaviz-Hernandez, Carlos; Damiano, Alicia E; Viana, Marta; Cadavid, Angela; Asturizaga, Patricia; Teran, Enrique; Clapes, Sonia; Alcala, Martin; Bueno, Julio; Calderón-Domínguez, María; Ramos, María P; Lima, Victor Vitorino; Sosa-Macias, Martha; Martinez, Nora; Roberts, James M; Escudero, Carlos
2017-10-06
Pregnancy is a physiologically stressful condition that generates a series of functional adaptations by the cardiovascular system. The impact of pregnancy on this system persists from conception beyond birth. Recent evidence suggests that vascular changes associated with pregnancy complications, such as preeclampsia, affect the function of the maternal and offspring vascular systems, after delivery and into adult life. Since the vascular system contributes to systemic homeostasis, defective development or function of blood vessels predisposes both mother and infant to future risk for chronic disease. These alterations in later life range from fertility problems to alterations in the central nervous system or immune system, among others. It is important to note that rates of morbi-mortality due to pregnancy complications including preeclampsia, as well as cardiovascular diseases, have a higher incidence in Latin-American countries than in more developed countries. Nonetheless, there is a lack both in the amount and impact of research conducted in Latin America. An impact, although smaller, can be seen when research in vascular disorders related to problems during pregnancy is analyzed. Therefore, in this review, information about preeclampsia and endothelial dysfunction generated from research groups based in Latin-American countries will be highlighted. We relate the need, as present in many other countries in the world, for increased effective regional and international collaboration to generate new data specific to our region on this topic.
Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.
Nakajima, Hiroshi; Yamamoto, Sumiko; Katsuhira, Junji
2018-07-01
Patients with diabetes often develop diabetic peripheral neuropathy, which is a distal symmetric polyneuropathy, so foot function on the non-amputated side is expected to affect gait in vascular trans-tibial amputees. However, there is little information on the kinematics and kinetics of gait or the effects of diabetic peripheral neuropathy in vascular trans-tibial amputees. This study aimed to clarify these effects, including the biomechanics of the ankle on the non-amputated side. Participants were 10 vascular trans-tibial amputees with diabetic peripheral neuropathy (group V) and 8 traumatic trans-tibial amputees (group T). Each subject's gait was analyzed at a self-selected speed using a three-dimensional motion analyzer and force plates. Ankle plantarflexion angle, heel elevation angle, and peak and impulse of anterior ground reaction force were smaller on the non-amputated side during pre-swing in group V than in group T. Center of gravity during pre-swing on the non-amputated side was lower in group V than in group T. Hip extension torque during loading response on the prosthetic side was greater in group V than in group T. These findings suggest that the biomechanical function of the ankle on the non-amputated side during pre-swing is poorer in vascular trans-tibial amputees with DPN than in traumatic trans-tibial amputees; the height of the center of gravity could not be maintained during this phase in vascular trans-tibial amputees with diabetic peripheral neuropathy. The hip joint on the prosthetic side compensated for this diminished function at the ankle during loading response. Copyright © 2018 Elsevier Ltd. All rights reserved.
Patterning vascular networks in vivo for tissue engineering applications.
Chaturvedi, Ritika R; Stevens, Kelly R; Solorzano, Ricardo D; Schwartz, Robert E; Eyckmans, Jeroen; Baranski, Jan D; Stapleton, Sarah Chase; Bhatia, Sangeeta N; Chen, Christopher S
2015-05-01
The ultimate design of functionally therapeutic engineered tissues and organs will rely on our ability to engineer vasculature that can meet tissue-specific metabolic needs. We recently introduced an approach for patterning the formation of functional spatially organized vascular architectures within engineered tissues in vivo. Here, we now explore the design parameters of this approach and how they impact the vascularization of an engineered tissue construct after implantation. We used micropatterning techniques to organize endothelial cells (ECs) into geometrically defined "cords," which in turn acted as a template after implantation for the guided formation of patterned capillaries integrated with the host tissue. We demonstrated that the diameter of the cords before implantation impacts the location and density of the resultant capillary network. Inclusion of mural cells to the vascularization response appears primarily to impact the dynamics of vascularization. We established that clinically relevant endothelial sources such as induced pluripotent stem cell-derived ECs and human microvascular endothelial cells can drive vascularization within this system. Finally, we demonstrated the ability to control the juxtaposition of parenchyma with perfused vasculature by implanting cords containing a mixture of both a parenchymal cell type (hepatocytes) and ECs. These findings define important characteristics that will ultimately impact the design of vasculature structures that meet tissue-specific needs.
Stojakovic, Tatjana; Claudel, Thierry; Putz-Bankuti, Csilla; Fauler, Günter; Scharnagl, Hubert; Wagner, Martin; Sourij, Harald; Stauber, Rudolf E; Winkler, Karl; März, Winfried; Wascher, Thomas C; Trauner, Michael
2010-03-01
Primary biliary cirrhosis (PBC) is frequently associated with hypercholesterolemia and with an increased cardiovascular morbidity and mortality. Statins lower serum cholesterol levels and may thus improve the cardiovascular risk in PBC patients. The aim of our study was to prospectively examine the efficacy of low-dose atorvastatin on cholestasis as well as cardiovascular risk markers such as dyslipidemia and vascular function in patients with PBC. Nineteen patients with early-stage (biopsy proven and AMA positive) PBC and low-density lipoprotein cholesterol (LDL-C) above 130mg/dL were included in this single-center study and treated with atorvastatin 10mg per day for one year. Concentrations of total cholesterol, LDL-C, LDL triglycerides, oxLDL, IgG and sVCAM-1 decreased significantly after 48 weeks of atorvastatin treatment. Flow-mediated dilation (FMD) of the brachial artery as an indicator of vascular function significantly increased, while carotid artery intima-media thickness and vascular wall stiffness did not progress under treatment. No statistical differences in liver enzymes were observed except a transient increase of alkaline phosphatase. Treatment with low-dose atorvastatin is safe in early-stage PBC, effectively reduces total cholesterol, LDL-C, LDL triglycerides, oxLDL and sVCAM-1 and improves vascular function as reflected by FMD, without affecting cholestasis progression. Therefore, statin therapy should be considered in PBC patients with additional risk factors for cardiovascular disease.
Nilsson, Karin; Gustafson, Lars; Hultberg, Björn
2012-01-01
Serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is regarded as a sensitive marker of cardiovascular disease. Vascular disease plays an important role in cognitive impairment. In 447 elderly patients with mental illness, serum NT-proBNP level and the presence or absence of vascular disease according to the medical record were used to categorize patients in different subgroups of vascular disease. Patients with vascular disease and elevated serum NT-proBNP level had a lower cognition level, shorter survival time, lower renal function and a higher percentage of pathological brain imaging than patients with vascular disease and normal NT-proBNP level. Thus, elevated serum NT-proBNP level might be helpful to detect patients who have a more severe cardiovascular disease.
