Sample records for vasomotor dysfunction induced

  1. Cardioactive and vasoactive effects of natural wild honey against cardiac malperformance induced by hyperadrenergic activity.

    PubMed

    Rakha, Miran K; Nabil, Zohour I; Hussein, Aida A

    2008-03-01

    Induction of hyperadrenergic activity was experimentally achieved in urethane-anesthetized rats using epinephrine (adrenaline). Acute administration of epinephrine (100 microg/kg) for 2 hours induced several cardiac disorders and vasomotor dysfunction. Pretreatment with natural wild honey (5 g/kg) for 1 hour prior to the injection with epinephrine (100 mug/kg) protected the anesthetized normal rats from the incidence of epinephrine-induced cardiac disorders and vasomotor dysfunction. Moreover, posttreatment with natural wild honey (5 g/kg) following the injection with epinephrine (100 microg/kg) for 1 hour showed several ameliorative outcomes to the electrocardiographic parameters and vasomotor dysfunction of anesthetized stressed rats. Furthermore, natural wild honey preserved the positive inotropic effect of epinephrine in both cases. Also, the total antioxidant capacity (AOC) of natural wild honey was found to be very pronounced. Levels of both reduced glutathione and ascorbic acid (vitamin C) were considered relatively high in natural wild honey. Activity of superoxide dismutase (SOD) was also high, whereas catalase activity was relatively low, especially when compared to the value of SOD activity. It would appear from the results of the present study that natural wild honey may exert its cardioprotective and therapeutic effects against epinephrine-induced cardiac disorders and vasomotor dysfunction directly, via its very pronounced total AOC and its great wealth of both enzymatic and nonenzymatic antioxidants involved in cardiovascular defense mechanisms, besides its substantial quantities of mineral elements such as magnesium, sodium, and chlorine, and/or indirectly, via the enhancement of the endothelium-derived relaxing factor nitric oxide release through the influence of ascorbic acid (vitamin C).

  2. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease.

    PubMed

    Duffy, S J; Keaney , J F; Holbrook, M; Gokce, N; Swerdloff, P L; Frei, B; Vita, J A

    2001-07-10

    Epidemiological studies suggest that tea consumption decreases cardiovascular risk, but the mechanisms of benefit remain undefined. Endothelial dysfunction has been associated with coronary artery disease and increased oxidative stress. Some antioxidants have been shown to reverse endothelial dysfunction, and tea contains antioxidant flavonoids. Methods and Results-- To test the hypothesis that tea consumption will reverse endothelial dysfunction, we randomized 66 patients with proven coronary artery disease to consume black tea and water in a crossover design. Short-term effects were examined 2 hours after consumption of 450 mL tea or water. Long-term effects were examined after consumption of 900 mL tea or water daily for 4 weeks. Vasomotor function of the brachial artery was examined at baseline and after each intervention with vascular ultrasound. Fifty patients completed the protocol and had technically suitable ultrasound measurements. Both short- and long-term tea consumption improved endothelium- dependent flow-mediated dilation of the brachial artery, whereas consumption of water had no effect (P<0.001 by repeated-measures ANOVA). Tea consumption had no effect on endothelium-independent nitroglycerin-induced dilation. An equivalent oral dose of caffeine (200 mg) had no short-term effect on flow-mediated dilation. Plasma flavonoids increased after short- and long-term tea consumption. Short- and long-term black tea consumption reverses endothelial vasomotor dysfunction in patients with coronary artery disease. This finding may partly explain the association between tea intake and decreased cardiovascular disease events.

  3. Endothelial dysfunction and amyloid-β-induced neurovascular alterations

    PubMed Central

    Koizumi, Kenzo; Wang, Gang; Park, Laibaik

    2015-01-01

    Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the nonselective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca2+ overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781

  4. Safety and Efficacy of Black Cohosh and Red Clover for the Management of Vasomotor Symptoms: A Randomized Controlled Trial

    PubMed Central

    Geller, Stacie E.; Shulman, Lee P.; van Breemen, Richard B.; Banuvar, Suzanne; Zhou, Ying; Epstein, Geena; Hedayat, Samad; Nikolic, Dejan; Krause, Elizabeth C.; Piersen, Colleen E.; Bolton, Judy L.; Pauli, Guido F.; Farnsworth, Norman R.

    2009-01-01

    Objective The aim of this study was to evaluate the safety and efficacy of black cohosh and red clover compared with placebo for the relief of menopausal vasomotor symptoms. Design This study was a randomized, four-arm, double-blind clinical trial of standardized black cohosh, red clover, placebo and 0.625 mg conjugated equine estrogens plus 2.5 mg medroxyprogesterone acetate (CEE/MPA; n = 89). Primary outcome measures were reduction in vasomotor symptoms (hot flashes and night sweats) by black cohosh and red clover compared with placebo; secondary outcomes included safety evaluation, reduction of somatic symptoms, relief of sexual dysfunction, and overall improvement in quality of life. Results Reductions in number of vasomotor symptoms after 12-month intervention were as follows: black cohosh (34%), red clover (57%), placebo (63%), and CEE/MPA (94%), with only CEE/MPA differing significantly from placebo. Black cohosh and red clover did not significantly reduce the frequency of vasomotor symptoms as compared with placebo. Secondary measures indicated that both botanicals were safe as administered. In general, there were no improvements in other menopausal symptoms. Conclusions Compared with placebo, black cohosh and red clover did not reduce the number of vasomotor symptoms. Safety monitoring indicated that chemically and biologically standardized extracts of black cohosh and red clover were safe during daily administration for 12 months. PMID:19609225

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirapelli, Carlos R.; De Andrade, Claudia R.; Lieberman, Marcel

    We aimed to investigate the mechanisms underlying the vascular effects induced by phylloquinone (Vitamin K{sub 1}; VK{sub 1}). Vascular reactivity experiments, using standard muscle bath procedures, showed that VK{sub 1} (5 and 50 {mu}M) enhances the contractile response of endothelium-intact, but not denuded, rat carotid rings to phenylephrine. Similarly, maximal contraction induced by phenylephrine was enhanced in the presence of the nitric oxide (NO) synthase inhibitor N {sup G}-nitro-L-arginine methyl ester (L-NAME). The combination of L-NAME and VK{sub 1} did not produce any further additional effect. Pre-incubation of intact-rings with VK{sub 1} reduced both acetylcholine- and bradykinin-induced relaxation. VK{sub 1}more » induced an increment in tension on carotid rings submaximally pre-contracted with phenylephrine. VK{sub 1}-induced increment in tension was completely abolished by endothelial removal or incubation of intact rings with L-NAME and L-NNA. Conversely, 7-nitroindazole, 1400 W, or indomethacin did not affect VK{sub 1}-induced contraction. Moreover, VK{sub 1} reduced L-arginine-induced relaxation in endothelium-intact rings. Lucigenin-amplified chemiluminescence assays showed that VK{sub 1} induced an increase in the level of superoxide anions in endothelium-intact but not denuded rings. Measurement of nitrite and nitrate generation showed that VK{sub 1} did not alter nitrate formation but strongly inhibited the generation of nitrite. Finally, the superoxide anions scavenger tiron prevented the endothelial vasomotor dysfunction caused by VK{sub 1} on phenyleprine-induced contraction and acetylcholine or bradykinin-induced relaxation. In conclusion, our data show that VK{sub 1} disrupts the vasomotor function of rat carotid. Our results suggest that VK{sub 1}-induced oxidative stress through production of superoxide anion is interfering with the NO pathway, which in turn is responsible for the altered vascular reactivity induced by VK{sub 1}.« less

  6. Vasomotor function in rat arteries after ex vivo and intragastric exposure to food-grade titanium dioxide and vegetable carbon particles.

    PubMed

    Jensen, Ditte Marie; Christophersen, Daniel Vest; Sheykhzade, Majid; Skovsted, Gry Freja; Lykkesfeldt, Jens; Münter, Rasmus; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2018-02-26

    Humans are continuously exposed to particles in the gastrointestinal tract. Exposure may occur directly through ingestion of particles via food or indirectly by removal of inhaled material from the airways by the mucociliary clearance system. We examined the effects of food-grade particle exposure on vasomotor function and systemic oxidative stress in an ex vivo study and intragastrically exposed rats. In an ex vivo study, aorta rings from naïve Sprague-Dawley rats were exposed for 30 min to food-grade TiO 2 (E171), benchmark TiO 2 (Aeroxide P25), food-grade vegetable carbon (E153) or benchmark carbon black (Printex 90). Subsequently, the vasomotor function was assessed in wire myographs. In an in vivo study, lean Zucker rats were exposed intragastrically once a week for 10 weeks to vehicle, E171 or E153. Doses were comparable to human daily intake. Vasomotor function in the coronary arteries and aorta was assessed using wire myographs. Tetrahydrobiopterin, ascorbate, malondialdehyde and asymmetric dimethylarginine were measured in blood as markers of oxidative stress and vascular function. Direct exposure of E171 to aorta rings ex vivo increased the acetylcholine-induced vasorelaxation and 5-hydroxytryptamine-induced vasocontraction. E153 only increased acetylcholine-induced vasorelaxation, and Printex 90 increased the 5-hydroxytryptamine-induced vasocontraction, whereas Aeroxide P25 did not affect the vasomotor function. In vivo exposure showed similar results as ex vivo exposure; increased acetylcholine-induced vasorelaxation in coronary artery segments of E153 and E171 exposed rats, whereas E171 exposure altered 5-hydroxytryptamine-induced vasocontraction in distal coronary artery segments. Plasma levels of markers of oxidative stress and vascular function showed no differences between groups. Gastrointestinal tract exposure to E171 and E153 was associated with modest albeit statistically significant alterations in the vasocontraction and vasorelaxation responses. Direct particle exposure to aorta rings elicited a similar type of response. The vasomotor responses were not related to biomarkers of systemic oxidative stress.

  7. Disconnect Between Adipose Tissue Inflammation and Cardiometabolic Dysfunction in Ossabaw Pigs

    PubMed Central

    Vieira-Potter, Victoria J.; Lee, Sewon; Bayless, David S.; Scroggins, Rebecca J.; Welly, Rebecca J.; Fleming, Nicholas J.; Smith, Thomas N.; Meers, Grace M.; Hill, Michael A.; Rector, R. Scott; Padilla, Jaume

    2015-01-01

    Objective The Ossabaw pig is emerging as an attractive model of human cardiometabolic disease due to its size and susceptibility to atherosclerosis, among other characteristics. Here we investigated the relationship between adipose tissue inflammation and metabolic dysfunction in this model. Methods Young female Ossabaw pigs were fed a western-style high-fat diet (HFD) (n=4) or control low-fat diet (LFD) (n=4) for a period of 9 months and compared for cardiometabolic outcomes and adipose tissue inflammation. Results The HFD-fed “OBESE” pigs were 2.5 times heavier (p<0.001) than LFD-fed “LEAN” pigs and developed severe obesity. HFD-feeding caused pronounced dyslipidemia, hypertension, insulin resistance (systemic and adipose) as well as induction of inflammatory genes, impairments in vasomotor reactivity to insulin and atherosclerosis in the coronary arteries. Remarkably, visceral, subcutaneous and perivascular adipose tissue inflammation (via FACS analysis and RT-PCR) was not increased in OBESE pigs, nor were circulating inflammatory cytokines. Conclusions These findings reveal a disconnect between adipose tissue inflammation and cardiometabolic dysfunction induced by western diet feeding in the Ossabaw pig model. PMID:26524201

  8. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats.

    PubMed

    Chu, Shuang; Mao, Xiaodong; Guo, Hengjiang; Wang, Li; Li, Zezheng; Zhang, Yang; Wang, Yunman; Wang, Hao; Zhang, Xuemei; Peng, Wen

    2017-03-01

    Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.

  9. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    PubMed

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe therapeutic applications.

  10. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging

    PubMed Central

    Toth, Peter; Tarantini, Stefano; Csiszar, Anna

    2017-01-01

    Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer’s disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined. PMID:27793855

  11. What causes hot flushes? The neuroendocrine origin of vasomotor symptoms in the menopause.

    PubMed

    Rossmanith, Winfried G; Ruebberdt, Wiebke

    2009-05-01

    Vasomotor symptoms (VMS) such as hot flushes and night sweats are frequently encountered during menopause and can greatly reduce the quality of life. These symptoms are causally related to decreasing estradiol concentrations, mainly in the serum and subsequently also in the hypothalamic temperature regulating centre. The lack of estrogens alters neurotransmitter activity, especially in the serotonergic and noradrenergic pathways. Because sex steroids act as potent neuromodulators, the substitution of ovarian sex steroids by hormone replacement therapy is the most effective treatment option for VMS. When contraindications exist for the use of sex steroids, steroid-free drugs are a possible alternative. A better understanding of the physiology of thermoregulation, thermoregulatory dysfunction and adaptive processes of the brain may facilitate the development of new therapeutic approaches. Such drugs could then be used to treat vasomotor disorders even when the use of steroid hormones is contraindicated. This review article summarises our knowledge on the mechanisms of temperature regulation and describes deviations from this regulation during altered sex steroid conditions. Our current knowledge on neuroendocrinology of thermoregulation may serve as a basis for the use of steroid-free pharmacological intervention.

  12. Cyclooxygenase inhibition improves endothelial vasomotor dysfunction of visceral adipose arterioles in human obesity

    PubMed Central

    Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan

    2013-01-01

    Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904

  13. Cerebral vasomotor reactivity in neurodegenerative diseases.

    PubMed

    Smoliński, Łukasz; Członkowska, Anna

    Small-caliber cerebral vessels change their diameters in response to alterations of key metabolite concentrations such as carbon dioxide or oxygen. This phenomenon, termed the cerebral vasomotor reactivity (CVMR), is the basis for blood flow regulation in the brain in accordance with its metabolic status. Typically, CVMR is determined as the amount of change in cerebral blood flow in response to a vasodilating stimulus, which can be measured by various neuroimaging methods or by transcranial Doppler. It has been shown that CVMR is impaired in cerebrovascular diseases, but there is also evidence of a similar dysfunction in neurodegenerative disorders. Here, we review studies that have investigated CVMR in the common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and multiple sclerosis. Moreover, we discuss potential neurodegenerative mechanisms responsible for the impairment of CVMR. Copyright © 2016 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. Vascular smooth muscle dysfunction induced by monomethylarsonous acid (MMA III): a contributing factor to arsenic-associated cardiovascular diseases.

    PubMed

    Bae, Ok-Nam; Lim, Eun-Kyung; Lim, Kyung-Min; Noh, Ji-Yoon; Chung, Seung-Min; Lee, Moo-Yeol; Yun, Yeo-Pyo; Kwon, Seong-Chun; Lee, Jun-Ho; Nah, Seung-Yeol; Chung, Jin-Ho

    2008-11-01

    While arsenic in drinking water is known to cause various cardiovascular diseases in human, exact mechanism still remains elusive. Recently, trivalent-methylated arsenicals, the metabolites of inorganic arsenic, were shown to have higher cytotoxic potential than inorganic arsenic. To study the role of these metabolites in arsenic-induced cardiovascular diseases, we investigated the effect of monomethylarsonous acid (MMA III), a major trivalent-methylated arsenical, on vasomotor tone of blood vessels. In isolated rat thoracic aorta and small mesenteric arteries, MMA III irreversibly suppressed normal vasoconstriction induced by three distinct agonists of phenylephrine (PE), serotonin and endothelin-1. Inhibition of vasoconstriction was retained in aortic rings without endothelium, suggesting that MMA III directly impaired the contractile function of vascular smooth muscle. The effect of MMA III was mediated by inhibition of PE-induced Ca2+ increase as found in confocal microscopy and fluorimeter in-lined organ chamber technique. The attenuation of Ca2+ increase was from concomitant inhibition of release from intracellular store and extracellular Ca2+ influx via L-type Ca2+ channel, which was blocked by MMA III as shown in voltage-clamp assay in Xenopus oocytes. MMA III did not affect downstream process of Ca2+, as shown in permeabilized arterial strips. In in vivo rat model, MMA III attenuated PE-induced blood pressure increase indeed, supporting the clinical relevance of these in vitro findings. In conclusion, MMA III-induced smooth muscle dysfunction through disturbance of Ca2+ regulation, which results in impaired vasoconstriction and aberrant blood pressure change. This study will provide a new insight into the role of trivalent-methylated arsenicals in arsenic-associated cardiovascular diseases.

  15. Clinical features and pathophysiology of Complex Regional Pain Syndrome – current state of the art

    PubMed Central

    Marinus, Johan; Moseley, G. Lorimer; Birklein, Frank; Baron, Ralf; Maihöfner, Christian; Kingery, Wade S.; van Hilten, Jacobus J.

    2017-01-01

    That a minor injury can trigger a complex regional pain syndrome (CRPS) - multiple system dysfunction, severe and often chronic pain and disability - has fascinated scientists and perplexed clinicians for decades. However, substantial advances across several medical disciplines have recently increased our understanding of CRPS. Compelling evidence implicates biological pathways that underlie aberrant inflammation, vasomotor dysfunction, and maladaptive neuroplasticity in the clinical features of CRPS. Collectively, the evidence points to CRPS being a multifactorial disorder that is associated with an aberrant host response to tissue injury. Varying susceptibility to perturbed regulation of any of the underlying biological pathways probably accounts for the clinical heterogeneity of CRPS. PMID:21683929

  16. Myocardial perfusion imaging study of CO(2)-induced panic attack.

    PubMed

    Soares-Filho, Gastão L F; Machado, Sergio; Arias-Carrión, Oscar; Santulli, Gaetano; Mesquita, Claudio T; Cosci, Fiammetta; Silva, Adriana C; Nardi, Antonio E

    2014-01-15

    Chest pain is often seen alongside with panic attacks. Moreover, panic disorder has been suggested as a risk factor for cardiovascular disease and even a trigger for acute coronary syndrome. Patients with coronary artery disease may have myocardial ischemia in response to mental stress, in which panic attack is a strong component, by an increase in coronary vasomotor tone or sympathetic hyperactivity setting off an increase in myocardial oxygen consumption. Indeed, coronary artery spasm was presumed to be present in cases of cardiac ischemia linked to panic disorder. These findings correlating panic disorder with coronary artery disease lead us to raise questions about the favorable prognosis of chest pain in panic attack. To investigate whether myocardial ischemia is the genesis of chest pain in panic attacks, we developed a myocardial perfusion study through research by myocardial scintigraphy in patients with panic attacks induced in the laboratory by inhalation of 35% carbon dioxide. In conclusion, from the data obtained, some hypotheses are discussed from the viewpoint of endothelial dysfunction and microvascular disease present in mental stress response. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Heart rate variability biofeedback in patients with alcohol dependence: a randomized controlled study

    PubMed Central

    Penzlin, Ana Isabel; Siepmann, Timo; Illigens, Ben Min-Woo; Weidner, Kerstin; Siepmann, Martin

    2015-01-01

    Background and objective In patients with alcohol dependence, ethyl-toxic damage of vasomotor and cardiac autonomic nerve fibers leads to autonomic imbalance with neurovascular and cardiac dysfunction, the latter resulting in reduced heart rate variability (HRV). Autonomic imbalance is linked to increased craving and cardiovascular mortality. In this study, we sought to assess the effects of HRV biofeedback training on HRV, vasomotor function, craving, and anxiety. Methods We conducted a randomized controlled study in 48 patients (14 females, ages 25–59 years) undergoing inpatient rehabilitation treatment. In the treatment group, patients (n=24) attended six sessions of HRV biofeedback over 2 weeks in addition to standard rehabilitative care, whereas, in the control group, subjects received standard care only. Psychometric testing for craving (Obsessive Compulsive Drinking Scale), anxiety (Symptom Checklist-90-Revised), HRV assessment using coefficient of variation of R-R intervals (CVNN) analysis, and vasomotor function assessment using laser Doppler flowmetry were performed at baseline, immediately after completion of treatment or control period, and 3 and 6 weeks afterward (follow-ups 1 and 2). Results Psychometric testing showed decreased craving in the biofeedback group immediately postintervention (OCDS scores: 8.6±7.9 post-biofeedback versus 13.7±11.0 baseline [mean ± standard deviation], P<0.05), whereas craving was unchanged at this time point in the control group. Anxiety was reduced at follow-ups 1 and 2 post-biofeedback, but was unchanged in the control group (P<0.05). Following biofeedback, CVNN tended to be increased (10.3%±2.8% post-biofeedback, 10.1%±3.5% follow-up 1, 10.1%±2.9% follow-up 2 versus 9.7%±3.6% baseline; P=not significant). There was no such trend in the control group. Vasomotor function assessed using the mean duration to 50% vasoconstriction of cutaneous vessels after deep inspiration was improved following biofeedback immediately postintervention and was unchanged in the control group (P<0.05). Conclusion Our data indicate that HRV biofeedback might be useful to decrease anxiety, increase HRV, and improve vasomotor function in patients with alcohol dependence when complementing standard rehabilitative inpatient care. PMID:26557753

  18. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation

    PubMed Central

    Kvietys, Peter R.; Granger, D. Neil

    2012-01-01

    Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653

  19. Effects of low-dose paroxetine 7.5 mg on weight and sexual function during treatment of vasomotor symptoms associated with menopause

    PubMed Central

    Portman, David J.; Kaunitz, Andrew M.; Kazempour, Kazem; Mekonnen, Hana; Bhaskar, Sailaja; Lippman, Joel

    2014-01-01

    Abstract Objective Two phase 3, randomized, placebo-controlled trials demonstrated that low-dose paroxetine 7.5 mg reduced the frequency and severity of vasomotor symptoms (VMS) associated with menopause and had a favorable tolerability profile. The impact of paroxetine 7.5 mg on body weight and sexual function was evaluated in a pooled analysis. Methods Postmenopausal women aged 40 years or older who had moderate to severe VMS were randomly assigned to receive paroxetine 7.5 mg or placebo once daily for 12 or 24 weeks. Assessments included changes in body mass index (BMI) and weight, Arizona Sexual Experiences Scale score, Hot Flash–Related Daily Interference Scale sexuality subscore, and adverse events related to weight or sexual dysfunction. Results Pooled efficacy and safety populations comprised 1,174 and 1,175 participants, respectively. Baseline values were similar for median weight (∼75 kg), median BMI (∼28 kg/m2), and the proportion of women with sexual dysfunction (∼58%). No clinically meaningful or statistically significant changes from baseline in weight or sexual function assessments occurred in the paroxetine 7.5 mg group. Small but statistically significant increases in weight and BMI were observed in the placebo group only on week 4. No significant difference between treatment groups was observed in the proportion of participants who had 7% or higher gain in body weight on week 4, 12, or 24. Rates of adverse events suggestive of sexual dysfunction were low and similar in both treatment groups. Conclusions Paroxetine 7.5 mg does not cause weight gain or negative changes in libido when used to treat menopause-associated VMS in postmenopausal women. PMID:24552977

  20. Elevated pressure causes endothelial dysfunction in mouse carotid arteries by increasing local angiotensin signaling

    PubMed Central

    Zhao, Yingzi; Flavahan, Sheila; Leung, Susan W.; Xu, Aimin; Vanhoutte, Paul M.

    2014-01-01

    Experiments were performed to determine whether or not acute exposure to elevated pressure would disrupt endothelium-dependent dilatation by increasing local angiotensin II (ANG II) signaling. Vasomotor responses of mouse-isolated carotid arteries were analyzed in a pressure myograph at a control transmural pressure (PTM) of 80 mmHg. Acetylcholine-induced dilatation was reduced by endothelial denudation or by inhibition of nitric oxide synthase (NG-nitro-l-arginine methyl ester, 100 μM). Transient exposure to elevated PTM (150 mmHg, 180 min) inhibited dilatation to acetylcholine but did not affect responses to the nitric oxide donor diethylamine NONOate. Elevated PTM also increased endothelial reactive oxygen species, and the pressure-induced endothelial dysfunction was prevented by the direct antioxidant and NADPH oxidase inhibitor apocynin (100 μM). The increase in endothelial reactive oxygen species in response to elevated PTM was reduced by the ANG II type 1 receptor (AT1R) antagonists losartan (3 μM) or valsartan (1 μM). Indeed, elevated PTM caused marked expression of angiotensinogen, the precursor of ANG II. Inhibition of ANG II signaling, by blocking angiotensin-converting enzyme (1 μM perindoprilat or 10 μM captopril) or blocking AT1Rs prevented the impaired response to acetylcholine in arteries exposed to 150 mmHg but did not affect dilatation to the muscarinic agonist in arteries maintained at 80 mmHg. After the inhibition of ANG II, elevated pressure no longer impaired endothelial dilatation. In arteries treated with perindoprilat to inhibit endogenous formation of the peptide, exogenous ANG II (0.3 μM, 180 min) inhibited dilatation to acetylcholine. Therefore, elevated pressure rapidly impairs endothelium-dependent dilatation by causing ANG expression and enabling ANG II-dependent activation of AT1Rs. These processes may contribute to the pathogenesis of hypertension-induced vascular dysfunction and organ injury. PMID:25485905

  1. Elevated pressure causes endothelial dysfunction in mouse carotid arteries by increasing local angiotensin signaling.

    PubMed

    Zhao, Yingzi; Flavahan, Sheila; Leung, Susan W; Xu, Aimin; Vanhoutte, Paul M; Flavahan, Nicholas A

    2015-02-15

    Experiments were performed to determine whether or not acute exposure to elevated pressure would disrupt endothelium-dependent dilatation by increasing local angiotensin II (ANG II) signaling. Vasomotor responses of mouse-isolated carotid arteries were analyzed in a pressure myograph at a control transmural pressure (PTM) of 80 mmHg. Acetylcholine-induced dilatation was reduced by endothelial denudation or by inhibition of nitric oxide synthase (NG-nitro-L-arginine methyl ester, 100 μM). Transient exposure to elevated PTM (150 mmHg, 180 min) inhibited dilatation to acetylcholine but did not affect responses to the nitric oxide donor diethylamine NONOate. Elevated PTM also increased endothelial reactive oxygen species, and the pressure-induced endothelial dysfunction was prevented by the direct antioxidant and NADPH oxidase inhibitor apocynin (100 μM). The increase in endothelial reactive oxygen species in response to elevated PTM was reduced by the ANG II type 1 receptor (AT1R) antagonists losartan (3 μM) or valsartan (1 μM). Indeed, elevated PTM caused marked expression of angiotensinogen, the precursor of ANG II. Inhibition of ANG II signaling, by blocking angiotensin-converting enzyme (1 μM perindoprilat or 10 μM captopril) or blocking AT1Rs prevented the impaired response to acetylcholine in arteries exposed to 150 mmHg but did not affect dilatation to the muscarinic agonist in arteries maintained at 80 mmHg. After the inhibition of ANG II, elevated pressure no longer impaired endothelial dilatation. In arteries treated with perindoprilat to inhibit endogenous formation of the peptide, exogenous ANG II (0.3 μM, 180 min) inhibited dilatation to acetylcholine. Therefore, elevated pressure rapidly impairs endothelium-dependent dilatation by causing ANG expression and enabling ANG II-dependent activation of AT1Rs. These processes may contribute to the pathogenesis of hypertension-induced vascular dysfunction and organ injury. Copyright © 2015 the American Physiological Society.

  2. Effect of engineered nanoparticles on vasomotor responses in rat intrapulmonary artery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, Arnaud, E-mail: arnaud.courtois@u-bordeaux2.f; Inserm, U885, Bordeaux, F-33076; Andujar, Pascal

    2010-06-01

    Pulmonary circulation could be one of the primary vascular targets of finest particles that can deeply penetrate into the lungs after inhalation. We investigated the effects of engineered nanoparticles on vasomotor responses of small intrapulmonary arteries using isometric tension measurements. Acute in vitro exposure to carbon nanoparticles (CNP) decreased, and in some case abolished, the vasomotor responses induced by several vasoactive agents, whereas acute exposure to titanium dioxide nanoparticles (TiO{sub 2}NP) did not. This could be attributed to a decrease in the activity of those vasoactive agents (including PGF{sub 2{alpha}}, serotonin, endothelin-1 and acetylcholine), as suggested when they were exposedmore » to CNP before being applied to arteries. Also, CNP decreased the contraction induced by 30 mM KCl, without decreasing its activity. After endoplasmic reticulum calcium stores depletion (by caffeine and thapsigargin), CaCl{sub 2} addition induced a contraction, dependent on Store-Operated Calcium Channels that was not modified by acute CNP exposure. Further addition of 30 mM KCl elicited a contraction, originating from activation of Voltage-Operated Calcium Channels that was diminished by CNP. Contractile responses to PGF{sub 2{alpha}} or KCl, and relaxation to acetylcholine were modified neither in pulmonary arteries exposed in vitro for prolonged time to CNP or TiO{sub 2}NP, nor in those removed from rats intratracheally instilled with CNP or TiO{sub 2}NP. In conclusion, prolonged in vitro or in vivo exposure to CNP or TiO{sub 2}NP does not affect vasomotor responses of pulmonary arteries. However, acute exposure to CNP decreases contraction mediated by activation of Voltage-Operated, but not Store-Operated, Calcium Channels. Moreover, interaction of some vasoactive agents with CNP decreases their biological activity that might lead to misinterpretation of experimental data.« less

  3. Sustained conduction of vasomotor responses in rat mesenteric arteries in a two-compartment in vitro setup.

    PubMed

    Palao, Teresa; van Weert, Angela; de Leeuw, Anne; de Vos, Judith; Bakker, Erik N T P; van Bavel, Ed

    2018-05-21

    Conduction of vasomotor responses may contribute to long-term regulation of resistance artery function and structure. Most previous studies have addressed conduction of vasoactivity only during very brief stimulations. We developed a novel setup that allows the local pharmacological stimulation of arteries in vitro for extended periods of time, and studied the conduction of vasomotor responses in rat mesenteric arteries under those conditions. The new in vitro set up was based on the pressure myograph. The superfusion chamber was divided halfway along the vessel into two compartments, allowing an independent superfusion of the arterial segment in each compartment. Local and remote cumulative concentration-response curves were obtained for a range of vasoactive agents. Additional experiments were performed with the gap junction inhibitor 18β-glycyrrhetinic acid and in absence of the endothelium. Phenylephrine-induced constriction and acetylcholine-induced dilation were conducted over a measured distance up to 2.84 mm, and this conduction was maintained for 5 minutes. Conduction of acetylcholine-induced dilation was inhibited by 18β-glycyrrhetinic acid and conduction of phenylephrine-induced constriction was abolished in absence of the endothelium. Constriction in response to high K + was not conducted. Absence of remote stimulation dampened the local response to phenylephrine. This study demonstrates maintained conduction of vasoactive responses to physiological agonists in rat mesenteric small arteries likely via gap junctions and endothelial cells, providing a possible mechanism for the sustained functional and structural control of arterial networks. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Management of menopause in women with breast cancer.

    PubMed

    Vincent, A J

    2015-10-01

    Increasing breast cancer incidence and decreasing mortality have highlighted the importance of survivorship issues related to breast cancer. A consideration of the issues related to menopause is therefore of great importance to both women and clinicians. Menopause/menopausal symptoms, with significant negative effects on quality of life and potential long-term health impacts, may in women with breast cancer be associated with: (1) natural menopause occurring concurrently with a breast cancer diagnosis; (2) recurrence of menopausal symptoms following cessation of hormone replacement therapy; (3) treatment-induced menopause (chemotherapy, ovarian ablation/suppression) and adjuvant endocrine therapy. A variety of non-hormonal pharmacological and non-pharmacological therapies have been investigated as therapeutic options for menopausal symptoms with mixed results, and ongoing research is required. This review presents a summary of the causes, common problematic symptoms of menopause (vasomotor, genitourinary and sexual dysfunction), and longer-term consequences (cardiovascular disease and osteoporosis) related to menopause. It proposes an evidenced-based multidisciplinary approach to the management of menopause/menopausal symptoms in women with breast cancer.

  5. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction

    PubMed Central

    Quan, Chunli; Sun, Qinghua; Lippmann, Morton; Chen, Lung-Chi

    2011-01-01

    Ambient air PM2.5 (particulate matter less than 2.5 μm in diameter) has been associated with cardiovascular diseases (CVDs), but the underlying mechanisms affecting CVDs are unknown. The authors investigated whether subchronic inhalation of concentrated ambient PM2.5 (CAPs), whole diesel exhaust (WDE), or diesel exhaust gases (DEGs) led to exacerbation of atherosclerosis, pulmonary and systemic inflammation, and vascular dysfunction; and whether DEG interactions with CAPs alter cardiovascular effects. ApoE−/− mice were simultaneously exposed via inhalation for 5 hours/day, 4 days/week, for up to 5 months to one of five different exposure atmospheres: (1) filtered air (FA); (2) CAPs (105 μg/m3); (3) WDE (DEP = 436 μg/m3); (4) DEG (equivalent to gas levels in WDE group); and (5) CAPs+DEG (PM2.5: 113 μg/m3; with DEG equivalent to WDE group). After 3 and 5 months, lung lavage fluid and blood sera were analyzed, and atherosclerotic plaques were quantified by ultrasound imaging, hematoxylin and eosin (H&E stain), and en face Sudan IV stain. Vascular functions were assessed after 5 months of exposure. The authors showed that (1) subchronic CAPs, WDE, and DEG inhalations increased serum vascular cell adhesion molecule (VCAM)-1 levels and enhanced phenylephrine (PE)-induced vasoconstriction; (2) for plaque exacerbation, CAPs > WDE > DEG = FA, thus PM components (not present in WDE) were responsible for plaque development; (3) atherosclerosis can exacerbated through mechanistic pathways other than inflammation and vascular dysfunction; and (4) although there were no significant interactions between CAPs and DEG on plaque exacerbation, it is less clear whether the effects of CAPs on vasomotor dysfunction and pulmonary/systemic inflammation were enhanced by the DEG coexposure. PMID:20462391

  6. Peripheral vasomotor activity assessment using a continuous wavelet analysis on webcam photoplethysmographic signals.

    PubMed

    Bousefsaf, F; Maaoui, C; Pruski, A

    2016-11-25

    Vasoconstriction and vasodilation phenomena reflect the relative changes in the vascular bed. They induce particular modifications in the pulse wave magnitude. Webcams correspond to remote sensors that can be employed to measure the pulse wave in order to compute the pulse frequency. Record and analyze pulse wave signal with a low-cost webcam to extract the amplitude information and assess the vasomotor activity of the participant. Photoplethysmographic signals obtained from a webcam are analyzed through a continuous wavelet transform. The performance of the proposed filtering technique was evaluated using approved contact probes on a set of 12 healthy subjects after they perform a short but intense physical exercise. During the rest period, a cutaneous vasodilation is observable. High degrees of correlation between the webcam and a reference sensor were obtained. Webcams are low-cost and non-contact devices that can be used to reliably estimate both heart rate and peripheral vasomotor activity, notably during physical exertion.

  7. Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension.

    PubMed

    Jun, Joo Yun; Zubcevic, Jasenka; Qi, Yanfei; Afzal, Aqeela; Carvajal, Jessica Marulanda; Thinschmidt, Jeffrey S; Grant, Maria B; Mocco, J; Raizada, Mohan K

    2012-11-01

    Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.

  8. Brain-Mediated Dysregulation of the Bone Marrow Activity in Angiotensin II-induced Hypertension

    PubMed Central

    Jun, Joo Yun; Zubcevic, Jasenka; Qi, Yanfei; Afzal, Aqeela; Carvajal, Jessica Marulanda; Thinschmidt, Jeffrey S; Grant, Maria B.; Mocco, J; Raizada, Mohan K

    2012-01-01

    Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus (PVN) of the hypothalamus, is driven by mitochondrial reactive oxygen species (ROS) and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II (Ang II) infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the PVN. This was associated with 46% decrease in BM EPCs and 250% increase in BM ICs, resulting in 5 fold decrease of EPCs/ICs ratio in the BM. Treatment with mitoTEMPO, a scavenger of mitochondrial O2−• intracerebroventricularly but not subcutaneously, attenuated Ang II-induced hypertension, decreased activation of microglia in the PVN, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with GFP-tagged pseudorabies virus (PRV). Administration of GFP-PRV into the BM resulted in predominant labeling of PVN neurons within 3 days, with some fluorescence in the NTS, RVLM and SFO. Taken together, these data demonstrate that inhibition of mitochondrial ROS attenuates Ang II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension. PMID:23045460

  9. Effect of ascorbic acid on endothelial dysfunction of epicardial coronary arteries in chronic smokers assessed by cold pressor testing.

    PubMed

    Schindler, T H; Magosaki, N; Jeserich, M; Olschewski, M; Nitzsche, E; Holubarsch, C; Solzbach, U; Just, H

    2000-01-01

    In chronic smokers there is evidence for increased formation of oxygen-derived free radicals within the vessel wall impairing endothelial function. It has been suggested that the inactivation of endothelium-derived nitric oxide by oxygen free radicals contributes to endothelial dysfunction. Hence, we tested the hypothesis that in chronic smokers the antioxidant ascorbic acid could improve abnormal endothelial function of epicardial coronary arteries. Thirty-one patients (mean age 57 +/- 9 years) referred for routine diagnostic catheterization for evaluation of chest pain and without angiographically significant coronary artery stenoses were randomly assigned to one of the study groups to assess vasomotor response of epicardial coronary arteries due to cold pressor testing (CPT) before and after intravenous infusion of 3 g of ascorbic acid or 100 ml x 0.9% saline infusion. In 6 controls (mean age 55 +/- 3 years) CPT led to a similar increase in luminal area before and after ascorbic acid administration (26.5 +/- 15.0 vs. 28.4 +/- 17.7%, p = NS). In 15 chronic smokers (mean age 55 +/- 9 years), CPT induced a decrease in the luminal area of -18.5 +/- 6.3%. This flow-dependent vasoconstriction was significantly reversed to 7.7 +/- 6.2% (p < or = 0.03) vasodilation after intravenous ascorbic acid administration. In 10 chronic smokers (mean age 57 +/- 11 years) saline infusion (placebo) did not have a significant effect on CPT-induced vasoconstriction (-12.7 +/- 5.1 vs. -13.1 +/- 5.1%, p = NS). The CPT-induced increase in luminal area in chronic smokers after ascorbic acid infusion was significant compared to controls and placebo (each p < or = 0.05). Our assessment of endothelium-independent responses to nitroglycerin revealed no significant differences between the single study groups (p = NS). In chronic smokers acute intravenous administration of ascorbic acid significantly improves CPT-induced coronary endothelium-dependent dysfunction. According to the current understanding, this effect is due to improved cellular redox imbalance and prevention of nitric oxide inactivation in the endothelium and subendothelial space.

  10. Evaluation of cerebral vasomotor reactivity in Parkinson's disease: is there any association with orthostatic hypotension?

    PubMed

    Zamani, Babak; Mehrabani, Mehrnoush; Fereshtehnejad, Seyed-Mohammad; Rohani, Mohammad

    2011-06-01

    Our aim was to look for a probable relationship between cerebral vasomotor reactivity (VMR) and orthostatic hypotension (OH) in Parkinson's disease (PD). This study was conducted on 44 patients with PD. Assessment of cerebral VMR was performed by means of transcranial Doppler (TCD) of middle cerebral artery (MCA) before and after a vasodilatory stimulus, carbon dioxide test. Moreover, orthostatic hypotension was evaluated. OH was presented in 12 (27.3%) Parkinson's patients. The average resting blood flow velocity (BFV) in the MCA was 30.20 (SD=9.58)cms(-1) which significantly increased to 46.25 (SD=16.23)cms(-1) after carbon dioxide test (P<0.001). Impaired VMR was observed in 15 (34.1%) of the subjects, while it was not associated with the presence of OH (P=0.770). Evaluation of VMR in patients affected by PD, could assist in early diagnosis of cerebral autonomic dysfunction and prevent its serious consequences prior and more valid to OH. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  11. Data Registry on Experiences of Aging, Menopause, and Sexuality (DREAMS): A cohort profile.

    PubMed

    Faubion, Stephanie S; Kapoor, Ekta; Kling, Juliana M; Kuhle, Carol L; Sood, Richa; Rullo, Jordan E; Thielen, Jacqueline M; Shuster, Lynne T; Rocca, Walter A; Hilsaca, Karla S Frohmader; Mara, Kristin C; Schroeder, Darrell R; Miller, Virginia M

    2018-01-01

    The Women's Health Clinic (WHC) at Mayo Clinic in Rochester, Minnesota, has provided consultative care to women with menopausal and sexual health concerns since 2005. Clinical information on the 8688 women seen in the WHC through May 2017 who gave consent for the use of their medical records in research is contained in the Data Registry on Experiences of Aging, Menopause, and Sexuality (DREAMS). Initially, DREAMS was created to improve the clinical care of women, but it has become a valuable research tool. About 25% of the DREAMS women have been seen in the WHC 2 or more times, allowing for passive longitudinal follow-up. Additionally, about 25% of the DREAMS women live in the 27-county region included in the expanded Rochester Epidemiology Project medical records linkage system, providing additional information on those women. The cohort has been used to investigate associations between: caffeine intake and vasomotor symptom bother; recent abuse (physical, sexual, verbal, and emotional) and menopausal symptoms; specific menopausal symptoms and self-reported view of menopause; and obstructive sleep apnea risk and vasomotor symptom severity and the experience of vasomotor symptoms in women older than 60 years. A study nearing completion describes a clinical series of over 3500 women presenting for sexual health consultation by sexual function domain and by decade of life. Other studies under way are determining correlates with sexual health and dysfunction. Planned studies will investigate associations between the experience with menopause and the risk of disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antiatherogenic effects of S-nitroso-N-acetylcysteine in hypercholesterolemic LDL receptor knockout mice.

    PubMed

    Krieger, M H; Santos, K F R; Shishido, S M; Wanschel, A C B A; Estrela, H F G; Santos, L; De Oliveira, M G; Franchini, K G; Spadari-Bratfisch, R C; Laurindo, F R M

    2006-02-01

    The pathophysiology of the NO/NO synthase system and dysfunctional changes in the endothelium in the early phases of the atherogenic process are incompletely understood. In this study, we investigated the effects of the nitrosothiol NO donor S-nitroso-N-acetylcysteine (SNAC) in the early prevention of plaque development in the hypercholesterolemic LDLr-/- mice as well as the changes in endothelium-dependent relaxation and NO synthase expression. LDLr-/- mice were fed a 1.25% cholesterol-enriched diet for 15 days. Plasma cholesterol/triglyceride levels increased and this increase was accompanied by the development of aortic root lesions. Aortic vasorelaxation to acetylcholine was increased, although endothelium-independent relaxation in response to sodium nitroprusside did not change, which suggest stimulated NO release enhanced. This dysfunction was associated with enhanced aortic superoxide production and with increased levels of constitutive NOS isoform expression, particularly neuronal NOS. SNAC (S-nitroso-N-acetylcysteine) administration (0.51 micromol/kg/day i.p. for 15 days) decreased the extent of the plaque by 55% in hypercholesterolemic mice, but had no effects on vasomotor changes. It did, however, lead to a decrease in constitutive NOS expression. The SNAC induced only minor changes in plasma lipid profile. The present study has shown that, in early stages of plaque development in LDLr-/- mice, specific changes in NO/NO synthase system develop, that are characterized by increased endothelium-dependent vasorelaxation and increased constitutive NOS expression. Since the development of plaque and the indicator of endothelial cell dysfunction were prevented by SNAC, such treatment may constitute a novel strategy for the halting of progression of early plaque.

  13. Growth Hormone-Releasing Peptide Ghrelin Inhibits Homocysteine-Induced Endothelial Dysfunction in Porcine Coronary Arteries and Human Endothelial Cells

    PubMed Central

    Hedayati, Nasim; Annambhotla, Suman; Jiang, Jun; Wang, Xinwen; Chai, Hong; Lin, Peter H.; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Objective Ghrelin, a novel growth-hormone releasing peptide, is implicated to play a protective role in cardiovascular tissues. However, it is not clear whether ghrelin protects vascular tissues from injury secondary to risk factors such as homocysteine (Hcy). The purpose of this study was to investigate the effect and potential mechanisms of ghrelin on Hcy-induced endothelial dysfunction. Methods Porcine coronary artery rings were incubated for 24 hours with ghrelin (100 ng/mL), Hcy (50 μM), or ghrelin plus Hcy. Endothelial vasomotor function was evaluated using the myograph tension model. The response to thromboxane A2 analog U466419, bradykinin, and sodium nitroprusside (SNP) was analyzed. Endothelial nitric oxide synthase (eNOS) expression was determined using real time PCR and immunohistochemistry staining, and superoxide anion production by lucigenin-enhanced chemiluminescence analysis. Human coronary artery endothelial cells (HCAECs) were treated with different concentrations of Hcy, ghrelin, and/or anti-ghrelin receptor (GHS-R1a) antibody for 24 hours, eNOS protein levels were determined by western blot analysis. Results Maximal contraction with U466419 and endothelium-independent vasorelaxation with SNP were not different among the four groups. However, endothelium-dependent vasorelaxation with bradykinin (10-6M) was significantly reduced by 34% with Hcy compared with controls (P<0.05). Addition of ghrelin to Hcy had a protective effect, with 61.6% relaxation, similar to controls (64.7%). Hcy significantly reduced eNOS expression, while ghrelin co-treatment effectively restored eNOS expression to the control levels. Superoxide anion levels, which were increased by 100% with Hcy, returned to control levels with ghrelin co-treatment. Ghrelin also effectively blocked Hcy-induced decrease of eNOS protein levels in HCAECs in a concentration dependent manner. Anti-ghrelin receptor antibody effectively inhibited ghrelin’s effect. Conclusions Ghrelin has a protective effect in the porcine coronary artery by blocking Hcy-induced endothelial dysfunction, improving eNOS expression, and reducing oxidative stress. Ghrelin also shows protective effect on HCACEs from Hcy-induced decrease in eNOS protein levels. Ghrelin’s effect is receptor-dependent. Thus, ghrelin administration may have beneficial effects in the treatment of vascular disease in hyperhomocysteinemic patients. PMID:19028051

  14. Menopausal symptoms in young survivors of breast cancer: a growing problem without an ideal solution.

    PubMed

    Murthy, Vijayashree; Chamberlain, Ronald S

    2012-10-01

    New breast cancers occur in 25% to 30% of women < 50 years of age. These young women undergo ablative surgery, chemotherapy, or hormonal/targeted treatment. These treatments have resulted in increased survival but at the expense of early menopause, marked by distressing vasomotor symptoms, sexual dysfunction, decreased metabolism, and musculoskeletal and cardiovascular effects. A comprehensive literature search was performed using PubMed. This article reviews the evidence-based approaches to the treatment of these distressing symptoms in young breast cancer survivors. Menopausal symptoms in young patients are typically more severe due to the abrupt and rapid decrease in estrogen, and chemotherapy and hormones worsen these symptoms. Evidence supporting the efficacy of most complementary therapies is scarce. Behavioral modification and yoga may be helpful in mild cases of vasomotor symptoms, whereas newer antidepressants are promising in moderate to severe cases, and stellate ganglion block may be used in refractory cases. Local vaginal moisturizers, and in refractory cases low-dose estrogen creams, may ameliorate most urogenital symptoms. Bisphosphonates, vitamin D, and calcium can treat osteoporosis, and weight-bearing exercises decrease bone mineral density loss and help to control weight. Smoking cessation, exercise, and dietary modifications should be recommended to all young patients to decrease cardiac morbidity. At present, there is insufficient evidence to support any natural agent as a viable alternative to hormone replacement therapy to treat these symptoms. No single agent can ameliorate vasomotor, cardiac, skeletal, and sexual concerns of young breast cancer survivors coping with menopausal symptoms. Quality-of-life research involving premenopausal breast cancer survivors is lacking. Further study is needed to identify safe and effective treatments for menopausal symptoms and to confirm their long-term safety in young breast cancer survivors.

  15. PTEN, a negative regulator of PI3K/Akt signaling, sustains brain stem cardiovascular regulation during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Wu, Jacqueline C C; Fang, Chi; Chang, Alice Y W

    2017-09-01

    Activation of PI3K/Akt signaling, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins cardiovascular depression induced by the organophosphate pesticide mevinphos. By exhibiting dual-specificity protein- and lipid-phosphatase activity, phosphatase and tensin homolog (PTEN) directly antagonizes the PI3K/Akt signaling by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate, the lipid product of PI3K. Based on the guiding hypothesis that PTEN may sustain brain stem cardiovascular regulation during mevinphos intoxication as a negative regulator of PI3K/Akt signaling in the RVLM, we aimed in this study to clarify the mechanistic role of PTEN in mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10 nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension and a decrease in baroreflex-mediated sympathetic vasomotor tone. There was progressive augmentation in PTEN activity as reflected by a decrease in the oxidized form of PTEN in the RVLM during mevinhpos intoxication, without significant changes in the mRNA or protein level of PTEN. Loss-of-function manipulations of PTEN in the RVLM by immunoneutralization, pharmacological blockade or siRNA pretreatment significantly potentiated the increase in Akt activity or NOS II/peroxynitrite cascade in the RVLM, enhanced the elicited hypotension and exacerbated the already reduced baroreflex-mediated sympathetic vasomotor tone. We conclude that augmented PTEN activity via a decrease of its oxidized form in the RVLM sustains brain stem cardiovascular regulation during mevinphos intoxication via downregulation of the NOS II/peroxynitrite cascade as a negative regulator of PI3K/Akt signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction.

    PubMed

    Yannoutsos, Alexandra; Levy, Bernard I; Safar, Michel E; Slama, Gerard; Blacher, Jacques

    2014-02-01

    Hypertension is a multifactorial systemic chronic disorder through functional and structural macrovascular and microvascular alterations. Macrovascular alterations are featured by arterial stiffening, disturbed wave reflection and altered central to peripheral pulse pressure amplification. Microvascular alterations, including altered wall-to-lumen ratio of larger arterioles, vasomotor tone abnormalities and network rarefaction, lead to disturbed tissue perfusion and susceptibility to ischemia. Central arterial stiffness and microvascular alterations are common denominators of organ damages. Vascular alterations are intercorrelated, amplifying the haemodynamic load and causing further damage in the arterial network. A plausible precursor role of vascular alterations in incident hypertension provides new insights for preventive and therapeutic strategies targeting macro and microvasculature. Cumulative metabolic burden and oxidative stress lead to chronic endothelial injury, promoting structural and functional vascular alterations, especially in the microvascular network. Pathophysiology of hypertension may then be revisited, based on both macrovascular and microvascular alterations, with a precursor role of endothelial dysfunction for the latter.

  17. Cross-cultural study: experience, understanding of menopause, and related therapies in Australian and Laotian women.

    PubMed

    Sayakhot, Padaphet; Vincent, Amanda; Teede, Helena

    2012-12-01

    The aim of this study was to investigate and compare symptom experiences, beliefs, attitudes, and understanding of menopause and menopausal therapies in Australian and Laotian women. This was a cross-cultural, questionnaire-based study involving 108 women (56 Australian women and 52 Laotian women aged 40-65 y) attending outpatient clinics in Australia and Laos. Descriptive statistics and univariate analysis were conducted using Student's t test or Mann-Whitney U test, where appropriate. Psychological symptoms, depression, vasomotor symptoms, and sexual dysfunction were significantly higher in Australian women compared with Laotian women (P < 0.05). Australian women perceived the meaning of menopause as aging (57%), whereas most Laotian women reported not knowing what menopause meant to them (81%). Australian women's fears about menopause included weight gain (43%), aging (41%), and breast cancer (38%), whereas Laotian women reported not knowing about potential menopausal problems (85%). Exercise (55%), education and awareness (46%), and improving lifestyle (41%) were reported by Australian women as being effective in alleviating menopausal symptoms, with only 21% reporting not knowing what was effective compared with 83% of Laotian women. Many women reported not knowing the risks/benefits of hormonal therapies (50% of Australian women and 87% of Laotian women) and herbal therapies (79% of Australian women and 92% of Laotian women). General practitioners were the most common source of menopause information for both Australians (73%) and Laotians (67%). Sociocultural factors influence women's perception of menopause. Psychological symptoms, sexual dysfunction, and vasomotor symptoms are more commonly reported by Australian women than by Laotian women. Women have a limited understanding of the risks/benefits of menopausal therapies, and culturally appropriate education is needed.

  18. Benefits of Synchrotron Microangiography for Dynamic Studies of Smooth Muscle and Endothelial Roles in the Pathophysiology of Vascular Disease

    NASA Astrophysics Data System (ADS)

    Pearson, James T.; Schwenke, Daryl O.; Jenkins, Mathew J.; Edgley, Amanda J.; Sonobe, Takashi; Ishibashi-Ueda, Hatsue; Umetani, Keiji; Eppel, Gabriela A.; Evans, Roger G.; Okura, Yasuhiko; Shirai, Mikiyasu

    2010-07-01

    Changes in endothelial and smooth muscle function compromise organ perfusion in the chronic disease states of diabetes, atherosclerosis and hypertension. Moreover, vascular dysfunction increases the likelihood of lethal acute events such as myocardial infarction and stroke, which are now leading causes of adult mortality. Many circulating and local tissue factors in these disease states contribute to impaired vasomotor regulation of the arterial vessels, leading to spasm, chronic constriction and eventually vessel remodelling. X-ray contrast absorption imaging allows assessment of vessel lumen diameter and the factors contributing to steady-state vessel calibre, however, conventional clinical devices (>200 μm resolution) are not adequate to detect microvessels or accurately assess function in real time. Using synchrotron imaging we are now able to detect small vessel calibres (˜30 μm) and quantify regional differences in calibre even under conditions of high heart rate (>500 bpm). Herein we describe recent experiments that were conducted at the Japanese Synchrotron, SPring-8 using anaesthetised Sprague-Dawley rats and C57Bl/6 mice and a synchrotron radiation contrast angiography (single narrow energy bandwidth) approach based on selective arterial injection of iodine contrast agents. Application of this approach to imaging of the heart and other vasculatures are described. Our studies show that within-animal comparisons of 3-4 branching orders of arterial vessels are possible using small bolus contrast injections and appropriate contrast washout times (15-30 min) in many organ systems. Determination of relative calibre changes before and after any treatment allows us to evaluate the contributions of different endogenous factors and ligand-receptor pathways in the maintenance of vasomotor tone. Finally, we will present our findings relating to novel therapies to prevent endothelial dysfunction in heart failure.

  19. Benefits of Synchrotron Microangiography for Dynamic Studies of Smooth Muscle and Endothelial Roles in the Pathophysiology of Vascular Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, James T.; Department of Physiology, Monash University, 3800 Clayton; Schwenke, Daryl O.

    2010-07-23

    Changes in endothelial and smooth muscle function compromise organ perfusion in the chronic disease states of diabetes, atherosclerosis and hypertension. Moreover, vascular dysfunction increases the likelihood of lethal acute events such as myocardial infarction and stroke, which are now leading causes of adult mortality. Many circulating and local tissue factors in these disease states contribute to impaired vasomotor regulation of the arterial vessels, leading to spasm, chronic constriction and eventually vessel remodelling. X-ray contrast absorption imaging allows assessment of vessel lumen diameter and the factors contributing to steady-state vessel calibre, however, conventional clinical devices (>200 {mu}m resolution) are not adequatemore » to detect microvessels or accurately assess function in real time. Using synchrotron imaging we are now able to detect small vessel calibres ({approx}30 {mu}m) and quantify regional differences in calibre even under conditions of high heart rate (>500 bpm). Herein we describe recent experiments that were conducted at the Japanese Synchrotron, SPring-8 using anaesthetised Sprague-Dawley rats and C57Bl/6 mice and a synchrotron radiation contrast angiography (single narrow energy bandwidth) approach based on selective arterial injection of iodine contrast agents. Application of this approach to imaging of the heart and other vasculatures are described. Our studies show that within-animal comparisons of 3-4 branching orders of arterial vessels are possible using small bolus contrast injections and appropriate contrast washout times (15-30 min) in many organ systems. Determination of relative calibre changes before and after any treatment allows us to evaluate the contributions of different endogenous factors and ligand-receptor pathways in the maintenance of vasomotor tone. Finally, we will present our findings relating to novel therapies to prevent endothelial dysfunction in heart failure.« less

  20. Cardiovascular dysfunction following spinal cord injury

    PubMed Central

    Partida, Elizabeth; Mironets, Eugene; Hou, Shaoping; Tom, Veronica J.

    2016-01-01

    Both sensorimotor and autonomic dysfunctions often occur after spinal cord injury (SCI). Particularly, a high thoracic or cervical SCI interrupts supraspinal vasomotor pathways and results in disordered hemodynamics due to deregulated sympathetic outflow. As a result of the reduced sympathetic activity, patients with SCI may experience hypotension, cardiac dysrhythmias, and hypothermia post-injury. In the chronic phase, changes within the CNS and blood vessels lead to orthostatic hypotension and life-threatening autonomic dysreflexia (AD). AD is characterized by an episodic, massive sympathetic discharge that causes severe hypertension associated with bradycardia. The syndrome is often triggered by unpleasant visceral or sensory stimuli below the injury level. Currently the only treatments are palliative – once a stimulus elicits AD, pharmacological vasodilators are administered to help reduce the spike in arterial blood pressure. However, a more effective means would be to mitigate AD development by attenuating contributing mechanisms, such as the reorganization of intraspinal circuits below the level of injury. A better understanding of the neuropathophysiology underlying cardiovascular dysfunction after SCI is essential to better develop novel therapeutic approaches to restore hemodynamic performance. PMID:27073353

  1. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension.

    PubMed

    Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong

    2014-11-01

    Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension (P aCO 2) is assessed during steady-state or transient changes in P aCO 2. This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in P aCO 2; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension (P ET , CO 2) middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus P ET , CO 2) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in P ET , CO 2 of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in P ET , CO 2. The linear regression for CBFV versus P ET , CO 2 (P = 0.65) and CVCI versus P ET , CO 2 (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second hypothesis, the same measurements were made during the following two conditions (randomized): (i) immediately following a brief period of hypocapnia induced by hyperventilation for 1 min followed by rebreathing; and (ii) during rebreathing only. The slope of the linear regression for CBFV versus P ET , CO 2 (P < 0.01) and CVCI versus P ET , CO 2 (P < 0.01) was reduced during hyperventilation plus rebreathing relative to rebreathing only. These results indicate that cerebral vasomotor reactivity to changes in P aCO 2 is similar regardless of the employed methodology to induce changes in P aCO 2 and that hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing-induced hypercapnia. © 2014 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  2. Upregulation of FLJ10540, a PI3K-association protein, in rostral ventrolateral medulla impairs brain stem cardiovascular regulation during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Chen, Chang-Han; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2015-01-01

    FLJ10540, originally identified as a microtubule-associated protein, induces cell proliferation and migration during tumorigenesis via the formation of FLJ10540-PI3K complex and enhancement of PI3K kinase activity. Interestingly, activation of PI3K/Akt cascade, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite signaling in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, mediates the impairment of brain stem cardiovascular regulation induced by the pesticide mevinphos. We evaluated the hypothesis that upregulation of FLJ10540 in the RVLM is upstream to this repertoire of signaling cascade that underpins mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied by an increase (Phase I), followed by a decrease (Phase II) of an experimental index for baroreflex-mediated sympathetic vasomotor tone. There was augmentation in FLJ10540 mRNA in the RVLM or FLJ10540 protein in RVLM neurons, both of which were causally and temporally related to an augmentation of binding between the catalytic subunit (p110) and regulatory subunit (p85) of PI3K, phosphorylation of Akt at Thr308 site, and NOS II, superoxide or peroxynitrite level in the RVLM. Immunoneutralization of FJL10540 in the RVLM significantly antagonized those biochemical changes, and blunted the progressive hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during mevinphos intoxication. We conclude that upregulation of FLJ10540 in the RVLM elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication via activation of PI3K/Akt/NOS II/peroxynitrite signaling cascade in the RVLM. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The time course of brief and prolonged topical 8% capsaicin-induced desensitization in healthy volunteers evaluated by quantitative sensory testing and vasomotor imaging.

    PubMed

    Lo Vecchio, Silvia; Andersen, Hjalte Holm; Arendt-Nielsen, Lars

    2018-05-29

    Topically applied high-concentration capsaicin induces reversible dermo-epidermal denervation and depletion of capsaicin-sensitive nociceptors. This causes desensitization of distinct sensory modalities and is used to treat peripheral neuropathic pain and itch. For high-concentration capsaicin, the selectivity of loss of function and functional recovery rates of various afferent fibers subpopulations are unknown. This study used comprehensive quantitative sensory testing and vasomotor imaging to assess effectiveness, duration and sensory selectivity of high-concentration 8% capsaicin-ablation. Skin areas in 14 healthy volunteers were randomized to treatment with 8% capsaicin/vehicle patches for 1 and 24 h and underwent comprehensive sensory and vasomotor testing at 1, 7 and 21 days postpatch removal. Tests consisted of thermal detection and pain thresholds, tactile and vibration detection thresholds, mechanical pain threshold and mechanical pain sensitivity as well as micro-vascular and itch reactivity to histamine provocations. The 24 h capsaicin drastically inhibited warmth detection (P < 0.001), heat pain (P < 0.001) as well as histamine-induced itch (P < 0.05) and neurogenic flare (P < 0.001), but had no impact on tactile sensitivity, cold detection and cold pain. A marginal decrease in mechanical pain sensitivity was observed (P < 0.05). Capsaicin for 1 h had limited and transient sensory effects only affecting warmth and heat sensations. Time-dependent functional recovery was almost complete 21 days after the 24 h capsaicin exposure, while recovery of neurogenic inflammatory responsiveness remained partial. The psychophysically assessed sensory deficiencies induced by the used 8% capsaicin-ablation correspond well with a predominant effect on TRPV1 + -cutaneous fibers. The method is easy to apply, well tolerated, and utilizable for studies on, e.g., interactions between skin barrier, inflammation and capsaicin-sensitive afferents.

  4. Endothelium and Its Alterations in Cardiovascular Diseases: Life Style Intervention

    PubMed Central

    Paganelli, Corrado; Buffoli, Barbara; Rodella, Luigi Fabrizio; Rezzani, Rita

    2014-01-01

    The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions. PMID:24719887

  5. Is cerebral vasomotor reactivity impaired in Parkinson disease?

    PubMed

    Hanby, Martha F; Panerai, Ronney B; Robinson, Thompson G; Haunton, Victoria J

    2017-04-01

    The ability of a blood vessel to change diameter in response to a change in carbon dioxide concentration is often referred to as vasomotor reactivity. This study aimed to determine whether vasomotor reactivity is impaired in patients with idiopathic Parkinson's Disease in comparison to healthy controls. Transcranial Doppler was used to measure cerebral blood flow velocity in the middle cerebral arteries at baseline and under hypocapnic conditions in 40 patients with idiopathic Parkinson's disease and 50 healthy controls. Vasomotor reactivity, assessed under hypocapnic conditions, is not impaired in patients with idiopathic Parkinson's Disease in comparison to healthy controls.

  6. [Efferent innervation of the arteries of human leptomeninx in arterial hypertension].

    PubMed

    Chertok, V M; Kotsiuba, A E; Babich, E V

    2009-01-01

    Structure of the efferent nerve plexuses (adrenergic, acetylcholinestherase- and cholinacetyltranspherase-positive, NO-dependent), was studied in the arteries of human leptomeninx with different diameters. Material was obtained from the corpses of the healthy people and of the patients with initial stages of arterial hypertension (AH). It was shown that the concentrations of cholinergic and adrenergic nerve fibers and varicosities in axon terminal part, innervating the arteries with the diameters ranging from 450 till 100 microm, were not significantly different. In these arteries, NO-ergic plexuses were also detected. In patients with AH, regardless the arterial diameters, the significant increase (up to 15-20%) of adrenergic nerve fiber and varicosity concentrations was found. The changes in cholinergic nerve fiber concentration were found to depend on the vessel diameter: the significant decrease of these parameter was observed only in arteries with the diameter of 100-200 microm. No significant changes in nerve plexus concentration was noticed in the arteries with greater or smaller diameter. In NO-ergic neural conductors, the enzyme activity decreased only in the large arteries, and remained almost unchanged in the small vascular branches. The changes in the vasomotor innervation described in AH, are interpreted as a vasomotor innervation dysfunction of the leptomeninx arteries that may result in the hemodynamic disturbances.

  7. Endothelial Arginine Resynthesis Contributes to the Maintenance of Vasomotor Function in Male Diabetic Mice

    PubMed Central

    Chennupati, Ramesh; Meens, Merlijn J. P. M. T.; Marion, Vincent; Janssen, Ben J.; Lamers, Wouter H.; De Mey, Jo G. R.; Köhler, S. Eleonore

    2014-01-01

    Aim Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. Methods and Results Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/− = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively) in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO) were significantly reduced when compared to diabetic control mice. Conclusions Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes. PMID:25033204

  8. Spinal Cord Injury-Induced Dysautonomia via Plasticity in Paravertebral Sympathetic Postganglionic

    DTIC Science & Technology

    2016-10-01

    sympathetic chain of the guinea - pig . J Physiol 203:173-198. Bratton B, Davies P, Janig W, McAllen R (2010) Ganglionic transmission in a vasomotor...sympathetic neurons. Journal of neurophysiology 82:2747-2764. Lichtman JW, Purves D, Yip JW (1980) Innervation of sympathetic neurones in the guinea - pig ...10 6. PRODUCTS

  9. Hypercalcemia: an unusual etiology of a common menopausal symptom.

    PubMed

    Roark, Abrea; Wilson, Brian P; Eyster, Kathleen M; Timmerman, Gary L; Allard, Brandon L; Hansen, Keith A

    2011-06-01

    To describe atypical vasomotor symptoms that were secondary to primary hyperparathyroidism. Case report. University medical center. A 57-year-old, postmenopausal woman with recalcitrant hot flushes. Parathyroid adenomectomy. Vasomotor symptom relief. Postoperative relief of atypical vasomotor symptoms. A patient 17 years postmenopause presented with atypical vasomotor symptoms that did not respond to hormone therapy and proved to be due to hypercalcemia secondary to primary hyperparathyroidism. An atypical manifestation of a common condition or an uncharacteristic therapeutic response should alert health care providers to the possibility of a different diagnosis. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Nitric Oxide Contributes to Vasomotor Tone in Hypertensive African Americans Treated With Nebivolol and Metoprolol.

    PubMed

    Neuman, Robert B; Hayek, Salim S; Poole, Joseph C; Rahman, Ayaz; Menon, Vivek; Kavtaradze, Nino; Polhemus, David; Veledar, Emir; Lefer, David J; Quyyumi, Arshed A

    2016-03-01

    Endothelial dysfunction is more prevalent in African Americans (AAs) compared with whites. The authors hypothesized that nebivolol, a selective β1 -antagonist that stimulates nitric oxide (NO), will improve endothelial function in AAs with hypertension when compared with metoprolol. In a double-blind, randomized, crossover study, 19 AA hypertensive patients were randomized to a 12-week treatment period with either nebivolol 10 mg or metoprolol succinate 100 mg daily. Forearm blood flow (FBF) was measured using plethysmography at rest and after intra-arterial infusion of acetylcholine and sodium nitroprusside to estimate endothelium-dependent and independent vasodilation, respectively. Physiologic vasodilation was assessed during hand-grip exercise. Measurements were repeated after NO blockade with L-N(G) -monomethylarginine (L-NMMA) and after inhibition of endothelium-derived hyperpolarizing factor (EDHF) with tetraethylammonium chloride (TEA). NO blockade with L-NMMA produced a trend toward greater vasoconstriction during nebivolol compared with metoprolol treatment (21% vs 12% reduction in FBF, P=.06, respectively). This difference was more significant after combined administration of L-NMMA and TEA (P<.001). Similarly, there was a contribution of NO to exercise-induced vasodilation during nebivolol but not during metoprolol treatment. There were significantly greater contributions of NO and EDHF to resting vasodilator tone and of NO to exercise-induced vasodilation with nebivolol compared with metoprolol in AAs with hypertension. © 2015 Wiley Periodicals, Inc.

  11. Nitric Oxide Contributes to Vasomotor Tone in Hypertensive African Americans Treated With Nebivolol and Metoprolol

    PubMed Central

    Neuman, Robert B.; Hayek, Salim; Poole, Joseph C.; Rahman, Ayaz; Menon, Vivek; Kavtaradze, Nino; Polhemus, David; Veledar, Emir; Lefer, David J.; Quyyumi, Arshed A.

    2015-01-01

    Endothelial dysfunction is more prevalent in African Americans (AA) compared to whites. We hypothesized that nebivolol, a selective β-1 antagonist that stimulates NO, will improve endothelial function in AA with hypertension when compared to metoprolol. In a double-blind, randomized, cross-over study, 19 AA hypertensive subjects were randomized to a 12-week treatment period with either nebivolol 10mg or metoprolol succinate 100mg daily. Forearm blood flow (FBF) was measured using plethysmography at rest and after intra-arterial infusion of acetylcholine, and sodium nitroprusside to estimate endothelium-dependent and independent vasodilation, respectively. Physiologic vasodilation was assessed during hand-grip exercise. Measurements were repeated after NO blockade with L-NG-monomethylarginine (L-NMMA), and after inhibition of endothelium-derived hyperpolarizing factor (EDHF) with tetraethylammonium chloride (TEA). NO blockade with L-NMMA produced a trend toward greater vasoconstriction during nebivolol compared to metoprolol treatment period (21% vs 12% reduction in FBF, p=0.06, respectively). This difference was more significant after combined administration of L-NMMA and TEA (p<0.001). Similarly, there was a contribution of NO to exercise-induced vasodilation during nebivolol but not during metoprolol treatment. There were significantly greater contributions of NO and EDHF to resting vasodilator tone and of NO to exercise-induced vasodilation with nebivolol compared to metoprolol in AA with hypertension. PMID:26285691

  12. High Salt Intake Increases Blood Pressure in Normal Rats: Putative Role of 20-HETE and No Evidence on Changes in Renal Vascular Reactivity

    PubMed Central

    Walkowska, A.; Kuczeriszka, M.; Sadowski, J.; Olszyński, K.H.; Dobrowolski, L.; Červenka, L.; Hammock, B.D.; Kompanowska-Jezierska, E.

    2015-01-01

    Background/Aims High salt (HS) intake may elevate blood pressure (BP), also in animals without genetic salt sensitivity. The development of salt-dependent hypertension could be mediated by endogenous vasoactive agents; here we examined the role of vasodilator epoxyeicosatrienoic acids (EETs) and vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE). Methods In conscious Wistar rats on HS diet systolic BP (SBP) was examined after chronic elevation of EETs using 4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB), a blocker of soluble epoxide hydrolase, or after inhibition of 20-HETE with 1-aminobenzotriazole (ABT). Thereafter, in acute experiments the responses of renal artery blood flow (Transonic probe) and renal regional perfusion (laser-Doppler) to intrarenal acetylcholine (ACh) or norepinephrine were determined. Results HS diet increased urinary 20-HETE excretion. The SBP increase was not reduced by c-AUCB but prevented by ABT until day 5 of HS exposure. Renal vasomotor responses to ACh or norepinephrine were similar on standard and HS diet. ABT but not c-AUCB abolished the responses to ACh. Conclusions 20-HETE seems to mediate the early-phase HS diet-induced BP increase while EETs are not engaged in the process. Since HS exposure did not alter renal vasodilator responses to Ach, endothelial dysfunction is not a critical factor in the mechanism of salt-induced blood pressure elevation. PMID:26067851

  13. Endothelial safety of radiological contrast media: why being concerned.

    PubMed

    Scoditti, Egeria; Massaro, Marika; Montinari, Maria Rosa

    2013-01-01

    Iodinated radiocontrast media have been the most widely used pharmaceuticals for intravascular administration in diagnostic and interventional angiographic procedures. Although they are regarded as relatively safe drugs and vascular biocompatibility of contrast media has been progressively improved, severe adverse reactions may occur, among which acute nephropathy is one of the most clinically significant complications after intravascular administration of contrast media and a powerful predictor of poor early and long-term outcomes. Since radiocontrast media are given through the arterial or the venous circulation in vascular procedures, morphological and functional changes of the microvascular and macrovascular endothelial cells substantially contribute to the pathogenesis of organ-specific and systemic adverse reactions of contrast media. Endothelial toxicity of contrast media seems to be the result of both direct proapoptotic effects and morphological derangements, as well as endothelial dysfunction and induction of inflammation, oxidative stress, thrombosis, and altered vasomotor balance, with predominant vasoconstrictive response in atherosclerotic coronary arteries and kidney microcirculation. Further understanding of pathogenetic mechanisms underlying contrast media-induced adverse reactions in cellular targets, including endothelial cells, will hopefully lead to the development of novel preventive strategies appropriately curbing the pathogenesis of contrast media vasotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension

    PubMed Central

    Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong

    2014-01-01

    New Findings What is the central question of this study? The relationship between changes in cerebral blood flow and arterial carbon dioxide tension is used to assess cerebrovascular function. Hypercapnia is generally evoked by two methods, i.e. steady-state and transient increases in carbon dioxide tension. In some cases, the hypercapnia is immediately preceded by a period of hypocapnia. It is unknown whether the cerebrovascular response differs between these methods and whether a period of hypocapnia blunts the subsequent response to hypercapnia. What is the main finding and its importance? The cerebrovascular response is similar between steady-state and transient hypercapnia. However, hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing-induced hypercapnia. Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension () is assessed during steady-state or transient changes in . This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in ; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension () middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus ) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in . The linear regression for CBFV versus (P = 0.65) and CVCI versus (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second hypothesis, the same measurements were made during the following two conditions (randomized): (i) immediately following a brief period of hypocapnia induced by hyperventilation for 1 min followed by rebreathing; and (ii) during rebreathing only. The slope of the linear regression for CBFV versus (P < 0.01) and CVCI versus (P < 0.01) was reduced during hyperventilation plus rebreathing relative to rebreathing only. These results indicate that cerebral vasomotor reactivity to changes in is similar regardless of the employed methodology to induce changes in and that hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing-induced hypercapnia. PMID:25172891

  15. An Intervention to Control Vasomotor Symptoms for Advanced PC Patients on Hormone Therapy

    DTIC Science & Technology

    2014-08-01

    Symptoms for Advanced PC Patients on Hormone Therapy PRINCIPAL INVESTIGATOR: Michael A. Diefenbach, Ph.D. CONTRACTING ORGANIZATION...Control Vasomotor Symptoms for Advanced PC Patients on Hormone Therapy 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0604 5c...NOTES 14. ABSTRACT Vasomotor Symptom (Hot Flashes) is a common side-effect of hormone therapy for prostate cancer survivors who experience a rising

  16. Pooled Analysis of Six Pharmacologic and Nonpharmacologic Interventions for Vasomotor Symptoms.

    PubMed

    Guthrie, Katherine A; LaCroix, Andrea Z; Ensrud, Kristine E; Joffe, Hadine; Newton, Katherine M; Reed, Susan D; Caan, Bette; Carpenter, Janet S; Cohen, Lee S; Freeman, Ellen W; Larson, Joseph C; Manson, JoAnn E; Rexrode, Kathy; Skaar, Todd C; Sternfeld, Barbara; Anderson, Garnet L

    2015-08-01

    To describe the effects of six interventions for menopausal vasomotor symptoms relative to control in a pooled analysis, facilitating translation of the results for clinicians and symptomatic women. The Menopause Strategies: Finding Lasting Answers for Symptoms and Health network tested these interventions in three randomized clinical trials. An analysis of pooled individual-level data from three randomized clinical trials is presented. Participants were 899 perimenopausal and postmenopausal women with at least 14 bothersome vasomotor symptoms per week. Interventions included 10-20 mg escitalopram per day, nonaerobic yoga, aerobic exercise, 1.8 g per day omega-3 fatty acid supplementation, 0.5 mg low-dose oral 17-beta-estradiol (E2) per day, and 75 mg low-dose venlafaxine XR per day. The main outcome measures were changes from baseline in mean daily vasomotor symptom frequency and bother during 8-12 weeks of treatment. Linear regression models estimated differences in outcomes between each intervention and corresponding control group adjusted for baseline characteristics. Models included trial-specific intercepts, effects of the baseline outcome measure, and time. The 8-week reduction in vasomotor symptom frequency from baseline relative to placebo was similar for escitalopram at -1.4 per day (95% confidence interval [CI] -2.7 to -0.2), low-dose E2 at -2.4 (95% CI -3.4 to -1.3), and venlafaxine at -1.8 (95% CI -2.8 to -0.8); vasomotor symptom bother reduction was minimal and did not vary across these three pharmacologic interventions (mean -0.2 to -0.3 relative to placebo). No effects on vasomotor symptom frequency or bother were seen with aerobic exercise, yoga, or omega-3 supplements. These analyses suggest that escitalopram, low-dose E2, and venlafaxine provide comparable, modest reductions in vasomotor symptom frequency and bother among women with moderate hot flushes. ClinicalTrials.gov, www.clinicaltrials.gov, NCT00894543 (MsFLASH 01), NCT01178892 (MsFLASH 02), and NCT01418209 (MsFLASH 03).

  17. Methods for the design of vasomotor symptom trials: the menopausal strategies: finding lasting answers to symptoms and health network.

    PubMed

    Newton, Katherine M; Carpenter, Janet S; Guthrie, Katherine A; Anderson, Garnet L; Caan, Bette; Cohen, Lee S; Ensrud, Kristine E; Freeman, Ellen W; Joffe, Hadine; Sternfeld, Barbara; Reed, Susan D; Sherman, Sheryl; Sammel, Mary D; Kroenke, Kurt; Larson, Joseph C; Lacroix, Andrea Z

    2014-01-01

    This report describes the Menopausal Strategies: Finding Lasting Answers to Symptoms and Health network and methodological issues addressed in designing and implementing vasomotor symptom trials. Established in response to a National Institutes of Health request for applications, the network was charged with conducting rapid throughput randomized trials of novel and understudied available interventions postulated to alleviate vasomotor and other menopausal symptoms. Included are descriptions of and rationale for criteria used for interventions and study selection, common eligibility and exclusion criteria, common primary and secondary outcome measures, consideration of placebo response, establishment of a biorepository, trial duration, screening and recruitment, statistical methods, and quality control. All trial designs are presented, including the following: (1) a randomized, double-blind, placebo-controlled clinical trial designed to evaluate the effectiveness of the selective serotonin reuptake inhibitor escitalopram in reducing vasomotor symptom frequency and severity; (2) a two-by-three factorial design trial to test three different interventions (yoga, exercise, and ω-3 supplementation) for the improvement of vasomotor symptom frequency and bother; and (3) a three-arm comparative efficacy trial of the serotonin-norepinephrine reuptake inhibitor venlafaxine and low-dose oral estradiol versus placebo for reducing vasomotor symptom frequency. The network's structure and governance are also discussed. The methods used in and the lessons learned from the Menopausal Strategies: Finding Lasting Answers to Symptoms and Health trials are shared to encourage and support the conduct of similar trials and to encourage collaborations with other researchers.

  18. Influences of natural menopause on health complaints: a prospective study of healthy Norwegian women.

    PubMed

    Holte, A

    1992-01-01

    As a continuation of a cross-sectional study in 1981 involving a representative sample of 1886 women between 45 and 55 years of age, 200 pre-menopausal subjects were selected randomly to take part in a follow-up study. Eighty-seven single measures covering 26 areas of health complaints which have been associated with the menopause in medical textbooks were investigated. A tentative method for relating health complaints at several time points to menopausal status is proposed. A significant number of women reported an increase in vasomotor complaints, vaginal dryness, heart palpitations and social dysfunction following the menopause, although many reported no change or even a reduction in these complaints. On the other hand, a decrease in headache and breast tenderness was noted. No significant differences were observed between the numbers of women reporting an increase or a decrease respectively on any of the other 69 measures (20 complaints), which included anxiety, depression and irritability. Further analyses indicated that the increase in social dysfunction was caused by hot flushes and sweating. This paper raises a number of issues regarding the methodology of longitudinal studies.

  19. Carcinoid heart disease.

    PubMed

    Hassan, Saamir A; Banchs, Jose; Iliescu, Cezar; Dasari, Arvind; Lopez-Mattei, Juan; Yusuf, Syed Wamique

    2017-10-01

    Rare neuroendocrine tumours (NETs) that most commonly arise in the gastrointestinal tract can lead to carcinoid syndrome and carcinoid heart disease. Patients with carcinoid syndrome present with vasomotor changes, hypermotility of the gastrointestinal system, hypotension and bronchospasm. Medical therapy for carcinoid syndrome, typically with somatostatin analogues, can help control symptoms, inhibit tumour progression and prolong survival. Carcinoid heart disease occurs in more than 50% of these patients and is the initial presentation of carcinoid syndrome in up to 20% of patients. Carcinoid heart disease has characteristic findings of plaque-like deposits composed of smooth muscle cells, myofibroblasts, extracellular matrix and an overlying endothelial layer which can lead to valve dysfunction. Valvular dysfunction can lead to oedema, ascites and right-sided heart failure. Medical therapy of carcinoid heart disease is limited to symptom control and palliation. Valve surgery for carcinoid heart disease should be considered for symptomatic patients with controlled metastatic carcinoid syndrome. A multidisciplinary approach is needed to guide optimal management. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Dissociation of metabolic and hemodynamic levodopa responses in the 6-hydroxydopamine rat model.

    PubMed

    Lerner, Renata P; Bimpisidis, Zisis; Agorastos, Stergiani; Scherrer, Sandra; Dewey, Stephen L; Cenci, M Angela; Eidelberg, David

    2016-12-01

    Dissociation of vasomotor and metabolic responses to levodopa has been observed in human subjects with Parkinson's disease (PD) studied with PET and in autoradiograms from 6-hydroxydopamine (6-OHDA) rat. In both species, acute levodopa administration was associated with increases in basal ganglia cerebral blood flow (CBF) with concurrent reductions in cerebral metabolic rate (CMR) for glucose in the same brain regions. In this study, we used a novel dual-tracer microPET technique to measure CBF and CMR levodopa responses in the same animal. Rats with unilateral 6-OHDA or sham lesion underwent sequential 15 O-water (H 2 15 O) and 18 F-fluorodeoxyglucose (FDG) microPET to map CBF and CMR following the injection of levodopa or saline. A subset of animals was separately scanned under ketamine/xylazine and isoflurane to compare the effects of these anesthetics. Regardless of anesthetic agent, 6-OHDA animals exhibited significant dissociation of vasomotor (ΔCBF) and metabolic (ΔCMR) responses to levodopa, with stereotyped increases in CBF and reductions in CMR in the basal ganglia ipsilateral to the dopamine lesion. No significant changes were seen in sham-lesioned animals. These data faithfully recapitulate analogous dissociation effects observed previously in human PD subjects scanned sequentially during levodopa infusion. This approach may have utility in the assessment of new drugs targeting the exaggerated regional vasomotor responses seen in human PD and in experimental models of levodopa-induced dyskinesia. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Enhanced pain and autonomic responses to ambiguous visual stimuli in chronic Complex Regional Pain Syndrome (CRPS) type I.

    PubMed

    Cohen, H E; Hall, J; Harris, N; McCabe, C S; Blake, D R; Jänig, W

    2012-02-01

    Cortical reorganisation of sensory, motor and autonomic systems can lead to dysfunctional central integrative control. This may contribute to signs and symptoms of Complex Regional Pain Syndrome (CRPS), including pain. It has been hypothesised that central neuroplastic changes may cause afferent sensory feedback conflicts and produce pain. We investigated autonomic responses produced by ambiguous visual stimuli (AVS) in CRPS, and their relationship to pain. Thirty CRPS patients with upper limb involvement and 30 age and sex matched healthy controls had sympathetic autonomic function assessed using laser Doppler flowmetry of the finger pulp at baseline and while viewing a control figure or AVS. Compared to controls, there were diminished vasoconstrictor responses and a significant difference in the ratio of response between affected and unaffected limbs (symmetry ratio) to a deep breath and viewing AVS. While viewing visual stimuli, 33.5% of patients had asymmetric vasomotor responses and all healthy controls had a homologous symmetric pattern of response. Nineteen (61%) CRPS patients had enhanced pain within seconds of viewing the AVS. All the asymmetric vasomotor responses were in this group, and were not predictable from baseline autonomic function. Ten patients had accompanying dystonic reactions in their affected limb: 50% were in the asymmetric sub-group. In conclusion, there is a group of CRPS patients that demonstrate abnormal pain networks interacting with central somatomotor and autonomic integrational pathways. © 2011 European Federation of International Association for the Study of Pain Chapters.

  2. Breast feeding increases vasoconstriction induced by electrical field stimulation in rat mesenteric artery. Role of neuronal nitric oxide and ATP.

    PubMed

    Blanco-Rivero, Javier; Sastre, Esther; Caracuel, Laura; Granado, Miriam; Balfagón, Gloria

    2013-01-01

    The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O(2)(.-)), NA and ATP releases were also determined. EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O(2)(.-) production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats.

  3. Breast Feeding Increases Vasoconstriction Induced by Electrical Field Stimulation in Rat Mesenteric Artery. Role of Neuronal Nitric Oxide and ATP

    PubMed Central

    Caracuel, Laura; Granado, Miriam; Balfagón, Gloria

    2013-01-01

    Objectives The aim of this study was to investigate in rat mesenteric artery whether breast feeding (BF) affects the vasomotor response induced by electrical field stimulation (EFS), participation by different innervations in the EFS-induced response and the mechanism/s underlying these possible modifications. Methods Experiments were performed in female Sprague-Dawley rats (3 months old), divided into three groups: Control (in oestrous phase), mothers after 21 days of BF, and mothers that had recovered their oestral cycle (After BF, in oestrous phase). Vasomotor response to EFS, noradrenaline (NA) and nitric oxide (NO) donor DEA-NO were studied. Neuronal NO synthase (nNOS) and phosphorylated nNOS (P-nNOS) protein expression were analysed and NO, superoxide anion (O2 .–), NA and ATP releases were also determined. Results EFS-induced contraction was higher in the BF group, and was recovered after BF. 1 µmol/L phentolamine decreased the response to EFS similarly in control and BF rats. NA vasoconstriction and release were similar in both experimental groups. ATP release was higher in segments from BF rats. 0.1 mmol/L L-NAME increased the response to EFS in both control and BF rats, but more so in control animals. BF decreased NO release and did not modify O2 .– production. Vasodilator response to DEA-NO was similar in both groups, while nNOS and P-nNOS expressions were decreased in segments from BF animals. Conclusion Breast feeding increases EFS-induced contraction in mesenteric arteries, mainly through the decrease of neuronal NO release mediated by decreased nNOS and P-nNOS expression. Sympathetic function is increased through the increased ATP release in BF rats. PMID:23342008

  4. Local Control of Blood Flow

    ERIC Educational Resources Information Center

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  5. Nonpharmacologic, nonherbal management of menopause-associated vasomotor symptoms: an umbrella systematic review (protocol).

    PubMed

    Goldstein, Karen M; McDuffie, Jennifer R; Shepherd-Banigan, Megan; Befus, Deanna; Coeytaux, Remy R; Van Noord, Megan G; Goode, Adam P; Masilamani, Varsha; Adam, Soheir; Nagi, Avishek; Williams, John W

    2016-04-07

    Vasomotor symptoms such as hot flashes and night sweats are a common concern of perimenopausal and postmenopausal women and are associated with a decreased quality of life. These symptoms can be effectively managed with hormone therapy, but safety concerns limit its use. Thus, understanding the effectiveness of nonpharmacologic therapies such as acupuncture or yoga is critical to managing these common symptoms in older women. Our review seeks to address the following question: In women with menopause-associated vasomotor symptoms, what are the effects on health-related quality of life, vasomotor symptoms, and adverse events of the following nonpharmacologic, nonherbal interventions as compared with any inactive control or active comparator: (a) acupuncture, (b) yoga, tai chi, and qigong, (c) structured exercise, and (d) meditation, mindfulness-based practices, and relaxation? We describe a protocol for an umbrella review approach, supplemented by evaluating randomized controlled trials (RCTs) published after the most recent good-quality systematic review for each of the eligible interventions. Specific interventions were chosen based on current literature and with input from a technical expert panel and organizational stakeholders. We will conduct a thorough literature search and perform a quality assessment of potentially included systematic reviews and RCTs. Our umbrella review, supplemented by an additional search for eligible RCTs, aims to synthesize existing evidence on the use of nonpharmacologic, nonherbal interventions to manage bothersome vasomotor symptoms in perimenopausal and postmenopausal women. PROSPERO CRD42016029335.

  6. Skin vasomotor hemiparesis followed by overactivity: characteristic thermography findings in a patient with Horner syndrome due to spinal cord infarction.

    PubMed

    Kobayashi, Makoto

    2016-04-01

    We present a 21-year-old female with Horner syndrome due to spinal cord infarction. In this patient, infrared thermography revealed a hemibody skin temperature increase followed by excessive focal decreases, indicating skin vasomotor hemiparesis and overactivity.

  7. Alterations in perivascular innervation function in mesenteric arteries from offspring of diabetic rats

    PubMed Central

    de Queiroz, D B; Sastre, E; Caracuel, L; Callejo, M; Xavier, F E; Blanco-Rivero, J; Balfagón, G

    2015-01-01

    Background and Purpose We have reported that exposure to a diabetic intrauterine environment during pregnancy increases blood pressure in adult offspring, but the mechanisms involved are not completely understood. This study was designed to analyse a possible role of perivascular sympathetic and nitrergic innervation in the superior mesenteric artery (SMA) in this effect. Experimental Approach Diabetes was induced in pregnant Wistar rats by a single injection of streptozotocin. Endothelium-denuded vascular rings from the offspring of control (O-CR) and diabetic rats (O-DR) were used. Vasomotor responses to electrical field stimulation (EFS), NA and the NO donor DEA-NO were studied. The expressions of neuronal NOS (nNOS) and phospho-nNOS (P-nNOS) and release of NA, ATP and NO were determined. Sympathetic and nitrergic nerve densities were analysed by immunofluorescence. Key Results Blood pressure was higher in O-DR animals. EFS-induced vasoconstriction was greater in O-DR animals. This response was decreased by phentolamine more in O-DR animals than their controls. L-NAME increased EFS-induced vasoconstriction more strongly in O-DR than in O-CR segments. Vasomotor responses to NA or DEA-NO were not modified. NA, ATP and NO release was increased in segments from O-DR. nNOS expression was not modified, whereas P-nNOS expression was increased in O-DR. Sympathetic and nitrergic nerve densities were similar in both experimental groups. Conclusions and Implications The activity of sympathetic and nitrergic innervation is increased in SMA from O-DR animals. The net effect is an increase in EFS-induced contractions in these animals. These effects may contribute to the increased blood pressure observed in the offspring of diabetic rats. PMID:26177571

  8. Mental Stress-Induced-Myocardial Ischemia in Young Patients With Recent Myocardial Infarction: Sex Differences and Mechanisms.

    PubMed

    Vaccarino, Viola; Sullivan, Samaah; Hammadah, Muhammad; Wilmot, Kobina; Al Mheid, Ibhar; Ramadan, Ronnie; Elon, Lisa; Pimple, Pratik M; Garcia, Ernest V; Nye, Jonathon; Shah, Amit J; Alkhoder, Ayman; Levantsevych, Oleksiy; Gay, Hawkins; Obideen, Malik; Huang, Minxuan; Lewis, Tené T; Bremner, J Douglas; Quyyumi, Arshed A; Raggi, Paolo

    2018-02-20

    Mental stress-induced myocardial ischemia (MSIMI) is frequent in patients with coronary artery disease and is associated with worse prognosis. Young women with a previous myocardial infarction (MI), a group with unexplained higher mortality than men of comparable age, have shown elevated rates of MSIMI, but the mechanisms are unknown. We studied 306 patients (150 women and 156 men) ≤61 years of age who were hospitalized for MI in the previous 8 months and 112 community controls (58 women and 54 men) frequency matched for sex and age to the patients with MI. Endothelium-dependent flow-mediated dilation and microvascular reactivity (reactive hyperemia index) were measured at rest and 30 minutes after mental stress. The digital vasomotor response to mental stress was assessed using peripheral arterial tonometry. Patients received 99m Tc-sestamibi myocardial perfusion imaging at rest, with mental (speech task) and conventional (exercise/pharmacological) stress. The mean age of the sample was 50 years (range, 22-61). In the MI group but not among controls, women had a more adverse socioeconomic and psychosocial profile than men. There were no sex differences in cardiovascular risk factors, and among patients with MI, clinical severity tended to be lower in women. Women in both groups showed a higher peripheral arterial tonometry ratio during mental stress but a lower reactive hyperemia index after mental stress, indicating enhanced microvascular dysfunction after stress. There were no sex differences in flow-mediated dilation changes with mental stress. The rate of MSIMI was twice as high in women as in men (22% versus 11%, P =0.009), and ischemia with conventional stress was similarly elevated (31% versus 16%, P =0.002). Psychosocial and clinical risk factors did not explain sex differences in inducible ischemia. Although vascular responses to mental stress (peripheral arterial tonometry ratio and reactive hyperemia index) also did not explain sex differences in MSIMI, they were predictive of MSIMI in women only. Young women after MI have a 2-fold likelihood of developing MSIMI compared with men and a similar increase in conventional stress ischemia. Microvascular dysfunction and peripheral vasoconstriction with mental stress are implicated in MSIMI among women but not among men, perhaps reflecting women's proclivity toward ischemia because of microcirculatory abnormalities. © 2018 American Heart Association, Inc.

  9. Balance of autonomic nervous system in children having signs of endothelial dysfunction, that were born and are domiciled in contaminated territories.

    PubMed

    Kondrashova, V G; Kolpakov, I E; Vdovenko, V Yu; Leonovych, O S; Lytvynets, O M; Stepanova, E I

    2014-09-01

    Objective. The study examined the features of functional state of the autonomic nervous system in children having endothelial dysfunction and permanently residing in contaminated areas. Materials and methods. Clinical and instrumental examination of 101 children aged 7-18 years that were born and are domiciled in contaminated territories, including 37 persons with signs of endothelial dysfunction (subgroup IA) and 64 ones with no signs of endothelial dysfunction (IB subgroup) was conducted. The control group being comparable to the subgroups IA and IB by age, gender and clinical examination results included 37 children neither been domiciled in contaminated areas nor were belonging to the contingent of Chornobyl accident survivors. There were 20 apparently healthy children also examined. Results. Due to peculiarities of physiological pathways providing adaptive responses the children having signs of endothelial dysfunction are characterized by a more pronounced dysregulation of autonomous nervous system both in a resting state and under a functional load simulation, and also by a high strain of adaptation pathways. The lack of autonomous support of cardiovascular system is caused by inadequate adaptive responses of both central regulatory bodies (hypothalamus, vasomotor center) and peripheral receptors. Mainly the failure of segmental autonomous (parasympathetic) structures was revealed. The mode of their response to stress in this case corresponds to that in healthy individuals but at a lower functional level. There is a reduced aerobic capacity of the organism by the Robinson index, contributing to low adaptive range to non-specific stress in children being domiciled on contaminated territories including children having the endothelial dysfunction. Conclusions. Endothelial dysfunction was associated with more pronounced manifestations of autonomic dysregulation and reduced aerobic capacity of the organism being the risk factors of development of a range of somatic diseases requiring the development of prevention measures in children permanently residing in contaminated areas. autonomous nervous system balance, endothelial dysfunction, children, Chornobyl accident. V. G. Kondrashova, I. E. Kolpakov, V. Yu. Vdovenko, O. S. Leonovych, O. M. Lytvynets, E. I. Stepanova.

  10. Hypoxia-inducible factor-1α in vascular smooth muscle regulates blood pressure homeostasis through a peroxisome proliferator-activated receptor-γ-angiotensin II receptor type 1 axis.

    PubMed

    Huang, Yan; Di Lorenzo, Annarita; Jiang, Weidong; Cantalupo, Anna; Sessa, William C; Giordano, Frank J

    2013-09-01

    Hypertension is a major worldwide health issue for which only a small proportion of cases have a known mechanistic pathogenesis. Of the defined causes, none have been directly linked to heightened vasoconstrictor responsiveness, despite the fact that vasomotor tone in resistance vessels is a fundamental determinant of blood pressure. Here, we reported a previously undescribed role for smooth muscle hypoxia-inducible factor-1α (HIF-1α) in controlling blood pressure homeostasis. The lack of HIF-1α in smooth muscle caused hypertension in vivo and hyperresponsiveness of resistance vessels to angiotensin II stimulation ex vivo. These data correlated with an increased expression of angiotensin II receptor type I in the vasculature. Specifically, we show that HIF-1α, through peroxisome proliferator-activated receptor-γ, reciprocally defined angiotensin II receptor type I levels in the vessel wall. Indeed, pharmacological blockade of angiotensin II receptor type I by telmisartan abolished the hypertensive phenotype in smooth muscle cell-HIF-1α-KO mice. These data revealed a determinant role of a smooth muscle HIF-1α/peroxisome proliferator-activated receptor-γ/angiotensin II receptor type I axis in controlling vasomotor responsiveness and highlighted an important pathway, the alterations of which may be critical in a variety of hypertensive-based clinical settings.

  11. Vasomotor Symptoms Monitoring with a Commercial Activity Tracking Watch

    DTIC Science & Technology

    2017-12-31

    volunteers wearing physiological monitors. The study protocol and written consent form were...available, but similar devices with EDA/GSR sensors are available. Vasomotor symptoms started disrupting the sleep of a woman volunteer on...November 23, 2015, calling attention to their occurrence. After November 23, 2015, the volunteer started personally logging the occurrence of

  12. EMAS position statement: Non-hormonal management of menopausal vasomotor symptoms.

    PubMed

    Mintziori, Gesthimani; Lambrinoudaki, Irene; Goulis, Dimitrios G; Ceausu, Iuliana; Depypere, Herman; Erel, C Tamer; Pérez-López, Faustino R; Schenck-Gustafsson, Karin; Simoncini, Tommaso; Tremollieres, Florence; Rees, Margaret

    2015-07-01

    To review non-hormonal therapy options for menopausal vasomotor symptoms. The current EMAS position paper aims to provide to provide guidance for managing peri- and postmenopausal women who cannot or do not wish to take menopausal hormone therapy (MHT). Literature review and consensus of expert opinion. Non-hormonal management of menopausal symptoms includes lifestyle modifications, diet and food supplements, non-hormonal medications and application of behavioral and alternative medicine therapies. There is insufficient or conflicting evidence to suggest that exercise, supplements or a diet rich in phytoestrogens are effective for vasomotor menopausal symptoms. Selective serotonin-reuptake inhibitors (SSRIs), serotonin norepinephrine-reuptake inhibitors (SNRIs) and gabapentin could be proposed as alternatives to MHT for menopausal symptoms, mainly hot flushes. Behavioral therapies and alternative medicine interventions have been tried, but the available evidence is still limited. A number of interventions for non-hormonal management of menopausal vasomotor symptoms are now available. For women who cannot or do not wish to take estrogens, non-hormonal management is now a realistic option. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Contribution of KV1.5 Channel to H2O2-Induced Human Arteriolar Dilation and its Modulation by Coronary Artery Disease

    PubMed Central

    Nishijima, Yoshinori; Cao, Sheng; Chabowski, Dawid S.; Korishettar, Ankush; Ge, Alyce; Zheng, Xiaodong; Sparapani, Rodney; Gutterman, David D.; Zhang, David X.

    2016-01-01

    Rationale Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating BKCa channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) as compared to those with CAD remain unknown. Objective We hypothesize that H2O2-elicited dilation involves different K+ channels in non-CAD versus CAD, resulting in an altered capacity for vasodilation during disease. Methods and Results H2O2 induced endothelium-independent vasodilation in non-CAD adipose arterioles, which was reduced by paxilline, a BKCa channel blocker, and by 4-AP, a KV channel blocker. Assays of mRNA transcripts, protein expression and subcellular localization revealed that KV1.5 is the major KV1 channel expressed in vascular smooth muscle cells (VSMCs) and is abundantly localized on the plasma membrane. The selective KV1.5 blocker DPO-1 and the KV1.3/1.5 blocker Psora-4 reduced H2O2-elicited dilation to a similar extent as 4-AP, but the selective KV1.3 blocker PAP-1 was without effect. In arterioles from CAD subjects, H2O2-induced dilation was significantly reduced and this dilation was inhibited by paxilline but not by 4-AP, DPO-1 or Psora-4. KV1.5 cell membrane localization and DPO-1-sensitive K+ currents were markedly reduced in isolated VSMCs from CAD arterioles, although mRNA or total cellular protein expression were largely unchanged. Conclusions In human arterioles, H2O2-induced dilation is impaired in CAD, which is associated with a transition from a combined BKCa- and KV (KV1.5)-mediated vasodilation toward a BKCa-predominant mechanism of dilation. Loss of KV1.5 vasomotor function may play an important role in microvascular dysfunction in CAD or other vascular diseases. PMID:27872049

  14. Mind-body interventions for vasomotor symptoms in healthy menopausal women and breast cancer survivors. A systematic review.

    PubMed

    Stefanopoulou, Evgenia; Grunfeld, Elizabeth Alice

    2017-09-01

    Mind-body therapies are commonly recommended to treat vasomotor symptoms, such as hot flushes and night sweats (HFNS). The purpose of this systematic review was to evaluate the available evidence to date for the efficacy of different mind-body therapies to alleviate HFNS in healthy menopausal women and breast cancer survivors. Randomized controlled trials (RCTs) were identified using seven electronic search engines, direct searches of specific journals and backwards searches through reference lists of related publications. Outcome measures included HFNS frequency and/or severity or self-reported problem rating at post-treatment. The methodological quality of all studies was systematically assessed using predefined criteria. Twenty-six RCTs met the inclusion criteria. Interventions included yoga (n = 5), hypnosis (n = 3), mindfulness (n = 2), relaxation (n = 7), paced breathing (n = 4), reflexology (n = 1) and cognitive behavioural therapy (CBT) (n = 4). Findings were consistent for the effectiveness of CBT and relaxation therapies for alleviating troublesome vasomotor symptoms. For the remaining interventions, although some trials indicated beneficial effects (within groups) at post-treatment and/or follow up, between group findings were mixed and overall, methodological differences across studies failed to provide convincing supporting evidence. Collectively, findings suggest that interventions that include breathing and relaxation techniques, as well as CBT, can be beneficial for alleviating vasomotor symptoms. Additional large, methodologically rigorous trials are needed to establish the efficacy of interventions on vasomotor symptoms, examine long-term outcomes and understand how they work.

  15. Defunct brain stem cardiovascular regulation underlies cardiovascular collapse associated with methamphetamine intoxication.

    PubMed

    Li, Faith C H; Yen, J C; Chan, Samuel H H; Chang, Alice Y W

    2012-02-07

    Intoxication from the psychostimulant methamphetamine (METH) because of cardiovascular collapse is a common cause of death within the abuse population. For obvious reasons, the heart has been taken as the primary target for this METH-induced toxicity. The demonstration that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse induced by the pesticide mevinphos implicates another potential underlying mechanism. The present study evaluated the hypothesis that METH effects acute cardiovascular depression by dampening the functional integrity of baroreflex via an action on brain stem nuclei that are associated with this homeostatic mechanism. The distribution of METH in brain and heart on intravenous administration in male Sprague-Dawley rats, and the resultant changes in arterial pressure (AP), heart rate (HR) and indices for baroreflex-mediated sympathetic vasomotor tone and cardiac responses were evaluated, alongside survival rate and time. Intravenous administration of METH (12 or 24 mg/kg) resulted in a time-dependent and dose-dependent distribution of the psychostimulant in brain and heart. The distribution of METH to neural substrates associated with brain stem cardiovascular regulation was significantly larger than brain targets for its neurological and psychological effects; the concentration of METH in cardiac tissues was the lowest among all tissues studied. In animals that succumbed to METH, the baroreflex-mediated sympathetic vasomotor tone and cardiac response were defunct, concomitant with cessation of AP and HR. On the other hand, although depressed, those two indices in animals that survived were maintained, alongside sustainable AP and HR. Linear regression analysis further revealed that the degree of dampening of brain stem cardiovascular regulation was positively and significantly correlated with the concentration of METH in key neural substrate involved in this homeostatic mechanism. We conclude that on intravenous administration, METH exhibits a preferential distribution to brain stem nuclei that are associated with cardiovascular regulation. We further found that the concentration of METH in those brain stem sites dictates the extent that baroreflex-mediated sympathetic vasomotor tone and cardiac responses are compromised, which in turn determines survival or fatality because of cardiovascular collapse.

  16. Defunct brain stem cardiovascular regulation underlies cardiovascular collapse associated with methamphetamine intoxication

    PubMed Central

    2012-01-01

    Background Intoxication from the psychostimulant methamphetamine (METH) because of cardiovascular collapse is a common cause of death within the abuse population. For obvious reasons, the heart has been taken as the primary target for this METH-induced toxicity. The demonstration that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse induced by the pesticide mevinphos implicates another potential underlying mechanism. The present study evaluated the hypothesis that METH effects acute cardiovascular depression by dampening the functional integrity of baroreflex via an action on brain stem nuclei that are associated with this homeostatic mechanism. Methods The distribution of METH in brain and heart on intravenous administration in male Sprague-Dawley rats, and the resultant changes in arterial pressure (AP), heart rate (HR) and indices for baroreflex-mediated sympathetic vasomotor tone and cardiac responses were evaluated, alongside survival rate and time. Results Intravenous administration of METH (12 or 24 mg/kg) resulted in a time-dependent and dose-dependent distribution of the psychostimulant in brain and heart. The distribution of METH to neural substrates associated with brain stem cardiovascular regulation was significantly larger than brain targets for its neurological and psychological effects; the concentration of METH in cardiac tissues was the lowest among all tissues studied. In animals that succumbed to METH, the baroreflex-mediated sympathetic vasomotor tone and cardiac response were defunct, concomitant with cessation of AP and HR. On the other hand, although depressed, those two indices in animals that survived were maintained, alongside sustainable AP and HR. Linear regression analysis further revealed that the degree of dampening of brain stem cardiovascular regulation was positively and significantly correlated with the concentration of METH in key neural substrate involved in this homeostatic mechanism. Conclusions We conclude that on intravenous administration, METH exhibits a preferential distribution to brain stem nuclei that are associated with cardiovascular regulation. We further found that the concentration of METH in those brain stem sites dictates the extent that baroreflex-mediated sympathetic vasomotor tone and cardiac responses are compromised, which in turn determines survival or fatality because of cardiovascular collapse. PMID:22313577

  17. Activation of PI3K/Akt signaling in rostral ventrolateral medulla impairs brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2014-03-01

    As the most widely used pesticides in the globe, the organophosphate compounds are understandably linked with the highest incidence of suicidal poisoning. Whereas the elicited toxicity is often associated with circulatory depression, the underlying mechanisms require further delineation. Employing the pesticide mevinphos as our experimental tool, we evaluated the hypothesis that transcriptional upregulation of nitric oxide synthase II (NOS II) by NF-κB on activation of the PI3K/Akt cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins the circulatory depressive effects of organophosphate poisons. Microinjection of mevinphos (10 nmol) bilaterally into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied sequentially by an increase (Phase I) and a decrease (Phase II) of an experimental index for the baroreflex-mediated sympathetic vasomotor tone. There were also progressive augmentations in PI3K or Akt enzyme activity and phosphorylation of p85 or Akt(Thr308) subunit in the RVLM that were causally related to an increase in NF-κB transcription activity and elevation in NOS II or peroxynitrite expression. Loss-of-function manipulations of PI3K or Akt in the RVLM significantly antagonized the reduced baroreflex-mediated sympathetic vasomotor tone and hypotension during Phase II mevinphos intoxication, and blunted the increase in NF-κB/NOS II/peroxynitrite signaling. We conclude that activation of the PI3K/Akt cascade, leading to upregulation of NF-κB/NOS II/peroxynitrite signaling in the RVLM, elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. MF-101, an estrogen receptor beta agonist for the treatment of vasomotor symptoms in peri- and postmenopausal women.

    PubMed

    Stovall, Dale W; Pinkerton, Joann V

    2009-04-01

    During peri- and postmenopausal stages, the majority of women experience moderate-to-severe vasomotor symptoms, such as hot flashes and night sweats, that interfere with sleep and reduce quality of life. Estrogen alone or in combination with a progestagen has been the standard therapy for such vasomotor symptoms; however, this therapeutic regimen is associated with severe side effects, such as breast cancer or cardiovascular events. To provide a better treatment option for menopausal women, Bionovo Inc is developing the estrogen receptor (ER)beta-selective agonist MF-101. Selective ER agonists can stimulate either ERalpha or ERbeta and induce tissue-specific estrogen-like effects, thus providing a safer alternative to conventional hormone therapy. MF-101 is derived from 22 herbs that are traditionally used in Chinese medicine for the treatment of menopausal symptoms. MF-101 did not promote the growth of breast cancer cells or stimulate uterine growth in preclinical studies and, in a phase II trial, was demonstrated to be safe and more effective in reducing the frequency and severity of hot flashes in postmenopausal women compared with placebo. To confirm the safety and efficacy of MF-101, larger phase III trials were planned for 2009. Although MF-101 appears to be a promising therapeutic, the herbal composition of the drug may be a disadvantage, because of the increased risk of causing allergic reactions in the general population. Studies with the MF-101-isolated active compounds liquiritigen and chalcone demonstrated selectivity for ERbeta, with no induction of proliferative events. If these isolates were demonstrated to be as effective and safe in clinical trials as preliminary data suggest regarding MF-101, these compounds could change the way clinicians treat menopause-associated symptoms.

  19. Flow in the left anterior descending coronary artery in patients with migraine headache.

    PubMed

    Aslan, Gamze; Sade, Leyla Elif; Yetis, Begum; Bozbas, Huseyin; Eroglu, Serpil; Pirat, Bahar; Can, Ufuk; Muderrisoglu, Haldun

    2013-11-15

    Migraine is a common neurovascular disorder characterized by attacks of severe headache, autonomic and neurologic symptoms. Migraine can affect many systems in the body, yet its effects on cardiovascular system are unclear. We hypothesized that migraine and coronary microvascular angina may be manifestations of a common systemic microvascular dysfunction and clinically associated. Forty patients with migraine and 35 healthy volunteers were included into the study. Using transthoracic Doppler echocardiography, coronary flow was visualized in the middle or distal part of the left anterior descending artery. Coronary diastolic peak flow velocities were measured with pulse wave Doppler at baseline and after dipyridamole infusion (0.56 mg/kg/4 min). Coronary flow reserve of <2 was considered normal. In addition, thorough 2-dimensional and Doppler echocardiographic examinations were also performed. Fifty-two women and 23 men were included. Coronary flow reserve was significantly lesser in the migraine group than in the control group (1.99 ± 0.3 vs 2.90 ± 0.5, p <0.05). In addition, mitral annular velocities were lower and the ratio of early mitral inflow velocity to early mitral annular velocity (E/E' lateral and E/E' septal) was higher in migraineurs than in the control group (p <0.05 for all), indicating diastolic function abnormalities in the migraine group. In conclusion, these findings suggest that there is an association between coronary microvascular dysfunction and migraine independently of the metabolic state of the patients. A common pathophysiologic pathway of impaired endothelial vasodilatation, vasomotor dysfunction, and increased systemic inflammatory factors may play a role in these 2 clinical conditions and could be the underlying cause of subclinical systolic and diastolic left ventricular dysfunction in migraineurs. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Hot flushes in women with breast cancer: state of the art and future perspectives.

    PubMed

    Barba, Maddalena; Pizzuti, Laura; Sergi, Domenico; Maugeri-Saccà, Marcello; Vincenzoni, Cristina; Conti, Francesca; Tomao, Federica; Vizza, Enrico; Di Lauro, Luigi; Di Filippo, Franco; Carpano, Silvia; Mariani, Luciano; Vici, Patrizia

    2014-02-01

    Although not life-threatening, vasomotor symptoms might have a detrimental effect on quality of life and represent a major determinant of poor therapeutic compliance in breast cancer patients. Limitations of hormonal therapies have fostered the use of non-estrogenic pharmacological agents, which mainly include centrally acting compounds, antidepressant drugs, serotonin-norepinephrine reuptake inhibitors and serotonin reuptake inhibitors. Integrating therapeutic tools have recently come from a wide range of heterogeneous approaches varying from phytoestrogens use to ganglion block. We herein critically review the most updated evidence on the available treatment options for management of vasomotor symptoms. The need for a patient-oriented approach following systematic evaluation of the presence and degree of vasomotor disturbances is also discussed and future perspectives in therapeutics are summarized.

  1. Apixaban Enhances Vasodilatation Mediated by Protease-Activated Receptor 2 in Isolated Rat Arteries

    PubMed Central

    Villari, Ambra; Giurdanella, Giovanni; Bucolo, Claudio; Drago, Filippo; Salomone, Salvatore

    2017-01-01

    Apixaban (APX) is a direct inhibitor of factor X (FXa) approved for prophylaxis and treatment of deep venous thrombosis and atrial fibrillation. Because FXa activates protease-activated receptor 2 (PAR-2) in endothelium and vascular smooth muscle, inhibition of FXa by APX may affect vasomotor function. The effect of APX was assessed in vitro, by wire myography, in rat mesenteric resistance arteries (MRAs) and basilar arteries challenged with vasoconstrictors [phenylephrine (PE); 5-hydroxytryptamine (5-HT)], vasodilators [acetylcholine (ACh); sodium nitroprusside (SNP)] or with the PAR-2 peptide agonist SLIGRL. APX (10 μM) reduced the vasoconstriction to PE and 5-HT while did not change the vasodilatation to ACh or SNP. SLIGRL induced concentration-dependent vasodilation in pre-constricted arteries, that was reduced by incubation with the NO inhibitor NG-nitro-L-arginine (L-NNA) and abolished by endothelium removal. APX enhanced vasodilation to SLIGRL either in the presence or in the absence of L-NNA, but was ineffective in endothelium-denuded vessels. In preparations from heparin-treated rats (to inhibit FXa) APX did not change the vasodilation to SLIGRL. FXa enzymatic activity, detected in mesentery homogenates from controls, was inhibited by APX, whereas APX-sensitive enzymatic activity was undetectable in homogenates from heparin-treated rats. Immunoblot analysis showed that incubation of MRA or aorta with APX increased the abundance of PAR-2, an effect not seen in MRA from heparin-treated rats or in endothelium-denuded aortas. In conclusion, inhibition of FXa by APX increases vasodilatation mediated by PAR-2. APX may act by inhibiting PAR-2 desensitization induced by endogenous FXa. This effect could be useful in the context of endothelial dysfunction associated to cardiovascular diseases. PMID:28769809

  2. Truths, errors, and lies around "reflex sympathetic dystrophy" and "complex regional pain syndrome".

    PubMed

    Ochoa, J L

    1999-10-01

    The shifting paradigm of reflex sympathetic dystrophy-sympathetically maintained pains-complex regional pain syndrome is characterized by vestigial truths and understandable errors, but also unjustifiable lies. It is true that patients with organically based neuropathic pain harbor unquestionable and physiologically demonstrable evidence of nerve fiber dysfunction leading to a predictable clinical profile with stereotyped temporal evolution. In turn, patients with psychogenic pseudoneuropathy, sustained by conversion-somatization-malingering, not only lack physiological evidence of structural nerve fiber disease but display a characteristically atypical, half-subjective, psychophysical sensory-motor profile. The objective vasomotor signs may have any variety of neurogenic, vasogenic, and psychogenic origins. Neurological differential diagnosis of "neuropathic pain" versus pseudoneuropathy is straight forward provided that stringent requirements of neurological semeiology are not bypassed. Embarrassing conceptual errors explain the assumption that there exists a clinically relevant "sympathetically maintained pain" status. Errors include historical misinterpretation of vasomotor signs in symptomatic body parts, and misconstruing symptomatic relief after "diagnostic" sympathetic blocks, due to lack of consideration of the placebo effect which explains the outcome. It is a lie that sympatholysis may specifically cure patients with unqualified "reflex sympathetic dystrophy." This was already stated by the father of sympathectomy, René Leriche, more than half a century ago. As extrapolated from observations in animals with gross experimental nerve injury, adducing hypothetical, untestable, secondary central neuron sensitization to explain psychophysical sensory-motor complaints displayed by patients with blatantly absent nerve fiber injury, is not an error, but a lie. While conceptual errors are not only forgivable, but natural to inexact medical science, lies particularly when entrepreneurially inspired are condemnable and call for peer intervention.

  3. Symptoms of endocrine treatment and outcome in the BIG 1-98 study.

    PubMed

    Huober, J; Cole, B F; Rabaglio, M; Giobbie-Hurder, A; Wu, J; Ejlertsen, B; Bonnefoi, H; Forbes, J F; Neven, P; Láng, I; Smith, I; Wardley, A; Price, K N; Goldhirsch, A; Coates, A S; Colleoni, M; Gelber, R D; Thürlimann, B

    2014-01-01

    There may be a relationship between the incidence of vasomotor and arthralgia/myalgia symptoms and treatment outcomes for postmenopausal breast cancer patients with endocrine-responsive disease who received adjuvant letrozole or tamoxifen. Data on patients randomized into the monotherapy arms of the BIG 1-98 clinical trial who did not have either vasomotor or arthralgia/myalgia/carpal tunnel (AMC) symptoms reported at baseline, started protocol treatment and were alive and disease-free at the 3-month landmark (n = 4,798) and at the 12-month landmark (n = 4,682) were used for this report. Cohorts of patients with vasomotor symptoms, AMC symptoms, neither, or both were defined at both 3 and 12 months from randomization. Landmark analyses were performed for disease-free survival (DFS) and for breast cancer free interval (BCFI), using regression analysis to estimate hazard ratios (HR) and 95 % confidence intervals (CI). Median follow-up was 7.0 years. Reporting of AMC symptoms was associated with better outcome for both the 3- and 12-month landmark analyses [e.g., 12-month landmark, HR (95 % CI) for DFS = 0.65 (0.49-0.87), and for BCFI = 0.70 (0.49-0.99)]. By contrast, reporting of vasomotor symptoms was less clearly associated with DFS [12-month DFS HR (95 % CI) = 0.82 (0.70-0.96)] and BCFI (12-month DFS HR (95 % CI) = 0.97 (0.80-1.18). Interaction tests indicated no effect of treatment group on associations between symptoms and outcomes. While reporting of AMC symptoms was clearly associated with better DFS and BCFI, the association between vasomotor symptoms and outcome was less clear, especially with respect to breast cancer-related events.

  4. Carotid baroreflex responsiveness in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.

    2000-01-01

    The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.

  5. The Interplay between Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications

    PubMed Central

    Dumnicka, Paulina; Maduzia, Dawid; Ceranowicz, Piotr; Olszanecki, Rafał; Drożdż, Ryszard; Kuśnierz-Cabala, Beata

    2017-01-01

    Acute pancreatitis (AP) is an inflammatory disease with varied severity, ranging from mild local inflammation to severe systemic involvement resulting in substantial mortality. Early pathologic events in AP, both local and systemic, are associated with vascular derangements, including endothelial activation and injury, dysregulation of vasomotor tone, increased vascular permeability, increased leukocyte migration to tissues, and activation of coagulation. The purpose of the review was to summarize current evidence regarding the interplay between inflammation, coagulation and endothelial dysfunction in the early phase of AP. Practical aspects were emphasized: (1) we summarized available data on diagnostic usefulness of the markers of endothelial dysfunction and activated coagulation in early prediction of severe AP; (2) we reviewed in detail the results of experimental studies and clinical trials targeting coagulation-inflammation interactions in severe AP. Among laboratory tests, d-dimer and angiopoietin-2 measurements seem the most useful in early prediction of severe AP. Although most clinical trials evaluating anticoagulants in treatment of severe AP did not show benefits, they also did not show significantly increased bleeding risk. Promising results of human trials were published for low molecular weight heparin treatment. Several anticoagulants that proved beneficial in animal experiments are thus worth testing in patients. PMID:28208708

  6. The role of oxidative stress in the pathophysiology of hypertension.

    PubMed

    Rodrigo, Ramón; González, Jaime; Paoletto, Fabio

    2011-04-01

    Hypertension is considered to be the most important risk factor in the development of cardiovascular disease. An increasing body of evidence suggests that oxidative stress, which results in an excessive generation of reactive oxygen species (ROS), has a key role in the pathogenesis of hypertension. The modulation of the vasomotor system involves ROS as mediators of vasoconstriction induced by angiotensin II, endothelin-1 and urotensin-II, among others. The bioavailability of nitric oxide (NO), which is a major vasodilator, is highly dependent on the redox status. Under physiological conditions, low concentrations of intracellular ROS have an important role in the normal redox signaling maintaining vascular function and integrity. However, under pathophysiological conditions, increased levels of ROS contribute to vascular dysfunction and remodeling through oxidative damage. In human hypertension, an increase in the production of superoxide anions and hydrogen peroxide, a decrease in NO synthesis and a reduction in antioxidant bioavailability have been observed. In turn, antioxidants are reducing agents that can neutralize these oxidative and otherwise damaging biomolecules. The use of antioxidant vitamins, such as vitamins C and E, has gained considerable interest as protecting agents against vascular endothelial damage. Available data support the role of these vitamins as effective antioxidants that can counteract ROS effects. This review discusses the mechanisms involved in ROS generation, the role of oxidative stress in the pathogenesis of vascular damage in hypertension, and the possible therapeutic strategies that could prevent or treat this disorder.

  7. Role of GPER in estrogen-dependent nitric oxide formation and vasodilation.

    PubMed

    Fredette, Natalie C; Meyer, Matthias R; Prossnitz, Eric R

    2018-02-01

    Estrogens are potent regulators of vasomotor tone, yet underlying receptor- and ligand-specific signaling pathways remain poorly characterized. The primary physiological estrogen 17β-estradiol (E2), a non-selective agonist of classical nuclear estrogen receptors (ERα and ERβ) as well as the G protein-coupled estrogen receptor (GPER), stimulates formation of the vasodilator nitric oxide (NO) in endothelial cells. Here, we studied the contribution of GPER signaling in E2-dependent activation of endothelial NO formation and subsequent vasodilation. Employing E2 and the GPER-selective agonist G-1, we investigated eNOS phosphorylation and NO formation in human endothelial cells, and endothelium-dependent vasodilation in the aortae of wild-type and Gper-deficient mice. Both E2 and G-1 induced phosphorylation of eNOS at the activation site Ser1177 to similar extents. Endothelial NO production to E2 was comparable to that of G-1, and was substantially reduced after pharmacological inhibition of GPER. Similarly, the clinically used ER-targeting drugs 4OH-tamoxifen, raloxifene, and ICI182,780 (faslodex, fulvestrant™) induced NO formation in part via GPER. We identified c-Src, EGFR, PI3K and ERK signaling pathways to be involved in GPER-dependent NO formation. In line with activation of NO formation in cells, E2 and G-1 induced equally potent vasodilation in the aorta of wild-type mice. Gper deletion completely abrogated the vasodilator response to G-1, while reducing the response to E2 by ∼50%. These findings indicate that a substantial portion of E2-induced endothelium-dependent vasodilation and NO formation is mediated by GPER. Thus, selective targeting of vascular GPER may be a suitable approach to activate the endothelial NO pathway, possibly leading to reduced vasomotor tone and inhibition of atherosclerotic vascular disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Acupuncture for menopausal vasomotor symptoms: study protocol for a randomised controlled trial

    PubMed Central

    2014-01-01

    Background Hot flushes and night sweats (vasomotor symptoms) are common menopausal symptoms, often causing distress, sleep deprivation and reduced quality of life. Although hormone replacement therapy is an effective treatment, there are concerns about serious adverse events. Non-hormonal pharmacological therapies are less effective and can also cause adverse effects. Complementary therapies, including acupuncture, are commonly used for menopausal vasomotor symptoms. While the evidence for the effectiveness of acupuncture in treating vasomotor symptoms is inconclusive, acupuncture has a low risk of adverse effects, and two small studies suggest it may be more effective than non-insertive sham acupuncture. Our objective is to assess the efficacy of needle acupuncture in improving hot flush severity and frequency in menopausal women. Our current study design is informed by methods tested in a pilot study. Methods/design This is a stratified, parallel, randomised sham-controlled trial with equal allocation of participants to two trial groups. We are recruiting 360 menopausal women experiencing a minimum average of seven moderate hot flushes a day over a seven-day period and who meet diagnostic criteria for the Traditional Chinese Medicine diagnosis of Kidney Yin deficiency. Exclusion criteria include breast cancer, surgical menopause, and current hormone replacement therapy use. Eligible women are randomised to receive either true needle acupuncture or sham acupuncture with non-insertive (blunt) needles for ten treatments over eight weeks. Participants are blinded to treatment allocation. Interventions are provided by Chinese medicine acupuncturists who have received specific training on trial procedures. The primary outcome measure is hot flush score, assessed using the validated Hot Flush Diary. Secondary outcome measures include health-related quality of life, anxiety and depression symptoms, credibility of the sham treatment, expectancy and beliefs about acupuncture, and adverse events. Participants will be analysed in the groups in which they were randomised using an intention-to-treat analysis strategy. Discussion Results from this trial will significantly add to the current body of evidence on the role of acupuncture for vasomotor symptoms. If found to be effective and safe, acupuncture will be a valuable additional treatment option for women who experience menopausal vasomotor symptoms. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12611000393954 11/02/2009. PMID:24925094

  9. Haemodynamic changes in ipsilateral and contralateral fingers caused by acute exposures to hand transmitted vibration.

    PubMed Central

    Bovenzi, M; Griffin, M J

    1997-01-01

    OBJECTIVES: To investigate changes in digital circulation during and after exposure to hand transmitted vibration. By studying two frequencies and two magnitudes of vibration, to investigate the extent to which haemodynamic changes depend on the vibration frequency, the vibration acceleration, and the vibration velocity. METHODS: Finger skin temperature (FST), finger blood flow (FBF), and finger systolic pressure were measured in the fingers of both hands in eight healthy men. Indices of digital vasomotor tone-such as critical closing pressure and vascular resistance-were estimated by pressure-flow curves obtained with different hand heights. With a static load of 10 N, the right hand was exposed for 30 minutes to each of the following root mean squared (rms) acceleration magnitudes and frequencies of vertical vibration: 22 m.s-2 at 31.5 Hz, 22 m.s-2 at 125 Hz, and 87 m.s-2 at 125 Hz. A control condition consisted of exposure to the static load only. The measures of digital circulation and vasomotor tone were taken before exposure to the vibration and the static load, and at 0, 20, 40, and 60 minutes after the end of each exposure. RESULTS: Exposure to static load caused no significant changes in FST, FBF, or indices of vasomotor tone in either the vibrated right middle finger or the non-vibrated left middle finger. In both fingers, exposure to vibration of 125 Hz and 22 m.s-2 produced a greater reduction in FBF and a greater increase in vasomotor tone than did vibration of 31.5 Hz and 22 m.s-2. In the vibrated right finger, exposure to vibration of 125 Hz and 87 m.s-2 provoked an immediate vasodilation which was followed by vasoconstriction during recovery. The non-vibrated left finger showed a significant increase in vasomotor tone throughout the 60 minute period after the end of vibration exposure. CONCLUSIONS: The digital circulatory response to acute vibration depends upon the magnitude and frequency of the vibration stimulus. Vasomotor mechanisms, mediated both centrally and locally, are involved in the reaction of digital vessels to acute vibration. The pattern of the haemodynamic changes in the fingers exposed to the vibration frequencies used in this study do not seem to support the frequency weighting assumed in the current international standard ISO 5349. PMID:9326160

  10. The thermoregulatory effects of noradrenaline, serotonin and carbachol injected into the rat spinal subarachnoid space.

    PubMed

    Lopachin, R M; Rudy, T A

    1982-12-01

    1. We have examined the effects on thermoregulation in the rat of noradrenaline bitartrate (NA), 5-hydroxytryptamine hydrochloride (5-HT) and carbamylcholine chloride (CCh) injected into the lumbar spinal subarachnoid space via a chronic indwelling catheter.2. Intrathecal injections of the monoamines and CCh reproducibly affected thermoregulation, whereas injections of control solutions had no effect.3. Intrathecal injections of NA (0.01-0.30 mumol) produced a dose-dependent hypothermia associated with a decrease in tail skin vasomotor tone. Shivering activity was not depressed during the hypothermia and sometimes increased. Intrathecal administration of the alpha-adrenergic agonist clonidine (0.0175-0.070 mumol) elicited changes in T(c) and T(sk) similar to those induced by intrathecal NA.4. Intrathecal 5-HT (0.030-0.90 mumol) elicited a dose-dependent hyperthermia accompanied by increased tail skin vasomotor tone and increased shivering.5. CCh injected intrathecally (0.001-0.06 mumol) evoked a dose-dependent hyperthermia. During the period when core temperature was rising, tail skin vasomotor tone increased and shivering-like activity was present. Once the maximum core temperature had been reached, tail skin vasodilatation occurred. Vasodilatation persisted until core temperature had returned to normal.6. Intravenous injections of 5-HT (0.30 and 0.90 mumol) or CCh (0.006 and 0.03 mumol) caused no thermoregulatory effect. The effects of these agents injected intrathecally were therefore not due to an action in the periphery.7. Intravenous infusions of NA (0.06 and 0.10 mumol) produced hypothermia and transient tail skin vasodilatation. We suggest that an action at peripheral sites may have contributed to the effects produced by intrathecal injection of this monamine.8. These findings suggest that spinal noradrenergic, serotonergic and cholinergic synapses may be importantly involved in the control of body temperature in the rat. The possible functional roles of these synapses and the putative spinal sites of action of the injected substances are discussed.

  11. Role of Multimodal Evaluation of Cerebral Hemodynamics in Selecting Patients with Symptomatic Carotid or Middle Cerebral Artery Steno-occlusive Disease for Revascularization

    PubMed Central

    Sharma, Vijay K; Tsivgoulis, Georgios; Ning, Chou; Teoh, Hock L; Bairaktaris, Chrisostomos; Chong, Vincent FH; Ong, Benjamin KC; Chan, Bernard PL; Sinha, Arvind K

    2008-01-01

    Background: The circle of Willis provides collateral pathways to perfuse the affected vascular territories in patients with severe stenoocclusive disease of major arteries. The collateral perfusion may become insufficient in certain physiological circumstances due to failed vasodilatory reserve and intracranial steal phenomenon, so-called ‘Reversed-Robinhood syndrome’. We evaluated cerebral hemodynamics and vasodilatory reserve in patients with symptomatic distal internal carotid (ICA) or middle cerebral artery (MCA) severe steno-occlusive disease. Methods: Diagnostic transcranial Doppler (TCD) and TCD-monitoring with voluntary breath-holding according to a standard scanning protocol were performed in patients with severe ICA or MCA steno-occlusive disease. The steal phenomenon was detected as transient, spontaneous, or vasodilatory stimuli-induced velocity reductions in affected arteries at the time of velocity increase in normal vessels. Patients with exhausted vasomotor reactivity and intracranial steal phenomenon during breath-holding were further evaluated by 99technetiumm-hexamethyl propylene amine oxime single photon emission computed tomography (HMPAO-SPECT) with acetazolamide challenge. Results: Sixteen patients (age 27–74 years, 11 men) fulfilled our TCD criteria for exhausted vasomotor reactivity and intracranial steal phenomenon during the standard vasomotor testing by breath holding. Acetazolamide-challenged HMPAO-SPECT demonstrated significant hypoperfusion in 12 patients in affected arterial territories, suggestive of failed vasodilatory reserve. A breath-holding index of ≤0.3 on TCD was associated with an abnormal HMPAO-SPECT with acetazolamide challenge. TCD findings of a breath holding index of ≤0.3 and intracranial steal during the procedure were determinants of a significant abnormality on HMPAO-SPECT with acetazolamide challenge. Conclusion: Multimodal evaluation of cerebral hemodynamics in symptomatic patients with severe steno-occlusive disease of the ICA or MCA is helpful in the identification and quantification of failed vasodilatory reserve. This approach may be useful in selecting patients for possible revascularization procedures. PMID:22518232

  12. Circulatory response and autonomic nervous activity during gum chewing.

    PubMed

    Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu

    2009-08-01

    Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.

  13. Depression and Heart Diseases: Leading Health Problems.

    PubMed

    Raič, Matea

    2017-12-01

    Depression is the most common psychiatric disorder in the world population and the most frequent mental disorder in a primary health care. Unrecognized and untreated depression is associated with a poor outcome of treated chronic diseases which co-exist with depression. Depression and cardiovascular diseases are bidirectional related conditions, risks are for each other, and they often co-exist. Depression is a common disorder in cardiovascular patients with a prevalence of 20% to 45%, which is much more frequent than in the general population. In cardiac patients with acute myocardial infarction, depression occurs three times more often than in the general population. Depression has a direct effect on the pathophysiological changes of various organ systems, changing the values of blood pressure, heart rate, vasomotor tone, vascular resistance, blood viscosity and plasma volume. The potential mechanism for developing heart disease in depressed patients includes hypothalamic-pituitary-adrenal gland dysfunction, increased proinflammatory and prothrombotic factor activity, reduced omega-3 fatty acids, reduced heart rate variability, smoking, physical inactivity, reduced mood, self-esteem and self-efficacy.

  14. [Variability of heart rhythm in dynamic study of the psychovegetative relationship in neurogenic syncope].

    PubMed

    Musaeva, Z A; Khaspekova, N B; Veĭn, A M

    2001-01-01

    Physiological changes accompanying syncopes of neural origin (SNO) in patients with psychovegetative syndrome are still insufficiently studied. The data concerning the role of the autonomic nervous system are discrepant. Heart rate variability was analyzed in 68 patients with SNO in a supine position and during the active 20-min orthostatic test taking into account the heart rate components of very low frequency (VLF, an index of cerebral sympathetic activity) and high frequency (HF, a marker of vagal modulation). Steady growth of the VLF and progressive decrease in the LF within 15-20 min of the orthostasis were observed in all the patients (n = 33), who fainted after this period. The predominance of the VLF in the heart rate power spectra was correlated with a high level of anxiety. It is suggested that this fact indicates the stable cerebral sympathetic activation resulting in a baroreceptor dysfunction, i.e., a failure of vasomotor regulation in patients with SNO.

  15. Obstructive Sleep Apnea is Linked to Depression and Cognitive Impairment: Evidence and Potential Mechanisms

    PubMed Central

    Kerner, Nancy A.; Roose, Steven P.

    2017-01-01

    Obstructive sleep apnea (OSA) is highly prevalent but very frequently undiagnosed. OSA is an independent risk factor for depression and cognitive impairment/dementia. Herein the authors review studies in the literature pertinent to the effects of OSA on the cerebral microvascular and neurovascular systems and present a model to describe the key pathophysiologic mechanisms that may underlie the associations, including hypoperfusion, endothelial dysfunction, and neuroinflammation. Intermittent hypoxia plays a critical role in initiating and amplifying these pathologic processes. Hypoperfusion and impaired cerebral vasomotor reactivity lead to the development or progression of cerebral small vessel disease (C-SVD). Hypoxemia exacerbates these processes, resulting in white matter lesions, white matter integrity abnormalities, and gray matter loss. Blood–brain barrier (BBB) hyperpermeability and neuroinflammation lead to altered synaptic plasticity, neuronal damage, and worsening C-SVD. Thus, OSA may initiate or amplify the pathologic processes of C-SVD and BBB dysfunction, resulting in the development or exacerbation of depressive symptoms and cognitive deficits. Given the evidence that adequate treatment of OSA with continuous positive airway pressure improves depression and neurocognitive functions, it is important to identify OSA when assessing patients with depression or cognitive impairment. Whether treatment of OSA changes the deteriorating trajectory of elderly patients with already-diagnosed vascular depression and cognitive impairment/dementia remains to be determined in randomized controlled trials. PMID:27139243

  16. Alpha-1 adrenoceptor hyperresponsiveness in three neuropathic pain states: complex regional pain syndrome 1, diabetic peripheral neuropathic pain and central pain states following spinal cord injury.

    PubMed

    Teasell, Robert W; Arnold, J Malcolm O

    2004-01-01

    The pathophysiology of the pain associated with complex regional pain syndrome, spinal cord injury and diabetic peripheral neuropathy is not known. The pain of complex regional pain syndrome has often been attributed to abnormal sympathetic nervous system activity based on the presence of vasomotor instability and a frequently reported positive response, albeit a temporary response, to sympathetic blockade. In contrast, the pain below the level of spinal cord injury and diabetic peripheral neuropathy are generally seen as deafferentation phenomena. Each of these pain states has been associated with abnormal sympathetic nervous system function and increased peripheral alpha-1 adrenoceptor activity. This increased responsiveness may be a consequence of alpha-1 adrenoceptor postsynaptic hypersensitivity, or alpha-2 adrenoceptor presynaptic dysfunction with diminished noradrenaline reuptake, increased concentrations of noradrenaline in the synaptic cleft and increased stimulation of otherwise normal alpha-1 adrenoceptors. Plausible mechanisms based on animal research by which alpha-1 adrenoceptor hyperresponsiveness can lead to chronic neuropathic-like pain have been reported. This raises the intriguing possibility that sympathetic nervous system dysfunction may be an important factor in the generation of pain in many neuropathic pain states. Although results to date have been mixed, there may be a greater role for new drugs which target peripheral alpha-2 adrenoceptors (agonists) or alpha-1 adrenoceptors (antagonists).

  17. Role of the body self and self-esteem in experiencing the intensity of menopausal symptoms.

    PubMed

    Włodarczyk, Małgorzata; Dolińska-Zygmunt, Grażyna

    2017-10-29

    The aim of the study was to test differences in self-esteem and strength of the body self, body image, comfort with closeness with others and body protection among women reporting high and low intensity of psychological, vasomotor and somatic symptoms of menopause. The sample included 201 women aged 45-55 years. The Menopause Symptom List was used to test the intensity of menopausal symptoms, the Body Self Questionnaire was used to diagnose the body self, and the Rosenberg Self-Esteem Scale was used to examine participants'levels of self-esteem. Differences between women experiencing high and low intensity of symptoms were analyzed using Student's t-test for independent samples. Women experiencing high-intensity psychological, vasomotor and somatic symptoms of menopause showed significantly lower self-esteem and poorer body-self functioning in all its dimensions except for body protection. Women experiencing high-intensity psychological, vasomotor and somatic symptoms of menopause demonstrated poorer functioning of the body self and lower self-esteem.

  18. Sudomotor and vasomotor activity during the menstrual cycle with global heating.

    PubMed

    Petrofsky, Jerrold; Lee, Haneul; Khowailed, Iman Akef

    2017-07-01

    Many studies have reported that there are changes in sympathetic activity throughout the menstrual cycle as there are oestrogen receptor in the hypothalamus and all other parts of the sympathetic nervous system. The purpose of this study was to see whether there were variations in sympathetic activity, skin vasomotor and sweat gland sudomotor rhythms during the menstrual cycle. Eight young female subjects with a regular menstrual cycle participated in the study. Subjects were tested once during the follicular phase and once during the luteal phase. Skin blood flow and sweat rate were significantly higher in the luteal phase compared with the follicular phase (p < .05), but the frequency and magnitude of sudomotor and vasomotor rhythms were significantly greater in the follicular phase (p < .05). In contrast, spectral data showed less sympathetic activity in the luteal phase. A significant finding here is that the sudomotor rhythm of sweat glands is altered by the menstrual cycle. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  19. Physiological responses induced by pleasant stimuli.

    PubMed

    Watanuki, Shigeki; Kim, Yeon-Kyu

    2005-01-01

    The specific physiological responses induced by pleasant stimuli were investigated in this study. Various physiological responses of the brain (encephaloelectrogram; EEG), autonomic nervous system (ANS), immune system and endocrine system were monitored when pleasant stimuli such as odors, emotional pictures and rakugo, a typical Japanese comical story-telling, were presented to subjects. The results revealed that (i) EEG activities of the left frontal brain region were enhanced by a pleasant odor; (ii) emotional pictures related to primitive element such as nudes and erotic couples elevated vasomotor sympathetic nervous activity; and (iii) an increase in secretory immunoglobulin A (s-IgA) and a decrease in salivary cortisol (s-cortisol) were induced by rakugo-derived linguistic pleasant emotion. Pleasant emotion is complicated state. However, by considering the evolutionary history of human being, it is possible to assess and evaluate pleasant emotion from certain physiological responses by appropriately summating various physiological parameters.

  20. A Review: Radiographic Iodinated Contrast Media-Induced Thyroid Dysfunction

    PubMed Central

    Leung, Angela M.; Braverman, Lewis E.; Brent, Gregory A.; Pearce, Elizabeth N.

    2015-01-01

    Context: Thyroid hormone production is dependent on adequate iodine intake. Excess iodine is generally well-tolerated, but thyroid dysfunction can occur in susceptible individuals after excess iodine exposure. Radiological iodinated contrast media represent an increasingly common source of excess iodine. Objective: This review will discuss the thyroidal response after acute exposure to excess iodine; contrast iodine-induced thyroid dysfunction; risks of iodine-induced thyroid dysfunction in vulnerable populations, such as the fetus, neonate, and patients with impaired renal function; and recommendations for the assessment and treatment of contrast iodine-induced thyroid dysfunction. Methods: Data for this review were identified by searching PubMed, Google Scholar, and references from relevant articles from 1948 to 2014. Conclusions: With the increase in the use of computed tomography scans in the United States, there is increasing risk of contrast-induced thyroid dysfunction. Patients at risk of developing iodine-induced thyroid dysfunction should be closely monitored after receiving iodinated contrast media and should be treated as needed. PMID:25375985

  1. Exercise for vasomotor menopausal symptoms.

    PubMed

    Daley, A; MacArthur, C; Mutrie, N; Stokes-Lampard, H

    2007-10-17

    Evidence suggests that a high proportion of perimenopausal and early postmenopausal women will experience some menopause symptoms, hot flushes being the most common. The effects caused by falling levels of estrogen may be alleviated by hormone replacement therapy (HRT) but there has been a marked global decline in the prescription and use of HRT due to concerns about the risks and benefits of HRT; consequently many women are now seeking alternatives. As large numbers of women are choosing not to take HRT, it is increasingly important to identify evidence based lifestyle modifications, which can have a positive effect on menopausal symptoms. To examine the effectiveness of any type of exercise intervention in the management of vasomotor menopausal symptoms (hot flushes and night sweats) in perimenopausal and postmenopausal women. Searches of the following electronic bibliographic databases were performed to identify randomised controlled trials: The Cochrane Library (CENTRAL) (Wiley Internet interface) 2006 Issue 2, MEDLINE (Ovid) 1966-May week 4 2006, EMBASE (Ovid) 1980-week 21 2006, PsycINFO (Ovid) 1967-May week 5 2006, Science Citation Index and Social Science Citation Index (Web of Science) 1900-June 2006 and 1956-June 2006 respectively, CINAHL (Ovid) 1982-May week 4 2006, SPORT Discus (ERL WebSPIRS) 1830-2006/04. Randomised controlled trials (RCTs) in which any type of exercise intervention was compared to other treatments or no treatment in the management of menopausal vasomotor symptoms in symptomatic perimenopausal and postmenopausal women. Nineteen reports were deemed potentially eligible, but of these only one met the inclusion criteria and three authors independently extracted data from this trial. Only one very small trial, which compared exercise with HRT, was available for inclusion in this review. Based on within-group analyses the study authors concluded that both interventions were effective in reducing vasomotor symptoms. Between-group trial analyses conducted by reviewers showed that the HRT group experienced significantly fewer hot flushes compared to the exercise group at follow-up. Only one very small trial involving symptomatic women has assessed the effectiveness of exercise in the management of vasomotor menopausal symptoms. Exercise was not as effective as HRT in this trial. We found no evidence from randomised controlled trials on whether exercise is an effective treatment relative to other interventions or no intervention in reducing hot flushes and or night sweats in symptomatic women. No conclusions regarding the effectiveness of exercise as a treatment for vasomotor menopausal symptoms could be made due to a lack of trials.

  2. Fos and FRA protein expression in rat nucleus paragigantocellularis lateralis during different space flight conditions.

    PubMed

    d'Ascanio, Paola; Centini, Claudia; Pompeiano, Maria; Pompeiano, Ottavio; Balaban, Evan

    2002-10-15

    The nucleus paragigantocellularis lateralis (LPGi) exerts a prominent excitatory influence over locus coeruleus (LC) neurons, which respond to gravity signals. We investigated whether adult albino rats exposed to different gravitational fields during the NASA Neurolab Mission (STS-90) showed changes in Fos and Fos-related antigen (FRA) protein expression in the LPGi and related cardiovascular, vasomotor, and respiratory areas. Fos and FRA proteins are induced rapidly by external stimuli and return to basal levels within hours (Fos) or days (FRA) after stimulation. Exposure to a light pulse (LP) 1 h prior to sacrifice led to increased Fos expression in subjects maintained for 2 weeks in constant gravity (either at approximately 0 or 1 G). Within 24 h of a gravitational change (launch or landing), the Fos response to LP was abolished. A significant Fos response was also induced by gravitational stimuli during landing, but not during launch. FRA responses to LP showed a mirror image pattern, with significant responses 24 h after launch and landing, but no responses after 2 weeks at approximately 0 or 1 G. There were no direct FRA responses to gravity changes. The juxtafacial and retrofacial parts of the LPGi, which integrate somatosensory/acoustic and autonomic signals, respectively, also showed gravity-related increases in LP-induced FRA expression 24 h after launch and landing. The neighboring nucleus ambiguus (Amb) showed completely different patterns of Fos and FRA expression, demonstrating the anatomical specificity of these results. Immediate early gene expression in the LPGi and related cardiovascular vasomotor and ventral respiratory areas may be directly regulated by excitatory afferents from vestibular gravity receptors. These structures could play an important role in shaping cardiovascular and respiratory function during adaptation to altered gravitational environments encountered during space flight and after return to earth. Copyright 2002 Elsevier Science Inc.

  3. Selective Serotonin Reuptake Inhibitor-Induced Sexual Dysfunction in Adolescents: A Review.

    ERIC Educational Resources Information Center

    Scharko, Alexander M.

    2004-01-01

    Objective: To review the existing literature on selective serotonin reuptake inhibitor (SSRI)-induced sexual dysfunction in adolescents. Method: A literature review of SSRI-induced adverse effects in adolescents focusing on sexual dysfunction was done. Nonsexual SSRI-induced adverse effects were compared in adult and pediatric populations.…

  4. Psychophysical and Vasomotor Responses of the Oral Tissues: A Nicotine Dose-Response and Menthol Interaction Study.

    PubMed

    Arendt Nielsen, Thomas; Nielsen, Bruno Provstgaard; Wang, Kelun; Arendt-Nielsen, Lars; Boudreau, Shellie A

    2016-05-01

    This study implemented an intra-oral test-platform to assess the sensory, psychophysical, and vasomotor responses to nicotine and menthol, alone or in combination. Two double-blinded, placebo-controlled, randomized, cross-over studies, including healthy nonsmoking participants were performed. Study I: A dose-response relationship (N = 20) between 0, 2, and 4 mg nicotine gum. Study II: An interaction response (N = 22) to 30 mg menthol and 4 mg nicotine alone or in combination. Heart rate, blood pressure, tactile and thermosensory thresholds, intra-oral blood flow and temperature, pain/irritation intensities/locations, McGill Pain Questionnaire, and taste experience were assessed before, during or after the completion of a standardized chewing regime. A dose-response elevation in heart rate was attenuated when nicotine was combined with menthol. Blood flow, temperature, and warm-detection thresholds, as assessed on the tongue, similarly increased for all gums. Pain intensity and taste experiences were similar between nicotine doses. Nicotine attenuated the sweet, cooling, and freshening sensation of menthol. Within the first 4 minutes, menthol reduced the intensity but not the area of nicotine-induced pain and irritation. The 4-mg nicotine dose led to a continued increase in the intensity and area of irritation in the throat post-chewing. Moreover, one-half of participants responded to menthol as an irritant, and these individuals demonstrated larger areas of nicotine-induced irritation in the throat post-chewing. The intra-oral test platform provides a basis to optimize the assessment of nicotine-related taste and sensory experiences and can be used in future studies for profiling nicotine gum. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Decrease of Perivascular Adipose Tissue Browning Is Associated With Vascular Dysfunction in Spontaneous Hypertensive Rats During Aging.

    PubMed

    Kong, Ling-Ran; Zhou, Yan-Ping; Chen, Dong-Rui; Ruan, Cheng-Chao; Gao, Ping-Jin

    2018-01-01

    Functional perivascular adipose tissue (PVAT) is necessary to maintain vascular physiology through both mechanical support and endocrine or paracrine ways. PVAT shows a brown adipose tissue (BAT)-like feature and the browning level of PVAT is dependent on the anatomic location and species. However, it is not clear whether PVAT browning is involved in the vascular tone regulation in spontaneously hypertensive rats (SHRs). In the present study, we aimed to illustrate the effect of aging on PVAT browning and subsequent vasomotor reaction in SHRs. Herein we utilized histological staining and western blot to detect the characteristics of thoracic PVAT (tPVAT) in 8-week-old and 16-week-old SHR and Wistar-Kyoto (WKY) rats. We also detected vascular reactivity analysis to determine the effect of tPVAT on vasomotor reaction during aging. The results showed that tPVAT had a similar phenotype to BAT, including smaller adipocyte size and positive uncoupling protein-1 (UCP1) staining. Interestingly, the tPVAT of 8-week-old SHR showed increased BAT phenotypic marker expression compared to WKY, whereas the browning level of tPVAT had a more dramatic decrease from 8 to 16 weeks of age in SHR than age-matched WKY rats. The vasodilation effect of tPVAT on aortas had no significant difference in 8-week-old WKY and SHR, whereas this effect is obviously decreased in 16-week-old SHR compared to WKY. In contrast, tPVAT showed a similar vasoconstriction effect in 8- or 16-week-old WKY and SHR rats. Moreover, we identified an important vasodilator adenosine, which regulates adipocyte browning and may be a potential PVAT-derived relaxing factor. Adenosine is dramatically decreased from 8 to 16 weeks of age in the tPVAT of SHR. In summary, aging is associated with a decrease of tPVAT browning and adenosine production in SHR rats. These may result in attenuated vasodilation effect of the tPVAT in SHR during aging.

  6. Psychological but not vasomotor symptoms are associated with temperament and character traits.

    PubMed

    Kokras, N; Papadopoulos, L; Zervas, I M; Spyropoulou, A; Stamatelopoulos, K; Rizos, D; Creatsa, M; Augoulea, A; Papadimitriou, G N; Lambrinoudaki, I

    2014-08-01

    Recent evidence suggests that climacteric symptoms may be intensified by specific temperament and personality traits in postmenopausal women. In this study we investigate Cloninger's model of personality in relation to menopausal symptoms. One-hundred and seventy peri- and postmenopausal women consecutively recruited from a menopause clinic of an academic hospital completed the Cloninger's Temperament and Character Inventory (TCI-140) which measures four dimensions of temperament: Harm avoidance, Novelty seeking, Reward dependence and Persistence, as well as three dimensions of character: Self-directedness, Cooperativeness, and Self-transcendence. Menopausal somatic, vasomotor and psychological symptoms were also assessed using the Greene Climacteric Scale. In comparison to the norms of the Greek general population, postmenopausal women presented lower scores in Novelty seeking and Reward dependence and higher scores in Persistence, Self-directedness, Cooperativeness and Self-transcendence. Higher harm avoidance (the inclination to avoid potential punishment, be shy and fearful of uncertainty) significantly correlated with anxiety and depressive symptoms while lower Self-directedness (the ability to have the willpower to adapt to or overcome any changes) correlated with depressive symptoms only. By multivariate regression analysis, higher Harm avoidance and lower Self-directedness were independently associated with the presence of depressive symptoms. No significant associations were observed between TCI-140 traits and somatic or vasomotor symptoms. Our findings indicate that most temperament and character traits according to Cloninger's model in peri- and postmenopausal women varied significantly as compared to the general population. Among several traits, high Harm avoidance and low Self-directedness were most strongly associated with psychological climacteric distress but not with somatic and vasomotor symptoms.

  7. Presence of young children at home may moderate development of hot flashes during the menopausal transition.

    PubMed

    Lorenz, Tierney K; McGregor, Bonnie A; Vitzthum, Virginia J

    2015-04-01

    This work aims to determine the role of child care in hot flashes. Broad differences in vasomotor symptom experience are observed among perimenopausal women across cultures. Women in cultures where contact with young children is common report significantly fewer and less severe hot flashes than women in cultures where older women spend less time around children. Could these differences be related to the presence of young children? We surveyed 117 healthy women undergoing prophylactic bilateral oophorectomy (removal of both ovaries to reduce the risk of gynecologic cancers). Participants provided demographic information, including pre-surgical operation menopause status and number of children (younger than 13 y, 13-17 y, and 18 y or older) living at home. They were surveyed for menopausal symptoms 2 weeks before surgical operation and at 2 months, 6 months, and 1 year after surgical operation. Women who were premenopausal at the time of surgical operation experienced a significant increase in vasomotor symptoms. Within this group, participants with young children at home reported significantly fewer vasomotor symptoms across time than did women who did not live with young children. Women who were already menopausal at the time of surgical operation who had young children at home reported more vasomotor symptoms before surgical operation than did those without young children; however, this effect did not remain significant across follow-ups. These findings suggest that interactions with young children may mitigate hot flashes in women undergoing surgical menopause. These findings may be used to counsel women who are considering prophylactic oophorectomy about the likelihood of menopausal symptoms.

  8. The effect of foot reflexology applied to women aged between 40 and 60 on vasomotor complaints and quality of life.

    PubMed

    Gozuyesil, Ebru; Baser, Muruvvet

    2016-08-01

    This study aims to identify the effects of foot reflexology applied to women on their vasomotor complaints and quality of life. A randomised controlled study was conducted with 120 women. The experimental group received foot reflexology treatment, while the control group received nonspecific foot massage. The mean scores for hot flashes, sweats, and night sweats, were lower in the reflexology group than the control group after the practice; and the difference between the groups was statistically significant (p < 0.001). The mean scores for the sub-groups of the MENQOL demonstrated improvements in both groups after the application (p < 0.001). As for the sexual domain, there was a significant improvement in the reflexology group (p < 0.05), but no improvements were found in the control group (p > 0.05). Results showed that reflexology might be effective in decreasing vasomotor problems and increasing quality of life in women in the menopausal period. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease.

    PubMed

    Husser, Oliver; Bodí, Vicente; Sanchís, Juan; Mainar, Luis; Núñez, Julio; López-Lereu, María P; Monmeneu, José V; Ruiz, Vicente; Rumiz, Eva; Moratal, David; Chorro, Francisco J; Llácer, Angel

    2009-04-01

    Dipyridamole stress perfusion cardiovascular magnetic resonance (CMR) is used to detect coronary artery disease (CAD). However, few data are available on the diagnostic value of the systolic dysfunction induced by dipyridamole. This study investigated whether the induction of systolic dysfunction supplements the diagnostic information provided by perfusion imaging in the detection of CAD. Overall, 166 patients underwent dipyridamole CMR and quantitative coronary angiography, with CAD being defined as a stenosis > or =70%. Systolic dysfunction at rest, systolic dysfunction with dipyridamole, induced systolic dysfunction, and stress first-pass perfussion deficit (PD) and delayed enhancement were quantified. In the multivariate analysis, PD (hazard ratio [HR]=1.6; 95% confidence interval [CI], 1.33-1.91;P< .0001) and induced systolic dysfunction (OR=1.8; 95% CI, 1.18-2.28; P< .007) were independently associated with CAD and had a sensitivity and specificity of 92% and 62% and 43% and 96%, respectively. Patients were categorized as having no ischemia (Group 1), PD but no induced systolic dysfunction (Group 2), or induced systolic dysfunction irrespective of PD (Group 3). In Group 3, the prevalence of CAD was higher than in Group 1 or 2 (96% vs. 22% and 79%, respectively; P=.001) and the risk of CAD was two-fold higher than in Group 2 (OR=2.34; 95% CI, 1.07-5.13; P=.034). Compared with Group 2, more hypoperfused segments were observed in Group 3 (6.2+/-2.6 vs. 7.4+/-3.4; P=.044), and more diseased vessels (1.4+/-1.0 vs. 1.8+/-0.9; P=.036). Adding induced systolic dysfunction to perfusion and clinical data improved the multivariate model's C-statistic for predicting CAD (0.81 vs. 0.87; P=.02). Combining induced systolic dysfunction with perfusion imaging increases the diagnostic accuracy of detecting CAD and enables patients with severe ischemia and a high probability of CAD to be identified.