A Comparative Study of Two Azimuth Based Non Standard Location Methods
2017-03-23
Standard Location Methods Rongsong JIH U.S. Department of State / Arms Control, Verification, and Compliance Bureau, 2201 C Street, NW, Washington...COMPARATIVE STUDY OF TWO AZIMUTH-BASED NON-STANDARD LOCATION METHODS R. Jih Department of State / Arms Control, Verification, and Compliance Bureau...cable. The so-called “Yin Zhong Xian” (“引中线” in Chinese) algorithm, hereafter the YZX method , is an Oriental version of IPB-based procedure. It
Borton, Anna Henry; Benson, Bryan L; Neilson, Lee E; Saunders, Ashley; Alaiti, M Amer; Huang, Alex Y; Jain, Mukesh K; Proweller, Aaron; Ramirez-Bergeron, Diana L
2018-06-01
Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. We used Arnt SMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. Arnt SMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of Arnt SMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. Arnt SMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in Arnt SMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Fourquin, Chloé; Primo, Amparo; Martínez-Fernández, Irene; Huet-Trujillo, Estefanía; Ferrándiz, Cristina
2014-01-01
Background and Aims CRABS CLAW (CRC) is a member of the YABBY family of transcription factors involved in carpel morphogenesis, floral determinacy and nectary specification in arabidopsis. CRC orthologues have been functionally characterized across angiosperms, revealing additional roles in leaf vascular development and carpel identity specification in Poaceae. These studies support an ancestral role of CRC orthologues in carpel development, while roles in vascular development and nectary specification appear to be derived. This study aimed to expand research on CRC functional conservation to the legume family in order to better understand the evolutionary history of CRC orthologues in angiosperms. Methods CRC orthologues from Pisum sativum and Medicago truncatula were identified. RNA in situ hybridization experiments determined the corresponding expression patterns throughout flower development. The phenotypic effects of reduced CRC activity were investigated in P. sativum using virus-induced gene silencing. Key Results CRC orthologues from P. sativum and M. truncatula showed similar expression patterns, mainly restricted to carpels and nectaries. However, these expression patterns differed from those of other core eudicots, most importantly in a lack of abaxial expression in the carpel and in atypical expression associated with the medial vein of the ovary. CRC downregulation in pea caused defects in carpel fusion and style/stigma development, both typically associated with CRC function in eudicots, but also affected vascular development in the carpel. Conclusions The data support the conserved roles of CRC orthologues in carpel fusion, style/stigma development and nectary development. In addition, an intriguing new aspect of CRC function in legumes was the unexpected role in vascular development, which could be shared by other species from widely diverged clades within the angiosperms, suggesting that this role could be ancestral rather than derived, as so far generally accepted. PMID:24989787
You, Weon-Kyoo; Bonaldo, Paolo; Stallcup, William B.
2012-01-01
To investigate the importance of the vascular basal lamina in tumor blood vessel morphogenesis and function, we compared vessel development, vessel function, and progression of B16F10 melanoma tumors in the brains of wild-type and collagen VI-null mice. In 7-day tumors in the absence of collagen VI, the width of the vascular basal lamina was reduced twofold. Although the ablation of collagen VI did not alter the abundance of blood vessels, a detailed analysis of the number of either pericytes or endothelial cells (or pericyte coverage of endothelial cells) showed that collagen VI-dependent defects during the assembly of the basal lamina have negative effects on both pericyte maturation and the sprouting and survival of endothelial cells. As a result of these deficits, vessel patency was reduced by 25%, and vessel leakiness was increased threefold, resulting in a 10-fold increase in tumor hypoxia along with a fourfold increase in hypoxia-inducible factor-1α expression. In 12-day collagen VI-null tumors, vascular endothelial growth factor expression was increased throughout the tumor stroma, in contrast to the predominantly vascular pattern of vascular endothelial growth factor expression in wild-type tumors. Vessel size was correspondingly reduced in 12-day collagen VI-null tumors. Overall, these vascular deficits produced a twofold decrease in tumor volume in collagen VI-null mice, confirming that collagen VI-dependent basal lamina assembly is a critical aspect of vessel development. PMID:22200614
The Value of Survival Gains in Pancreatic Cancer from Novel Treatment Regimens.
MacEwan, Joanna P; Yin, Wes; Kaura, Satyin; Khan, Zeba M
2017-02-01
Metastatic pancreatic cancer (mPC) is associated with low survival, with less than 10% of patients surviving 5 years. Recent therapies improve survival outcomes where few alternative therapies exist, but few economic analyses measure the value of survival gains attributable to new therapies. To estimate the value of survival gains in advanced or mPC attributable to the introduction of novel treatment regimens. Multivariate Cox proportional hazards models were used to estimate real-world survival gains associated with the introduction of gemcitabine (GEM) for patients diagnosed with stage IV or unstaged mPC in the Surveillance, Epidemiology, and End Results Program cancer registries. Then, evidence from clinical trials was used to evaluate the survival gains associated with nab-paclitaxel + gemcitabine (nP +GEM) and FOLFIRINOX (FFX) relative to GEM. The survival estimates and clinical trial evidence were used to calibrate an economic model and assess the cumulative value of survival gains in mPC to patients. Costs of treatment were calculated based on published cost-effectiveness studies. We estimated that the introduction of GEM in 1996 was associated with a hazard ratio of 0.920 (P < 0.05) and an increase in median survival from 3.1 to 4.5 months. Results suggested that the value of survival gains attributable to GEM equaled about $71,000 per patient, while the value attributable to nP + GEM was an additional $56,700. Estimates for the value of survival gains per patient, net of total incremental lifetime treatment costs (drugs, adverse events, and other costs), were $50,294 for GEM and an additional $31,900 for nP + GEM. Clinical trials and cost-effectiveness studies reported an overall survival gain from FFX that was larger than, but statistically similar to, nP + GEM and had greater risk of adverse events and total incremental costs. We estimated that the total value of survival gains to mPC patients, net of total costs, associated with GEM was up to $47.6 billion, and the additional values attributable to nP+GEM and FFX were up to $39.0 billion and $26.3 billion, respectively. Historically, mPC patients have faced high disease burden and had few treatment options. Treatments introduced since 1996 have led to improved survival, with varying costs associated with treatment and adverse events. Accounting for total incremental costs, the majority of the value of survival gains from GEM and nP+GEM was retained by mPC patients, highlighting the value of innovation in settings where survival is low and few alternative therapies exist. Support for this research was provided by Celgene. Precision Health Economics was compensated by Celgene for work on this study. MacEwan is an employee of, and Yin is a consultant to, Precision Health Economics. Kaura and Khan are employees of Celgene. Study concept and design were contributed primarily by Yin and MacEwan, along with Kaura and Khan. MacEwan collected the data, and data interpretation was performed primarily by MacEwan and Yin, along with Kaura and Khan. The manuscript was written and revised by MacEwan, Yin, Kaura, and Khan.
Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E
2017-06-01
Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.
Behind the Periscope: Leadership in China’s Navy
2013-12-01
Spring Festival Distant Sea Voyage: A Complete Account of the North Sea Fleet’s Distant Seas Training Vessel Formation” (zhongguo haijun de ‘chunjie...staff VADM Du Jingchen.596 During the expedition, Yin convened a political working group which created a musical piece called “Song of the Gulf of Aden...Spring Festival Distant Sea Voyage: A Complete Account of the North Sea Fleet’s Distant Seas Training Vessel Formation” (zhongguo haijun de ‘chunjie
An update on the blood vessel in migraine
Brennan, K.C.; Charles, Andrew
2017-01-01
Purpose of review The cranial blood vessel is considered an integral player in the pathophysiology of migraine, but its perceived role has been subject to much discussion and controversy over the years. We will discuss the evolution in our scientific understanding of cranial blood vessels (primarily arteries) in migraine. Recent findings Recent developments have clarified the role of cranial blood vessels in the trigemino-vascular system and in cortical spreading depression. An underlying theme is the intimate relation between vascular activity and neural function, and we will emphasize the various roles of the blood vessel that go beyond delivering blood. We conclude that migraine cannot be understood, either from a research or clinical point of view, without an understanding of the vascular derangements that accompany it. Summary Migraine is accompanied by significant derangements in vascular function that may represent important targets for investigation and treatment. PMID:20216215
Foulds, H J A; Bredin, S S D; Warburton, D E R
2016-04-01
Indigenous populations currently experience greater cardiovascular disease burdens. However, subclinical vascular structure and function among these populations is not well known. This investigation evaluated vascular structure and function among Canadian Indigenous populations. Blood pressure, body composition, pulse-wave velocity (PWV), baroreceptor sensitivity (BRS), arterial compliance and intima-media thickness (IMT) were measured. Vascular measures were evaluated across sexes and age groups. Vascular assessments were conducted among 55 Indigenous adults (38±18 years, 29 Female), including both First Nations (N=36) and Métis (N=19) individuals. Some differences in vascular measures were found between males and females, respectively (spectral BRS: 9.6±6.8 ms mm Hg(-1) vs 16.9±10.0 ms mm Hg(-1), P=0.01; small arterial compliance: 8.9±3.7 ml mm Hg(-1) × 100 vs 6.4±2.3 ml mm Hg(-1) × 100, P=0.004), with similar measures of overall IMT (0.61±0.14 mm vs 0.57±0.08 mm, P=0.19) and central PWV (5.7±2.5 m s(-1) vs 5.1±2.3 m s(-1), P=0.58). Greater IMT, and lower BRS and arterial compliance were identified among older adults. This relatively healthy population demonstrated healthy vascular measures, with poorer measures among older individuals.