  10. Phentolamine tests and catecholamine levels in normotensive CVA patients.

    PubMed

    Favazza, A R

    1974-11-01

    Ten normotensive patients diagnosed as having a CVA had Regitine tests and urinary VMA and catecholamine determinations during the first day of hospitalization. The VMA and catecholamine levels were all within normal limits (except for one elevated VMA level) but did not correlate well with each other. The average response to phentolamine was an average drop in blood pressure of 30mm. Hg systolic and 19 mm. Hg diastolic. Mechanisms by which hypertensive states or cerebral damage might effect blood pressure are discussed. It is suggested that CNS damage might induce a vasolabile or hypersensitive state via connections and consequent alterations in the autonomic vasomotor system.

  11. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling

    PubMed Central

    Le Ferrec, Eric; Podechard, Normand; Lagadic-Gossmann, Dominique; Shoji, Kenji F.; Kukowski, Klara; Holme, Jørn A.; Øvrevik, Johan

    2018-01-01

    Exposure to diesel exhaust particles (DEPs) affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM) on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1) using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE). By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE). Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR) non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction extracted by DCM also caused an AhR-dependent reduction in global membrane order, which appeared to be connected to the [Ca2+]i increase. PMID:29748474

  12. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling.

    PubMed

    Brinchmann, Bendik C; Le Ferrec, Eric; Podechard, Normand; Lagadic-Gossmann, Dominique; Shoji, Kenji F; Penna, Aubin; Kukowski, Klara; Kubátová, Alena; Holme, Jørn A; Øvrevik, Johan

    2018-05-10

    Exposure to diesel exhaust particles (DEPs) affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca 2+ ] i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM) on [Ca 2+ ] i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n -hexane ( n -Hex-EOM), dichloromethane (DCM-EOM), methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n -Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n -Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1) using micro-spectrofluorometry. The lipophilic n -Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca 2+ ] i increases in HMEC-1. n -Hex-EOM triggered [Ca 2+ ] i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE). By contrast, the less lipophilic DCM-EOM triggered [Ca 2+ ] i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE). Both extracts increased [Ca 2+ ] i via aryl hydrocarbon receptor (AhR) non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca 2+ ] i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n -hexane and DCM seem to induce rapid AhR-dependent [Ca 2+ ] i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction extracted by DCM also caused an AhR-dependent reduction in global membrane order, which appeared to be connected to the [Ca 2+ ] i increase.

  13. Vasomotor and Related Menopause Symptoms.

    PubMed

    Stuenkel, Cynthia A

    2018-05-31

    Vasomotor symptoms are the most common manifestation of the menopause transition and postmenopausal phases of reproductive life. They interfere not only in quality of life, but also contribute to sleep and mood disturbances that potentially compromise home and work effectiveness. Treatment options include hormone therapy (HT), nonhormonal prescription drugs, mind body and behavior therapies, and over-the-counter preparations. Evidence confirms that HT is the most effective option. The initial reticence to prescribe HT immediately following publication of the Women's Health Initiative has been replaced by clear guidelines for confidently identifying women for whom this therapy will be safe.

  14. Melatonin in perimenopausal and postmenopausal women: associations with mood, sleep, climacteric symptoms, and quality of life.

    PubMed

    Toffol, Elena; Kalleinen, Nea; Haukka, Jari; Vakkuri, Olli; Partonen, Timo; Polo-Kantola, Päivi

    2014-05-01

    Melatonin synthesis and secretion are partly modulated by estrogen and progesterone. Changes in melatonin concentrations, possibly related to the menopausal transition, may be associated with climacteric mood, sleep, and vasomotor symptoms. The aims of this study were to compare the serum concentrations of melatonin in perimenopausal and postmenopausal women and to evaluate melatonin's influence on mood, sleep, vasomotor symptoms, and quality of life. We analyzed the data of 17 healthy perimenopausal women (aged 43-51 y) and 18 healthy postmenopausal women (aged 58-71 y) who participated in a prospective study. On study night (9:00 pm-9:00 am), serum melatonin was sampled at 20-minute (9:00 pm-12:00 midnight; 6:00-9:00 am) and 1-hour (12:00 midnight-6:00 am) intervals. Questionnaires were used to assess depression (Beck Depression Inventory), anxiety (State-Trait Anxiety Inventory), insomnia and sleepiness (Basic Nordic Sleep Questionnaire [BNSQ]), subjective sleep quality, vasomotor symptoms, and quality of life (EuroQoL). Postmenopausal women had lower nighttime serum melatonin concentrations than perimenopausal women. The duration of melatonin secretion tended to be shorter in postmenopause, whereas melatonin peak time did not differ. Mean melatonin concentrations and exposure levels did not correlate with follicle-stimulating hormone level, estradiol level, body mass index, Beck Depression Inventory score, State-Trait Anxiety Inventory score, BNSQ insomnia score, BNSQ sleepiness score, subjective sleep score, climacteric vasomotor score, or quality of life. In perimenopause, the later is the melatonin peak, the higher is the level of anxiety (P = 0.022), and the longer is the melatonin secretion, the better is the quality of life (P < 0.001). Longitudinal research is needed to better understand the possible contributory role of menopause in lower melatonin levels.

  15. Vegans report less bothersome vasomotor and physical menopausal symptoms than omnivores.

    PubMed

    Beezhold, Bonnie; Radnitz, Cynthia; McGrath, Robert E; Feldman, Arielle

    2018-06-01

    Lifestyle modifications that may reduce menopausal symptoms have generated much interest. The vegetarian diet has been associated with a lower risk of chronic disease as well as a more healthy hormonal milieu. Our objective in this cross-sectional study was to survey peri- and postmenopausal women to investigate menopausal symptoms and dietary pattern. Survey distribution in 2015-2016 was aimed at female vegans, vegetarians, and omnivores between the ages of 45 and 80 years, who were active on senior and vegetarian social networking websites and at vegan restaurants and events. We investigated vasomotor and physical symptoms as measured by the Menopause-specific Quality of Life Questionnaire (MENQOL) and dietary pattern classified by animal protein intakes reported in response to food frequency questions. Out of 754 participants who completed the survey, 604 reported they were perimenopausal (n = 121) or postmenopausal (n = 483), of whom 539 also completed the food frequency questions. We compared vasomotor and physical symptoms in omnivores (n = 304, consumed meat and/or poultry at least monthly) and vegans (n = 125, abstained from all animal proteins) using general linear models; covariates included age, exercise, hormone replacement therapy, presence of reproductive organs, and age at menopause. Among perimenopausal women, vegans reported less bothersome vasomotor (p < 0.01) and physical symptoms (p < 0.01) than omnivores. For both symptom types, more vegetables and less flesh food were associated with less bothersome symptoms (p values < 0.05). Eating a plant-based diet may be helpful for women in menopausal transition who prefer a natural means to manage their symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Microvascular responsiveness in obesity: implications for therapeutic intervention

    PubMed Central

    Bagi, Zsolt; Feher, Attila; Cassuto, James

    2012-01-01

    Obesity has detrimental effects on the microcirculation. Functional changes in microvascular responsiveness may increase the risk of developing cardiovascular complications in obese patients. Emerging evidence indicates that selective therapeutic targeting of the microvessels may prevent life-threatening obesity-related vascular complications, such as ischaemic heart disease, heart failure and hypertension. It is also plausible that alterations in adipose tissue microcirculation contribute to the development of obesity. Therefore, targeting adipose tissue arterioles could represent a novel approach to reducing obesity. This review aims to examine recent studies that have been focused on vasomotor dysfunction of resistance arteries in obese humans and animal models of obesity. Particularly, findings in coronary resistance arteries are contrasted to those obtained in other vascular beds. We provide examples of therapeutic attempts, such as use of statins, ACE inhibitors and insulin sensitizers to prevent obesity-related microvascular complications. We further identify some of the important challenges and opportunities going forward. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21797844

  17. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death*

    PubMed Central

    Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi

    2017-01-01

    Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH aggregation specifically induces mitochondrial dysfunction via PTP opening, leading to cell death. PMID:28167533

  18. SIRT1 activation inhibits hyperglycemia-induced apoptosis by reducing oxidative stress and mitochondrial dysfunction in human endothelial cells.

    PubMed

    Wang, Shengqiang; Wang, Jian; Zhao, Airong; Li, Jigang

    2017-09-01

    Sustained hyperglycemic stimulation of vascular cells is involved in the pathogenesis of diabetes mellitus‑induced cardiovascular complications. Silent information regulator T1 (SIRT1), a mammalian sirtuin, has been previously recognized to protect endothelial cells against hyperglycemia‑induced oxidative stress. In the present study, human umbilical vein endothelial cells (HUV‑EC‑C) were treated with D‑glucose, and the levels of oxidative stress, mitochondrial dysfunction, the rate of apoptosis and SIRT1 activity were measured. The effect of manipulated SIRT1 activity on hyperglycemia‑induced oxidative stress, mitochondrial dysfunction and apoptosis was then assessed using the SIRT1 activator, resveratrol (RSV), and the SIRT1 inhibitor, sirtinol. The present study confirmed that hyperglycemia promotes oxidative stress and mitochondrial dysfunction in HUV‑EC‑C cells. The accumulation of reactive oxygen species, the swelling of mitochondria, the ratio of adenosine 5'‑diphosphate to adenosine 5'‑triphosphate and localized mitochondrial superoxide levels were all increased following D‑glucose treatment, whereas the mitochondrial membrane potential was significantly reduced by >50 mg/ml D‑glucose treatment. In addition, hyperglycemia was confirmed to induce apoptosis in HUV‑EC‑C cells. Furthermore, the results confirmed the prevention and aggravation of hyperglycemia‑induced apoptosis by RSV treatment and sirtinol treatment, via the amelioration and enhancement of oxidative stress and mitochondrial dysfunction in HUV‑EC‑C cells, respectively. In conclusion, the present study revealed that hyperglycemia promotes oxidative stress, mitochondrial dysfunction and apoptosis in HUV‑EC‑C cells, and manipulation of SIRT1 activity regulated hyperglycemia‑induced mitochondrial dysfunction and apoptosis in HUV‑EC‑C cells. The data revealed the protective effect of SIRT1 against hyperglycemia‑induced apoptosis via the alleviation of mitochondrial dysfunction and oxidative stress.

  19. Vasomotor symptoms and cardiometabolic risk factors in menopausal women: a MONET Group study.

    PubMed

    Abdulnour, J; Stacey, D; Dionne, I J; Brochu, M; Doucet, É; Prud'homme, D

    2016-08-01

    Conflicting results have been reported concerning the prevalence of cardiometabolic risk factors in women experiencing vasomotor symptoms (VMS). To compare cardiometabolic risk factors between women with and without VMS during the menopause transition and to determine the influence of physical activity on the prevalence of VMS. Yearly assessment of women transitioning through menopause included self-reported VMS (hot flushes and night sweats), body composition and fat distribution, fasting glucose, insulin and lipids, and physical activity levels. Eighty-five of the 102 premenopausal women at baseline were included (age: 49.9 ± 2.0 years; body mass index: 23.2 ± 2.2 kg/m(2)). According to linear mixed model analyses, no statistically significant differences were observed for fat mass, lean body mass, body fat distribution indices and cardiometabolic risk factors, when comparing symptomatic vs. asymptomatic women. Neither physical activity levels nor intensity were associated with the prevalence of VMS. Our results suggest that women transitioning through menopause who reported VMS did not show greater deteriorations in body composition, body fat distribution and cardiometabolic risk factors. Furthermore, physical activity levels were not associated with lower prevalence of vasomotor symptoms in the present cohort.

  20. Relationships between menopausal and mood symptoms and EEG sleep measures in a multi-ethnic sample of middle-aged women: the SWAN sleep study.

    PubMed

    Kravitz, Howard M; Avery, Elizabeth; Sowers, Maryfran; Bromberger, Joyce T; Owens, Jane F; Matthews, Karen A; Hall, Martica; Zheng, Huiyong; Gold, Ellen B; Buysse, Daniel J

    2011-09-01

    Examine associations of vasomotor and mood symptoms with visually scored and computer-generated measures of EEG sleep. Cross-sectional analysis. Community-based in-home polysomnography (PSG). 343 African American, Caucasian, and Chinese women; ages 48-58 years; pre-, peri- or post-menopausal; participating in the Study of Women's Health Across the Nation Sleep Study (SWAN Sleep Study). None. Measures included PSG-assessed sleep duration, continuity, and architecture, delta sleep ratio (DSR) computed from automated counts of delta wave activity, daily diary-assessed vasomotor symptoms (VMS), questionnaires to collect mood (depression, anxiety) symptoms, medication, and lifestyle information, and menopausal status using bleeding criteria. Sleep outcomes were modeled using linear regression. Nocturnal VMS were associated with longer sleep time. Higher anxiety symptom scores were associated with longer sleep latency and lower sleep efficiency, but only in women reporting nocturnal VMS. Contrary to expectations, VMS and mood symptoms were unrelated to either DSR or REM latency. Vasomotor symptoms moderated associations of anxiety with EEG sleep measures of sleep latency and sleep efficiency and was associated with longer sleep duration in this multi-ethnic sample of midlife women.

  1. The pharmacological and hormonal therapy of hot flushes in breast cancer survivors.

    PubMed

    Wiśniewska, Iwona; Jochymek, Bożena; Lenart-Lipińska, Monika; Chabowski, Mariusz

    2016-03-01

    The side effects of oncological treatment, which appear during or after therapy, are sometimes very annoying for patients and are not adequately treated by physicians. Among the symptoms experienced by breast cancer patients are hot flushes, which result from a natural or cancer therapy-induced menopause. The intensity of hot flushes in breast cancer patients may be more severe than those experienced by women undergoing a natural menopause. Taking into account the incidence of breast cancer and long-lasting hormone-suppression therapies, the problem of hot flushes will affect many women. Hormonal replacement therapy, the most effective therapeutic means for alleviating hot flushes, is usually contraindicated for breast cancer patients. For intense and severe hot flushes, pharmacological treatment using agents from a group of selective serotonin reuptake inhibitors and serotonin and norepinephrine reuptake inhibitors such as venlafaxine or citalopram may be introduced. Other agents from different pharmacological groups, such as clonidine, gabapentin, or pregabalin, have also proved to be effective in treating hot flushes. The efficacy of phytoestrogens has not been proven in randomized clinical trials. The importance of the placebo effect in decreasing vasomotor symptoms has also been reported in many research papers. Educating breast cancer patients in lifestyle changes which decrease the frequency and intensity of vasomotor symptoms can offer significant help too. This paper reviews the current state of research in order to assess the options for the treatment of hot flushes in breast cancer survivors.

  2. Cardiorespiratory interactions during periodic breathing in awake chronic heart failure patients.

    PubMed

    Pinna, G D; Maestri, R; Mortara, A; La Rovere, M T

    2000-03-01

    We applied spectral techniques to the analysis of cardiorespiratory signals [instantaneous lung volume (ILV), instantaneous tidal volume (ITV), arterial O(2) saturation (Sa(O(2))) at the ear, heart rate (HR), systolic (SAP), and diastolic (DAP) arterial pressure] during nonapneic periodic breathing (PB) in 29 awake chronic heart failure (CHF) patients and estimated the timing relationships between respiratory and slow cardiovascular (<0.04 Hz) oscillations. Our aim was 1) to elucidate major mechanisms involved in cardiorespiratory interactions during PB and 2) to test the hypothesis of a central vasomotor origin of PB. All cardiovascular signals were characterized by a dominant (>/=84% of total power) oscillation at the frequency of PB (mean +/- SE: 0.022 +/- 0.0008 Hz), highly coherent (>/=0.89), and delayed with respect to ITV (ITV-HR, 2.4 +/- 0.72 s; ITV-SAP, 6.7 +/- 0.65 s; ITV-DAP, 3.2 +/- 0.61 s; P < 0.01). Sa(O(2)) was highly coherent with (coherence function = 0.96 +/- 0. 009) and almost opposite in phase to ITV. These findings demonstrate the existence of a generalized cardiorespiratory rhythm led by the ventilatory oscillation and suggest that 1) the cyclic increase in inspiratory drive and cardiopulmonary reflexes and 2) mechanical effects of PB-induced changes in intrathoracic pressure are the more likely sources of the HR and blood pressure oscillations, respectively. The timing relationship between ITV and blood pressure signals excludes the possibility that PB represents the effect of a central vasomotor rhythm.

  3. Heat stroke induced cerebellar dysfunction: A “forgotten syndrome”

    PubMed Central

    Kosgallana, Athula D; Mallik, Shreyashee; Patel, Vishal; Beran, Roy G

    2013-01-01

    We report a case of heat stroke induced acute cerebellar dysfunction, a rare neurological disease characterized by gross cerebellar dysfunction with no acute radiographic changes, in a 61 years old ship captain presenting with slurred speech and gait ataxia. A systematic review of the literature on heat stroke induced cerebellar dysfunction was performed, with a focus on investigations, treatment and outcomes. After review of the literature and detailed patient investigation it was concluded that this patient suffered heat stroke at a temperature less than that quoted in the literature. PMID:24340279

  4. RIP1-mediated mitochondrial dysfunction and ROS production contributed to tumor necrosis factor alpha-induced L929 cell necroptosis and autophagy.

    PubMed

    Ye, Yuan-Chao; Wang, Hong-Ju; Yu, Lu; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2012-12-01

    Tumor necrosis factor alpha (TNFα) induces necroptosis and autophagy; however, the detailed molecular mechanism is not fully understood. In this study, we found that TNFα administration caused mitochondrial dysfunction and reactive oxygen species (ROS) production, which led to necroptosis and autophagy in murine fibrosarcoma L929 cells. Notably, the RIP1 (serine-threonine kinase receptor-interacting protein 1, a main adaptor protein of necroptosis) specific inhibitor necrostatin-1 (Nec-1) recovered mitochondrial dysfunction and ROS production due to TNFα administration. Moreover, pan-caspase inhibitor z-VAD-fmk (zVAD) increased RIP1 expression and exacerbated TNFα-induced mitochondrial dysfunction and ROS production, indicating that RIP1 led to mitochondrial dysfunction and ROS production. In addition, cytochrome c release from mitochondria was accompanied with TNFα administration, and Nec-1 blocked the release of cytochrome c upon TNFα administration, while zVAD enhanced the release. These further suggested that RIP1 induced mitochondrial dysfunction accompanied with cytochrome c release. Furthermore, autophagy inhibitor 3-methyladenine (3MA) did not affect RIP1 expression as well as mitochondrial dysfunction and ROS production. Together with our previous publication that autophagy was a downstream consequence of necroptosis, we concluded that TNFα induced mitochondrial dysfunction accompanied with ROS production and cytochrome c release via RIP1, leading to necroptosis and resulting autophagic cell death. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium.

    PubMed

    Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2015-02-01

    Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight junction disruption and barrier dysfunction.

  6. Actions of rilmenidine on neurogenic hypertension in BPH/2J genetically hypertensive mice.

    PubMed

    Jackson, Kristy L; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

    2014-03-01

    BPH/2J hypertensive mice have an exaggerated sympathetic contribution to blood pressure (BP). Premotor sympathetic neurons within the rostroventrolateral medulla (RVLM) are a major source of sympathetic vasomotor tone and major site of action of the centrally acting sympatholytic agent, rilmenidine. The relative cardiovascular effect of rilmenidine in BPH/2J versus normotensive BPN/3J mice was used as an indicator of the involvement of the RVLM in the sympathetic contribution to hypertension in BPH/2J mice. BPH/2J and BPN/3J mice were pre-implanted with telemetry devices to measure BP in conscious unrestrained mice. Rilmenidine was administered acutely (n=7-9/group), orally for 14 days, at a wide range of doses (n=5/group), and also infused intracerebroventricularly for 7 days (n=6/group). Acute intraperitoneal rilmenidine induced greater depressor and bradycardic responses in BPH/2J than BPN/3J mice (Pstrain<0.01). Both responses were reduced by atropine pre-treatment, with the remaining hypotensive effect being small and comparable between strains (Pstrain=1.0). This suggests that vagally induced reductions in cardiac output were responsible for the hypotension. Chronic intracerebroventricularly infused rilmenidine reduced BP from baseline marginally in BPH/2J mice during the dark (active) period (-6.5 ± 2 mmHg; P=0.006). Chronic orally administered rilmenidine (1-12 mg/kg per day) also had minimal effect on 24-h BP in both strains (P>0.16). The sympathetic vasomotor inhibitory effect of rilmenidine is minimal in both strains and similar in hypertensive BPH/2J and BPN/3J mice. Thus, hypertension in BPH/2J mice is not likely mediated by greater neuronal activity in the RVLM, and agents such as rilmenidine would be an ineffective treatment for this form of neurogenic hypertension.

  7. Rumination, distraction and mindful self-focus: effects on mood, dysfunctional attitudes and cortisol stress response.

    PubMed

    Kuehner, C; Huffziger, S; Liebsch, K

    2009-02-01

    Although aggravating effects of rumination on dysfunctional cognitions and endocrine stress responses have been proposed, experimental studies testing these assumptions are lacking. In parallel, mindfulness theory suggests beneficial effects of mindfulness on dysfunctional cognitions. This study aimed to investigate the effects of induced rumination, distraction and mindful self-focus on mood and dysfunctional attitudes and to assess the possible impact of induced rumination on participants' cortisol responses. Sixty university students were subjected to negative mood induction and subsequently randomly assigned to a rumination, distraction or mindful self-focus condition. The latter included statements focusing on self-acceptance and awareness of the breath. Four saliva cortisol samples were selected during the session. Compared to induced rumination, distraction showed a clear beneficial effect on the course of dysphoric mood, whereas a mindful self-focus did not. In contrast to distraction and mindful self-focus, participants induced to ruminate showed significant increases in dysfunctional attitudes from baseline to post-induction. Although rumination was not itself linked to higher cortisol responses, participants scoring high on the Beck Depression Inventory (BDI)-II who were induced to ruminate showed a smaller decrease in cortisol levels than those scoring low on the BDI-II. This study indicates that rumination as a dysfunctional mode of cognitive processing is able to maintain depression-linked dysfunctional thought content. Furthermore, our study revealed preliminary indications for a link between induced rumination and the cortisol stress response in vulnerable individuals.

  8. Autonomic control of heart rate during orthostasis and the importance of orthostatic-tachycardia in the snake Python molurus.

    PubMed

    Armelin, Vinicius Araújo; da Silva Braga, Victor Hugo; Abe, Augusto Shinya; Rantin, Francisco Tadeu; Florindo, Luiz Henrique

    2014-10-01

    Orthostasis dramatically influences the hemodynamics of terrestrial vertebrates, especially large and elongated animals such as snakes. When these animals assume a vertical orientation, gravity tends to reduce venous return, cardiac filling, cardiac output and blood pressure to the anterior regions of the body. The hypotension triggers physiological responses, which generally include vasomotor adjustments and tachycardia to normalize blood pressure. While some studies have focused on understanding the regulation of these vasomotor adjustments in ectothermic vertebrates, little is known about regulation and the importance of heart rate in these animals during orthostasis. We acquired heart rate and carotid pulse pressure (P PC) in pythons in their horizontal position, and during 30 and 60° inclinations while the animals were either untreated (control) or upon muscarinic cholinoceptor blockade and a double autonomic blockade. Double autonomic blockade completely eradicated the orthostatic-tachycardia, and without this adjustment, the P PC reduction caused by the tilts became higher than that which was observed in untreated animals. On the other hand, post-inclinatory vasomotor adjustments appeared to be of negligible importance in counterbalancing the hemodynamic effects of gravity. Finally, calculations of cardiac autonomic tones at each position revealed that the orthostatic-tachycardia is almost completely elicited by a withdrawal of vagal drive.

  9. Vasomotor response of the human face: laser-Doppler measurements during mild hypo- and hyperthermia.

    PubMed

    Rasch, W; Cabanac, M

    1993-04-01

    The skin of the face is reputed not to vasoconstrict in response to cold stress because the face skin temperature remains steady during hypothermia. The purpose of the present work was to measure the vasomotor response of the human face to whole-body hypothermia, and to compare it with hyperthermia. Six male subjects were immersed in cold and in warm water to obtain the two conditions. Skin blood flow, evaporation, and skin temperature (Tsk) were recorded in three loci of the face, the forehead, the infra orbital area, and the cheek. Tympanic (Tty) and oesophageal (Toes) temperatures were also recorded during the different thermal states. Normothermic measurements served as control. Blood flow was recorded with a laser-Doppler flowmeter, evaporation measured with an evaporimeter. Face Tsk remained stable between normo-, hypo-, and hyperthermia. Facial blood flow, however, did not follow the same pattern. The facial blood flow remained at minimal vasoconstricted level when the subjects' condition was changed from normo- to hypothermia. When the condition changed from hypo- to hyperthermia a 3 to 9-fold increase in the blood flow was recorded. From these results it was concluded that a vasoconstriction seems to be the general vasomotor state in the face during normothermia.

  10. History of vasomotor symptoms, extent of coronary artery disease, and clinical outcomes after acute coronary syndrome in postmenopausal women.

    PubMed

    Ferri, Luca A; Morici, Nuccia; Bassanelli, Giorgio; Franco, Nicoletta; Misuraca, Leonardo; Lenatti, Laura; Jacono, Emilia Lo; Leuzzi, Chiara; Corrada, Elena; Aranzulla, Tiziana C; Colombo, Delia; Cagnacci, Angelo; Prati, Francesco; Savonitto, Stefano

    2018-06-01

    Vasomotor symptoms (VMS) during menopausal transition have been linked to a higher burden of cardiovascular risk factors, subclinical vascular disease, and subsequent vascular events. We aim to investigate the association of VMS with the extent of coronary disease and their prognostic role after an acute coronary syndrome. The Ladies Acute Coronary Syndrome study enrolled consecutive women with an acute coronary syndrome undergoing coronary angiography. A menopause questionnaire was administered during admission. Angiographic data underwent corelab analysis. Six out of 10 enrolling centers participated in 1-year follow-up. Outcome data included the composite endpoint of all-cause mortality, recurrent myocardial infarction, stroke, and rehospitalization for cardiovascular causes within 1 year. Of the 415 women with available angiographic corelab analysis, 373 (90%) had complete 1-year follow-up. Among them, 202 women had had VMS during menopausal transition. These women had the same mean age at menopause as those without VMS (50 years in both groups), but were younger at presentation (median age 71 vs 76 years; P < 0.001), despite a more favorable cardiovascular risk profile (chronic kidney dysfunction 4.5% vs 15.9%; P = 0.001; prior cerebrovascular disease 4.5 vs 12.2%; P = 0.018). Extent of coronary disease at angiography was similar between groups (mean Gensini score 49 vs 51; P = 0.6; mean SYNTAX score 14 vs 16; P = 0.3). Overall cardiovascular events at 1 year did not differ between groups (19% vs 22%; P = 0.5). In postmenopausal women with an acute coronary syndrome, a history of VMS was associated with younger age at presentation, despite a lower vascular disease burden and similar angiographically defined coronary disease as compared with women without VMS. No difference could be found in terms of overall clinical outcomes. These results should be interpreted cautiously as all analyses were unadjusted and did not account for risk factor differences between women with and without a history of VMS.

  11. Does stress induce bowel dysfunction?

    PubMed

    Chang, Yu-Ming; El-Zaatari, Mohamad; Kao, John Y

    2014-08-01

    Psychological stress is known to induce somatic symptoms. Classically, many gut physiological responses to stress are mediated by the hypothalamus-pituitary-adrenal axis. There is, however, a growing body of evidence of stress-induced corticotrophin-releasing factor (CRF) release causing bowel dysfunction through multiple pathways, either through the HPA axis, the autonomic nervous systems, or directly on the bowel itself. In addition, recent findings of CRF influencing the composition of gut microbiota lend support for the use of probiotics, antibiotics, and other microbiota-altering agents as potential therapeutic measures in stress-induced bowel dysfunction.

  12. Menopausal quality of life: RCT of yoga, exercise, and omega-3 supplements.

    PubMed

    Reed, Susan D; Guthrie, Katherine A; Newton, Katherine M; Anderson, Garnet L; Booth-LaForce, Cathryn; Caan, Bette; Carpenter, Janet S; Cohen, Lee S; Dunn, Andrea L; Ensrud, Kristine E; Freeman, Ellen W; Hunt, Julie R; Joffe, Hadine; Larson, Joseph C; Learman, Lee A; Rothenberg, Robin; Seguin, Rebecca A; Sherman, Karen J; Sternfeld, Barbara S; LaCroix, Andrea Z

    2014-03-01

    The purpose of this study was to determine the efficacy of 3 nonhormonal therapies for the improvement of menopause-related quality of life in women with vasomotor symptoms. We conducted a 12-week 3 × 2 randomized, controlled, factorial design trial. Peri- and postmenopausal women, 40-62 years old, were assigned randomly to yoga (n = 107), exercise (n = 106), or usual activity (n = 142) and also assigned randomly to a double-blind comparison of omega-3 (n = 177) or placebo (n = 178) capsules. We performed the following interventions: (1) weekly 90-minute yoga classes with daily at-home practice, (2) individualized facility-based aerobic exercise training 3 times/week, and (3) 0.615 g omega-3 supplement, 3 times/day. The outcomes were assessed with the following scores: Menopausal Quality of Life Questionnaire (MENQOL) total and domain (vasomotor symptoms, psychosocial, physical and sexual). Among 355 randomly assigned women who average age was 54.7 years, 338 women (95%) completed 12-week assessments. Mean baseline vasomotor symptoms frequency was 7.6/day, and the mean baseline total MENQOL score was 3.8 (range, 1-8 from better to worse) with no between-group differences. For yoga compared to usual activity, baseline to 12-week improvements were seen for MENQOL total -0.3 (95% confidence interval, -0.6 to 0; P = .02), vasomotor symptom domain (P = .02), and sexuality domain (P = .03) scores. For women who underwent exercise and omega-3 therapy compared with control subjects, improvements in baseline to 12-week total MENQOL scores were not observed. Exercise showed benefit in the MENQOL physical domain score at 12 weeks (P = .02). All women become menopausal, and many of them seek medical advice on ways to improve quality of life; little evidence-based information exists. We found that, among healthy sedentary menopausal women, yoga appears to improve menopausal quality of life; the clinical significance of our finding is uncertain because of the modest effect. Copyright © 2014 Mosby, Inc. All rights reserved.

  13. Coronary vasomotor abnormalities in insulin-resistant individuals.

    PubMed

    Quiñones, Manuel J; Hernandez-Pampaloni, Miguel; Schelbert, Heinrich; Bulnes-Enriquez, Isabel; Jimenez, Xochitl; Hernandez, Gustavo; De La Rosa, Roxana; Chon, Yun; Yang, Huiying; Nicholas, Susanne B; Modilevsky, Tamara; Yu, Katherine; Van Herle, Katja; Castellani, Lawrence W; Elashoff, Robert; Hsueh, Willa A

    2004-05-04

    Insulin resistance is a metabolic spectrum that progresses from hyperinsulinemia to the metabolic syndrome, impaired glucose tolerance, and finally type 2 diabetes mellitus. It is unclear when vascular abnormalities begin in this spectrum of metabolic effects. To evaluate the association of insulin resistance with the presence and reversibility of coronary vasomotor abnormalities in young adults at low cardiovascular risk. Cross-sectional study followed by prospective, open-label treatment study. University hospital. 50 insulin-resistant and 22 insulin-sensitive, age-matched Mexican-American participants without glucose intolerance or traditional risk factors for or evidence of coronary artery disease. 3 months of thiazolidinedione therapy for 25 insulin-resistant patients. Glucose infusion rate in response to insulin infusion was used to define insulin resistance (glucose infusion rate < or = 4.00 mg/kg of body weight per minute [range, 0.90 to 3.96 mg/kg per minute]) and insulin sensitivity (glucose infusion rate > or = 7.50 mg/kg per minute [range, 7.52 to 13.92 mg/kg per minute]). Myocardial blood flow was measured by using positron emission tomography at rest, during cold pressor test (largely endothelium-dependent), and after dipyridamole administration (largely vascular smooth muscle-dependent). Myocardial blood flow responses to dipyridamole were similar in the insulin-sensitive and insulin-resistant groups. However, myocardial blood flow response to cold pressor test increased by 47.6% from resting values in insulin-sensitive patients and by 14.4% in insulin-resistant patients. During thiazolidinedione therapy in a subgroup of insulin-resistant patients, insulin sensitivity improved, fasting plasma insulin levels decreased, and myocardial blood flow responses to cold pressor test normalized. The study was not randomized, and it included only 1 ethnic group. Insulin-resistant patients who do not have hypercholesterolemia or hypertension and do not smoke manifest coronary vasomotor abnormalities. Insulin-sensitizing thiazolidinedione therapy normalized these abnormalities. These results suggest an association between insulin resistance and abnormal coronary vasomotor function, a relationship that requires confirmation in larger studies.

  14. Hormonal changes during menopause.

    PubMed

    Al-Azzawi, Farook; Palacios, Santiago

    2009-06-20

    Ovarian senescence occurs gradually during the fourth and fifth decades of life, leading to menopause at an average age of about 51 years. This senescence results in a changing hormonal milieu, with decreases in the levels of estrogens and androgens. Similar changes may be induced by surgical menopause (bilateral oophorectomy) or ovarian failure resulting from cancer treatment. The declining levels of estrogens and androgens affect many tissues of the body and can produce a variety of signs and symptoms, including vasomotor symptoms, decreased bone density, changes in mood and energy, loss of pubic hair and changes in the genital tissues, and effects on sexual function. Accurate measurement of testosterone levels in postmenopausal women requires methods that are validated in the lower ranges of testosterone level observed in this population.

  15. Bilirubin-Induced Neurological Dysfunction: A Clinico-Radiological-Neurophysiological Correlation in 30 Consecutive Children.

    PubMed

    van Toorn, Ronald; Brink, Philip; Smith, Johan; Ackermann, Christelle; Solomons, Regan

    2016-12-01

    The clinical expression of bilirubin-induced neurological dysfunction varies according to severity and location of the disease. Definitions have been proposed to describe different bilirubin-induced neurological dysfunction subtypes. Our objective was to describe the severity and clinico-radiological-neurophysiological correlation in 30 consecutive children with bilirubin-induced neurological dysfunction seen over a period of 5 years. Thirty children exposed to acute neonatal bilirubin encephalopathy were included in the study. The mean peak total serum bilirubin level was 625 μmol/L (range 480-900 μmol/L). Acoustic brainstem responses were abnormal in 73% (n = 22). Pallidal hyperintensity was observed on magnetic resonance imaging in 20 children. Peak total serum bilirubin levels correlated with motor severity (P = .03). Children with severe motor impairment were likely to manifest severe auditory neuropathy (P < .01). We found that in a resource-constrained setting, classical kernicterus was the most common bilirubin-induced neurological dysfunction subtype, and the majority of children had abnormal acoustic brainstem responses and magnetic resonance imaging. © The Author(s) 2016.

  16. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction

    PubMed Central

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.

    2017-01-01

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293

  17. Pravastatin and endothelium dependent vasomotion after coronary angioplasty: the PREFACE trial.

    PubMed

    Mulder, H J; Schalij, M J; Kauer, B; Visser, R F; van Dijkman, P R; Jukema, J W; Zwinderman, A H; Bruschke, A V

    2001-11-01

    To test the hypothesis that the 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor pravastatin ameliorates endothelium mediated responses of dilated coronary segments: the PREFACE (pravastatin related effects following angioplasty on coronary endothelium) trial. A double blind, randomised, placebo controlled, multicentre study. Four hospitals in the Netherlands. 63 non-smoking, non-hypercholesterolaemic patients scheduled for elective balloon angioplasty (pravastatin 34, placebo 29). The effects of three months of pravastatin treatment (40 mg daily) on endothelium dependent vasomotor function were studied. Balloon angioplasty was undertaken one month after randomisation, and coronary vasomotor function tests using acetylcholine were performed two months after balloon angioplasty. The angiograms were analysed quantitatively. The efficacy measure was the acetylcholine induced change in mean arterial diameter, determined in the dilated segment and in an angiographically normal segment of an adjacent non-manipulated coronary artery. Increasing acetylcholine doses produced vasoconstriction in the dilated segments (p = 0.004) but not in the normal segments. Pravastatin did not affect the vascular response to acetylcholine in either the dilated segments (p = 0.09) or the non-dilated sites. Endothelium dependent vasomotion in normal segments was correlated with that in dilated segments (r = 0.47, p < 0.001). There were fewer procedure related events in the pravastatin group than in the placebo group (p < 0.05). Endothelium dependent vasomotion in normal segments is correlated with that in dilated segments. A significant beneficial effect of pravastatin on endothelial function could not be shown, but in the dilated segments there was a trend towards a beneficial treatment effect in the pravastatin group.

  18. Hypoxia inducible factor 1 (HIF-1) and cardioprotection

    PubMed Central

    Tekin, Demet; Dursun, Ali D; Xi, Lei

    2010-01-01

    Since its discovery in early 1990s, hypoxia inducible factor 1 (HIF-1) has been increasingly recognized for its key role in transcriptional control of more than a hundred genes that regulate a wide-spectrum of cellular functional events, including angiogenesis, vasomotor control, glucose and energy metabolism, erythropoiesis, iron homeostasis, pH regulation, cell proliferation and viability. Evidence accumulated during the past 7 years suggests a critical role for HIF-1α in mediating cardioprotection. The purpose of our present article is to provide an updated overview on this important regulator of gene expression in the cellular stress-responsive and adaptive process. We have particularly emphasized the involvement of HIF-1 in the induction of cardioprotective molecules, such as inducible nitric oxide synthase (iNOS), hemeoxygenase 1 (HO-1), and erythropoietin (EPO), which in turn alleviate myocardial damages caused by harmful events such as ischemia-reperfusion injury. Despite these advances, further in-depth studies are needed to elucidate the possible coordination or interaction between HIF-1α and other key transcription factors in regulating protein expression that leads to cardioprotection. PMID:20711226

  19. Impact of three-phase bone scintigraphy on the diagnosis and treatment of complex regional pain syndrome type I or reflex sympathetic dystrophy.

    PubMed

    Shehab, Dia; Elgazzar, Abdelhamid; Collier, B David; Naddaf, Sleiman; Al-Jarallah, Khalid; Omar, Abdelmoneim; Al-Mutairy, Moudi

    2006-01-01

    To determine the impact of three-phase bone scintigraphy (TPBS) on the diagnosis and management of complex regional pain syndrome type I (CRPSI) or reflex sympathetic dystrophy (RSD). Twenty consecutive patients with a recent clinical evidence of CRPSI were referred for TPBS as part of their routine management plan. All patients underwent neurological examinations with special attention to the evaluation of clinical features of vasomotor, sudomotor, motor and sensory dysfunction. Patients were followed prospectively. When both the clinical and TPBS results supported the diagnosis of CRPSI, patients were started on treatment. Of the 20 patients, TPBS supported the diagnosis of RSD in 9 who were treated with steroids and physiotherapy. Complete follow-up was available for 7 of them and all had a satisfactory response to treatment. For the remaining 11 patients RSD was diagnosed clinically but not confirmed by TPBS. On follow-up there was no evidence that TPBS failed to identify RSD in these 11 patients. The results indicate that TPBS confirmed the clinical diagnosis of RSD, and, more importantly, had a significant impact on its management.

  20. Intravascular hemolysis and the pathophysiology of sickle cell disease

    PubMed Central

    Kato, Gregory J.; Steinberg, Martin H.; Gladwin, Mark T.

    2017-01-01

    Hemolysis is a fundamental feature of sickle cell anemia that contributes to its pathophysiology and phenotypic variability. Decompartmentalized hemoglobin, arginase 1, asymmetric dimethylarginine, and adenine nucleotides are all products of hemolysis that promote vasomotor dysfunction, proliferative vasculopathy, and a multitude of clinical complications of pulmonary and systemic vasculopathy, including pulmonary hypertension, leg ulcers, priapism, chronic kidney disease, and large-artery ischemic stroke. Nitric oxide (NO) is inactivated by cell-free hemoglobin in a dioxygenation reaction that also oxidizes hemoglobin to methemoglobin, a non–oxygen-binding form of hemoglobin that readily loses heme. Circulating hemoglobin and heme represent erythrocytic danger-associated molecular pattern (eDAMP) molecules, which activate the innate immune system and endothelium to an inflammatory, proadhesive state that promotes sickle vaso-occlusion and acute lung injury in murine models of sickle cell disease. Intravascular hemolysis can impair NO bioavailability and cause oxidative stress, altering redox balance and amplifying physiological processes that govern blood flow, hemostasis, inflammation, and angiogenesis. These pathological responses promote regional vasoconstriction and subsequent blood vessel remodeling. Thus, intravascular hemolysis represents an intrinsic mechanism for human vascular disease that manifests clinical complications in sickle cell disease and other chronic hereditary or acquired hemolytic anemias. PMID:28248201

  1. Role of ivabradine in management of stable angina in patients with different clinical profiles

    PubMed Central

    Kaski, Juan Carlos; Gloekler, Steffen; Ferrari, Roberto; Fox, Kim; Lévy, Bernard I; Komajda, Michel; Vardas, Panos; Camici, Paolo G

    2018-01-01

    In chronic stable angina, elevated heart rate contributes to the development of symptoms and signs of myocardial ischaemia by increasing myocardial oxygen demand and reducing diastolic perfusion time. Accordingly, heart rate reduction is a well-known strategy for improving both symptoms of myocardial ischaemia and quality of life (QOL). The heart rate-reducing agent ivabradine, a direct and selective inhibitor of the I f current, decreases myocardial oxygen consumption while increasing diastolic time, without affecting myocardial contractility or coronary vasomotor tone. Ivabradine is indicated for treatment of stable angina and chronic heart failure (HF). This review examines available evidence regarding the efficacy and safety of ivabradine in stable angina, when used as monotherapy or in combination with beta-blockers, in particular angina subgroups and in patients with stable angina with left ventricular systolic dysfunction (LVSD) or HF. Trials involving more than 45 000 patients receiving treatment with ivabradine have shown that this agent has antianginal and anti-ischaemic effects, regardless of age, sex, severity of angina, revascularisation status or comorbidities. This heart rate-lowering agent might also improve prognosis, reduce hospitalisation rates and improve QOL in angina patients with chronic HF and LVSD. PMID:29632676

  2. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    PubMed

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  3. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomoyuki; Saotome, Masao, E-mail: msaotome@hama-med.ac.jp; Nobuhara, Mamoru

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}),more » they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS failed to improve palmitate-induced insulin-resistance. • Mitochondrial dysfunction by lipid metabolites would induce insulin-resistance.« less

  4. Vasomotor and physical menopausal symptoms are associated with sleep quality.

    PubMed

    Kim, Min-Ju; Yim, Gyeyoon; Park, Hyun-Young

    2018-01-01

    Sleep disturbance is one of the common complaints in menopause. This study investigated the relationship between menopausal symptoms and sleep quality in middle-aged women. This cross-sectional observational study involved 634 women aged 44-56 years attending a healthcare center at Kangbuk Samsung Hospitals. Sleep quality was measured using the Pittsburgh Sleep Quality Index (PSQI).Multiple linear regression analysis was performed to assess the associations between Menopause-specific Quality of Life (MENQOL) scores and PSQI scores and Menopause-specific Quality of Life (MENQOL)scores. The mean PSQI score was 3.6±2.3, and the rates of poor sleep quality(PSQI score > 5) in premenopausal, perimenopausal, and postmenopausal women were 14.4%, 18.2%, and 30.2%, respectively. Total PSQI score, specifically the sleep latency, habitual sleep efficiency and sleep disturbances scores, were significantly increased in postmenopausal women. Multiple linear regression analysis adjusted for age, BMI, hypertension, diabetes, smoking, marital status, family income, education, employment status, parity, physical activity, depression symptoms, perceived stress and menopausal status showed that higher PSQI score was positively correlated with higher vasomotor(ß = 0.240, P = 0.020)and physical(ß = 0.572, P<0.001) scores. Vasomotor and physical menopause symptoms was related to poor sleep quality. Effective management strategies aimed at reducing menopausal symptoms may improve sleep quality among women around the time of menopause.

  5. Zolpidem efficacy and safety in disorders of consciousness.

    PubMed

    Machado, Calixto; Estévez, Mario; Rodriguez-Rojas, Rafael

    2018-01-01

    Sutton and Clauss presented a detailed review about the effectiveness of zolpidem, discussing recoveries from brain damage due to strokes, trauma and hypoxia. A significant finding has been the unexpected and paradoxical increment of brain activity in vegetative state/unresponsive wakefulness syndrome (VS/UWS). On the contrary, zolpidem is considered one of the best sleep inducers in normal subjects. We have studied series of VS/UWS cases after zolpidem intake. We have demonstrated EEG activation, increment of BOLD signal in different brain regions, and an autonomic influence, mainly characterized by a vagolytic chronotropic effect without a significant increment of the vasomotor sympathetic tone. As this autonomic imbalance might induce cardio- circulatory complications, which we didn't find in any of our patients, we suggest developing future trials under control of physiological indices by bedside monitoring. However, considering that the paradoxical arousing zolpidem effect might be certainly related to brain function improvement, we agree with Sutton and Clauss that future multicentre and multinational clinical trials should be developed, but under control of physiological indices.

  6. Cyclic phosphatidic acid treatment suppress cuprizone-induced demyelination and motor dysfunction in mice.

    PubMed

    Yamamoto, Shinji; Gotoh, Mari; Kawamura, Yuuki; Yamashina, Kota; Yagishita, Sosuke; Awaji, Takeo; Tanaka, Motomu; Maruyama, Kei; Murakami-Murofushi, Kimiko; Yoshikawa, Keisuke

    2014-10-15

    Multiple sclerosis is a chronic demyelinating disease of the central nervous system leading to progressive cognitive and motor dysfunction, which is characterized by neuroinflammation, demyelination, astrogliosis, loss of oligodendrocytes, and axonal pathologies. Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. In this study, we investigated the effects of cPA on cuprizone-induced demyelination, which is a model of multiple sclerosis. Mice were fed a diet containing 0.2% cuprizone for 5 weeks, which induces severe demyelination, astrocyte and microglial activation, and motor dysfunction. Simultaneous administration of cPA effectively attenuated cuprizone-induced demyelination, glial activation, and motor dysfunction. These data indicate that cPA may be a useful treatment to reduce the extent of demyelination and the severity of motor dysfunction in multiple sclerosis. cPA is a potential lead compound in the development of drugs for the treatment of this devastating disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-Uncoupling in Obesity

    PubMed Central

    2014-01-01

    Background Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Methods Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II-/-) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. Results HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II-/- obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which was associated with reduced p38mapk activation in aortas of the Arg-II-/- obese mice. Moreover, overexpression of Arg-II in human endothelial cells caused eNOS-uncoupling and augmented p38mapk activation. The Arg-II-induced eNOS-uncoupling was prevented by silencing p38mapk. Furthermore, pharmacological inhibition of p38mapk recouples eNOS in isolated aortas from WT obese mice. Conclusions Taking together, we demonstrate here for the first time that Arg-II causes eNOS-uncoupling through activation of p38 mapk in HFD-induced obesity. PMID:25034973

  8. Perturbations in Endothelial Dysfunction-Associated Pathways in the Nitrofen-Induced Congenital Diaphragmatic Hernia Model.

    PubMed

    Zhaorigetu, Siqin; Bair, Henry; Lu, Jonathan; Jin, Di; Olson, Scott D; Harting, Matthew T

    2018-01-01

    Although it is well known that nitrofen induces congenital diaphragmatic hernia (CDH), including CDH-associated lung hypoplasia and pulmonary hypertension (PH) in rodents, the mechanism of pathogenesis remains largely unclear. It has been reported that pulmonary artery (PA) endothelial cell (EC) dysfunction contributes to the development of PH in CDH. Thus, we hypothesized that there is significant alteration of endothelial dysfunction-associated proteins in nitrofen-induced CDH PAs. Pregnant SD rats received either nitrofen or olive oil on gestational day 9.5. The newborn rats were sacrificed and divided into a CDH (n = 81) and a control (n = 23) group. After PA isolation, the expression of PA endothelial dysfunction-associated proteins was assessed on Western blot and immunostaining. We demonstrate that the expression of C-reactive protein and endothelin-1 and its receptors, ETA and ETB, were significantly increased in the CDH PAs. Levels of phosphorylated myosin light chain were significantly elevated, but those of phosphorylated endothelial nitric oxide synthase, caveolin-1, and mechanistic target of rapamycin were significantly decreased in the CDH PAs. In this work, we elucidate alterations in the expression of endothelial dysfunction-associated proteins specific to nitrofen-induced CDH rodent PAs, thereby advancing our understanding of the critical role of endothelial dysfunction-associated pathways in the pathogenesis of nitrofen-induced CDH. © 2017 S. Karger AG, Basel.

  9. Post-Nasal Drip

    MedlinePlus

    ... the interior of the nose with a fiberoptic scope and CAT scan x-rays. If medication does not relieve the problem, surgery may be recommended. Vasomotor Rhinitis describes ... Policy Terms of Use © ...

  10. Prevalence of migraine and Raynaud phenomenon in women with apical ballooning syndrome (Takotsubo or stress cardiomyopathy).

    PubMed

    Scantlebury, Dawn C; Prasad, Abhiram; Rabinstein, Alejandro A; Best, Patricia J M

    2013-05-01

    Apical ballooning syndrome (ABS), migraine, and Raynaud phenomenon are characterized by female predominance, identifiable triggers, and, likely, vascular dysfunction. Estrogen deficiency, such as in menopause, is considered to be a predisposing factor for ABS. We investigated the association of ABS with migraine, Raynaud phenomenon, and hormonal factors. We compared 25 consecutive residents (all women) of Olmsted County, Minnesota, presenting with ABS, to 2 age-matched control groups from the same community: 25 women presenting with ST-segment elevation myocardial infarction (STEMI), matched for the index ABS event date, and 50 women with neither diagnosis. The patients with ABS were more likely to have a migraine history (11 [44%] vs 4 [16%] STEMI controls, p = 0.031, and vs 6 [12%] population controls, p = 0.003), and "possible migraine" (including other headache syndromes suggestive of migraine; 15 [60%] vs 6 [24%] STEMI controls, p = 0.012; and vs 12 [24%] population controls, p = 0.003). Of the patients with ABS, 4 (16%) had Raynaud phenomenon compared to no STEMI controls and 1 (2%) population control (p = 0.038). No differences were present in parity, menopausal status, years since the onset of menopause, and frequency of oophorectomy. Current hormonal replacement therapy use was greater in those with ABS than in the population controls: 4 (16%) versus none (p = 0.002). In conclusion, the association of ABS with migraine and Raynaud phenomenon supports a role of vasomotor dysfunction in the pathogenesis of ABS. The absence of an association with reproductive characteristics and the finding that ABS occurred despite exogenous hormonal use in some patients suggests that estrogen deficiency per se is not the primary factor in the pathophysiology. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Remodeling of Aorta Extracellular Matrix as a Result of Transient High Oxygen Exposure in Newborn Rats: Implication for Arterial Rigidity and Hypertension Risk

    PubMed Central

    Castro, Michele M.; Cloutier, Anik; Bertagnolli, Mariane; Sartelet, Hervé; Germain, Nathalie; Comte, Blandine; Schulz, Richard; DeBlois, Denis; Nuyt, Anne Monique

    2014-01-01

    Neonatal high-oxygen exposure leads to elevated blood pressure, microvascular rarefaction, vascular dysfunction and arterial (aorta) rigidity in adult rats. Whether structural changes are present in the matrix of aorta wall is unknown. Considering that elastin synthesis peaks in late fetal life in humans, and early postnatal life in rodents, we postulated that transient neonatal high-oxygen exposure can trigger premature vascular remodelling. Sprague Dawley rat pups were exposed from days 3 to 10 after birth to 80% oxygen (vs. room air control) and were studied at 4 weeks. Blood pressure and vasomotor response of the aorta to angiotensin II and to the acetylcholine analogue carbachol were not different between groups. Vascular superoxide anion production was similar between groups. There was no difference between groups in aortic cross sectional area, smooth muscle cell number or media/lumen ratio. In oxygen-exposed rats, aorta elastin/collagen content ratio was significantly decreased, the expression of elastinolytic cathepsin S was increased whereas collagenolytic cathepsin K was decreased. By immunofluorescence we observed an increase in MMP-2 and TIMP-1 staining in aortas of oxygen-exposed rats whereas TIMP-2 staining was reduced, indicating a shift in the balance towards degradation of the extra-cellular matrix and increased deposition of collagen. There was no significant difference in MMP-2 activity between groups as determined by gelatin zymography. Overall, these findings indicate that transient neonatal high oxygen exposure leads to vascular wall alterations (decreased elastin/collagen ratio and a shift in the balance towards increased deposition of collagen) which are associated with increased rigidity. Importantly, these changes are present prior to the elevation of blood pressure and vascular dysfunction in this model, and may therefore be contributory. PMID:24743169

  12. Bone marrow mesenchymal stem cells ameliorate inflammatory factor-induced dysfunction of INS-1 cells on chip.

    PubMed

    Sun, Yu; Yao, Zhina; Lin, Peng; Hou, Xinguo; Chen, Li

    2014-05-01

    Using a microfluidic chip, we have investigated whether bone marrow mesenchymal stem cells (BM-MSCs) could ameliorate IL-1β/IFN-γ-induced dysfunction of INS-1 cells. BM-MSCs were obtained from diabetes mellitus patients and their cell surface antigen expression profiles were analyzed by flow cytometric. INS-1 cells were cocultured with BM-MSCs on a microfluidic chip with persistent perfusion of medium containing 1 ng/mL IL-1β and 2.5 U/mL IFN-γ for 72 h. BM-MSCs could partially rescue INS-1 cells from cytokine-induced dysfunction and ameliorate the expression of insulin and PDX-1 gene in INS-1 cells. Thus BM-MSCs can be viewed as a promising stem cell source to depress inflammatory factor-induced dysfunction of pancreatic β cells in diabetic patients. © 2014 International Federation for Cell Biology.

  13. Urtica dioica extract attenuates depressive like behavior and associative memory dysfunction in dexamethasone induced diabetic mice.

    PubMed

    Patel, Sita Sharan; Udayabanu, Malairaman

    2014-03-01

    Evidences suggest that glucocorticoids results in depression and is a risk factor for type 2 diabetes. Further diabetes induces oxidative stress and hippocampal dysfunction resulting in cognitive decline. Traditionally Urtica dioica has been used for diabetes mellitus and cognitive dysfunction. The present study investigated the effect of the hydroalcoholic extract of Urtica dioica leaves (50 and 100 mg/kg, p.o.) in dexamethasone (1 mg/kg, i.m.) induced diabetes and its associated complications such as depressive like behavior and cognitive dysfunction. We observed that mice administered with chronic dexamethasone resulted in hypercortisolemia, oxidative stress, depressive like behavior, cognitive impairment, hyperglycemia with reduced body weight, increased water intake and decreased hippocampal glucose transporter-4 (GLUT4) mRNA expression. Urtica dioica significantly reduced hyperglycemia, plasma corticosterone, oxidative stress and depressive like behavior as well as improved associative memory and hippocampal GLUT4 mRNA expression comparable to rosiglitazone (5 mg/kg, p.o.). Further, Urtica dioica insignificantly improved spatial memory and serum insulin. In conclusion, Urtica dioica reversed dexamethasone induced hyperglycemia and its associated complications such as depressive like behavior and cognitive dysfunction.

  14. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms.

    PubMed

    Skelly, Donal T; Griffin, Éadaoin W; Murray, Carol L; Harney, Sarah; O'Boyle, Conor; Hennessy, Edel; Dansereau, Marc-Andre; Nazmi, Arshed; Tortorelli, Lucas; Rawlins, J Nicholas; Bannerman, David M; Cunningham, Colm

    2018-06-06

    Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consoliodation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI -/- -dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.

  15. Endothelium-derived contracting factors mediate the Ang II-induced endothelial dysfunction in the rat aorta: preventive effect of red wine polyphenols.

    PubMed

    Kane, Modou O; Etienne-Selloum, Nelly; Madeira, Soccoro V F; Sarr, Mamadou; Walter, Allison; Dal-Ros, Stéphanie; Schott, Christa; Chataigneau, Thierry; Schini-Kerth, Valérie B

    2010-04-01

    Angiotensin II (Ang II)-induced hypertension is associated with vascular oxidative stress and an endothelial dysfunction. This study examined the role of reactive oxygen species (ROS) and endothelium-derived contracting factors in Ang II-induced endothelial dysfunction and whether these effects are prevented by red wine polyphenols (RWPs), a rich source of natural antioxidants. Rats were infused with Ang II for 14 days. RWPs were administered in the drinking water 1 week before and during the Ang II infusion. Arterial pressure was measured in conscious rats. Vascular reactivity was assessed in organ chambers and cyclooxygenase-1 (COX-1) and COX-2 expression by Western blot and immunofluorescence analyses. Ang II-induced hypertension was associated with blunted endothelium-dependent relaxations and induction of endothelium-dependent contractions in the presence of nitro-L-arginine in response to acetylcholine (Ach). These effects were not affected by the combination of membrane permeant analogs of superoxide dismutase and catalase but were abolished by the thromboxane A(2) (TP) receptor antagonist GR32191B and the COX-2 inhibitor NS-398. The COX-1 inhibitor SC-560 also prevented contractile responses to Ach. Ang II increased the expression of COX-1 and COX-2 in the aortic wall. RWPs prevented Ang II-induced hypertension, endothelial dysfunction, and upregulation of COX-1 and COX-2. Thus, Ang II-induced endothelial dysfunction cannot be explained by an acute formation of ROS reducing the bioavailability of nitric oxide but rather by COX-dependent formation of contracting factors acting on TP receptors. RWPs are able to prevent the Ang II-induced endothelial dysfunction mostly due to their antioxidant properties.

  16. Electrolytes and thermoregulation

    NASA Technical Reports Server (NTRS)

    Nielsen, B.; Greenleaf, J. E.

    1977-01-01

    The influence of ions on temperature is studied for cases where the changes in ionic concentrations are induced by direct infusion or injection of electrolyte solutions into the cerebral ventricles or into specific areas of brain tissue; intravenous infusion or injection; eating food or drinking solutions of different ionic composition; and heat or exercise dehydration. It is shown that introduction of Na(+) and Ca(++) into the cerebral ventricles or into the venous system affects temperature regulation. It appears that the specific action of these ions is different from their osmotic effects. It is unlikely that their action is localized to the thermoregulatory centers in the brain. The infusion experiments demonstrate that the changes in sodium balance occurring during exercise and heat stress are large enough to affect sweat gland function and vasomotor activity.

  17. Tolerance and Exhaustion: Defining Mechanisms of T cell Dysfunction

    PubMed Central

    Schietinger, Andrea; Greenberg, Philip D.

    2013-01-01

    CD8 T cell activation and differentiation is tightly controlled, and dependent on the context in which naïve T cells encounter antigen, can either result in functional memory or T cell dysfunction, including exhaustion, tolerance, anergy, or senescence. With the identification of phenotypic and functional traits shared in different settings of T cell dysfunction, distinctions between such dysfunctional `states' have become blurred. Here, we discuss distinct states of CD8 T cell dysfunction, with emphasis on (i) T cell tolerance to self-antigens (self-tolerance), (ii) T cell exhaustion during chronic infections, and (iii) tumor-induced T cell dysfunction. We highlight recent findings on cellular and molecular characteristics defining these states, cell-intrinsic regulatory mechanisms that induce and maintain them, and strategies that can lead to their reversal. PMID:24210163

  18. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload.

    PubMed

    Hong, Quan; Qi, Ka; Feng, Zhe; Huang, Zhiyong; Cui, Shaoyuan; Wang, Liyuan; Fu, Bo; Ding, Rui; Yang, Jurong; Chen, Xiangmei; Wu, Di

    2012-05-01

    Uric acid (UA) has proven to be a causal agent in endothelial dysfunction in which ROS production plays an important role. Calcium overload in mitochondria can promote the mitochondrial production of ROS. We hypothesize that calcium transduction in mitochondria contributes to UA-induced endothelial dysfunction. We first demonstrated that high concentrations of UA cause endothelial dysfunction, marked by a reduction in eNOS protein expression and NO release in vitro. We further found that a high concentration of UA increased levels of [Ca2+]mito, total intracellular ROS, H2O2, and mitochondrial O2·-, and Δψmito but not the [Ca2+]cyt level. When the mitochondrial calcium channels NCXmito and MCU were blocked by CGP-37157 and Ru360, respectively, the UA-induced increases in the levels of [Ca2+]mito and total intracellular ROS were significantly reduced. Mitochondrial levels of O2·- and Δψmito were reduced by inhibition of NCXmito but not of MCU. Moreover, inhibition of NCXmito, but not of MCU, blocked the UA-induced reductions in eNOS protein expression and NO release. The increased generation of mitochondrial O2·- induced by a high concentration of UA is triggered by mitochondrial calcium overload and ultimately leads to endothelial dysfunction. In this process, the activation of NCXmito is the major cause of the influx of calcium into mitochondria. Our results provide a new pathophysiological mechanism for UA-induced endothelial dysfunction and may offer a new therapeutic target for clinicians. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Menstrual dysfunction in athletes: assessment and treatment.

    PubMed

    Patterson, D F

    1995-01-01

    The reported incidence of exercise induced menstrual dysfunction varies among adolescent athletes from 12% to 66%. Women who experience amenorrhea associated with exercise are at risk for irretrievable bone mineral density loss and increased rate of stress fractures. Nurses should provide information to parents, coaches, and athletes about changes in exercise intensity and frequency, dietary modifications, and estrogen and progesterone replacement therapy to minimize the sequelae of exercise induced menstrual dysfunction.

  20. Health symptoms during midlife in relation to menopausal transition: British prospective cohort study

    PubMed Central

    Kuh, Diana

    2012-01-01

    Objective To characterise symptoms experienced by women during the transition into natural menopause, to classify women into distinct symptom profiles or trajectories, and to relate these profiles to sociodemographic factors and health behaviours. Design Nationally representative cohort study. Setting England, Scotland, and Wales. Participants 695 women followed-up since birth in 1946 and annually from age 47 to 54 who experienced natural menopause and reported on 20 common health symptoms. Main outcome measure Longitudinal profiles for reported bothersome symptoms. Results Of 20 individual symptoms, 18 formed into four stable symptom groups: psychological, somatic, vasomotor, and sexual discomfort. Using latent class analyses, all except the somatic group of symptoms showed a clear relation with the timing of menopause for some women. A small proportion of women (10%, n=63) had a severe psychological symptom profile that peaked at or in the year after menopause. For vasomotor symptoms, 14% of women (n=83) had the early severe profile that also peaked around early postmenopause and then declined noticeably; 11% (n=67) had the late severe profile of bothersome symptoms that increased rapidly in perimenopause and remained high for four years or more after menopause. Women were less likely to have a profile for severe vasomotor symptoms if they were from a non-manual social class (odds ratio 0.79, 95% confidence interval 0.57 to 1.01) or had degree level qualifications (0.37, 0.18 to 0.77). The 14% of women (n=85) who had the late severe profile for sexual discomfort showed a similar increase in symptoms until menopause, with symptoms persisting after menopause. Married women were more likely to have the late severe or late moderate profile than women of other marital status (2.40, 1.30 to 4.41). Four profiles each were identified for somatic symptoms (mild, moderate, severe, and very severe), although these did not vary by chronological age or age at menopause. Conclusion Profiles for psychological, vasomotor, and sexual discomfort symptoms relative to age at menopause could help health professionals to tailor their advice for women with natural menopause. PMID:22318435

  1. Aerobic exercise for vasomotor menopausal symptoms: A cost-utility analysis based on the Active Women trial.

    PubMed

    Goranitis, Ilias; Bellanca, Leana; Daley, Amanda J; Thomas, Adele; Stokes-Lampard, Helen; Roalfe, Andrea K; Jowett, Sue

    2017-01-01

    To compare the cost-utility of two exercise interventions relative to a control group for vasomotor menopausal symptoms. Economic evaluation taking a UK National Health Service and Personal Social Services perspective and a societal perspective. Primary care. Peri- and postmenopausal women who have not used hormone therapy in the past 3 months and experience ≥ 5 episodes of vasomotor symptoms daily. An individual and a social support-based exercise intervention were evaluated. The former (Exercise-DVD), aimed to prompt exercise with purpose-designed DVD and written materials, whereas the latter (Exercise-Social support) with community exercise social support groups. Costs and outcomes associated with these interventions were compared to those of a control group, who could only have an exercise consultation. An incremental cost-utility analysis was undertaken using bootstrapping to account for the uncertainty around cost-effectiveness point-estimates. Cost per quality-adjusted life-year (QALY). Data for 261 women were available for analysis. Exercise-DVD was the most expensive and least effective intervention. Exercise-Social support was £52 (CIs: £18 to £86) and £18 (CIs: -£68 to £105) more expensive per woman than the control group at 6 and 12 months post-randomisation and led to 0.006 (CIs: -0.002 to 0.014) and 0.013 (CIs: -0.01 to 0.036) more QALYs, resulting in an incremental cost-effectiveness ratio of £8,940 and £1,413 per QALY gained respectively. Exercise-Social support had 80%-90% probability of being cost-effective in the UK context. A societal perspective of analysis and a complete-case analysis led to similar findings. Exercise-Social support resulted in a small gain in health-related quality of life at a marginal additional cost in a context where broader wellbeing and long-term gains associated with exercise and social participation were not captured. Community exercise social support groups are very likely to be cost-effective in the management of vasomotor menopausal symptoms.

  2. Aerobic exercise for vasomotor menopausal symptoms: A cost-utility analysis based on the Active Women trial

    PubMed Central

    Goranitis, Ilias; Bellanca, Leana; Daley, Amanda J.; Thomas, Adele; Stokes-Lampard, Helen; Roalfe, Andrea K.

    2017-01-01

    Objective To compare the cost-utility of two exercise interventions relative to a control group for vasomotor menopausal symptoms. Design Economic evaluation taking a UK National Health Service and Personal Social Services perspective and a societal perspective. Setting Primary care. Population Peri- and postmenopausal women who have not used hormone therapy in the past 3 months and experience ≥ 5 episodes of vasomotor symptoms daily. Methods An individual and a social support-based exercise intervention were evaluated. The former (Exercise-DVD), aimed to prompt exercise with purpose-designed DVD and written materials, whereas the latter (Exercise-Social support) with community exercise social support groups. Costs and outcomes associated with these interventions were compared to those of a control group, who could only have an exercise consultation. An incremental cost-utility analysis was undertaken using bootstrapping to account for the uncertainty around cost-effectiveness point-estimates. Main outcome measure Cost per quality-adjusted life-year (QALY). Results Data for 261 women were available for analysis. Exercise-DVD was the most expensive and least effective intervention. Exercise-Social support was £52 (CIs: £18 to £86) and £18 (CIs: -£68 to £105) more expensive per woman than the control group at 6 and 12 months post-randomisation and led to 0.006 (CIs: -0.002 to 0.014) and 0.013 (CIs: -0.01 to 0.036) more QALYs, resulting in an incremental cost-effectiveness ratio of £8,940 and £1,413 per QALY gained respectively. Exercise-Social support had 80%-90% probability of being cost-effective in the UK context. A societal perspective of analysis and a complete-case analysis led to similar findings. Conclusions Exercise-Social support resulted in a small gain in health-related quality of life at a marginal additional cost in a context where broader wellbeing and long-term gains associated with exercise and social participation were not captured. Community exercise social support groups are very likely to be cost-effective in the management of vasomotor menopausal symptoms. PMID:28949974

  3. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers.

    PubMed

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2016-12-13

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca 2+ -free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or Ca V 1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.

  4. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model.

    PubMed

    El-Awady, Mohammed S; Nader, Manar A; Sharawy, Maha H

    2017-10-01

    Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Flavanol-rich cocoa ameliorates lipemia-induced endothelial dysfunction.

    PubMed

    Westphal, Sabine; Luley, Claus

    2011-09-01

    Consumption of flavanols improves chronic endothelial dysfunction. We investigated whether it can also improve acute lipemia-induced endothelial dysfunction. In this randomized, placebo-controlled, double-blind, crossover trial, 18 healthy subjects received a fatty meal with cocoa either rich in flavanols (918 mg) or flavanol-poor. Flow-mediated dilation (FMD), triglycerides, and free fatty acids were then determined over 6 h. After the flavanol-poor fat loading, the FMD deteriorated over 4 h. The consumption of flavanol-rich cocoa, in contrast, improved this deterioration in hours 2, 3, and 4 without abolishing it completely. Flavanols did not have any influence on triglycerides or on free fatty acids. Flavanol-rich cocoa can alleviate the lipemia-induced endothelial dysfunction, probably through an improvement in endothelial NO synthase.

  6. NITROTYROSINATION OF A TUBULIN INDUCES EPITHELIAL BARRIER DYSFUNCTION

    EPA Science Inventory

    Nitrotyrosination of a-Tubulin Induces Epithelial Transport Dysfunction. Yuh-Chin Huang, Lisa Dailey, Wen-Li Zhang and Ilona Jaspers. ORD, Environmental Protection Agency and CEMLB, University of North Carolina

    a-Tubulin undergoes a cyclic removal and readdition of tyrosin...

  7. Estrogens prevent metabolic dysfunctions induced by circadian disruptions in female mice

    USDA-ARS?s Scientific Manuscript database

    Circadian disruption has become a significant factor contributing to the epidemics of obesity and insulin resistance. However, interventions to treat metabolic dysfunctions induced by circadian disruptions are limited. The ovarian hormone, estrogen, produces important antiobesity and antidiabetic ef...

  8. Mechanisms of pertussis toxin-induced barrier dysfunction in bovine pulmonary artery endothelial cell monolayers.

    PubMed

    Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G

    1995-06-01

    We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.

  9. Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle

    PubMed Central

    Heo, Jun-Won; No, Mi-Hyun; Park, Dong-Ho; Kang, Ju-Hee; Seo, Dae Yun; Han, Jin; Neufer, P. Darrell

    2017-01-01

    Obesity is known to induce inhibition of glucose uptake, reduction of lipid metabolism, and progressive loss of skeletal muscle function, which are all associated with mitochondrial dysfunction in skeletal muscle. Mitochondria are dynamic organelles that regulate cellular metabolism and bioenergetics, including ATP production via oxidative phosphorylation. Due to these critical roles of mitochondria, mitochondrial dysfunction results in various diseases such as obesity and type 2 diabetes. Obesity is associated with impairment of mitochondrial function (e.g., decrease in O2 respiration and increase in oxidative stress) in skeletal muscle. The balance between mitochondrial fusion and fission is critical to maintain mitochondrial homeostasis in skeletal muscle. Obesity impairs mitochondrial dynamics, leading to an unbalance between fusion and fission by favorably shifting fission or reducing fusion proteins. Mitophagy is the catabolic process of damaged or unnecessary mitochondria. Obesity reduces mitochondrial biogenesis in skeletal muscle and increases accumulation of dysfunctional cellular organelles, suggesting that mitophagy does not work properly in obesity. Mitochondrial dysfunction and oxidative stress are reported to trigger apoptosis, and mitochondrial apoptosis is induced by obesity in skeletal muscle. It is well known that exercise is the most effective intervention to protect against obesity. Although the cellular and molecular mechanisms by which exercise protects against obesity-induced mitochondrial dysfunction in skeletal muscle are not clearly elucidated, exercise training attenuates mitochondrial dysfunction, allows mitochondria to maintain the balance between mitochondrial dynamics and mitophagy, and reduces apoptotic signaling in obese skeletal muscle. PMID:29200899

  10. Photobiomodulation on alcohol induced dysfunction

    NASA Astrophysics Data System (ADS)

    Yang, Zheng-Ping; Liu, Timon C.; Zhang, Yan; Wang, Yan-Fang

    2007-05-01

    Alcohol, which is ubiquitous today, is a major health concern. Its use was already relatively high among the youngest respondents, peaked among young adults, and declined in older age groups. Alcohol is causally related to more than 60 different medical conditions. Overall, 4% of the global burden of disease is attributable to alcohol, which accounts for about as much death and disability globally as tobacco and hypertension. Alcohol also promotes the generation of reactive oxygen species (ROS) and/or interferes with the body's normal defense mechanisms against these compounds through numerous processes, particularly in the liver. Photobiomodulation (PBM) is a cell-specific effect of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems. The cellular effects of both alcohol and LIL are ligand-independent so that PBM might rehabilitate alcohol induced dysfunction. The PBM on alcohol induced human neutrophil dysfunction and rat chronic atrophic gastritis, the laser acupuncture on alcohol addiction, and intravascular PBM on alcoholic coma of patients and rats have been observed. The endonasal PBM (EPBM) mediated by Yangming channel, autonomic nervous systems and blood cells is suggested to treat alcohol induced dysfunction in terms of EPBM phenomena, the mechanism of alcohol induced dysfunction and our biological information model of PBM. In our opinion, the therapeutic effects of PBM might also be achieved on alcoholic myopathy.

  11. Pravastatin and endothelium dependent vasomotion after coronary angioplasty: the PREFACE trial

    PubMed Central

    Mulder, H; Schalij, M; Kauer, B; Visser, R; van Dijkman, P R M; Jukema, J; Zwinderman, A; Bruschke, A

    2001-01-01

    OBJECTIVE—To test the hypothesis that the 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor pravastatin ameliorates endothelium mediated responses of dilated coronary segments: the PREFACE (pravastatin related effects following angioplasty on coronary endothelium) trial.
DESIGN—A double blind, randomised, placebo controlled, multicentre study.
SETTING—Four hospitals in the Netherlands.
PATIENTS—63 non-smoking, non-hypercholesterolaemic patients scheduled for elective balloon angioplasty (pravastatin 34, placebo 29).
INTERVENTIONS—The effects of three months of pravastatin treatment (40 mg daily) on endothelium dependent vasomotor function were studied. Balloon angioplasty was undertaken one month after randomisation, and coronary vasomotor function tests using acetylcholine were performed two months after balloon angioplasty. The angiograms were analysed quantitatively.
MAIN OUTCOME MEASURES—The efficacy measure was the acetylcholine induced change in mean arterial diameter, determined in the dilated segment and in an angiographically normal segment of an adjacent non-manipulated coronary artery.
RESULTS—Increasing acetylcholine doses produced vasoconstriction in the dilated segments (p = 0.004) but not in the normal segments. Pravastatin did not affect the vascular response to acetylcholine in either the dilated segments (p = 0.09) or the non-dilated sites. Endothelium dependent vasomotion in normal segments was correlated with that in dilated segments (r = 0.47, p < 0.001). There were fewer procedure related events in the pravastatin group than in the placebo group (p < 0.05).
CONCLUSIONS—Endothelium dependent vasomotion in normal segments is correlated with that in dilated segments. A significant beneficial effect of pravastatin on endothelial function could not be shown, but in the dilated segments there was a trend towards a beneficial treatment effect in the pravastatin group.


Keywords: angioplasty; endothelium; acetylcholine; pravastatin PMID:11602546

  12. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia.

    PubMed

    Zhang, Yanan; Zhang, Chunlian; Li, Haiou; Hou, Jingdong

    2017-10-14

    Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is associated with endothelial dysfunction. The prevalence of OSA is linked to an epidemic of obesity. CIH has recently been reported to cause endothelial dysfunction in diet-induced obese animals by exaggerating oxidative stress and inflammation, but the underlying mechanism remains unclear. PPAR-γ, a ligand-inducible transcription factor that exerts anti-oxidant and anti-inflammatory effects, is down-regulated in the peripheral tissues in diet-induce obesity. We tested the hypothesis that down-regulation of vascular PPAR-γ in diet-induced obesity enhances inflammation and oxidative stress in response to CIH, resulting in endothelial dysfunction. Male C57BL/6 mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) and simultaneously exposed to CIH or intermittent air for 6 weeks. An additional HFD group received a combination of CIH and PPAR-γ agonist pioglitazone for 6 weeks. Endothelial-dependent vasodilation was impaired only in HFD group exposed to CIH, compared with other groups, but was restored by concomitant pioglitazone treatment. Molecular studies revealed that vascular PPAR-γ expression and activity were reduced in HFD groups, compared with LFD groups, but were reversed by pioglitazone treatment. In addition, CIH elevated vascular expression of NADPH oxidase 4 and dihydroethidium fluorescence, and increased expression of proinflammatory cytokines TNF-α and IL-1β in both LFD and HFD groups, but these increases was significantly greater in HFD group, along with decreased vascular eNOS activity. Pioglitazone treatment of HFD group prevented CIH-induced changes in above molecular markers. The results suggest that HFD-induced obesity down-regulates vascular PPAR-γ, which results in exaggerated oxidative stress and inflammation in response to CIH, contributing to endothelial dysfunction. This finding may provide new insights into the mechanisms by which OSA induces endothelial dysfunction and other cardiovascular disease in patients with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways.