Fibroblast Growth Factor 21 Protects Photoreceptor Function in Type 1 Diabetic Mice.
Fu, Zhongjie; Wang, Zhongxiao; Liu, Chi-Hsiu; Gong, Yan; Cakir, Bertan; Liegl, Raffael; Sun, Ye; Meng, Steven S; Burnim, Samuel B; Arellano, Ivana; Moran, Elizabeth; Duran, Rubi; Poblete, Alexander; Cho, Steve S; Talukdar, Saswata; Akula, James D; Hellström, Ann; Smith, Lois E H
2018-05-01
Retinal neuronal abnormalities occur before vascular changes in diabetic retinopathy. Accumulating experimental evidence suggests that neurons control vascular pathology in diabetic and other neovascular retinal diseases. Therefore, normalizing neuronal activity in diabetes may prevent vascular pathology. We investigated whether fibroblast growth factor 21 (FGF21) prevented retinal neuronal dysfunction in insulin-deficient diabetic mice. We found that in diabetic neural retina, photoreceptor rather than inner retinal function was most affected and administration of the long-acting FGF21 analog PF-05231023 restored the retinal neuronal functional deficits detected by electroretinography. PF-05231023 administration protected against diabetes-induced disorganization of photoreceptor segments seen in retinal cross section with immunohistochemistry and attenuated the reduction in the thickness of photoreceptor segments measured by optical coherence tomography. PF-05231023, independent of its downstream metabolic modulator adiponectin, reduced inflammatory marker interleukin-1β (IL-1β) mRNA levels. PF-05231023 activated the AKT-nuclear factor erythroid 2-related factor 2 pathway and reduced IL-1β expression in stressed photoreceptors. PF-05231023 administration did not change retinal expression of vascular endothelial growth factor A, suggesting a novel therapeutic approach for the prevention of early diabetic retinopathy by protecting photoreceptor function in diabetes. © 2018 by the American Diabetes Association.
Platelets as Cellular Effectors of Inflammation in Vascular Diseases
Rondina, Matthew T.; Weyrich, Andrew S.; Zimmerman, Guy A.
2013-01-01
Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key “thromboinflammatory” activities in a variety of vascular disorders and vasculopathies. Recently-identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases. PMID:23704217
Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes
2013-01-01
Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554
Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes
2013-02-01
Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.
2009-01-01
VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.
Moore, Jeremy K; Chen, Junjie; Pan, Hua; Gaut, Joseph P; Jain, Sanjay; Wickline, Samuel A
2018-06-01
To design a fluorine MRI/MR spectroscopy approach to quantify renal vascular damage after ischemia-reperfusion injury, and the therapeutic response to antithrombin nanoparticles (NPs) to protect kidney function. A total of 53 rats underwent 45 min of bilateral renal artery occlusion and were treated at reperfusion with either plain perfluorocarbon NPs or NPs functionalized with a direct thrombin inhibitor (PPACK:phenyalanine-proline-arginine-chloromethylketone). Three hours after reperfusion, kidneys underwent ex vivo fluorine MRI/MR spectroscopy at 4.7 T to quantify the extent and volume of trapped NPs, as an index of vascular damage and ischemia-reperfusion injury. Microscopic evaluation of structural damage and NP trapping in non-reperfused renal segments was performed. Serum creatinine was quantified serially over 7 days. The damaged renal cortico-medullary junction trapped a significant volume of NPs (P = 0.04), which correlated linearly (r = 0.64) with the severity of kidney injury 3 h after reperfusion. Despite global large vessel reperfusion, non-reperfusion in medullary peritubular capillaries was confirmed by MRI and microscopy, indicative of continuing hypoxia due to vascular compromise. Treatment of animals with PPACK NPs after acute kidney injury did not accelerate kidney functional recovery. Quantification of ischemia-reperfusion injury after acute kidney injury with fluorine MRI/MR spectroscopy of perfluorocarbon NPs objectively depicts the extent and severity of vascular injury and its linear relationship to renal dysfunction. The lack of kidney function improvement after early posttreatment thrombin inhibition confirms the rapid onset of ischemia-reperfusion injury as a consequence of vascular damage and non-reperfusion. The prolongation of medullary ischemia renders cortico-medullary tubular structures susceptible to continued necrosis despite restoration of large vessel flow, which suggests limitations to acute interventions after acute kidney injury, designed to interdict renal tubular damage. Magn Reson Med 79:3144-3153, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
A new discussion of the cutaneous vascular reactivity in sensitive skin: A sub-group of SS?
Chen, S Y; Yin, J; Wang, X M; Liu, Y Q; Gao, Y R; Liu, X P
2018-02-02
Sensitive skin (SS) seems not to be a one-dimensional condition and many scholars concentrate on skin barrier disruption or sensorineural change, but few focus on its increased vascular reactivity. This study explored the possibility of using the different selection methods and measurement methods to verify a high vascular reactivity in SS without an impaired cutaneous barrier function. Sixty "self-perceived sensitive skin" volunteers were enlisted and each one completed three kinds of screening tests: assess cutaneous sensory using questionnaire survey and Lactic Acid Sting Test (LAST); assess barrier function using Sodium lauryl sulphate (SLS) skin irritation test and assess cutaneous vascular reactivity using 98% DMSO test and non-invasive measurement. Volunteers were divided into different groups based on response to SLS. The DMSO clinical score and the biophysical parameters obtained by non-invasive measurement were subsequently analysed. (1) The positive correlations could be seen between sum LAST score and sum DMSO score regardless of the observation time; (2) The biological parameters (CBF、a*values and L* values) are all keeping with DMSO score; (3) If the participants were divided into SLS reactors and non-reactors, a composition ratio of DMSO score was significant difference in these two groups and in SLS non-reactors, there were still seven participants showed high reaction to DMSO. There is a sub-group of SS for characteristics of a high vascular reactivity without an impaired cutaneous barrier function. The DMSO test and novel non-invasive measurements which are conducive to assess cutaneous vascular reactivity, combined with SLS skin irritation test could help us to screen this kind of SS. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
a New Hybrid Yin-Yang Swarm Optimization Algorithm for Uncapacitated Warehouse Location Problems
NASA Astrophysics Data System (ADS)
Heidari, A. A.; Kazemizade, O.; Hakimpour, F.
2017-09-01
Yin-Yang-pair optimization (YYPO) is one of the latest metaheuristic algorithms (MA) proposed in 2015 that tries to inspire the philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO) is one of the first population-based MA inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique advantages of these methodologies and to mitigate the immature convergence and local optima (LO) stagnation problems in PSO, in this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of uncapacitated warehouse location (UWL) problems. This efficient hierarchical PSO-based optimizer (PSOYPO) can improve the effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA), harmony search (HS), modified HS (OBCHS), and evolutionary simulated annealing (ESA). The experimental results demonstrate that the PSOYPO can reveal a better or competitive efficacy compared to the PSO and other MA.
ProBDNF inhibits collective migration and chemotaxis of rat Schwann cells.
Ding, You-Quan; Li, Xuan-Yang; Xia, Guan-Nan; Ren, Hong-Yi; Zhou, Xin-Fu; Su, Bing-Yin; Qi, Jian-Guo
2016-10-01
Schwann cell migration, including collective migration and chemotaxis, is essential for the formation of coordinate interactions between Schwann cells and axons during peripheral nerve development and regeneration. Moreover, limited migration of Schwann cells imposed a serious obstacle on Schwann cell-astrocytes intermingling and spinal cord repair after Schwann cell transplantation into injured spinal cords. Recent studies have shown that mature brain-derived neurotrophic factor, a member of the neurotrophin family, inhibits Schwann cell migration. The precursor form of brain-derived neurotrophic factor, proBDNF, was expressed in the developing or degenerating peripheral nerves and the injured spinal cords. Since "the yin and yang of neurotrophin action" has been established as a common sense, proBDNF would be expected to promote Schwann cell migration. However, we found, in the present study, that exogenous proBDNF also inhibited in vitro collective migration and chemotaxis of RSC 96 cells, a spontaneously immortalized rat Schwann cell line. Moreover, proBDNF suppressed adhesion and spreading of those cells. At molecular level, proBDNF inhibits F-actin polymerization and focal adhesion dynamics in cultured RSC 96 cells. Therefore, our results suggested a special case against the classical opinion of "the yin and yang of neurotrophin action" and implied that proBDNF might modulate peripheral nerve development or regeneration and spinal cord repair through perturbing native or transplanted Schwann cell migration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exercise training, vascular function, and functional capacity in middle-aged subjects.
Maiorana, A; O'Driscoll, G; Dembo, L; Goodman, C; Taylor, R; Green, D
2001-12-01
The aim of this study was to investigate the effect of 8 wk of exercise training on functional capacity, muscular strength, body composition, and vascular function in sedentary but healthy subjects by using a randomized, crossover protocol. After familiarization sessions, 19 subjects aged 47 +/- 2 yr (mean +/- SE) undertook a randomized, crossover design study of the effect of 8 wk of supervised circuit training consisting of combined aerobic and resistance exercise. Peak oxygen uptake (.VO(2peak)), sum of 7 maximal voluntary contractions and the sum of 8 skinfolds and 5 segment girths were determined at entry, crossover, and 16 wk. Endothelium-dependent and -independent vascular function were determined by forearm strain-gauge plethysmography and intrabrachial infusions of acetylcholine (ACh) and sodium nitroprusside (SNP) in 16 subjects. Training did not alter ACh or SNP responses. .VO(2peak), (28.6 +/- 1.1 to 32.6 +/- 1.3 mL.kg(-1).min(-1), P < 0.001), exercise test duration (17.4 +/- 1.1 to 22.1 +/- 1.2 min, P < 0.001), and muscular strength (465 +/- 27 to 535 +/- 27 kg, P < 0.001) significantly increased after the exercise program, whereas skinfolds decreased (144 +/- 10 vs 134 +/- 9 mm, P < 0.001). These results suggest that moderate intensity circuit training designed to minimize the involvement of the arms improves functional capacity, body composition, and strength in healthy, middle-aged subjects without significantly influencing upper limb vascular function. This finding contrasts with previous studies in subjects with type 2 diabetes and heart failure that employed an identical training program.
Endoplasmic Reticulum Stress in Arterial Smooth Muscle Cells: A Novel Regulator of Vascular Disease
Furmanik, Malgorzata; Shanahan, Catherine M.
2017-01-01
Cardiovascular disease continues to be the leading cause of death in industrialised societies. The idea that the arterial smooth muscle cell (ASMC) plays a key role in regulating many vascular pathologies has been gaining importance, as has the realisation that not enough is known about the pathological cellular mechanisms regulating ASMC function in vascular remodelling. In the past decade endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have been recognised as a stress response underlying many physiological and pathological processes in various vascular cell types. Here we summarise what is known about how ER stress signalling regulates phenotypic switching, trans/dedifferentiation and apoptosis of ASMCs and contributes to atherosclerosis, hypertension, aneurysms and vascular calcification.
A review on cardiovascular diseases originated from subclinical hypothyroidism.
Mansourian, Azad Reza
2012-01-15
Thyroid hormones play an important role on the cardiovascular systems and thyroid disorder ultimately have a profound adverse effects on myocardium and vascular functions. There are extensive reports on the role of overt thyroid dysfunction which adversely can modify the cardiovascular metabolism but even at the present of some controversial reports, the subclinical thyroid disorders are able also to manipulate cardiovascular system to some extent. The aim of this study is to review the cardiovascular disorders accompanied with subclinical hypothyroidism. It is concluded that adverse effect of thyroid malfunction on myocardium and vascular organs are through the direct role of thyroid hormone and dyslipidemia on heart muscle cells at nuclear level and vascular system, respectively. It seems many cardiovascular disorders initially would not have been occurred in the first place if the thyroid of affected person had functioned properly, therefore thyroid function tests should be one of a prior laboratory examinations in cardiovascular disorders.
Diffuse vascular damage in a transplanted kidney: an indication for nuclear magnetic resonance?
Burdese, M; Consiglio, V; Mezza, E; Savio, D; Guarena, C; Rossetti, M; Messina, M; Soragna, G; Suriani, C; Rabbia, C; Segoloni, G P; Piccoli, G B
2005-06-01
Vascular lesions are an increasing challenge after renal transplantation due to the wider indications for recipients and acceptance criteria for donors. Diagnostic approach and prognostic interpretation are still matter of controversy. The case reported herein may summarize some of the issues in this regard. A 54-year-old woman, on renal replacement therapy since 1974, and a kidney graft recipient from 1975 to 1999, received a second graft in 2001. The donor age was 65 years (cold ischemia 22 hours; two mismatches). The early posttransplant follow-up was characterized by delayed graft function, hypertension, and diabetes. During the initial hypertension workup, renal graft ultrasound (US) Doppler demonstrated increased vascular resistances, stable over time (resistance index 0.74 to 0.77); renal scintiscan displayed homogeneously parenchymoa and angio-magnetic resonance imaging (MRI), an homogeneous parenchymal vascularization. Initial immunosuppression with tacrolimus and steroids was modulated by adding mycophenolate mofetil to taper tacrolimus (to reduce nephrotoxicity and hypertension). Despite this, kidney function slowly deteriorated; serum creatinine reached 3 to 3.5 mg/dL by the second year. After a severe hypertensive crisis with unchanged scintiscan and US doppler examinations, angio-MRI revealed the almost complete disappearance of parenchymal enhancement beyond the lobar arteries. A renal biopsy confirmed the severe vascular damage. The patient was switched to rapamycine and a low-dose of an angiotension converting enzyme (ACE) inhibitor. She did relatively well (serum creatinine 2.2 to 3 mg/dL) for 6 months, when rapid functional impairment forced her to restart hemodialysis. This case, almost paradigmatic of the problems occurring when the rigid vasculature of long-term dialysis patients is matched with "marginal kidneys," suggests that MRI may be a sensible good to define vascular damage in the grafted kidney.
Ginkgo biloba Extract in Vascular Protection: Molecular Mechanisms and Clinical Applications.
Tian, Jinfan; Liu, Yue; Chen, Keji
2017-01-01
Leaves of Ginkgo biloba, a "living fossil," have been used as traditional herbal medicine for hundreds of years in China. Currently, its application in vascular protection is garnering much attention. In this manuscript, preclinical studies were reviewed to discuss various mechanisms underlying the vascular protection by Ginkgo biloba extract (GBE). Additionally, we reviewed clinical studies to present the application of GBE in the ischaemic disease. GBE, a commonly used dietary supplement, has been shown to act as an antioxidant and freeradical scavenger, a membrane stabilizer, an inhibitor of the platelet-activating factor, a vasodilator, and a regulator of metabolism. Currently, there exist a growing number of clinical studies about GBE in the application of cardiovascular disease, peripheral vascular disease (PVD) and diabetic vascular complications. GBE, a promising therapeutic agent for cardiovascular and ischaemic diseases, exerts vascular- protection function by a comprehensive mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A sub-tank water-saving drinking water station
NASA Astrophysics Data System (ADS)
Zhang, Ting
2017-05-01
"Thousands of boiling water" problem has been affecting people's quality of life and good health, and now most of the drinking fountains cannot effectively solve this problem, at the same time, ordinary drinking water also has high energy consumption, there are problems such as yin and yang water. Our newly designed dispenser uses a two-tank heating system. Hot water after heating, into the insulation tank for insulation, when the water tank in the water tank below a certain water level, the cold water and then enter the heating tank heating. Through the water flow, tank volume and other data to calculate the time required for each out of water, so as to determine the best position of the water level control, summed up the optimal program, so that water can be continuously uninterrupted supply. Two cans are placed up and down the way, in the same capacity on the basis of the capacity of the container, the appropriate to reduce its size, and increase the bottom radius, reduce the height of its single tank to ensure that the overall height of two cans compared with the traditional single change. Double anti-dry design, to ensure the safety of the use of drinking water. Heating tank heating circuit on and off by the tank of the float switch control, so that the water heating time from the tank water level control, to avoid the "thousands of boiling water" generation. The entry of cold water is controlled by two solenoid valves in the inlet pipe, and the opening and closing of the solenoid valve is controlled by the float switch in the two tanks. That is, the entry of cold water is determined by the water level of the two tanks. By designing the control scheme cleverly, Yin and yang water generation. Our design completely put an end to the "thousands of boiling water", yin and yang water, greatly improving the drinking water quality, for people's drinking water safety provides a guarantee, in line with the concept of green and healthy development. And in the small amount of water consumption, the drinking water station is different from the ordinary drinking water station repeatedly boil, greatly saving energy, embodies the idea of energy saving.
Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments
Herradón, Esperanza; González, Cristina; Uranga, José A.; Abalo, Raquel; Martín, Ma I.; López-Miranda, Visitacion
2017-01-01
In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations. PMID:28533750
Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments.
Herradón, Esperanza; González, Cristina; Uranga, José A; Abalo, Raquel; Martín, Ma I; López-Miranda, Visitacion
2017-01-01
In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations.
Association of Anxiety with Resistance Vessel Dysfunction in Human Atherosclerosis
Stillman, Ashley N.; Moser, David J.; Fiedorowicz, Jess; Robinson, Heather M.; Haynes, William G.
2014-01-01
Objective Anxiety predicts cardiovascular events, though the mechanism remains unclear. We hypothesized that anxious symptoms will correlate with impaired resistance and conduit vessel function in participants aged 55–90 years. Method Anxious symptoms were measured with the Symptom Checklist-90-Revised in 89 participants with clinically diagnosed atherosclerotic cardiovascular disease and 54 healthy control participants. Vascular function was measured in conduit arteries using brachial flow-mediated dilatation (FMD) and in forearm resistance vessels (FRV) using intra-arterial drug administration and plethysmography. Results Anxious symptoms were not associated with FMD in either group. Participants with atherosclerosis exhibited significant inverse associations of anxious symptoms with FRV dilatation (β for acetylcholine =−0.302, p=0.004). Adjustment for medication, risk factors and depressive symptoms did not alter the association between anxiety and FRV dysfunction, except for BMI (anxiety β=−0.175, p=0.060; BMI β=−0.494, p<0.001). While BMI was more strongly associated with FRV function than anxiety, combined BMI and anxiety accounted for more variance in FRV function than either separately. Control participants showed no association of anxiety with FRV function. Conclusion Anxiety is uniquely and substantially related to poorer resistance vessel function (both endothelial and vascular smooth muscle function) in individuals with atherosclerosis. These relationships were independent of medication, depression and cardiovascular risk factors, with the exception of BMI. These findings support the concept that anxiety potentially increases vascular events through worsening of vascular function in atherosclerotic disease. PMID:23788697
Strategic Vision: A Selected Bibliography with Emphasis on Future Warfare
1998-05-01
PLANNING PERIODICAL ARTICLES Agor , Weston H . "Intuition & Strategic Planning." Futurist 23 (November-December 1989): 20- 23. Galdorisi, George Y...in Organizations. 2ded. San Francisco: Jossey-Bass, 1995. 405pp. (HD57.7 .K68 1995) Pp. 91-148: "Inspiring a Shared Vision." Mackey, Richard H ...Security. Washington: National Defense University Press, 1987. 133pp. (U153 .C74 1987) Snyder, Neil H ., James J. Dowd, Jr., and Dianne Houghton
Kiyan, Yulia; Kurselis, Kestutis; Kiyan, Roman; Haller, Hermann; Chichkov, Boris N.; Dumler, Inna
2013-01-01
Current treatments for human coronary artery disease necessitate the development of the next generations of vascular bioimplants. Recent reports provide evidence that controlling cell orientation and morphology through topographical patterning might be beneficial for bioimplants and tissue engineering scaffolds. However, a concise understanding of cellular events underlying cell-biomaterial interaction remains missing. In this study, applying methods of laser material processing, we aimed to obtain useful markers to guide in the choice of better vascular biomaterials. Our data show that topographically treated human primary vascular smooth muscle cells (VSMC) have a distinct differentiation profile. In particular, cultivation of VSMC on the microgrooved biocompatible polymer E-shell induces VSMC modulation from synthetic to contractile phenotype and directs formation and maintaining of cell-cell communication and adhesion structures. We show that the urokinase receptor (uPAR) interferes with VSMC behavior on microstructured surfaces and serves as a critical regulator of VSMC functional fate. Our findings suggest that microtopography of the E-shell polymer could be important in determining VSMC phenotype and cytoskeleton organization. They further suggest uPAR as a useful target in the development of predictive models for clinical VSMC phenotyping on functional advanced biomaterials. PMID:23843899
Serum Protein KNG1, APOC3, and PON1 as Potential Biomarkers for Yin-Deficiency-Heat Syndrome.
Liu, Changming; Mao, Liangen; Ping, Zepeng; Jiang, Tingting; Wang, Chong; Chen, Zhongliang; Li, Zhongjie; Li, Jicheng
2016-01-01
Yin-deficiency-heat (YDH) syndrome is a concept in Traditional Chinese Medicine (TCM) for describing subhealth status. However, there are few efficient diagnostic methods available for confirming YDH syndrome. To explore the novel method for diagnosing YDH syndrome, we applied iTRAQ to observe the serum protein profiles in YDH syndrome rats and confirmed protein levels by ELISA. A total of 92 differentially expressed proteins (63 upregulated proteins and 29 downregulated proteins), which were mainly involved in complement and coagulation cascades and glucose metabolism pathway, were identified by the proteomic experiments. Kininogen 1 (KNG1) was significantly increased ( p < 0.0001), while apolipoprotein C-III (APOC3, p < 0.005) and paraoxonase 1 (PON1, p < 0.001) were significantly decreased in the serum of YDH syndrome rats. The combination of KNG1, APOC3, and PON1 constituted a diagnostic model with 100.0% sensitivity and 85.0% specificity. The results indicated that KNG1, APOC3, and PON1 may act as potential biomarkers for diagnosing YDH syndrome. KNG1 may regulate cytokines and chemokines release in YDH syndrome, and the low levels of PON1 and APOC3 may increase oxidative stress and lipolysis in YDH syndrome, respectively. Our work provides a novel method for YDH syndrome diagnosis and also provides valuable experimental basis to understand the molecular mechanism of YDH syndrome.
Lee, Craig R; Bass, Almasa; Ellis, Kyle; Tran, Bryant; Steele, Savanna; Caughey, Melissa; Stouffer, George A; Hinderliter, Alan L
2012-03-01
Digital peripheral arterial tonometry (PAT) is an emerging, noninvasive method to assess vascular function. The physiology underlying this phenotype, however, remains unclear. Therefore, we evaluated the relation between digital PAT and established brachial artery ultrasound measures of vascular function under basal conditions and after reactive hyperemia. Using a cross-sectional study design, digital PAT and brachial artery ultrasonography with pulsed wave Doppler were simultaneously completed at baseline and after reactive hyperemia in both those with established coronary artery disease (n = 99) and healthy volunteers with low cardiovascular disease risk (n = 40). Under basal conditions, the digital pulse volume amplitude demonstrated a significant positive correlation with the brachial artery velocity-time integral that was independent of the arterial diameter, in both the healthy volunteer (r(s) = 0.64, p <0.001) and coronary artery disease (r(s) = 0.63, p <0.001) cohorts. Similar positive relations were observed with the baseline brachial artery blood flow velocity and blood flow. In contrast, no relation between the reactive hyperemia-evoked digital PAT ratio and either brachial artery flow-mediated dilation or shear stress was observed in either cohort (p = NS). In conclusion, these findings demonstrate that the digital PAT measures of vascular function more closely reflect basal blood flow in the brachial artery than reactive hyperemia-induced changes in the arterial diameter or flow velocity, and the presence of vascular disease does not modify the physiology underlying the digital PAT phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.
Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus.
Shan, Kun; Liu, Chang; Liu, Bai-Hui; Chen, Xue; Dong, Rui; Liu, Xin; Zhang, Yang-Yang; Liu, Ban; Zhang, Shu-Jie; Wang, Jia-Jian; Zhang, Sheng-Hai; Wu, Ji-Hong; Zhao, Chen; Yan, Biao
2017-10-24
The vascular complications of diabetes mellitus are the major causes of morbidity and mortality among people with diabetes. Circular RNAs are a class of endogenous noncoding RNAs that regulate gene expression in eukaryotes. In this study, we investigated the role of circular RNA in retinal vascular dysfunction induced by diabetes mellitus. Quantitative polymerase chain reactions, Sanger sequencing, and Northern blots were conducted to detect circular HIPK3 (circHIPK3) expression pattern on diabetes mellitus-related stresses. MTT (3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assays, EdU (5-ethynyl-2'-deoxyuridine) incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of circHIPK3 in retinal endothelial cell function in vitro. Retinal trypsin digestion, vascular permeability assays, and ELISA assays were conducted to detect the role of circHIPK3 in retinal vascular dysfunction in vivo. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were conducted to reveal the mechanism of circHIPK3-mediated retinal vascular dysfunction. circHIPK3 expression was significantly upregulated in diabetic retinas and retinal endothelial cells following stressors related to diabetes mellitus. circHIPK3 silencing or overexpressing circHIPK3 changed retinal endothelial cell viability, proliferation, migration, and tube formation in vitro. circHIPK3 silencing in vivo alleviated retinal vascular dysfunction, as shown by decreased retinal acellular capillaries, vascular leakage, and inflammation. circHIPK3 acted as an endogenous miR-30a-3p sponge to sequester and inhibit miR-30a-3p activity, which led to increased vascular endothelial growth factor-C, FZD4, and WNT2 expression. Ectopic expression of miR-30a-3p mimicked the effect of circHIPK3 silencing on vascular endothelial phenotypes in vivo and in vitro. The circular RNA circHIPK3 plays a role in diabetic retinopathy by blocking miR-30a function, leading to increased endothelial proliferation and vascular dysfunction. These data suggest that circular RNA is a potential target to control diabetic proliferative retinopathy. © 2017 American Heart Association, Inc.
van Dijk, Aimée E; Dawe, Karen; Deanfield, John; Stronks, Karien; Gemke, Reinoud J B J; Vrijkotte, Tanja G M; Lawlor, Debbie A
2014-09-01
To investigate whether (1) maternal psychosocial stress (depression/anxiety) during pregnancy is associated with offspring vascular function and (2) whether any association differs depending on the gestational timing of exposure to stress. We also investigated whether any association is likely to be due to intrauterine mechanisms by (3) comparing with the association of paternal stress with offspring vascular function and (4) examining whether any prenatal association is explained by maternal postnatal stress. Associations were examined in a UK birth cohort, with offspring outcomes (systolic and diastolic blood pressure, SBP and DBP, endothelial function assessed by brachial artery flow-mediated dilatation (FMD); arterial stiffness assessed by carotid to radial pulse wave velocity (PWV), brachial artery distensibility (DC), and brachial artery diameter (BD) assessed at age 10-11 years (n = 4,318). Maternal depressive symptoms and anxiety were assessed at 18 and 32 weeks gestation and 8 months postnatally. Paternal symptoms were assessed at week 19. With the exception of DBP and BD, there were no associations of maternal depressive symptoms with any of the vascular outcomes. Maternal depressive and anxiety symptoms were associated with lower offspring DBP and wider BD, though the latter attenuated to the null with adjustment for confounding factors. Paternal symptoms were not associated with offspring outcomes. Maternal postnatal depressive symptoms were associated with lower offspring SBP. We found no evidence to support the hypothesis that maternal stress during pregnancy adversely affects offspring vascular function at age 10-12 years via intrauterine mechanisms. © Authors 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Reduced Marker of Vascularization in the Anterior Hippocampus in a Female Monkey Model of Depression
Kalidindi, Anisha; Kelly, Sean D.; Singleton, Kaela S.; Guzman, Dora; Merrill, Liana; Willard, Stephanie L.; Shively, Carol A.; Neigh, Gretchen N.
2016-01-01
Depression is a common and debilitating mood disorder that impacts women more often than men. The mechanisms that result in depressive behaviors are not fully understood; however, the hippocampus has been noted as a key structure in the pathophysiology of depression. In addition to neural implications of depression, the cardiovascular system is impacted. Although not as commonly considered, the cerebrovasculature is critical to brain function, impacted by environmental stimuli, and is capable of altering neural function and thereby behavior. In the current study, we assessed the relationship between depressive behavior and a marker of vascularization of the hippocampus in adult female cynomolgus macaques (Macaca fascicularis). Similar to previously noted impacts on neuropil and glia, the depressed phenotype predicts a reduction in a marker of vascular length in the anterior hippocampus. These data reinforce the growing recognition of the effects of depression on vasculature and support further consideration of vascular endpoints in studies aimed at the elucidation of the mechanisms underlying depression. PMID:27423324
Xu, Qiang; Wang, Yanshu; Dabdoub, Alain; Smallwood, Philip M; Williams, John; Woods, Chad; Kelley, Matthew W; Jiang, Li; Tasman, William; Zhang, Kang; Nathans, Jeremy
2004-03-19
Incomplete retinal vascularization occurs in both Norrie disease and familial exudative vitreoretinopathy (FEVR). Norrin, the protein product of the Norrie disease gene, is a secreted protein of unknown biochemical function. One form of FEVR is caused by defects in Frizzled-4 (Fz4), a presumptive Wnt receptor. We show here that Norrin and Fz4 function as a ligand-receptor pair based on (1) the similarity in vascular phenotypes caused by Norrin and Fz4 mutations in humans and mice, (2) the specificity and high affinity of Norrin-Fz4 binding, (3) the high efficiency with which Norrin induces Fz4- and Lrp-dependent activation of the classical Wnt pathway, and (4) the signaling defects displayed by disease-associated variants of Norrin and Fz4. These data define a Norrin-Fz4 signaling system that plays a central role in vascular development in the eye and ear, and they indicate that ligands unrelated to Wnts can act through Fz receptors.
Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell
Fang, Shentong; Wei, Jing; Pentinmikko, Nalle; Leinonen, Hannele; Salven, Petri
2012-01-01
In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. PMID:23091420
CaMKII in Vascular Signalling: "Friend or Foe"?
Ebenebe, Obialunanma V; Heather, Alison; Erickson, Jeffrey R
2018-05-01
Signalling mechanisms within and between cells of the vasculature enable function and maintain homeostasis. However, a number of these mechanisms also contribute to the pathophysiology of vascular disease states. The multifunctional signalling molecule calcium/calmodulin-dependent kinase II (CaMKII) has been shown to have critical functional effects in many tissue types. For example, CaMKII is known to have a dual role in cardiac physiology and pathology. The function of CaMKII within the vasculature is incompletely understood, but emerging evidence points to potential physiological and pathological roles. This review discusses the evidence for CaMKII signalling within the vasculature, with the aim to better understand both positive and potentially deleterious effects of CaMKII activation in vascular tissue. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Cocoa, Blood Pressure, and Vascular Function
Ludovici, Valeria; Barthelmes, Jens; Nägele, Matthias P.; Enseleit, Frank; Ferri, Claudio; Flammer, Andreas J.; Ruschitzka, Frank; Sudano, Isabella
2017-01-01
Cardiovascular disease (CVD) represents the most common cause of death worldwide. The consumption of natural polyphenol-rich foods, and cocoa in particular, has been related to a reduced risk of CVD, including coronary heart disease and stroke. Intervention studies strongly suggest that cocoa exerts a beneficial impact on cardiovascular health, through the reduction of blood pressure (BP), improvement of vascular function, modulation of lipid and glucose metabolism, and reduction of platelet aggregation. These potentially beneficial effects have been shown in healthy subjects as well as in patients with risk factors (arterial hypertension, diabetes, and smoking) or established CVD (coronary heart disease or heart failure). Several potential mechanisms are supposed to be responsible for the positive effect of cocoa; among them activation of nitric oxide (NO) synthase, increased bioavailability of NO as well as antioxidant, and anti-inflammatory properties. It is the aim of this review to summarize the findings of cocoa and chocolate on BP and vascular function. PMID:28824916
Successful ovarian autotransplant with no vascular reanastomosis in rats.