    PubMed

    Li, Xiang; Michaeloudes, Charalambos; Zhang, Yuelin; Wiegman, Coen H; Adcock, Ian M; Lian, Qizhou; Mak, Judith C W; Bhavsar, Pankaj K; Chung, Kian Fan

    2018-05-01

    Oxidative stress-induced mitochondrial dysfunction can contribute to inflammation and remodeling in patients with chronic obstructive pulmonary disease (COPD). Mesenchymal stem cells protect against lung damage in animal models of COPD. It is unknown whether these effects occur through attenuating mitochondrial dysfunction in airway cells. We sought to examine the effect of induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) on oxidative stress-induce mitochondrial dysfunction in human airway smooth muscle cells (ASMCs) in vitro and in mouse lungs in vivo. ASMCs were cocultured with iPSC-MSCs in the presence of cigarette smoke medium (CSM), and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis were measured. Conditioned medium from iPSC-MSCs and transwell cocultures were used to detect any paracrine effects. The effect of systemic injection of iPSC-MSCs on airway inflammation and hyperresponsiveness in ozone-exposed mice was also investigated. Coculture of iPSC-MSCs with ASMCs attenuated CSM-induced mitochondrial ROS, apoptosis, and ΔΨm loss in ASMCs. iPSC-MSC-conditioned medium or transwell cocultures with iPSC-MSCs reduced CSM-induced mitochondrial ROS but not ΔΨm or apoptosis in ASMCs. Mitochondrial transfer from iPSC-MSCs to ASMCs was observed after direct coculture and was enhanced by CSM. iPSC-MSCs attenuated ozone-induced mitochondrial dysfunction, airway hyperresponsiveness, and inflammation in mouse lungs. iPSC-MSCs offered protection against oxidative stress-induced mitochondrial dysfunction in human ASMCs and in mouse lungs while reducing airway inflammation and hyperresponsiveness. These effects are, at least in part, dependent on cell-cell contact, which allows for mitochondrial transfer, and paracrine regulation. Therefore iPSC-MSCs show promise as a therapy for oxidative stress-dependent lung diseases, such as COPD. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.

  15. Nonuniformity in the von Bezold-Jarisch reflex.

    PubMed

    Salo, Lauren M; Woods, Robyn L; Anderson, Colin R; McAllen, Robin M

    2007-08-01

    The von Bezold-Jarisch reflex (BJR) is a vagally mediated chemoreflex from the heart and lungs, causing hypopnea, bradycardia, and inhibition of sympathetic vasomotor tone. However, cardiac sympathetic nerve activity (CSNA) has not been systematically compared with vasomotor activity during the BJR. In 11 urethane-anesthetized (1-1.5 g/kg iv), artificially ventilated rats, we measured CSNA simultaneously with lumbar sympathetic activity (LSNA) while the BJR was evoked by right atrial bolus injections of phenylbiguanide (0.5, 1.0, 1.5, and 2 microg). Nerve and heartbeat responses were analyzed by calculating normalized cumulative sums. LSNA and heartbeats were always reduced by the BJR. An excitatory "rebound" component often followed the inhibition of LSNA but never outweighed it. For CSNA, however, excitation usually (in 7 of 11 rats) outweighed any initial inhibition, such that the net response to phenylbiguanide was excitatory. The differences in net response between LSNA, CSNA, and heartbeats were all significant (P < 0.01). A second experimental series on seven rats showed that methyl atropine (1 mg/kg iv) abolished the bradycardia of the BJR, whereas subsequent bilateral vagotomy substantially reduced LSNA and CSNA responses, both excitatory and inhibitory. These findings show that, during the BJR, 1) CSNA is often excited, 2) there may be coactivation of sympathetic and parasympathetic drives to the heart, 3) divergent responses may be evoked simultaneously in cardiac vagal, cardiac sympathetic, and vasomotor nervous pathways, and 4) those divergent responses are mediated primarily by the vagi.

  16. The effects of progesterone selection on psychological symptoms in hormone replacement therapy.

    PubMed

    Caglayan, Emel Kiyak; Kara, Mustafa; Etiz, Sema; Kumru, Pinar; Aka, Nurettin; Kose, Gultekin

    2014-01-01

    The aim of this study is to evaluate the effects of hormone replacement therapy using dienogest and medroxyprogesterone acetate on psychological symptoms in perimenopausal and postmenopausal women. A total of 73 patients who sought treatment at the menopause units of the authors' gynecology and obstetrics clinics between of November 2003 and October 2004 complaining of vasomotor symptoms were included in the study prospectively. The cases were divided into two groups: Group I (37 patients) was given 2 mg estradiol valerate and 2 mg dienogest, and Group II (36 patients) was given 2 mg estradiol valerate and 10 mg medroxyprogesterone acetate. The groups' results in months 0 and 6 were compared through the evaluation of vasomotor and psychological symptom levels. No significant difference was found between the groups when the initial levels of vasomotor and psychological symptom subtypes were compared (p = 0.16). It was observed that all the psychological symptoms decreased in the 6th month in the group using dienogest in comparison with the initial situation, and that psychological symptoms increased in the group using medroxyprogesterone acetate in the evaluation performed in the 6th month compared with the initial levels. It was also found out that there was a statistically significant difference between the two groups when compared in terms of these symptoms (p < 0.0001). While the use of dienogest normalizes the general psychological situation and sleep, it was observed that the use of medroxyprogesterone acetate (MPA) worsens the general psychological situation.

  17. Overview of methods used in cross-cultural comparisons of menopausal symptoms and their determinants: Guidelines for Strengthening the Reporting of Menopause and Aging (STROMA) studies.

    PubMed

    Melby, Melissa K; Sievert, Lynnette Leidy; Anderson, Debra; Obermeyer, Carla Makhlouf

    2011-10-01

    This paper reviews the methods used in cross-cultural studies of menopausal symptoms with the goal of formulating recommendations to facilitate comparisons of menopausal symptoms across cultures. It provides an overview of existing approaches and serves to introduce four separate reviews of vasomotor, psychological, somatic, and sexual symptoms at midlife. Building on an earlier review of cross-cultural studies of menopause covering time periods until 2004, these reviews are based on searches of Medline, PsycINFO, CINAHL and Google Scholar for English-language articles published from 2004 to 2010 using the terms "cross cultural comparison" and "menopause." Two major criteria were used: a study had to include more than one culture, country, or ethnic group and to have asked about actual menopausal symptom experience. We found considerable variation across studies in age ranges, symptom lists, reference period for symptom recall, variables included in multivariate analyses, and the measurement of factors (e.g., menopausal status and hormonal factors, demographic, anthropometric, mental/physical health, and lifestyle measures) that influence vasomotor, psychological, somatic and sexual symptoms. Based on these reviews, we make recommendations for future research regarding age range, symptom lists, reference/recall periods, and measurement of menopausal status. Recommendations specific to the cross-cultural study of vasomotor, psychological, somatic, and sexual symptoms are found in the four reviews that follow this introduction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. The menopausal experience among indigenous women of Sarawak, Malaysia.

    PubMed

    Syed Alwi, S A R; Lee, P Y; Awi, I; Mallik, P S; Md Haizal, M N

    2009-12-01

    To document the common menopausal symptoms and quality of life in indigenous women of Sarawak in Malaysia. A face-to-face interview using the Menopause-specific Quality of Life questionnaire was conducted with 276 indigenous Sarawakian women aged 40-65 years to determine the mean age of menopause and common symptoms (divided into vasomotor, psychosocial, physical and sexual domains) associated with menopause. The mean age at menopause of postmenopausal women was 50.78 +/- 2.47 years (range 47.3-58.2 years). The most common symptoms reported were aching in muscles and joints (82.6%), lack of energy (77.5%) and low backache (77.2%). The typical menopausal symptoms of hot flushes, night sweats, sweating and vaginal dryness were experienced by 42.4%, 34.8%, 29.7% and 49.3%, respectively of the women studied. Perimenopausal women (n = 114) experienced the most physical and psychosocial symptoms, while postmenopausal women (n = 102) experienced most sexual symptoms. Perimenopausal and postmenopausal women were reported to suffer more than premenopausal women (p < 0.001) within the four domains of symptoms (vasomotor, psychosocial, physical and sexual). The menopausal symptoms in this study correspond to those in other studies on Asian women but the prevalence of typical and classical menopausal symptoms was lower compared to studies on Caucasian women. The perimenopausal women had the most significant decrease in quality of life, followed by postmenopausal women and premenopausal women. Vasomotor symptoms had a predominant influence on the quality of life.

  19. Allicin protects against cisplatin-induced vestibular dysfunction by inhibiting the apoptotic pathway.

    PubMed

    Wu, Xianmin; Cai, Jing; Li, Xiaofei; Li, He; Li, Jianfeng; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-06-15

    Cisplatin is an anticancer drug that causes the impairment of inner ear function as side effects, including hearing loss and balance dysfunction. The purpose of this study was to investigate the effects of allicin against cisplatin-induced vestibular dysfunction in mice and to make clear the mechanism underlying the protective effects of allicin on oto-vestibulotoxicity. Mice intraperitoneally injected with cisplatin exhibited vestibular dysfunction in swimming test, which agreed with impairment in vestibule. However, these impairments were significantly prevented by pre-treatment with allicin. Allicin markedly reduced cisplatin-activated expression of cleaved-caspase-3 in hair cells and vascular layer cells of utricule, saccule and ampulla, but also decreased AIF nuclear translocation of hair cells in utricule, saccule and ampulla. These results showed that allicin played an effective role in protecting vestibular dysfunction induced by cisplatin via inhibiting caspase-dependent and caspase-independent apoptotic pathways. Therefore, allicin may be useful in preventing oto-vestibulotoxicity mediated by cisplatin. Copyright © 2017. Published by Elsevier B.V.

  20. Neuroprotective effects of oleuropein against cognitive dysfunction induced by colchicine in hippocampal CA1 area in rats.

    PubMed

    Pourkhodadad, Soheila; Alirezaei, Masoud; Moghaddasi, Mehrnoush; Ahmadvand, Hassan; Karami, Manizheh; Delfan, Bahram; Khanipour, Zahra

    2016-09-01

    Alzheimer's disease is a progressive neurodegenerative disorder with decline in memory. The role of oxidative stress is well known in the pathogenesis of the disease. The purpose of this study was to evaluate pretreatment effects of oleuropein on oxidative status and cognitive dysfunction induced by colchicine in the hippocampal CA1 area. Male Wistar rats were pretreated orally once daily for 10 days with oleuropein at doses of 10, 15 and 20 mg/kg. Thereafter, colchicine (15 μg/rat) was administered into the CA1 area of the hippocampus to induce cognitive dysfunction. The Morris water maze was used to assess learning and memory. Biochemical parameters such as glutathione peroxidase and catalase activities, nitric oxide and malondialdehyde concentrations were measured to evaluate the antioxidant status in the rat hippocampus. Our results indicated that colchicine significantly impaired spatial memory and induced oxidative stress; in contrast, oleuropein pretreatment significantly improved learning and memory retention, and attenuated the oxidative damage. The results clearly indicate that oleuropein has neuroprotective effects against colchicine-induced cognitive dysfunction and oxidative damage in rats.

  1. Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury.

    PubMed

    Zhao, Chuanyan; Chen, Zhuyun; Xu, Xueqiang; An, Xiaofei; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zhang, Bo; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-15

    Cisplatin often causes acute kidney injury (AKI) in the treatment of a wide variety of malignancies. Mitochondrial dysfunction is one of the main reasons for cisplatin nephrotoxicity. Previous study showed that Pink1 and Parkin play central roles in regulating the mitophagy, which is a key protective mechanism by specifically eliminating dysfunctional or damaged mitochondria. However, the mechanisms that modulate mitophagy in cisplatin induced nephrotoxicity remain to be elucidated. The purpose of this study was to investigate the effects of Pink1/Parkin pathway in mitophagy, mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. In cultured human renal proximal tubular cells, we found that knockdown of Pink1/Parkin induced the aggravation of mitochondrial function, leading to the increase of cell injury through inhibition of mitophagy. Additionally, the overexpression of Pink1/Parkin protected against cisplatin-induced mitochondrial dysfunction and cell injury by promoting mitophagy. Our results provide clear evidence that Pink1/Parkin-dependent mitophagy has identified potential targets for the treatment of cisplatin-induced AKI. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Impaired lung transfer factor in fibromyalgia syndrome.

    PubMed

    Rizzi, Maurizio; Atzeni, Fabiola; Airoldi, Andrea; Masala, Ignazio Francesco; Frassanito, Francesca; Salaffi, Fausto; Macaluso, Claudio; Sarzi-Puttini, Piercarlo

    2016-01-01

    The aim of this study was to evaluate whether pulmonary diffusing capacity is impaired in patients with fibromyalgia (FM) as it is in those with other diseases characterised by autonomic nerve system (ANS) dysfunction such as type 1 diabetes. Forty-five consecutive anti-nuclear antibody (ANA)-negative female Caucasian patients aged 50.1± 5.6 years with FM and compared with 45 healthy female control volunteers matched in terms of age and body mass index (BMI). The autonomic function has been evaluated by means of standard electrocardiography (ECG), finger blood pressure respiration, and muscle sympathetic nerve activity (MSNA) at rest and during a stepwise tilt test up to 75°. Their autonomic profiles were drawn up on the basis of MSNA, plasma catecholamine levels, and spectral indices of cardiac sympathetic and vagal modulation, and sympathetic vasomotor control computed by means of the spectrum analysis of RR and systolic arterial pressure (SAP) variability. Lung volumes and dynamic spirometry parameters were assessed by means of plethysmography. All of the patients were clinically evaluated and completed the FQI and COMPASS questionnaire. There was no difference in lung volumes between the FM patients and healthy controls, but DLCO (83±4 vs. 96±5; p<0.001), Kco (84±5 vs 98±5; p<0.001), DM (12.7±2.4 vs 13.6±1.8; p<0.05) and Vc (48±3.9 vs 65±7; p<0.001) were significantly reduced in the patients. The COMPASS-31, RCS and pain VAS scores significantly correlated with DLCO, Kco and Vc with the correlation being particularly close in the case of Vc. Furthermore, univariate Cox proportional hazard analysis showed that the three scores were all significantly associated with an increased risk of impaired DLCO (respectively, χ(2) 16.21, p<0.0005; χ(2) 7.09, p<0.005; χ(2) 6.37, p<0.01). FM impairs DLCO mainly as a result of a reduction in Vc, and that this defect is inversely proportional to the severity of the dysfunction suggesting a relationship between impaired DLCO and autonomic nerve dysfunction.

  3. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    PubMed Central

    He, Quan; Harris, Nicole; Ren, Jun; Han, Xianlin

    2014-01-01

    Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS) have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress. PMID:25247053

  4. Nrf2 Deficiency Exacerbates Obesity-Induced Oxidative Stress, Neurovascular Dysfunction, Blood-Brain Barrier Disruption, Neuroinflammation, Amyloidogenic Gene Expression, and Cognitive Decline in Mice, Mimicking the Aging Phenotype.

    PubMed

    Tarantini, Stefano; Valcarcel-Ares, M Noa; Yabluchanskiy, Andriy; Tucsek, Zsuzsanna; Hertelendy, Peter; Kiss, Tamas; Gautam, Tripti; Zhang, Xin A; Sonntag, William E; de Cabo, Rafael; Farkas, Eszter; Elliott, Michael H; Kinter, Michael T; Deak, Ferenc; Ungvari, Zoltan; Csiszar, Anna

    2018-06-14

    Obesity has deleterious effects on cognitive function in the elderly adults. In mice, aging exacerbates obesity-induced oxidative stress, microvascular dysfunction, blood-brain barrier (BBB) disruption, and neuroinflammation, which compromise cognitive health. However, the specific mechanisms through which aging and obesity interact to remain elusive. Previously, we have shown that Nrf2 signaling plays a critical role in microvascular resilience to obesity and that aging is associated with progressive Nrf2 dysfunction, promoting microvascular impairment. To test the hypothesis that Nrf2 deficiency exacerbates cerebromicrovascular dysfunction induced by obesity Nrf2+/+ and Nrf2-/-, mice were fed an adipogenic high-fat diet (HFD). Nrf2 deficiency significantly exacerbated HFD-induced oxidative stress and cellular senescence, impairment of neurovascular coupling responses, BBB disruption, and microglia activation, mimicking the aging phenotype. Obesity in Nrf2-/- mice elicited complex alterations in the amyloidogenic gene expression profile, including upregulation of amyloid precursor protein. Nrf2 deficiency and obesity additively reduced long-term potentiation in the CA1 area of the hippocampus. Collectively, Nrf2 dysfunction exacerbates the deleterious effects of obesity, compromising cerebromicrovascular and brain health by impairing neurovascular coupling mechanisms, BBB integrity and synaptic function and promoting neuroinflammation. These results support a possible role for age-related Nrf2 dysfunction in the pathogenesis of vascular cognitive impairment and Alzheimer's disease.

  5. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability.

    PubMed

    Wang, Diya; Zhang, Jianbin; Jiang, Wenkai; Cao, Zipeng; Zhao, Fang; Cai, Tongjian; Aschner, Michael; Luo, Wenjing

    2017-05-04

    Central nervous system (CNS) inflammation and autophagy dysfunction are known to be involved in the pathology of neurodegenerative diseases. Manganese (Mn), a neurotoxic metal, has the potential to induce microglia-mediated neuroinflammation as well as autophagy dysfunction. NLRP3 (NLR family, pyrin domain containing 3)- CASP1 (caspase 1) inflammasome-mediated neuroinflammation in microglia has specific relevance to neurological diseases. However, the mechanism driving these phenomena remains poorly understood. We demonstrate that Mn activates the NLRP3-CASP1 inflammasome pathway in the hippocampus of mice and BV2 cells by triggering autophagy-lysosomal dysfunction. The autophagy-lysosomal dysfunction is induced by lysosomal damage caused by excessive Mn accumulation, damaging the structure and normal function of these organelles. Additionally, we show that the release of lysosomal CTSB (cathepsin B) plays an important role in Mn-induced NLRP3-CASP1 inflammasome activation, and that the increased autophagosomes in the cytoplasm are not the main cause of NLRP3-CASP1 inflammasome activation. The accumulation of proinflammatory cytokines, such as IL1B (interleukin 1 β) and IL18 (interleukin 18), as well as the dysfunctional autophagy pathway may damage hippocampal neuronal cells, thus leading to hippocampal-dependent impairment in learning and memory, which is associated with the pathogenesis of Alzheimer disease (AD).

  6. PHARMACOLOGIC PROBING OF AMPHOTERICIN B-INDUCED RENAL DYSFUNCTION IN THE NEONATAL RAT

    EPA Science Inventory

    Pharmacologic Probing of Amphotericin B-Induced Renal Dysfunction in the Neonatal Rat. Gray, J.A., and Kavlock, R.J. (1988). Toxicol. Appl. Pharmacol. 93, 360-368. Acetazolamide, furosemide, chlorothiazide, and amiloride pharmacologic agents that act primarily in the proximal tub...

  7. Compound mechanism hypothesis on +Gz induced brain injury and dysfunction of learning and memory

    NASA Astrophysics Data System (ADS)

    Sun, Xi-Qing; Li, Jin-Sheng; Cao, Xin-Sheng; Wu, Xing-Yu

    2005-08-01

    We systematically studied the effect of high- sustained +Gz on the brain and its mechanism in past ten years by animal centrifuge experiments. On the basis of the facts we observed and the more recent advances in acceleration physiology, we put forward a compound mechanism hypothesis to offer a possible explanation for +Gz-induced brain injury and dysfunction of learning and memory. It states that, ischemia during high G exposure might be the main factor accounting for +Gz-induced brain injury and dysfunction of learning and memory, including transient depression of brain energy metabolism, disturbance of ion homeostasis, increased blood-brain barrier permeability, increased brain nitric oxide synthase expression, and the protective effect of heat shock protein 70. In addition, the large rapid change of intracranial pressure and increased stress during +Gz exposure, and the hemorrheologic change after +Gz exposure might be one of the important factors accounting for +Gz-induced brain injury and dysfunction of learning and memory.

  8. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    PubMed

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  9. Application of path analysis to urinary findings of cadmium-induced renal dysfunction.

    PubMed

    Abe, T; Kobayashi, E; Okubo, Y; Suwazono, Y; Kido, T; Shaikh, Z A; Nogawa, K

    2001-01-01

    In order to identify some causal relations among various urinary indices of cadmium-induced renal dysfunction, such as glucose, total protein, amino nitrogen, beta 2-microglobulin (beta 2-m), metallothionein (MT), and cadmium (Cd), we applied path analysis method to previous epidemiological studies targeting the residents of the Cd-polluted Kakehashi River basin of Ishikawa Prefecture, Japan. We obtained a diagram-termed path model, representing some causal relations among the above urinary indices. It shows that urinary Cd is located at the beginning point in the diagram, and Cd-induced renal dysfunction develops in the following order: Cd exposure-->increase of beta 2-m and/or MT excretion-->increase of amino-N and/or total protein excretion-->increase of glucose excretion. It was proved mathematically, that in the case of both males and females, increased excretions of beta 2-m and/or MT were the most sensitive urinary indices of the early stage of chronic Cd-induced renal dysfunction.

  10. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    PubMed

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Opioid-Induced Constipation and Bowel Dysfunction: A Clinical Guideline.

    PubMed

    Müller-Lissner, Stefan; Bassotti, Gabrio; Coffin, Benoit; Drewes, Asbjørn Mohr; Breivik, Harald; Eisenberg, Elon; Emmanuel, Anton; Laroche, Françoise; Meissner, Winfried; Morlion, Bart

    2017-10-01

    To formulate timely evidence-based guidelines for the management of opioid-induced bowel dysfunction. Constipation is a major untoward effect of opioids. Increasing prescription of opioids has correlated to increased incidence of opioid-induced constipation. However, the inhibitory effects of opioids are not confined to the colon, but also affect higher segments of the gastrointestinal tract, leading to the coining of the term "opioid-induced bowel dysfunction." A literature search was conducted using Medline, EMBASE, and EMBASE Classic, and the Cochrane Central Register of Controlled Trials. Predefined search terms and inclusion/exclusion criteria were used to identify and categorize relevant papers. A series of statements were formulated and justified by a comment, then labeled with the degree of agreement and their level of evidence as judged by the Strength of Recommendation Taxonomy (SORT) system. From a list of 10,832 potentially relevant studies, 33 citations were identified for review. Screening the reference lists of the pertinent papers identified additional publications. Current definitions, prevalence, and mechanism of opioid-induced bowel dysfunction were reviewed, and a treatment algorithm and statements regarding patient management were developed to provide guidance on clinical best practice in the management of patients with opioid-induced constipation and opioid-induced bowel dysfunction. In recent years, more insight has been gained in the pathophysiology of this "entity"; new treatment approaches have been developed, but guidelines on clinical best practice are still lacking. Current knowledge is insufficient regarding management of the opioid side effects on the upper gastrointestinal tract, but recommendations can be derived from what we know at present. © 2016 American Academy of Pain Medicine.

  12. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment ofmore » learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.« less

  13. Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: Prevention by the targeted antioxidant MitoQ.

    PubMed

    Vergeade, Aurélia; Mulder, Paul; Vendeville-Dehaudt, Cathy; Estour, François; Fortin, Dominique; Ventura-Clapier, Renée; Thuillez, Christian; Monteil, Christelle

    2010-09-01

    The goal of this study was to assess mitochondrial function and ROS production in an experimental model of cocaine-induced cardiac dysfunction. We hypothesized that cocaine abuse may lead to altered mitochondrial function that in turn may cause left ventricular dysfunction. Seven days of cocaine administration to rats led to an increased oxygen consumption detected in cardiac fibers, specifically through complex I and complex III. ROS levels were increased, specifically in interfibrillar mitochondria. In parallel there was a decrease in ATP synthesis, whereas no difference was observed in subsarcolemmal mitochondria. This uncoupling effect on oxidative phosphorylation was not detectable after short-term exposure to cocaine, suggesting that these mitochondrial abnormalities were a late rather than a primary event in the pathological response to cocaine. MitoQ, a mitochondrial-targeted antioxidant, was shown to completely prevent these mitochondrial abnormalities as well as cardiac dysfunction characterized here by a diastolic dysfunction studied with a conductance catheter to obtain pressure-volume data. Taken together, these results extend previous studies and demonstrate that cocaine-induced cardiac dysfunction may be due to a mitochondrial defect. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress.

    PubMed

    Gangwar, Ruchika; Meena, Avtar S; Shukla, Pradeep K; Nagaraja, Archana S; Dorniak, Piotr L; Pallikuth, Sandeep; Waters, Christopher M; Sood, Anil; Rao, RadhaKrishna

    2017-02-20

    The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction (TJ) disruption was investigated in Caco-2 cell monolayers in vitro and restraint stress-induced barrier dysfunction in mouse colon in vivo Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca 2+ by 1,2-bis-( o -aminophenoxy)ethane- N , N , N ', N '-tetraacetic acid. Knockdown of Ca V 1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated TJ disruption and barrier dysfunction. N -Acetyl l-cysteine (NAC) and l- N G -Nitroarginine methyl ester (l-NAME) blocked stress-induced TJ disruption and barrier dysfunction. NAC and l-NAME also blocked stress-induced activation of c-Jun N -terminal kinase (JNK) and c-Src. ROS was colocalized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, TJ disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and TJ disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca 2+ , activation of JNK and c-Src, and disruption of TJ in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, TJ disruption and protein thiol oxidation in colonic mucosa. The present study demonstrates that oxidative stress is a common signal in the mechanism of TJ disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo . © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  15. Calcium-Mediated Oxidative Stress: a Common Mechanism in Tight Junction Disruption by Different Types of Cellular Stress

    PubMed Central

    Gangwar, Ruchika; Meena, Avtar S.; Shukla, Pradeep K.; Nagaraja, Archana S.; Dorniak, Piotr L.; Pallikuth, Sandeep; Waters, Christopher M.; Sood, Anil; Rao, RadhaKrishna

    2017-01-01

    The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction disruption was investigated in Caco-2 cell monolayers in vitro, and restraint stress-induced barrier dysfunction in mouse colon in vivo. Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca2+ by BAPTA. Knockdown of CaV1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated tight junction disruption and barrier dysfunction. N-acetyl L-cysteine (NAC) and L-nitroarginine methyl ester (L-NAME) blocked stress-induced tight junction disruption and barrier dysfunction. NAC and L-NAME also blocked stress-induced activation of JNK and c-Src. ROS was co-localized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, tight junction disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and tight junction disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca2+, activation of JNK and c-Src, and disruption of tight junction in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, tight junction disruption and protein thiol oxidation in colonic mucosa. This study demonstrates that oxidative stress is a common signal in the mechanism of tight junction disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo. PMID:28057718

  16. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  17. Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice.

    PubMed

    Zhang, Liang; Yan, Xiao; Zhang, Yun-Long; Bai, Jie; Hidru, Tesfaldet Habtemariam; Wang, Qing-Shan; Li, Hui-Hua

    2018-04-01

    Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-β, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. MRI/DTI of the Brain Stem Reveals Reversible and Irreversible Disruption of the Baroreflex Neural Circuits: Clinical Implications

    PubMed Central

    Su, Chia-Hao; Tsai, Ching-Yi; Chang, Alice Y.W.; Chan, Julie Y.H.; Chan, Samuel H.H.

    2016-01-01

    Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows. PMID:27162554

  19. MRI/DTI of the Brain Stem Reveals Reversible and Irreversible Disruption of the Baroreflex Neural Circuits: Clinical Implications.

    PubMed

    Su, Chia-Hao; Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2016-01-01

    Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows.

  20. Symmetricity analysis of time to peak parameter of indocyanine green dynamics

    NASA Astrophysics Data System (ADS)

    An, Yuri; Lee, Jungsul; Choi, Chulhee

    2013-03-01

    We have previously discovered that near-infrared optical imaging of indocyanine green (ICG) signal and analyzing its dynamics can be applied for measurement of blood perfusion rate and detection of Raynaud's phenomenon (RP). Especially, RP is closely associated with abnormal vasomotor responses and can progress to tissue necrosis due to excessively sustained vasoconstriction. Therefore, early detecting of RP is one of important implication to prevent tissue damage from peripheral vascular disorders. In the present study, we propose new analysis and scoring method of symmetricity of Tmax value of left and right extremities. Moreover, this symmetricity analysis can give further information about microvascular insufficiency. For validation of the proposed method, we tested whether the segmental and paired analysis of Tmax value (time-to-peak) of ICG dynamics can be used for sensitive diagnosis of microvascular abnormalities which cannot be detected by conventional methods. From the near-infrared images of diabetes mellitus patients with vascular complications, the trend of asymmetry in Tmax value was observed. We assumed that decreasing local blood perfusion by autonomic nerve dysfunction causes the asymmetric Tmax value of right and left feet. These results collectively indicate that the proposed method can be used as a useful diagnostic tool for RP or other microvascular disorders.

  1. [Skin and menopause].

    PubMed

    Bensaleh, H; Belgnaoui, F Z; Douira, L; Berbiche, L; Senouci, K; Hassam, B

    2006-12-01

    Important changes related to declining level of several hormones occur during menopause: vasomotor instability, bone loss, anxiety, sexual dysfunction, skin aging... Our objective was a review of the literature concerning the histological and clinical changes seen in post menopausal skin, and also an analysis of the effect of hormonal replacement therapy in slowing down the aging process. Decline in progesterone increases the impact of androgen on the sebaceous glands and hair. Decreased estrogen slows down mitotic activity in the epidermal basal layer, reduces the synthesis of collagen and contributes to thickening of the dermo-epidermal junction. This hypoestrogenemia may be spontaneously attenuated by local synthesis of oestradiol in peripheral target tissues according to the intracrine process. This new hormonal pattern is associated with skin atrophy, hyperseborrhea, increased pilosity on the cheeks and upper lip, loss of scalp hair, increase in degeneration of elastic tissue, atrophy and dryness of the vaginal mucosa. Estrogen treatment in post menopausal women has been shown to increase collagen content, dermal thickness and elasticity. Biophysical properties are also significantly improved for the parameters reflecting hydration and sebum secretion. However, numerous side effects such as increased incidence of cancer and cardiovascular morbidity limit the use of this treatment. So non hormonal alternatives are proposed. Laser and lifting remain the most important options.

  2. Reversible sympathetic vasomotor dysfunction in POTS patients.

    PubMed

    Freitas, J; Santos, R; Azevedo, E; Costa, O; Carvalho, M; de Freitas, A F

    2000-11-01

    Orthostatic intolerance refers to the development upon assuming an upright posture of disabling symptoms, which are partly relieved by resuming the supine position. Postural tachycardia syndrome (POTS) is an orthostatic intolerance syndrome characterized by palpitations due to excessive orthostatic sinus tachycardia, lightheadedness, tremor, and near-syncope. Patients usually undergo extensive medical, cardiac, endocrine, neurological and psychiatric evaluation, which usually fails to identify a specific abnormality. We investigated the autonomic and hemodynamic profile of POTS patients and the efficacy of bisoprolol and or fludrocortisone. We evaluated eleven female patients with POTS before and after medical treatment with a cardio-selective beta blocker (bisoprolol) and/or fludrocortisone, and eleven age-matched controls. Variability of heart rate and systolic blood pressure was assessed by Fast Fourier Transform, and spontaneous baroreceptor gain by temporal sequences slope and alpha index. Modelflow was used to quantify hemodynamics. All patients improved greatly after medication. The autonomic and hemodynamic impairment observed in patients with POTS, particularly after orthostatic stress, is treated effectively with bisoprolol and/or fludrocortisone. These results need further confirmation in a controlled double-blind study. Proper medical treatment dramatically improves the clinical and autonomic/hemodynamic disturbances observed in patients with POTS. The data support the hypothesis that POTS is due to a hyperadrenergic activation and/or hypovolemia during orthostasis.

  3. Nonallergic rhinopathy

    MedlinePlus

    ... as vasomotor rhinitis. Causes Nonallergic rhinopathy is not caused by an infection or allergy. The exact cause is unknown. Symptoms are triggered by something that irritates the nose, such as: A dry atmosphere Air pollution Alcohol Certain medicines Spicy foods, and in some ...

  4. School burnout: increased sympathetic vasomotor tone and attenuated ambulatory diurnal blood pressure variability in young adult women.

    PubMed

    May, Ross W; Sanchez-Gonzalez, Marcos A; Fincham, Frank D

    2015-01-01

    Two studies examined autonomic and cardiovascular functioning that may link school burnout to cardiovascular risk factors in young healthy adult females. Study 1 (N = 136) investigated whether school burnout was related to resting values of blood pressure (BP) and blood pressure variability (BPV) through laboratory beat-to-beat BP assessment. Study 2 (N = 94) examined the link between school burnout and diurnal BPV through ambulatory BP monitoring. Controlling for anxiety and depressive symptomatology, school burnout demonstrated strong positive relationships with indices of cardiac sympathovagal tone, sympathetic vasomotor tone, inefficient myocardial oxygen consumption, increased 24-h ambulatory heart rate and BP, blunted BP diurnal variability, and increased arterial stiffness. These studies establish cardiovascular biomarkers of school burnout and suggest that even in a seemingly healthy sample school burnout may predispose females to increased cardiovascular risk. Several future lines of research are outlined.

  5. [Atopic eczema: psychophysiological reactivity with standardized stressors].

    PubMed

    Münzel, K; Schandry, R

    1990-11-01

    In 18 atopic eczema patients with active symptomatology and 15 control subjects a comparison of reactivity to psychological stressors was made. The physiological measures were heart rate, peripheral vasomotor response, skin resistance level, spontaneous fluctuations of the skin resistance, and forearm skin temperature. In addition, self-ratings of subjective state, situational anxiety, and social anxiety were assessed. Mental arithmetic performed undisturbed and in distracting conditions, and anticipation of the latter and of having to speak in public served as stressors. The results show higher reaction values of the eczema patients for heart rate, peripheral vasomotor response, fluctuations of skin resistance and subjective tension. A subgroup of patients with extreme skin irritation (itching) reacted with an elevation of skin temperature, in contrast to control subjects and patients with less marked itching, in whom skin temperature dropped slightly. The results suggest that atopic eczema may have a psychophysiological component.

  6. Menopause and Stroke: An Epidemiologic Review

    PubMed Central

    Lisabeth, Lynda; Bushnell, Cheryl

    2012-01-01

    Although women have a lower risk of stroke during middle age, the menopausal transition is a time when many women develop cardiovascular risk factors. In addition, during the 10 years after menopause, the risk of stroke roughly doubles in women. Endogenous estrogen levels decline by 60% during the menopausal transition, leading to a relative androgen excess, which could contribute to the increased cardiovascular risk factors in women. Earlier onset of menopause may influence the risk of stroke, but the data are not clear. Because of the stroke risk associated with hormone therapy, this is only indicated for treatment of vasomotor symptoms, but some formulations may be safe than others. More research is needed to understand which women are at greatest stroke risk during midlife and to determine the safest formulation, dose, and duration of hormone therapy that will treat vasomotor symptoms without increasing the risk for stroke. PMID:22172623

  7. Algodystrophy: complex regional pain syndrome and incomplete forms

    PubMed Central

    Giannotti, Stefano; Bottai, Vanna; Dell’Osso, Giacomo; Bugelli, Giulia; Celli, Fabio; Cazzella, Niki; Guido, Giulio

    2016-01-01

    Summary The algodystrophy, also known as complex regional pain syndrome (CRPS), is a painful disease characterized by erythema, edema, functional impairment, sensory and vasomotor disturbance. The diagnosis of CRPS is based solely on clinical signs and symptoms, and for exclusion compared to other forms of chronic pain. There is not a specific diagnostic procedure; careful clinical evaluation and additional test should lead to an accurate diagnosis. There are similar forms of chronic pain known as bone marrow edema syndrome, in which is absent the history of trauma or triggering events and the skin dystrophic changes and vasomotor alterations. These incomplete forms are self-limited, and surgical treatment is generally not needed. It is still controversial, if these forms represent a distinct self-limiting entity or an incomplete variant of CRPS. In painful unexplained conditions such as frozen shoulder, post-operative stiff shoulder or painful knee prosthesis, the algodystrophy, especially in its incomplete forms, could represent the cause. PMID:27252736

  8. Management of sexual dysfunction in postmenopausal breast cancer patients taking adjuvant aromatase inhibitor therapy

    PubMed Central

    Derzko, C.; Elliott, S.; Lam, W.

    2007-01-01

    Treatment with aromatase inhibitors for postmenopausal women with breast cancer has been shown to reduce or obviate invasive procedures such as hysteroscopy or curettage associated with tamoxifen-induced endometrial abnormalities. The side effect of upfront aromatase inhibitors, diminished estrogen synthesis, is similar to that seen with the natural events of aging. The consequences often include vasomotor symptoms (hot flushes) and vaginal dryness and atrophy, which in turn may result in cystitis and vaginitis. Not surprisingly, painful intercourse (dyspareunia) and loss of sexual interest (decreased libido) frequently occur as well. Various interventions, both non-hormonal and hormonal, are currently available to manage these problems. The purpose of the present review is to provide the practitioner with a wide array of management options to assist in treating the sexual consequences of aromatase inhibitors. The suggestions in this review are based on recent literature and on the recommendations set forth both by the North American Menopause Association and in the clinical practice guidelines of the Society of Gynaecologists and Obstetricians of Canada. The complexity of female sexual dysfunction necessitates a biopsychosocial approach to assessment and management alike, with interventions ranging from education and lifestyle changes to sexual counselling, pelvic floor therapies, sexual aids, medications, and dietary supplements—all of which have been reported to have a variable, but often successful, effect on symptom amelioration. Although the use of specific hormone replacement—most commonly local estrogen, and less commonly, systemic estrogen with or without an androgen, progesterone, or the additional of an androgen in an estrogenized woman (or a combination)—may be highly effective, the concern remains that in patients with estrogen-dependent breast cancer, including those receiving anti-estrogenic adjuvant therapies, the use of these hormones may be attended with potential risk. Therefore, non-hormonal alternatives should in all cases be initially tried with the expectation that symptomatic relief can often be achieved. First-line therapy for urogenital symptoms, notably vaginal dryness and dyspareunia, should be the non-hormonal group of preparations such as moisturizers and precoital vaginal lubricants. In patients with estrogen-dependent breast cancer (notably those receiving anti-estrogenic adjuvant therapies) and severely symptomatic vaginal atrophy that fails to respond to non-hormonal options, menopausal hormone replacement or prescription vaginal estrogen therapy may considered. Systemic estrogen may be associated with risk and thus is best avoided. Judicious use of hormones may be appropriate in the well-informed patient who gives informed consent, but given the potential risk, these agents should be prescribed only after mutual agreement of the patient and her oncologist. PMID:18087605

  9. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    USDA-ARS?s Scientific Manuscript database

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  10. Inhibition of nuclear factor-κB signal by pyrrolidine dithiocarbamate alleviates lipopolysaccharide-induced acute lung injury

    PubMed Central

    Yang, Hongfu; Sun, Rongqing; Ma, Ning; Liu, Qilong; Sun, Xiaoge; Zi, Panpan; Wang, Junsheng; Chao, Ke; Yu, Lei

    2017-01-01

    This study mainly studied the effect of inhibition of nuclear factor-κB (NF-κB) signal by pyrrolidine dithiocarbamate (PDTC) on lipopolysaccharide (LPS)-induced inflammatory response, oxidative stress, and mitochondrial dysfunction in a murine acute lung injury model. The results showed that LPS exposure activated NF-κB and its upstream proteins and caused lung inflammation, oxidative stress, and mitochondrial dysfunction in mice. While inhibition of NF-κB by PDTC adminstration alleviated LPS-induced generation of lymphocytes, IL-1β, and TNF-α. Malondialdehyde, a common oxidative product, was markedly reduced after PDTC treatment in LPS-challenged mice. Furthermore, PDTC alleviated LPS-induced mitochondrial dysfunction via improving ATP synthesis and uncoupling protein 2 expression. In conclusion, inhibition of NF-κB by PDTC alleviated LPS-induced acute lung injury via maintaining inflammatory status, oxidative balance, and mitochondrial function in mice. PMID:28521300

  11. Edaravone Improves Septic Cardiac Function by Inducing an HIF-1α/HO-1 Pathway

    PubMed Central

    He, Chao; Zhang, Wei; Li, Suobei; Ruan, Wei; Xu, Junmei

    2018-01-01

    Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF-) 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO-) 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP) with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp.) before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg), after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction. PMID:29765498

  12. Chemical Endoplasmic Reticulum Chaperone Alleviates Doxorubicin-Induced Cardiac Dysfunction.

    PubMed

    Fu, Hai Ying; Sanada, Shoji; Matsuzaki, Takashi; Liao, Yulin; Okuda, Keiji; Yamato, Masaki; Tsuchida, Shota; Araki, Ryo; Asano, Yoshihiro; Asanuma, Hiroshi; Asakura, Masanori; French, Brent A; Sakata, Yasushi; Kitakaze, Masafumi; Minamino, Tetsuo

    2016-03-04

    Doxorubicin is an effective chemotherapeutic agent for cancer, but its use is often limited by cardiotoxicity. Doxorubicin causes endoplasmic reticulum (ER) dilation in cardiomyocytes, and we have demonstrated that ER stress plays important roles in the pathophysiology of heart failure. We evaluated the role of ER stress in doxorubicin-induced cardiotoxicity and examined whether the chemical ER chaperone could prevent doxorubicin-induced cardiac dysfunction. We confirmed that doxorubicin caused ER dilation in mouse hearts, indicating that doxorubicin may affect ER function. Doxorubicin activated an ER transmembrane stress sensor, activating transcription factor 6, in cultured cardiomyocytes and mouse hearts. However, doxorubicin suppressed the expression of genes downstream of activating transcription factor 6, including X-box binding protein 1. The decreased levels of X-box binding protein 1 resulted in a failure to induce the expression of the ER chaperone glucose-regulated protein 78 which plays a major role in adaptive responses to ER stress. In addition, doxorubicin activated caspase-12, an ER membrane-resident apoptotic molecule, which can lead to cardiomyocyte apoptosis and cardiac dysfunction. Cardiac-specific overexpression of glucose-regulated protein 78 by adeno-associated virus 9 or the administration of the chemical ER chaperone 4-phenylbutyrate attenuated caspase-12 cleavage, and alleviated cardiac apoptosis and dysfunction induced by doxorubicin. Doxorubicin activated the ER stress-initiated apoptotic response without inducing the ER chaperone glucose-regulated protein 78, further augmenting ER stress in mouse hearts. Cardiac-specific overexpression of glucose-regulated protein 78 or the administration of the chemical ER chaperone alleviated the cardiac dysfunction induced by doxorubicin and may facilitate the safe use of doxorubicin for cancer treatment. © 2016 American Heart Association, Inc.

  13. Opioid-Induced Constipation and Bowel Dysfunction: A Clinical Guideline

    PubMed Central

    Müller-Lissner, Stefan; Bassotti, Gabrio; Coffin, Benoit; Drewes, Asbjørn Mohr; Breivik, Harald; Eisenberg, Elon; Emmanuel, Anton; Laroche, Françoise; Meissner, Winfried; Morlion, Bart

    2017-01-01

    Abstract Objective To formulate timely evidence-based guidelines for the management of opioid-induced bowel dysfunction. Setting Constipation is a major untoward effect of opioids. Increasing prescription of opioids has correlated to increased incidence of opioid-induced constipation. However, the inhibitory effects of opioids are not confined to the colon, but also affect higher segments of the gastrointestinal tract, leading to the coining of the term “opioid-induced bowel dysfunction.” Methods A literature search was conducted using Medline, EMBASE, and EMBASE Classic, and the Cochrane Central Register of Controlled Trials. Predefined search terms and inclusion/exclusion criteria were used to identify and categorize relevant papers. A series of statements were formulated and justified by a comment, then labeled with the degree of agreement and their level of evidence as judged by the Strength of Recommendation Taxonomy (SORT) system. Results From a list of 10,832 potentially relevant studies, 33 citations were identified for review. Screening the reference lists of the pertinent papers identified additional publications. Current definitions, prevalence, and mechanism of opioid-induced bowel dysfunction were reviewed, and a treatment algorithm and statements regarding patient management were developed to provide guidance on clinical best practice in the management of patients with opioid-induced constipation and opioid-induced bowel dysfunction. Conclusions In recent years, more insight has been gained in the pathophysiology of this “entity”; new treatment approaches have been developed, but guidelines on clinical best practice are still lacking. Current knowledge is insufficient regarding management of the opioid side effects on the upper gastrointestinal tract, but recommendations can be derived from what we know at present. PMID:28034973

  14. Lin28a protects against postinfarction myocardial remodeling and dysfunction through Sirt1 activation and autophagy enhancement.

    PubMed

    Hao, Yuanyuan; Lu, Qun; Yang, Guodong; Ma, Aiqun

    2016-10-28

    Myocardial remodeling and cardiac dysfunction prevention may represent a therapeutic approach to reduce mortality in patients with myocardial infarction (MI). We investigated the effects of Lin28a in experimental MI models, as well as the mechanisms underlying these effects. Left anterior descending (LAD) coronary artery ligation was used to construct an MI-induced injury model. Neonatal cardiomyocytes were isolated and cultured to investigate the mechanisms underlying the protective effects of Lin28a against MI-induced injury. Lin28a significantly inhibited left ventricular remodeling and cardiac dysfunction after MI, as demonstrated via echocardiography and hemodynamic measurements. Lin28a reduced cardiac enzyme and inflammatory marker release in mice subjected to MI-induced injury. The mechanisms underlying the protective effects of Lin28a against MI-induced injury were associated with autophagy enhancements and apoptosis inhibition. Consistent with these findings, Lin28a knockdown aggravated cardiac remodeling and dysfunction after MI-induced injury. Lin28a knockdown also inhibited cardiomyocyte autophagy and increased cardiomyocyte apoptosis in mice subjected to MI-induced injury. Interestingly, Sirt1 knockdown abolished the protective effects of Lin28a against cardiac remodeling and dysfunction after MI, and Lin28a failed to increase the numbers of GFP-LC3-positive punctae and decrease aggresome and p62 accumulation in Sirt1-knockdown neonatal cardiomyocytes subjected to hypoxia-induced injury. Lin28a inhibits cardiac remodeling, improves cardiac function, and reduces cardiac enzyme and inflammatory marker release after MI. Lin28a also up-regulates cardiomyocyte autophagy and inhibits cardiomyocyte apoptosis through Sirt1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Ibrolipim attenuates high glucose-induced endothelial dysfunction in cultured human umbilical vein endothelial cells via PI3K/Akt pathway.

    PubMed

    Xiao, Guohua; Wang, Zongbao; Zeng, Huaicai; Yu, Jian; Yin, Weidong; Zhang, Sujun; Wang, Yueting; Zhang, Yali

    2011-10-01

    Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of diabetes-associated vascular diseases. And it might be a therapeutic agent for diabetic vascular complications.

  16. Prevalence and severity of menopause symptoms and associated factors across menopause status in Korean women.

    PubMed

    Yim, Gyeyoon; Ahn, Younjhin; Chang, Yoosoo; Ryu, Seungho; Lim, Joong-Yeon; Kang, Danbee; Choi, Eun-Kyung; Ahn, Jiin; Choi, Yuni; Cho, Juhee; Park, Hyun-Young

    2015-10-01

    The present study investigated the prevalence and severity of menopause symptoms experienced by Korean women aged 44 to 56 years and their associated factors. A cross-sectional study was performed on 2,201 women aged 44 to 56 years in health checkup centers between November 2012 and March 2013. The 29-item Menopause-Specific Quality of Life Questionnaire was used to assess vasomotor, psychosocial, physical, and sexual symptoms related to menopause. The guidelines for the classification of reproductive aging stages proposed at the Stages of Reproductive Aging Workshop were used. Multivariable linear regression analyses were performed to identify factors associated with severity of menopause symptoms. Among participants, 42.6% were premenopausal, 36.7% were perimenopausal, and 20.7% were postmenopausal. Although physical symptoms were the most severe menopause symptoms experienced by premenopausal and perimenopausal women, postmenopausal women reported sexual symptoms as the most bothersome. The mean scores for each domain increased from the premenopausal period through the postmenopausal period (P for trend < 0.001). The regression model revealed that age (for vasomotor and sexual symptoms) and obesity (for vasomotor and physical symptoms) were significantly associated with severity of menopause symptoms (P < 0.05). Physically active women had fewer severe physical symptoms related to menopause than inactive women. Postmenopausal women experience the most severe symptoms. Obesity and physical activity are the main modifiable factors associated with symptom severity. Further studies are needed to examine the effects of physical activity promotion and weight control interventions on preventing menopause symptoms in Korean women.

  17. Diurnal and nocturnal skin temperature regulation in chronic complex regional pain syndrome.

    PubMed

    Schilder, Johanna C M; Niehof, Sjoerd P; Marinus, Johan; van Hilten, Jacobus J

    2015-03-01

    Skin temperature changes due to vasomotor disturbances are important features of complex regional pain syndrome (CRPS). Because this phenomenon has only been studied under controlled conditions, information on daily circadian variability is lacking. Also, studies in chronic CRPS patients with abnormal posturing, in which coldness of the affected extremity is more common, do not exist. We examined the response to external heating as well as circadian temperature changes over several days in the affected legs of 14 chronic CRPS patients with abnormal posturing and 17 controls. Skin temperatures were recorded hourly for 14 days using wireless sensors. Although the patients' affected extremities were significantly colder before external heating, the vasodilatory response was similar in the 2 groups. Additionally, median skin temperature differences between both legs and their variability was larger in patients than in controls during the day, but not during the night. These findings indicate that the mechanisms underlying impaired skin circulation in CRPS during daytime are reversible under certain circumstances. The large variation in skin temperature differences during the day questions the validity of using a single measurement in the diagnosis of CRPS, and our results indicate that only temperature differences >1.0 °C should be considered to reflect vasomotor disturbances. This article shows that chronic CRPS patients have a normal vasodilatory response to external heating and that skin temperature differences between the affected and unaffected lower limbs, which were highly variable during daytime, disappeared during sleep. This indicates that part of the vasomotor regulation in these patients is still functional. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  18. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function

    PubMed Central

    Qi, Jia; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zeng, Ming; Zhang, Bo; Wang, Ningning; Mao, Huijuan; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-01

    Cisplatin chemotherapy often causes acute kidney injury (AKI) in cancer patients. There is increasing evidence that mitochondrial dysfunction plays an important role in cisplatin-induced nephrotoxicity. Degradation of damaged mitochondria is carried out by mitophagy. Although mitophagy is considered of particular importance in protecting against AKI, little is known of the precise role of mitophagy and its molecular mechanisms during cisplatin-induced nephrotoxicity. Also, evidence that activation of mitophagy improved mitochondrial function is lacking. Furthermore, several evidences have shown that mitochondrial fission coordinates with mitophagy. The aim of this study was to investigate whether activation of mitophagy protects against mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. The effect of mitochondrial fission on mitophagy was also investigated. In cultured human renal proximal tubular cells, we observed that 3-methyladenine, a pharmacological inhibitor of autophagy, blocked mitophagy and exacerbated cisplatin-induced mitochondrial dysfunction and cells injury. In contrast, autophagy activator rapamycin enhanced mitophagy and protected against the harmful effects of cisplatin on mitochondrial function and cells viability. Suppression of mitochondrial fission by knockdown of its main regulator dynamin-related protein-1 (Drp1) decreased cisplatin-induced mitophagy. Meanwhile, Drp1 suppression protected against cisplatin-induced cells injury by inhibiting mitochondrial dysfunction. Our results provide evidence that Drp1-depedent mitophagy has potential as renoprotective targets for the treatment of cisplatin-induced AKI. PMID:28423497

  19. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux.

    PubMed

    Xing, Wei; Yang, Lei; Peng, Yue; Wang, Qianlu; Gao, Min; Yang, Mingshi; Xiao, Xianzhong

    2017-08-31

    Sepsis-led mitochondrial dysfunction has become a critical pathophysiological procedure in sepsis. Since ginsenosides have been applied in the treatment of mitochondrial dysfunction, ginsenoside Rg3 was employed to study its effects on the mitochondrial dysfunction induced by sepsis. The apoptosis rate, oxygen consumption rate (OCR), reactive oxygen species (ROS), antioxidant glutathione (GSH) pools, and mitochondrial transmembrane potential (MTP) were determined in LPS-induced sepsis hepatocytes treated with different concentrations of Rg3. Then, the protein expression levels of mitochondrial biogenesis related transcription factors, autophagy-related proteins, and AMP-activated protein kinase (AMPK) signal pathway related proteins were determined by Western blotting in both in vitro and in vivo sepsis models. Rg3 shows functions of promotion of OCR, attenuation of ROS, and maintenance of GSH pools, and its conjugating activity in the in vitro sepsis models. Rg3-treated cells were observed to have a higher MTP value compared with the LPS only induced cells. Moreover, Rg3 treatment can inhibit mitochondrial dysfunction via increasing the protein expression levels of mitochondrial biogenesis related transcription factors. Rg3 treatment has the function of inhibitor of apoptosis of human primary hepatocytes, and Rg3 can up-regulate the autophagy-related proteins and activate AMPK signal pathway in sepsis models. Meanwhile, the mitochondrial protective function exerted by Rg3 decreased after the autophagy inhibitors or AMPK inhibitor treatment in LPS-induced human primary hepatocytes. Rg3 can improve mitochondrial dysfunction by regulating autophagy in mitochondria via activating the AMPK signal pathway, thus protecting cell and organ injuries caused by sepsis. © 2017 The Author(s).

  20. Managing Depression during the Menopausal Transition

    ERIC Educational Resources Information Center

    Pearson, Quinn M.

    2010-01-01

    The menopausal transition is associated with both first onset of depression and recurrent depression. Risk factors include vasomotor symptoms, a history of premenstrual dysphoria, postpartum depression, major depression, and sleep disturbances. Hormone replacement therapy, complementary and alternative medicine approaches, and counseling…

  1. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Penghao; Xie, Qihai; Wei, Tong

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in bothmore » strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.« less

  2. Exercise-induced menstrual dysfunction.

    PubMed

    Henley, K; Vaitukaitis, J L

    1988-01-01

    Menstrual cycle changes associated with vigorous exercise can range widely. They may be only subtle abnormalities, ranging from delayed onset of spontaneous menses or anovulatory cycles to loss of spontaneous menses. They may be more serious, however. Significant adverse bone mineral changes, resulting in clinically significant osteoporosis and fractures, may occur concomitantly with exercise-induced menstrual dysfunction.

  3. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium.

    PubMed

    Nam, Mi-Hyun; Son, Won-Rak; Lee, Young Sik; Lee, Kwang-Won

    Advanced glycation end-products (AGEs) are involved in the development of vascular smooth muscle cell (VSMC) dysfunction and the progression of atherosclerosis. However, AGEs may indirectly affect VSMCs via AGEs-induced signal transduction between monocytes and human umbilical endothelial cells (HUVECs), rather than having a direct influence. This study was designed to elucidate the signaling pathway underlying AGEs-RAGE axis influence on VSMC dysfunction using a co-culture system with monocytes, HUVECs and VSMCs. AGEs stimulated production of reactive oxygen species and pro-inflammatory mediators such as tumor necrosis factor-α and interleukin-1β via extracellular-signal-regulated kinases phosphorylation and nuclear factor-κB activation in HUVECs. It was observed that AGEs-induced pro-inflammatory cytokines increase VSMC proliferation, inflammation and vascular remodeling in the co-culture system. This result implies that RAGE plays a role in AGEs-induced VSMC dysfunction. We suggest that the regulation of signal transduction via the AGEs-RAGE axis in the endothelium can be a therapeutic target for preventing atherosclerosis.

  4. MitoQ administration prevents endotoxin-induced cardiac dysfunction

    PubMed Central

    Murphy, M. P.; Callahan, L. A.

    2009-01-01

    Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6′-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg·kg−1·day−1), saline + MitoQ (500 μM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction. PMID:19657095

  5. MitoQ administration prevents endotoxin-induced cardiac dysfunction.

    PubMed

    Supinski, G S; Murphy, M P; Callahan, L A

    2009-10-01

    Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6'-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg x kg(-1) x day(-1)), saline + MitoQ (500 microM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction.

  6. The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction.

    PubMed

    Guan, Siao-Syun; Sheu, Meei-Ling; Yang, Rong-Sen; Chan, Ding-Cheng; Wu, Cheng-Tien; Yang, Ting-Hua; Chiang, Chih-Kang; Liu, Shing-Hwa

    2016-04-26

    Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy and dysfunction using the models of diabetic mice and cultured β-cells. Hypertrophy, increased levels of p27Kip1, AGEs, and receptor for AGEs (RAGE), and decreased levels of HSP60, insulin, and ATP content were obviously observed in pancreatic islets of 12-week-old db/db diabetic mice. Low-concentration AGEs significantly induced the cell hypertrophy, increased the p27Kip1 expression, and decreased the HSP60 expression, insulin secretion, and ATP content in cultured β-cells, which could be reversed by RAGE neutralizing antibody. HSP60 overexpression significantly reversed AGEs-induced hypertrophy, dysfunction, and ATP reduction in β-cells. Oxidative stress was also involved in the AGEs-decreased HSP60 expression in β-cells. Pancreatic sections from diabetic patient showed islet hypertrophy, increased AGEs level, and decreased HSP60 level as compared with normal subject. These findings highlight a novel mechanism by which a HSP60-correlated signaling pathway contributes to the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under diabetic hyperglycemia.

  7. The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction

    PubMed Central

    Wu, Cheng-Tien; Yang, Ting-Hua; Chiang, Chih-Kang; Liu, Shing-Hwa

    2016-01-01

    Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy and dysfunction using the models of diabetic mice and cultured β-cells. Hypertrophy, increased levels of p27Kip1, AGEs, and receptor for AGEs (RAGE), and decreased levels of HSP60, insulin, and ATP content were obviously observed in pancreatic islets of 12-week-old db/db diabetic mice. Low-concentration AGEs significantly induced the cell hypertrophy, increased the p27Kip1 expression, and decreased the HSP60 expression, insulin secretion, and ATP content in cultured β-cells, which could be reversed by RAGE neutralizing antibody. HSP60 overexpression significantly reversed AGEs-induced hypertrophy, dysfunction, and ATP reduction in β-cells. Oxidative stress was also involved in the AGEs-decreased HSP60 expression in β-cells. Pancreatic sections from diabetic patient showed islet hypertrophy, increased AGEs level, and decreased HSP60 level as compared with normal subject. These findings highlight a novel mechanism by which a HSP60-correlated signaling pathway contributes to the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under diabetic hyperglycemia. PMID:27056903

  8. Folic acid prevents cardiac dysfunction and reduces myocardial fibrosis in a mouse model of high-fat diet-induced obesity.

    PubMed

    Li, Wei; Tang, Renqiao; Ouyang, Shengrong; Ma, Feifei; Liu, Zhuo; Wu, Jianxin

    2017-01-01

    Folic acid (FA) is an antioxidant that can reduce reactive oxygen species generation and can blunt cardiac dysfunction during ischemia. We hypothesized that FA supplementation prevents cardiac fibrosis and cardiac dysfunction induced by obesity. Six-week-old C57BL6/J mice were fed a high-fat diet (HFD), normal diet (ND), or an HFD supplemented with folic acid (FAD) for 14 weeks. Cardiac function was measured using a transthoracic echocardiographic exam. Phenotypic analysis included measurements of body and heart weight, blood glucose and tissue homocysteine (Hcy) content, and heart oxidative stress status. HFD consumption elevated fasting blood glucose levels and caused obesity and heart enlargement. FA supplementation in HFD-fed mice resulted in reduced fasting blood glucose, heart weight, and heart tissue Hcy content. We also observed a significant cardiac systolic dysfunction when mice were subjected to HFD feeding as indicated by a reduction in the left ventricular ejection fraction and fractional shortening. However, FAD treatment improved cardiac function. FA supplementation protected against cardiac fibrosis induced by HFD. In addition, HFD increased malondialdehyde concentration of the heart tissue and reduced the levels of antioxidant enzyme, glutathione, and catalase. HFD consumption induced myocardial oxidant stress with amelioration by FA treatment. FA supplementation significantly lowers blood glucose levels and heart tissue Hcy content and reverses cardiac dysfunction induced by HFD in mice. These functional improvements of the heart may be mediated by the alleviation of oxidative stress and myocardial fibrosis.

  9. Factors influencing fluoxetine-induced sexual dysfunction in female rats

    PubMed Central

    Adams, Sarah; Heckard, Danyeal; Hassell, James; Uphouse, Lynda

    2012-01-01

    Treatment with selective serotonin reuptake inhibitors, such as fluoxetine, produces sexual side effects with low sexual desire being the most prevalent effect in females. In few studies have preclinical models for such antidepressant-induced sexual dysfunction been fruitful. In the current manuscript, the effects of fluoxetine on multiple measures of female sexual motivation and sexual receptivity were examined. Ovariectomized, Fischer rats were primed with 10 μg estradiol benzoate and 500 μg progesterone. Partner preference, active investigation of the male, and measures of sexual behavior were examined after injection with 15 mg/kg fluoxetine. Factors (pretesting for sexual behavior, size of the test arena, non-contact time with a male) that differ among experiments designed to study antidepressant-induced female rat sexual dysfunction were studied. The male preference ratio was not affected by fluoxetine treatment but active investigation of the male was reduced; lordosis behavior was inhibited and pretesting for sexual receptivity amplified fluoxetine's inhibition; size of the testing arena or non-contact experience with the male had no effect. Regardless of test condition, when given the opportunity to escape from the male, fluoxetine-treated females displayed escape behavior. Measures of male preference and active investigation, but not lordosis behavior, appeared to be affected by fluoxetine's impact on activity. The collective data provided a behavioral profile of fluoxetine-induced sexual dysfunction. These findings reinforce the value of multiple measures when attempting to model antidepressant-induced female sexual dysfunction. PMID:22835821

  10. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway

    PubMed Central

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-01-01

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy. PMID:27708226

  11. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway.

    PubMed

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-11-08

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy.

  12. Amiodarone-Induced Thyroid Dysfunction: A Clinical Update.

    PubMed

    Elnaggar, Mohamed Nabil; Jbeili, Kahtan; Nik-Hussin, Nik; Kozhippally, Mohandas; Pappachan, Joseph M

    2018-06-01

    Amiodarone is one of the most commonly prescribed antiarrhythmic agents in clinical practice owing to its efficacy, even with high toxicity profile. The high iodine content and the prolonged biological half-life of the drug can result in thyroid dysfunction in a high proportion of patients treated with amiodarone even after cessation of amiodarone. Both hypothyroidism and hyperthyroidism are common side effects that mandate regular monitoring of patients with thyroid function tests. Amiodarone-induced hypothyroidism (AIH) is diagnosed and managed in the same way as a usual case of hypothyroidism. However, differential diagnosis and clinical management of amiodarone-induced thyrotoxicosis (AIT) subtypes can be challenging. With the aid of a case snippet, we update the current evidence for the diagnostic work up and management of patients with amiodarone-induced thyroid dysfunction in this article. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Methylnaltrexone mechanisms of action and effects on opioid bowel dysfunction and other opioid adverse effects.

    PubMed

    Yuan, Chun-Su

    2007-06-01

    To review the mechanisms of action of methylnaltrexone and its effects on opioid bowel dysfunction, as well as its effects on other opioid-induced adverse effects (ADEs), and its potential roles in clinical practice. A literature search using the MEDLINE and Cochrane Collaboration databases for articles published between 1966 and March 2007 was performed. Additional data sources were obtained from manual searches of recent journal articles, book chapters, and monographs. An updated literature search showed no additional publications. Abstracts and original preclinical and clinical research reports published in the English language were identified for review. Review articles, commentaries, and news reports of this compound were excluded. Literature related to opioids, opioid receptors, opioid antagonists, methylnaltrexone, opioid-induced bowel dysfunction, constipation, nausea, and vomiting was evaluated and selected based on consideration of the support shown for the proof of concept, mechanistic findings, and timeliness. Fifty-eight original articles from preclinical studies and clinical trials using methylnaltrexone were identified. Pharmacologic action, benefits, and ADEs of methylnaltrexone were reviewed, with a focus on its effects on bowel dysfunction after opioids. Emphases were placed on its receptor binding activities and therapeutically relevant sites of action (peripheral vs central), in which peripheral opioid receptors in the body contribute to physiological and drug-induced effects. Morphine and related opioids are associated with a number of limiting ADEs, including opioid-induced bowel dysfunction. Methylnaltrexone, a quaternary derivative of naltrexone, blocks peripheral effects of opioids while sparing central analgesic effects. It is currently under late-stage clinical investigation for the treatment of opioid-induced constipation in patients with advanced illness. Reported results showed the drug to be generally well-tolerated. The rapid reversal of constipation is very encouraging. Hastening postoperative discharge may also be possible. Methylnaltrexone has the potential to prevent or treat opioid-induced peripherally mediated ADEs on bowel dysfunction without interfering with central analgesia. The study of methylnaltrexone leads to a greater understanding of the mechanisms of action of opioid pharmacology.

  14. Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta.

    PubMed

    Sturza, Adrian; Leisegang, Matthias S; Babelova, Andrea; Schröder, Katrin; Benkhoff, Sebastian; Loot, Annemarieke E; Fleming, Ingrid; Schulz, Rainer; Muntean, Danina M; Brandes, Ralf P

    2013-07-01

    Monoamine oxidases (MAOs) generate H(2)O(2) as a by-product of their catalytic cycle. Whether MAOs are mediators of endothelial dysfunction is unknown and was determined here in the angiotensin II and lipopolysaccharide-models of vascular dysfunction in mice. Quantitative real-time polymerase chain reaction revealed that mouse aortas contain enzymes involved in catecholamine generation and MAO-A and MAO-B mRNA. MAO-A and -B proteins could be detected by Western blot not only in mouse aortas but also in human umbilical vein endothelial cells. Ex vivo incubation of mouse aorta with recombinant MAO-A increased H(2)O(2) formation and induced endothelial dysfunction that was attenuated by polyethylene glycol-catalase and MAO inhibitors. In vivo lipopolysaccharide (8 mg/kg IP overnight) or angiotensin II (1 mg/kg per day, 2 weeks, minipump) treatment induced vascular MAO-A and -B expressions and resulted in attenuated endothelium-dependent relaxation of the aorta in response to acetylcholine. MAO inhibitors reduced the lipopolysaccharide- and angiotensin II-induced aortic reactive oxygen species formation by 50% (ferrous oxidation xylenol orange assay) and partially normalized endothelium-dependent relaxation. MAO-A and MAO-B inhibitors had an additive effect; combined application completely restored endothelium-dependent relaxation. To determine how MAO-dependent H(2)O(2) formation induces endothelial dysfunction, cyclic GMP was measured. Histamine stimulation of human umbilical vein endothelial cells to activate endothelial NO synthase resulted in an increase in cyclic GMP, which was almost abrogated by MAO-A exposure. MAO inhibition prevented this effect, suggesting that MAO-induced H(2)O(2) formation is sufficient to attenuate endothelial NO release. Thus, MAO-A and MAO-B are both expressed in the mouse aorta, induced by in vivo lipopolysaccharide and angiotensin II treatment and contribute via the generation of H(2)O(2) to endothelial dysfunction in vascular disease models.

  15. Grape seed proanthocyanidin extract protects human umbilical vein endothelial cells from indoxyl sulfate-induced injury via ameliorating mitochondrial dysfunction.

    PubMed

    Lu, Zhaoyu; Lu, Fuhua; Zheng, Yanqun; Zeng, Yuqun; Zou, Chuan; Liu, Xusheng

    2016-01-01

    To investigate the effects of grape seed proanthocyanidin extract (GSPE) on indoxyl sulfate-induced Human Umbilical Vein Endothelial Cells (HUVECs) injury in vitro and study its mechanism. HUVECs were incubated with indoxyl sulfate at concentrations in the range found in uremic patients. Then we determined the effect of indoxyl sulfate on endothelial phenotype, endothelial function, ROS (reactive oxygen species), cell apoptosis and mitochondrial function. In addition, we detected whether GSPE can suppress the injury of HUVECs induced by indoxyl sulfate and probe the mechanism underlying the protective effects of GSPE by analyzing mitochondrial dysfunction. GSPE treatment significantly attenuated indoxyl sulfate-induced HVUECs injury in a dose- and time-dependent manner. GSPE-enhanced eNOS and VE-cadherin expression, inhibited intracellular ROS level and cell apoptosis, adjust mitochondrial membrane potential and reduced 8-hydroxy-desoxyguanosine (8-OHdG) level induced by indoxyl sulfate. These results suggest that GSPE prevents HUVECs from indoxyl sulfate-induced injury by ameliorating mitochondrial dysfunction and may be a promising agent for treating uremia toxin-induced injury.

  16. Extracellular vesicles are key intercellular mediators in the development of immune dysfunction to allergens in the airways.

    PubMed

    Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Yong Song; Kim, Yoon-Keun

    2010-10-01

    Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens.

  17. Extracellular vesicles are key intercellular mediators in the development of immune dysfunction to allergens in the airways

    PubMed Central

    Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Y S; Kim, Y-K

    2010-01-01

    Background Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. Objective To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Methods Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. Results The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. Conclusion These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens. PMID:20337607

  18. Mothers' exercise during pregnancy programs vasomotor function in adult offspring

    USDA-ARS?s Scientific Manuscript database

    Background: The intrauterine environment is influenced by maternal behavior and known to influence lifelong atherosclerotic disease susceptibility in offspring. The purpose of this investigation was to test the hypothesis that maternal exercise during pregnancy increases endothelial function in offs...

  19. Drug-induced sexual dysfunction.

    PubMed

    Aldridge, S A

    1982-01-01

    Commonly used drugs that may cause sexual dysfunction are reviewed. The anatomy and physiology of the normal sexual response are reviewed. The influence of drugs on neurogenic, hormonal, and vascular mechanisms may result in diminished libido, impotence, ejaculatory and orgasmic difficulties, inhibited vaginal lubrication, menstrual irregularities, and gynecomastia in men or painful breast enlargement in women. Parasympatholytic agents, which interfere with cholinergic transmission, may affect erectile potency, while adrenergic inhibiting agents may interfere with ejaculatory control. Central nervous system depressants or sedating drugs, drugs producing hyperprolactinemia, and antiandrogenic drugs also may affect the normal sexual response. Drugs such as antihypertensive and antipsychotic agents may induce sexual dysfunction that can result in patient noncompliance. Usually, drug-induced side effects are reversible with discontinuation of the offending agent.

  20. Early Immune Function and Duration of Organ Dysfunction in Critically Ill Septic Children.

    PubMed

    Muszynski, Jennifer A; Nofziger, Ryan; Moore-Clingenpeel, Melissa; Greathouse, Kristin; Anglim, Larissa; Steele, Lisa; Hensley, Josey; Hanson-Huber, Lisa; Nateri, Jyotsna; Ramilo, Octavio; Hall, Mark W

    2018-02-22

    Late immune suppression is associated with nosocomial infection and mortality in septic adults and children. Relationships between early immune suppression and outcomes in septic children remain unclear. Prospective observational study to test the hypothesis that early innate and adaptive immune suppression are associated with longer duration of organ dysfunction in children with severe sepsis/septic shock. Methods, Measurements and Main Results: Children aged < 18 years meeting consensus criteria for severe sepsis or septic shock were sampled within 48 hours of sepsis onset. Healthy controls were sampled once. Innate immune function was quantified by whole blood ex vivo lipopolysaccharide-induced TNFα production capacity. Adaptive immune function was quantified by ex vivo phytohemagglutinin-induced IFNγ production capacity. 102 septic children and 35 healthy children were enrolled. Compared to healthy children, septic children demonstrated lower LPS-induced TNFα production (p < 0.0001) and lower PHA-induced IFNγ production (p<0.0001). Among septic children, early innate and adaptive immune suppression were associated with greater number of days with multiple organ dysfunction (MODS) and greater number of days with any organ dysfunction. On multivariable analyses, early innate immune suppression remained independently associated with increased MODS days [aRR 1.2 (1.03, 1.5)] and organ dysfunction days [aRR 1.2 (1.1, 1.3)]. Critically ill children with severe sepsis or septic shock demonstrate early innate and adaptive immune suppression. Early suppression of both innate and adaptive immunity are associated with longer duration of organ dysfunction and may be useful markers to guide investigations of immunomodulatory therapies in septic children.

  1. TMEM16A Contributes to Endothelial Dysfunction by Facilitating Nox2 NADPH Oxidase-Derived Reactive Oxygen Species Generation in Hypertension.

    PubMed

    Ma, Ming-Ming; Gao, Min; Guo, Kai-Min; Wang, Mi; Li, Xiang-Yu; Zeng, Xue-Lin; Sun, Lu; Lv, Xiao-Fei; Du, Yan-Hua; Wang, Guan-Lei; Zhou, Jia-Guo; Guan, Yong-Yuan

    2017-05-01

    Ca 2+ -activated Cl - channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca 2+ -activated Cl - channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases. © 2017 American Heart Association, Inc.

  2. Prefrontal Cortex Corticotropin-Releasing Factor Receptor 1 Conveys Acute Stress-Induced Executive Dysfunction.

    PubMed

    Uribe-Mariño, Andrés; Gassen, Nils C; Wiesbeck, Maximilian F; Balsevich, Georgia; Santarelli, Sara; Solfrank, Beate; Dournes, Carine; Fries, Gabriel R; Masana, Merce; Labermeier, Christiana; Wang, Xiao-Dong; Hafner, Kathrin; Schmid, Bianca; Rein, Theo; Chen, Alon; Deussing, Jan M; Schmidt, Mathias V

    2016-11-15

    The medial prefrontal cortex (mPFC) subserves complex cognition and is impaired by stress. Corticotropin-releasing factor (CRF), through CRF receptor 1 (CRFR1), constitutes a key element of the stress response. However, its contribution to the effects of stress in the mPFC remains unclear. Mice were exposed to acute social defeat stress and subsequently to either the temporal order memory (n = 11-12) or reversal learning (n = 9-11) behavioral test. Changes in mPFC Crhr1 messenger RNA levels were measured in acutely stressed mice (n = 12). Crhr1 loxP/loxP mice received either intra-mPFC adeno-associated virus-Cre or empty microinjections (n = 17-20) and then were submitted to acute stress and later to the behavioral tests. Co-immunoprecipitation was used to detect activation of the protein kinase A (PKA) signaling pathway in the mPFC of acutely stressed mice (n = 8) or intra-mPFC CRF injected mice (n = 7). Finally, mice received intra-mPFC CRF (n = 11) and/or Rp-isomer cyclic adenosine 3',5' monophosphorothioate (Rp-cAMPS) (n = 12) microinjections and underwent behavioral testing. We report acute stress-induced effects on mPFC-mediated cognition, identify CRF-CRFR1-containing microcircuits within the mPFC, and demonstrate stress-induced changes in Crhr1 messenger RNA expression. Importantly, intra-mPFC CRFR1 deletion abolishes acute stress-induced executive dysfunction, whereas intra-mPFC CRF mimics acute stress-induced mPFC dysfunction. Acute stress and intra-mPFC CRF activate the PKA signaling pathway in the mPFC, leading to cyclic AMP response element binding protein phosphorylation in intra-mPFC CRFR1-expressing neurons. Finally, PKA blockade reverses the intra-mPFC CRF-induced executive dysfunction. Taken together, these results unravel a molecular mechanism linking acute stress to executive dysfunction via CRFR1. This will aid in the development of novel therapeutic targets for stress-induced cognitive dysfunction. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Synthetic nickel-containing superoxide dismutase attenuates para-phenylenediamine-induced bladder dysfunction in rats

    PubMed Central

    Chiang, Bing-Juin; Chen, Tien-Wen; Chung, Shiu-Dong; Lee, Way-Zen; Chien, Chiang-Ting

    2017-01-01

    Para (p)-phenylenediamine and its toxic metabolites induce excess reactive oxygen species formation that results in bladder voiding dysfunction. We determined the effects of synthetic Ni-containing superoxide dismutase mimics and the role of oxidative stress in p-phenylenediamine-induced urinary bladder dysfunction. P-phenylenediamine (60 μg/kg/day) was intraperitoneally administered for 4 weeks to induce bladder injury in female Wistar rats. Synthetic Ni-containing superoxide dismutase mimics, WCT003 (1.5 mg/kg) and WCT006 (1.5 mg/kg), were then intraperitoneally administered for 2 weeks. Transcystometrograms were performed in urethane-anesthetized rats. The in vitro and in vivo reactive oxygen species levels and pathological changes in formalin-fixed bladder sections were evaluated. Western blotting and immunohistochemistry elucidated the pathophysiological mechanisms of oxidative stress-induced apoptosis, autophagy, and pyroptosis. P-phenylenediamine increased voiding frequency, blood and urinary bladder levels of reactive oxygen species, and neutrophil and mast cell infiltration. It also upregulated biomarkers of autophagy (LC3 II), apoptosis (poly (ADP-ribose) polymerase), and pyroptosis (Caspase 1). WCT003 and WCT006 ameliorated reactive oxygen species production, inflammation, apoptosis, autophagy, pyroptosis, and bladder hyperactivity. P-phenylenediamine increased oxidative stress, inflammatory leukocytosis, autophagy, apoptosis, and pyroptosis formation within the urinary bladder. Novel synthetic nickel-containing superoxide dismutase mimics relieved p-phenylenediamine-induced bladder inflammation and voiding dysfunction. PMID:29285288

  4. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity.

    PubMed

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M

    2013-12-01

    Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.

  5. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dong-mei; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province; Lu, Jun, E-mail: lu-jun75@163.com

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitivemore » deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.« less

  6. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity.

    PubMed

    Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie

    2016-11-01

    The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.

  7. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity

    PubMed Central

    Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J.; Miranda, Melroy X.; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F.; Verrey, François; Matter, Christian M.

    2013-01-01

    Received 22 July 2012; revised 29 January 2013; accepted 4 March 2013 Aims Aldosterone plays a crucial role in cardiovascular disease. ‘Systemic’ inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the ‘endothelial’ MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. Methods and results C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high ‘endogenous’ aldosterone) and in ‘exogenous’ aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Conclusion Obesity-induced endothelial dysfunction depends on the ‘endothelial’ MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications. PMID:23594590

  8. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction.