Barros, Flávio S V; de Oliveira, Rodrigo M; Alves, Felipe M T; Sampaio, Marcos; Geber, Selmo
2008-12-15
Preservation of ovarian functions in woman with premature ovarian failure remains an issue in reproductive medicine. Hormone replacement therapy for maintaining endocrine functions, and cryopreservation of embryos or oocytes for those who wish pregnancy, are some of the choices. However, ovarian transplantation is a more physiological alternative, although problems related to ovarian ischemia have been reported. Herein, we investigated the viability of autologous transplantation of the ovarian tissue into the rat peritoneum, without vascular reanastomosis. Twenty animals in the study group had both ovaries excised, and each ovary was dissected into two halves. A half of an ovary was autotransplanted to the peritoneal surface, closely located to the left epigastric vessels. This simple procedure does not require surgical vascular reanastomosis while it maintains appropriate follicular growth and therefore should be further considered as an alternative for women undergoing oophorectomy, not only to maintain endocrine functions but also for fertility preservation.
Clifton, Peter M.
2004-01-01
Grape seed extract (GSE) has in vitro antioxidant activity but whether or not it works in vivo is not clear. In a fully randomised, crossover trial with 4-week treatment periods on 36 men and women with above-average vascular risk, we aimed to demonstrate that 2 g/day of GSE (1 g of polyphenols) alone, or with 1 g/day of added quercetin in yoghurt, favourably alters vascular function, endothelial function, and degree of oxidative damage in comparison to a control yoghurt. GSE alone improved flow-mediated dilatation determined ultrasonically by an absolute 1.1% compared with control. There was no effect of the combination of GSE with quercetin. No other blood or urine measure was altered. Thus sufficient polyphenols from GSE appear to be absorbed to influence endothelial nitric oxide production, and GSE has the potential to favourably influence vascular function. PMID:15577189
Barba-Gutierrez, D Alonso; Daneri-Navarro, A; Villagomez-Mendez, J Jesus Alejandro; Kanamune, J; Robles-Murillo, A Karina; Sanchez-Enriquez, S; Villafan-Bernal, J Rafael; Rivas-Carrillo, J D
2016-03-01
Diabetes is complex disease, which involves primary metabolic changes followed by immunological and vascular pathophysiological adjustments. However, it is mostly characterized by an unbalanced decreased number of the β-cells unable to maintain the metabolic requirements and failure to further regenerate newly functional pancreatic islets. The objective of this study was to analyze the properties of the endothelial cells to facilitate the islet cells engraftment after islet transplantation. We devised a co-cultured engineer system to coat isolated islets with vascular endothelial cells. To assess the cell integration of cell-engineered islets, we stained them for endothelial marker CD31 and nuclei counterstained with DAPI dye. We comparatively performed islet transplantations into streptozotocin-induced diabetic mice and recovered the islet grafts for morphometric analyses on days 3, 7, 10, and 30. Blood glucose levels were measured continuously after islet transplantation to monitor the functional engraftment and capacity to achieve metabolic control. Cell-engineered islets showed a well-defined rounded shape after co-culture when compared with native isolated islets. Furthermore, the number of CD31-positive cells layered on the islet surface showed a direct proportion with engraftment capacities and less TUNEL-positive cells on days 3 and 7 after transplantation. We observed that vascular endothelial cells could be functional integrated into isolated islets. We also found that islets that are coated with vascular endothelial cells increased their capacity to engraft. These findings indicate that islets coated with endothelial cells have a greater capacity of engraftment and thus establish a definitely vascular network to support the metabolic requirements. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morbidelli, Lucia; Monici, Monica; Marziliano, Nicola
Health hazards in astronauts are represented by cardiovascular problems and impaired bone healing. These disturbances are characterized by a common event, the loss of function by vascular endothelium, leading to impaired angiogenesis. We investigated whether the exposure of cultured endothelial cells to hypogravity condition could affect their behaviour in terms of functional activity, biochemical responses, morphology, and gene expression. Simulated hypogravity conditions for 72 h produced a reduction of cell number. Genomic analysis of endothelial cells exposed to hypogravity revealed that proapoptotic signals increased, while antiapoptotic and proliferation/survival genes were down-regulated by modelled low gravity. Activation of apoptosis was accompaniedmore » by morphological changes with mitochondrial disassembly and organelles/cytoplasmic NAD(P)H redistribution, as evidenced by autofluorescence analysis. In this condition cells were not able to respond to angiogenic stimuli in terms of migration and proliferation. Our study documents functional, morphological, and transcription alterations in vascular endothelium exposed to simulated low gravity conditions, thus providing insights on the occurrence of vascular tissue dysregulation in crewmen during prolonged space flights. Moreover, the alteration of vascular endothelium can intervene as a concause in other systemic effects, like bone remodelling, observed in weightlessness.« less
Li, Ying; Li, Xiao-Hui; Huang, Xin; Yin, Lu; Guo, Cheng-Xian; Liu, Chang; He, Yong-Mei; Liu, Xing; Yuan, Hong
2017-01-01
Abstract Traditional Chinese Medicine Constitution (TCMC) theory states that individuals with a biased TCMC are more likely to suffer from specific diseases. However, little is known regarding the influence of TCMC on susceptibility to hypertension. The aim of this study is to examine the possible relationship between TCMC and hypertension. Retrospective evaluation and observation were performed using the STROBE guidelines checklist. A large community-based cross-sectional study was conducted between 2009 and 2013 in Changsha, China. TCMC was assessed using a questionnaire that included 68 items. TCMC distributions and the associations of different TCMCs with hypertension risk were analyzed. In total, 144,439 subjects underwent evaluations of TCMC and blood pressure (BP). There were significant differences in the hypertension prevalence among the various TCMC groups (P < .01). An adjusted logistic regression model indicated that those with phlegm wetness, yin deficiency, blood stasis, or qi deficiency were more likely to have hypertension. Analysis of the clinical characteristics related to TCMC indicated that different TCMCs corresponded to different hypertension classifications using Western medicine criteria; for example, phlegm wetness with hypertension was similar to obesity-related hypertension. Our results suggest that phlegm wetness, yin deficiency, blood stasis, and qi deficiency have different effects on the prevalence of hypertension. More attention should be paid to TCMCs associated with susceptibility to hypertension, and corresponding preventive and therapeutic treatments should be developed according to different TCMCs. PMID:29145254
Genetic framework for GATA factor function in vascular biology.
Linnemann, Amelia K; O'Geen, Henriette; Keles, Sunduz; Farnham, Peggy J; Bresnick, Emery H
2011-08-16
Vascular endothelial dysfunction underlies the genesis and progression of numerous diseases. Although the GATA transcription factor GATA-2 is expressed in endothelial cells and is implicated in coronary heart disease, it has been studied predominantly as a master regulator of hematopoiesis. Because many questions regarding GATA-2 function in the vascular biology realm remain unanswered, we used ChIP sequencing and loss-of-function strategies to define the GATA-2-instigated genetic network in human endothelial cells. In contrast to erythroid cells, GATA-2 occupied a unique target gene ensemble consisting of genes encoding key determinants of endothelial cell identity and inflammation. GATA-2-occupied sites characteristically contained motifs that bind activator protein-1 (AP-1), a pivotal regulator of inflammatory genes. GATA-2 frequently occupied the same chromatin sites as c-JUN and c-FOS, heterodimeric components of AP-1. Although all three components were required for maximal AP-1 target gene expression, GATA-2 was not required for AP-1 chromatin occupancy. GATA-2 conferred maximal phosphorylation of chromatin-bound c-JUN at Ser-73, which stimulates AP-1-dependent transactivation, in a chromosomal context-dependent manner. This work establishes a link between a GATA factor and inflammatory genes, mechanistic insights underlying GATA-2-AP-1 cooperativity and a rigorous genetic framework for understanding GATA-2 function in normal and pathophysiological vascular states.