    PubMed

    Lang, Hongmei; Xiang, Yang; Ai, Zhihua; You, Zhiqing; Jin, Xiaolan; Wan, Yong; Yang, Yongjian

    2018-04-20

    Excessive salt intake and left ventricular hypertrophy (LVH) are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3) plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Xanthine Oxidase Inhibition with Febuxostat Attenuates Systolic Overload-induced Left Ventricular Hypertrophy and Dysfunction in Mice

    PubMed Central

    Xu, Xin; Hu, Xinli; Lu, Zhongbing; Zhang, Ping; Zhao, Lin; Wessale, Jerry L.; Bache, Robert J.; Chen, Yingjie

    2008-01-01

    The purine analog xanthine oxidase (XO) inhibitors (XOIs), allopurinol and oxypurinol, have been reported to protect against heart failure secondary to myocardial infarction or rapid ventricular pacing. Since these agents might influence other aspects of purine metabolism that could influence their effect, this study examined the effect of the non-purine XOI, febuxostat, on pressure overload-induced left ventricular (LV) hypertrophy and dysfunction. Transverse aortic constriction (TAC) in mice caused LV hypertrophy and dysfunction as well as increased myocardial nitrotyrosine at 8 days. TAC also caused increased phosphorylated Akt (p-AktSer473), p42/44 extracellular signal-regulated kinase (p-ErkThr202/Tyr204) and mammalian target of rapamycin (mTOR) (p-mTORSer2488). XO inhibition with febuxostat (5mg/kg/day by gavage for 8 days) beginning ~60 minutes after TAC attenuated the TAC-induced LV hypertrophy and dysfunction. Febuxostat blunted the TAC-induced increases in nitrotyrosine (indicating reduced myocardial oxidative stress), p-ErkThr202/Tyr204 and p-mTORSer2488, with no effect on total Erk or total mTOR. Febuxostat had no effect on myocardial p-AktSer473 or total Akt. The results suggest that XO inhibition with febuxostat reduced oxidative stress in the pressure overloaded LV, thereby diminishing the activation of pathways that result in pathologic hypertrophy and contractile dysfunction. PMID:18995179

  10. Red Blood Cell Dysfunction Induced by High-Fat Diet

    PubMed Central

    Unruh, Dusten; Srinivasan, Ramprasad; Benson, Tyler; Haigh, Stephen; Coyle, Danielle; Batra, Neil; Keil, Ryan; Sturm, Robert; Blanco, Victor; Palascak, Mary; Franco, Robert S.; Tong, Wilson; Chatterjee, Tapan; Hui, David Y.; Davidson, W. Sean; Aronow, Bruce J.; Kalfa, Theodosia; Manka, David; Peairs, Abigail; Blomkalns, Andra; Fulton, David J.; Brittain, Julia E.; Weintraub, Neal L.; Bogdanov, Vladimir Y.

    2015-01-01

    Background High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC−/− mice. In RBCs from HFD-fed wild-type and DARC−/− mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. PMID:26467254

  11. Dietary grape seed proanthocyanidin extract regulates metabolic disturbance in rat liver exposed to lead associated with PPARα signaling pathway.

    PubMed

    Yang, Daqian; Jiang, Huijie; Lu, Jingjing; Lv, Yueying; Baiyun, Ruiqi; Li, Siyu; Liu, Biying; Lv, Zhanjun; Zhang, Zhigang

    2018-06-01

    Lead, a pervasive environmental hazard worldwide, causes a wide range of physiological and biochemical destruction, including metabolic dysfunction. Grape seed proanthocyanidin extract (GSPE) is a natural production with potential metabolic regulation in liver. This study was performed to investigate the protective role of GSPE against lead-induced metabolic dysfunction in liver and elucidate the potential molecular mechanism of this event. Wistar rats received GSPE (200 mg/kg) daily with or without lead acetate (PbA, 0.5 g/L) exposure for 56 d. According to biochemical and histopathologic analysis, GSPE attenuated lead-induced metabolic dysfunction, oxidative stress, and liver dysfunction. Liver gene expression profiling was assessed by RNA sequencing and validated by qRT-PCR. Expression of some genes in peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was significantly suppressed in PbA group and revived in PbA + GSPE group, which was manifested by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis and validated by western blot analysis. This study supports that dietary GSPE ameliorates lead-induced fatty acids metabolic disturbance in rat liver associated with PPARα signaling pathway, and suggests that dietary GSPE may be a protector against lead-induced metabolic dysfunction and liver injury, providing a novel therapy to protect liver against lead exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Methamphetamine-induced neurotoxicity linked to UPS dysfunction and autophagy related changes that can be modulated by PKCδ in dopaminergic neuronal cells

    PubMed Central

    Lin, Mengshien; Shivalingappa, Prashanth Chandramani; Jin, Huajun; Ghosh, Anamitra; Anantharam, Vellareddy; Ali, Syed; Kanthasamy, Anumantha G.; Kanthasamy, Arthi

    2012-01-01

    A compromised protein degradation machinery has been implicated in methamphetamine (MA)-induced neurodegeneration. However, the signaling mechanisms that induce autophagy and UPS dysfunction are not well understood. The present study investigates the contributions of PKC delta (PKCδ) mediated signaling events in MA-induced autophagy, UPS dysfunction and cell death. Using an in vitro mesencephalic dopaminergic cell culture model, we demonstrate that MA-induced early induction of autophagy is associated with reduction in proteasomal function and concomitant dissipation of mitochondrial membrane potential (MMP), followed by significantly increased of PKCδ activation, caspase-3 activation, accumulation of ubiquitin positive aggregates and microtubule associated light chain-3 (LC3-II) levels. Interestingly, siRNA mediated knockdown of PKCδ or overexpression of cleavage resistant mutant of PKCδ dramatically reduced MA-induced autophagy, proteasomal function, and associated accumulation of ubiquitinated protein aggregates, which closely paralleled cell survival. Importantly, when autophagy was inhibited either pharmacologically (3-MA) or genetically (siRNA mediated silencing of LC3), the dopaminergic cells became sensitized to MA-induced apoptosis through caspase-3 activation. Conversely, overexpression of LC3 partially protected against MA-induced apoptotic cell death, suggesting a neuroprotective role for autophagy in MA-induced neurotoxicity. Notably, rat striatal tissue isolated from MA treated rats also exhibited elevated LC3-II, ubiquitinated protein levels, and PKCδ cleavage. Taken together, our data demonstrate that MA-induced autophagy serves as an adaptive strategy for inhibiting mitochondria mediated apoptotic cell death and degradation of aggregated proteins. Our results also suggest that the sustained activation of PKCδ leads to UPS dysfunction, resulting in the activation of caspase-3 mediated apoptotic cell death in the nigrostriatal dopaminergic system. PMID:22445524

  13. Understanding the physiology of mindfulness: aortic hemodynamics and heart rate variability.

    PubMed

    May, Ross W; Bamber, Mandy; Seibert, Gregory S; Sanchez-Gonzalez, Marcos A; Leonard, Joseph T; Salsbury, Rebecca A; Fincham, Frank D

    2016-01-01

    Data were collected to examine autonomic and hemodynamic cardiovascular modulation underlying mindfulness from two independent samples. An initial sample (N = 185) underwent laboratory assessments of central aortic blood pressure and myocardial functioning to investigated the association between mindfulness and cardiac functioning. Controlling for religiosity, mindfulness demonstrated a strong negative relationship with myocardial oxygen consumption and left ventricular work but not heart rate or blood pressure. A second sample (N = 124) underwent a brief (15 min) mindfulness inducing intervention to examine the influence of mindfulness on cardiovascular autonomic modulation via blood pressure variability and heart rate variability. The intervention had a strong positive effect on cardiovascular modulation by decreasing cardiac sympathovagal tone, vasomotor tone, vascular resistance and ventricular workload. This research establishes a link between mindfulness and cardiovascular functioning via correlational and experimental methodologies in samples of mostly female undergraduates. Future directions for research are outlined.

  14. Minocycline attenuates cardiac dysfunction in tumor-burdened mice.

    PubMed

    Devine, Raymond D; Eichenseer, Clayton M; Wold, Loren E

    2016-11-01

    Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cerebral Autoregulation in Hypertension and Ischemic Stroke: A Mini Review

    PubMed Central

    Shekhar, Shashank; Liu, Ruen; Travis, Olivia K; Roman, Richard J; Fan, Fan

    2017-01-01

    Aging and chronic hypertension are associated with dysfunction in vascular smooth muscle, endothelial cells, and neurovascular coupling. These dysfunctions induce impaired myogenic response and cerebral autoregulation, which diminish the protection of cerebral arterioles to the cerebral microcirculation from elevated pressure in hypertension. Chronic hypertension promotes cerebral focal ischemia in response to reductions in blood pressure that are often seen in sedentary elderly patients on antihypertensive therapy. Cerebral autoregulatory dysfunction evokes Blood-Brain Barrier (BBB) leakage, allowing the circulating inflammatory factors to infiltrate the brain to activate glia. The impaired cerebral autoregulation-induced inflammatory and ischemic injury could cause neuronal cell death and synaptic dysfunction which promote cognitive deficits. In this brief review, we summarize the pathogenesis and signaling mechanisms of cerebral autoregulation in hypertension and ischemic stroke-induced cognitive deficits, and discuss our new targets including 20-Hydroxyeicosatetraenoic acid (20-HETE), Gamma-Adducin (Add3) and Matrix Metalloproteinase-9 (MMP-9) that may contribute to the altered cerebral vascular function. PMID:29333537

  16. Crosstalk between the angiotensin and endothelin system in the cerebrovasculature after experimental induced subarachnoid hemorrhage.

    PubMed

    Wanderer, Stefan; Mrosek, Jan; Vatter, Hartmut; Seifert, Volker; Konczalla, Juergen

    2018-04-01

    Under physiologic conditions, losartan showed a dose-dependent antagonistic effect to the endothelin-1 (ET-1)-mediated vasoconstriction. This reduced vasoconstriction was abolished after preincubation with an endothelin B 1 receptor (ET(B 1 )-receptor) antagonist. Also, an increased ET(B 1 )-receptor-dependent relaxation to sarafotoxin S6c (S6c; an ET(B 1 )-receptor agonist) was detected by preincubation with losartan. Investigations after experimental induced subarachnoid hemorrhage (SAH) are still missing. Therefore, we analyzed losartan in a further pathological setup. Cerebral vasospasm was induced by a modified double hemorrhage model. Rats were sacrificed on day 3 and isometric force of basilar artery ring segments was measured. Parallel to physiological conditions, after SAH, the ET-1-induced vasoconstriction was decreased by preincubation with losartan. This reduced contraction has been abolished after preincubation with BQ-788, an ET(B 1 )-receptor antagonist. In precontracted vessels, ET-1 induced a higher vasorelaxation under losartan and the endothelin A receptor (ET(A)-receptor) antagonist BQ-123. After SAH, losartan caused a modulatory effect on the ET(B 1 )-receptor-dependent vasorelaxation. It further induced an upregulation of the NO pathway. Under losartan, the formerly known loss of the ET(B 1 )-receptor vasomotor function was abolished and a significantly increased relaxation, accompanied with an enhanced sensitivity of the ET(B 1 )-receptor, has been detected. Also, the dose-dependent antagonistic effect to the ET-1-induced contraction can be effected by angiotensin II type 1 receptor (AT 1 -receptor) antagonism due to losartan directly via the ET(B 1 )-receptor.

  17. Psychophysical and vasomotor evidence for interdependency of TRPA1 and TRPV1 nociceptive responses in human skin: an experimental study.

    PubMed

    Nielsen, Thomas Arendt; Eriksen, Matilde Alida; Gazerani, Parisa; Andersen, Hjalte Holm

    2018-05-25

    The TRPA1 and TRPV1 receptors are important pharmaceutical targets for antipruritic and analgesic therapy. Obtaining further knowledge on their roles and inter-relationship in humans is therefore crucial. Preclinical results are contradictory concerning co-expression and functional interdependency of TRPV1 and TRPA1 but no human evidence exists. This human experimental study investigated whether functional responses from the subpopulation of TRPA1-nociceptors could be evoked following defunctionalization of TRPV1-nociceptors by cutaneous application of high-concentration capsaicin. Two quadratic areas on each forearm were randomized to pretreatment with an 8% topical capsaicin patch or vehicle for 24h. Subsequently, areas were provoked by transdermal 1% topical capsaicin (TRPV1 agonist) or 10% topical allyl-isothiocyanate ('AITC', a TRPA1-agonist), delivered by 12mm Finn chambers. Evoked pain intensities were recorded during pretreatments and chemical provocations. Quantitative sensory tests were performed before and after provocations to assess changes of heat pain sensitivity. Imaging of vasomotor responses was used to assess neurogenic inflammation after the chemical provocations. In the capsaicin-pretreated areas both the subsequent 1% capsaicin- and 10% AITC-provoked pain intensities were inhibited by 92.9±2.5% and 86.9±5.0% (both: P<0.001), respectively. The capsaicin-ablated skin areas showed significant heat hypoalgesia at baseline (P<0.001) as well as heat antihyperalgesia, and inhibition of neurogenic inflammation evoked by both 1% capsaicin- and 10% AITC provocations (both: P<0.001). Ablation of capsaicin-sensitive afferents caused consistent and equal inhibition of both TRPV1 and TRPA1-provoked responses assessed psychophysically and by imaging of vasomotor responses. The present study suggests that TRPA1 nociceptive responses in human skin strongly depend on intact capsaicin-sensitive, TPRV1 fibers.

  18. Treatment-associated musculoskeletal and vasomotor symptoms and relapse-free survival in the NCIC CTG MA.27 adjuvant breast cancer aromatase inhibitor trial.

    PubMed

    Stearns, Vered; Chapman, Judith-Anne W; Ma, Cynthia X; Ellis, Matthew J; Ingle, James N; Pritchard, Kathleen I; Budd, G Thomas; Rabaglio, Manuela; Sledge, George W; Le Maitre, Aurélie; Kundapur, Jessica; Liedke, Pedro E R; Shepherd, Lois E; Goss, Paul E

    2015-01-20

    Treatment-emergent symptoms with adjuvant tamoxifen and aromatase inhibitors (AIs) have been associated with superior recurrence-free survival (RFS). We hypothesized that MA.27 anastrozole- or exemestane-treated patients with new or worsening vasomotor and/or joint symptoms would have improved RFS. MA.27 randomly assigned 7,576 postmenopausal women with breast cancer to 5 years of anastrozole or exemestane. Patient-reported symptoms were collected using the Common Terminology Criteria for Adverse Events version 3.0 at protocol-specified baseline and 6- and 12-month clinical visits. Symptoms were considered present with either vasomotor and/or joint complaints. Associations between symptoms and baseline patient characteristics were examined with χ(2) and Fisher's exact tests. Subsequent effects of new or worsening symptoms on RFS were examined with landmark analyses and stratified univariable and multivariable Cox models. We examined the effects of 3-month symptoms arising from unplanned clinic visits as a result of severe toxicity. Patients were assessable if eligible for the MA.27 trial, received some trial therapy, and had no disease recurrence at the end of a symptom assessment period; 96% of patients (n = 7,306 patients) were included at 6 months, and 96% (n = 7,246) were included at 12 months. Thirty-four percent of patients had baseline symptoms. For patients without baseline symptoms, 25% and 52% had new symptoms by 6 and 12 months, respectively. Neither treatment-emergent nor baseline symptoms significantly impacted RFS (P > .10) in patients with or without baseline symptoms. In MA.27, anastrozole or exemestane treatment-emergent symptoms were not associated with improved RFS. Women should be supported through treatment and encouraged to remain on their AI regardless of their symptoms. © 2014 by American Society of Clinical Oncology.

  19. Topical, geospatial, and temporal diffusion of the 2015 North American Menopause Society position statement on nonhormonal management of vasomotor symptoms.

    PubMed

    Carpenter, Janet S; Laine, Tei; Harrison, Blake; LePage, Meghan; Pierce, Taran; Hoteling, Nathan; Börner, Katy

    2017-10-01

    We sought to depict the topical, geospatial, and temporal diffusion of the 2015 North American Menopause Society position statement on the nonhormonal management of menopause-associated vasomotor symptoms released on September 21, 2015, and its associated press release from September 23, 2015. Three data sources were used: online news articles, National Public Radio, and Twitter. For topical diffusion, we compared keywords and their frequencies among the position statement, press release, and online news articles. We also created a network figure depicting relationships across key content categories or nodes. For geospatial diffusion within the United States, we compared locations of the 109 National Public Radio (NPR) stations covering the statement to 775 NPR stations not covering the statement. For temporal diffusion, we normalized and segmented Twitter data into periods before and after the press release (September 12, 2015 to September 22, 2015 vs September 23, 2015 to October 3, 2015) and conducted a burst analysis to identify changes in tweets from before to after. Topical information diffused across sources was similar with the exception of the more scientific terms "vasomotor symptoms" or "vms" versus the more colloquial term "hot flashes." Online news articles indicated media coverage of the statement was mainly concentrated in the United States. NPR station data showed similar proportions of stations airing the story across the four census regions (Northeast, Midwest, south, west; P = 0.649). Release of the statement coincided with bursts in the menopause conversation on Twitter. The findings of this study may be useful for directing the development and dissemination of future North American Menopause Society position statements and/or press releases.

  20. Relationship between changes in vasomotor symptoms and changes in menopause-specific quality of life and sleep parameters.

    PubMed

    Pinkerton, JoAnn V; Abraham, Lucy; Bushmakin, Andrew G; Cappelleri, Joseph C; Komm, Barry S

    2016-10-01

    This study characterizes and quantifies the relationship of vasomotor symptoms (VMS) of menopause with menopause-specific quality of life (MSQOL) and sleep parameters to help predict treatment outcomes and inform treatment decision-making. Data were derived from a 12-week randomized, double-blind, placebo-controlled phase 3 trial that evaluated effects of two doses of conjugated estrogens/bazedoxifene on VMS in nonhysterectomized postmenopausal women (N = 318, mean age = 53.39) experiencing at least seven moderate to severe hot flushes (HFs) per day or at least 50 per week. Repeated measures models were used to determine relationships between HF frequency and severity and outcomes on the Menopause-Specific Quality of Life questionnaire and the Medical Outcomes Study sleep scale. Sensitivity analyses were performed to check assumptions of linearity between VMS and outcomes. Frequency and severity of HFs showed approximately linear relationships with MSQOL and sleep parameters. Sensitivity analyses supported assumptions of linearity. The largest changes associated with a reduction of five HFs and a 0.5-point decrease in severity occurred in the Menopause-Specific Quality of Life vasomotor functioning domain (0.78 for number of HFs and 0.98 for severity) and the Medical Outcomes Study sleep disturbance (7.38 and 4.86) and sleep adequacy (-5.60 and -4.66) domains and the two overall sleep problems indices (SPI: 5.17 and 3.63; SPII: 5.82 and 3.83). Frequency and severity of HFs have an approximately linear relationship with MSQOL and sleep parameters-that is, improvements in HFs are associated with improvements in MSQOL and sleep. Such relationships may enable clinicians to predict changes in sleep and MSQOL expected from various VMS treatments.

  1. Sudomotor, skin vasomotor, and cardiovascular reflexes in 3 clinical forms of Lewy body disease.

    PubMed

    Akaogi, Y; Asahina, M; Yamanaka, Y; Koyama, Y; Hattori, T

    2009-07-07

    To elucidate the differences among dementia with Lewy bodies (DLB), Parkinson disease with dementia (PDD), and Parkinson disease without dementia (PD), with respect to the involvement of the autonomic nervous system, we clinically investigated the cutaneous and cardiovascular autonomic functions in patients with Lewy body disease. We studied 36 patients with Lewy body disorders, including 12 patients with DLB (age, 75.4 +/- 5.9 years), 12 patients with PDD (71.0 +/- 6.8 years), and 12 patients with PD (70.9 +/- 4.2 years), and 12 healthy control subjects (69.9 +/- 5.3 years). Sympathetic sweat response (SSwR) and skin vasomotor reflex (SkVR) on the palm were recorded to estimate the cutaneous sympathetic function, and the head-up tilt test was performed and coefficient of variation of R-R intervals (CV(R-R)) was studied to estimate the cardiovascular function. The patients with DLB, patients with PDD, and patients with PD showed severely reduced SSwR amplitudes, significantly lower than that in the controls. The mean SkVR amplitudes in the patients with DLB and patients with PDD were significantly lower than that in the controls, but not in the patients with PD. The mean decreases in the systolic blood pressure during the head-up tilt test in the patients with DLB and patients with PDD were less than that in the controls. The mean CV(R-R) value was significantly lower in the patients with DLB. Sudomotor function on the palm may be severely affected in Lewy body disorders, while skin vasomotor function and the cardiovascular system may be more severely affected in dementia with Lewy bodies and Parkinson disease with dementia than in Parkinson disease.

  2. Vasomotor symptoms among Japanese-American and European-American women living in Hilo, Hawaii.

    PubMed

    Sievert, Lynnette Leidy; Morrison, Lynn; Brown, Daniel E; Reza, Angela M

    2007-01-01

    The Hilo Women's Health Survey was designed and administered to gather baseline data on women's health in Hilo, HI. This randomized, cross-sectional study allowed for a focus on ethnic differences in symptom reporting. The results presented here focus on hot flash and night sweat experience among Japanese-American and European-American women. Survey packets were mailed to street addresses associated with parcel numbers pulled randomly from Hilo tax maps. Of the 6,401 survey packets delivered to households, 1,824 questionnaires were completed and returned. The results reported here are based on 869 women aged 40 to 60, of whom 249 described themselves to be 100% Japanese and 203 described themselves to be 100% European-American. Logistic regression analyses were used to examine whether the relationship between ethnicity and vasomotor symptoms persisted after controlling for other variables. European-American participants were more likely to have ever experienced a hot flash as compared with Japanese-American participants (72% vs 53%, P<0.01). During the 2 weeks before the survey, European-American participants were more likely to have experienced hot flashes (P<0.05) and night sweats (P<0.01). In logistic regression analyses, after controlling for age, body mass index, menopause status, level of education, financial comfort, smoking habits, alcohol intake, exercise, use of hormone therapy, and soy intake, European-American women were still significantly more likely to have experienced hot flashes (odds ratio=1.858) and night sweats (odds ratio=2.672). The results, based on self-reporting of menopausal symptoms, indicate that Japanese-American women report fewer hot flashes and night sweats than European-American women. Japanese-American women reported a higher intake of soy, but soy intake was not associated with fewer vasomotor symptoms.

  3. Menopause characteristics and subjective symptoms in women with and without spinal cord injury.

    PubMed

    Kalpakjian, Claire Z; Quint, Elisabeth H; Bushnik, Tamara; Rodriguez, Gianna M; Terrill, Melissa Sendroy

    2010-04-01

    To examine menopause transition characteristics and symptom bother in women with spinal cord injury (SCI). Prospective cohort (4 data collection periods across 4 years). Community. Women (n=62) with SCI (injury levels C6-T12, nonambulatory, >36mo postinjury; 86.1% retention) and women without SCI (n=66; 92.9% retention) with intact ovaries, not using hormone therapy, and between the ages of 45 and 60 years volunteered. A total of 505 observations were collected and analyzed. None. Age at final menstrual period (FMP), transitions through menopause status classifications, and menopause symptom bother (vasomotor, somatic, psychologic symptoms). The number of women transitioning through a menopause status classification over the course of the study did not significantly vary by group (P=.263), nor did age at FMP (P=.643). Women with SCI experienced greater bother of somatic symptoms (a subscale, P<.001), bladder infections (P<.001), and diminished sexual arousal (P=.012). Women without SCI had significantly greater bother of vasomotor symptoms (P=.020). There were no significant group by menopause status interactions; main effects for menopause status were significant only for vasomotor symptoms and vaginal dryness. Results suggested that women with SCI experience greater symptom bother in certain areas, but that patterns of symptom bother across menopause, transition through menopause, and age at FMP are similar to those of their peers. Larger studies are needed to examine menopause outcomes with respect to level of injury and completeness of injury. These findings provide a framework that women with SCI and their health care providers can use to address the menopause transition and highlight the importance of multidisciplinary involvement to maximize health and well being during this transition. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction

    USDA-ARS?s Scientific Manuscript database

    OBJECTIVE: Regulation of fatty acid (FA) metabolism is central to adipocyte dysfunction during diet-induced obesity (DIO). Long-chain acyl-CoA synthetase-4 (ACSL4) has been hypothesized to modulate the metabolic fates of polyunsaturated FA (PUFA), including arachidonic acid (AA), but the in vivo act...

  5. White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies

    PubMed Central

    Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli

    2016-01-01

    We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia (VaD) using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p<0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 (AQP-4) expression around blood vessels. MMI induced glymphatic dysfunction with delayed cerebrospinal fluid (CSF) penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases AQP-4 and induces glymphatic dysfunction which may play an important role in MMI induced axonal/WM damage and cognitive deficits. PMID:27940353

  6. White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies.

    PubMed

    Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli

    2017-02-01

    We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p < 0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age-matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 expression around blood vessels. MMI-induced glymphatic dysfunction with delayed cerebrospinal fluid penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases Aquaporin-4 and induces glymphatic dysfunction which may play an important role in MMI-induced axonal/WM damage and cognitive deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage

    PubMed Central

    2014-01-01

    This article reviews current knowledge of the mechanisms underlying the initial hemorrhage and secondary blood–brain barrier (BBB) dysfunction in primary spontaneous intracerebral hemorrhage (ICH) in adults. Multiple etiologies are associated with ICH, for example, hypertension, Alzheimer’s disease, vascular malformations and coagulopathies (genetic or drug-induced). After the initial bleed, there can be continued bleeding over the first 24 hours, so-called hematoma expansion, which is associated with adverse outcomes. A number of clinical trials are focused on trying to limit such expansion. Significant progress has been made on the causes of BBB dysfunction after ICH at the molecular and cell signaling level. Blood components (e.g. thrombin, hemoglobin, iron) and the inflammatory response to those components play a large role in ICH-induced BBB dysfunction. There are current clinical trials of minimally invasive hematoma removal and iron chelation which may limit such dysfunction. Understanding the mechanisms underlying the initial hemorrhage and secondary BBB dysfunction in ICH is vital for developing methods to prevent and treat this devastating form of stroke. PMID:25120903

  8. Bacteriological Controls at Czechoslovakia Blood Transfusion Centers.

    DTIC Science & Technology

    1961-07-01

    and are followed by a steep rise in temperature. 3. The third phase is characterized by extreme distension of the arteries well visible in the mucous...by increased muscular rigidity. 4. The fourth phase is of shock, disappearance of vasomotor regulation, strong orthostatic hypotension with peripheral

  9. [Effect of soybeans and soy sauce on vasomotor symptoms during menopause].

    PubMed

    Gutiérrez Martínez, María Del Mar; Riquelme Raya, Rebeca; Campos Martínez, Ana María; Lorite Garzón, Catalina; Strivens Vilchez, Helen; Ruiz Rodríguez, Concepción

    2006-06-01

    During menopause, some women experience symptoms which can interfere with their living quality. Some of these symptoms are the so-called vasomotor symptoms which include suffocations, hot flashes, and nocturnal sweats. Up to now, the most effective remedy was hormone treatment, but a study of isoflavines, such as soybean, suggests it is possible to alleviate the disturbances caused by menopause. Due to this study we consider that the addition of isoflavines can provide benefits to women. Therefore, it is correct to include them in the field of medicines which give an alternative to estrogen therapy. However, one must bear in mind that data about the efficiency and security of alternative medicines in the treatment of menopause symptoms are not conclusive since each woman is unique and it is necessary to have consensus on an individualized health plan which permits one to carry out adequate therapeutic adjustments in accordance to the needs which occur over the entire menopause process.

  10. Thermoregulation in intense microwave fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelson, S.M.

    1981-10-01

    These studies clearly indicate the thermoregulatory capacity of the dog to withstand exposure to high microwave fields at specific absorption rates (SAR) of 3.7 and 6.1 W/kg. It appears that adequate thermoregulation takes place at an SAR of 3.7 W/kg but only transiently at 6.1 W/kg. These values, compared with the standardized resting metabolic rate of 3.29 W/kg (0.75), provide a basis for assessing the relationship of the thermal burden and thermo-regulatory disruption by microwaves in the dog. To elucidate the thermal potential of microwave exposure, it was helpful to conduct these exposures at various ambient temperatures in which themore » normal body temperature remained stable, thus permitting comparison of heat production and dissipation with our without microwaves. The zone of the thermal neutrality or thermoneutral zone of vasomotor activity, 22-26.5 deg C, where body temperature is regulated by changes in vasomotor tonus, fulfilled this requirement.« less

  11. Extremely Low Birth Weight Preterm Infants Lack Vasomotor Response in Relationship to Cold Body Temperatures at Birth

    PubMed Central

    Knobel, Robin B.; Holditch-Davis, Diane; Schwartz, Todd A.; Wimmer, John E.

    2009-01-01

    Objective This study evaluated peripheral vasoconstriction in ELBW infants when body temperature decreased during the first 12-hours of life. Design An exploratory, within-subjects design with 10 ELBW infants. Abdominal and foot temperatures were measured every minute. Peripheral vasoconstriction (abdominal > peripheral temperature by 2° C) and abdominal-peripheral temperature difference were also evaluated. Results Abdominal and peripheral temperatures were significantly correlated within each infant. One 880 g infant exhibited isolated peripheral vasoconstriction; a 960 g infant had abdominal temperatures more than 1° C higher than peripheral temperatures. Eight smaller infants exhibited no peripheral vasoconstriction and spent most of their observations with peripheral greater than abdominal temperatures. In 8 infants, mean temperature difference was significantly higher when abdominal temperature was less than 36.5° C. Conclusion Most ELBW infants did not exhibit peripheral vasoconstriction during their first 12-hours of life, despite low temperatures. ELBW infants’ vasomotor control may be immature during this period. PMID:19626030

  12. Intermittent hypercapnia induces long-lasting ventilatory plasticity to enhance CO2 responsiveness to overcome dysfunction

    NASA Astrophysics Data System (ADS)

    Mosher, Bryan Patrick

    The ability of the brain to detect (central CO2 chemosensitivity) and respond to (central CO2 chemoresponsiveness) changes in tissue CO2/pH, is a homeostatic process essential for mammalian life. Dysfunction of the serotonin (5-HT) mechanisms compromises ventilatory CO 2 chemosensitivity/responsiveness and may enhance vulnerability to pathologies such as the Sudden Infant Death Syndrome (SIDS). The laboratory of Dr. Michael Harris has shown medullary raphe contributions to central chemosensitivity involving both 5-HT- and gamma-aminobutyric acid (GABA)-mediated mechanisms. I tested the hypothesis that postnatal exposure to mild intermittent hypercapnia (IHc) induces respiratory plasticity, due in part to strengthening of bicuculline- and saclofen-sensitive mechanisms (GABAA and GABAB receptor antagonists respectively). Rats were exposed to IHc-pretreatment (8 cycles of 5 % CO2) for 5 days beginning at postnatal day 12 (P12). I subsequently assessed CO2 responsiveness using an in situ perfused brainstem preparation. Hypercapnic responses were determined with and without pharmacological manipulation. In addition, IHc-pretreatment effectiveness was tested for its ability to overcome dysfunction in the CO2 responsiveness induced by a dietary tryptophan restriction. This dysfunctional CO2 responsiveness has been suggested to arise from a chronic, partial 5-HT reduction imparted by the dietary restriction. Results show IHc-pretreatment induced plasticity sufficient for CO2 responsiveness despite removal of otherwise critical ketanserin-sensitive mechanisms. CO2 responsiveness following IHc-pretreatment was absent if ketanserin was combined with bicuculline and saclofen, indicating that the plasticity was dependent upon bicuculline- and saclofen-sensitive mechanisms. IHc--induced plasticity was also capable of overcoming the ventilatory defects associated with maternal dietary restriction. Duration of IHc-induced plasticity was also investigated and found to last far into life (up to P65). Furthermore, I performed experiments to investigate if IHc-induced plasticity was more robust at a specific developmental period. No such critical period was identified as IHc-pretreatment induced robust respiratory plasticity when administered at all developmental periods tested (P12-16, P21-25 and P36-0). I propose that IHc-induced plasticity may be able to reduce the severity of reflex dysfunctions underlying pathologies such as SIDS.

  13. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrialmore » NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney. - Highlights: • Naringin ameliorated gentamicin-induced nephrotoxicity in rats. • Naringin treatment attenuated gentamicin-induced renal apoptosis in rats. • Naringin ameliorated gentamicin-induced renal mitochondrial dysfunction in rats. • Naringin decreased NF-κB activation and pro-inflammatory cytokine release. • U-HPLC-MS data revealed that naringin did not alter the renal uptake of gentamicin.« less

  14. Tissue Vibration Induces Carotid Artery Endothelial Dysfunction: A Mechanism Linking Snoring and Carotid Atherosclerosis?

    PubMed Central

    Cho, Jin-Gun; Witting, Paul K.; Verma, Manisha; Wu, Ben J.; Shanu, Anu; Kairaitis, Kristina; Amis, Terence C.; Wheatley, John R.

    2011-01-01

    Study Objectives: We have previously identified heavy snoring as an independent risk factor for carotid atherosclerosis. In order to explore the hypothesis that snoring-associated vibration of the carotid artery induces endothelial dysfunction (an established atherogenic precursor), we utilized an animal model to examine direct effects of peri-carotid tissue vibration on carotid artery endothelial function and structure. Design: In supine anesthetized, ventilated rabbits, the right carotid artery (RCA) was directly exposed to vibrations for 6 h (peak frequency 60 Hz, energy matched to that of induced snoring in rabbits). Similarly instrumented unvibrated rabbits served as controls. Features of OSA such as hypoxemia, large intra-pleural swings and blood pressure volatility were prevented. Carotid endothelial function was then examined: (1) biochemically by measurement of tissue cyclic guanosine monophosphate (cGMP) to acetylcholine (ACh) and sodium nitroprusside (SNP); and (2) functionally by monitoring vessel relaxation with acetylcholine in a myobath. Measurement and Results: Vessel cGMP after stimulation with ACh was reduced in vibrated RCA compared with unvibrated (control) arteries in a vibration energy dose-dependent manner. Vibrated RCA also showed decreased vasorelaxation to ACh compared with control arteries. Notably, after addition of SNP (nitric oxide donor), cGMP levels did not differ between vibrated and control arteries, thereby isolating vibration-induced dysfunction to the endothelium alone. This dysfunction occurred in the presence of a morphologically intact endothelium without increased apoptosis. Conclusions: Carotid arteries subjected to 6 h of continuous peri-carotid tissue vibration displayed endothelial dysfunction, suggesting a direct plausible mechanism linking heavy snoring to the development of carotid atherosclerosis. Citation: Cho JG; Witting PK; Verma M; Wu BJ; Shanu A; Kairaitis K; Amis TC; Wheatley JR. Tissue vibration induces carotid artery endothelial dysfunction: a mechanism linking snoring and carotid atherosclerosis?. SLEEP 2011;34(6):751-757. PMID:21629363

  15. Intravesical TRPV4 blockade reduces repeated variate stress-induced bladder dysfunction by increasing bladder capacity and decreasing voiding frequency in male rats

    PubMed Central

    Merrill, Liana

    2014-01-01

    Individuals with functional lower urinary tract disorders including interstitial cystitis (IC)/bladder pain syndrome (BPS) and overactive bladder (OAB) often report symptom (e.g., urinary frequency) worsening due to stress. One member of the transient receptor potential ion channel vanilloid family, TRPV4, has recently been implicated in urinary bladder dysfunction disorders including OAB and IC/BPS. These studies address the role of TRPV4 in stress-induced bladder dysfunction using an animal model of stress in male rats. To induce stress, rats were exposed to 7 days of repeated variate stress (RVS). Quantitative PCR data demonstrated significant (P ≤ 0.01) increases in TRPV4 transcript levels in urothelium but not detrusor smooth muscle. Western blot analyses of split urinary bladders (i.e., urothelium and detrusor) showed significant (P ≤ 0.01) increases in TRPV4 protein expression levels in urothelial tissues but not detrusor smooth muscle. We previously showed that RVS produces bladder dysfunction characterized by decreased bladder capacity and increased voiding frequency. The functional role of TRPV4 in RVS-induced bladder dysfunction was evaluated using continuous, open outlet intravesical infusion of saline in conjunction with administration of a TRPV4 agonist, GSK1016790A (3 μM), a TRPV4 antagonist, HC067047 (1 μM), or vehicle (0.1% DMSO in saline) in control and RVS-treated rats. Bladder capacity, void volume, and intercontraction interval significantly decreased following intravesical instillation of GSK1016790A in control rats and significantly (P ≤ 0.01) increased following administration of HC067047 in RVS-treated rats. These results demonstrate increased TRPV4 expression in the urothelium following RVS and that TRPV4 blockade ameliorates RVS-induced bladder dysfunction consistent with the role of TRPV4 as a promising target for bladder function disorders. PMID:24965792

  16. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity

    PubMed Central

    Guan, Sudong; Zhu, Yan; Wang, Jin-Hui

    2015-01-01

    Background Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury. Results Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons. Conclusion Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously. PMID:26474076

  17. Endoplasmic reticulum Chaperon Tauroursodeoxycholic Acid Alleviates Obesity-Induced Myocardial Contractile Dysfunction

    PubMed Central

    Ceylan-Isik, Asli F.; Sreejayan, Nair; Ren, Jun

    2010-01-01

    ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated TUDCA (50 mg/kg/d, p.o.) or vehicle for 5 wks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca2+ properties were assessed. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression of intracellular Ca2+ regulatory proteins were measured using 45Ca2+ uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lower systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca2+ properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decreased in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity. PMID:21035453

  18. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice

    PubMed Central

    Furukawa-Hibi, Yoko; Alkam, Tursun; Nitta, Atsumi; Matsuyama, Akihiro; Mizoguchi, Hiroyuki; Suzuki, Kazuhiko; Moussaoui, Saliha; Yu, Qian-Sheng; Greig, Nigel H.; Nagai, Taku; Yamada, Kiyofumi

    2016-01-01

    The cholinesterase inhibitor, rivastigmine, ameliorates cognitive dysfunction and is approved for the treatment of Alzheimer's disease (AD). Rivastigmine is a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE); however, the impact of BuChE inhibition on cognitive dysfunction remains to be determined. We compared the effects of a selective BuChE inhibitor, N1-phenethylnorcymserine (PEC), rivastigmine and donepezil (an AChE-selective inhibitor) on cognitive dysfunction induced by amyloid-β peptide (Aβ1–40) in mice. Five-week-old imprinting control region (ICR) mice were injected intracerebroventricularly (i.c.v.) with either Aβ1–40 or the control peptide Aβ40–1 on Day 0, and their recognition memory was analyzed by a novel object recognition test. Treatment with donepezil (1.0 mg/kg), rivastigmine (0.03, 0.1, 0.3 mg/kg) or PEC (1.0, 3.0 mg/kg) 20 min prior to, or immediately after the acquisition session (Day 4) ameliorated the Aβ1–40 induced memory impairment, indicating a beneficial effect on memory acquisition and consolidation. In contrast, none of the investigated drugs proved effective when administrated before the retention session (Day 5). Repeated daily administration of donepezil, rivastigmine or PEC, on Days 0–3 inclusively, ameliorated the cognitive dysfunction in Aβ1–40 challenged mice. Consistent with the reversal of memory impairments, donepezil, rivastigmine or PEC treatment significantly reduced Aβ1–40 induced tyrosine nitration of hippocampal proteins, a marker of oxidative damage. These results indicate that BuChE inhibition, as well as AChE inhibition, is a viable therapeutic strategy for cognitive dysfunction in AD. PMID:21820013

  19. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction.

    PubMed

    Cappetta, Donato; Esposito, Grazia; Coppini, Raffaele; Piegari, Elena; Russo, Rosa; Ciuffreda, Loreta Pia; Rivellino, Alessia; Santini, Lorenzo; Rafaniello, Concetta; Scavone, Cristina; Rossi, Francesco; Berrino, Liberato; Urbanek, Konrad; De Angelis, Antonella

    2017-11-01

    Doxorubicin is a highly effective anticancer drug, but its clinical application is hampered by cardiotoxicity. Asymptomatic diastolic dysfunction can be the earliest manifestation of doxorubicin cardiotoxicity. Therefore, a search for therapeutic intervention that can interfere with early manifestations and possibly prevent later development of cardiotoxicity is warranted. Increased doxorubicin-dependent ROS may explain, in part, Ca 2+ and Na + overload that contributes to diastolic dysfunction and development of heart failure. Therefore, we tested whether the administration of ranolazine, a selective blocker of late Na + current, immediately after completing doxorubicin therapy, could affect diastolic dysfunction and interfere with the progression of functional decline. Fischer 344 rats received a cumulative dose of doxorubicin of 15 mg·kg -1 over a period of 2 weeks. After the assessment of diastolic dysfunction, the animals were treated with ranolazine (80 mg·kg -1 , daily) for the following 4 weeks. While diastolic and systolic function progressively deteriorated in doxorubicin-treated animals, treatment with ranolazine relieved diastolic dysfunction and prevented worsening of systolic function, decreasing mortality. Ranolazine lowered myocardial NADPH oxidase 2 expression and oxidative/nitrative stress. Expression of the Na + /Ca 2+ exchanger 1 and Na v 1.5 channels was reduced and of the sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase 2 protein was increased. In addition, ranolazine lowered doxorubicin-induced hyper-phosphorylation and oxidation of Ca 2+ /calmodulin-dependent protein kinase II, and decreased myocardial fibrosis. Ranolazine, by the increased Na + influx, induced by doxorubicin, altered cardiac Ca 2+ and Na + handling and attenuated diastolic dysfunction induced by doxorubicin, thus preventing the progression of cardiomyopathy. This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc. © 2017 The British Pharmacological Society.

  20. Evolving paradigms in the treatment of opioid-induced bowel dysfunction.

    PubMed

    Poulsen, Jakob Lykke; Brock, Christina; Olesen, Anne Estrup; Nilsson, Matias; Drewes, Asbjørn Mohr

    2015-11-01

    In recent years prescription of opioids has increased significantly. Although effective in pain management, bothersome gastrointestinal adverse effects are experienced by a substantial proportion of opioid-treated patients. This can lead to difficulties with therapy and subsequently inadequate pain relief. Collectively referred to as opioid-induced bowel dysfunction, these adverse effects are the result of binding of exogenous opioids to opioid receptors in the gastrointestinal tract. This leads to disturbance of three important gastrointestinal functions: motility, coordination of sphincter function and secretion. In the clinic this manifests in a wide range of symptoms such as reflux, bloating, abdominal cramping, hard, dry stools, and incomplete evacuation, although the most known adverse effect is opioid-induced constipation. Traditional treatment with laxatives is often insufficient, but in recent years a number of novel pharmacological approaches have been introduced. In this review the pathophysiology, symptomatology and prevalence of opioid-induced bowel dysfunction is presented along with the benefits and caveats of a suggested consensus definition for opioid-induced constipation. Finally, traditional treatment is appraised and compared with the latest pharmacological developments. In conclusion, opioid antagonists restricted to the periphery show promising results, but use of different definitions and outcome measures complicate comparison. However, an international working group has recently suggested a consensus definition for opioid-induced constipation and relevant outcome measures have also been proposed. If investigators within this field adapt the suggested consensus and include symptoms related to dysfunction of the upper gut, it will ease comparison and be a step forward in future research.

  1. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer's Disease-Like Models.

    PubMed

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-05-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD.

  2. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer’s Disease-Like Models

    PubMed Central

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-01-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer’s disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD. PMID:25009697

  3. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence.

    PubMed

    Yang, Fan; Yang, Lei; Li, Yuan; Yan, Gege; Feng, Chao; Liu, Tianyi; Gong, Rui; Yuan, Ye; Wang, Ning; Idiiatullina, Elina; Bikkuzin, Timur; Pavlov, Valentin; Li, Yang; Dong, Chaorun; Wang, Dawei; Cao, Yang; Han, Zhenbo; Zhang, Lai; Huang, Qi; Ding, Fengzhi; Bi, Zhengang; Cai, Benzhi

    2017-10-01

    Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qin-Qin; Qinghai Provincial People's Hospital, Xining; Xiao, Feng-Jun

    Hypoxia provokes metabolism misbalance, mitochondrial dysfunction and oxidative stress in both human and animal cells. However, the mechanisms which hypoxia causes mitochondrial dysfunction and energy metabolism misbalance still remain unclear. In this study, we presented evidence that mitochondrial phosphatase Ptpmt1 is a hypoxia response molecule that regulates cell proliferation, survival and glucose metabolism in human erythroleukemia TF-1 cells. Exposure to hypoxia or DFO treatment results in upregulation of HIF1-α, HIF-2α and Ptpmt1. Only inhibition of HIF-2α by shRNA transduction reduces Ptpmt1 expression in TF-1 cells under hypoxia. Ptpmt1 inhibitor suppresses the growth and induces apoptosis of TF-1 cells. Furthermore, we demonstrated that Ptpmt1more » inhibition reduces the Glut1 and Glut3 expression and decreases the glucose consumption in TF-1 cells. In additional, Ptpmt1 knockdown also results in the mitochondrial dysfunction determined by JC1 staining. These results delineate a key role for HIF-2α-induced Ptpmt1 upregulation in proliferation, survival and glucose metabolism of erythroleukemia cells. It is indicated that Ptpmt1 plays important roles in hypoxia-induced cell metabolism and mitochondrial dysfunction. - Highlights: • Hypoxia induces upregulation of HIF-1α, HIF-2α and Ptpmt1; HIF-2a induces Ptpmt1 upregulation in TF-1 cells. • PTPMT-1 inhibition reduces growth and induces apoptosis of TF-1 cells. • PTPMT1 inhibition downregulates Glut-1, Glut-3 expression and reduces glucose consumption.« less

  5. A double-blind, randomized, pilot dose-finding study of maca root (L. meyenii) for the management of SSRI-induced sexual dysfunction.

    PubMed

    Dording, Christina M; Fisher, Lauren; Papakostas, George; Farabaugh, Amy; Sonawalla, Shamsah; Fava, Maurizio; Mischoulon, David

    2008-01-01

    We sought to determine whether maca, a Peruvian plant, is effective for selective-serotonin reuptake inhibitor (SSRI)-induced sexual dysfunction. We conducted a double-blind, randomized, parallel group dose-finding pilot study comparing a low-dose (1.5 g/day) to a high-dose (3.0 g/day) maca regimen in 20 remitted depressed outpatients (mean age 36+/-13 years; 17 women) with SSRI-induced sexual dysfunction. The Arizona Sexual Experience Scale (ASEX) and the Massachusetts General Hospital Sexual Function Questionnaire (MGH-SFQ) were used to measure sexual dysfunction. Ten subjects completed the study, and 16 subjects (9 on 3.0 g/day; 7 on 1.5 g/day) were eligible for intent-to-treat (ITT) analyses on the basis of having had at least one postbaseline visit. ITT subjects on 3.0 g/day maca had a significant improvement in ASEX (from 22.8+/-3.8 to 16.9+/-6.2; z=-2.20, P=0.028) and in MGH-SFQ scores (from 24.1+/-1.9 to 17.0+/-5.7; z=-2.39, P=0.017), but subjects on 1.5 g/day maca did not. Libido improved significantly (P<0.05) for the ITT and completer groups based on ASEX item #1, but not by dosing groups. Maca was well tolerated. Maca root may alleviate SSRI-induced sexual dysfunction, and there may be a dose-related effect. Maca may also have a beneficial effect on libido.

  6. Myoendothelial coupling in the mesenteric arterial bed; segmental differences and interplay between nitric oxide and endothelin-1

    PubMed Central

    Hilgers, RHP; De Mey, JGR

    2009-01-01

    Background and purpose: We tested the hypothesis that activated arterial smooth muscle (ASM) stimulates endothelial vasomotor influences via gap junctions and that the significance of this myoendothelial coupling increases with decreasing arterial diameter. Experimental approach: From WKY rats, first-, second-, third-and fourth-order branches of the superior mesenteric artery (MA1, MA2, MA3 and MA4 respectively) were isolated and mounted in wire-myographs to record vasomotor responses to 0.16–20 µmol·L−1 phenylephrine. Key results: Removal of endothelium increased the sensitivity (pEC50) to phenylephrine in all arteries. The nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) (100 µmol·L−1) did not modify pEC50 to phenylephrine in all denuded arteries, and increased it in intact MA1, MA2 and MA3 to the same extent as denudation. However, in intact MA4, the effect of L-NAME was significantly larger (ΔpEC50 0.57 ± 0.02) than the effect of endothelium removal (ΔpEC50 0.20 ± 0.06). This endothelium-dependent effect of L-NAME in MA4 was inhibited by (i) steroidal and peptidergic uncouplers of gap junctions; (ii) a low concentration of the NO donor sodium nitroprusside; and (iii) by the endothelin-receptor antagonist bosentan. It was also observed during contractions induced by (i) calcium channel activation (BayK 8644, 0.001–1 µmol·L−1); (ii) depolarization (10–40 mmol·L−1 K+); and (iii) sympathetic nerve stimulation (0.25–32 Hz). Conclusions and implications: These pharmacological observations indicated feedback control by endothelium of ASM reactivity involving gap junctions and a balance between endothelium-derived NO and endothelin-1. This myoendothelial coupling was most prominent in distal resistance arteries. PMID:19302591

  7. Indirect hand and forearm vasomotion: Regional variations in cutaneous thermosensitivity during normothermia and mild hyperthermia.

    PubMed

    Burdon, Catriona A; Tagami, Kyoko; Park, Joonhee; Caldwell, Joanne N; Taylor, Nigel A S

    2017-04-01

    In this experiment, hand and forearm vasomotor activity was investigated during localised, but stable heating and cooling of the face, hand and thigh, under open-loop (clamped) conditions. It was hypothesised that facial stimulation would provoke the most potent vascular changes. Nine individuals participated in two normothermic trials (mean body temperature clamp: 36.6°C; water-perfused suit and climate chamber) and two mildly hyperthermic trials (37.9°C). Localised heating (+5°C) and cooling (-5°C) stimuli were applied to equal surface areas of the face, hand and thigh (perfusion patches: 15min), while contralateral forearm or hand blood flows (venous-occlusion plethysmography) were measured (separate trials). Thermal sensation and discomfort votes were recorded before and during each thermal stimulation. When hyperthermic, local heating induced more sensitive vascular responses, with the combined thermosensitivity of both limb segments averaging 0.011mL·100mL -1 ·min -1 ·mmHg -1 ·°C -1 , and 0.005mL·100mL -1 ·min -1 ·mmHg -1 ·°C -1 during localised cooling (P<0.05). Inter-site comparisons among the stimulated sites yielded minimal evidence of variations in local thermal sensation, and no differences were observed for vascular conductance (P>0.05). Therefore, regional differences in vasomotor and sensory sensitivity appeared not to exist. When combined with previous observations of sudomotor sensitivity, it seems that, during mild heating and cooling, regional representations within the somatosensory cortex may not translate into meaningful differences in thermal sensation or the central integration of thermoafferent signals. It was concluded that inter-site variations in the cutaneous thermosensitivity of these thermolytic effectors have minimal physiological significance over the ranges investigated thus far. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters.

    PubMed

    Hunter, Amanda L; Unosson, Jon; Bosson, Jenny A; Langrish, Jeremy P; Pourazar, Jamshid; Raftis, Jennifer B; Miller, Mark R; Lucking, Andrew J; Boman, Christoffer; Nyström, Robin; Donaldson, Kenneth; Flapan, Andrew D; Shah, Anoop S V; Pung, Louis; Sadiktsis, Ioannis; Masala, Silvia; Westerholm, Roger; Sandström, Thomas; Blomberg, Anders; Newby, David E; Mills, Nicholas L

    2014-12-09

    Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m³ particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4-6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all). Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.

  9. Low molecular weight guluronate prevents TNF-α-induced oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells.

    PubMed

    Dun, Yun-lou; Zhou, Xiao-lin; Guan, Hua-shi; Yu, Guang-li; Li, Chun-xia; Hu, Ting; Zhao, Xia; Cheng, Xiao-lei; He, Xiao-xi; Hao, Jie-jie

    2015-09-01

    Muscle wasting is associated with a variety of chronic or inflammatory disorders. Evidence suggests that inflammatory cytokines play a vital role in muscle inflammatory pathology and this may result in oxidative damage and mitochondrial dysfunction in skeletal muscle. In our study, we used microwave degradation to prepare a water-soluble low molecular weight guluronate (LMG) of 3000 Da from Fucus vesiculosus obtained from Canada, the Atlantic Ocean. We demonstrated the structural characteristics, using HPLC, FTIR and NMR of LMG and investigated its effects on oxidative damage and mitochondrial dysfunction in C2C12 skeletal muscle cells induced by tumor necrosis factor alpha (TNF-α), a cell inflammatory cytokine. The results indicated that LMG could alleviate mitochondrial reactive oxygen species (ROS) production, increase the activities of antioxidant enzymes (GSH and SOD), promote mitochondrial membrane potential (MMP) and upregulate the expression of mitochondrial respiratory chain protein in TNF-α-induced C2C12 cells. LMG supplement also increased the mitochondrial DNA copy number and mitochondrial biogenesis related genes in TNF-α-induced C2C12 cells. LMG may exert these protective effects through the nuclear factor kappa B (NF-κB) signaling pathway. These suggest that LMG is capable of protecting TNF-α-induced C2C12 cells against oxidative damage and mitochondrial dysfunction.

  10. Ticagrelor protects against AngII-induced endothelial dysfunction by alleviating endoplasmic reticulum stress.

    PubMed

    Wang, Xiaoyu; Han, Xuejie; Li, Minghui; Han, Yu; Zhang, Yun; Zhao, Shiqi; Li, Yue

    2018-05-16

    Ticagrelor has been reported to decrease cardiovascular mortality compared with clopidogrel. This benefit cannot be fully explained by the more efficient platelet inhibition. Many studies demonstrated that ticagrelor improved endothelial function, leaving the mechanism elusive though. The present study aims to investigate whether ticagrelor protects against endothelial dysfunction induced by angiotensinII (AngII) through alleviating endoplasmic reticulum (ER) stress. Male Sprague Dawley rats were infused with AngII or vehicle and administrated with ticagrelor or vehicle for 14 days. Reactive oxygen species (ROS) was detected. Aortas from normal mice were incubated with endoplasmic reticulum stress inducer tunicamycin with or without ticagrelor. Vasorecactivity was measured on wire myography. Rat aortic endothelial cells (RAECs) were pretreated with ticagrelor followed by AngII or tunicamycin. Endothelial nitric oxide synthase (eNOS) phosphorylation and ER stress markers were determined by western blotting. Impaired endothelial function, induction of ER stress, reduced eNOS phosphorylation and elevated ROS generation was restored by ticagrelor treatment in vivo. In addition, tunicamycin induced endothelial dysfunction was improved by ticagrelor. In vitro, the induction of ER stress and inhibited eNOS phosphorylation in REACs exposed to AngII as well as tunicamycin was reversed by co-culturing with ticagrelor. In conclusion, ticagrelor protects against AngII-induced endothelial dysfunction via alleviating ER stress. Copyright © 2017. Published by Elsevier Inc.

  11. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less

  12. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activitymore » and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.« less

  13. Losartan treatment attenuates tumor-induced myocardial dysfunction

    PubMed Central

    Stevens, Sarah CW; Velten, Markus; Youtz, Dane J.; Clark, Yvonne; Jing, Runfeng; Reiser, Peter J.; Bicer, Sabahattin; Devine, Raymond; McCarthy, Donna O.; Wold, Loren E.

    2015-01-01

    Fatigue and muscle wasting are common symptoms experienced by cancer patients. Data from animal models demonstrate that angiotensin is involved in tumor-induced muscle wasting, and that tumor growth can independently affect myocardial function, which could contribute to fatigue in cancer patients. In clinical studies, inhibitors of angiotensin converting enzyme (ACE) can prevent the development of chemotherapy-induced cardiovascular dysfunction, suggesting a mechanistic role for the renin-angiotensin-aldosterone system (RAAS). In the present study, we investigated whether an angiotensin (AT)1-receptor antagonist could prevent the development of tumor-associated myocardial dysfunction. Methods and Results: Colon26 adenocarcinoma (c26) cells were implanted into female CD2F1 mice at 8 weeks of age. Simultaneously, mice were administered Losartan (10 mg/kg) daily via their drinking water. In vivo echocardiography, blood pressure, in vitro cardiomyocyte function, cell proliferation assays, and measures of systemic inflammation and myocardial protein degradation were performed 19 days following tumor cell injection. Losartan treatment prevented tumor-induced loss of muscle mass and in vitro c26 cell proliferation, decreased tumor weight, and attenuated myocardial expression of interleukin-6. Furthermore, Losartan treatment mitigated tumor-associated alterations in calcium signaling in cardiomyocytes, which was associated with improved myocyte contraction velocity, systolic function, and blood pressures in the hearts of tumor-bearing mice. Conclusions: These data suggest that Losartan may mitigate tumor-induced myocardial dysfunction and inflammation. PMID:25988231

  14. Losartan treatment attenuates tumor-induced myocardial dysfunction.

    PubMed

    Stevens, Sarah C W; Velten, Markus; Youtz, Dane J; Clark, Yvonne; Jing, Runfeng; Reiser, Peter J; Bicer, Sabahattin; Devine, Raymond D; McCarthy, Donna O; Wold, Loren E

    2015-08-01

    Fatigue and muscle wasting are common symptoms experienced by cancer patients. Data from animal models demonstrate that angiotensin is involved in tumor-induced muscle wasting, and that tumor growth can independently affect myocardial function, which could contribute to fatigue in cancer patients. In clinical studies, inhibitors of angiotensin converting enzyme (ACE) can prevent the development of chemotherapy-induced cardiovascular dysfunction, suggesting a mechanistic role for the renin-angiotensin-aldosterone system (RAAS). In the present study, we investigated whether an angiotensin (AT) 1-receptor antagonist could prevent the development of tumor-associated myocardial dysfunction. Colon26 adenocarcinoma (c26) cells were implanted into female CD2F1 mice at 8weeks of age. Simultaneously, mice were administered Losartan (10mg/kg) daily via their drinking water. In vivo echocardiography, blood pressure, in vitro cardiomyocyte function, cell proliferation assays, and measures of systemic inflammation and myocardial protein degradation were performed 19days following tumor cell injection. Losartan treatment prevented tumor-induced loss of muscle mass and in vitro c26 cell proliferation, decreased tumor weight, and attenuated myocardial expression of interleukin-6. Furthermore, Losartan treatment mitigated tumor-associated alterations in calcium signaling in cardiomyocytes, which was associated with improved myocyte contraction velocity, systolic function, and blood pressures in the hearts of tumor-bearing mice. These data suggest that Losartan may mitigate tumor-induced myocardial dysfunction and inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells.

    PubMed

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-27

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O(2)(·-)) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled ((99m)Tc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy.

  16. Inhibition of forkhead boxO-specific transcription prevents mechanical ventilation-induced diaphragm dysfunction.

    PubMed

    Smuder, Ashley J; Sollanek, Kurt J; Min, Kisuk; Nelson, W Bradley; Powers, Scott K

    2015-05-01

    Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. University research laboratory. Young adult female Sprague-Dawley rats. Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.

  17. HSP27 phosphorylation protects against endothelial barrier dysfunction under burn serum challenge.

    PubMed

    Sun, Huan-bo; Ren, Xi; Liu, Jie; Guo, Xiao-wei; Jiang, Xu-pin; Zhang, Dong-xia; Huang, Yue-sheng; Zhang, Jia-ping

    2015-07-31

    F-actin rearrangement is an early event in burn-induced endothelial barrier dysfunction. HSP27, a target of p38 MAPK/MK2 pathway, plays an important role in actin dynamics through phosphorylation. The question of whether HSP27 participates in burn-related endothelial barrier dysfunction has not been identified yet. Here, we showed that burn serum induced a temporal appearance of central F-actin stress fibers followed by a formation of irregular dense peripheral F-actin in pulmonary endothelial monolayer, concomitant with a transient increase of HSP27 phosphorylation that conflicted with the persistent activation of p38 MAPK/MK2 unexpectedly. The appearance of F-actin stress fibers and transient increase of HSP27 phosphorylation occurred prior to the burn serum-induced endothelial hyperpermeability. Overexpressing phospho-mimicking HSP27 (HSP27(Asp)) reversed the burn serum-induced peripheral F-actin rearrangement with the augmentation of central F-actin stress fibers, and more importantly, attenuated the burn serum-induced endothelial hyperpermeability; such effects were not observed by HSP27(Ala), a non-phosphorylated mutant of HSP27. HSP27(Asp) overexpression also rendered the monolayer more resistant to barrier disruption caused by Cytochalasin D, a chemical reagent that depolymerizes F-actin specifically. Further study showed that phosphatases and sumoylation-inhibited MK2 activity contributed to the blunting of HSP27 phosphorylation during the burn serum-induced endothelial hyperpermeability. Our study identifies HSP27 phosphorylation as a protective response against burn serum-induced endothelial barrier dysfunction, and suggests that targeting HSP27 wound be a promising therapeutic strategy in ameliorating burn-induced lung edema and shock development. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A milk-based wolfberry preparation prevents prenatal stress-induced cognitive impairment of offspring rats, and inhibits oxidative damage and mitochondrial dysfunction in vitro.

    PubMed

    Feng, Zhihui; Jia, Haiqun; Li, Xuesen; Bai, Zhuanli; Liu, Zhongbo; Sun, Lijuan; Zhu, Zhongliang; Bucheli, Peter; Ballèvre, Olivier; Wang, Junkuan; Liu, Jiankang

    2010-05-01

    Lycium barbarum (Fructus Lycii, Wolfberry, or Gouqi) belongs to the Solanaceae. The red-colored fruits of L. barbarum have been used for a long time as an ingredient in Chinese cuisine and brewing, and also in traditional Chinese herbal medicine for improving health. However, its effects on cognitive function have not been well studied. In the present study, prevention of a milk-based wolfberry preparation (WP) on cognitive dysfunction was tested in a prenatal stress model with rats and the antioxidant mechanism was tested by in vitro experiments. We found that prenatal stress caused a significant decrease in cognitive function (Morris water maze test) in female offspring. Pretreatment of the mother rats with WP significantly prevented the prenatal stress-induced cognitive dysfunction. In vitro studies showed that WP dose-dependently scavenged hydroxyl and superoxide radicals (determined by an electron spin resonance spectrometric assay), and inhibited FeCl(2)/ascorbic acid-induced dysfunction in brain tissue and tissue mitochondria, including increases in reactive oxygen species and lipid peroxidation and decreases in the activities of complex I, complex II, and glutamate cysteine ligase. These results suggest that dietary supplementation with WP may be an effective strategy for preventing the brain oxidative mitochondrial damage and cognitive dysfunction associated with prenatal stress.

  19. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats

    PubMed Central

    Alam, Md. Ashraful; Kauter, Kathleen; Brown, Lindsay

    2013-01-01

    Obesity, insulin resistance, hypertension and fatty liver, together termed metabolic syndrome, are key risk factors for cardiovascular disease. Chronic feeding of a diet high in saturated fats and simple sugars, such as fructose and glucose, induces these changes in rats. Naturally occurring compounds could be a cost-effective intervention to reverse these changes. Flavonoids are ubiquitous secondary plant metabolites; naringin gives the bitter taste to grapefruit. This study has evaluated the effect of naringin on diet-induced obesity and cardiovascular dysfunction in high carbohydrate, high fat-fed rats. These rats developed increased body weight, glucose intolerance, increased plasma lipid concentrations, hypertension, left ventricular hypertrophy and fibrosis, liver inflammation and steatosis with compromised mitochondrial respiratory chain activity. Dietary supplementation with naringin (approximately 100 mg/kg/day) improved glucose intolerance and liver mitochondrial dysfunction, lowered plasma lipid concentrations and improved the structure and function of the heart and liver without decreasing total body weight. Naringin normalised systolic blood pressure and improved vascular dysfunction and ventricular diastolic dysfunction in high carbohydrate, high fat-fed rats. These beneficial effects of naringin may be mediated by reduced inflammatory cell infiltration, reduced oxidative stress, lowered plasma lipid concentrations and improved liver mitochondrial function in rats. PMID:23446977

  20. Mechanisms underlying the losartan treatment-induced improvement in the endothelial dysfunction seen in mesenteric arteries from type 2 diabetic rats.

    PubMed

    Matsumoto, Takayuki; Ishida, Keiko; Nakayama, Naoaki; Taguchi, Kumiko; Kobayashi, Tsuneo; Kamata, Katsuo

    2010-09-01

    It is well known that type 2 diabetes mellitus is frequently associated with vascular dysfunction and an elevated systemic blood pressure, yet the underlying mechanisms are not completely understood. We previously reported that in mesenteric arteries from established type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats, which exhibit endothelial dysfunction, there is an imbalance between endothelium-derived vasodilators [namely, nitric oxide (NO) and hyperpolarizing factor (EDHF)] and vasoconstrictors [contracting factors (EDCFs) such as cyclooxygenase (COX)-derived prostanoids]. Here, we investigated whether the angiotensin II receptor antagonist losartan might improve endothelial dysfunction in OLETF rats at the established stage of diabetes. In mesenteric arteries isolated from OLETF rats [vs. those from age-matched control Long-Evans Tokushima Otsuka (LETO) rats]: (1) the acetylcholine (ACh)-induced relaxation was impaired, (2) the NO- and EDHF-mediated relaxations were reduced, (3) the ACh-induced EDCF-mediated contraction and the production of prostanoids were increased, and (4) superoxide generation was increased. After such OLETF rats had received losartan (25 mg/kg/day p.o. for 4 weeks), their isolated mesenteric arteries exhibited: (1) improvements in ACh-induced NO- and EDHF-mediated relaxations, (2) reduced EDCF- and arachidonic acid-induced contractions, (3) suppressed production of prostanoids, (4) reduced PGE(2)-mediated contraction, and (5) reduced superoxide generation. Within the timescale studied here, losartan did not change the protein expressions of endothelial NO synthase, COX1, or COX2 in mesenteric arteries from either OLETF or LETO rats. Losartan thus normalizes vascular dysfunction in this type 2 diabetic model, and the above effects may contribute to the reduction of adverse cardiovascular events seen in diabetic patients treated with angiotensin II receptor blockers. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreatic β-Cells Function.

    PubMed

    Carrasco-Pozo, Catalina; Tan, Kah Ni; Gotteland, Martin; Borges, Karin

    2017-01-01

    Cholesterol plays an important role in inducing pancreatic β -cell dysfunction, leading to an impaired insulin secretory response to glucose. This study aimed to determine the protective effects of sulforaphane, a natural isothiocyanate Nrf2-inducer, against cholesterol-induced pancreatic β -cells dysfunction, through molecular and cellular mechanisms involving mitochondrial bioenergetics. Sulforaphane prevented cholesterol-induced alterations in the coupling efficiency of mitochondrial respiration, improving ATP turnover and spare capacity, and averted the impairment of the electron flow at complexes I, II, and IV. Sulforaphane also attenuated the cholesterol-induced activation of the NF κ B pathway, normalizing the expression of pro- and anti-inflammatory cytokines. In addition, it also inhibited the decrease in sirtuin 1 expression and greatly increased Pgc-1α expression in Min6 cells. Sulforaphane increased the expression of antioxidant enzymes downstream of the Nrf2 pathway and prevented lipid peroxidation induced by cholesterol. The antioxidant and anti-inflammatory properties of sulforaphane and its ability to protect and improve mitochondrial bioenergetic function contribute to its protective action against cholesterol-induced pancreatic β -cell dysfunction. Our data provide a scientifically tested foundation upon which sulforaphane can be developed as nutraceutical to preserve β -cell function and eventually control hyperglycemia.

  2. Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreatic β-Cells Function

    PubMed Central

    Tan, Kah Ni; Gotteland, Martin

    2017-01-01

    Cholesterol plays an important role in inducing pancreatic β-cell dysfunction, leading to an impaired insulin secretory response to glucose. This study aimed to determine the protective effects of sulforaphane, a natural isothiocyanate Nrf2-inducer, against cholesterol-induced pancreatic β-cells dysfunction, through molecular and cellular mechanisms involving mitochondrial bioenergetics. Sulforaphane prevented cholesterol-induced alterations in the coupling efficiency of mitochondrial respiration, improving ATP turnover and spare capacity, and averted the impairment of the electron flow at complexes I, II, and IV. Sulforaphane also attenuated the cholesterol-induced activation of the NFκB pathway, normalizing the expression of pro- and anti-inflammatory cytokines. In addition, it also inhibited the decrease in sirtuin 1 expression and greatly increased Pgc-1α expression in Min6 cells. Sulforaphane increased the expression of antioxidant enzymes downstream of the Nrf2 pathway and prevented lipid peroxidation induced by cholesterol. The antioxidant and anti-inflammatory properties of sulforaphane and its ability to protect and improve mitochondrial bioenergetic function contribute to its protective action against cholesterol-induced pancreatic β-cell dysfunction. Our data provide a scientifically tested foundation upon which sulforaphane can be developed as nutraceutical to preserve β-cell function and eventually control hyperglycemia. PMID:28386307

  3. Self-reported sexual symptoms in women attending menopause clinics.

    PubMed

    Nappi, Rossella E; Verde, Jole Baldero; Polatti, Franco; Genazzani, Andrea R; Zara, Carlo

    2002-01-01

    The aim of the present cross-sectional study was to investigate the frequency of self-reported sexual symptoms in women (n = 355; age range 46-60 years) attending menopausal clinics in Italy and to relate them to other vasomotor, psychological, physical, and genital complaints. Each subject completed a visual scale for sexual symptoms and for other complaints frequently occurring at menopause. Pain during sexual intercourse (29.8%) and low libido/lack of arousal (22%) were significantly more frequent with age (chi(2) = 8.0, p < 0.02; chi(2) = 6.2, p < 0.04, respectively) and years since menopause (chi(2) = 13.0, p < 0.005; chi(2) = 11.3, p < 0.01, respectively). Reduction of sexual pleasure/satisfaction (45.9%) was common with age, but was more frequent with longer time since the menopause (chi(2) = 19.9, p < 0.001). By examining the intensity of sexual symptoms according to the presence of other complaints, we found that physical, psychological, and genital well-being significantly affects components of sexual response after the menopause. For example, loss of fitness, urogenital symptoms, a negative self-image (increase of facial hair), and depressive symptoms were more common in women with sexual complaints. Given the concomitant role of hormonal and aging determinants, a comprehensive approach to female health is needed when facing climacteric sexual dysfunction. Copyright 2002 S. Karger AG, Basel

  4. Decreased Autophagy Contributes to Myocardial Dysfunction in Rats Subjected to Nonlethal Mechanical Trauma

    PubMed Central

    Liang, Feng; Li, Xiaoyu; Wang, Li; Yang, Caihong; Yan, Zi; Zhang, Suli; Liu, Huirong

    2013-01-01

    Autophagy is important in cells for removing damaged organelles, such as mitochondria. Insufficient autophagy plays a critical role in tissue injury and organ dysfunction under a variety of pathological conditions. However, the role of autophagy in nonlethal traumatic cardiac damage remains unclear. The aims of the present study were to investigate whether nonlethal mechanical trauma may result in the change of cardiomyocyte autophagy, and if so, to determine whether the changed myocardial autophagy may contribute to delayed cardiac dysfunction. Male adult rats were subjected to nonlethal traumatic injury, and cardiomyocyte autophagy, cardiac mitochondrial function, and cardiac function in isolated perfused hearts were detected. Direct mechanical traumatic injury was not observed in the heart within 24 h after trauma. However, cardiomyocyte autophagy gradually decreased and reached a minimal level 6 h after trauma. Cardiac mitochondrial dysfunction was observed by cardiac radionuclide imaging 6 h after trauma, and cardiac dysfunction was observed 24 h after trauma in the isolated perfused heart. These were reversed when autophagy was induced by administration of the autophagy inducer rapamycin 30 min before trauma. Our present study demonstrated for the first time that nonlethal traumatic injury caused decreased autophagy, and decreased autophagy may contribute to post-traumatic organ dysfunction. Though our study has some limitations, it strongly suggests that cardiac damage induced by nonlethal mechanical trauma can be detected by noninvasive radionuclide imaging, and induction of autophagy may be a novel strategy for reducing posttrauma multiple organ failure. PMID:23977036

  5. AGEs Decreased SIRT3 Expression and SIRT3 Activation Protected AGEs-Induced EPCs' Dysfunction and Strengthened Anti-oxidant Capacity.

    PubMed

    Chang, Mingze; Zhang, Bei; Tian, Ye; Hu, Ming; Zhang, Gejuan; Di, Zhengli; Wang, Xinlai; Liu, Zhiqin; Gu, Naibin; Liu, Yong

    2017-04-01

    Advanced glycation end products (AGEs) have been confirmed to induce dysfunction in endothelial progenitor cells (EPCs) and play key roles in pathogenesis of diabetes-related vascular complications. The major function of sirtuin 3 (SIRT3) is to orchestrate oxidative metabolism and control reactive oxygen species (ROS) homeostasis, which are more closely related to EPCs' dysfunction. Our study therefore was designed to explore the role of SIRT3 on AGEs-induced EPCs dysfunction of. EPCs isolated from healthy adults were stimulated with AGEs and the expression of SIRT3 was assessed. Then, EPCs transfected with ad-SIRT3 or siRNA-SIRT3 were cultured with or without AGEs. EPCs function, including proliferation, migration; expression of manganese superoxide dismutase (MnSOD), ROS production, and interleukin-8 (IL-8); and vascular endothelial growth factor (VEGF) production were measured. In some experiments, EPCs were pre-cultured with anti-receptor for advanced glycation end products (RAGE) antibody or anti-neutralizing antibody, and then proliferation, migration, expression of MnSOD, ROS production, and IL-8 and VEGF production were measured. Our results showed that SIRT3 expressed in EPCs and AGEs decreased SIRT3 expression. SIRT3 knockdown with siRNA-SIRT3 promoted dysfunction in EPCs whereas SIRT3 activation with ad-SIRT3 strengthened anti-oxidant capacity and protected AGE-impaired dysfunction. Moreover, RAGE may involve in AGEs-decreased SIRT3 expression in EPCs. These data suggested an important role of SIRT3 in regulating EPCs bioactivity.

  6. Radiocontrast-induced thyroid dysfunction: is it common and what should we do about it?

    PubMed

    Hudzik, Bartosz; Zubelewicz-Szkodzińska, Barbara

    2014-03-01

    There has been a substantial increase in the use of radiocontrast-enhanced imaging studies in the past two decades (particularly computed tomography and coronary angiography). Sudden exposure to high levels of iodide may result in thyroid dysfunction (hyperthyroidism and hypothyroidism alike). Although the adverse-event rate is not very high, the condition is notable considering the large number of contrast-enhanced radiographic studies performed. Clinicians often have to decide on the most suitable diagnostic modality and the safest contrast medium when it comes to certain patients. In this study, we stress that the thyroid function of the patients should also be taken into consideration while making such decisions. We discuss in detail the prevalence and types (hypothyroidism and hyperthyroidism) of radiocontrast-induced thyroid dysfunction. We list the subsets of the population that are at a higher risk of radiocontrast-induced thyroid dysfunction and summarize the necessary prophylaxis and possible treatment. The presented principles apply to intravenous, intra-arterial and enteral (endoscopic retrograde cholangiopancreatography) routes of iodinated contrast medium administration. © 2013 John Wiley & Sons Ltd.

  7. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy

    PubMed Central

    Mukhopadhyay, Partha; Horváth, Béla; Zsengellér, Zsuzsanna; Zielonka, Jacek; Tanchian, Galin; Holovac, Eileen; Kechrid, Malek; Patel, Vivek; Stillman, Isaac E.; Parikh, Samir M.; Joseph, Joy; Kalyanaraman, Balaraman; Pacher, Pál

    2011-01-01

    Cisplatin is a widely used anti-neoplastic agent; however, its major limitation is the development of dose-dependent nephrotoxicity whose precise mechanisms are poorly understood. Here we show that mitochondrial dysfunction is not only a feature of cisplatin nephrotoxicity, but that targeted delivery of superoxide dismutase mimetics to mitochondria largely prevents the renal effects of cisplatin. Cisplatin induced renal oxidative stress, deterioration of mitochondrial structure and function, an intense inflammatory response, histopathological injury, and renal dysfunction. A single systemic dose of mitochondrially-targeted antioxidants, MitoQ or Mito-CP, dose-dependently prevented cisplatin-induced renal dysfunction. Mito-CP also prevented mitochondrial injury and dysfunction, renal inflammation, and tubular injury and apoptosis. Despite being broadly renoprotective against cisplatin, Mito-CP did not diminish cisplatin’s anti-neoplastic effect in a human bladder cancer cell line. Our results highlight the central role of mitochondrially generated oxidants in the pathogenesis of cisplatin nephrotoxicity. Since similar compounds appear to be safe in humans, mitochondrially-targeted antioxidants may represent a novel therapeutic approach against cisplatin nephrotoxicity. PMID:22120494

  8. Potentiation of Chemical Ototoxicity by Noise

    PubMed Central

    Steyger, Peter S.

    2010-01-01

    High-intensity and/or prolonged exposure to noise causes temporary or permanent threshold shifts in auditory perception. Occupational exposure to solvents or administration of clinically important drugs, such as aminoglycoside antibiotics and cisplatin, also can induce permanent hearing loss. The mechanisms by which these ototoxic insults cause auditory dysfunction are still being unraveled, yet they share common sequelae, particularly generation of reactive oxygen species, that ultimately lead to hearing loss and deafness. Individuals are frequently exposed to ototoxic chemical contaminants (e.g., fuel) and noise simultaneously in a variety of work and recreational environments. Does simultaneous exposure to chemical ototoxins and noise potentiate auditory dysfunction? Exposure to solvent vapor in noisy environments potentiates the permanent threshold shifts induced by noise alone. Moderate noise levels potentiate both aminoglycoside- and cisplatin-induced ototoxicity in both rate of onset and in severity of auditory dysfunction. Thus, simultaneous exposure to chemical ototoxins and moderate levels of noise can potentiate auditory dysfunction. Preventing the ototoxic synergy of noise and chemical ototoxins requires removing exposure to ototoxins and/or attenuating noise exposure levels when chemical ototoxins are present. PMID:20523755

  9. Targeting the Endoplasmic Reticulum Unfolded Protein Response to Counteract the Oxidative Stress-Induced Endothelial Dysfunction

    PubMed Central

    Moltedo, Ornella; Faraonio, Raffaella

    2018-01-01

    In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the UPR pathways is the promotion of an adaptive response, the persistent activation of UPR leads to increased oxidative stress and cell death. This molecular switch has been correlated to the onset or to the exacerbation of the endothelial dysfunction in cardiovascular diseases. In this review, we highlight the multiple chances of the UPR to induce or ameliorate oxidative disturbances and propose the UPR pathways as a new therapeutic target for the clinical management of endothelial dysfunction. PMID:29725497

  10. Skeletal Muscle and Lymphocyte Mitochondrial Dysfunctions in Septic Shock Trigger ICU-Acquired Weakness and Sepsis-Induced Immunoparalysis.

    PubMed

    Maestraggi, Quentin; Lebas, Benjamin; Clere-Jehl, Raphaël; Ludes, Pierre-Olivier; Chamaraux-Tran, Thiên-Nga; Schneider, Francis; Diemunsch, Pierre; Geny, Bernard; Pottecher, Julien

    2017-01-01

    Fundamental events driving the pathological processes of septic shock-induced multiorgan failure (MOF) at the cellular and subcellular levels remain debated. Emerging data implicate mitochondrial dysfunction as a critical factor in the pathogenesis of sepsis-associated MOF. If macrocirculatory and microcirculatory dysfunctions undoubtedly participate in organ dysfunction at the early stage of septic shock, an intrinsic bioenergetic failure, sometimes called "cytopathic hypoxia," perpetuates cellular dysfunction. Short-term failure of vital organs immediately threatens patient survival but long-term recovery is also severely hindered by persistent dysfunction of organs traditionally described as nonvital, such as skeletal muscle and peripheral blood mononuclear cells (PBMCs). In this review, we will stress how and why a persistent mitochondrial dysfunction in skeletal muscles and PBMC could impair survival in patients who overcome the first acute phase of their septic episode. First, muscle wasting protracts weaning from mechanical ventilation, increases the risk of mechanical ventilator-associated pneumonia, and creates a state of ICU-acquired muscle weakness, compelling the patient to bed. Second, failure of the immune system ("immunoparalysis") translates into its inability to clear infectious foci and predisposes the patient to recurrent nosocomial infections. We will finally emphasize how mitochondrial-targeted therapies could represent a realistic strategy to promote long-term recovery after sepsis.

  11. Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice.

    PubMed

    Zhao, Hongyi; Wu, Huijuan; He, Jialin; Zhuang, Jianhua; Liu, Zhenyu; Yang, Yang; Huang, Liuqing; Zhao, Zhongxin

    2016-08-17

    Mitochondrial dysfunction induced by mitochondria-related β-amyloid (Aβ) accumulation is increasingly being considered a novel risk factor for sporadic Alzheimer's disease pathophysiology. The close relationship between chronic sleep restriction (CSR) and cortical Aβ elevation was confirmed recently. By assessing frontal cortical mitochondrial function (electron microscopy manifestation, cytochrome C oxidase concentration, ATP level, and mitochondrial membrane potential) and the levels of mitochondria-related Aβ in 9-month-old adult male C57BL/6J mice subjected to CSR and as an environmental control (CO) group, we aimed to evaluate the association of CSR with mitochondrial dysfunction and mitochondria-related Aβ accumulation. In this study, frontal cortical mitochondrial dysfunction was significantly more severe in CSR mice compared with CO animals. Furthermore, CSR mice showed higher mitochondria-associated Aβ, total Aβ, and mitochondria-related β-amyloid protein precursor (AβPP) levels compared with CO mice. In the CSR model, mouse frontal cortical mitochondrial dysfunction was correlated with mitochondria-associated Aβ and mitochondria-related AβPP levels. However, frontal cortical mitochondria-associated Aβ levels showed no significant association with cortical total Aβ and mitochondrial AβPP concentrations. These findings indicated that CSR-induced frontal cortical mitochondrial dysfunction and mitochondria-related Aβ accumulation, which was closely related to mitochondrial dysfunction under CSR.

  12. Cutaneous microvascular perfusion responses to insulin iontophoresis are differentially affected by insulin resistance after spinal cord injury.

    PubMed

    La Fountaine, Michael F; Cirnigliaro, Christopher M; Azarelo, Frank; Hobson, Joshua C; Tascione, Oriana; Swonger, Kirsten N; Dyson-Hudson, Trevor; Bauman, William A

    2017-09-01

    What is the central question of this study? What impact does insulin resistance have on cutaneous perfusion responses to insulin iontophoresis in vascular beds with markedly reduced or functionally ablated sympathetic nervous system vasomotor function resulting from spinal cord injury? What is the main finding and its importance? Persons with spinal cord injury have sublesional microvascular endothelial dysfunction, as indicated by a blunted cutaneous perfusion response to acetylcholine iontophoresis, and the presence of insulin resistance has a further confounding effect on endothelium-mediated changes to cutaneous perfusion in the lower extremities. Endothelium-mediated mechanisms that regulate skin blood flow might play an integral role in optimizing skin perfusion in vascular beds with sympathetic nervous system vasomotor impairment, such as in spinal cord injury (SCI). Insulin is a vasoactive hormone and second messenger of nitric oxide that facilitates endothelium-mediated dilatation. The effects of insulin resistance (IR) on sublesional cutaneous perfusion responses to insulin provocation have yet to be described in persons with SCI. Persons with SCI and an able-bodied (AB) cohort were divided into subgroups based upon fasting plasma insulin concentration cut-offs for IR (≥13.13 mIU ml -1 ) or insulin sensitivity (IS; <13.13 mIU ml -1 ), as follows: AB, IS (ABIS, n = 21); SCI, IS (SCIS, n = 21); AB, IR (ABIR, n = 9); and SCI, IR (SCIR, n = 11). Laser Doppler flowmetry characterized peak blood perfusion unit (BPU) responses (percentage change from baseline) to insulin, acetylcholine or placebo iontophoresis in the lower extremities; BPU responses were log 10 transformed to facilitate comparisons, and the net insulin response (NetIns) BPU response was calculated (insulin minus placebo BPU response). The NetIns was significantly greater in both IS groups compared with their corresponding IR group. The acetylcholine-mediated BPU responses in the SCI subgroups were significantly lower than those in the ABIS group. The proportional BPU responses of NetIns to acetylcholine in the IS cohorts (i.e. ABIS and SCIS) were significantly greater (P < 0.05) than that of each IR subgroup. The presence of IR has a confounding effect on sublesional microvascular endothelium-mediated cutaneous perfusion responses to provocation. Preservation of endothelial sensitivity to its agonists appears to be an important modifiable risk factor to optimize cutaneous perfusion in the lower extremities of persons with SCI. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  13. Vinpocetine Improves Scopolamine Induced Learning and Memory Dysfunction in C57 BL/6J Mice.

    PubMed

    Shang, Yu; Wang, Lei; Li, Yue; Gu, Pei-Fei

    2016-09-01

    Vinpocetine is an inhibitor of phosphodiesterase type 1 (PDE1), which has been used for treating stroke for over 40 years. However, according to current clinical dosage and treatment period, its direct effect on memory is unclear. In this study, we investigated whether vinpocetine could reverse the scopolamine (SCO)-induced cognitive deficits in animals. Behavioral experiments, including open field, Y-maze, and fear conditioning tests were used to determine the possible role of vinpocetine on scopolamine-induced memory dysfunction. In the open field and Y-maze tests, there were significant differences between the control (CON) group and SCO group. Vinpocetine (4 mg/kg) administration for consecutive 28 d significantly improved the scopolamine-induced memory dysfunction. In the fear conditioning test, vinpocetine (2, 4 mg/kg) administration had certain beneficial effect on emotional memory. Our results suggest that vinpocetine could improve cognitive function in memory deficient mice and high clinic dosage might be better.

  14. PGC-1α dictates endothelial function through regulation of eNOS expression

    PubMed Central

    Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.

    2016-01-01

    Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955

  15. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    PubMed

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. © 2016 International Society for Neurochemistry.

  16. Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes.

    PubMed

    Wang, Hualin; Cai, Yazheng; Shao, Yang; Zhang, Xifeng; Li, Na; Zhang, Hongyu; Liu, Zhiguo

    2018-04-29

    The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs) against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON), a high-fat diet (HFD group) or a HFD supplemented with fish oil (FO group) for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes' expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.

  17. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    ERIC Educational Resources Information Center

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  18. Cardio-renal syndromes: a systematic approach for consensus definition and classification.

    PubMed

    Ronco, Claudio; Ronco, Federico

    2012-03-01

    The "Cardio-Renal Syndrome" (CRS) is a disorder of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. The general definition has been expanded to five subtypes reflecting the primacy of organ dysfunction and the time-frame of the syndrome: CRS type I: acute worsening of heart function (AHF-ACS) leading to kidney injury and/or dysfunction. CRS type II: chronic abnormalities in heart function (CHF-CHD) leading to kidney injury or dysfunction. CRS type III: acute worsening of kidney function (AKI) leading to heart injury and/or dysfunction. CRS type IV: chronic kidney disease (CKD) leading to heart injury, disease and/or dysfunction. CRS type V: systemic conditions leading to simultaneous injury and/or dysfunction of heart and kidney. Different pathophysiological mechanisms are involved in the combined dysfunction of heart and kidney in these five types of the syndrome.

  19. Ethanol-induced erectile dysfunction and increased expression of pro-inflammatory proteins in the rat cavernosal smooth muscle are mediated by NADPH oxidase-derived reactive oxygen species.

    PubMed

    Leite, Letícia N; do Vale, Gabriel T; Simplicio, Janaina A; De Martinis, Bruno S; Carneiro, Fernando S; Tirapelli, Carlos R

    2017-06-05

    Ethanol consumption is associated with an increased risk of erectile dysfunction (ED), but the molecular mechanisms through which ethanol causes ED remain elusive. Reactive oxygen species are described as mediators of ethanol-induced cell toxicity/damage in distinctive tissues. The enzyme NADPH oxidase is the main source of reactive oxygen species in the endothelium and vascular smooth muscle cells and ethanol is described to increase NADPH oxidase activation and reactive oxygen species generation. This study evaluated the contribution of NADPH oxidase-derived reactive oxygen species to ethanol-induced ED, endothelial dysfunction and production of pro-inflammatory and redox-sensitive proteins in the rat cavernosal smooth muscle (CSM). Male Wistar rats were treated with ethanol (20% v/v) or ethanol plus apocynin (30mg/kg/day; p.o. gavage) for six weeks. Apocynin prevented both the decreased in acetylcholine-induced relaxation and intracavernosal pressure induced by ethanol. Ethanol increased superoxide anion (O 2 - ) generation and catalase activity in CSM, and treatment with apocynin prevented these responses. Similarly, apocynin prevented the ethanol-induced decreased of nitrate/nitrite (NOx), hydrogen peroxide (H 2 O 2 ) and SOD activity. Treatment with ethanol increased p47phox translocation to the membrane as well as the expression of Nox2, COX-1, catalase, iNOS, ICAM-1 and p65. Apocynin prevented the effects of ethanol on protein expression and p47phox translocation. Finally, treatment with ethanol increased both TNF-α production and neutrophil migration in CSM. The major new finding of this study is that NADPH oxidase-derived reactive oxygen species play a role on chronic ethanol consumption-induced ED and endothelial dysfunction in the rat CSM. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity.

    PubMed

    Niu, Qiang; Chen, Jingwen; Xia, Tao; Li, Pei; Zhou, Guoyu; Xu, Chunyan; Zhao, Qian; Dong, Lixin; Zhang, Shun; Wang, Aiguo

    2018-02-01

    Fluoride is capable of inducing neurotoxicity, but its mechanisms remain elusive. This study aimed to explore the roles of endoplasmic reticulum (ER) stress and autophagy in sodium fluoride (NaF)-induced neurotoxicity, focusing on the regulating role of ER stress in autophagy. The in vivo results demonstrated that NaF exposure impaired the learning and memory capabilities of rats, and resulted in histological and ultrastructural abnormalities in rat hippocampus. Moreover, NaF exposure induced excessive ER stress and associated apoptosis, as manifested by elevated IRE1α, GRP78, cleaved caspase-12 and cleaved-caspase-3, as well as defective autophagy, as shown by increased Beclin1, LC3-II and p62 expression in hippocampus. Consistently, the in vitro results further verified the findings of in vivo study that NaF induced excessive ER stress and defective autophagy in SH-SY5Y cells. Notably, inhibition of autophagy in NaF-treated SH-SY5Y cells with Wortmannin or Chloroquine decreased, while induction of autophagy by Rapamycin increased the cell viability. These results were correlated well with the immunofluorescence observations, thus confirming the pivotal role of autophagic flux dysfunction in NaF-induced cell death. Importantly, mitigation of ER stress by 4-phenylbutyrate in NaF-treated SH-SY5Y cells inhibited the expressions of autophagy markers, and decreased cell apoptosis. Taken together, these data suggest that neuronal death resulted from excessive ER stress and autophagic flux dysfunction contributes to fluoride-elicited neurotoxicity. Moreover, the autophagic flux dysfunction was mediated by excessive ER stress, which provided novel insight into a better understanding of fluoride-induced neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Albumin Overload and PINK1/Parkin Signaling-Related Mitophagy in Renal Tubular Epithelial Cells.

    PubMed

    Tan, Jin; Xie, Qi; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-03-01

    BACKGROUND Albumin, as a major urinary protein component, is a risk factor for chronic kidney disease progression. Mitochondrial dysfunction is one of the main causes of albumin-induced proximal tubule cells injury. Mitophagy is considered as a pivotal protective mechanism for the elimination of dysfunctional mitochondria. The objective of this research was to determine whether albumin overload-induced mitochondrial dysfunction can activate PINK1/Parkin-mediated mitophagy in renal tubular epithelial cells (TECs). MATERIAL AND METHODS Immunofluorescence assay and Western blot assay were used to detect the effects of albumin overload on autophagy marker protein LC3. Transmission electron microscopy and Western blot assay were used to investigate the role of albumin in mitochondrial injury. Western blot assay and co-localization of acidic lysosomes and mitochondria assay were employed to detect the activation of mitophagy induced by albumin. Finally, we explored the role of PINK1/Parkin signaling in albumin-induced mitophagy by inhibiting mitophagy by knockdown of PARK2 (Parkin) level. RESULTS Immunofluorescence and Western blot results showed that the expression level of LC3-II increased, and the maximum increase point was observed after 8 h of albumin treatment. Transmission electron microscopy results demonstrated that albumin overload-induced mitochondrial injury and quantity of autophagosomes increased. Additionally, expression of PINK1 and cytosolic cytochrome C increased and mitochondria cytochrome C decreased in the albumin group. The co-localization of acidic lysosomes and mitochondria demonstrated that the number of albumin overload-induced mitophagy-positive dots increased. The transient transfection of PARK2 siRNA result showed knockdown of the expression level of PARK2 can inhibit mitophagy induced by albumin. CONCLUSIONS In conclusion, our study suggests that mitochondrial dysfunction activates the PINK1/Parkin signaling and mitophagy in renal tubular epithelial cells under albumin overload condition.

  2. Cardiac-specific knockout of ETA receptor mitigates low ambient temperature-induced cardiac hypertrophy and contractile dysfunction

    PubMed Central

    Zhang, Yingmei; Li, Linlin; Hua, Yinan; Nunn, Jennifer M.; Dong, Feng; Yanagisawa, Masashi; Ren, Jun

    2012-01-01

    Cold exposure is associated with oxidative stress and cardiac dysfunction. The endothelin (ET) system, which plays a key role in myocardial homeostasis, may participate in cold exposure-induced cardiovascular dysfunction. This study was designed to examine the role of ET-1 in cold stress-induced cardiac geometric and contractile responses. Wild-type (WT) and ETA receptor knockout (ETAKO) mice were assigned to normal or cold exposure (4°C) environment for 2 and 5 weeks prior to evaluation of cardiac geometry, contractile, and intracellular Ca2+ properties. Levels of the temperature sensor transient receptor potential vanilloid (TRPV1), mitochondrial proteins for biogenesis and oxidative phosphorylation, including UCP2, HSP90, and PGC1α were evaluated. Cold stress triggered cardiac hypertrophy, depressed myocardial contractile capacity, including fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, reduced intracellular Ca2+ release, prolonged intracellular Ca2+ decay and relengthening duration, generation of ROS and superoxide, as well as apoptosis, the effects of which were blunted by ETAKO. Western blotting revealed downregulated TRPV1 and PGC1α as well as upregulated UCP2 and activation of GSK3β, GATA4, and CREB in cold-stressed WT mouse hearts, which were obliterated by ETAKO. Levels of HSP90, an essential regulator for thermotolerance, were unchanged. The TRPV1 agonist SA13353 attenuated whereas TRPV1 antagonist capsazepine mimicked cold stress- or ET-1-induced cardiac anomalies. The GSK3β inhibitor SB216763 ablated cold stress-induced cardiac contractile (but not remodeling) changes and ET-1-induced TRPV1 downregulation. These data suggest that ETAKO protects against cold exposure-induced cardiac remodeling and dysfunction mediated through TRPV1 and mitochondrial function. PMID:22442497

  3. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cognitive Dysfunction by Inhibition of Reactive Aldehydes Involving Upregulation of ALDH2.

    PubMed

    Li, Min; Zhang, Ping; Wei, Hai-Jun; Li, Man-Hong; Zou, Wei; Li, Xiang; Gu, Hong-Feng; Tang, Xiao-Qing

    2017-04-01

    Homocysteine, a risk factor for Alzheimer's disease, induces cognitive dysfunction. Reactive aldehydes play an important role in cognitive dysfunction. Aldehyde-dehydrogenase 2 detoxifies reactive aldehydes. Hydrogen sulfide, a novel neuromodulator, has neuroprotective effects and regulates learning and memory. Our previous work confirmed that the disturbance of hydrogen sulfide synthesis is invovled in homocysteine-induced defects in learning and memory. Therefore, the present work was to explore whether hydrogen sulfide ameliorates homocysteine-generated cognitive dysfunction and to investigate whether its underlying mechanism is related to attenuating accumulation of reactive aldehydes by upregulation of aldehyde-dehydrogenase 2. The cognitive function of rats was assessed by the Morris water maze test and the novel object recognition test. The levels of malondialdehyde, 4-hydroxynonenal, and glutathione as well as the activity of aldehyde-dehydrogenase 2 were determined by enzyme linked immunosorbent assay; the expression of aldehyde-dehydrogenase 2 was detected by western blot. The behavior experiments, Morris water maze test and novel objects recognition test, showed that homocysteine induced deficiency in learning and memory in rats, and this deficiency was reversed by treatment of NaHS (a donor of hydrogen sulfide). We demonstrated that NaHS inhibited homocysteine-induced increases in generations of MDA and 4-HNE in the hippocampus of rats and that hydrogen sulfide reversed homocysteine-induced decreases in the level of glutathione as well as the activity and expression of aldehyde-dehydrogenase 2 in the hippocampus of rats. Hydrogen sulfide ameliorates homocysteine-induced impairment in cognitive function by decreasing accumulation of reactive aldehydes as a result of upregulations of glutathione and aldehyde-dehydrogenase 2. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  4. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cognitive Dysfunction by Inhibition of Reactive Aldehydes Involving Upregulation of ALDH2

    PubMed Central

    Li, Min; Zhang, Ping; Wei, Hai-jun; Li, Man-Hong; Li, Xiang; Gu, Hong-Feng

    2017-01-01

    Abstract Background: Homocysteine, a risk factor for Alzheimer’s disease, induces cognitive dysfunction. Reactive aldehydes play an important role in cognitive dysfunction. Aldehyde-dehydrogenase 2 detoxifies reactive aldehydes. Hydrogen sulfide, a novel neuromodulator, has neuroprotective effects and regulates learning and memory. Our previous work confirmed that the disturbance of hydrogen sulfide synthesis is invovled in homocysteine-induced defects in learning and memory. Therefore, the present work was to explore whether hydrogen sulfide ameliorates homocysteine-generated cognitive dysfunction and to investigate whether its underlying mechanism is related to attenuating accumulation of reactive aldehydes by upregulation of aldehyde-dehydrogenase 2. Methods: The cognitive function of rats was assessed by the Morris water maze test and the novel object recognition test. The levels of malondialdehyde, 4-hydroxynonenal, and glutathione as well as the activity of aldehyde-dehydrogenase 2 were determined by enzyme linked immunosorbent assay; the expression of aldehyde-dehydrogenase 2 was detected by western blot. Results: The behavior experiments, Morris water maze test and novel objects recognition test, showed that homocysteine induced deficiency in learning and memory in rats, and this deficiency was reversed by treatment of NaHS (a donor of hydrogen sulfide). We demonstrated that NaHS inhibited homocysteine-induced increases in generations of MDA and 4-HNE in the hippocampus of rats and that hydrogen sulfide reversed homocysteine-induced decreases in the level of glutathione as well as the activity and expression of aldehyde-dehydrogenase 2 in the hippocampus of rats. Conclusion: Hydrogen sulfide ameliorates homocysteine-induced impairment in cognitive function by decreasing accumulation of reactive aldehydes as a result of upregulations of glutathione and aldehyde-dehydrogenase 2. PMID:27988490

  5. 2-Chlorohexadecanoic acid induces ER stress and mitochondrial dysfunction in brain microvascular endothelial cells.

    PubMed

    Bernhart, Eva; Kogelnik, Nora; Prasch, Jürgen; Gottschalk, Benjamin; Goeritzer, Madeleine; Depaoli, Maria Rosa; Reicher, Helga; Nusshold, Christoph; Plastira, Ioanna; Hammer, Astrid; Fauler, Günter; Malli, Roland; Graier, Wolfgang F; Malle, Ernst; Sattler, Wolfgang

    2018-05-01

    Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H 2 O 2 -chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a 'clickable' alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)-6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Sinomenine alleviates high glucose-induced renal glomerular endothelial hyperpermeability by inhibiting the activation of RhoA/ROCK signaling pathway.

    PubMed

    Yin, Qingqiao; Xia, Yuanyu; Wang, Guan

    2016-09-02

    As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction

    PubMed Central

    Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto

    2015-01-01

    Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers. PMID:26473356

  8. Nivolumab-induced thyroid dysfunction lacking antithyroid antibody is frequently evoked in Japanese patients with malignant melanoma.

    PubMed

    Yano, Seiichi; Ashida, Kenji; Nagata, Hiromi; Ohe, Kenji; Wada, Naoko; Takeichi, Yukina; Hanada, Yuki; Ibayashi, Yuta; Wang, Lixiang; Sakamoto, Shohei; Sakamoto, Ryuichi; Uchi, Hiroshi; Shiratsuchi, Motoaki; Furue, Masutaka; Nomura, Masatoshi; Ogawa, Yoshihiro

    2018-06-08

    Nivolumab, an anti-programmed cell death-1 monoclonal antibody, has improved the survival of patients with malignant melanoma. Despite its efficacy, nivolumab inconsistently induces thyroid dysfunction as an immune-related adverse event (irAE). This study aimed to evaluate nivolumab-induced thyroid dysfunction to determine the risks and mechanisms of thyroid irAEs. After excluding 10 patients, data of 24 patients with malignant melanoma (aged 17-85 years; 54% female) were retrospectively analyzed. Thyroid irAEs were observed in seven patients (29%). Three patients had hypothyroidism after preceding transient thyrotoxicosis, and the other four patients had hypothyroidism without thyrotoxicosis. Levothyroxine-Na replacement was required in three patients. Antithyroid antibody (ATA) titer was elevated in one of four assessable patients. The average (±SD) time to onset of thyroid irAE was 33.6 (±21.9) weeks. The administration period of nivolumab was longer in patients with thyroid irAEs than in those without thyroid irAEs (P < 0.01). There were no significant differences between patients with and without thyroid irAEs regarding age, sex, tumor stage, response to nivolumab therapy, baseline thyroid function, antithyroid peroxidase antibody (anti-TPO Ab) and antithyroglobulin antibody (anti-Tg Ab). Thyroid dysfunction was a common irAE of nivolumab in malignant melanoma. Neither anti-TPO Ab nor anti-Tg Ab was associated with the risk for nivolumab-induced thyroid dysfunction. A conventional ATA-independent mechanism might be involved in thyroid irAEs. Further studies are required to clarify the mechanism and identify the predictive factors of thyroid irAEs.

  9. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature.

    PubMed

    Li, Wei; Maloney, Ronald E; Aw, Tak Yee

    2015-08-01

    We previously demonstrated that in normal glucose (5mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG-occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG-occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    PubMed

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  11. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain.

    PubMed

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I

    2012-12-21

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.

  12. High glucose, glucose fluctuation and carbonyl stress enhance brain microvascular endothelial barrier dysfunction: Implications for diabetic cerebral microvasculature

    PubMed Central

    Li, Wei; Maloney, Ronald E.; Aw, Tak Yee

    2015-01-01

    We previously demonstrated that in normal glucose (5 mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. PMID:25867911

  13. Exercise and reproductive dysfunction.

    PubMed

    Chen, E C; Brzyski, R G

    1999-01-01

    To provide an overview of our current understanding of exercise-induced reproductive dysfunction and an approach to its evaluation and management. A MEDLINE search was performed to review all articles with title words related to menstrual dysfunction, amenorrhea, oligomenorrhea, exercise, and athletic activities from 1966 to 1998. The pathophysiology, proposed mechanisms, clinical manifestations, evaluation, and management of exercise-associated reproductive dysfunction were compiled. Exercise-induced menstrual irregularity appears to be multifactorial in origin and remains a diagnosis of exclusion. The underlying mechanisms are mainly speculative. Clinical manifestations range from luteal phase deficiency to anovulation, amenorrhea, and even delayed menarche. Evaluation should include a thorough history and a complete physical plus pelvic examination. Most cases are reversible with dietary and exercise modifications. Hormonal replacement in cases of a prolonged hypoestrogenic state with evidence of increased bone loss is recommended, although the long-term consequences of prolonged hormonal deficiency are ill-defined.

  14. Regulation of coronary blood flow during exercise.

    PubMed

    Duncker, Dirk J; Bache, Robert J

    2008-07-01

    Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already 70-80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains capillary density at a level commensurate with the degree of exercise-induced physiological myocardial hypertrophy. Nevertheless, training alters the distribution of coronary vascular resistance so that more capillaries are recruited, resulting in an increase in the permeability-surface area product without a change in capillary numerical density. Maintenance of alpha- and ss-adrenergic tone in the presence of lower circulating catecholamine levels appears to be due to increased receptor responsiveness to adrenergic stimulation. Exercise training also alters local control of coronary resistance vessels. Thus arterioles exhibit increased myogenic tone, likely due to a calcium-dependent protein kinase C signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, training augments endothelium-dependent vasodilation throughout the coronary microcirculation. This enhanced responsiveness appears to result principally from an increased expression of nitric oxide (NO) synthase. Finally, physical conditioning decreases extravascular compressive forces at rest and at comparable levels of exercise, mainly because of a decrease in heart rate. Impedance to coronary inflow due to an epicardial coronary artery stenosis results in marked redistribution of myocardial blood flow during exercise away from the subendocardium towards the subepicardium. However, in contrast to the traditional view that myocardial ischemia causes maximal microvascular dilation, more recent studies have shown that the coronary microvessels retain some degree of vasodilator reserve during exercise-induced ischemia and remain responsive to vasoconstrictor stimuli. These observations have required reassessment of the principal sites of resistance to blood flow in the microcirculation. A significant fraction of resistance is located in small arteries that are outside the metabolic control of the myocardium but are sensitive to shear and nitrovasodilators. The coronary collateral system embodies a dynamic network of interarterial vessels that can undergo both long- and short-term adjustments that can modulate blood flow to the dependent myocardium. Long-term adjustments including recruitment and growth of collateral vessels in response to arterial occlusion are time dependent and determine the maximum blood flow rates available to the collateral-dependent vascular bed during exercise. Rapid short-term adjustments result from active vasomotor activity of the collateral vessels. Mature coronary collateral vessels are responsive to vasodilators such as nitroglycerin and atrial natriuretic peptide, and to vasoconstrictors such as vasopressin, angiotensin II, and the platelet products serotonin and thromboxane A(2). During exercise, ss-adrenergic activity and endothelium-derived NO and prostanoids exert vasodilator influences on coronary collateral vessels. Importantly, alterations in collateral vasomotor tone, e.g., by exogenous vasopressin, inhibition of endogenous NO or prostanoid production, or increasing local adenosine production can modify collateral conductance, thereby influencing the blood supply to the dependent myocardium. In addition, vasomotor activity in the resistance vessels of the collateral perfused vascular bed can influence the volume and distribution of blood flow within the collateral zone. Finally, there is evidence that vasomotor control of resistance vessels in the normally perfused regions of collateralized hearts is altered, indicating that the vascular adaptations in hearts with a flow-limiting coronary obstruction occur at a global as well as a regional level. Exercise training does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. In addition to ischemia, the pressure gradient between vascular beds, which is a determinant of the flow rate and therefore the shear stress on the collateral vessel endothelium, may also be important in stimulating growth of collateral vessels.

  15. Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment

    PubMed Central

    Niknahad, Hossein; Jamshidzadeh, Akram; Zarei, Mahdi; Ommati, Mohammad Mehdi

    2017-01-01

    Introduction Ammonia-induced oxidative stress, mitochondrial dysfunction, and energy crisis are known as some the major mechanisms of brain injury in hepatic encephalopathy (HE). Hyperammonemia also affects the liver and hepatocytes. Therefore, targeting mitochondria seems to be a therapeutic point of intervention in the treatment of HE. Taurine is an abundant amino acid in the human body. Several biological functions including the mitochondrial protective properties are attributed to this amino acid. The aim of this study is to evaluate the effect of taurine administration on ammonia-induced mitochondrial dysfunction. Material and methods Isolated mice liver and brain mitochondria were exposed to different concentrations of ammonia (1, 5, 10, and 20 mM) and taurine (1, 5, and 10 mM), and several mitochondrial indices were assessed. Results It was found that ammonia inhibited mitochondrial dehydrogenases activity caused collapse of mitochondrial membrane potential (MMP), induced mitochondrial swelling (MPP), and increased reactive oxygen species (ROS) in isolated liver and brain mitochondria. Furthermore, a significant amount of lipid peroxidation (LPO), along with glutathione (GSH) and ATP depletion, was detected in ammonia exposed mitochondria. Taurine administration (5 and 10 mM) mitigated ammonia-induced mitochondrial dysfunction. Conclusions The current investigation demonstrates that taurine is instrumental in preserving brain and liver mitochondrial function in a hyperammonemic environment. The data suggest taurine as a potential protective agent with a therapeutic capability against hepatic encephalopathy and hyperammonemia. PMID:29062904

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Qingqiao; Xia, Yuanyu, E-mail: xiayuanyu.wh@gmail.com; Wang, Guan

    As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression inmore » HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders.« less

  17. Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans.

    PubMed

    Xiao, Changting; Giacca, Adria; Lewis, Gary F

    2011-03-01

    Chronically elevated free fatty acids contribute to insulin resistance and pancreatic β-cell failure. Among numerous potential factors, the involvement of endoplasmic reticulum (ER) stress has been postulated to play a mechanistic role. Here we examined the efficacy of the chemical chaperone, sodium phenylbutyrate (PBA), a drug with known capacity to reduce ER stress in animal models and in vitro, on lipid-induced insulin resistance and β-cell dysfunction in humans. Eight overweight or obese nondiabetic men underwent four studies each, in random order, 4 to 6 weeks apart. Two studies were preceded by 2 weeks of oral PBA (7.5 g/day), followed by a 48-h i.v. infusion of intralipid/heparin or saline, and two studies were preceded by placebo treatment, followed by similar infusions. Insulin secretion rates (ISRs) and sensitivity (S(I)) were assessed after the 48-h infusions by hyperglycemic and hyperinsulinemic-euglycemic clamps, respectively. Lipid infusion reduced S(I), which was significantly ameliorated by pretreatment with PBA. Absolute ISR was not affected by any treatment; however, PBA partially ameliorated the lipid-induced reduction in the disposition index (DI = ISR × S(I)), indicating that PBA prevented lipid-induced β-cell dysfunction. These results suggest that PBA may provide benefits in humans by ameliorating the insulin resistance and β-cell dysfunction induced by prolonged elevation of free fatty acids.

  18. Vinpocetine and Vasoactive Intestinal Peptide Attenuate Manganese-Induced Toxicity in NE-4C Cells.

    PubMed

    Bora, Saylav; Erdogan, Mumin Alper; Armagan, Güliz; Sevgili, Elvin; Dagcı, Taner

    2016-12-01

    Increased concentration of manganese (Mn) in the brain is known to be associated with excitotoxicity and neuroinflammation. Vinpocetine, an alkaloid derived from the plant Vinca minor L., basically shows its effect via phosphodiesterase inhibition and voltage-dependent Na + channels. Vasoactive intestinal peptide (VIP) has gastrointestinal, vasomotor, muscular, and neuroprotective effects. The aim of this study was to examine the potential protective effects of vinpocetine and VIP against Mn toxicity in NE-4C neural stem cells (NSCs). VIP treatment at 1 μM and vinpocetine treatment at 2 μM concentrations were sufficient to yield maximum protection, and these concentrations were adopted in the following experiments. In this study, Mn treatment significantly increased lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) production, and triggered cell death in NE-4C cultures. However, significant reduction in LDH release was observed following vinpocetine or VIP treatments when compared with control. Similar to these findings, vinpocetine or VIP treatments significantly reduced membrane degradation induced by Mn (p < 0.001). Moreover, vinpocetine attenuated Mn-induced decrease of mitochondrial membrane potential. Similarly, proapoptotic protein bax and ROS production significantly decreased in cells after incubation with vinpocetine (p = 0.01) or VIP in the presence of Mn (p < 0.001). Our study provides the evidence that both vinpocetine and VIP may exert protective effects via modulating oxidative stress and apoptosis in Mn-induced neurodegeneration in NE-4C cells.

  19. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels inmore » breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.« less

  20. Right Ventricular Dysfunction Impairs Effort Tolerance Independent of Left Ventricular Function Among Patients Undergoing Exercise Stress Myocardial Perfusion Imaging.

    PubMed

    Kim, Jiwon; Di Franco, Antonino; Seoane, Tania; Srinivasan, Aparna; Kampaktsis, Polydoros N; Geevarghese, Alexi; Goldburg, Samantha R; Khan, Saadat A; Szulc, Massimiliano; Ratcliffe, Mark B; Levine, Robert A; Morgan, Ashley E; Maddula, Pooja; Rozenstrauch, Meenakshi; Shah, Tara; Devereux, Richard B; Weinsaft, Jonathan W

    2016-11-01

    Right ventricular (RV) and left ventricular (LV) function are closely linked due to a variety of factors, including common coronary blood supply. Altered LV perfusion holds the potential to affect the RV, but links between LV ischemia and RV performance, and independent impact of RV dysfunction on effort tolerance, are unknown. The population comprised 2051 patients who underwent exercise stress myocardial perfusion imaging and echo (5.5±7.9 days), among whom 6% had echo-evidenced RV dysfunction. Global summed stress scores were ≈3-fold higher among patients with RV dysfunction, attributable to increments in inducible and fixed LV perfusion defects (all P≤0.001). Regional inferior and lateral wall ischemia was greater among patients with RV dysfunction (both P<0.01), without difference in corresponding anterior defects (P=0.13). In multivariable analysis, inducible inferior and lateral wall perfusion defects increased the likelihood of RV dysfunction (both P<0.05) independent of LV function, fixed perfusion defects, and pulmonary artery pressure. Patients with RV dysfunction demonstrated lesser effort tolerance whether measured by exercise duration (6.7±2.8 versus 7.9±2.9 minutes; P<0.001) or peak treadmill stage (2.6±0.9 versus 3.1±1.0; P<0.001), paralleling results among patients with LV dysfunction (7.0±2.9 versus 8.0±2.9; P<0.001|2.7±1.0 versus 3.1±1.0; P<0.001 respectively). Exercise time decreased stepwise in relation to both RV and LV dysfunction (P<0.001) and was associated with each parameter independent of age or medication regimen. Among patients with known or suspected coronary artery disease, regional LV ischemia involving the inferior and lateral walls confers increased likelihood of RV dysfunction. RV dysfunction impairs exercise tolerance independent of LV dysfunction. © 2016 American Heart Association, Inc.

  1. The enteroinsular axis and endocrine pancreatic function in chronic alcohol consumers: evidence for early beta-cell hypofunction.

    PubMed

    Patto, R J; Russo, E K; Borges, D R; Neves, M M

    1993-09-01

    Chronic alcohol consumers may have, as judged by functional criteria, exocrine as well as endocrine pancreatic dysfunction, the latter represented by a decreased insulin response to an oral glucose load. To investigate whether this decreased insulin response was due to an ethanol-induced beta-cell dysfunction or to an ethanol-induced dysfunction of the enteroinsular axis, we determined glucose, insulin, and C-peptide plasma concentrations following an oral and an intravenous glucose load in 16 healthy volunteer nonalcohol consumers and in 10 chronic alcohol consumers. In each group, total integrated response for glucose did not significantly change whether glucose was given orally or intravenously, indicating isoglycemic glucose loads. The total integrated response values for insulin in the alcoholic group following both glucose loads as well as C-peptide plasma concentrations were significantly lower than in the control group. Moreover, in both groups the insulin TIR values following the oral glucose load were significantly greater than the values obtained following the intravenous glucose load, indicating an incretin effect. These results indicate that the decreased insulin response observed in alcoholics was not caused by a dysfunction of the enteroinsular axis because it also occurred following an intravenous glucose load, but by an ethanol-induced beta-cell dysfunction because C-peptide and insulin were proportionally decreased in this group.

  2. Diabetic ketoacidosis elicits systemic inflammation associated with cerebrovascular endothelial cell dysfunction.

    PubMed

    Close, Taylor E; Cepinskas, Gediminas; Omatsu, Tatsushi; Rose, Keeley L; Summers, Kelly; Patterson, Eric K; Fraser, Douglas D

    2013-08-01

    To determine if the DKA-induced inflammation in juvenile mice provokes activation and dysfunction of CVECs. DKA in juvenile mice was induced with administration of STZ and ALX. Blood from DKA mice was assessed for cytokines and soluble cell adhesion proteins, and either DKA plasma or exogenous compounds were applied to immortalized bEND3. DKA increased circulating levels of IL-6, IL-8(KC), MCP-1, IL-10, sE-selectin, sICAM-1, and sVCAM-1. Stimulation of bEND3 with DKA plasma caused cellular activation (increased ROS and activation of NF-κΒ), upregulation of a proadhesive phenotype (E-selectin, ICAM-1, and VCAM-1), and increased leukocyte-bEND3 interaction (leukocyte rolling/adhesion). TEER, a measure of bEND3 monolayer integrity, was decreased by DKA plasma. Activation and dysfunction of bEND3 with DKA plasma were suppressed by plasma heat treatment (56°C, 1 hour) and replicated with the application of DKA recombinant cytomix (IL-6, IL-8[KC], MCP-1, and IL-10), implicating circulating inflammatory protein(s) as mediators. Treatment of bEND3 with β-OH-butyrate, the main ketone elevated in DKA, failed to mimic the DKA plasma-induced activation and dysfunction of bEND3. DKA elicits systemic inflammation associated with CVEC activation and dysfunction, possibly contributing to DKA-associated intracranial microvascular complications. © 2013 John Wiley & Sons Ltd.

  3. Serelaxin treatment reverses vascular dysfunction and left ventricular hypertrophy in a mouse model of Type 1 diabetes

    PubMed Central

    Ng, Hooi Hooi; Leo, Chen Huei; Prakoso, Darnel; Qin, Chengxue; Ritchie, Rebecca H.; Parry, Laura J.

    2017-01-01

    Serelaxin prevents endothelial dysfunction in the mouse aorta ex vivo and inhibits apoptosis in cardiomyocytes under acute hyperglycaemia. Less is known about the effects of serelaxin in an in vivo mouse model of diabetes. Therefore, we tested the hypothesis in streptozotocin (STZ)-treated mice that serelaxin is able to reverse diabetes-induced vascular dysfunction and cardiac remodelling. Mice were divided into citrate buffer + placebo, STZ + placebo and STZ + serelaxin (0.5 mg/kg/d, 2 weeks) groups. After 12 weeks of diabetes, sensitivity to the endothelium-dependent agonist acetylcholine (ACh) was reduced in the mesenteric artery. This was accompanied by an enhanced vasoconstrictor prostanoid contribution and a decrease in endothelium-derived hyperpolarisation (EDH)-mediated relaxation. Serelaxin restored endothelial function by increasing nitric oxide (NO)-mediated relaxation but not EDH. It also normalised the contribution of vasoconstrictor prostanoids to endothelial dysfunction and suppressed diabetes-induced hyper-responsiveness of the mesenteric artery to angiotensin II. Similarly, diabetes reduced ACh-evoked NO-mediated relaxation in the aorta which was reversed by serelaxin. In the left ventricle, diabetes promoted apoptosis, hypertrophy and fibrosis; serelaxin treatment reversed this ventricular apoptosis and hypertrophy, but had no effect on fibrosis. In summary, serelaxin reversed diabetes-induced endothelial dysfunction by enhancing NO-mediated relaxation in the mouse vasculature and attenuating left ventricular hypertrophy and apoptosis. PMID:28067255

  4. C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction.

    PubMed

    Devaraj, Sridevi; Kumaresan, Pappanaicken R; Jialal, Ishwarlal

    2011-12-01

    Inflammation is pivotal in atherosclerosis. A key early event in atherosclerosis is endothelial dysfunction. C-reactive protein (CRP), the prototypic marker of inflammation in humans, is a risk marker for cardiovascular disease, and there is mounting evidence to support its role in atherothrombosis. CRP has been shown to promote endothelial dysfunction both in vitro and in vivo. Emerging biomarkers of endothelial dysfunction include circulating endothelial cells (CECs) and endothelial microparticles (EMPs). However, there is a paucity of data examining the effect of CRP on CEC and EMP production in vitro and in vivo. In this report, we treated human aortic endothelial cells (HAECs) with increasing concentrations of CRP (0-50 μg/mL) or boiled CRP. We counted CECs and EMPs by flow cytometry. Although CRP treatment resulted in a significant increase in release of both CECs and EMPs, boiled CRP failed to have an effect. Pretreatment of HAECs with sepiapterin or diethylenetriamine NONOate, both of which preserve nitric oxide (NO), resulted in attenuation of CRP's effects on CECs and EMPs. CD32 and CD64 blocking antibodies but not CD16 antibody or lectin-like oxidized LDL receptor 1 small interfering RNA (LOX-1 siRNA) prevented CRP-induced production of CECs and EMPs. Furthermore, delivery of human CRP to Wistar rats compared with human serum albumin resulted in significantly increased CECs and EMPs, corroborating the in vitro findings. We provide novel data that CRP, via NO deficiency, promotes endothelial dysfunction by inducing release of CECs and EMPs, which are biomarkers of endothelial dysfunction.

  5. Attenuation of endothelial dysfunction by exercise training in STZ-induced diabetic rats.

    PubMed

    Chakraphan, Daroonwan; Sridulyakul, Patarin; Thipakorn, Bundit; Bunnag, Srichitra; Huxley, Virginia H; Patumraj, Suthiluk

    2005-01-01

    The protective effects of exercise training on the diabetic-induced endothelial cell (EC) dysfunction were determined using intravital fluorescent microscopy. Male Sprague-Dawley rats were divided into three groups of control (Con), diabetes (DM), and diabetes with exercise--training (DM+Ex). Diabetes was induced by single intravenous injection of streptozotocin (STZ; 50 mg/kg BW). The exercise training protocol consisted of treadmill running, 5 times/week with the velocity of 13-15 m/min, 30 min/day periods for 12 and 24 weeks (wks). 24 wks after the STZ injection, blood glucose (BG), glycosylated hemoglobin (HbA1C), mean arterial blood pressure (MAP) and heart weight (HW) were significantly higher in DM rats (p < 0.001). However, DM+Ex rats had reduced the abnormalities of MAP (p < 0.01) and HW (p < 0.05) compared with DM rats. Furthermore, there was a significant decrease in heart rate (HR) of DM+Ex rats (p < 0.05) relative to Con rats. To examine the influence of exercise training on EC dysfunction, leukocyte-EC interactions in mesenteric venules and vascular reactivity responses to vasodilators in mesenteric arterioles were monitored by using intravital fluorescence microscopy. The diabetic state enhanced leukocyte adhesion in mesenteric postcapillary venules (p < 0.001). Moreover, an impaired vasodilatory response to the EC-dependent vasodilator, acetylcholine (Ach), not to sodium nitroprusside (SNP), was found in 12- and 24-wk diabetic rats (p < 0.01). The leukocyte adhesion and the impairment of EC-dependent vasodilation to Ach were attenuated by exercise training (p < 0.05). In addition, exercise training was also shown to have favorable preventive effects on hyperglycemia induced oxidative stress, as lower malondialdehyde (MDA) levels were observed from both groups of 12 and 24 weeks DM+Ex compared with DM (p < 0.01). In conclusion, our findings indicate that the endothelial dysfunction of diabetic rats could be characterized by increased leukocyte adhesion and impaired endothelium-dependent relaxation. Regular low intensity exercise training could improve both indices of endothelial dysfunction through amelioration of diabetic-induced oxidant/antioxidant levels. These findings support the notion that regular exercise training could be a fundamental form of therapy in preventing diabetic cardiovascular complications potentiated by endothelial dysfunction.

  6. Disappearance of the telomere dysfunction-induced stress response in fully senescent cells.

    PubMed

    Bakkenist, Christopher J; Drissi, Rachid; Wu, Jing; Kastan, Michael B; Dome, Jeffrey S

    2004-06-01

    Replicative senescence is a natural barrier to cellular proliferation that is triggered by telomere erosion and dysfunction. Here, we demonstrate that ATM activation and H2AX-gamma nuclear focus formation are sensitive markers of telomere dysfunction in primary human fibroblasts. Whereas the activated form of ATM and H2AX-gamma foci were rarely observed in early-passage cells, they were readily detected in late-passage cells. The ectopic expression of telomerase in late-passage cells abrogated ATM activation and H2AX-gamma focus formation, suggesting that these stress responses were the consequence of telomere dysfunction. ATM activation was induced in quiescent fibroblasts by inhibition of TRF2 binding to telomeres, indicating that telomere uncapping is sufficient to initiate the telomere signaling response; breakage of chromosomes with telomeric associations is not required for this activation. Although ATM activation and H2AX-gamma foci were readily observed in late-passage cells, they disappeared once cells became fully senescent, indicating that constitutive signaling from dysfunctional telomeres is not required for the maintenance of senescence.

  7. Left ventricular function abnormalities as a manifestation of silent myocardial ischemia.

    PubMed

    Lambert, C R; Conti, C R; Pepine, C J

    1986-11-01

    A large body of evidence exists indicating that left ventricular dysfunction is a common occurrence in patients with severe coronary artery disease and represents silent or asymptomatic myocardial ischemia. Such dysfunction probably occurs early in the time course of every ischemic episode in patients with coronary artery disease whether symptoms are eventually manifested or not. The pathophysiology of silent versus symptomatic left ventricular dysfunction due to ischemia appears to be identical. Silent ischemia-related left ventricular dysfunction can be documented during spontaneous or stress-induced perturbations in the myocardial oxygen supply/demand ratio. It also may be detected by nitroglycerin-induced improvement in ventricular function or by salutary changes in wall motion following revascularization. Silent left ventricular dysfunction is a very early occurrence during ischemia and precedes electrocardiographic abnormalities. In this light, its existence should always be kept in mind when dealing with patients with ischemic heart disease. It can be hypothesized that because silent ischemia appears to be identical to ischemia with symptoms in a pathophysiologic sense, prognosis and treatment in both cases should be the same.

  8. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes

    PubMed Central

    Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio MV; Wainstein, Marco V; Boff, Winston; Puñales, Marcia

    2015-01-01

    Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717

  9. Copper Transporter ATP7A Protects Against Endothelial Dysfunction in Type 1 Diabetic Mice by Regulating Extracellular Superoxide Dismutase

    PubMed Central

    Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Llanos, Roxana M.; Mercer, Julian F.B.; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-01-01

    Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2•− production in aortas of streptozotocin-induced and genetically induced Ins2Akita T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2•− production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2•− overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress–dependent vascular and metabolic diseases. PMID:23884884

  10. Development of Sensitive and Direct Methods for Measuring Plasma Aldosterone and Catecholamine Concentrations

    NASA Technical Reports Server (NTRS)

    Haber, E.

    1972-01-01

    Radioimmunoassays for renin activity, angiotensin 1, and angiotensin 2 in the study of vasomotor regulation give new insight into the role of the renin system in maintaining postural homeostatsis. Similar laboratory procedures for specific assays of aldosterone and catecholamines achieve accurate determinations in small human blood samples.

  11. Regular aerobic exercise reduces endothelin-1-mediated vasoconstrictor tone in overweight and obese adults.

    PubMed

    Dow, Caitlin A; Stauffer, Brian L; Brunjes, Danielle L; Greiner, Jared J; DeSouza, Christopher A

    2017-09-01

    What is the central question of this study? Does aerobic exercise training reduce endothelin-1 (ET-1)-mediated vasoconstrictor tone in overweight/obese adults? And, if so, does lower ET-1 vasoconstriction underlie the exercise-related enhancement in endothelium-dependent vasodilatation in overweight/obese adults? What is the main finding and its importance? Regular aerobic exercise reduces ET-1-mediated vasoconstrictor tone in previously sedentary overweight/obese adults, independent of weight loss. Decreased ET-1 vasoconstriction is an important mechanism underlying the aerobic exercise-induced improvement in endothelium-dependent vasodilator function in overweight/obese adults. Endothelin-1 (ET-1)-mediated vasoconstrictor tone is elevated in overweight and obese adults, contributing to vasomotor dysfunction and increased cardiovascular disease risk. Although the effects of habitual aerobic exercise on endothelium-dependent vasodilatation in overweight/obese adults have been studied, little is known regarding ET-1-mediated vasoconstriction. Accordingly, the aims of the present study were to determine the following: (i) whether regular aerobic exercise training reduces ET-1-mediated vasoconstrictor tone in overweight and obese adults; and, if so, (ii) whether the reduction in ET-1-mediated vasoconstriction contributes to exercise-induced improvement in endothelium-dependent vasodilatation in this population. Forearm blood flow (FBF) in response to intra-arterial infusion of selective ET A receptor blockade (BQ-123, 100 nmol min -1 for 60 min), acetylcholine [4.0, 8.0 and 16.0 μg (100 ml tissue) -1  min -1 ] in the absence and presence of ET A receptor blockade and sodium nitroprusside [1.0, 2.0 and 4.0 μg (100 ml tissue) -1  min -1 ] were determined before and after a 3 month aerobic exercise training intervention in 25 (16 men and nine women) overweight/obese (body mass index 30.1 ± 0.5 kg m -2 ) adults. The vasodilator response to BQ-123 was significantly lower (∼25%) and the FBF responses to acetylcholine were ∼35% higher after exercise training. Before the exercise intervention, the co-infusion of acetylcholine plus BQ-123 resulted in a greater vasodilator response than acetylcholine alone; however, after the exercise intervention the FBF response to acetylcholine was not significantly increased by ET A receptor blockade. These results demonstrate that regular aerobic exercise reduces ET-1-mediated vasoconstrictor tone in previously sedentary overweight and obese adults. Moreover, decreased ET-1-mediated vasoconstriction is an important mechanism underlying the aerobic exercise-induced improvement in endothelium-dependent vasodilator function in overweight/obese adults. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  12. Sexual dysfunction with antihypertensive and antipsychotic agents.

    PubMed

    Smith, P J; Talbert, R L

    1986-05-01

    The physiology of the normal sexual response, epidemiology of sexual dysfunction, and the pharmacologic mechanisms involved in antihypertensive- and antipsychotic-induced problems with sexual function are discussed, with recommendations for patient management. The physiologic mechanisms involved in the normal sexual response include neurogenic, psychogenic, vascular, and hormonal factors that are coordinated by centers in the hypothalamus, limbic system, and cerebral cortex. Sexual dysfunction is frequently attributed to antihypertensive and antipsychotic agents and is a cause of noncompliance. Drug-induced effects include diminished libido, delayed orgasm, ejaculatory disturbances, gynecomastia, impotence, and priapism. The pharmacologic mechanisms proposed to account for these adverse effects include adrenergic inhibition, adrenergic-receptor blockade, anticholinergic properties, and endocrine and sedative effects. The most frequently reported adverse effect on sexual function with the antihypertensive agents is impotence. It is seen most often with methyldopa, guanethidine, clonidine, and propranolol. In contrast, the most common adverse effect on sexual function with the antipsychotic agents involves ejaculatory disturbances. Thioridazine, with its potent anticholinergic and alpha-blocking properties, is cited most often. Drug-induced sexual dysfunction may be alleviated by switching to agents with dissimilar mechanisms to alter the observed adverse effect while maintaining adequate control of the patient's disease state.

  13. [Hydroxyurea (hydroxycarbamide)-induced hepatic dysfunction confirmed by drug-induced lymphocyte stimulation test].

    PubMed

    Shimizu, Takayuki; Mori, Takehiko; Karigane, Daiki; Kikuchi, Taku; Koda, Yuya; Toyama, Takaaki; Nakajima, Hideaki; Okamoto, Shinichiro

    2014-01-01

    A 62-year-old man with refractory leukemia transformed from myelodysplastic syndrome was placed on hydroxyurea (hydroxycarbamide) at a daily dose of 500 mg. Because of insufficient cytoreductive efficacy, the dose was increased to 1,500 mg five days later. Eight days after the initiation of hydroxyurea, the patient started complaining of chills, fever, and vomiting. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were markedly elevated to 5,098 and 3,880 IU/l from 44 and 59 IU/l in one day, respectively. Tests for hepatitis viruses were all negative. With the discontinuation of hydroxyurea, AST and ALT returned to their former levels within two weeks. A drug-induced lymphocyte stimulation test for hydroxyurea was positive with a stimulating index of 2.0. Hepatic dysfunction has been recognized as one of the side effects of hydroxyurea. However, there have been only a limited number of reports demonstrating drug allergy to have a role in hepatic dysfunction accompanied by fever and gastrointestinal symptoms. The findings of our case strongly suggest that all presentations could be explained by drug allergy. Physicians should be mindful of the potential for acute and severe hepatic dysfunction due to allergic reaction against hydroxyurea.

  14. Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia

    NASA Technical Reports Server (NTRS)

    Glenny, R. W.; Robertson, H. T.; Hlastala, M. P.

    2000-01-01

    To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI(2)) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI(2) infusion. The lungs were subsequently excised, dried inflated, and diced into approximately 2-cm(3) pieces (n = 1,208-1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI(2) infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI(2) infusion. Alveolar-arterial O(2) differences did not change with PGI(2) infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.

  15. Intracoronary Acetylcholine Provocation Testing for Assessment of Coronary Vasomotor Disorders.

    PubMed

    Ong, Peter; Athanasiadis, Anastasios; Sechtem, Udo

    2016-08-18

    Intracoronary acetylcholine provocation testing (ACH-test) is an established method for assessment of epicardial coronary artery spasm in the catheterization laboratory which was introduced more than 30 years ago. Due to the short half-life of acetylcholine it can only be applied directly into the coronary arteries. Several studies have demonstrated the safety and clinical usefulness of this test. However, acetylcholine testing is only rarely applied in the U.S. or Europe. Nevertheless, it has been shown that 62% of Caucasian patients with stable angina and unobstructed coronary arteries on coronary angiography suffer from coronary vasomotor disorders that can be diagnosed with acetylcholine testing. In recent years it has been appreciated that the ACH-test not only assesses the presence of epicardial spasm but that it can also be useful for the detection of coronary microvascular spam. In such cases no epicardial spasm is seen after injection of acetylcholine but ischemic ECG shifts are present together with a reproduction of the patient's symptoms during the test. This article describes the experience with the ACH-test and its implementation in daily clinical routine.

  16. Sida rhomboidea.Roxb leaf extract ameliorates gentamicin induced nephrotoxicity and renal dysfunction in rats.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjitsinh V; Ramachandran, A V

    2010-10-28

    Sida rhomboidea.Roxb (SR) known as "Mahabala" in Ayurveda and marketed as "Shahadeyi" is used in ethnomedicine to treat ailments such as dysuria and urinary disorders. To evaluate nephroprotective potential of SR against gentamicin (GM) induced nephrotoxicity and renal dysfunction. Nephrotoxicity was induced in rats with GM (100 mg/kg bodyweight (i.p.) for 8 days) and were treated with SR extract (200 and 400 mg/kg bodyweight (p.o.) for 8 days) or 0.5% carboxymethyl cellulose (vehicle). Plasma and urine urea and creatinine, renal enzymatic and non-enzymatic antioxidants along with lipid peroxidation were evaluated in various experimental groups. GM treatment induced significant elevation (p<0.05) in plasma and urine urea, creatinine, renal lipid peroxidation along with significant decrement (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR treatment to GM treated rats (GM+SR) recorded significant decrement (p<0.05) in plasma and urine urea and creatinine, renal lipid peroxidation along with significant increment (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR leaf extract ameliorates GM induced nephrotoxicity and renal dysfunction and thus validates its ethnomedicinal use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors

    PubMed Central

    Kim, Do Young; Vallejo, Johana; Rho, Jong M

    2010-01-01

    Abstract Ketones have previously shown beneficial effects in models of neurodegenerative disorders, particularly against associated mitochondrial dysfunction and cognitive impairment. However, evidence of a synaptic protective effect of ketones remains lacking. We tested the effects of ketones on synaptic impairment induced by mitochondrial respiratory complex (MRC) inhibitors using electrophysiological, reactive oxygen species (ROS) imaging and biochemical techniques. MRC inhibitors dose-dependently suppressed both population spike (PS) and field potential amplitudes in the CA1 hippocampus. Pre-treatment with ketones strongly prevented changes in the PS, whereas partial protection was seen in the field potential. Rotenone (Rot; 100 nmol/L), a MRC I inhibitor, suppressed synaptic function without altering ROS levels and PS depression by Rot was unaffected by antioxidants. In contrast, antioxidant-induced PS recovery against the MRC II inhibitor 3-nitropropionic acid (3-NP; 1 mmol/L) was similar to the synaptic protective effects of ketones. Ketones also suppressed ROS generation induced by 3-NP. Finally, ketones reversed the decreases in ATP levels caused by Rot and 3-NP. In summary, our data demonstrate that ketones can preserve synaptic function in CA1 hippocampus induced by MRC dysfunction, likely through an antioxidant action and enhanced ATP generation. PMID:20374433

  19. A double-blind placebo-controlled trial of maca root as treatment for antidepressant-induced sexual dysfunction in women.

    PubMed

    Dording, Christina M; Schettler, Pamela J; Dalton, Elizabeth D; Parkin, Susannah R; Walker, Rosemary S W; Fehling, Kara B; Fava, Maurizio; Mischoulon, David

    2015-01-01

    Objective. We sought to demonstrate that maca root may be an effective treatment for antidepressant-induced sexual dysfunction (AISD) in women. Method. We conducted a 12-week, double-blind, placebo-controlled trial of maca root (3.0 g/day) in 45 female outpatients (mean age of 41.5 ± 12.5 years) with SSRI/SNRI-induced sexual dysfunction whose depression remitted. Endpoints were improvement in sexual functioning as per the Arizona Sexual Experience Scale (ASEX) and the Massachusetts General Hospital Sexual Function Questionnaire (MGH-SFQ). Results. 45 of 57 consented females were randomized, and 42 (30 premenopausal and 12 postmenopausal women) were eligible for a modified intent-to-treat analysis based on having had at least one postmedication visit. Remission rates by the end of treatment were higher for the maca than the placebo group, based on attainment of an ASEX total score ≤ 10 (9.5% for maca versus 4.8% for placebo), attaining an MGH-SFQ score ≤ 12 (30.0% for maca versus 20.0% for placebo) and reaching an MGH-SFQ score ≤ 8 (9.5% for maca versus 5.0% for placebo). Higher remission rates for the maca versus placebo group were associated with postmenopausal status. Maca was well tolerated. Conclusion. Maca root may alleviate SSRI-induced sexual dysfunction in postmenopausal women. This trial is registered with NCT00568126.

  20. A Double-Blind Placebo-Controlled Trial of Maca Root as Treatment for Antidepressant-Induced Sexual Dysfunction in Women

    PubMed Central

    Dording, Christina M.; Schettler, Pamela J.; Dalton, Elizabeth D.; Parkin, Susannah R.; Walker, Rosemary S. W.; Fehling, Kara B.; Fava, Maurizio

    2015-01-01

    Objective. We sought to demonstrate that maca root may be an effective treatment for antidepressant-induced sexual dysfunction (AISD) in women. Method. We conducted a 12-week, double-blind, placebo-controlled trial of maca root (3.0 g/day) in 45 female outpatients (mean age of 41.5 ± 12.5 years) with SSRI/SNRI-induced sexual dysfunction whose depression remitted. Endpoints were improvement in sexual functioning as per the Arizona Sexual Experience Scale (ASEX) and the Massachusetts General Hospital Sexual Function Questionnaire (MGH-SFQ). Results. 45 of 57 consented females were randomized, and 42 (30 premenopausal and 12 postmenopausal women) were eligible for a modified intent-to-treat analysis based on having had at least one postmedication visit. Remission rates by the end of treatment were higher for the maca than the placebo group, based on attainment of an ASEX total score ≤ 10 (9.5% for maca versus 4.8% for placebo), attaining an MGH-SFQ score ≤ 12 (30.0% for maca versus 20.0% for placebo) and reaching an MGH-SFQ score ≤ 8 (9.5% for maca versus 5.0% for placebo). Higher remission rates for the maca versus placebo group were associated with postmenopausal status. Maca was well tolerated. Conclusion. Maca root may alleviate SSRI-induced sexual dysfunction in postmenopausal women. This trial is registered with NCT00568126. PMID:25954318

  1. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice.

    PubMed

    Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin

    2016-08-01

    The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline.

    PubMed

    Yan, Shijun; Du, Fang; Wu, Long; Zhang, Zhihua; Zhong, Changjia; Yu, Qing; Wang, Yongfu; Lue, Lih-Fen; Walker, Douglas G; Douglas, Justin T; Yan, Shirley ShiDu

    2016-11-01

    Mitochondrial abnormalities are well known to cause cognitive decline. However, the underlying molecular basis of mitochondria-associated neuronal and synaptic dysfunction in the diabetic brain remains unclear. Here, using a mitochondrial single-channel patch clamp and cyclophilin D (CypD)-deficient mice (Ppif -/- ) with streptozotocin-induced diabetes, we observed an increase in the probability of Ca 2+ -induced mitochondrial permeability transition pore (mPTP) opening in brain mitochondria of diabetic mice, which was further confirmed by mitochondrial swelling and cytochrome c release induced by Ca 2+ overload. Diabetes-induced elevation of CypD triggers enhancement of F 1 F 0 ATP synthase-CypD interaction, which in turn leads to mPTP opening. Indeed, in patients with diabetes, brain cypD protein levels were increased. Notably, blockade of the F 1 F 0 ATP synthase-CypD interaction by CypD ablation protected against diabetes-induced mPTP opening, ATP synthesis deficits, oxidative stress, and mitochondria dysfunction. Furthermore, the absence of CypD alleviated deficits in synaptic plasticity, learning, and memory in diabetic mice. Thus, blockade of ATP synthase interaction with CypD provides a promising new target for therapeutic intervention in diabetic encephalopathy. © 2016 by the American Diabetes Association.

  3. MitoTEMPO Prevents Oxalate Induced Injury in NRK-52E Cells via Inhibiting Mitochondrial Dysfunction and Modulating Oxidative Stress

    PubMed Central

    Yu, Xiao; Liu, Jihong

    2017-01-01

    As one of the major risks for urolithiasis, hyperoxaluria can be caused by genetic defect or dietary intake. And high oxalate induced renal epithelial cells injury is related to oxidative stress and mitochondrial dysfunction. Here, we investigated whether MitoTEMPO, a mitochondria-targeted antioxidant, could protect against oxalate mediated injury in NRK-52E cells via inhibiting mitochondrial dysfunction and modulating oxidative stress. MitoSOX Red was used to determine mitochondrial ROS (mtROS) production. Mitochondrial membrane potential (Δψm) and quantification of ATP synthesis were measured to evaluate mitochondrial function. The protein expression of Nox4, Nox2, and p22 was also detected to explore the effect of oxalate and MitoTEMPO on NADPH oxidase. Our results revealed that pretreatment with MitoTEMPO significantly inhibited oxalate induced lactate dehydrogenase (LDH) and malondialdehyde (MDA) release and decreased oxalate induced mtROS generation. Further, MitoTEMPO pretreatment restored disruption of Δψm and decreased ATP synthesis mediated by oxalate. In addition, MitoTEMPO altered the protein expression of Nox4 and p22 and decreased the protein expression of IL-6 and osteopontin (OPN) induced by oxalate. We concluded that MitoTEMPO may be a new candidate to protect against oxalate induced kidney injury as well as urolithiasis. PMID:28116040

  4. Aqueous Extract of Allium sativum (Linn.) Bulbs Ameliorated Pituitary-Testicular Injury and Dysfunction in Wistar Rats with Pb-Induced Reproductive Disturbances.

    PubMed

    Ayoka, Abiodun O; Ademoye, Aderonke K; Imafidon, Christian E; Ojo, Esther O; Oladele, Ayowole A

    2016-06-15

    To determine the effects of aqueous extract of Allium sativum bulbs (AEASAB) on pituitary-testicular injury and dysfunction in Wistar rats with lead-induced reproductive disturbances. Male Wistar rats were divided into 7 groups such that the control group received propylene glycol at 0.2 ml/100 g intraperitoneally for 10 consecutive days, the toxic group received lead (Pb) alone at 15 mg/kg/day via intraperitoneal route for 10 days while the treatment groups were pretreated with lead as the toxic group after which they received graded doses of the extract at 50, 100 and 200 mg/kg/day via oral route for 28 days. Pb administration induced significant deleterious alterations in the antioxidant status of the brain and testis, sperm characterization (counts, motility and viability) as well as reproductive hormones (FSH, LH and testosterone) of exposed rats (p < 0.05). These were significantly reversed in the AEASAB-treated groups (p < 0.05). Also, there was marked improvement in the Pb-induced vascular congestion and cellular loss in the pituitary while the observed Pb-induced severe testicular vacuolation was significantly reversed in the representative photomicrographs, following administration of the extract. AEASAB treatment ameliorated the pituitary-testicular injury and dysfunction in Wistar rats with Pb-Induced reproductive disturbances.

  5. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.

    PubMed

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-09-01

    Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

  6. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa

    PubMed Central

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-01-01

    Background Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Methods Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Results Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. Conclusions The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis. PMID:27904421

  7. Pharmacotherapy of Sexual Dysfunctions : Current Status

    PubMed Central

    Avasthi, Ajith; Biswas, Parthasarathy

    2004-01-01

    The sexual dysfunctions are one of the most prevalent conditions. Sexual dysfunctions can have profound effect on the psychological well-being of an individual and the psychosexual relationship of a couple. Management of the sexual dysfunction should be preceded by an accurate diagnosis reached after a complete medical and sexual history and physical examination. Current focus of researchers has been on understanding the pathophysiology of erectile dysfunction, premature ejaculation and other sexual dysfunctions that can help in developing newer pharmacological cures for these conditions. Recently, a number of clinical trials have studied the potential effectiveness of the phosphodiesterase (PDE)-5 inhibitor sildenafil in the treatment of Erectile Dysfunction (ED) and Premature Ejaculation (PME). The introduction of PDE-5 inhibitors like sildenafil, vardenafil and tadalafil has revolutionized the treatment of sexual dysfunctions. This review focuses on the recent pharmacological advances in the treatment of common sexual dysfunctions like ED and PME with special focus on the role of PDE-5 inhibitors. Also discussed is the pharmacological treatment of other less prevalent and recognized disorders like female sexual dysfunction, drug induced sexual dysfunction etc. PMID:21224902

  8. Protective effect of grape seed and skin extract against diabetes-induced oxidative stress and renal dysfunction in virgin and pregnant rat.

    PubMed

    Oueslati, Nourhene; Charradi, Kamel; Bedhiafi, Takwa; Limam, Ferid; Aouani, Ezzedine

    2016-10-01

    The present work deal with the effect of alloxan-induced diabetes on kidney oxidative stress and dysfunction of virgin and pregnant rat as well as the protection that may be afforded by high dosage GSSE (4g/kg) treatment. Diabetes affected negatively several kidney function parameters as creatinemia, uremia, uricemia and proteinuria without affecting kidney index. Diabetes also induced an oxidative stress characterized by increased lipid and protein oxidation, a drop in antioxidant enzyme defenses as catalase, superoxide-dismutase, glutathione-peroxidase, an alteration in transition metals as free iron, copper, selenium and associated enzymes and an increase in calpain and acetyl-cholinesterase activities. Tremendously, GSSE treatment protected efficiently against all the deleterious effects of diabetes-induced kidney dysfunction in both virgin and pregnant animals. High dosage GSSE is a safe and potent anti-oxidant that may be further tested in clinical trials for the long-term preservation of kidney function especially in multiple pregnancies. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. In Vivo Determination of Mitochondrial Function Using Luciferase-Expressing Caenorhabditis elegans: Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicant-Induced Dysfunction.

    PubMed

    Luz, Anthony L; Lagido, Cristina; Hirschey, Matthew D; Meyer, Joel N

    2016-08-01

    Mitochondria are a target of many drugs and environmental toxicants; however, how toxicant-induced mitochondrial dysfunction contributes to the progression of human disease remains poorly understood. To address this issue, in vivo assays capable of rapidly assessing mitochondrial function need to be developed. Here, using the model organism Caenorhabditis elegans, we describe how to rapidly assess the in vivo role of the electron transport chain, glycolysis, or fatty acid oxidation in energy metabolism following toxicant exposure, using a luciferase-expressing ATP reporter strain. Alterations in mitochondrial function subsequent to toxicant exposure are detected by depleting steady-state ATP levels with inhibitors of the mitochondrial electron transport chain, glycolysis, or fatty acid oxidation. Differential changes in ATP following short-term inhibitor exposure indicate toxicant-induced alterations at the site of inhibition. Because a microplate reader is the only major piece of equipment required, this is a highly accessible method for studying toxicant-induced mitochondrial dysfunction in vivo. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells.

    PubMed

    Yang, Mingjun; Wang, Bo; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming

    2017-02-01

    Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxicity through activation of the NRF2 pathway.

    PubMed

    Venkatesan, Ramu; Subedi, Lalita; Yeo, Eui-Ju; Kim, Sun Yeou

    2016-10-01

    Cholinergic activity plays a vital role in cognitive function, and is reduced in individuals with neurodegenerative diseases. Scopolamine, a muscarinic cholinergic antagonist, has been employed in many studies to understand, identify, and characterize therapeutic targets for Alzheimer's disease (AD). Scopolamine-induced dementia is associated with impairments in memory and cognitive function, as seen in patients with AD. The current study aimed to investigate the molecular mechanisms underlying scopolamine-induced cholinergic neuronal dysfunction and the neuroprotective effect of lactucopicrin, an inhibitor of acetylcholine esterase (AChE). We investigated apoptotic cell death, caspase activation, generation of reactive oxygen species (ROS), mitochondrial dysfunction, and the expression levels of anti- and pro-apoptotic proteins in scopolamine-treated C6 cells. We also analyzed the expression levels of antioxidant enzymes and nuclear factor (erythroid-derived 2)-like 2 (NRF2) in C6 cells and neurite outgrowth in N2a neuroblastoma cells. Our results revealed that 1 h scopolamine pre-treatment induced cytotoxicity by increasing apoptotic cell death via oxidative stress-mediated caspase 3 activation and mitochondrial dysfunction. Scopolamine also downregulated the expression the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase, and the transcription factor NRF2. Lactucopicrin treatment protected C6 cells from scopolamine-induced toxicity by reversing the effects of scopolamine on those markers of toxicity. In addition, scopolamine attenuated the secretion of neurotrophic nerve growth factor (NGF) in C6 cells and neurite outgrowth in N2a cells. As expected, lactucopicrin treatment enhanced NGF secretion and neurite outgrowth. Our study is the first to show that lactucopicrin, a potential neuroprotective agent, ameliorates scopolamine-induced cholinergic dysfunction via NRF2 activation and subsequent expression of antioxidant enzymes. Copyright © 2016. Published by Elsevier Ltd.

  12. IGF-1 Alleviates High Fat Diet-Induced Myocardial Contractile Dysfunction: Role of Insulin Signaling and Mitochondrial Function

    PubMed Central

    Zhang, Yingmei; Yuan, Ming; Bradley, Katherine M.; Dong, Feng; Anversa, Piero; Ren, Jun

    2012-01-01

    Obesity is often associated with reduced plasma IGF-1 levels, oxidative stress, mitochondrial damage and cardiac dysfunction. This study was designed to evaluate the impact of IGF-1 on high fat diet-induced oxidative, myocardial, geometric and mitochondrial responses. FVB and cardiomyocyte-specific IGF-1 overexpression transgenic mice were fed a low (10%) or high fat (45%) diet to induce obesity. High fat diet feeding led to glucose intolerance, elevated plasma levels of leptin, interleukin-6, insulin and triglyceride as well as reduced circulating IGF-1 levels. Echocardiography revealed reduced fractional shortening, increased end systolic and diastolic diameter, increased wall thickness, and cardiac hypertrophy in high fat-fed FVB mice. High fat diet promoted ROS generation, apoptosis, protein and mitochondrial damage, reduced ATP content, cardiomyocyte cross-sectional area, contractile and intracellular Ca2+ dysregulation, including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and dampened intracellular Ca2+ rise and clearance. Western blot analysis revealed disrupted phosphorylation of insulin receptor, post-receptor signaling molecules IRS-1 (tyrosine/serine phosphorylation), Akt, GSK3β, Foxo3a, mTOR, as well as downregulated expression of mitochondrial proteins PPARγ coactivator 1α (PGC1α) and UCP-2. Intriguingly, IGF-1 mitigated high fat diet feeding-induced alterations in ROS, protein and mitochondrial damage, ATP content, apoptosis, myocardial contraction, intracellular Ca2+ handling and insulin signaling, but not whole body glucose intolerance and cardiac hypertrophy. Exogenous IGF-1 treatment also alleviated high fat diet-induced cardiac dysfunction. Our data revealed that IGF-1 alleviates high fat diet-induced cardiac dysfunction despite persistent cardiac remodeling, possibly due to preserved cell survival, mitochondrial function and insulin signaling. PMID:22275536

  13. Interleukin-18 gene deletion protects against sepsis-induced cardiac dysfunction by inhibiting PP2A activity.

    PubMed

    Okuhara, Yoshitaka; Yokoe, Shunichi; Iwasaku, Toshihiro; Eguchi, Akiyo; Nishimura, Koichi; Li, Wen; Oboshi, Makiko; Naito, Yoshiro; Mano, Toshiaki; Asahi, Michio; Okamura, Haruki; Masuyama, Tohru; Hirotani, Shinichi

    2017-09-15

    Interleukin-18 (IL-18) neutralization protects against lipopolysaccharide (LPS)-induced injuries, including myocardial dysfunction. However, the mechanism is yet to be fully elucidated. The aim of the present study was to determine whether IL-18 gene deletion prevents sepsis-induced cardiac dysfunction and to elucidate the potential mechanisms underlying IL-18-mediated cardiotoxicity by LPS. Ten-week-old male wild-type (WT) and IL-18 knockout (IL-18 KO) mice were intraperitoneally administered LPS. Serial echocardiography showed better systolic pump function and less left ventricular (LV) dilatation in LPS-treated IL-18 KO mice compared with those in LPS-treated WT mice. LPS treatment significantly decreased the levels of phospholamban (PLN) and Akt phosphorylation in WT mice compared with those in saline-treated WT mice, while the LPS-induced decrease in the phosphorylation levels was attenuated in IL-18 KO mice compared with that in WT mice. IL-18 gene deletion also attenuated an LPS-induced increase of type 2 protein phosphatase 2A (PP2A) activity, a molecule that dephosphorylates PLN and Akt. There was no difference in type 1 protein phosphatase (PP1) activity. To address whether IL-18 affects PLN and Akt phosphorylation via PP2A activation in cardiomyocytes, rat neonatal cardiac myocytes were cultured and stimulated using 100ng/ml of recombinant rat IL-18. Exogenous IL-18 decreased the level of PLN and Akt phosphorylation in cardiomyocytes. PP2A activity but not PP1 activity was increased by IL-18 stimulation in cardiomyocytes. IL-18 plays a pivotal role in advancing sepsis-induced cardiac dysfunction, and the mechanisms underlying IL-18-mediated cardiotoxicity potentially involve the regulation of PLN and Akt phosphorylation through PP2A activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Novel Oral Therapies for Opioid-induced Bowel Dysfunction in Patients with Chronic Noncancer Pain.

    PubMed

    Holder, Renee M; Rhee, Diane

    2016-03-01

    Opioid analgesics are frequently prescribed and play an important role in chronic pain management. Opioid-induced bowel dysfunction, which includes constipation, hardened stool, incomplete evacuation, gas, and nausea and vomiting, is the most common adverse event associated with opioid use. Mu-opioid receptors are specifically responsible for opioid-induced bowel dysfunction, resulting in reduced peristaltic and secretory actions. Agents that reverse these actions in the bowel without reversing pain control in the central nervous system may be preferred over traditional laxatives. The efficacy and safety of these agents in chronic noncancer pain were assessed from publications identified through Ovid and PubMed database searches. Trials that evaluated the safety and efficacy of oral agents for opioid-induced constipation or opioid-induced bowel dysfunction, excluding laxatives, were reviewed. Lubiprostone and naloxegol are approved in the United States by the Food and Drug Administration for use in opioid-induced constipation. Axelopran (TD-1211) and sustained-release naloxone have undergone phase 2 and phase 1 studies, respectively, for the same indication. Naloxegol and axelopran are peripherally acting μ-opioid receptor antagonists. Naloxone essentially functions as a peripherally acting μ-opioid receptor antagonist when administered orally in a sustained-release formulation. Lubiprostone is a locally acting chloride channel (CIC-2) activator that increases secretions and peristalsis. All agents increase spontaneous bowel movements and reduce other bowel symptoms compared with placebo in patients with noncancer pain who are chronic opioid users. The most common adverse events were gastrointestinal in nature, and none of the drugs were associated with severe adverse or cardiovascular events. Investigations comparing these agents to regimens using standard laxative and combination therapy and trials in special populations and patients with active cancer are needed to further define their role in therapy. © 2016 Pharmacotherapy Publications, Inc.