Triglycerides are negatively correlated with cognitive function in nondemented aging adults.
Parthasarathy, Vishnu; Frazier, Darvis T; Bettcher, Brianne M; Jastrzab, Laura; Chao, Linda; Reed, Bruce; Mungas, Dan; Weiner, Michael; DeCarli, Charles; Chui, Helena; Kramer, Joel H
2017-09-01
Vascular risk factors like hyperlipidemia may adversely affect brain function. We hypothesized that increased serum triglycerides are associated with decreased executive function and memory in nondemented elderly subjects. We also researched possible vascular mediators and white matter microstructure as assessed with diffusion tensor imaging (DTI). Participants were 251 nondemented elderly adults (54% male) with a mean age of 78 (SD = 6.4; range: 62-94) years and a mean education of 15.6 (SD = 2.9; range: 8-23) years. Fasting blood samples were used to detect serum triglyceride and low-density lipoprotein (LDL) levels along with ApoE4 status. DTI was used to determine whole brain fractional anisotropy (FA). Composite executive and memory scores were derived from item response theory. Clinical Dementia Rating (CDR) scores provided informant-based measures of daily functioning. Triglyceride levels were inversely correlated with executive function, but there was no relationship with memory. Controlling for age, gender, and education did not affect this correlation. This relationship persisted after controlling for vascular risk factors like LDL, total cholesterol, CDR and ApoE4 status. Lastly, adding whole-brain FA to the model did not affect the correlation between triglycerides and executive function. Triglyceride levels are inversely correlated with executive function in nondemented elderly adults after controlling for age, education, gender, total cholesterol, LDL, ApoE4 status, CDR, and white-matter microstructure. The fact that the effect of triglycerides on cognition was not clearly mediated by vascular risks or cerebrovascular injury raises questions about widely held assumptions of how triglycerides might impact cognition function. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Computational analysis of integrated biosensing and shear flow in a microfluidic vascular model
NASA Astrophysics Data System (ADS)
Wong, Jeremy F.; Young, Edmond W. K.; Simmons, Craig A.
2017-11-01
Fluid flow and flow-induced shear stress are critical components of the vascular microenvironment commonly studied using microfluidic cell culture models. Microfluidic vascular models mimicking the physiological microenvironment also offer great potential for incorporating on-chip biomolecular detection. In spite of this potential, however, there are few examples of such functionality. Detection of biomolecules released by cells under flow-induced shear stress is a significant challenge due to severe sample dilution caused by the fluid flow used to generate the shear stress, frequently to the extent where the analyte is no longer detectable. In this work, we developed a computational model of a vascular microfluidic cell culture model that integrates physiological shear flow and on-chip monitoring of cell-secreted factors. Applicable to multilayer device configurations, the computational model was applied to a bilayer configuration, which has been used in numerous cell culture applications including vascular models. Guidelines were established that allow cells to be subjected to a wide range of physiological shear stress while ensuring optimal rapid transport of analyte to the biosensor surface and minimized biosensor response times. These guidelines therefore enable the development of microfluidic vascular models that integrate cell-secreted factor detection while addressing flow constraints imposed by physiological shear stress. Ultimately, this work will result in the addition of valuable functionality to microfluidic cell culture models that further fulfill their potential as labs-on-chips.
Vasoreactivity in CADASIL: Comparison to structural MRI and neuropsychology.
Moreton, Fiona C; Cullen, Breda; Delles, Christian; Santosh, Celestine; Gonzalez, Rosario L; Dani, Krishna; Muir, Keith W
2018-06-01
Impaired cerebrovascular reactivity precedes histological and clinical evidence of CADASIL in animal models. We aimed to more fully characterise peripheral and cerebral vascular function and reactivity in a cohort of adult CADASIL patients, and explore the associations of these with conventional clinical, imaging and neuropsychological measures. A total of 22 adults with CADASIL gave informed consent to participate in an exploratory study of vascular function in CADASIL. Clinical assessment, comprehensive vascular assessment, MRI and neuropsychological testing were conducted. We measured cerebral vasoreactivity with transcranial Doppler and arterial spin labelling MRI with hypercapnia challenge. Number and volume of lacunes, subcortical hyperintensity volume, microbleeds and normalised brain volume were assessed on MRI. Analysis was exploratory and examined the associations between different markers. Cerebrovascular reactivity measured by ASL correlated with peripheral vasoreactivity measured by flow mediated dilatation. Subjects with ≥5 lacunes were older, with higher carotid intima-media thickness and had impaired cerebral and peripheral vasoreactivity. Subjects with depressive symptoms, disability or delayed processing speed also showed a trend to impaired vasoreactivity. Impaired vasoreactivity and vascular dysfunction may play a significant role in the pathophysiology of CADASIL, and vascular assessments may be useful biomarkers of severity in both longitudinal and clinical trials.
Del Bó, Cristian; Riso, Patrizia; Campolo, Jonica; Møller, Peter; Loft, Steffen; Klimis-Zacas, Dorothy; Brambilla, Ada; Rizzolo, Anna; Porrini, Marisa
2013-03-01
It has been suggested that anthocyanin-rich foods may exert antioxidant effects and improve vascular function as demonstrated mainly in vitro and in the animal model. Blueberries are rich sources of anthocyanins and we hypothesized that their intake could improve cell protection against oxidative stress and affect endothelial function in humans. The aim of the study was to investigate the effect of one portion (300 g) of blueberries on selected markers of oxidative stress and antioxidant protection (endogenous and oxidatively induced DNA damage) and of vascular function (changes in peripheral arterial tone and plasma nitric oxide levels) in male subjects. In a randomized cross-over design, separated by a wash out period ten young volunteers received one portion of blueberries ground by blender or one portion of a control jelly. Before and after consumption (at 1, 2, and 24 hours), blood samples were collected and used to evaluate anthocyanin absorption (through mass spectrometry), endogenous and H(2)O(2)-induced DNA damage in blood mononuclear cells (through the comet assay), and plasma nitric oxide concentrations (through a fluorometric assay). Peripheral arterial function was assessed by means of Endo-PAT 2000. Blueberries significantly reduced (P < .01) H(2)O(2)-induced DNA damage (-18%) 1 hour after blueberry consumption compared to control. No significant differences were observed for endogenous DNA damage, peripheral arterial function and nitric oxide levels after blueberry intake. In conclusion, one portion of blueberries seems sufficient to improve cell antioxidant defense against DNA damage, but further studies are necessary to understand their role on vascular function. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Songjie; Zhou, Min; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song
2017-08-01
Slow vascularization often impedes the viability and function of engineered bone replacements. Prevascularization is a promising way to solve this problem. In this study, a new process was developed by integrating microcarrier culture and coculture to fabricate pre-vascularized bone microtissues with mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs). Initially, coculture medium and cell ratio between MSCs and HUVECs were optimized in tissue culture plates concerning cell proliferation, osteogenesis and angiogenesis. Subsequently, cells were seeded onto CultiSpher S microcarriers in spinner flasks and subjected to a two-stage (proliferative-osteogenic) culture process for four weeks. Both cells proliferated and functioned well in chosen medium and a 1 : 1 ratio between MSCs and HUVECs was chosen for better angiogenesis. After four weeks of culture in spinner flasks, the microtissues were formed with high cellularity, evenly distributed cells and tube formation ability. While coculture with HUVECs exerted an inhibitory effect on osteogenic differentiation of MSCs, with downregulated alkaline phosphatase activity, mineralization and gene expression of COLI, RUNX2 and OCN, this could be attenuated by employing a delayed seeding strategy of HUVECs against MSCs during the microtissue fabrication process. Collectively, this work established an effective method to fabricate pre-vascularized bone microtissues, which would lay a solid foundation for subsequent development of vascularized tissue grafts for bone regeneration. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.