  15. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: possible mechanism of nephroprotection.

    PubMed

    Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana; Borkar, Roshan M; Kumar, Jerald Mahesh; Kuncha, Madhusudana; Srinivas, R; Shyam Sunder, R; Sistla, Ramakrishna

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Early organ-specific mitochondrial dysfunction of jejunum and lung found in rats with experimental acute pancreatitis

    PubMed Central

    Mittal, Anubhav; Hickey, Anthony JR; Chai, Chau C; Loveday, Benjamin PT; Thompson, Nichola; Dare, Anna; Delahunt, Brett; Cooper, Garth JS; Windsor, John A; Phillips, Anthony RJ

    2011-01-01

    Introduction Multiple organ dysfunction is the main cause of death in severe acute pancreatitis. Primary mitochondrial dysfunction plays a central role in the development and progression of organ failure in critical illness. The present study investigated mitochondrial function in seven tissues during early experimental acute pancreatitis. Methods Twenty-eight male Wistar rats (463 ± 2 g; mean ± SEM) were studied. Group 1 (n = 8), saline control; Group 2 (n = 6), caerulein-induced mild acute pancreatitis; Group 3 (n = 7) sham surgical controls; and Group 4 (n = 7), taurocholate-induced severe acute pancreatitis. Animals were euthanased at 6 h from the induction of acute pancreatitis and mitochondrial function was assessed in the heart, lung, liver, kidney, pancreas, duodenum and jejunum by mitochondrial respirometry. Results Significant early mitochondrial dysfunction was present in the pancreas, lung and jejunum in both models of acute pancreatitis, however, the Heart, liver, kidney and duodenal mitochondria were unaffected. Conclusions The present study provides the first description of early organ-selective mitochondrial dysfunction in the lung and jejunum during acute pancreatitis. Research is now needed to identify the underlying pathophysiology behind the organ selective mitochondrial dysfunction, and the potential benefits of early mitochondrial-specific therapies in acute pancreatitis. PMID:21492333

  17. EPA:DHA 6:1 prevents angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase- and COX-derived oxidative stress.

    PubMed

    Niazi, Zahid Rasul; Silva, Grazielle C; Ribeiro, Thais Porto; León-González, Antonio J; Kassem, Mohamad; Mirajkar, Abdur; Alvi, Azhar; Abbas, Malak; Zgheel, Faraj; Schini-Kerth, Valérie B; Auger, Cyril

    2017-12-01

    Eicosapentaenoic acid:docosahexaenoic acid (EPA:DHA) 6:1, an omega-3 polyunsaturated fatty acid formulation, has been shown to induce a sustained formation of endothelial nitric oxide (NO) synthase-derived NO, a major vasoprotective factor. This study examined whether chronic intake of EPA:DHA 6:1 prevents hypertension and endothelial dysfunction induced by angiotensin II (Ang II) in rats. Male Wister rats received orally corn oil or EPA:DHA 6:1 (500 mg kg -1 per day) before chronic infusion of Ang II (0.4 mg kg -1 per day). Systolic blood pressure was determined by tail cuff sphingomanometry, vascular reactivity using a myograph, oxidative stress using dihydroethidium and protein expression by immunofluorescence and western blot analysis. Ang II-induced hypertension was associated with reduced acetylcholine-induced relaxations of secondary branch mesenteric artery rings affecting the endothelium-dependent hyperpolarization (EDH)- and the NO-mediated relaxations, both of which were improved by the NADPH oxidase inhibitor VAS-2870. The Ang II treatment induced also endothelium-dependent contractile responses (EDCFs), which were abolished by the cyclooxygenase (COX) inhibitor indomethacin. An increased level of vascular oxidative stress and expression of NADPH oxidase subunits (p47 phox and p22 phox ), COX-1 and COX-2, endothelial NO synthase and Ang II type 1 receptors were observed in the Ang II group, whereas SK Ca and connexin 37 were downregulated. Intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction by improving both the NO- and EDH-mediated relaxations, and by reducing EDCFs and the expression of target proteins. The present findings indicate that chronic intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction in rats, most likely by preventing NADPH oxidase- and COX-derived oxidative stress.

  18. Short-term administration of progesterone and estradiol independently alter carotid-vasomotor, but not carotid-cardiac, baroreflex function in young women.

    PubMed

    Brunt, Vienna E; Miner, Jennifer A; Kaplan, Paul F; Halliwill, John R; Strycker, Lisa A; Minson, Christopher T

    2013-10-01

    The individual effects of estrogen and progesterone on baroreflex function remain poorly understood. We sought to determine how estradiol (E2) and progesterone (P4) independently alter the carotid-cardiac and carotid-vasomotor baroreflexes in young women by using a hormone suppression and exogenous add-back design. Thirty-two young women were divided into two groups and studied under three conditions: 1) after 4 days of endogenous hormone suppression with a gonadotropin releasing hormone antagonist (control condition), 2) after continued suppression and 3 to 4 days of supplementation with either 200 mg/day oral progesterone (N = 16) or 0.1 to 0.2 mg/day transdermal 17β-estradiol (N = 16), and 3) after continued suppression and 3 to 4 days of supplementation with both hormones. Changes in heart rate (HR), mean arterial pressure (MAP), and femoral vascular conductance (FVC) were measured in response to 5 s of +50 mmHg external neck pressure to unload the carotid baroreceptors. Significant hormone effects on the change in HR, MAP, and FVC from baseline at the onset of neck pressure were determined using mixed model covariate analyses accounting for P4 and E2 plasma concentrations. Neither P4 (P = 0.95) nor E2 (P = 0.95) affected the HR response to neck pressure. Higher P4 concentrations were associated with an attenuated fall in FVC (P = 0.01), whereas higher E2 concentrations were associated with an augmented fall in FVC (P = 0.02). Higher E2 was also associated with an augmented rise in MAP (P = 0.01). We conclude that progesterone blunts whereas estradiol enhances carotid-vasomotor baroreflex sensitivity, perhaps explaining why no differences in sympathetic baroreflex sensitivity are commonly reported between low and high combined hormone phases of the menstrual cycle.

  19. Short-term administration of progesterone and estradiol independently alter carotid-vasomotor, but not carotid-cardiac, baroreflex function in young women

    PubMed Central

    Brunt, Vienna E.; Miner, Jennifer A.; Kaplan, Paul F.; Halliwill, John R.; Strycker, Lisa A.

    2013-01-01

    The individual effects of estrogen and progesterone on baroreflex function remain poorly understood. We sought to determine how estradiol (E2) and progesterone (P4) independently alter the carotid-cardiac and carotid-vasomotor baroreflexes in young women by using a hormone suppression and exogenous add-back design. Thirty-two young women were divided into two groups and studied under three conditions: 1) after 4 days of endogenous hormone suppression with a gonadotropin releasing hormone antagonist (control condition), 2) after continued suppression and 3 to 4 days of supplementation with either 200 mg/day oral progesterone (N = 16) or 0.1 to 0.2 mg/day transdermal 17β-estradiol (N = 16), and 3) after continued suppression and 3 to 4 days of supplementation with both hormones. Changes in heart rate (HR), mean arterial pressure (MAP), and femoral vascular conductance (FVC) were measured in response to 5 s of +50 mmHg external neck pressure to unload the carotid baroreceptors. Significant hormone effects on the change in HR, MAP, and FVC from baseline at the onset of neck pressure were determined using mixed model covariate analyses accounting for P4 and E2 plasma concentrations. Neither P4 (P = 0.95) nor E2 (P = 0.95) affected the HR response to neck pressure. Higher P4 concentrations were associated with an attenuated fall in FVC (P = 0.01), whereas higher E2 concentrations were associated with an augmented fall in FVC (P = 0.02). Higher E2 was also associated with an augmented rise in MAP (P = 0.01). We conclude that progesterone blunts whereas estradiol enhances carotid-vasomotor baroreflex sensitivity, perhaps explaining why no differences in sympathetic baroreflex sensitivity are commonly reported between low and high combined hormone phases of the menstrual cycle. PMID:23873800

  20. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    PubMed Central

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD. PMID:25828268

  1. BDNF pathway is involved in the protective effects of SS-31 on isoflurane-induced cognitive deficits in aging mice.

    PubMed

    Wu, Jing; Zhang, Mingqiang; Li, Huihui; Sun, Xiaoru; Hao, Shuangying; Ji, Muhuo; Yang, Jianjun; Li, Kuanyu

    2016-05-15

    Mitochondrial dysfunction has been linked to the earliest pathogenesis of isoflurane-induced cognitive impairments in developing or aging mammalian brain. However, its molecular mechanism is poorly understood and a pharmacologic treatment to rapidly reverse mitochondrial dysfunction is lacking. Fifteen-month-old male C57BL/6 mice were exposed to isoflurane for two hours following intraperitoneal administration of mitochondrion-targeted peptide SS-31 or vehicle with 30min interval. The hippocampus was immediately removed for biochemical assays and mitochondria isolation after inhalation. Behavioral tests were evaluated by the open field test and fear conditioning test 24h after the experiment. We showed that cognitive deficits induced by exposure of the aging mice to isoflurane were accompanied by mitochondrial dysfunction in hippocampus due to loss of the enzymatic activity of complex I. This loss resulted in the increase of reactive oxygen species production, decrease of ATP production and mitochondrial membrane potential, and opening of mitochondrial permeability transition pore. Further, we provided evidence that the BDNF signaling pathway was involved in this process to regulate synaptic plasticity-related proteins, for instance, downregulation of synapsin 1, PSD-95 and p-CREB, and upregulation of NR2A, NR2B, CaMKIIα and CaMKIIβ. Of note, the isoflurane-induced cognitive deficits were rescued by SS-31 through reversal of mitochondrial dysfunction, which facilitated the regulation of BDNF signaling including the expression reversal of aforementioned important synaptic-signaling proteins in aging mice. Our data demonstrate that reversing mitochondrial dysfunction by SS-31 enhances BDNF signaling pathway and synaptic plasticity, and provides protective effects on cognitive function, thereby support the notion that SS-31 may have therapeutic benefits for elderly humans undertaking anesthesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    PubMed

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis.

    PubMed

    Huby, Anne-Cécile; Antonova, Galina; Groenendyk, Jake; Gomez-Sanchez, Celso E; Bollag, Wendy B; Filosa, Jessica A; Belin de Chantemèle, Eric J

    2015-12-01

    In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor α and β adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting endothelial dysfunction and the expression of profibrotic markers in the heart. © 2015 American Heart Association, Inc.

  4. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity.

    PubMed

    Cao, Li; Qin, Xing; Peterson, Matthew R; Haller, Samantha E; Wilson, Kayla A; Hu, Nan; Lin, Xin; Nair, Sreejayan; Ren, Jun; He, Guanglong

    2016-03-01

    Obesity is associated with chronic inflammation which plays a critical role in the development of cardiovascular dysfunction. Because the adaptor protein caspase recruitment domain-containing protein 9 (CARD9) in macrophages regulates innate immune responses via activation of pro-inflammatory cytokines, we hypothesize that CARD9 mediates the pro-inflammatory signaling associated with obesity en route to myocardial dysfunction. C57BL/6 wild-type (WT) and CARD9(-/-) mice were fed normal diet (ND, 12% fat) or a high fat diet (HFD, 45% fat) for 5months. At the end of 5-month HFD feeding, cardiac function was evaluated using echocardiography. Cardiomyocytes were isolated and contractile properties were measured. Immunofluorescence was performed to detect macrophage infiltration in the heart. Heart tissue homogenates, plasma, and supernatants from isolated macrophages were collected to measure the concentrations of pro-inflammatory cytokines using ELISA kits. Western immunoblotting analyses were performed on heart tissue homogenates and isolated macrophages to explore the underlying signaling mechanism(s). CARD9 knockout alleviated HFD-induced insulin resistance and glucose intolerance, prevented myocardial dysfunction with preserved cardiac fractional shortening and cardiomyocyte contractile properties. CARD9 knockout also significantly decreased the number of infiltrated macrophages in the heart with reduced myocardium-, plasma-, and macrophage-derived cytokines including IL-6, IL-1β and TNFα. Finally, CARD9 knockout abrogated the increase of p38 MAPK phosphorylation, the decrease of LC3BII/LC3BI ratio and the up-regulation of p62 expression in the heart induced by HFD feeding and restored cardiac autophagy signaling. In conclusion, CARD9 knockout ameliorates myocardial dysfunction associated with HFD-induced obesity, potentially through reduction of macrophage infiltration, suppression of p38 MAPK phosphorylation, and preservation of autophagy in the heart. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Increased LDL electronegativity in chronic kidney disease disrupts calcium homeostasis resulting in cardiac dysfunction.

    PubMed

    Chang, Kuan-Cheng; Lee, An-Sheng; Chen, Wei-Yu; Lin, Yen-Nien; Hsu, Jing-Fang; Chan, Hua-Chen; Chang, Chia-Ming; Chang, Shih-Sheng; Pan, Chia-Chi; Sawamura, Tatsuya; Chang, Chi-Tzong; Su, Ming-Jai; Chen, Chu-Huang

    2015-07-01

    Chronic kidney disease (CKD), an independent risk factor for cardiovascular disease, is associated with abnormal lipoprotein metabolism. We examined whether electronegative low-density lipoprotein (LDL) is mechanistically linked to cardiac dysfunction in patients with early CKD. We compared echocardiographic parameters between patients with stage 2 CKD (n = 88) and normal controls (n = 89) and found that impaired relaxation was more common in CKD patients. Reduction in estimated glomerular filtration rate was an independent predictor of left ventricular relaxation dysfunction. We then examined cardiac function in a rat model of early CKD induced by unilateral nephrectomy (UNx) by analyzing pressure-volume loop data. The time constant of isovolumic pressure decay was longer and the maximal velocity of pressure fall was slower in UNx rats than in controls. When we investigated the mechanisms underlying relaxation dysfunction, we found that LDL from CKD patients and UNx rats was more electronegative than LDL from their respective controls and that LDL from UNx rats induced intracellular calcium overload in H9c2 cardiomyocytes in vitro. Furthermore, chronic administration of electronegative LDL, which signals through lectin-like oxidized LDL receptor-1 (LOX-1), induced relaxation dysfunction in wild-type but not LOX-1(-/-) mice. In in vitro and in vivo experiments, impaired cardiac relaxation was associated with increased calcium transient resulting from nitric oxide (NO)-dependent nitrosylation of SERCA2a due to increases in inducible NO synthase expression and endothelial NO synthase uncoupling. In conclusion, LDL becomes more electronegative in early CKD. This change disrupts SERCA2a-regulated calcium homeostasis, which may be the mechanism underlying cardiorenal syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Ursolic acid protects monocytes against metabolic stress-induced priming and dysfunction by preventing the induction of Nox4☆

    PubMed Central

    Ullevig, Sarah L.; Kim, Hong Seok; Nguyen, Huynh Nga; Hambright, William S.; Robles, Andrew J.; Tavakoli, Sina; Asmis, Reto

    2014-01-01

    Aims Dietary supplementation with ursolic acid (UA) prevents monocyte dysfunction in diabetic mice and protects mice against atherosclerosis and loss of renal function. The goal of this study was to determine the molecular mechanism by which UA prevents monocyte dysfunction induced by metabolic stress. Methods and results Metabolic stress sensitizes or “primes” human THP-1 monocytes and murine peritoneal macrophages to the chemoattractant MCP-1, converting these cells into a hyper-chemotactic phenotype. UA protected THP-1 monocytes and peritoneal macrophages against metabolic priming and prevented their hyper-reactivity to MCP-1. UA blocked the metabolic stress-induced increase in global protein-S-glutathionylation, a measure of cellular thiol oxidative stress, and normalized actin-S-glutathionylation. UA also restored MAPK phosphatase-1 (MKP1) protein expression and phosphatase activity, decreased by metabolic priming, and normalized p38 MAPK activation. Neither metabolic stress nor UA supplementation altered mRNA or protein levels of glutaredoxin-1, the principal enzyme responsible for the reduction of mixed disulfides between glutathione and protein thiols in these cells. However, the induction of Nox4 by metabolic stress, required for metabolic priming, was inhibited by UA in both THP-1 monocytes and peritoneal macrophages. Conclusion UA protects THP-1 monocytes against dysfunction by suppressing metabolic stress-induced Nox4 expression, thereby preventing the Nox4-dependent dysregulation of redox-sensitive processes, including actin turnover and MAPK-signaling, two key processes that control monocyte migration and adhesion. This study provides a novel mechanism for the anti-inflammatory and athero- and renoprotective properties of UA and suggests that dysfunctional blood monocytes may be primary targets of UA and related compounds. PMID:24494201

  7. Ginsenoside Re protects against phencyclidine-induced behavioral changes and mitochondrial dysfunction via interactive modulation of glutathione peroxidase-1 and NADPH oxidase in the dorsolateral cortex of mice.

    PubMed

    Tran, The-Vinh; Shin, Eun-Joo; Dang, Duy-Khanh; Ko, Sung Kwon; Jeong, Ji Hoon; Nah, Seung-Yeol; Jang, Choon-Gon; Lee, Yu Jeung; Toriumi, Kazuya; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2017-12-01

    We investigated whether ginsenoside Re (Re) modulates phencyclidine (PCP)-induced sociability deficits and recognition memory impairments to extend our recent finding. We examined the role of GPx-1 gene in the pharmacological activity of Re against mitochondrial dysfunction induced by PCP in the dorsolateral cortex of mice. Since mitochondrial oxidative stress activates NADPH oxidase (PHOX), we applied PHOX inhibitor apocynin for evaluating interactive modulation between GPx-1 and PHOX against PCP neurotoxicity. Sociability deficits and recognition memory impairments induced by PCP were more pronounced in GPx-1 knockout (KO) than in wild type (WT) mice. PCP-induced mitochondrial oxidative stress, mitochondrial dysfunction, and membrane translocation of p47phox were more evident in GPx-1 KO than in WT. Re treatment significantly attenuated PCP-induced neurotoxic changes. Re also significantly attenuated PCP-induced sociability deficits and recognition memory impairments. The attenuation by Re was comparable to that by apocynin. The attenuation was more obvious in GPx-1 KO than in WT. Importantly, apocynin did not show any additional positive effects on the neuroprotective activity of Re, indicating that PHOX is a molecular target for therapeutic activity of Re. Our results suggest that Re requires interactive modulation between GPx activity and PHOX (p47phox) to exhibit neuroprotective potentials against PCP insult. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction.

    PubMed

    Morishima, Takuma; Restaino, Robert M; Walsh, Lauren K; Kanaley, Jill A; Padilla, Jaume

    2017-06-01

    We have previously shown that local heating or leg fidgeting can prevent prolonged sitting-induced leg endothelial dysfunction. However, whether physical activity prevents subsequent sitting-induced leg endothelial dysfunction remains unknown. Herein, we tested the hypothesis that sitting-induced leg endothelial dysfunction would be prevented by prior exercise. We also examined if, in the absence of exercise, standing is an effective alternative strategy to sitting for conserving leg endothelial function. Fifteen young healthy subjects completed three randomized experimental trials: (1) sitting without prior exercise; (2) sitting with prior exercise; and (3) standing without prior exercise. Following baseline popliteal artery flow-mediated dilation (FMD) measurements, subjects maintained a supine position for 45 min in the sitting and standing trials, without prior exercise, or performed 45 min of leg cycling before sitting (i.e. sitting with prior exercise trial). Thereafter, subjects were positioned into a seated or standing position, according to the trial, for 3 h. Popliteal artery FMD measures were then repeated. Three hours of sitting without prior exercise caused a significant impairment in popliteal artery FMD (baseline: 3.8±0.5%, post-sitting: 1.5±0.5%, P <0.05), which was prevented when sitting was preceded by a bout of cycling exercise (baseline: 3.8±0.5%, post-sitting: 3.6±0.7%, P >0.05). Three hours of standing did not significantly alter popliteal artery FMD (baseline: 4.1±0.4%, post-standing: 4.3±0.4%, P >0.05). In conclusion, prolonged sitting-induced leg endothelial dysfunction can be prevented by prior aerobic exercise. In addition, in the absence of exercise, standing represents an effective substitute to sitting for preserving leg conduit artery endothelial function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  9. Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis.

    PubMed

    Zhang, Rong-Huai; Gao, Jian-Yuan; Guo, Hai-Tao; Scott, Glenda I; Eason, Anna R; Wang, Xiao-Ming; Ren, Jun

    2013-01-01

    Alcohol intake is associated with myocardial contractile dysfunction and apoptosis although the precise mechanism is unclear. This study was designed to examine the effect of the cytochrome P450 enzyme CYP2E1 inhibition on ethanol-induced cardiac dysfunction. Adult male mice were fed a 4% ethanol liquid or pair-fed control diet for 6weeks. Following 2weeks of diet feeding, a cohort of mice started to receive the CYP2E1 inhibitor diallyl sulfide (100mg/kg/d, i.p.) for the remaining feeding duration. Cardiac function was assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate CYP2E1, heme oxygenase-1 (HO-1), iNOS, the intracellular Ca(2+) regulatory proteins sarco(endo)plasmic reticulum Ca(2+)-ATPase, Na(+)Ca(2+) exchanger and phospholamban, pro-apoptotic protein cleaved caspase-3, Bax, c-Jun-NH(2)-terminal kinase (JNK) and apoptosis signal-regulating kinase (ASK-1). Ethanol led to elevated levels of CYP2E1, iNOS and phospholamban, decreased levels of HO-1 and Na(+)Ca(2+) exchanger, cardiac contractile and intracellular Ca(2+) defects, cardiac fibrosis, overt O(2)(-) production, and apoptosis accompanied with increased phosphorylation of JNK and ASK-1, the effects were significantly attenuated or ablated by diallyl sulfide. Inhibitors of JNK and ASK-1 but not HO-1 inducer or iNOS inhibitor obliterated ethanol-induced cardiomyocyte contractile dysfunction, substantiating a role for JNK and ASK-1 signaling in ethanol-induced myocardial injury. Taken together, these findings suggest that ethanol metabolism through CYP2E1 may contribute to the pathogenesis of alcoholic cardiomyopathy including myocardial contractile dysfunction, oxidative stress and apoptosis, possibly through activation of JNK and ASK-1 signaling. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress.

    PubMed

    Nagoor Meeran, M F; Jagadeesh, G S; Selvaraj, P

    2016-01-25

    Mitochondrial dysfunction has been suggested to be one of the important pathological events in isoproterenol (ISO), a synthetic catecholamine and β-adrenergic agonist induced myocardial infarction (MI). In this context, we have evaluated the impact of thymol against ISO induced oxidative stress and calcium uniporter malfunction involved in the pathology of mitochondrial dysfunction in rats. Male albino Wistar rats were pre and co-treated with thymol (7.5 mg/kg body weight) daily for 7 days. Isoproterenol (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce MI. To explore the extent of cardiac mitochondrial damage, the activities/levels of cardiac marker enzymes, mitochondrial lipid peroxidation products, antioxidants, lipids, calcium, adenosine triphosphate and multi marker enzymes were evaluated. Isoproterenol induced myocardial infarcted rats showed a significant increase in the activities of cardiac diagnostic markers, heart mitochondrial lipid peroxidation, lipids, calcium, and a significant decrease in the activities/levels of heart mitochondrial superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, isocitrate, malate, α-ketoglutarate and NADH-dehydrogenases, cytochrome-C-oxidase, and adenosine triphosphate. Thymol pre and co-treatment showed near normalized effects on all the biochemical parameters studied. Transmission electron microscopic findings and mitochondrial swelling studies confirmed our biochemical findings. The in vitro study also revealed the potent free-radical scavenging activity of thymol. Thus, thymol attenuates the involvement of ISO against oxidative stress and calcium uniporter malfunction associated with mitochondrial dysfunction in rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Induction of Mitochondrial Dysfunction and Oxidative Damage by Antibiotic Drug Doxycycline Enhances the Responsiveness of Glioblastoma to Chemotherapy

    PubMed Central

    Tan, Qian; Yan, Xiaoqiong; Song, Lin; Yi, Hongxiang; Li, Ping; Sun, Guobin; Yu, Danfang; Li, Le; Zeng, Zheng; Guo, Zhenli

    2017-01-01

    Background Inducing mitochondrial dysfunction has been recently demonstrated to be an alternative therapeutic strategy for cancer treatment. Doxycycline is an antibiotic that has been shown to have anti-cancer activities in various cancers by way of targeting mitochondria. In this work, we examined whether doxycycline can be repurposed for glioblastoma treatment. Material/Methods The effects of doxycycline on the growth, survival, and mitochondrial metabolisms of glioblastoma were investigated. The efficacy of a combination of doxycycline with temozolomide was examined using xenograft mouse model in total number of 40 mice. Results Doxycycline targeted glioblastoma cell lines, regardless of their origin, through inhibiting growth and inducing cell death, accompanied by a significant decrease in proliferating cell nuclear antigen (PCNA) and increase in cleaved caspase-3. In addition, doxycycline significantly sensitized glioblastoma cell response to temozolomide in vitro and in vivo. Mechanistically, doxycycline disrupted mitochondrial functions through decreasing mitochondrial membrane potential and mitochondrial respiration. Inducing mitochondrial dysfunctions by using doxycycline led to energy crisis, oxidative stress, and damage as shown by the decreased levels of ATP and the elevated levels of mitochondrial superoxide, intracellular ROS, 8-OHdG, protein carbonylation, and lipid peroxidation. An antioxidant N-acetyl-L-cysteine (NAC) significantly abolished the anti-proliferative and pro-apoptotic effects of doxycycline, demonstrating that doxycycline acts on glioblastoma via inducing oxidative stress. Conclusions In our study, we show that the antibiotic doxycycline is effective in targeting glioblastoma through inducing mitochondrial dysfunctions and oxidative stress. Our work also demonstrated the importance of mitochondrial metabolism in glioblastoma. PMID:28842551

  12. Induction of Mitochondrial Dysfunction and Oxidative Damage by Antibiotic Drug Doxycycline Enhances the Responsiveness of Glioblastoma to Chemotherapy.

    PubMed

    Tan, Qian; Yan, Xiaoqiong; Song, Lin; Yi, Hongxiang; Li, Ping; Sun, Guobin; Yu, Danfang; Li, Le; Zeng, Zheng; Guo, Zhenlin

    2017-08-26

    BACKGROUND Inducing mitochondrial dysfunction has been recently demonstrated to be an alternative therapeutic strategy for cancer treatment. Doxycycline is an antibiotic that has been shown to have anti-cancer activities in various cancers by way of targeting mitochondria. In this work, we examined whether doxycycline can be repurposed for glioblastoma treatment. MATERIAL AND METHODS The effects of doxycycline on the growth, survival, and mitochondrial metabolisms of glioblastoma were investigated. The efficacy of a combination of doxycycline with temozolomide was examined using xenograft mouse model in total number of 40 mice. RESULTS Doxycycline targeted glioblastoma cell lines, regardless of their origin, through inhibiting growth and inducing cell death, accompanied by a significant decrease in proliferating cell nuclear antigen (PCNA) and increase in cleaved caspase-3. In addition, doxycycline significantly sensitized glioblastoma cell response to temozolomide in vitro and in vivo. Mechanistically, doxycycline disrupted mitochondrial functions through decreasing mitochondrial membrane potential and mitochondrial respiration. Inducing mitochondrial dysfunctions by using doxycycline led to energy crisis, oxidative stress, and damage as shown by the decreased levels of ATP and the elevated levels of mitochondrial superoxide, intracellular ROS, 8-OHdG, protein carbonylation, and lipid peroxidation. An antioxidant N-acetyl-L-cysteine (NAC) significantly abolished the anti-proliferative and pro-apoptotic effects of doxycycline, demonstrating that doxycycline acts on glioblastoma via inducing oxidative stress. CONCLUSIONS In our study, we show that the antibiotic doxycycline is effective in targeting glioblastoma through inducing mitochondrial dysfunctions and oxidative stress. Our work also demonstrated the importance of mitochondrial metabolism in glioblastoma.

  13. L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats.

    PubMed

    Vanhaecke, T; Aubert, P; Grohard, P-A; Durand, T; Hulin, P; Paul-Gilloteaux, P; Fournier, A; Docagne, F; Ligneul, A; Fressange-Mazda, C; Naveilhan, P; Boudin, H; Le Ruyet, P; Neunlist, M

    2017-08-01

    Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn. © 2017 John Wiley & Sons Ltd.

  14. Lysosomal membrane permeabilization: Carbon nanohorn-induced reactive oxygen species generation and toxicity by this neglected mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Mei, E-mail: happy_deercn@163.com; Zhang, Minfang; Tahara, Yoshio

    2014-10-01

    Understanding the molecular mechanisms responsible for the cytotoxic effects of carbon nanomaterials is important for their future biomedical applications. Carbon nanotubular materials induce the generation of reactive oxygen species (ROS), which causes cell death; however, the exact details of this process are still unclear. Here, we identify a mechanism of ROS generation that is involved in the apoptosis of RAW264.7 macrophages caused by excess uptake of carbon nanohorns (CNHs), a typical type of carbon nanotubule. CNH accumulated in the lysosomes, where they induced lysosomal membrane permeabilization (LMP) and the subsequent release of lysosomal proteases, such as cathepsins, which in turnmore » caused mitochondrial dysfunction and triggered the generation of ROS in the mitochondria. The nicotinamide adenine dinucleotide phosphate oxidase was not directly involved in CNH-related ROS production, and the ROS generation cannot be regulated by mitochondrial electron transport chain. ROS fed back to amplify the mitochondrial dysfunction, leading to the subsequent activation of caspases and cell apoptosis. Carbon nanotubules commonly accumulate in the lysosomes after internalization in cells; however, lysosomal dysfunction has not attracted much attention in toxicity studies of these materials. These results suggest that LMP, a neglected mechanism, may be the primary reason for carbon nanotubule toxicity. - Highlights: • We clarify an apoptotic mechanism of RAW264.7 cells caused by carbon nanohorns. • In the meantime, the mechanism of CNH-induced ROS generation is identified. • LMP is the initial factor of CNH-induced ROS generation and cell death. • Cathepsins work as mediators that connect LMP and mitochondrial dysfunction.« less

  15. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    PubMed Central

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  16. Lipid Emulsions Containing Medium Chain Triacylglycerols Blunt Bradykinin-Induced Endothelium-Dependent Relaxation in Porcine Coronary Artery Rings.

    PubMed

    Amissi, Said; Boisramé-Helms, Julie; Burban, Mélanie; Rashid, Sherzad K; León-González, Antonio J; Auger, Cyril; Toti, Florence; Meziani, Ferhat; Schini-Kerth, Valérie B

    2017-03-01

    Lipid emulsions for parenteral nutrition are used to provide calories and essential fatty acids for patients. They have been associated with hypertriglyceridemia, hypercholesterolemia, and metabolic stress, which may promote the development of endothelial dysfunction in patients. The aim of the present study was to determine whether five different industrial lipid emulsions may affect the endothelial function of coronary arteries. Porcine coronary artery rings were incubated with lipid emulsions 0.5, 1, or 2% (v/v) for 30 min before the determination of vascular reactivity in organ chambers and the level of oxidative stress using electron paramagnetic resonance. Incubation of coronary artery rings with either Lipidem ® , Medialipid ® containing long- and medium-chain triacylglycerols (LCT/MCT), or SMOFlipid ® containing LCT, MCT, omega-9, and -3, significantly reduced the bradykinin-induced endothelium-dependent relaxation, affecting both the nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) components, whereas, Intralipid ® containing LCT (soybean oil) and ClinOleic ® containing LCT (soybean and olive oil) did not have such an effect. The endothelial dysfunction induced by Lipidem ® was significantly improved by indomethacin, a cyclooxygenase (COX) inhibitor, inhibitors of oxidative stress (N-acetylcysteine, superoxide dismutase, catalase) and transition metal chelating agents (neocuproine, tetrathiomolybdate, deferoxamine and L-histidine). Lipidem ® significantly increased the arterial level of oxidative stress. The present findings indicate that lipid emulsions containing LCT/MCT induce endothelial dysfunction in coronary artery rings by blunting both NO- and EDH-mediated relaxations. The Lipidem ® -induced endothelial dysfunction is associated with increased vascular oxidative stress and the formation of COX-derived vasoconstrictor prostanoids.

  17. Naringin ameliorates endothelial dysfunction in fructose-fed rats.

    PubMed

    Malakul, Wachirawadee; Pengnet, Sirinat; Kumchoom, Chanon; Tunsophon, Sakara

    2018-03-01

    High fructose consumption is associated with metabolic disorders including hyperglycemia and dyslipidemia, in addition to endothelial dysfunction. Naringin, a flavonoid present in citrus fruit, has been reported to exhibit lipid lowering, antioxidant, and cardiovascular protective properties. Therefore, the present study investigated the effect of naringin on fructose-induced endothelial dysfunction in rats and its underlying mechanisms. Male Sprague-Dawley rats were given 10% fructose in drinking water for 12 weeks, whereas control rats were fed drinking water alone. Naringin (100 mg/kg) was orally administered to fructose fed rats during the last 4 weeks of the study. Following 12 weeks, blood samples were collected for measurement of blood glucose, serum lipid profile and total nitrate/nitrite (NOx). Vascular function was assessed by isometric tension recording. Aortic expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and nitrotyrosine were evaluated by western blot analysis. Fructose feeding induced increased levels of blood glucose, total cholesterol, triglyceride, and low density lipoprotein. In rat aortae, fructose reduced acethycholine-induced vasorelaxation, without affecting sodium nitroprusside-induced vasorelaxation. Treatment of fructose-fed rats with naringin restored fructose-induced metabolic alterations and endothelial dysfunction. Fructose-fed rats also exhibited decreased serum NOx level, reduced eNOS and p-eNOS protein expression, and enhanced nitrotyrosine expression in aortae. These alterations were improved by naringin treatment. The results of the present study suggested that naringin treatment preserves endothelium-dependent relaxation in aortae from fructose fed rats. This effect is primarily mediated through an enhanced NO bioavailability via increased eNOS activity and decreased NO inactivated to peroxynitrite in aortae.

  18. Assessment of Nephroprotective Potential of Histochrome during Induced Arterial Hypertension.

    PubMed

    Agafonova, I G; Bogdanovich, R N; Kolosova, N G

    2015-12-01

    Magnetic resonance tomography was employed to verify endothelial dysfunction of renal arteries in Wistar and OXYS rats under conditions of induced arterial hypertension. Angiography revealed changes in the size and form of renal arteries of hypertensive animals. In hypertensive rats, histochrome exerted a benevolent therapeutic effect in renal arteries: it decreased BP, diminished thrombus formation in fi ne capillaries and arterioles, demonstrated the anticoagulant properties, partially improved endothelial dysfunction of small renal arteries, and up-regulated the glomerular filtration.

  19. Cardiac-Specific IGF-1 Receptor Transgenic Expression Protects Against Cardiac Fibrosis and Diastolic Dysfunction in a Mouse Model of Diabetic Cardiomyopathy

    PubMed Central

    Huynh, Karina; McMullen, Julie R.; Julius, Tracey L.; Tan, Joon Win; Love, Jane E.; Cemerlang, Nelly; Kiriazis, Helen; Du, Xiao-Jun; Ritchie, Rebecca H.

    2010-01-01

    OBJECTIVE Compelling epidemiological and clinical evidence has identified a specific cardiomyopathy in diabetes, characterized by early diastolic dysfunction and adverse structural remodeling. Activation of the insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) promotes physiological cardiac growth and enhances contractile function. The aim of the present study was to examine whether cardiac-specific overexpression of IGF-1R prevents diabetes-induced myocardial remodeling and dysfunction associated with a murine model of diabetes. RESEARCH DESIGN AND METHODS Type 1 diabetes was induced in 7-week-old male IGF-1R transgenic mice using streptozotocin and followed for 8 weeks. Diastolic and systolic function was assessed using Doppler and M-mode echocardiography, respectively, in addition to cardiac catheterization. Cardiac fibrosis and cardiomyocyte width, heart weight index, gene expression, Akt activity, and IGF-1R protein content were also assessed. RESULTS Nontransgenic (Ntg) diabetic mice had reduced initial (E)-to-second (A) blood flow velocity ratio (E:A ratio) and prolonged deceleration times on Doppler echocardiography compared with nondiabetic counterparts, indicative markers of diastolic dysfunction. Diabetes also increased cardiomyocyte width, collagen deposition, and prohypertrophic and profibrotic gene expression compared with Ntg nondiabetic littermates. Overexpression of the IGF-1R transgene markedly reduced collagen deposition, accompanied by a reduction in the incidence of diastolic dysfunction. Akt phosphorylation was elevated ∼15-fold in IGF-1R nondiabetic mice compared with Ntg, and this was maintained in a setting of diabetes. CONCLUSIONS The current study suggests that cardiac overexpression of IGF-1R prevented diabetes-induced cardiac fibrosis and diastolic dysfunction. Targeting IGF-1R–Akt signaling may represent a therapeutic target for the treatment of diabetic cardiac disease. PMID:20215428

  20. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction.

    PubMed

    La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G

    2013-03-01

    Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.

  1. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    PubMed

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  2. Lactobacillus Fermentum Improves Tacrolimus-Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling.

    PubMed

    Toral, Marta; Romero, Miguel; Rodríguez-Nogales, Alba; Jiménez, Rosario; Robles-Vera, Iñaki; Algieri, Francesca; Chueca-Porcuna, Natalia; Sánchez, Manuel; de la Visitación, Néstor; Olivares, Mónica; García, Federico; Pérez-Vizcaíno, Francisco; Gálvez, Julio; Duarte, Juan

    2018-05-30

    Our aim was to analyse whether the probiotic Lactobacillus fermentum CECT5716 (LC40) could prevent endothelial dysfunction and hypertension induced by tacrolimus in mice. Tacrolimus increased systolic blood pressure (SBP) and impaired endothelium-dependent relaxation to acetylcholine and these effects were partially prevented by LC40. Endothelial dysfunction induced by tacrolimus was related to both increased NADPH oxidase (NOX2) and uncoupled eNOS driven-superoxide production and Rho-kinase mediated eNOS inhibition. LC40 treatment prevented all the aortic changes induced by tacrolimus. LC40 restored the imbalance between T-helper 17 (Th17)/ regulatory T (Treg) cells induced by tacrolimus in mesenteric lymph nodes and spleen. Tacrolimus induced gut dysbiosis, i.e. it decreased microbial diversity, increased Firmicutes/Bacteroidetes ratio and decreased acetate- and butyrate-producing bacteria and these effects were prevented by LC40. Fecal microbiota transplantation from LC40 treated mice to control mice prevented the increase in SBP and the impaired relaxation to acetylcholine induced by tacrolimus. LC40 treatment prevented hypertension and endothelial dysfunction induced by tacrolimus by inhibiting gut dysbiosis. These effects were associated with a reduction in vascular oxidative stress, mainly through NOX2 down-regulation and prevention of eNOS-uncoupling, and inflammation possibly because of decreased Th17 and increased Treg cells polarization in mesenteric lymph nodes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G protein receptor kinase.

    PubMed

    Dal-Secco, Daniela; DalBó, Silvia; Lautherbach, Natalia E S; Gava, Fábio N; Celes, Mara R N; Benedet, Patricia O; Souza, Adriana H; Akinaga, Juliana; Lima, Vanessa; Silva, Katiussia P; Kiguti, Luiz Ricardo A; Rossi, Marcos A; Kettelhut, Isis C; Pupo, André S; Cunha, Fernando Q; Assreuy, Jamil

    2017-07-01

    G protein-coupled receptor kinase isoform 2 (GRK2) has a critical role in physiological and pharmacological responses to endogenous and exogenous substances. Sepsis causes an important cardiovascular dysfunction in which nitric oxide (NO) has a relevant role. The present study aimed to assess the putative effect of inducible NO synthase (NOS2)-derived NO on the activity of GRK2 in the context of septic cardiac dysfunction. C57BL/6 mice were submitted to severe septic injury by cecal ligation and puncture (CLP). Heart function was assessed by isolated and perfused heart, echocardiography, and β-adrenergic receptor binding. GRK2 was determined by immunofluorescence and Western blot analysis in the heart and isolated cardiac myocytes. Sepsis increased NOS2 expression in the heart, increased plasma nitrite + nitrate levels, and reduced isoproterenol-induced isolated ventricle contraction, whole heart tension development, and β-adrenergic receptor density. Treatment with 1400W or with GRK2 inhibitor prevented CLP-induced cardiac hyporesponsiveness 12 and 24 h after CLP. Increased labeling of total and phosphorylated GRK2 was detected in hearts after CLP. With treatment of 1400W or in hearts taken from septic NOS2 knockout mice, the activation of GRK2 was reduced. 1400W or GRK2 inhibitor reduced mortality, improved echocardiographic cardiac parameters, and prevented organ damage. Therefore, during sepsis, NOS2-derived NO increases GRK2, which leads to a reduction in β-adrenergic receptor density, contributing to the heart dysfunction. Isolated cardiac myocyte data indicate that NO acts through the soluble guanylyl cyclase/cGMP/PKG pathway. GRK2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. NEW & NOTEWORTHY The main novelty presented here is to show that septic shock induces cardiac hyporesponsiveness to isoproterenol by a mechanism dependent on nitric oxide and mediated by G protein-coupled receptor kinase isoform 2. Therefore, G protein-coupled receptor kinase isoform 2 inhibition may be a potential therapeutic target in sepsis-induced cardiac dysfunction. Copyright © 2017 the American Physiological Society.

  4. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate.

    PubMed

    Wang, X; Li, H; Zheng, A; Yang, L; Liu, J; Chen, C; Tang, Y; Zou, X; Li, Y; Long, J; Liu, J; Zhang, Y; Feng, Z

    2014-11-13

    Mitochondrial dysfunction contributes to the development of muscle disorders, including muscle wasting, muscle atrophy and degeneration. Despite the knowledge that oxidative stress closely interacts with mitochondrial dysfunction, the detailed mechanisms remain obscure. In this study, tert-butylhydroperoxide (t-BHP) was used to induce oxidative stress on differentiated C2C12 myotubes. t-BHP induced significant mitochondrial dysfunction in a time-dependent manner, accompanied by decreased myosin heavy chain (MyHC) expression at both the mRNA and protein levels. Consistently, endogenous reactive oxygen species (ROS) overproduction triggered by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation inhibitor, was accompanied by decreased membrane potential and decreased MyHC protein content. However, the free radical scavenger N-acetyl-L-cysteine (NAC) efficiently reduced the ROS level and restored MyHC content, suggesting a close association between ROS and MyHC expression. Meanwhile, we found that both t-BHP and FCCP promoted the cleavage of optic atrophy 1 (OPA1) from the long form into short form during the early stages. In addition, the ATPase family gene 3-like 2, a mitochondrial inner membrane protease, was also markedly increased. Moreover, OPA1 knockdown in myotubes was accompanied by decreased MyHC content, whereas NAC failed to prevent FCCP-induced MyHC decrease with OPA1 knockdown, suggesting that ROS might affect MyHC content by modulating OPA1 cleavage. In addition, hydroxytyrosol acetate (HT-AC), an important compound in virgin olive oil, could significantly prevent t-BHP-induced mitochondrial membrane potential and cell viability loss in myotubes. Specifically, HT-AC inhibited t-BHP-induced OPA1 cleavage and mitochondrial morphology changes, accompanied by improvement on mitochondrial oxygen consumption capacity, ATP productive potential and activities of mitochondrial complex I, II and V. Moreover, both t-BHP- and FCCP-induced MyHC decrease was sufficiently inhibited by HT-AC. Taken together, our data provide evidence indicating that mitochondrial dysfunction-associated OPA1 cleavage may contribute to muscle degeneration, and olive oil compounds could be effective nutrients for preventing the development of muscle disorders.

  5. Vitamin E confers cytoprotective effects on cardiomyocytes under conditions of heat stress by increasing the expression of metallothionein.

    PubMed

    Wang, Xiaowu; Dong, Wenpeng; Yuan, Binbin; Yang, Yongchao; Yang, Dongpeng; Lin, Xi; Chen, Changfu; Zhang, Weida

    2016-05-01

    Heat stress (HS) is commonly used to refer to the heat load that an individual is subjected to due to either metabolic heat, or environmental factors, including high temperatures and high humidity levels. HS has been reported to affect and even damage the functioning of various organs; overexposure to high temperatures and high humidity may lead to accidental deaths. It has been suggested that the cardiovascular system is primarily targeted by exposure to HS conditions; the HS-induced dysfunction of cardiomyocytes, which is characterized by mitochondrial dysfunction, may result in the development of cardiovascular diseases. The excessive production of reactive oxygen species (ROS) also participates in mitochondrial dysfunction. However, effective methods for the prevention and treatment of mitochondrial and cardiovascular dysfunction induced by exposure to HS are lacking. In the present study, we hypothesized that vitamin E (VE), an antioxidant, is capable of preventing oxidative stress and mitochondrial injury in cardiomyocytes induced by exposure to HS. The results revealed that pre‑treatment with VE increased the expression of metallothionein (MT), which has previously been reported to confer cytoprotective effects, particularly on the cardiovascular system. Pre-treatment with VE restored mitochondrial function in cardiomyocytes under conditions of HS by increasing the expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), and by increasing adenosine triphosphate (ATP) levels. Furthermore, pre-treatment with VE decreased the production of ROS, which was induced by exposure to HS and thus exerted antioxidant effects. In addition, pre-treatment with VE attenuated oxidative stress induced by exposure to HS, as demonstrated by the increased levels of antioxidant enzymes [superoxide dismutase (SOD) and glutathione (GSH)], and by the decreased levels of markers of oxidative injury [malondialdehyde (MDA) and lactate dehydrogenase (LDH)]. Taken together, these findings suggest that pre-treatment with VE can prevent mitochondrial dysfunction and oxidative stress in cardiomyocytes induced by exposure to HS, by increasing the expression of MT.

  6. Oxidative stress contributes to methamphetamine-induced left ventricular dysfunction.

    PubMed

    Lord, Kevin C; Shenouda, Sylvia K; McIlwain, Elizabeth; Charalampidis, Dimitrios; Lucchesi, Pamela A; Varner, Kurt J

    2010-07-01

    Our aim was to test the hypothesis that the repeated, binge administration of methamphetamine would produce oxidative stress in the myocardium leading to structural remodeling and impaired left ventricular function. Echocardiography and Millar pressure-volume catheters were used to monitor left ventricular structure and function in rats subjected to four methamphetamine binges (3 mg/kg, iv for 4 days, separated by a 10-day drug-free period). Hearts from treated and control rats were used for histological or proteomic analysis. When compared with saline treatment, four methamphetamine binges produced eccentric left ventricular hypertrophy. The drug also significantly impaired systolic function (decreased fractional shortening, ejection fraction, and adjusted maximal power) and produced significant diastolic dysfunction (increased -dP/dt and tau). Dihydroethedium staining showed that methamphetamine significantly increased (285%) the levels of reactive oxygen species in the left ventricle. Treatment with methamphetamine also resulted in the tyrosine nitration of myofilament (desmin, myosin light chain) and mitochondrial (ATP synthase, NADH dehydrogenase, cytochrome c oxidase, prohibitin) proteins. Treatment with the superoxide dismutase mimetic, tempol in the drinking water prevented methamphetamine-induced left ventricular dilation and systolic dysfunction; however, tempol (2.5 mM) did not prevent the diastolic dysfunction. Tempol significantly reduced, but did not eliminate dihydroethedium staining in the left ventricle, nor did it prevent the tyrosine nitration of mitochondrial and contractile proteins. This study shows that oxidative stress plays a significant role in mediating methamphetamine-induced eccentric left ventricular dilation and systolic dysfunction.

  7. Oxidative stress contributes to methamphetamine-induced left ventricular dysfunction

    PubMed Central

    Lord, Kevin C.; Shenouda, Sylvia K.; McIlwain, Elizabeth; Charalampidis, Dimitrios; Lucchesi, Pamela A.; Varner, Kurt J.

    2010-01-01

    Aims Our aim was to test the hypothesis that the repeated, binge administration of methamphetamine would produce oxidative stress in the myocardium leading to structural remodeling and impaired left ventricular function. Methods and results Echocardiography and Millar pressure–volume catheters were used to monitor left ventricular structure and function in rats subjected to four methamphetamine binges (3 mg/kg, iv for 4 days, separated by a 10-day drug-free period). Hearts from treated and control rats were used for histological or proteomic analysis. When compared with saline treatment, four methamphetamine binges produced eccentric left ventricular hypertrophy. The drug also significantly impaired systolic function (decreased fractional shortening, ejection fraction, and adjusted maximal power) and produced significant diastolic dysfunction (increased −dP/dt and tau). Dihydroethedium staining showed that methamphetamine significantly increased (285%) the levels of reactive oxygen species in the left ventricle. Treatment with methamphetamine also resulted in the tyrosine nitration of myofilament (desmin, myosin light chain) and mitochondrial (ATP synthase, NADH dehydrogenase, cytochrome c oxidase, prohibitin) proteins. Treatment with the superoxide dismutase mimetic, tempol in the drinking water prevented methamphetamine-induced left ventricular dilation and systolic dysfunction; however, tempol (2.5 mM) did not prevent the diastolic dysfunction. Tempol significantly reduced, but did not eliminate dihydroethedium staining in the left ventricle, nor did it prevent the tyrosine nitration of mitochondrial and contractile proteins. Conclusion This study shows that oxidative stress plays a significant role in mediating methamphetamine-induced eccentric left ventricular dilation and systolic dysfunction. PMID:20139112

  8. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    PubMed

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Curcumin ameliorates cardiac dysfunction induced by mechanical trauma.

    PubMed

    Li, Xintao; Cao, Tingting; Ma, Shuo; Jing, Zehao; Bi, Yue; Zhou, Jicheng; Chen, Chong; Yu, Deqin; Zhu, Liang; Li, Shuzhuang

    2017-11-05

    Curcumin, a phytochemical component derived from turmeric (Carcuma longa), has been extensively investigated because of its anti-inflammatory and anti-oxidative properties. Inflammation and oxidative stress play critical roles in posttraumatic cardiomyocyte apoptosis, which contributes to secondary cardiac dysfunction. This research was designed to identify the protective effect of curcumin on posttraumatic cardiac dysfunction and investigate its underlying mechanism. Noble-Collip drum was used to prepare a mechanical trauma (MT) model of rats, and the hemodynamic responses of traumatized rats were observed by ventricular intubation 12h after trauma. Myocardial apoptosis was determined through terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activity assay. Tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) generated by monocytes and myocardial cells were identified through enzyme-linked immunosorbent assay (ELISA), and the intracellular alteration of Ca 2+ in cardiomyocytes was examined through confocal microscopy. In vivo, curcumin effectively ameliorated MT-induced secondary cardiac dysfunction and significantly decreased the apoptotic indices of the traumatized myocardial cells. In vitro, curcumin inhibited TNF-α production by monocytes and reduced the circulating TNF-α levels. With curcumin pretreatment, ROS production and Ca 2+ overload in H9c2 cells were attenuated when these cells were incubated with traumatic plasma. Therefore, curcumin can effectively ameliorate MT-induced cardiac dysfunction mainly by inhibiting systemic inflammatory responses and by weakening oxidative stress reaction and Ca 2+ overload in cardiomyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration.

    PubMed

    Creus-Muncunill, Jordi; Rué, Laura; Alcalá-Vida, Rafael; Badillos-Rodríguez, Raquel; Romaní-Aumedes, Joan; Marco, Sonia; Alberch, Jordi; Perez-Otaño, Isabel; Malagelada, Cristina; Pérez-Navarro, Esther

    2018-02-19

    Rictor associates with mTOR to form the mTORC2 complex, which activity regulates neuronal function and survival. Neurodegenerative diseases are characterized by the presence of neuronal dysfunction and cell death in specific brain regions such as for example Huntington's disease (HD), which is characterized by the loss of striatal projection neurons leading to motor dysfunction. Although HD is caused by the expression of mutant huntingtin, cell death occurs gradually suggesting that neurons have the capability to activate compensatory mechanisms to deal with neuronal dysfunction and later cell death. Here, we analyzed whether mTORC2 activity could be altered by the presence of mutant huntingtin. We observed that Rictor levels are specifically increased in the striatum of HD mouse models and in the putamen of HD patients. Rictor-mTOR interaction and the phosphorylation levels of Akt, one of the targets of the mTORC2 complex, were increased in the striatum of the R6/1 mouse model of HD suggesting increased mTORC2 signaling. Interestingly, acute downregulation of Rictor in striatal cells in vitro reduced mTORC2 activity, as shown by reduced levels of phospho-Akt, and increased mutant huntingtin-induced cell death. Accordingly, overexpression of Rictor increased mTORC2 activity counteracting cell death. Furthermore, normalization of endogenous Rictor levels in the striatum of R6/1 mouse worsened motor symptoms suggesting an induction of neuronal dysfunction. In conclusion, our results suggest that increased Rictor striatal levels could counteract neuronal dysfunction induced by mutant huntingtin.

  11. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy.

    PubMed

    Griffiths, Lisa A; Flatters, Sarah J L

    2015-10-01

    Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive effects in a preclinical model of paclitaxel-induced pain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction

    EPA Science Inventory

    Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction ha...

  13. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  14. Platycodin D induced apoptosis and autophagy in PC-12 cells through mitochondrial dysfunction pathway

    NASA Astrophysics Data System (ADS)

    Zeng, Chuan-Chuan; Zhang, Cheng; Yao, Jun-Hua; Lai, Shang-Hai; Han, Bing-Jie; Li, Wei; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-11-01

    In this article, the in vitro cytotoxicity of platycodin D was evaluated in human PC-12, SGC-7901, BEL-7402, HeLa and A549 cancer cell lines. PC-12 cells were sensitive to platycodin D treatment, with an IC50 value of 13.5 ± 1.2 μM. Morphological and comet assays showed that platycodin D effectively induced apoptosis in PC-12 cells. Platycodin D increased the levels of reactive oxygen species (ROS) and induced a decrease in mitochondrial membrane potential. Platycodin D induced cell cycle arrest at the G0/G1 phase in the PC-12 cell line. Platycodin D can induce autophagy. In addition, platycodin D can down-regulate the expression of Bcl-2 and Bcl-x, and up-regulate the levels of Bid protein in the PC-12 cells. The results demonstrated that platycodin D induced PC-12 cell apoptosis through a ROS-mediated mitochondrial dysfunction pathway.

  15. Yale Study: African-American Women Report More Menopause Symptoms than White Women

    ERIC Educational Resources Information Center

    Black Issues in Higher Education, 2005

    2005-01-01

    A study of African-American women in menopause shows that while they experience many of the same symptoms as White women, they report more vasomotor symptoms such as dizziness and bloating, according to a study by a Yale School of Nursing researcher. The women reported symptoms common among White women in menopause--hot flashes, irregular…

  16. The Reflex Sympathetic Dystrophy Syndrome: A Review with Special Reference to Chronic Pain and Motor Impairments.

    ERIC Educational Resources Information Center

    Ribbers, G.; And Others

    1995-01-01

    This article reviews reflex sympathetic dystrophy (RSD), a symptom complex caused by a minor injury and characterized by pain, vasomotor and trophic disregulation, and motor impairments. Both an acute stage and a chronic stage are described. Implications for diagnosis, prevention of disabilities, and development of rehabilitation strategies are…

  17. Left Ventricular Dysfunction and Dilated Cardiomyopathy in Infants and Children with Wolff-Parkinson-White Syndrome in the Absence of Tachyarrhythmias

    PubMed Central

    2012-01-01

    Left ventricular (LV) dysfunction and dilated cardiomyopathy (DCM) are rarely attributable to sustained or incessant tachyarrhythmias in infants and children with Wolff-Parkinson-White (WPW) syndrome. However, several recent reports suggested that significant LV dysfunction may develop in WPW syndrome in the absence of tachyarrhythmias. It is assumed that an asynchronous ventricular activation over the accessory pathway, especially right-sided, induces septal wall motion abnormalities, ventricular remodeling and ventricular dysfunction. The prognosis of DCM associated with asymptomatic WPW is excellent. Loss of ventricular pre-excitation results in mechanical resynchronization and reverse remodeling where LV function recovers completely. The reversible nature of LV dysfunction after loss of ventricular pre-excitation supports the causal relationship between LV dysfunction and ventricular pre-excitation. This review summarizes recent clinical and electrophysiological evidence for development of LV dysfunction or DCM in asymptomatic WPW syndrome, and discusses the underlying pathophysiological mechanism. PMID:23323117

  18. Blood-brain barrier dysfunction in mice induced by lipopolysaccharide is attenuated by dapsone.

    PubMed

    Zhou, Ting; Zhao, Lei; Zhan, Rui; He, Qihua; Tong, Yawei; Tian, Xiaosheng; Wang, Hecheng; Zhang, Tao; Fu, Yaoyun; Sun, Yang; Xu, Feng; Guo, Xiangyang; Fan, Dongsheng; Han, Hongbin; Chui, Dehua

    2014-10-24

    Blood-brain barrier (BBB) dysfunction is a key event in the development of many central nervous system (CNS) diseases, such as septic encephalopathy and stroke. 4,4'-Diaminodiphenylsulfone (DDS, Dapsone) has displayed neuroprotective effect, but whether DDS has protective role on BBB integrity is not clear. This study was designed to examine the effect of DDS on lipopolysaccharide (LPS)-induced BBB disruption and oxidative stress in brain vessels. Using in vivo multiphoton imaging, we found that DDS administration significantly restored BBB integrity compromised by LPS. DDS also increased the expression of tight junction proteins occludin, zona occludens-1 (ZO-1) and claudin-5 in brain vessels. Level of reactive oxygen species (ROS) was reduced by DDS treatment, which may due to decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NOX2 expression. Our results showed that LPS-induced BBB dysfunction could be attenuated by DDS, indicated that DDS has a therapeutic potential for treating CNS infection and other BBB related diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. EFFECT OF AT1 RECEPTOR BLOCKADE ON INTERMITTENT HYPOXIA-INDUCED ENDOTHELIAL DYSFUNCTION

    PubMed Central

    Marcus, Noah J.; Philippi, Nathan R.; Bird, Cynthia E.; Li, Yu-Long; Schultz, Harold D.; Morgan, Barbara J.

    2012-01-01

    Chronic intermittent hypoxia (CIH) raises arterial pressure, impairs vasodilator responsiveness, and increases circulating angiotensin II (Ang II); however, the role of Ang II in CIH-induced vascular dysfunction is unknown. Rats were exposed to CIH or room air (NORM), and a subset of these animals was treated with losartan (Los) during the exposure period. After 28 days, vasodilatory responses to acetylcholine or nitroprusside were measured in isolated gracilis arteries. Superoxide levels and Ang II receptor protein expression were measured in saphenous arteries. After 28 days, arterial pressure was increased and acetylcholine-induced vasodilation was blunted in CIH vs. NORM, and this was prevented by Los. Responses to nitroprusside and superoxide levels did not differ between CIH and NORM. Expression of AT2R was decreased and the AT1R:AT2R ratio was increased in CIH vs. NORM, but this was unaffected by Los. These results indicate that the blood pressure elevation and endothelial dysfunction associated with CIH is dependent, at least in part, on RAS signaling. PMID:22728949

  20. [Vulvar oedema revealing systemic mastocytosis].

    PubMed

    Deveza, E; Locatelli, F; Girardin, M; Valmary-Degano, S; Daguindau, E; Aubin, F; Humbert, P; Pelletier, F

    2015-11-01

    Systemic mastocytosis is characterised by abnormal proliferation of mast cells in various organs. We report an original case of systemic mastocytosis revealed by vulvar oedema. A 24-year-old patient was examined in the dermatology department for vulvar oedema appearing during sexual intercourse. She presented vasomotor dysfunction of the lower limbs, urticaria on the trunk on exertion, diarrhoea and bone pains. Laboratory tests showed serum tryptase of 29.7μg and plasma histamine at twice the normal value. Myelogram results showed infiltration by dysmorphic mast cells. Screening for c-kit D816V mutation was positive. Duodenal biopsies revealed mast-cell clusters with aggregation involving over 15 mast cells. CD2 staining was inconclusive and CD25 staining could not be done. Trabecular osteopenia was found, and we thus made a diagnosis of indolent systemic mastocytosis (ISM variant Ia) as per the WHO 2008 criteria. Symptomatic treatment was initiated (antiH1, H2, antileukotrienes) and clinical and laboratory follow-up was instituted. The cutaneous signs leading to diagnosis in this patient of systemic mastocytosis involving several organs were seemingly minimal signs associated with mastocyte degranulation. This is the third recorded case of mastocytosis revealed by vulvar oedema and the first case revealing systemic involvement. The two previously reported cases of vulvar oedema revealed cutaneous mastocytosis alone. Mastocytosis, whether systemic or cutaneous, must be included among the differential diagnoses considered in the presence of vulvar oedema. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. CEREBROSPINAL FLUID STASIS AND ITS CLINICAL SIGNIFICANCE

    PubMed Central

    Whedon, James M.; Glassey, Donald

    2010-01-01

    We hypothesize that stasis of the cerebrospinal fluid (CSF) occurs commonly and is detrimental to health. Physiologic factors affecting the normal circulation of CSF include cardiovascular, respiratory, and vasomotor influences. The CSF maintains the electrolytic environment of the central nervous system (CNS), influences systemic acid-base balance, serves as a medium for the supply of nutrients to neuronal and glial cells, functions as a lymphatic system for the CNS by removing the waste products of cellular metabolism, and transports hormones, neurotransmitters, releasing factors, and other neuropeptides throughout the CNS. Physiologic impedance or cessation of CSF flow may occur commonly in the absence of degenerative changes or pathology and may compromise the normal physiologic functions of the CSF. CSF appears to be particularly prone to stasis within the spinal canal. CSF stasis may be associated with adverse mechanical cord tension, vertebral subluxation syndrome, reduced cranial rhythmic impulse, and restricted respiratory function. Increased sympathetic tone, facilitated spinal segments, dural tension, and decreased CSF flow have been described as closely related aspects of an overall pattern of structural and energetic dysfunction in the axial skeleton and CNS. Therapies directed at affecting CSF flow include osteopathic care (especially cranial manipulation), craniosacral therapy, chiropractic adjustment of the spine and cranium, Network Care (formerly Network Chiropractic), massage therapy (including lymphatic drainage techniques), yoga, therapeutic breathwork, and cerebrospinal fluid technique. Further investigation into the nature and causation of CSF stasis, its potential effects upon human health, and effective therapies for its correction is warranted. PMID:19472865

  2. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction.

    PubMed

    Fisher, Mark

    2008-01-01

    Vascular endothelial injury has multiple elements, and this article focuses on ischemia-related processes that have particular relevance to ischemic stroke. Distinctions between necrotic and apoptotic cell death provide a basic science context in which to better understand the significance of classical core and penumbra concepts of acute stroke, with apoptotic processes particularly prominent in the penumbra. The mitochondria are understood to serve as a reservoir of proteins that mediate apoptosis. Oxidative stress pathways generating reactive oxygen species (ROS) are prominent in endothelial injury, both ischemic and nonischemic, with prominent roles of enzyme- and nonenzymemediated pathways; mitochondria once again have a critical role, particularly in the nonenzymatic pathways generating ROS. Inflammation also contributes to vascular endothelial injury, and endothelial cells have the capacity to rapidly increase expression of inflammatory mediators following ischemic challenge; this leads to enhanced leukocyte-endothelial interactions mediated by selectins and adhesion molecules. Preconditioning consists of a minor version of an injurious event, which in turn may protect vascular endothelium from injury following a more substantial event. Presence of the blood-brain barrier creates unique responses to endothelial injury, with permeability changes due to impairment of endothelial-matrix interactions compounding altered vasomotor tone and tissue perfusion mediated by nitric oxide. Pharmacological protection against vascular endothelial injury can be provided by several of the phosphodiesterases (cilostazol and dipyridamole), along with statins. Optimal clinical responses for protection of brain vascular endothelium may use preconditioning as a model, and will likely require combined protection against apoptosis, ROS, and inflammation.

  3. Peroxynitrite Disrupts Endothelial Caveolae Leading to eNOS Uncoupling and Diminished Flow-Mediated Dilation in Coronary Arterioles of Diabetic Patients

    PubMed Central

    Cassuto, James; Dou, Huijuan; Czikora, Istvan; Szabo, Andras; Patel, Vijay S.; Kamath, Vinayak; Belin de Chantemele, Eric; Feher, Attila; Romero, Maritza J.; Bagi, Zsolt

    2014-01-01

    Peroxynitrite (ONOO−) contributes to coronary microvascular dysfunction in diabetes mellitus (DM). We hypothesized that in DM, ONOO− interferes with the function of coronary endothelial caveolae, which plays an important role in nitric oxide (NO)-dependent vasomotor regulation. Flow-mediated dilation (FMD) of coronary arterioles was investigated in DM (n = 41) and non-DM (n = 37) patients undergoing heart surgery. NO-mediated coronary FMD was significantly reduced in DM patients, which was restored by ONOO− scavenger, iron-(III)-tetrakis(N-methyl-4'pyridyl)porphyrin-pentachloride, or uric acid, whereas exogenous ONOO− reduced FMD in non-DM subjects. Immunoelectron microscopy demonstrated an increased 3-nitrotyrosine formation (ONOO−-specific protein nitration) in endothelial plasma membrane in DM, which colocalized with caveolin-1 (Cav-1), the key structural protein of caveolae. The membrane-localized Cav-1 was significantly reduced in DM and also in high glucose–exposed coronary endothelial cells. We also found that DM patients exhibited a decreased number of endothelial caveolae, whereas exogenous ONOO− reduced caveolae number. Correspondingly, pharmacological (methyl-β-cyclodextrin) or genetic disruption of caveolae (Cav-1 knockout mice) abolished coronary FMD, which was rescued by sepiapterin, the stable precursor of NO synthase (NOS) cofactor, tetrahydrobiopterin. Sepiapterin also restored coronary FMD in DM patients. Thus, we propose that ONOO− selectively targets and disrupts endothelial caveolae, which contributes to NOS uncoupling, and, hence, reduced NO-mediated coronary vasodilation in DM patients. PMID:24353182

  4. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Luo, Hanwen; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected.more » Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine metabolic dysfunction than male. • There were interactions among caffeine, high-fat diet and gender.« less

  5. Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction.

    PubMed

    Czikora, Istvan; Sridhar, Supriya; Gorshkov, Boris; Alieva, Irina B; Kasa, Anita; Gonzales, Joyce; Potapenko, Olena; Umapathy, Nagavedi S; Pillich, Helena; Rick, Ferenc G; Block, Norman L; Verin, Alexander D; Chakraborty, Trinad; Matthay, Michael A; Schally, Andrew V; Lucas, Rudolf

    2014-01-01

    Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter.

  6. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restoredmore » mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2 prevented methylglyoxal-induced GSH depletion in liver.« less

  7. Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction

    PubMed Central

    Chen, Yeong-Chang; Wei, Tsui-Shan; Sun, Ding-Ping; Wang, Jhi-Joung; Yeh, Ching-Hua

    2015-01-01

    Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs) modulate cytokine synthesis and release. Trichostatin A (TSA), an HDAC inhibitor, is documented to be anti-inflammatory and neuroprotective. We investigated whether TSA reduces lipopolysaccharide- (LPS-) induced neuroinflammation and cognitive dysfunction. ICR mice were first intraperitoneally (i.p.) injected with vehicle or TSA (0.3 mg/kg). One hour later, they were injected (i.p.) with saline or Escherichia coli LPS (1 mg/kg). We analyzed the food and water intake, body weight loss, and sucrose preference of the injected mice and then determined the microglia activation and inflammatory cytokine expression in the brains of LPS-treated mice and LPS-treated BV-2 microglial cells. In the TSA-pretreated mice, microglial activation was lower, anhedonia did not occur, and LPS-induced cognitive dysfunction (anorexia, weight loss, and social withdrawal) was attenuated. Moreover, mRNA expression of HDAC2, HDAC5, indoleamine 2,3-dioxygenase (IDO), TNF-α, MCP-1, and IL-1β in the brain of LPS-challenged mice and in the LPS-treated BV-2 microglial cells was lower. TSA diminished LPS-induced inflammatory responses in the mouse brain and modulated the cytokine-associated changes in cognitive function, which might be specifically related to reducing HDAC2 and HDAC5 expression. PMID:26273133

  8. Occurrence of thyroxine tablet (Thyradin S(®)) - induced liver dysfunction in a patient with subclinical hypothyroidism.

    PubMed

    Kang, Shino; Amino, Nobuyuki; Kudo, Takumi; Nishihara, Eijun; Ito, Mitsuru; Hirokawa, Mitsuyoshi; Miyauchi, Akira; Tamada, Daisuke; Yasuda, Takenori

    2015-01-01

    A 54-year-old woman with subclinical hypothyroidism developed liver dysfunction after increasing dose of levothyroxine (L-T4) in tablet form (Thyradin S(®)) from 25μg to 50μg. Viral hepatitis, autoimmune hepatitis and NASH were ruled out with examinations. After cessation of levothyroxine in 50μg tablet form, liver enzymes gradually returned to normal. She was diagnosed levothyroxine-induced liver injury, based on criteria proposed in DDW-J 2004 workshop. Thyradin S(®) powder 0.01% (here in after referred to as L-T4 in powder form) was tried as an alternative, and liver enzymes have remained within normal range. As for Thyradin S(®) tablet, additives are different for each type of levothyroxine sodium content. The difference of additive is whether Fe2O3 is contained or not: it is not included in Thyradin S(®) 50μg tablet and powder form. Although there are two case reports in the Japanese literature and three case reports in the English literature of liver dysfunction suspected due to L-T4, we cannot find past reports about cases of drug induced liver dysfunction due to Fe2O3 free levothyroxine tablet form. This is a rare case report of drug induced liver injury due to Fe2O3 free levothyroxine tablet form, and administration of L-T4 in powder form may be useful for treatment of cases similar to this one.

  9. Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro

    PubMed Central

    Üllen, Andreas; Fauler, Günter; Bernhart, Eva; Nusshold, Christoph; Reicher, Helga; Leis, Hans-Jörg; Malle, Ernst; Sattler, Wolfgang

    2012-01-01

    2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase–hydrogen peroxide–chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood–brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting. PMID:22982051

  10. Elucidation of the mechanism of atorvastatin-induced myopathy in a rat model.

    PubMed

    El-Ganainy, Samar O; El-Mallah, Ahmed; Abdallah, Dina; Khattab, Mahmoud M; Mohy El-Din, Mahmoud M; El-Khatib, Aiman S

    2016-06-01

    Myopathy is among the well documented and the most disturbing adverse effects of statins. The underlying mechanism is still unknown. Mitochondrial dysfunction related to coenzyme Q10 decline is one of the proposed theories. The present study aimed to investigate the mechanism of atorvastatin-induced myopathy in rats. In addition, the mechanism of the coenzyme Q10 protection was investigated with special focus of mitochondrial alterations. Sprague-Dawely rats were treated orally either with atorvastatin (100mg/kg) or atorvastatin and coenzyme Q10 (100mg/kg). Myopathy was assessed by measuring serum creatine kinase (CK) and myoglobin levels together with examination of necrosis in type IIB fiber muscles. Mitochondrial dysfunction was evaluated by measuring muscle lactate/pyruvate ratio, ATP level, pAkt as well as mitochondrial ultrastructure examination. Atorvastatin treatment resulted in a rise in both CK (2X) and myoglobin (6X) level with graded degrees of muscle necrosis. Biochemical determinations showed prominent increase in lactate/pyruvate ratio and a decline in both ATP (>80%) and pAkt (>50%) levels. Ultrastructure examination showed mitochondrial swelling with disrupted organelle membrane. Co-treatment with coenzyme Q10 induced reduction in muscle necrosis as well as in CK and myoglobin levels. In addition, coenzyme Q10 improved all mitochondrial dysfunction parameters including mitochondrial swelling and disruption. These results presented a model for atorvastatin-induced myopathy in rats and proved that mitochondrial dysfunction is the main contributor in statin-myopathy pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. [Effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension].

    PubMed

    Ye, Ping-xian; Ye, Ping-zhen; Zhu, Jian-hua; Chen, Wei; Gao, Dan-chen

    2014-05-01

    To investigate the effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension. A randomized, double-blind, placebo-controlled prospective study was performed. Sixty patients with diastolic dysfunction (mitral flow velocity E/A <1) and exercise-induced hypertension (SBP>200 mm Hg) treated with atorvastatin (20 mg q.d) or placebo for 1 year. Cardiopulmonary exercise test and exercise blood pressure measurement were performed. Plasma B-natriuretic peptide (BNP) concentration at rest and at peak exercise, plasma high sensitive-C reaction protein (hs-CRP) and endothelin (ET) concentration were determined at baseline and after treatment. After treatment by atorvastatin, the resting SBP, pulse pressure, the peak exercise SBP and BNP were significantly decreased; and the exercise time, metabolic equivalent, maximal oxygen uptake and anaerobic threshold were increased. All of these parameters had significant differences with baseline levels (P<0.05) and the rest pulse pressure, the peak exercise SBP and BNP, and the exercise time had significant differences compared with placebo treatment (P<0.05). Plasma concentrations of hs-CRP and ET were markedly reduced by atorvastatin treatment compared with baseline and placebo (P<0.05). No difference in above parameters was found before and after placebo treatment (P>0.05). In patients with diastolic dysfunction at rest and exercise-induced hypertension, atorvastatin can effectively reduce plasma hs-CRP and ET level, lower blood pressure and peak exercise SBP, decrease peak exercise plasma BNP concentration, and ultimately improve exercise tolerance.

  12. Cardio-renal syndromes: from foggy bottoms to sunny hills.

    PubMed

    Ronco, Claudio

    2011-11-01

    "Cardio-renal syndromes" (CRS) are disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. The current definition has been expanded into five subtypes whose etymology reflects the primary and secondary pathology, the time-frame and simultaneous cardiac and renal co-dysfunction secondary to systemic disease: CRS type I: acute worsening of heart function (AHF-ACS) leading to kidney injury and/or dysfunction. CRS type II: chronic abnormalities in heart function (CHF-CHD) leading to kidney injury or dysfunction. CRS type III: acute worsening of kidney function (AKI) leading to heart injury and/or dysfunction. CRS type IV: chronic kidney disease (CKD) leading to heart injury, disease and/or dysfunction. CRS type V: systemic conditions leading to simultaneous injury and/or dysfunction of heart and kidney. These different subtypes may have a different pathophysiological mechanism and they may represent separate entities in terms of prevention and therapy.

  13. Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress.

    PubMed

    Graziani, Manuela; Sarti, Paolo; Arese, Marzia; Magnifico, Maria Chiara; Badiani, Aldo; Saso, Luciano

    2017-01-01

    Cocaine abuse has long been known to cause morbidity and mortality due to its cardiovascular toxic effects. The pathogenesis of the cardiovascular toxicity of cocaine use has been largely reviewed, and the most recent data indicate a fundamental role of oxidative stress in cocaine-induced cardiovascular toxicity, indicating that mitochondrial dysfunction is involved in the mechanisms of oxidative stress. The comprehension of the mechanisms involving mitochondrial dysfunction could help in selecting the most appropriate mitochondria injury biological marker, such as superoxide dismutase-2 activity and glutathionylated hemoglobin. The potential use of modulators of oxidative stress (mitoubiquinone, the short-chain quinone idebenone, and allopurinol) in the treatment of cocaine cardiotoxic effects is also suggested to promote further investigations on these potential mitochondria-targeted antioxidant strategies.

  14. Olive Oil Supplements Ameliorate Endothelial Dysfunction Caused by Concentrated Ambient Particulate Matter Exposure in Healthy Human Volunteers

    EPA Science Inventory

    Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...

  15. Obesity-Induced Diabetes and Lower Urinary Tract Fibrosis Promote Urinary Voiding Dysfunction in a Mouse Model

    PubMed Central

    Gharaee-Kermani, Mehrnaz; Rodriguez-Nieves, Jose A.; Mehra, Rohit; Vezina, Chad A.; Sarma, Aruna V.; Macoska, Jill A.

    2017-01-01

    BACKGROUND Progressive aging- and inflammation-associated fibrosis effectively remodels the extracellular matrix (ECM) to increase prostate tissue stiffness and reduce urethral flexibility, resulting in urinary flow obstruction and lower urinary tract symptoms (LUTS). In the current study, we sought to test whether senescence-accelerated mouse prone (SAMP)6 mice, which were reported to develop prostatic fibrosis, would also develop LUTS, and whether these symptoms would be exacerbated by diet-induced obesity and concurrent Type 2 Diabetes Mellitus (T2DM). METHODS To accomplish this, SAMP6 and AKR/J background strain mice were fed regular mouse chow, low fat diet chow, or high fat diet chow for 8 months, then subjected to glucose tolerance tests, assessed for plasma insulin levels, evaluated for urinary voiding function, and assessed for lower urinary tract fibrosis. RESULTS The results of these studies show that SAMP6 mice and AKR/J background strain mice develop diet-induced obesity and T2DM concurrent with urinary voiding dysfunction. Moreover, urinary voiding dysfunction was more severe in SAMP6 than AKR/J mice and was associated with pronounced prostatic and urethral tissue fibrosis. CONCLUSIONS Taken together, these studies suggest that obesity, T2DM, lower urinary tract fibrosis, and urinary voiding dysfunction are inextricably and biologically linked. Prostate. PMID:23532836

  16. Anti-Inflammatory Activity of Marine Ovothiol A in an In Vitro Model of Endothelial Dysfunction Induced by Hyperglycemia.

    PubMed

    Castellano, Immacolata; Di Tomo, Pamela; Di Pietro, Natalia; Mandatori, Domitilla; Pipino, Caterina; Formoso, Gloria; Napolitano, Alessandra; Palumbo, Anna; Pandolfi, Assunta

    2018-01-01

    Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs) from women affected by gestational diabetes (GD) and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor- α -stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.

  17. Direct Evidence that Myocardial Insulin Resistance following Myocardial Ischemia Contributes to Post-Ischemic Heart Failure

    PubMed Central

    Fu, Feng; Zhao, Kun; Li, Jia; Xu, Jie; Zhang, Yuan; Liu, Chengfeng; Yang, Weidong; Gao, Chao; Li, Jun; Zhang, Haifeng; Li, Yan; Cui, Qin; Wang, Haichang; Tao, Ling; Wang, Jing; Quon, Michael J; Gao, Feng

    2015-01-01

    A close link between heart failure (HF) and systemic insulin resistance has been well documented, whereas myocardial insulin resistance and its association with HF are inadequately investigated. This study aims to determine the role of myocardial insulin resistance in ischemic HF and its underlying mechanisms. Male Sprague-Dawley rats subjected to myocardial infarction (MI) developed progressive left ventricular dilation with dysfunction and HF at 4 wk post-MI. Of note, myocardial insulin sensitivity was decreased as early as 1 wk after MI, which was accompanied by increased production of myocardial TNF-α. Overexpression of TNF-α in heart mimicked impaired insulin signaling and cardiac dysfunction leading to HF observed after MI. Treatment of rats with a specific TNF-α inhibitor improved myocardial insulin signaling post-MI. Insulin treatment given immediately following MI suppressed myocardial TNF-α production and improved cardiac insulin sensitivity and opposed cardiac dysfunction/remodeling. Moreover, tamoxifen-induced cardiomyocyte-specific insulin receptor knockout mice exhibited aggravated post-ischemic ventricular remodeling and dysfunction compared with controls. In conclusion, MI induces myocardial insulin resistance (without systemic insulin resistance) mediated partly by ischemia-induced myocardial TNF-α overproduction and promotes the development of HF. Our findings underscore the direct and essential role of myocardial insulin signaling in protection against post-ischemic HF. PMID:26659007

  18. The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration.

    PubMed

    Pivovarova, Natalia B; Stanika, Ruslan I; Kazanina, Galina; Villanueva, Idalis; Andrews, S Brian

    2014-02-01

    Zinc has been implicated in neurodegeneration following ischemia. In analogy with calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage remains unclear. Here, we report that under conditions mimicking ischemia in hippocampal neurons - normal (2 mM) calcium plus elevated (> 100 μM) exogenous zinc - mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization, and reactive oxygen species generation were only observed after toxic stimulation in calcium-containing media. This contrasts with the lack of any mitochondrial response in zinc-containing but calcium-free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore-induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium- and zinc-containing media, depolarization-induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  19. Carbachol inhibits TNF-α-induced endothelial barrier dysfunction through alpha 7 nicotinic receptors.

    PubMed

    Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong

    2010-10-01

    To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor.

  20. Carbachol inhibits TNF-α-induced endothelial barrier dysfunction through alpha 7 nicotinic receptors

    PubMed Central

    Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong

    2010-01-01

    Aim: To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Methods: Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Results: Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. Conclusion: These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor. PMID:20871620

  1. Molybdenum induces pancreatic β-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tsung-Yuan; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Yen, Cheng-Chieh

    2016-03-01

    Molybdenum (Mo), a well-known toxic environmental and industrial pollutant, causes adverse health effects and diseases in humans and has received attention as a potential risk factor for DM. However, the roles of Mo in the mechanisms of the toxicological effects in pancreatic β-cells are mostly unclear. In this study, the results revealed dysfunction of insulin secretion and apoptosis in the pancreatic β-cell-derived RIN-m5F cells and the isolated mouse islets in response to Mo. These effects were accompanied by a mitochondria-dependent apoptotic signals including a decreased in the MMP, an increase in cytochrome c release, and the activation of caspase cascadesmore » and PARP. In addition, ER stress was triggered as indicated by several key molecules of the UPR. Furthermore, exposure to Mo induced the activation of ERK1/2, JNK, AMPKα, and GSK3-α/β. Pretreatment with specific pharmacological inhibitors (in RIN-m5F cells and isolated mouse islets) of JNK (SP600125) and AMPK (Compound C) or transfection with si-RNAs (in RIN-m5F cells) specific to JNK and AMPKα effectively prevented the Mo-induced apoptosis and related signals, but inhibitors of ERK1/2 and GSK3-α/β (PD98059 and LiCl, respectively) did not reverse the Mo-induced effects. Additionally, both the inhibitors and specific si-RNAs could suppress the Mo-induced phosphorylation of JNK and AMPKα each other. Taken together, these results suggest that Mo exerts its cytotoxicity on pancreatic β-cells by inducing dysfunction and apoptosis via interdependent JNK and AMPK activation downstream-regulated mitochondrial-dependent and ER stress-triggered apoptosis pathways. - Highlights: • Molybdenum (Mo) induces pancreatic β-cell dysfunction and apoptosis. • Mo causes β-cell death via mitochondria-dependent caspase cascades signals. • ER stress-triggered apoptotic pathway also regulates Mo-induced β-cell death. • Interdependent of JNK and AMPK activation involves in Mo-induced β-cell apoptosis.« less

  2. Protective effects of sea cucumber (Holothuria atra) extract on testicular dysfunction induced by immune suppressant drugs in Wistar rats.

    PubMed

    Saad, D Y; Soliman, M M; Mohamed, A A; Youssef, G B

    2018-04-23

    The current study was aimed to evaluate the protective effect of Holothurian atra (HA) extract; naturally occurring marine resource, against methotrexate (MTX) induced testicular dysfunction. Mature rats received either MTX (20 mg/kg, intraperitoneally) or saline on the 7th day of experiment al design. Seven days prior and after MTX-injection, rats received HA at dose of 300 mg/kg intragastrically (HA + MTX group; HA group alone). Serum was extracted and testicular tissues were examined for the changes in serum biochemistry (liver & kidney biomarkers, testicular hormones and antioxidants), molecular and histopthological alterations using RT-PCR and immunohistochemistry. MTX-injected rats induced alteration in all testicular parameters. Prior administration of HA ameliorated the MTX-induced oxidative stress. HA administration normalised MTX-induced decrease in serum levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), reproductive hormones (FSH, LH and testosterone) and antioxidants GST, SOD and catalase. MTX-injected rats down-regulated mRNA expression of GST, SOD, steroidogenesis associated genes, IFN-γ, Bcl2 and NFKB. MTX up-regulated BAX expression and caspase 9 immunoreactivity that were ameliorated in HA + MTX group. Collectively, HA ameliorated and restored all altered genes. In conclusion, HA is a promising supplement that is helpful in protection against testicular cytotoxicity and dysfunction induced by methotrexate. © 2018 Blackwell Verlag GmbH.

  3. Aqueous Extract of Allium sativum (Linn.) Bulbs Ameliorated Pituitary-Testicular Injury and Dysfunction in Wistar Rats with Pb-Induced Reproductive Disturbances

    PubMed Central

    Ayoka, Abiodun O.; Ademoye, Aderonke K.; Imafidon, Christian E.; Ojo, Esther O.; Oladele, Ayowole A.

    2016-01-01

    AIM: To determine the effects of aqueous extract of Allium sativum bulbs (AEASAB) on pituitary-testicular injury and dysfunction in Wistar rats with lead-induced reproductive disturbances. MATERIALS AND METHODS: Male Wistar rats were divided into 7 groups such that the control group received propylene glycol at 0.2 ml/100 g intraperitoneally for 10 consecutive days, the toxic group received lead (Pb) alone at 15 mg/kg/day via intraperitoneal route for 10 days while the treatment groups were pretreated with lead as the toxic group after which they received graded doses of the extract at 50, 100 and 200 mg/kg/day via oral route for 28 days. RESULTS: Pb administration induced significant deleterious alterations in the antioxidant status of the brain and testis, sperm characterization (counts, motility and viability) as well as reproductive hormones (FSH, LH and testosterone) of exposed rats (p < 0.05). These were significantly reversed in the AEASAB-treated groups (p < 0.05). Also, there was marked improvement in the Pb-induced vascular congestion and cellular loss in the pituitary while the observed Pb-induced severe testicular vacuolation was significantly reversed in the representative photomicrographs, following administration of the extract. CONCLUSION: AEASAB treatment ameliorated the pituitary-testicular injury and dysfunction in Wistar rats with Pb-Induced reproductive disturbances. PMID:27335588

  4. Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.

    PubMed

    Lu, Qing; Mundy, Miles; Chambers, Eboni; Lange, Thilo; Newton, Julie; Borgas, Diana; Yao, Hongwei; Choudhary, Gaurav; Basak, Rajshekhar; Oldham, Mahogany; Rounds, Sharon

    2017-12-01

    Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.

  5. Efficacy of paracetamol on patent ductus arteriosus closure may be dose dependent: evidence from human and murine studies.

    PubMed

    El-Khuffash, Afif; Jain, Amish; Corcoran, David; Shah, Prakesh S; Hooper, Christopher W; Brown, Naoko; Poole, Stanley D; Shelton, Elaine L; Milne, Ginger L; Reese, Jeff; McNamara, Patrick J

    2014-09-01

    We evaluated the clinical effectiveness of variable courses of paracetamol on patent ductus arteriosus (PDA) closure and examined its effect on the in vitro term and preterm murine ductus arteriosus (DA). Neonates received one of the following three paracetamol regimens: short course of oral paracetamol (SCOP), long course of oral paracetamol (LCOP), and intravenous paracetamol (IVP) for 2-6 d. Pressure myography was used to examine changes in vasomotor tone of the preterm and term mouse DA in response to paracetamol or indomethacin. Their effect on prostaglandin synthesis by DA explants was measured by mass spectroscopy. Twenty-one preterm infants were included. No changes in PDA hemodynamics were seen in SCOP infants (n = 5). The PDA became less significant and eventually closed in six LCOP infants (n = 7). PDA closure was achieved in eight IVP infants (n = 9). On pressure myograph, paracetamol induced a concentration-dependent constriction of the term mouse DA, up to 30% of baseline (P < 0.01), but required >1 µmol/l. Indomethacin induced greater DA constriction and suppression of prostaglandin synthesis (P < 0.05). The clinical efficacy of paracetamol on PDA closure may depend on the duration of treatment and the mode of administration. Paracetamol is less potent than indomethacin for constriction of the mouse DA in vitro.

  6. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury.

    PubMed

    McDonough, Kathleen H; Virag, Jitka Ismail

    2006-01-01

    Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart by multiple brief ischemia/reperfusion episodes and by numerous pharmacological agents as well as heat stress and modified forms of lipopolysaccharide. The myocardium develops protection after an initial stress such that during a second stress, the myocardium does not exhibit as much damage as does a non-protected heart. Many agents can induce this protection which has been termed preconditioning. Both early preconditioning (protection that is measurable min to hours after the initial stimulus) and late preconditioning (protection that is measurable hours to days after the initial trigger or stimulus) are effective in protecting the heart from prolonged ischemia and reperfusion injury. Understanding the mechanisms of sepsis/bacteremia induced dysfunction and protection and if the dysfunction and protection are the products of the same intracellular pathways is important in protecting the heart from failing to perform adequately during severe sepsis and/or septic shock and for understanding the multitude of mechanism by which the myocardium maintains reserve capacity.

  7. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma

    PubMed Central

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M.; Messerer, David A. C.; Radermacher, Peter; Kalbitz, Miriam; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction. PMID:26556956

  8. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeong-Eun; Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, andmore » eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.« less

  9. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory

    PubMed Central

    Heisler, Jillian M.; O’Connor, Jason C.

    2015-01-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057

  10. Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β Signaling in Cadmium-Induced DA-D2 Receptor-Mediated Motor Dysfunctions: Protective Role of Quercetin.

    PubMed

    Gupta, Richa; Shukla, Rajendra K; Pandey, Ankita; Sharma, Tanuj; Dhuriya, Yogesh K; Srivastava, Pranay; Singh, Manjul P; Siddiqi, Mohammad Imran; Pant, Aditya B; Khanna, Vinay K

    2018-02-06

    Given increasing risk of cadmium-induced neurotoxicity, the study was conducted to delineate the molecular mechanisms associated with cadmium-induced motor dysfunctions and identify targets that govern dopaminergic signaling in the brain involving in vivo, in vitro, and in silico approaches. Selective decrease in dopamine (DA)-D2 receptors on cadmium exposure was evident which affected the post-synaptic PKA/DARPP-32/PP1α and β-arrestin/Akt/GSK-3β signaling concurrently in rat corpus striatum and PC12 cells. Pharmacological inhibition of PKA and Akt in vitro demonstrates that both pathways are independently modulated by DA-D2 receptors and associated with cadmium-induced motor deficits. Ultrastructural changes in the corpus striatum demonstrated neuronal degeneration and loss of synapse on cadmium exposure. Further, molecular docking provided interesting evidence that decrease in DA-D2 receptors may be due to direct binding of cadmium at the competitive site of dopamine on DA-D2 receptors. Treatment with quercetin resulted in the alleviation of cadmium-induced behavioral and neurochemical alterations. This is the first report demonstrating that cadmium-induced motor deficits are associated with alteration in postsynaptic dopaminergic signaling due to a decrease in DA-D2 receptors in the corpus striatum. The results further demonstrate that quercetin has the potential to alleviate cadmium-induced dopaminergic dysfunctions.

  11. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.

  12. Vasomotor response to cold stimulation in human capsaicin-induced hyperalgesic area.

    PubMed

    Pud, Dorit; Andersen, Ole Kaeseler; Arendt-Nielsen, Lars; Eisenberg, Elon; Yarnitsky, David

    2005-07-01

    Cooling the skin induces sympathetically driven vasoconstriction, with some vasoparalytic dilatation at the lowest temperatures. Neurogenic inflammation, on the other hand, entails vasodilatation. In this study we investigated the balance between vasoconstriction and vasodilatation in an area of experimentally induced secondary hyperalgesia (2 degrees HA), in response to low-temperature stimulations. Fourteen healthy volunteers were exposed to three 30-s long cold stimuli (20, 10, and 0 degrees C) applied, at three adjacent sites, before (baseline) and 8 min after intradermal injection of 50 microg capsaicin to the volar forearm. The cold stimuli were applied distally to the injection site within the 2 degrees HA. Blood flux (BF) and skin temperatures were measured at four different regions (proximally, and distally to the capsaicin injection and at the 0, 10, and 20 degrees C thermode sites) all within the 2 degrees HA. The vascular measurements were conducted five times. Results showed a marked increase in BF after baseline cold stimulation (P<0.001) at the 0 degrees C compared with the three other sites. In addition, vasodilatory effect (elevated BF) was found following the capsaicin injection compared with baseline for all regions (P<0.001): the non-cooled area was dilated by 450+/-5.1%; The vasoconstrictive effect for the 10 and 20 degrees C did not overcome the capsaicin vasodilatation, but did reduce it, with dilatation of 364+/-7.0% and 329+/-7.3%, respectively. For 0 degrees C, a dilatation of 407+/-6.5% was seen. It is concluded that in this experimental model, and potentially in the equivalent clinical syndromes, vasodilatation induced by the inflammation is only slightly reduced by cold stimulation such that it is still dominant, despite some cold-induced vasoconstriction.

  13. α-Enolase plays a catalytically independent role in doxorubicin-induced cardiomyocyte apoptosis and mitochondrial dysfunction.

    PubMed

    Gao, Si; Li, Hong; Feng, Xiao-jun; Li, Min; Liu, Zhi-ping; Cai, Yi; Lu, Jing; Huang, Xiao-yang; Wang, Jiao-jiao; Li, Qin; Chen, Shao-rui; Ye, Jian-tao; Liu, Pei-qing

    2015-02-01

    α-Enolase is a glycolytic enzyme with "second jobs" beyond its catalytic activity. However, its possible contribution to cardiac dysfunction remains to be determined. The present study aimed to investigate the role of α-enolase in doxorubicin (Dox)-induced cardiomyopathy as well as the underlying mechanisms. The expression of α-enolase was detected in rat hearts and primary cultured rat cardiomyocytes with or without Dox administration. An adenovirus carrying short-hairpin interfering RNA targeting α-enolase was constructed and transduced specifically into the heart by intramyocardial injection. Heart function, cell apoptosis and mitochondrial function were measured following Dox administration. In addition, by using gain- and loss-of-function approaches to regulate α-enolase expression in primary cultured rat cardiomyocytes, we investigated the role of endogenous, wide type and catalytically inactive mutant α-enolase in cardiomyocyte apoptosis and ATP generation. Furthermore, the involvement of α-enolase in AMPK phosphorylation was also studied. The mRNA and protein expression of cardiac α-enolase was significantly upregulated by Dox. Genetic silencing of α-enolase in rat hearts and cultured cardiomyocytes attenuated Dox-induced apoptosis and mitochondrial dysfunction. In contrast, overexpression of wide-type or catalytically inactive α-enolase in cardiomyocytes mimicked the detrimental role of Dox in inducing apoptosis and ATP reduction. AMPK dephosphorylation was further demonstrated to be involved in the proapoptotic and ATP-depriving effects of α-enolase. Our findings provided the evidence that α-enolase has a catalytically independent role in inducing cardiomyocyte apoptosis and mitochondrial dysfunction, which could be at least partially contributed to the inhibition of AMPK phosphorylation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats.

    PubMed

    Rossoni, Giuseppe; Manfredi, Barbara; Tazzari, Valerio; Sparatore, Anna; Trivulzio, Silvio; Del Soldato, Piero; Berti, Ferruccio

    2010-12-01

    We investigated the effects of the hydrogen sulfide (H₂S)-releasing derivatives of aspirin (ACS14) and salicylic acid (ACS21) in a rat model of metabolic syndrome induced by glutathione (GSH) depletion, causing hypertension and other pathological cardiovascular alterations. GSH depletion was induced in normal rats by the GSH-synthase inhibitor buthionine sulfoximine (BSO, 30 mmol/L day for seven days in the drinking water). Systolic blood pressure and heart rate were measured daily by the tail-cuff method, and plasma thromboxane B₂, 6-keto-prostaglandin F(2α), 8-isoprostane, GSH, insulin and glucose were determined at the end of the seven-day BSO schedule. In addition, ischemia/reperfusion-induced myocardial dysfunction and endothelial dysfunction were assayed on isolated heart and aortic rings, respectively. Unlike aspirin and salicylic acid, ACS14 and ACS21 reduced BSO-induced hypertension, also lowering plasma levels of thromboxane B₂, 8-isoprostane and insulin, while GSH remained in the control range. Neither ACS14 nor ACS21 caused gastric lesions. Both restored the endothelial dysfunction observed in aortic rings from BSO-treated rats, and in ischemia/reperfusion experiments they lowered left ventricular end-diastolic pressure, consequently improving the developed pressure and the maximum rise and fall of left ventricular pressure. Together with this improvement of heart mechanics there were reductions in the activity of creatine kinase and lactate dehydrogenase in the cardiac perfusate. This implies that H₂S released by both ACS14 and ACS21 was involved in protecting the heart from ischemia/reperfusion, and significantly limited vascular endothelial dysfunction in aortic tissue and the related hypertension. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Social stress in mice induces voiding dysfunction and bladder wall remodeling

    PubMed Central

    Chang, Andy; Butler, Stephan; Sliwoski, Joanna; Valentino, Rita; Canning, Douglas

    2009-01-01

    Several studies have anecdotally reported the occurrence of altered urinary voiding patterns in rodents exposed to social stress. A recent study characterized the urodynamic and central changes in a rat model of social defeat. Here, we describe a similar voiding phenotype induced in mice by social stress and in addition we describe potential molecular mechanisms underlying the resulting bladder wall remodeling. The mechanism leading to the altered voiding habits and underlying bladder phenotype may be relevant to the human syndrome of dysfunctional voiding which is thought to have a psychological component. To better characterize and investigate social stress-induced bladder wall hypertrophy, FVB mice (6 wk old) were randomized to either social stress or control manipulation. The stress involved repeated cycles of a 1-h direct exposure to a larger aggressive C57Bl6 breeder mouse followed by a 23-h period of barrier separation over 4 wk. Social stress resulted in altered urinary voiding patterns suggestive of urinary retention and increased bladder mass. In vivo cystometry revealed an increased volume at micturition with no change in the voiding pressure. Examination of these bladders revealed increased nuclear expression of the transcription factors MEF-2 and NFAT, as well as increased expression of the myosin heavy chain B isoform mRNA. BrdU uptake was increased within the urothelium and lamina propria layers in the social stress group. We conclude that social stress induces urinary retention that ultimately leads to shifts in transcription factors, alterations in myosin heavy chain isoform expression, and increases in DNA synthesis that mediate bladder wall remodeling. Social stress-induced bladder dysfunction in rodents may provide insight into the underlying mechanisms and potential treatment of dysfunctional voiding in humans. PMID:19587139

  16. Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart

    PubMed Central

    Toldo, Stefano; Mezzaroma, Eleonora; McGeough, Matthew D.; Peña, Carla A.; Marchetti, Carlo; Sonnino, Chiara; Van Tassell, Benjamin W.; Salloum, Fadi N.; Voelkel, Norbert F.; Hoffman, Hal M.; Abbate, Antonio

    2015-01-01

    Aims The NLRP3 inflammasome is activated in the ischaemic heart promoting caspase-1 activation, inflammation, and cell death. Ischaemic injury establishes both a priming signal (transcription of inflammasome components) and a trigger (NLRP3 activation). Whether NLRP3 activation, without priming, induces cardiac dysfunction and/or failure is unknown. The aim of this study was to assess the independent and complementary roles of the priming and the triggering signals in the heart, in the absence of ischaemia or myocardial injury. Methods and results We used mice with mutant NLRP3 (constitutively active), NLRP3-A350V, under the control of tamoxifen-driven expression of the Cre recombinase (Nlrp3-A350V/CreT mice). The mice were treated for 10 days with tamoxifen before measuring the activity of caspase-1, the effector enzyme in the inflammasome. Tamoxifen treatment induced the inflammasome in the spleen but not in the heart, despite expression of the mutant NLRP3-A350V. The components of the inflammasome were significantly less expressed in the heart compared with the spleen. Subclinical low-dose lipopolysaccharide (LPS; 2 mg/kg) in Nlrp3-A350V/CreT mice induced the expression of the components of the inflammasome (priming), measured using real-time PCR and western blot, leading to the formation of an active inflammasome (caspase-1 activation) in the heart and LV systolic dysfunction while low-dose LPS was insufficient to induce LV systolic dysfunction in wild-type mice (all P < 0.01 for mutant vs. wild-type mice). Conclusion The signalling pathway governing the inflammasome formation in the heart requires a priming signal in order for an active NLRP3 to induce caspase-1 activation and LV dysfunction. PMID:25524927

  17. β-Adrenergic receptors desensitization is not involved in exercise-induced cardiac fatigue: NADPH oxidase-induced oxidative stress as a new trigger.

    PubMed

    Vitiello, Damien; Boissière, Julien; Doucende, Grégory; Gayrard, Sandrine; Polge, Anne; Faure, Patrice; Goux, Aurélie; Tanguy, Stéphane; Obert, Philippe; Reboul, Cyril; Nottin, Stéphane

    2011-11-01

    Prolonged strenuous exercise (PSE) induces transient left ventricular (LV) dysfunction. Previous studies suggest that β-adrenergic pathway desensitization could be involved in this phenomenon, but it remains to be confirmed. Moreover, other underlying mechanisms involving oxidative stress have been recently proposed. The present study aimed to evaluate the involvement of both the β-adrenergic pathway and NADPH oxidase (Nox) enzyme-induced oxidative stress in myocardial dysfunction in rats following PSE. Rats were divided into 4 groups: controls (Ctrl), 4-h exercised on treadmill (PSE), and 2 groups in which Nox enzyme was inhibited with apocynin treatment (Ctrl APO and PSE APO, respectively). We evaluated cardiac function in vivo and ex vivo during basal conditions and isoproterenol stress. GSH/GSSG ratio, cardiac troponin I (cTnI) release, and lipid peroxidation (MDA) were evaluated. PSE induced a decrease in LV developed pressure, intrinsic myocardial contractility, and relaxation associated with an increase in plasma cTnI release. Our in vivo and ex vivo results demonstrated no differences in myocardial response to isoproterenol and of effective dose 50 between control and PSE rats. Interestingly, the LV dysfunction was reversed by apocynin treatment. Moreover, apocynin prevented cellular oxidation [GSH/GSSG ratio: PSE APO rats vs. PSE rats in arbitrary units (au): 1.98 ± 0.07 vs. 1.35 ± 0.10; P < 0.001]. However, no differences in MDA were observed between groups. These data suggest that myocardial dysfunction observed after PSE was not due to β-adrenergic receptor desensitization but could be due to a signaling oxidative stress from the Nox enzyme.

  18. Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia.

    PubMed

    Moshal, Karni S; Tipparaju, Srinivas M; Vacek, Thomas P; Kumar, Munish; Singh, Mahavir; Frank, Iluiana E; Patibandla, Phani K; Tyagi, Neetu; Rai, Jayesh; Metreveli, Naira; Rodriguez, Walter E; Tseng, Michael T; Tyagi, Suresh C

    2008-08-01

    Cardiomyocyte N-methyl-d-aspartate receptor-1 (NMDA-R1) activation induces mitochondrial dysfunction. Matrix metalloproteinase protease (MMP) induction is a negative regulator of mitochondrial function. Elevated levels of homocysteine [hyperhomocysteinemia (HHCY)] activate latent MMPs and causes myocardial contractile abnormalities. HHCY is associated with mitochondrial dysfunction. We tested the hypothesis that HHCY activates myocyte mitochondrial MMP (mtMMP), induces mitochondrial permeability transition (MPT), and causes contractile dysfunction by agonizing NMDA-R1. The C57BL/6J mice were administered homocystinemia (1.8 g/l) in drinking water to induce HHCY. NMDA-R1 expression was detected by Western blot and confocal microscopy. Localization of MMP-9 in the mitochondria was determined using confocal microscopy. Ultrastructural analysis of the isolated myocyte was determined by electron microscopy. Mitochondrial permeability was measured by a decrease in light absorbance at 540 nm using the spectrophotometer. The effect of MK-801 (NMDA-R1 inhibitor), GM-6001 (MMP inhibitor), and cyclosporine A (MPT inhibitor) on myocyte contractility and calcium transients was evaluated using the IonOptix video edge track detection system and fura 2-AM. Our results demonstrate that HHCY activated the mtMMP-9 and caused MPT by agonizing NMDA-R1. A significant decrease in percent cell shortening, maximal rate of contraction (-dL/dt), and maximal rate of relaxation (+dL/dt) was observed in HHCY. The decay of calcium transient amplitude was faster in the wild type compared with HHCY. Furthermore, the HHCY-induced decrease in percent cell shortening, -dL/dt, and +dL/dt was attenuated in the mice treated with MK-801, GM-6001, and cyclosporin A. We conclude that HHCY activates mtMMP-9 and induces MPT, leading to myocyte mechanical dysfunction by agonizing NMDA-R1.

  19. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction.

    PubMed

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. © 2013.

  20. Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice

    PubMed Central

    Ahmed, Lamiaa A.; Shehata, Nagwa I.; Abdelkader, Noha F.; Khattab, Mahmoud M.

    2014-01-01

    Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction. PMID:25271439

  1. The Effect of Intermittent Noise Stress on Ozone-Induced Cardiovascular Dysfunction in Wistar-Kyoto Rats

    EPA Science Inventory

    Previous studies have established that acute exposure to air pollution increases the risk of cardiovascular dysfunction. Intrinsic factors are likely the most important determinants of how the body responds to an exposure. But data also suggests that non-environmental stressors l...

  2. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    PubMed Central

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  3. Effect of Urtica dioica on memory dysfunction and hypoalgesia in an experimental model of diabetic neuropathy.

    PubMed

    Patel, Sita Sharan; Udayabanu, M

    2013-09-27

    Diabetic neuropathy is considered as a disease of the peripheral nervous system, but recent evidences suggest the involvement of central nervous system as well. In this study we evaluated the effect of Urtica dioica (UD) extract against memory dysfunction and hypoalgesia on a mouse model of streptozotocin (STZ) induced diabetic neuropathy. STZ (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes, followed by treatment with the UD extract (50 mg/kg, oral) and rosiglitazone (5 mg/kg, oral) for 8 weeks. Cognitive functions were evaluated using Morris water maze and passive avoidance step through task. Pain thresholds were measured using thermal, mechanical and chemical induced hyperalgesia. We observed that chronic diabetes resulted in a decline in circulating insulin level, elevated blood glucose, reduced body weight, increased water intake, cognitive impairment and hypoalgesia. UD significantly reduced the blood glucose and polydypsia, as well as improved the body weight, insulin level, cognition and insensate neuropathy. In conclusion, UD showed results comparable to rosiglitazone in reversing the long standing diabetes induced complications such as central and peripheral neuronal dysfunction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Cardiac microvascular rarefaction in hyperthyroidism-induced left ventricle dysfunction.

    PubMed

    Freitas, Felipe; Estato, Vanessa; Carvalho, Vinícius Frias; Torres, Rafael Carvalho; Lessa, Marcos Adriano; Tibiriçá, Eduardo

    2013-10-01

    The pathophysiology underlying hyperthyroidism-induced left ventricle (LV) dysfunction and hypertrophy directly involves the heart and indirectly involves the neuroendocrine systems. The effects of hyperthyroidism on the microcirculation are still controversial in experimental models. We investigated the effects of hyperthyroidism on the cardiac function and microcirculation of an experimental rat model. Male Wistar rats (170-250 g) were divided into two groups: the euthyroid group (n = 10), which was treated with 0.9% saline solution, and the hyperthyroid group (n = 10), which was treated with l-thyroxine (600 μg/kg/day, i.p.) during 14 days. An echocardiographic study was performed to evaluate the alterations in cardiac function, structure and geometry. The structural capillary density and the expression of angiotensin II AT1 receptor in the LV were analyzed using histochemistry and immunohistochemistry, respectively. Hyperthyroidism was found to induce profound cardiovascular alterations, such as systolic hypertension, tachycardia, LV dysfunction, cardiac hypertrophy, and myocardial fibrosis. This study demonstrates the existence of structural capillary rarefaction and the down-regulation of the cardiac angiotensin II AT1 receptor in the myocardium of hyperthyroid rats in comparison with euthyroid rats. Microvascular rarefaction may be involved in the pathophysiology of hyperthyroidism-induced cardiovascular alterations. © 2013 John Wiley & Sons Ltd.

  5. Cardioprotection Induced by Activation of GPER in Ovariectomized Rats With Pulmonary Hypertension.

    PubMed

    Alencar, Allan K N; Montes, Guilherme C; Costa, Daniele G; Mendes, Luiza V P; Silva, Ananssa M S; Martinez, Sabrina T; Trachez, Margarete M; Cunha, Valéria do M N; Montagnoli, Tadeu L; Fraga, Aline G M; Wang, Hao; Groban, Leanne; Fraga, Carlos A M; Sudo, Roberto T; Zapata-Sudo, Gisele

    2018-05-21

    Pulmonary hypertension (PH) is a disease of women (female-to-male ratio 4:1), and is associated with cardiac and skeletal muscle dysfunction. Herein, the activation of a new estrogen receptor (GPER) by the agonist G1 was evaluated in oophorectomized rats with monocrotaline (MCT)-induced PH. Depletion of estrogen was induced by bilateral oophorectomy (OVX) in Wistar rats. Experimental groups included SHAM or OVX rats that received a single intraperitoneal injection of MCT (60 mg/kg) for PH induction. Animals received s.c. injection of either vehicle or G1, a GPER agonist, (400 µg/kg/day) for 14 days after the onset of disease. Rats with PH exhibited exercise intolerance and cardiopulmonary alterations, including reduced pulmonary artery flow, biventricular remodeling, and left ventricular systolic and diastolic dysfunction. The magnitude of these PH-induced changes was significantly greater in OVX versus SHAM rats. G1 treatment reversed both cardiac and skeletal muscle functional aberrations caused by PH in OVX rats. G1 reversed PH-related cardiopulmonary dysfunction and exercise intolerance in female rats, a finding that may have important implications for the ongoing clinical evaluation of new drugs for the treatment of the disease in females after the loss of endogenous estrogens.

  6. Protein kinase C-α and arginase I mediate pneumolysin-induced pulmonary endothelial hyperpermeability.

    PubMed

    Lucas, Rudolf; Yang, Guang; Gorshkov, Boris A; Zemskov, Evgeny A; Sridhar, Supriya; Umapathy, Nagavedi S; Jezierska-Drutel, Agnieszka; Alieva, Irina B; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D; Verin, Alexander D; Pittet, Jean-François; Caldwell, Ruth B; Mitchell, Timothy J; Cederbaum, Stephen D; Fulton, David J; Matthay, Michael A; Caldwell, Robert W; Romero, Maritza J; Chakraborty, Trinad

    2012-10-01

    Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)(+/-)/arginase II (AII)(-/-) C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI(+/+)/AII(-/-) counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction.

  7. Protein Kinase C-α and Arginase I Mediate Pneumolysin-Induced Pulmonary Endothelial Hyperpermeability

    PubMed Central

    Yang, Guang; Gorshkov, Boris A.; Zemskov, Evgeny A.; Sridhar, Supriya; Umapathy, Nagavedi S.; Jezierska-Drutel, Agnieszka; Alieva, Irina B.; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D.; Verin, Alexander D.; Pittet, Jean-François; Caldwell, Ruth B.; Mitchell, Timothy J.; Cederbaum, Stephen D.; Fulton, David J.; Matthay, Michael A.; Caldwell, Robert W.; Romero, Maritza J.; Chakraborty, Trinad

    2012-01-01

    Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)+/−/arginase II (AII)−/− C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI+/+/AII−/− counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction. PMID:22582175

  8. Mitochondrial Dysfunction, Through Impaired Autophagy, Leads to Endoplasmic Reticulum Stress, Deregulated Lipid Metabolism, and Pancreatitis in Animal Models.

    PubMed

    Biczo, Gyorgy; Vegh, Eszter T; Shalbueva, Natalia; Mareninova, Olga A; Elperin, Jason; Lotshaw, Ethan; Gretler, Sophie; Lugea, Aurelia; Malla, Sudarshan R; Dawson, David; Ruchala, Piotr; Whitelegge, Julian; French, Samuel W; Wen, Li; Husain, Sohail Z; Gorelick, Fred S; Hegyi, Peter; Rakonczay, Zoltan; Gukovsky, Ilya; Gukovskaya, Anna S

    2018-02-01

    Little is known about the signaling pathways that initiate and promote acute pancreatitis (AP). The pathogenesis of AP has been associated with abnormal increases in cytosolic Ca 2+ , mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. We analyzed the mechanisms of these dysfunctions and their relationships, and how these contribute to development of AP in mice and rats. Pancreatitis was induced in C57BL/6J mice (control) and mice deficient in peptidylprolyl isomerase D (cyclophilin D, encoded by Ppid) by administration of L-arginine (also in rats), caerulein, bile acid, or an AP-inducing diet. Parameters of pancreatitis, mitochondrial function, autophagy, ER stress, and lipid metabolism were measured in pancreatic tissue, acinar cells, and isolated mitochondria. Some mice with AP were given trehalose to enhance autophagic efficiency. Human pancreatitis tissues were analyzed by immunofluorescence. Mitochondrial dysfunction in pancreas of mice with AP was induced by either mitochondrial Ca 2+ overload or through a Ca 2+ overload-independent pathway that involved reduced activity of ATP synthase (80% inhibition in pancreatic mitochondria isolated from rats or mice given L-arginine). Both pathways were mediated by cyclophilin D and led to mitochondrial depolarization and fragmentation. Mitochondrial dysfunction caused pancreatic ER stress, impaired autophagy, and deregulation of lipid metabolism. These pathologic responses were abrogated in cyclophilin D-knockout mice. Administration of trehalose largely prevented trypsinogen activation, necrosis, and other parameters of pancreatic injury in mice with L-arginine AP. Tissues from patients with pancreatitis had markers of mitochondrial damage and impaired autophagy, compared with normal pancreas. In different animal models, we find a central role for mitochondrial dysfunction, and for impaired autophagy as its principal downstream effector, in development of AP. In particular, the pathway involving enhanced interaction of cyclophilin D with ATP synthase mediates L-arginine-induced pancreatitis, a model of severe AP the pathogenesis of which has remained unknown. Strategies to restore mitochondrial and/or autophagic function might be developed for treatment of AP. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Liyi; Departments of Cardiology, The 451st Hospital of People's Liberation Army; Hu, Xiaojing

    Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNAmore » was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (AngII) expression. • CTRP6 alleviates AngII-induced hypertension and vascular endothelial dysfunction.« less

  10. Role of female sex hormones in neuronal nitric oxide release and metabolism in rat mesenteric arteries.

    PubMed

    Minoves, Nuria; Balfagón, Gloria; Ferrer, Mercedes

    2002-09-01

    This study examines the effects of female sex hormones on the vasoconstrictor response to electrical field stimulation (EFS), as well as the modulation of this response by neuronal NO. For this purpose, segments of denuded superior mesenteric artery from ovariectomized (OvX) female Sprague-Dawley rats and from control rats (in oestrus phase) were used. EFS induced frequency-dependent contractions, which were greater in segments from OvX rats than in those from control rats. The NO synthase inhibitor N(G)-nitro-l-arginine methyl ester strengthened EFS-elicited contractions to a greater extent in arteries from OvX rats than in those from control rats. Similar results were observed with the preferential neuronal NO synthase inhibitor 7-nitroindazole. The sensorial neurotoxin capsaicin did not modify EFS-induced contractions in segments from either group. In noradrenaline-precontracted segments, sodium nitroprusside (SNP) induced concentration-dependent relaxation, which was greater in segments from control rats than in those from OvX rats. 8-Bromo-cGMP induced similar concentration-dependent relaxation in noradrenaline-precontracted segments from both OvX and control rats. Diethyldithiocarbamate, a superoxide dismutase (SOD) inhibitor, reduced the relaxation induced by SNP in segments from both groups of rats. SOD, a superoxide anion scavenger, enhanced the relaxation induced by SNP in segments from OvX rats, but did not modify it in segments from control rats. EFS induced NO(-)(2) formation, which was greater in segments from OvX than in those from control rats, and pretreatment with tetrodotoxin, a blocker of nerve impulse propagation, abolished release in both cases. These results suggest that EFS induces greater neuronal NO release in mesenteric segments from OvX rats than in those from control rats and, although NO metabolism is also higher, the contribution of net neuronal NO in the vasomotor response to EFS is greater in segments from OvX rats than in those from control rats.

  11. Stimulation of sensory neuropeptide release by nociceptin/orphanin FQ leads to hyperaemia in acutely inflamed rat knees

    PubMed Central

    Zhang, Chunfen; McDougall, Jason J

    2006-01-01

    The peripheral effect of the ‘opioid-like' peptide nociceptin/orphanin FQ (N/OFQ) on joint blood flow was investigated in acutely inflamed rats. Sensory neuropeptide release from capsaicin-sensitive nerves and the involvement of synovial mast cells and leukocytes on these vasomotor responses were also studied. Blood flow measurements of exposed knee joints were performed in urethane-anaesthetised rats (2 mg kg−1 intraperitoneal) using laser Doppler perfusion imaging. Topical administration of N/OFQ (10−13–10−8 mol) to acutely inflamed joints caused a dose-dependent increase in synovial perfusion with an ED50 of 4.0 × 10−10 mol. This vasodilatatory response was blocked by the selective NOP receptor antagonist [Phe1-(CH2-NH)-Gly2]-Nociceptin(1–13)-NH2 (10−9 mol) (P<0.0001). Co-administration of N/OFQ with the neurokinin-1 (NK1) receptor antagonist [D-Arg1,D-Phe5,D-Trp7,9,Leu11]-Substance P (10−12 mol), the vasoactive intestinal peptide (VIP) receptor antagonist VIP6–28 (10−9 mol) or the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP8–37 (10−9 mol) all blocked the hyperaemic effect of N/OFQ (P<0.0001). Treatment of acutely inflamed knees with capsaicin (8-methyl-N-vanillyl-6-noneamide) to destroy unmyelinated joint afferents also inhibited N/OFQ vasomotor activity. Stabilisation of synovial mast cells with disodium cromoglycate (cromolyn) ameliorated N/OFQ responses, whereas inactivation of circulating leukocytes with the pan-selectin inhibitor fucoidin completely blocked N/OFQ-induced hyperaemia in these joints. These experiments show that in acutely inflamed knee joints, N/OFQ acts on NOP receptors located on synovial mast cells and leukocytes leading to the secondary release of proinflammatory mediators into the joint. These agents subsequently stimulate sensory neuropeptide release from capsaicin-sensitive nerves culminating in vasodilatation and increased articular blood flow. PMID:16783411

  12. Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla.

    PubMed

    Stornetta, Ruth L; Sevigny, Charles P; Schreihofer, Ann M; Rosin, Diane L; Guyenet, Patrice G

    2002-03-12

    The main source of excitatory drive to the sympathetic preganglionic neurons that control blood pressure is from neurons located in the rostral ventrolateral medulla (RVLM). This monosynaptic input includes adrenergic (C1), peptidergic, and noncatecholaminergic neurons. Some of the cells in this pathway are suspected to be glutamatergic, but conclusive evidence is lacking. In the present study we sought to determine whether these presympathetic neurons express the vesicular glutamate transporter BNPI/VGLUT1 or the closely related gene DNPI, the rat homolog of the mouse vesicular glutamate transporter VGLUT2. Both BNPI/VGLUT1 and DNPI/VGLUT2 mRNAs were detected in the medulla oblongata by in situ hybridization, but only DNPI/VGLUT2 mRNA was present in the RVLM. Moreover, BNPI immunoreactivity was absent from the thoracic spinal cord lateral horn. DNPI/VGLUT2 mRNA was present in many medullary cells retrogradely labeled with Fluoro-Gold from the spinal cord (T2; four rats). Within the RVLM, 79% of the bulbospinal C1 cells contained DNPI/VGLUT2 mRNA. Bulbospinal noradrenergic A5 neurons did not contain DNPI/VGLUT2 mRNA. The RVLM of six unanesthetized rats subjected to 2 hours of hydralazine-induced hypotension contained tenfold more c-Fos-ir DNPI/VGLUT2 neurons than that of six saline-treated controls. c-Fos-ir DNPI/VGLUT2 neurons included C1 and non-C1 neurons (3:2 ratio). In seven barbiturate-anesthetized rats, 16 vasomotor presympathetic neurons were filled with biotinamide and analyzed for the presence of tyrosine hydroxylase immunoreactivity and/or DNPI/VGLUT2 mRNA. Biotinamide-labeled neurons included C1 and non-C1 cells. Most non-C1 (9/10) and C1 presympathetic cells (5/6) contained DNPI/VGLUT2 mRNA. In conclusion, DNPI/VGLUT2 is expressed by most blood pressure-regulating presympathetic cells of the RVLM. The data suggest that these neurons may be glutamatergic and that the C1 adrenergic phenotype is one of several secondary phenotypes that are differentially expressed by subgroups of these cells. Copyright 2002 Wiley-Liss, Inc.

  13. Tryptamine-Gallic Acid Hybrid Prevents Non-steroidal Anti-inflammatory Drug-induced Gastropathy

    PubMed Central

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd. Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O2˙̄) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled (99mTc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy. PMID:22157011

  14. Ghrelin enhancer, rikkunshito, improves postprandial gastric motor dysfunction in an experimental stress model.

    PubMed

    Harada, Y; Ro, S; Ochiai, M; Hayashi, K; Hosomi, E; Fujitsuka, N; Hattori, T; Yakabi, K

    2015-08-01

    Functional dyspepsia (FD) is one of the most common disorders of gastrointestinal (GI) diseases. However, no curable treatment is available for FD because the detailed mechanism of GI dysfunction in stressed conditions remains unclear. We aimed to clarify the association between endogenous acylated ghrelin signaling and gastric motor dysfunction and explore the possibility of a drug with ghrelin signal-enhancing action for FD treatment. Solid gastric emptying (GE) and plasma acylated ghrelin levels were evaluated in an urocortin1 (UCN1) -induced stress model. To clarify the role of acylated ghrelin on GI dysfunction in the model, exogenous acylated ghrelin, an endogenous ghrelin enhancer, rikkunshito, or an α2 -adrenergic receptor (AR) antagonist was administered. Postprandial motor function was investigated using a strain gauge force transducer in a free-moving condition. Exogenous acylated ghrelin supplementation restored UCN1-induced delayed GE. Alpha2 -AR antagonist and rikkunshito inhibited the reduction in plasma acylated ghrelin and GE in the stress model. The action of rikkunshito on delayed GE was blocked by co-administration of the ghrelin receptor antagonist. UCN1 decreased the amplitude of contraction in the antrum while increasing it in the duodenum. The motility index of the antrum but not the duodenum was significantly reduced by UCN1 treatment, which was improved by acylated ghrelin or rikkunshito. The UCN1-induced gastric motility dysfunction was mediated by abnormal acylated ghrelin dynamics. Supplementation of exogenous acylated ghrelin or enhancement of endogenous acylated ghrelin secretion by rikkunshito may be effective in treating functional GI disorders. © 2015 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  15. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice.

    PubMed

    Chiasson, Valorie L; Pakanati, Abhinandan R; Hernandez, Marcos; Young, Kristina J; Bounds, Kelsey R; Mitchell, Brett M

    2017-07-01

    The immunosuppressive calcineurin inhibitors cyclosporine A and tacrolimus alter T-cell subsets and can cause hypertension, vascular dysfunction, and renal toxicity. We and others have reported that cyclosporine A and tacrolimus decrease anti-inflammatory regulatory T cells and increase proinflammatory interleukin-17-producing T cells; therefore, we hypothesized that inhibition of these effects using noncellular therapies would prevent the hypertension, endothelial dysfunction, and renal glomerular injury induced by calcineurin inhibitor therapy. Daily treatment of mice with cyclosporine A or tacrolimus for 1 week significantly decreased CD4 + /FoxP3 + regulatory T cells in the spleen and lymph nodes, as well as induced hypertension, vascular injury and dysfunction, and glomerular mesangial expansion in mice. Daily cotreatment with all-trans retinoic acid reported to increase regulatory T cells and decrease interleukin-17-producing T cells, prevented all of the detrimental effects of cyclosporine A and tacrolimus. All-trans retinoic acid also increased regulatory T cells and prevented the hypertension, endothelial dysfunction, and glomerular injury in genetically modified mice that phenocopy calcineurin inhibitor-treated mice (FKBP12-Tie2 knockout). Treatment with an interleukin-17-neutralizing antibody also increased regulatory T-cell levels and prevented the hypertension, endothelial dysfunction, and glomerular injury in cyclosporine A-treated and tacrolimus-treated mice and FKBP12-Tie2 knockout mice, whereas an isotype control had no effect. Augmenting regulatory T cells and inhibiting interleukin-17 signaling using noncellular therapies prevents the cardiovascular and renal toxicity of calcineurin inhibitors in mice. © 2017 American Heart Association, Inc.

  16. Inhibition of NA+/H+ Exchanger 1 Attenuates Renal Dysfunction Induced by Advanced Glycation End Products in Rats

    PubMed Central

    Li, Peng; Chen, Geng-Rong; Wang, Fu; Xu, Ping; Liu, Li-Ying; Yin, Ya-Ling; Wang, Shuang-Xi

    2016-01-01

    It has been recognized that sodium hydrogen exchanger 1 (NHE1) is involved in the development of diabetic nephropathy. The role of NHE1 in kidney dysfunction induced by advanced glycation end products (AGEs) remains unknown. Renal damage was induced by AGEs via tail vein injections in rats. Function and morphology of kidney were determined. Compared to vehicle- or BSA-treated rats, AGEs caused abnormalities of kidney structures and functions in rats, accompanied with higher MDA level and lower GSH content. Gene expressions of NHE1 gene and TGF-β1 in the renal cortex and urine were also increased in AGEs-injected rats. Importantly, all these detrimental effects induced by AGEs were reversed by inhibition of NHE1 or suppression of oxidative stress. These pieces of data demonstrated that AGEs may activate NHE1 to induce renal damage, which is related to TGF-β1. PMID:26697498

  17. Leptin promotes endothelial dysfunction in chronic kidney disease through AKT/GSK3β and β-catenin signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Nannan; Liu, Bing; Song, Jiaguang

    Endothelial dysfunction (ED) is a well-recognized instigator of cardiovascular diseases and develops in chronic kidney disease (CKD) with high rate. Recent studies have implicated that leptin is associated with endothelial dysfunction. We investigated the relationship between leptin and markers of ED in CKD patients and how leptin contributed to endothelial damage. 140 CKD patients and 140 healthy subjects were studied. Serum leptin levels were significantly higher in CKD than in controls and displayed significantly positive association with the increase levels of sICAM-1 and sVCAM-1 but negative correlation with flow-mediated dilatation (FMD) reduction in patients. Our in vitro study demonstrated that leptinmore » induced overexpression of ICAM-1 and VCAM-1, led to f-actin reorganization and vinculin assembly, increased endothelial monolayer permeability for FITC-dextran, and accelerated endothelial cell migration; these changes were markedly reversed when the cells were transfected with AKT or β-catenin shRNA vectors. Notably, high leptin resulted in hyper-phosphorylation of AKT and GSK3β, along with nuclear accumulation of β-catenin. In conclusion, serum leptin was elevated in CKD patients and it might contribute to endothelial dysfunction by disarrangement of f-actin cytoskeleton via a mechanism involving the AKT/GSK3β and β-catenin pathway. - Highlights: • Serum leptin was elevated in CKD patients and it was associated with endothelial dysfunction. • Leptin induced endothelial dysfunction by remodeling cytoskeleton in HUVECs. • Leptin promoted endothelial dysfunction via a mechanism involving the AKT/GSK3β and β-catenin signals.« less

  18. Beer Polyphenols and Menopause: Effects and Mechanisms—A Review of Current Knowledge

    PubMed Central

    Sandoval-Ramírez, Berner Andrée; M. Lamuela-Raventós, Rosa; Estruch, Ramon; Sasot, Gemma; Doménech, Monica

    2017-01-01

    Beer is one of the most frequently consumed fermented beverages in the world, and it has been part of the human diet for thousands of years. Scientific evidence obtained from the development of new techniques of food analysis over the last two decades suggests that polyphenol intake derived from moderate beer consumption may play a positive role in different health outcomes including osteoporosis and cardiovascular risk and the relief of vasomotor symptoms, which are commonly experienced during menopause and are an important reason why women seek medical care during this period; here, we review the current knowledge regarding moderate beer consumption and its possible effects on menopausal symptoms. The effect of polyphenol intake on vasomotor symptoms in menopause may be driven by the direct interaction of the phenolic compounds present in beer, such as 8-prenylnaringenin, 6-prenylnaringenin, and isoxanthohumol, with intracellular estrogen receptors that leads to the modulation of gene expression, increase in sex hormone plasma concentrations, and thus modulation of physiological hormone imbalance in menopausal women. Since traditional hormone replacement therapies increase health risks, alternative, safer treatment options are needed to alleviate menopausal symptoms in women. The present work aims to review the current data on this subject. PMID:28904736

  19. Vasomotor symptoms: viewpoint from the Indian subcontinent and management of a common menopausal problem.

    PubMed

    Shah, Duru; Agrawal, Sangeeta

    2010-09-01

    Vasomotor symptoms (VMS) are recognized to adversely affect the quality of life. The prevalence and the magnitude of VMS may vary across populations. Although a natural regression of VMS may be expected over a period of time, it remains the most common of symptoms for which women seek help. Menopausal hormone therapy (MHT) is currently the only treatment approved by the Food and Drug Administration that has shown uniform benefit in the management of VMS. In clinical situations when estrogen is or may be contraindicated, a finite number of alternative options, including use of neuroactive agents (SSRIs, SSNRs, and gabapentin), lifestyle changes, and nonprescription remedies such as phytoestrogens and black cohosh have been shown to provide relief, albeit with mixed results and questionable safety. Existing data identify an ethnic variation in the degree and frequency of VMS of aging; in this latter context, the Asian woman's perspective is dominantly conveyed from the perspective of Chinese and Japanese ethnicities, whereas data regarding the magnitude of burden of VMS in the postmenopausal women from other Asian ethnicities and races are sparse. This article reviews the symptoms and relates that VMS are of significant concern for the aging Asian women. © Thieme Medical Publishers.

  20. [Resuscitation principles in severe acute pancreatitis complicated by multiple organ dysfunctions].

    PubMed

    Purcaru, F; Ghelase, F; Gugilă, I; Curcă, T; Nemeş, R; Georgescu, I; Chiuţu, L; Surlin, V

    1997-01-01

    The first part renders very synthetically a few of the principal pathogenetical mechanisms implicated in PA, as well as general data about MODS, and then tackles therapeutical principles of great organic disfunction, the therapy of septic states and nutrition in PA. Hemodynamics dysfunction--the therapeutical objectives are correlated with the principal mechanisms implicated in cardio-vascular disfunction (the grown level of some myocardial depressive factors, the shortcoming of peripheral vascular resistance, a.s.o.). The therapeutical principles covets the volemic restoration, inotropic therapy, the correction of hydro-ionic and acido-basic disorders, the vasomotor therapy, the CID's correction, the myocardium protection against the free radicals of oxygen. The therapy is recommended to be individualized depending on the clinical data and the monitoring of some parameters (T.A, P.V.C., intrapulmonary pressure, EKG, hematocrit value, a.s.o.). Pulmonary disfunction--includes the therapy of some clinical forms of pulmonary complications, the restrictive syndrome, infections, the pulmonary shunt, the atelectasis and insists on ARDS which is a complication with vital implications. The therapy of curdling disorders--recommends blood, derivatives, antiprotease, the substitution of the consumed curdling factors, as well as the removal of the pathogenic factors which disturb the coagulation-coagulolysis equilibrium. Purge proceedings--covet the elimination from the organism of the toxic agents which generate cell-organic lesions. That's why it is moot the elimination of the pancreatic toxins before reaching the circulation (the thoracic tube draining and peritoneal lavage) as well as extrarenal purge proceedings (hemodialysis, hemofiltration and hemodiafiltration) with their benefits and limits. The sepsis and the immunotherapy--are tackled based on recent data from literature which besides antibiotherapy insists on the neutralization of various toxins and mediators by means of monoclonal and polyclonal antibodies, anti TFL antibodies, IL, a.s.o. Nutrition--is different presented, parenterally and enterally, each of them with their benefits and limits and with the recommendation to be used by means of the clinical form. There are mentioned some other additional treatments (pain removing, antagonisms of H2 receptors, inflammation and cytotoxicity inhibition, gastric decompression, a.s.o.).

  1. Medicinal plants as alternative treatments for female sexual dysfunction: utopian vision or possible treatment in climacteric women?

    PubMed

    Mazaro-Costa, Renata; Andersen, Monica L; Hachul, Helena; Tufik, Sergio

    2010-11-01

    Female sexual dysfunction (FSD) is a complex and multifactorial condition. An increased incidence of FSD is especially associated with the decline of estrogen. Thus, menopause is a critical phase for FSD complaints. In this context, medicinal plants may be a therapeutic option. To identify and describe the popular and clinical uses of medicinal plants for FSD treatment in climacteric women. We highlighted the majority of the plants commonly involved with the female reproductive system including: Angelica sinensis, Cimicifuga racemosa, Ferula hermonis, Ginkgo biloba, Humulus lupulus, Lepidium meyenii, Tribulus terrestris, Trifolium pratense, and Vitex agnus-castus. This study is a narrative review of studies of plants that are possible alternative treatments for FSD. The species described have clinical and popular uses in different cultures as well as medical indications for female reproductive disturbances, mainly in climacteric women. We have also analyzed the evidence level of clinical studies. The main outcome assessed is the efficacy of plants in improving the symptoms of FSD. There is little evidence from the literature to recommend the use of medicinal plants when treating FSD. The majority of studies with a strong level of evidence are associated with the treatment of the vasomotor symptoms of menopause. Ferula hermonis, Angelica sinensis, and Gingko biloba may be suggested for arousal disorder studies. Cimicifuga racemosa, Trifolium pratense, and Vitex agnus-castus may be recommended for several FSD. Humulus lupulus and Tribulus terrestris may help with desire disorder studies. Lepidium meyenii should be studied further. Studies of these plants indicate that they may be useful as a possible alternative and/or complementary approach for studies aimed at the treatment of FSD. At this time, however, this review cannot recommend a plant that has a strong enough level of evidence for treatment of FSD. Thus, there is a need for clinical (double-blinded and randomized) studies to evaluate the efficacy and safety of several plants that can exert a positive effect on the management of FSD. © 2010 International Society for Sexual Medicine.

  2. Magnetic resonance imaging correlates of bee sting induced multiple organ dysfunction syndrome: A case report.

    PubMed

    Das, Sushant K; Zeng, Li-Chuan; Li, Bing; Niu, Xiang-Ke; Wang, Jing-Liang; Bhetuwal, Anup; Yang, Han-Feng

    2014-09-28

    Occasionally systemic complications with high risk of death, such as multiple organ dysfunction syndrome (MODS), can occur following multiple bee stings. This case study reports a patient who presented with MODS, i.e., acute kidney injury, hepatic and cardiac dysfunction, after multiple bee stings. The standard clinical findings were then correlated with magnetic resonance imaging (MRI) findings, which demonstrates that MRI may be utilized as a simpler tool to use than other multiple diagnostics.

  3. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOSmore » and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic-induced vascular dysfunction. • Arsenic reduced ACh-induced aortic relaxation but didn’t alter response to SNP and PE. • Arsenic affected aortic NO signalling and production of inflammatory mediators. • Arsenic produced vasculopathic lesions in aorta. • Atorvastatin restored arsenic-induced functional, biochemical and structural changes.« less

  4. Glutamine Supplementation Attenuates Ethanol-Induced Disruption of Apical Junctional Complexes in Colonic Epithelium and Ameliorates Gut Barrier Dysfunction and Fatty Liver in Mice

    PubMed Central

    Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna

    2015-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  5. Upregulation of adenosine A1 receptors facilitates sinoatrial node dysfunction in chronic canine heart failure by exacerbating nodal conduction abnormalities revealed by novel dual-sided intramural optical mapping.

    PubMed

    Lou, Qing; Hansen, Brian J; Fedorenko, Olga; Csepe, Thomas A; Kalyanasundaram, Anuradha; Li, Ning; Hage, Lori T; Glukhov, Alexey V; Billman, George E; Weiss, Raul; Mohler, Peter J; Györke, Sándor; Biesiadecki, Brandon J; Carnes, Cynthia A; Fedorov, Vadim V

    2014-07-22

    Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF. We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs. Novel intramural optical mapping of coronary-perfused right atrial preparations revealed that adenosine (10 μmol/L) markedly prolonged postpacing SAN conduction time in HF by 206 ± 99 milliseconds (versus 66 ± 21 milliseconds in controls; P=0.02). Adenosine induced SAN intranodal conduction block or microreentry in 6 of 8 dogs with HF versus 0 of 7 controls (P=0.007). Adenosine-induced SAN conduction abnormalities and automaticity depression caused postpacing atrial pauses in HF versus control dogs (17.1 ± 28.9 versus 1.5 ± 1.3 seconds; P<0.001). Furthermore, 10 μmol/L adenosine shortened atrial repolarization and led to pacing-induced atrial fibrillation in 6 of 7 HF versus 0 of 7 control dogs (P=0.002). Adenosine-induced SAN dysfunction and atrial fibrillation were abolished or prevented by adenosine A1 receptor antagonists (50 μmol/L theophylline/1 μmol/L 8-cyclopentyl-1,3-dipropylxanthine). Adenosine A1 receptor protein expression was significantly upregulated during HF in the SAN (by 47 ± 19%) and surrounding atrial myocardium (by 90 ± 40%). Interstitial fibrosis was significantly increased within the SAN in HF versus control dogs (38 ± 4% versus 23 ± 4%; P<0.001). In chronic HF, adenosine A1 receptor upregulation in SAN pacemaker and atrial cardiomyocytes may increase cardiac sensitivity to adenosine. This effect may exacerbate conduction abnormalities in the structurally impaired SAN, leading to SAN dysfunction, and potentiate atrial repolarization shortening, thereby facilitating atrial fibrillation. Atrial fibrillation may further depress SAN function and lead to tachy-brady arrhythmias in HF. © 2014 American Heart Association, Inc.

  6. Deficiency of insulin-like growth factor 1 reduces vulnerability to chronic alcohol intake-induced cardiomyocyte mechanical dysfunction: role of AMPK.

    PubMed

    Ge, Wei; Li, Qun; Turdi, Subat; Wang, Xiao-Ming; Ren, Jun

    2011-08-01

    Circulating insulin-like growth factor I (IGF-1) levels are closely associated with cardiac performance although the role of IGF-1 in alcoholic cardiac dysfunction is unknown. This study was designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on chronic alcohol-induced cardiomyocyte contractile and intracellular Ca(2+) dysfunction. Adult male C57 and LID mice were placed on a 4% alcohol diet for 15 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-relengthening (TR(90) ), change in fura-fluorescence intensity (ΔFFI) and intracellular Ca(2+) decay. Levels of apoptotic regulators caspase-3, Bcl-2 and c-Jun NH2-terminal kinase (JNK), the ethanol metabolizing enzyme mitochondrial aldehyde dehydrogenase (ALDH2), as well as the cellular fuel gauge AMP-activated protein kinase (AMPK) were evaluated. Chronic alcohol intake enlarged myocyte cross-sectional area, reduced PS, ± dL/dt and ΔFFI as well as prolonged TR(90) and intracellular Ca(2+) decay, the effect of which was greatly attenuated by IGF-1 deficiency. The beneficial effect of LID against alcoholic cardiac mechanical defect was ablated by IGF-1 replenishment. Alcohol intake increased caspase-3 activity/expression although it down-regulated Bcl-2, ALDH2 and pAMPK without affecting JNK and AMPK. IGF-1 deficiency attenuated alcoholism-induced responses in all these proteins with the exception of Bcl-2. In addition, the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside abrogated short-term ethanol incubation-elicited cardiac mechanical dysfunction. Taken together, these data suggested that IGF-1 deficiency may reduce the sensitivity to ethanol-induced myocardial mechanical dysfunction. Our data further depicted a likely role of Caspase-3, ALDH2 and AMPK activation in IGF-1 deficiency induced 'desensitization' of alcoholic cardiomyopathy. © 2011 The Authors Journal compilation © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  7. Exercise training improves the defective centrally mediated erectile responses in rats with type I diabetes.

    PubMed

    Zheng, Hong; Mayhan, William G; Patel, Kaushik P

    2011-11-01

    Erectile dysfunction is a serious and common complication of diabetes mellitus. Apart from the peripheral actions, central mechanisms are also responsible for the penile erection. The goal of the present study was to determine the impact of exercise training (ExT) on the centrally mediated erectile dysfunction in streptozotocin (STZ)-induced type I diabetic (T1D) rats. Male Sprague-Dawley rats were injected with STZ to induce diabetes mellitus. Three weeks after STZ or vehicle injections, rats were assigned to either ExT (treadmill running for 3-4 weeks) or sedentary groups to produce four experimental groups: control + sedentary, T1D + sedentary, control + ExT, and T1D + ExT. After 3-4 weeks ExT, central N-methyl-D-aspartic acid (NMDA) or sodium nitroprusside (SNP)-induced penile erectile responses were measured. Neuronal nitric oxide synthase (nNOS) expression in the paraventricular nucleus (PVN) of the hypothalamus was measured by using histochemistry, real time polymerase chain reaction (PCR) and Western blot approaches. In rats with T1D, ExT significantly improved the blunted erectile response, and the intracavernous pressure changes to NMDA (50 ng) microinjection within the PVN (T1D + ExT: 3.0 ± 0.6 penile erection/rat; T1D + sedentary: 0.5 ± 0.3 penile erection/rat within 20 minutes, P < 0.05). ExT improved erectile dysfunction induced by central administration of exogenous nitric oxide (NO) donor, SNP in T1D rats. Other behavior responses including yawning and stretching, induced by central NMDA and SNP microinjection were also significantly increased in T1D rats after ExT. Furthermore, we found that ExT restored the nNOS mRNA and protein expression in the PVN in T1D rats. These results suggest that ExT may have beneficial effects on the erectile dysfunction in diabetes through improvement of NO bioavailability within the PVN. Thus, ExT may be used as therapeutic modality to up-regulate nNOS within the PVN and improve the central component of the erectile dysfunction in diabetes mellitus. © 2011 International Society for Sexual Medicine.

  8. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media.

    PubMed

    Rexhaj, Emrush; Pireva, Agim; Paoloni-Giacobino, Ariane; Allemann, Yves; Cerny, David; Dessen, Pierre; Sartori, Claudio; Scherrer, Urs; Rimoldi, Stefano F

    2015-10-01

    Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans. Copyright © 2015 the American Physiological Society.

  9. Overactivation of Mitogen-Activated Protein Kinase and Suppression of Mitofusin-2 Expression Are Two Independent Events in High Mobility Group Box 1 Protein–Mediated T Cell Immune Dysfunction

    PubMed Central

    Tang, Lu-ming; Zhao, Guang-ju; Zhu, Xiao-mei; Dong, Ning; Yu, Yan

    2013-01-01

    High mobility group box 1 protein (HMGB1), a critical proinflammatory cytokine, has recently been identified to be an immunostimulatory signal involved in sepsis-related immune dysfunction when released extracellularly, but the potential mechanism involved remains elusive. Here, we showed that the treatment with HMGB1 in vitro inhibited T lymphocyte immune response and expression of mitofusin-2 (Mfn-2; a member of the mitofusin family) in a dose- and time-dependent manner. Upregulation of Mfn-2 expression attenuated the suppressive effect of HMGB1 on T cell immune function. The phosphorylation of both extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) was markedly upregulated by treating with high amount of HMGB1, while pretreatment with ERK1/2 and p38 MAPK-specific inhibitors (U0126 and SB203580) could attenuate suppression of T cell immune function and nuclear factor of activated T cell (NFAT) activation induced by HMGB1, respectively. HMGB1-induced activity of ERK1/2 and p38 was not fully inhibited in the presence of U0126 or SB203580. Interestingly, overexpression of Mfn-2 had no marked effect on HMGB1-mediated activation of MAPK, but could attenuate the suppressive effect of HMGB1 on the activity of NFAT. Thus, the mechanisms involved in HMGB1-induced T cell immune dysfunction in vitro at least partly include suppression of Mfn-2 expression, overactivation of ERK1/2, p38 MAPK, and intervention of NFAT activation, while the protective effect of Mfn-2 on T cell immune dysfunction induced by HMGB1 is dependent on other signaling pathway associated with NFAT, but not MAPK. Taken together, we conclude that overactivation of MAPK and suppression of Mfn-2 expression are two independent events in HMGB1-mediated T cell immune dysfunction. PMID:23697559

  10. MicroRNA-27b plays a role in pulmonary arterial hypertension by modulating peroxisome proliferator-activated receptor γ dependent Hsp90-eNOS signaling and nitric oxide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Rui; Bao, Chunrong; Jiang, Lianyong

    Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAHmore » associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.« less

  11. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease.

    PubMed

    Wiegman, Coen H; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J; Russell, Kirsty E; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P; Kirkham, Paul A; Chung, Kian Fan; Adcock, Ian M

    2015-09-01

    Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress-induced pathology. We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β-induced ASM cell proliferation and CXCL8 release. Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Chronic HIV-1 Infection Induces B-Cell Dysfunction That Is Incompletely Resolved by Long-Term Antiretroviral Therapy.

    PubMed

    Abudulai, Laila N; Fernandez, Sonia; Corscadden, Karli; Hunter, Michael; Kirkham, Lea-Ann S; Post, Jeffrey J; French, Martyn A

    2016-04-01

    To determine the effect of long-term antiretroviral therapy (ART) on HIV-1-induced B-cell dysfunction. Comparative study of ART-naive and ART-treated HIV-infected patients with non-HIV controls. B-cell dysfunction was examined in patients with HIV-1 infection (n = 30) who had received ART for a median time of 9.25 years (range: 1.3-21.7) by assessing proportions of CD21 B cells (a marker of B-cell exhaustion) and proportions of tumor necrosis factor-related apoptosis-inducing ligand or B and T lymphocyte attenuator B cells, and serum levels of immunoglobulin free light chains (markers of B-cell hyperactivation). The association of these markers with serum levels of IgG1 and IgG2, and production of IgG antibodies after vaccination with pneumococcal polysaccharides were also examined. ART-naive patients with HIV (n = 20) and controls (n = 20) were also assessed for comparison. ART-treated patients had increased proportions of CD21 and tumor necrosis factor-related apoptosis-inducing ligand B cells and, furthermore, although proportions of B and T lymphocyte attenuator B cells were not significantly different from controls, they correlated negatively with CD21 B cells. Proportions of CD21 B cells also correlated negatively with current CD4 T-cell counts. In ART-naive patients with HIV, free light chains correlated with CD21 B cells and IgG1, but not IgG2. Serum IgG2:IgG1 ratios were substantially lower than normal in patients with HIV and did not resolve on ART. In ART-treated patients, IgG antibody responses to pneumococcal polysaccharides after vaccination were not associated with markers of B-cell dysfunction. B-cell dysfunction persists in patients with HIV receiving long-term ART. The causes and consequences of this require further investigation.

  13. Intrauterine Growth Retardation Increases the Susceptibility of Pigs to High-Fat Diet-Induced Mitochondrial Dysfunction in Skeletal Muscle

    PubMed Central

    Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping

    2012-01-01

    It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560

  14. Phloretin ameliorates 2-chlorohexadecanal-mediated brain microvascular endothelial cell dysfunction in vitro.

    PubMed

    Ullen, Andreas; Fauler, Günter; Bernhart, Eva; Nusshold, Christoph; Reicher, Helga; Leis, Hans-Jörg; Malle, Ernst; Sattler, Wolfgang

    2012-11-01

    2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase-hydrogen peroxide-chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood-brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterationsmore » in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.« less

  16. Indian Ginseng (Withania somnifera) supplementation ameliorates oxidative stress and mitochondrial dysfunctions in experimental model of stroke.

    PubMed

    Sood, Abhilasha; Mehrotra, Arpit; Dhawan, Devinder K; Sandhir, Rajat

    2018-04-18

    Stroke is an increasingly prevalent clinical condition and second leading cause of death globally. The present study evaluated the therapeutic potential of Indian Ginseng, also known as Withania somnifera (WS), supplementation on middle cerebral artery occlusion (MCAO) induced mitochondrial dysfunctions in experimental model of ischemic stroke. Stroke was induced in animals by occluding the middle cerebral artery, followed by reperfusion injury. Ischemia reperfusion injury resulted in increased oxidative stress indicated by increased reactive oxygen species and protein carbonyl levels; compromised antioxidant system; in terms of reduced superoxide dismutase and catalase activity, along with reduction in GSH levels and the redox ratio, impaired mitochondrial functions and enhanced expression of apoptosis markers. Ischemia reperfusion injury induced mitochondrial dysfunctions in terms of (i) reduced activity of the mitochondrial respiratory chain enzymes, (ii) reduced histochemical staining of complex-II and IV, (iii) reduced in-gel activity of mitochondrial complex-I to V, (iv) mitochondrial structural changes in terms of increased mitochondrial swelling, reduced mitochondrial membrane potential and ultrastructural changes. Additionally, an increase in the activity of caspase-3 and caspase-9 was also observed, along with altered expression of apoptotic proteins Bcl-2 and Bax in MCAO animals. MCAO animals also showed significant impairment in cognitive functions assessed using Y maze test. WS pre-supplementation, on the other hand ameliorated MCAO induced oxidative stress, mitochondrial dysfunctions, apoptosis and cognitive impairments. The results show protective effect of WS pre-supplementation in ischemic stroke and are suggestive of its potential application in stroke management.

  17. NAMPT-Mediated NAD(+) Biosynthesis Is Essential for Vision In Mice.

    PubMed

    Lin, Jonathan B; Kubota, Shunsuke; Ban, Norimitsu; Yoshida, Mitsukuni; Santeford, Andrea; Sene, Abdoulaye; Nakamura, Rei; Zapata, Nicole; Kubota, Miyuki; Tsubota, Kazuo; Yoshino, Jun; Imai, Shin-Ichiro; Apte, Rajendra S

    2016-09-27

    Photoreceptor death is the endpoint of many blinding diseases. Identifying unifying pathogenic mechanisms in these diseases may offer global approaches for facilitating photoreceptor survival. We found that rod or cone photoreceptor-specific deletion of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the major NAD(+) biosynthetic pathway beginning with nicotinamide, caused retinal degeneration. In both cases, we could rescue vision with nicotinamide mononucleotide (NMN). Significantly, retinal NAD(+) deficiency was an early feature of multiple mouse models of retinal dysfunction, including light-induced degeneration, streptozotocin-induced diabetic retinopathy, and age-associated dysfunction. Mechanistically, NAD(+) deficiency caused metabolic dysfunction and consequent photoreceptor death. We further demonstrate that the NAD(+)-dependent mitochondrial deacylases SIRT3 and SIRT5 play important roles in retinal homeostasis and that NAD(+) deficiency causes SIRT3 dysfunction. These findings demonstrate that NAD(+) biosynthesis is essential for vision, provide a foundation for future work to further clarify the mechanisms involved, and identify a unifying therapeutic target for diverse blinding diseases. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Myocardial Dysfunction and Shock after Cardiac Arrest

    PubMed Central

    Jentzer, Jacob C.; Chonde, Meshe D.; Dezfulian, Cameron

    2015-01-01

    Postarrest myocardial dysfunction includes the development of low cardiac output or ventricular systolic or diastolic dysfunction after cardiac arrest. Impaired left ventricular systolic function is reported in nearly two-thirds of patients resuscitated after cardiac arrest. Hypotension and shock requiring vasopressor support are similarly common after cardiac arrest. Whereas shock requiring vasopressor support is consistently associated with an adverse outcome after cardiac arrest, the association between myocardial dysfunction and outcomes is less clear. Myocardial dysfunction and shock after cardiac arrest develop as the result of preexisting cardiac pathology with multiple superimposed insults from resuscitation. The pathophysiology involves cardiovascular ischemia/reperfusion injury and cardiovascular toxicity from excessive levels of inflammatory cytokine activation and catecholamines, among other contributing factors. Similar mechanisms occur in myocardial dysfunction after cardiopulmonary bypass, in sepsis, and in stress-induced cardiomyopathy. Hemodynamic stabilization after resuscitation from cardiac arrest involves restoration of preload, vasopressors to support arterial pressure, and inotropic support if needed to reverse the effects of myocardial dysfunction and improve systemic perfusion. Further research is needed to define the role of postarrest myocardial dysfunction on cardiac arrest outcomes and identify therapeutic strategies. PMID:26421284

  19. Myocardial Dysfunction and Shock after Cardiac Arrest.

    PubMed

    Jentzer, Jacob C; Chonde, Meshe D; Dezfulian, Cameron

    2015-01-01

    Postarrest myocardial dysfunction includes the development of low cardiac output or ventricular systolic or diastolic dysfunction after cardiac arrest. Impaired left ventricular systolic function is reported in nearly two-thirds of patients resuscitated after cardiac arrest. Hypotension and shock requiring vasopressor support are similarly common after cardiac arrest. Whereas shock requiring vasopressor support is consistently associated with an adverse outcome after cardiac arrest, the association between myocardial dysfunction and outcomes is less clear. Myocardial dysfunction and shock after cardiac arrest develop as the result of preexisting cardiac pathology with multiple superimposed insults from resuscitation. The pathophysiology involves cardiovascular ischemia/reperfusion injury and cardiovascular toxicity from excessive levels of inflammatory cytokine activation and catecholamines, among other contributing factors. Similar mechanisms occur in myocardial dysfunction after cardiopulmonary bypass, in sepsis, and in stress-induced cardiomyopathy. Hemodynamic stabilization after resuscitation from cardiac arrest involves restoration of preload, vasopressors to support arterial pressure, and inotropic support if needed to reverse the effects of myocardial dysfunction and improve systemic perfusion. Further research is needed to define the role of postarrest myocardial dysfunction on cardiac arrest outcomes and identify therapeutic strategies.

  20. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism

    PubMed Central

    Jeong, Mark Y.; Lin, Ying H.; Wennersten, Sara A.; Demos-Davies, Kimberly M.; Cavasin, Maria A.; Mahaffey, Jennifer H.; Monzani, Valmen; Saripalli, Chandrasekhar; Mascagni, Paolo; Reece, T. Brett; Ambardekar, Amrut V.; Granzier, Henk L.; Dinarello, Charles A.; McKinsey, Timothy A.

    2018-01-01

    There are no approved drugs for the treatment of heart failure with preserved ejection fraction (HFpEF), which is characterized by left ventricular (LV) diastolic dysfunction. We demonstrate that ITF2357 (givinostat), a clinical-stage inhibitor of histone deacetylase (HDAC) catalytic activity, is efficacious in two distinct murine models of diastolic dysfunction with preserved EF. ITF2357 blocked LV diastolic dysfunction due to hypertension in Dahl salt-sensitive (DSS) rats and suppressed aging-induced diastolic dysfunction in normotensive mice. HDAC inhibitor–mediated efficacy was not due to lowering blood pressure or inhibiting cellular and molecular events commonly associated with diastolic dysfunction, including cardiac fibrosis, cardiac hypertrophy, or changes in cardiac titin and myosin isoform expression. Instead, ex vivo studies revealed impairment of cardiac myofibril relaxation as a previously unrecognized, myocyte-autonomous mechanism for diastolic dysfunction, which can be ameliorated by HDAC inhibition. Translating these findings to humans, cardiac myofibrils from patients with diastolic dysfunction and preserved EF also exhibited compromised relaxation. These data suggest that agents such as HDAC inhibitors, which potentiate cardiac myofibril relaxation, hold promise for the treatment of HFpEF in humans. PMID:29437146

Top